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Abstract

Rethinking Auto-Colourisation of Natural Images in the Context of
Deep Learning

Seán Mullery

Auto-colourisation is the ill-posed problem of creating a plausible full-colour image
from a grey-scale prior. The current state of the art utilises image-to-image Genera-
tive Adversarial Networks (GANs). The standard method for training colourisation is
reformulating RGB images into a luminance prior and two-channel chrominance super-
visory signal. However, progress in auto-colourisation is inherently limited by multiple
prerequisite dilemmas, where unsolved problems are mutual prerequisites. This thesis
advances the field of colourisation on three fronts: architecture, measures, and data.
Changes are recommended to common GAN colourisation architectures. Firstly, re-
moving batch normalisation from the discriminator to allow the discriminator to learn
the primary statistics of plausible colour images. Secondly, eliminating the direct L1

loss on the generator as L1 will limit the discovery of the plausible colour manifold. The
lack of an objective measure of plausible colourisation necessitates resource-intensive
human evaluation and repurposed objective measures from other fields. There is no
consensus on the best objective measure due to a knowledge gap regarding how well
objective measures model the mean human opinion of plausible colourisation. An ex-
tensible data set of human-evaluated colourisations, the Human Evaluated Colouri-
sation Dataset (HECD) is presented. The results from this dataset are compared to
the commonly-used objective measures and uncover a poor correlation between the
objective measures and mean human opinion. The HECD can assess the future appro-
priateness of proposed objective measures. An interactive tool supplied with the HECD
allows for a first exploration of the space of plausible colourisation. Finally, it will be
shown that the luminance channel is not representative of the legacy black-and-white
images that will be presented to models when deployed; This leads to out-of-distribution
errors in all three channels of the final colour image. A novel technique is proposed to
simulate priors that match any black-and-white media for which the spectral response
is known.
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Chapter 1

Introduction

1.1 Auto-colourisation

Automatic colourisation of natural images is the process of inferring a full-colour image

from a grey-scale prior. It is an ill-posed problem as there is insufficient information to

determine a unique solution as full-colour images inherently contain more information

than grey-scale images. For any natural scene, there is a unique colour representation of

that scene. Still, any grey-scale representation of the same scene will lack the requisite

information to reproduce the unique full-colour representation. For a given luminance

channel pixel, a two-dimensional solution space of possible colours exist to colour the

pixel [1]. However Zhang et al. [1] also note that if statistical dependencies between the

semantics and textures surrounding the pixel can be taken into account only a subset

of that two-dimensional solution space is plausible. Figure 1.1 shows some examples of

plausible and implausible colourisations of a grey-scale image. Should further a-priori

information be known about the specific object, the number of plausible solutions can

be reduced though normally not to a unique solution. In the case of flags, uniforms, or

other objects for which the exact colour is recorded, plausible variation remains due to

lighting conditions, natural variation in manufacture, and fading due to wear.

1.1.1 Plausible colourisation

The type of auto-colourisation that is discussed in this thesis is that of plausible colouri-

sation of natural images, i.e. producing a plausible full-colour natural image from a

grey-scale prior. Zhang et al. [1] describe plausible colourisation as a colour image

that could fool a human observer into thinking that it was a genuine colour image

capture of the scene. Through experience, adult humans learn an implicit distribution

for the range of colours known objects can exhibit. Colourising a grey-scale image

that exhibits colours outside this range can be considered implausible and incorrect.

Natural objects, such as foliage or sky, have narrower distributions relative to synthetic

objects, which may take on a wider distribution of plausible colours [2]. The goal of

auto-colourisation, in this case, can be restated as one that converts a grey-scale image

to one that exhibits plausible colour, consistent with the implicit distributions learned
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CHAPTER 1. INTRODUCTION

Figure 1.1: Colourisation is an ill-posed problem. For this grey-scale prior (left), nine exam-
ple colour versions from the Human Evaluated Colourisation Dataset (HECD) [3] are shown
(right), all of which match the grey-scale prior. Can you determine which is the ground-truth
colour image? The answer is in the footnote1. Many are so plausible that the ground-truth is
difficult to pick from them. Still, others are implausible. The mean opinion scores for each of
these images are included in the HECD.

by the average adult human.

A useful application of colourisation of natural images is to present a plausible colour

version of scenes captured on legacy black-and-white media. Throughout this thesis,

where a grey-scale image is a single channel from a luminance-chrominance colour space

the term grey-scale image will be used. Legacy media, which never captured colour,

and simulations of legacy media, which do not form a channel in a colour space, will

be referred to as black-and-white. This is to match the common term used to describe

the media but the reader should be aware that these black-and-white images are also

grey-scale images and not binary images.

Images are considered high-dimensional data; for example, colour images 32 pixels

by 32 pixels can be considered a space of R3072. However, there is a hypothesis that all

natural images lie near a low-dimensional manifold in the full image space [4]. The dis-

covery of this manifold would greatly reduce the dimensions required to move between

natural images. Disentanglement of the manifold would allow for simple manipulation

to make semantic changes to images; for example, moving in one dimension on the

manifold might represent the rotation of an object in a natural image, while another

1 Ground-truthismiddletop
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1.1. AUTO-COLOURISATION

dimension might change the colour of the object. We can consider the full manifold of

natural colour images to also be the plausible natural colour images. When presented

with a grey-scale natural image, the colour images associated with it should be some

subset of the samples on the full manifold and, ideally, a lower-dimensional manifold.

This lower-dimensional manifold of plausible colourisations of a specific grey-scale im-

age should only have dimensions for changing colour. Much of the work in this thesis

can be related to the notion that the degree to which a colourisation is implausible is

best measured by its distance from the plausibility manifold and not distance from a

specific colour image.

1.1.2 Perception of colour

Notions of colour as a purely physical phenomenon, that of a wavelength of the elec-

tromagnetic spectrum, must take a back seat to the notion of colour as a perceptual

phenomenon of the Human Visual System (HVS). The reasons for this are two-fold.

Firstly, if the plausible colourisations of a grey-scale image exist on a manifold then

humans are likely, with some variation, to have internalised the manifold. Even if the

manifold hypothesis is false, the human’s implicitly learned view of colour plausibil-

ity is still the only arbiter available at present. This means that human perception

of colourisation plausibility will remain the gold standard means of measure that any

objective measure must be compared to. The second reason colour must be consid-

ered a perceptual phenomenon is the manner in which digital images are recorded and

displayed. Only three channels are required for full-colour image display to the HVS,

despite the continuous nature of the visible electromagnet spectrum [5], [6]. The HVS

contains three types of colour perception cells (cones) that cover different but overlap-

ping parts of the visible spectrum, leading to the concept of trichromacy [6], see Figure

1.2. Trichromacy allows for a linear combination of three colour primaries to induce a

stimulus in the human eye equivalent to any colour of the visible spectrum and many

colours that do not exist as a monochromatic wavelength in nature, e.g. magenta.

The choice of colour primaries is arbitrary and does not specifically have to match the

peak sensitivities of the HVS cones shown in Figure 1.2. The trichromatic nature of

human vision gives rise to descriptions of the range of colours in what is called a colour

space. A common set of primaries, are the RGB (Red, Green, Blue), giving rise to

RGB colourspaces.

While the average human with normal colour vision has a good sense of plausible

colour they can only imagine what the grey-scale world would look like. However, there

have been attempts to simulate this view of the world with a single channel or value.

This was determined through experimentation where a population of viewers were asked

to compare a grey-scale value with a colour value to judge equivalent perceived bright-

ness between the two [8]. This resulted in the CIE 1924 photopic luminous efficiency

curve (see Figure 1.3), which indicates the relative perceived brightness over the extent
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CHAPTER 1. INTRODUCTION

Figure 1.2: The spectral response of the cones in the Human Visual System [7]

of the visible spectrum. Colour spaces were created, reforming the trichromatic space

into one luminance channel and two chrominance channels. Some of these used the

photopic luminous efficiency curve as the basis for their luminance channel [5].

1.1.3 Standard means of training in auto-colourisation

Auto-colourisation of natural images is often posited as inferring the two chrominance

channels when presented with a luminance channel [1], [9]. A common strategy in the

deep learning setting is the following.

• Take any large natural image dataset, normally stored in an RGB space.

• Convert the images to a luminance-chrominance space.

• Use the luminance channel as a grey-scale prior (input to the network).

• Design the network to predict the two chrominance channels at the output.

• Use the two ground-truth chrominance channels from the dataset for comparison

to the predicted channels. The difference is used as a supervisory signal for the

model’s weights.

• When the model is trained, a legacy black-and-white image can be input to the

model, and the model will output the predicted chrominance channels.

4
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Figure 1.3: Photopic luminous efficiency curve, adopted by CIE in 1924

• The legacy black-and-white image is combined with the predicted chrominance

channels to give a full-colour image.

• Finally, the full-colour predicted image is converted to an RGB space for display.

1.2 Problems and motivation

There are many obstacles to advancement in auto-colourisation research, but the mutual

prerequisites between the various problems is also of great concern. As shown in Figure

1.4, the search for a solution to one of the problems tends to depend on another unsolved

problem forming several prerequisite dilemmas. The problems are itemised below.

• There are no perfect datasets for colourisation. Instead, large natural image

datasets, created for classification models, are re-purposed for the task. These

datasets show a single colour version of each scene rather than the many plausible

colour versions. They also often contain implausible colourisations such as mono-

tone or stylised unnatural colour images. Creating a more effective colourisation

dataset would require a recolourisation method or a method to label the dataset

with a plausibility score, which would require a colourisation metric.

• There is no plausible re-colourisation method to create many plausible colourisa-

tions of a scene. To have such a method would require the changes to be made

in a colour space, where the distribution of plausible colour for objects is known,

or it would require an existing method of colourisation that could perfectly draw

samples from the distribution of plausible colourisation.

• Colourisation research into architectures, loss functions and optimisation is lim-

ited by the lack of an objective measure of plausible colourisation and no agreed-

upon perfect colour space. It is also hampered by the lack of an appropriate
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CHAPTER 1. INTRODUCTION

Figure 1.4: The prerequisite dilemmas between the unsolved problems of colourisation re-
search.

dataset from which it could implicitly learn the distribution of plausible colour,

and this distribution is not explicitly known. Another issue is the lack of a method

to simulate the type of black-and-white images the model will be presented with

during deployment.

• The distribution of colours for objects is implicitly learned by adult learners but

is not explicitly modelled or known. To determine the distribution would need a

metric, but the development of a metric is hampered by a lack of knowledge of

the distribution.

Figure 1.4 demonstrates the difficulty in progressing colourisation research and find-

ing a starting point leading to a reliance on human evaluation to compensate for the

lack of a colourisation metric and the unknown distribution of plausible colour. This

is the primary motivation for the strategy followed in this research to make incremen-

tal steps on many fronts and address the areas that have received little attention in

research to date.

There is still much unknown about the plausible colourisation of natural images. If

the manifold hypothesis is true, then methods that learn the manifold are an obvious

choice for colourisation research. However, the distribution and the manifold on which

it lies may be intractable to learn. The Generative Adversarial Network (GAN) of

Goodfellow et al. [10] does not explicitly attempt to learn the distribution but im-

plicitly draw samples from it, [11]. This has analogues to the human appreciation of
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plausible colour and is the motivation for investigating the GAN as a potential solution

to auto-colourisation in Chapter 3.

While the GAN has shown some promise in producing plausible colourisations, [9],

[12], it is not possible, at present, to know to what extent it has implicitly learned

the manifold. Colourisation research relies on human visual inspection to determine

the validity of models, assuming that the human inspector has implicitly learned the

plausible colourisations. The cost of human visual inspection and the need for com-

parison of models has led many researchers to re-purpose metrics from other branches

of computer vision and image processing. Still, how well these metrics correlate with

human opinion is not known. This lack of a trusted, objective metric for plausible

colourisation is the biggest single impediment to the advancement of colourisation re-

search and is the motivation for Chapter 4. In Chapter 4, the creation of a Human

Evaluated Colourisation Dataset (HECD) is presented and discussed. The HECD is a

dataset of colourisations labelled with the mean human opinion of plausibility. Com-

monly used objective measures are tested against mean human opinion to determine

their correlation. As other objective measures may be applied or developed, the HECD

allows for future objective measures to be validated. A secondary motivation for the

HECD is to explore the manifold/distribution of plausible colourisation. To assist in

this exploration, an interactive tool for investigating the results of the HECD dataset

is also introduced. Both the HECD and the interactive tool are made available publicly.

The common method used in training colourisation networks, that of converting

natural image datasets to a luminance-chrominance space described above, has a key

weak point. Once trained, the primary application of a natural image colourisation

model is to colourise the corpus of legacy images captured by black-and-white media.

The model is trained on luminance channels from a chosen colour space. If black-

and-white image media do not record a colour scene in the same manner as the chosen

luminance channel would render it, then the black-and-white media used in deployment

will be outside the training data distribution. This is the motivation for Chapter 5,

which investigates how black-and-white media differ from the luminance channel and

how this affects colour prediction. Chapter 5 also introduces a method to simulate

legacy black-and-white media capture so that future colourisation algorithms can be

trained with data closer to the desired distribution.

1.3 Contributions of this research

A summary of the contributions of this research are as follows

• A critique of the pix2pix framework [9], on which many GAN colourisation archi-

tectures are based. In particular the use of an L1 loss directly on the generator

is questioned in relation to the framework’s ability to learn a manifold. Evidence
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against the use of batch normalisation in the discriminator when training for

colourisation is presented.

• The Human Evaluated Colourisation Dataset. This contains 1320 images with 66

colour versions of 20 images. A mean human opinion score of naturalness is given

for each. This allows colourisation researchers to evaluate any objective measure

with human opinion. It is also readily extensible to explore more facets of colour

[3].

• An interactive tool for analysis and exploration of human opinion of plausible

colourisation of natural images [3].

• A novel mechanism to simulate various black-and-white image capture media

from RGB images.

• Experimental evidence is presented to show the extent of error introduced when

inferring with black-and-white media on colourisation models that were trained

using only luminance priors.

1.4 Overview of proposed solution framework

1.4.1 Framework in brief

The circular and mutual prerequisite nature of auto-colourisation of natural images

makes it difficult to find a starting point, see Figure 1.4. The proposed solution frame-

work is to anchor the blocks, as shown in Figure 1.5, to something external to the

problem space. These can be itemised in brief below with more detail following.

• Analyse the pix2pix framework, on which many GAN-based colourisation meth-

ods are based, and in particular, its reliance on the L1 loss and what this means for

learning the manifold of plausible colourisation. Here the anchor will be machine

learning theory and practice as well as human visual inspection.

• Create a framework in which objective assessment of colourisation can be val-

idated against human opinion. In this case, the average human opinion is the

anchor.

• Create an interactive tool to explore human opinion of plausible colourisation.

Again, here, the anchor is the average human opinion.

• Create a method to simulate black-and-white image media based on spectral

response. In this case, the anchor is the documented spectral response of black-

and-white media.

• Use the simulated black-and-white media to determine the error introduced when

colourisation methods, that are trained on luminance priors, are inferred with

black-and-white media.

8
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Figure 1.5: The prerequisite dilemmas between the unsolved problems of colourisation re-
search (Blue) and the proposed anchors to known or trusted concepts (Red).

1.4.2 More detail of the solution framework

Much of the current colourisation research is based on the GAN [10], particularly

a framework called pix2pix [9]. The pix2pix framework is a GAN architecture but

directly incorporates an L1 loss on the generator, weighted 100× higher than the ad-

versarial loss. There is concern that L1 loss of this magnitude will hamper the GAN’s

ability to learn the plausible colourisation manifold. Some of the questions that this

research will answer are, why the L1 loss is required, and if it is left out, can the dis-

criminator learn the L1 loss implicitly if appropriate? The GAN promises to generate

samples from an implicit distribution [11]. To do this, the discriminator must learn an

implicit loss function. If this promise is true, there should be no need to include such

a high-weighted loss external to the discriminator.

Creating a dataset with multiple plausible colourisations of a given scene is not

possible at present as it would require an explicit model of the distribution of plau-

sible colours for all objects. Instead, this thesis proposes the creation of a relatively

small but extensible dataset with multiple arbitrary but interpretable colourisations

that are then presented to human evaluators to judge the naturalness of the image.

The term ‘natural’ is used in place of ‘plausible’ as it is a more plain language term for

the general population that will judge the colourisations. This dataset will serve two

purposes. Firstly it will constitute a set of colourisations and associated mean opinion

scores of plausibility as judged by humans, allowing comparison to current and future

objective plausibility measures for colourisation. Secondly, the interpretive nature of

the recolourisation choices will allow a first exploration of the colourisation plausibility
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space and an interactive tool is developed to aid this exploration. The extensible na-

ture of the dataset allows for further targeted exploration of this space following initial

data gathering. By including some current state-of-the-art (SOTA) colourisation mod-

els along with the arbitrary interpretable recolourisations, an assessment of the current

state of colourisation can be determined.

The gap between the available luminance channels and black-and-white media cap-

ture techniques must be bridged. The development of a mechanism to convert RGB

images to grey-scale images that match the response of various types of black-and-

white image capture will allow for the straightforward extension of current natural

image datasets to create many types of black-and-white simulated images complete

with labels. This will allow future models to train using priors that are closer to the

test/deployment priors that will be required of the model in service.

1.5 Thesis organisation

Chapter 2 will briefly review the literature necessary to understand the following chap-

ters on colourisation. A short history of colour and colour spaces will be outlined. The

spectral response of black-and-white media capture will be presented and contrasted

with the photopic luminous efficiency curve shown in Figure 1.3. While this thesis is

concerned with the auto-colourisation of natural images, a review of colourisation, in

general, will be presented. As GANs hold some promise in making progress on the

colourisation problem, there is a brief review of GANs in Chapter 2. Still, GANs has

given rise to a large corpus of literature, so a larger review of GAN literature is placed

in Appendix A.

Given the nature of the solution framework, the experimental work and contri-

butions will be contained in three independent chapters more tightly coupled to the

anchors shown in Figure 1.5 than they are to each other. The concept is to create mul-

tiple firm foundations for the parts of the problem space, shown in blue in the figure.

Later these can feed into each other in a manner that researchers can trust and rely on.

As such, the ordering of these chapters is arbitrarily chosen to follow the chronological

order in which the research work took place. However, readers with a specific interest

can safely read any of these chapters stand-alone.

Chapter 3 will investigate the pix2pix GAN framework for use in colourisation. It

will examine why the L1 loss is included and whether it can be left out in GAN training,

particularly in light of the desire to learn a manifold.

Chapter 4 will investigate the human opinion of colourisation and how well this cor-

relates with the widely used objective measures in the literature. A dataset of twenty

images with 66 colourisations and a crowd-sourced mean opinion score will be presented

and analysed. An interactive dataset analysis tool is also presented and made publicly
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available.

Chapter 5 will demonstrate the varying degrees to which a luminance channel cannot

model legacy black-and-white image capture. Evidence is presented of two key error

types that this introduces in colourisation. Firstly, the legacy black-and-white im-

age cannot properly replace the luminance channel when combined with the predicted

chrominance channels at deployment time; secondly, because the black-and-white im-

age is outside the distribution of the luminance channel, it will lead to prediction errors

in the chrominance channels. Chapter 5 also presents a mechanism to simulate black-

and-white image media so that future colourisation models may train using priors that

better represent the distribution of images that will be applied during the deployment

of the model.

Finally, chapter 6 will give a final overview of findings and contributions. It will

also advise on the future directions of colourisation research.
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Chapter 2

Review of literature

2.1 Colour and colour spaces

Colour is best considered a psycho-physical phenomenon and has little meaning if not

in the context of the Human Visual System (HVS) [6]. Despite this, for much of

history, starting with the work of Issac Newton, colour was considered a purely phys-

ical phenomenon. Glass prisms could be used to separate white light into constituent

colours. Newton conducted experiments that showed that once isolated into a partic-

ular hue or monochromatic light, it could not be manipulated by experimentation to

change its colour further [6]. However, Newton’s first published paper on colour [13]

presented evidence that combining two isolated colours could result in a third isolated

colour that did not match either of the first two. For example, a mixture of red and

yellow could make orange. Later experimentation by others determined that combi-

nations of three colours, known as primaries, could be used to reproduce most colours

and the phenomenon became known as trichromacy. Converting a full distribution of

colour to a trichromatic triple allows a large reduction in information without effecting

the colour perceived by the HVS. A related term, metamere, describes the perceived

matching of colours between physically different distributions of colours [5], [6]. The

metamere represents a loss of information in the conversion from a distribution of visi-

ble wavelengths to trichromatic triples. The reverse operation from trichromatic triple

to distribution of visible wavelength is ill-posed because the information to distinguish

between metameres is lost. Likewise, the conversion from a colour triple to a single

value representing luminance represents a loss of colour information which cannot be

unambiguously reversed as many colour triples lead to the same luminance value.

J.D. Mollon [6] argues that the field of colour science was held back by what he

refers to as category errors. Until the late eighteenth century, the mixing of colours

was explained as a purely physical phenomenon rather than a perceptual phenomenon.

The assumption was that combining the three primaries in varying quantities phys-

ically became a monochromatic colour, different from any of the three constituents

before it entered the eye and therefore was indistinguishable from the monochromatic

light source of that colour. That the physical phenomenon was the wavelength of light
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and was a continuous variable was not suggested until 1780 by John Elliot [6], [14].

George Palmer, in 1777 [15], seems to be the first to have suggested that the eye may

contain three types of receptors and, in 1781 [6], suggested that colour blindness could

be explained by one of these types of receptors being inactive. It was Thomas Young, in

1801 [16], that combined the wavelength theory and the three receptor theory by sug-

gesting that the receptors must be resonators, each tuned to a different wavelength of

light. Young developed his ideas over the following two decades, being the first person

to map the colours to the continuous variable of wavelength and determining that the

peak sensitivity of the resonators may not necessarily match simple hues of primaries

that were in use, e.g. red, blue, yellow or green [6]. James Clerk Maxwell expanded on

the work of Young by developing colour matching functions between colour primaries

(he used Red, Green and Blue) and the continuous wavelength of light. Maxwell also

introduced the concept of a chromaticity diagram [6], [17]. The chromaticity diagram

is a 2D projection from a 3D space spanned by the three chosen primaries, [5]. The

2D space is intended to represent colour in two dimensions without consideration of

luminance. In a 3D space if lines are drawn between (1,0,0), (0,1,0) and (0,0,1), the

lines will form an equilateral triangle. Every colour on the plane of this triangle can

then be projected directly down one axis to map the equilateral triangle to a right-angle

triangle. The right-angle triangle allows for the straight-forward application of a 2D

coordinate space for every colour.

2.1.1 RGB spaces

In the 1920s, David Wright [18], and John Guild [19] experimented with colour match-

ing. Guild used a filter instrument, and Wright used monochromatic stimuli, [6].

Wright’s method [18] used a bipartite field where a monochromatic light would shine

on one half of the field, and the addition of the primaries would fall on the other. At-

tempts would then be made to modify the three primaries to values that appeared, to

the human observer, to match the monochromatic light. Wright used ten observers and

obtained an average of these. However, not all monochromatic lights could be matched

by this method. To get a perfect match for some wavelengths, it was necessary to

add some of one of the primaries to the monochromatic light so that it could match

the addition of the other two. This meant that the three primaries could not produce

all visible colours with a sum of positive values. Instead, it often required one to be

subtracted. This can be seen in Figure 2.1, where some primaries must be negative to

match the monochromatic wavelength.

While the experiments of Wright and Guild used different primaries, Wright’s pri-

maries were linearly transformed to Guild’s primaries, and they were in close agreement,

[19]. The results were combined using Guild’s primaries which became the CIE 1931

RGB standard primaries with the Red (700nm), Green (546.1nm), and Blue (435.8nm)

primaries [21]. Note: Uppercase, e.g. RGB and XYZ represent the axes in those spaces
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Figure 2.1: The CIE1931 RGB Colour matching functions [20].

while, lowercase, e.g. (r,g,b) and (x,y,z) represent vectors in that space. In Figure 2.1,

the colour matching functions are shown as r(λ), g(λ), and b(λ). To show how these are

used together, take the example of the wavelength 575nm (approximately yellow). It is

represented by (r = r(575nm), g = g(575nm), b = b(575nm) or (r=0.20715, g=0.15429,

b=-0.00123). The (r,g,b) vector gives a direction in RGB space, where RGB are the

three axes; Travelling along that vector maintains the perception of 575nm wavelength

while the perceived brightness changes. An important vector in this space is when

r = g = b. Looking at Figure 2.1 it is clear that no wavelength matches this vector, i.e.

there is no point where all three lines cross at the same point. Instead, this represents

an achromatic vector where travelling along this vector gives the perception of black to

grey to white. As all three values equal each other, this is known as the equal energy

white point, marked as E in the chromaticity diagram in Figure 2.3.

To achieve all visible colours, using only the simple addition of three positive pri-

maries required non-spectral primaries, i.e. they cannot be specified by a wavelength,

are not visible, and are not physically realisable. Instead, they are a mathematical

construct allowing all visible colours to be reached, [19]. With the data from the CIE

1931 RGB the CIE could then develop a colour space which they called CIE 1931 XYZ.

The XYZ primaries are non-spectral and can produce all visible colours with simple

addition. The specific choice of XYZ was driven by utility. By requiring all positive

numbers, calculation with slide rule was simplified. The response of Y was chosen to

match the photopic luminous efficiency function specified in 1924 by the CIE and was

arranged along a vector V ≡ (r = 1, g = 4.5907, b = 0.0601) rather than along the
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Figure 2.2: The CIE1931 XYZ Colour matching functions [22].

principal diagonal of the RGB space, where (r=g=b), [5], [21]. That vector is defined

by the proportions in which the HVS equates the RGB primaries to perceived bright-

ness. The two other axes, X and Z, define the orthogonal plane to this vector. It was

then engineered that the X and Z axis would be such that the chromaticity diagram

would fit the right-angle Maxwell triangle as tightly as possible, and the equal energy

white point, which was r = g = b = 1/3 was set at x = y = z = 1/3. Using all these

constraints, the XYZ space was specified, [21].

The colour matching functions for CIE XYZ are shown in Figure 2.2. Note in par-

ticular that as the response of Y was chosen to match the photopic luminous efficiency

curve, y(λ) matches Figure 1.2. In the chromaticity diagram in Figure 2.3 the spectrum

locus maps the monochromatic lights and where they would appear on the chromaticity

diagram for CIE 1931 XYZ. The inner triangle shows the colours that can be created

with only positive values of the CIE RGB primaries. To reach the colours outside the

triangle would require a negative value of one primary which is not physically realisable.

The XYZ space is the space from which most other colour spaces are derived or defined.

While many spaces are simple linear transformations of each other, they will still often

be defined in the XYZ space. For colour spaces requiring non-linear transformations,

they will often be changed to the XYZ space before being transformed to other spaces.

sRGB (standard RGB) is the standard colour space in digital systems and the

world wide web. It was developed by Microsoft and HP in 1996 [24]. It is the assumed

colour space if no other space has been specified or included as a profile with the file.

Therefore, it is the assumed colour space for large natural image datasets from the

world wide web unless specified otherwise. sRGB includes a linear and non-linear part

in its transformation. Its linear primaries are specified in the XYZ space as
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Figure 2.3: The CIE1931 Chromaticity diagram [23]. The spectral locus represents all the
pure (monochromatic wavelengths). E marks the equal energy white point. The three vertices
of the inner triangle represent the CIE 1931 red, green and blue primaries.
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R(x = 0.64, y = 0.33, z = 0.03)

G(x = 0.3, y = 0.6, z = 0.1)

B(x = 0.15, y = 0.06, z = 0.79)

(2.1)

and any XYZ coordinate can be converted to lRGB via a linear transform [5]. The

inverse transform can be used to change back from lRGB to XYZ. However, as sRGB

is designed for digital transfer, storage, and display, it is converted from lRGB to sRGB

via a non-linear gamma correction to correct the non-linear nature of digital display

technology. sRGB assumes the D65 illuminant as the white point instead of the equal

energy white point. While the equal energy white point is a theoretical point, D65

represents the spectrum of standard daylight and can be approximated by a black-

body radiator at 6504 kelvin. The non-linear step is, therefore, to allow it to appear

linear to the viewer. While sRGB is the most common or default colour space for

digital systems, there are many other RGB-type colour spaces, of which two will be

mentioned here. Adobe 1998 (sometimes just called Adobe RGB) has a wider gamut

than sRGB but uses the same number of bits per pixel, leading to wider quantisation

steps. DCI-P3 (Digital Cinema Initiative) is an RGB space with a wider gamut than

Adobe 1998 or sRGB, with larger quantisation steps. Adobe RGB and DCI-P3 require

specific hardware and software to be used properly and may require information stored

with the file to inform the hardware and software how to use it. This information is

often in the form of an ICC (International Colour Consortium) profile. These profiles

can be used for both colour space and devices. The gamut of a colour space may not

match the gamut of a device, so ICC profiles allow for accurate conversion of colours,

usually through an intermediary colour space such as CIE XYZ.

2.1.2 Luminance-chrominance spaces

A problem with the three receptor theory was the phenomenon of opponent colours.

Ewald Hering posited that there were four phenomenologically simple hues that hu-

mans experience, namely red, green, blue, and yellow [6]. While all other hues could

be seen as a combination of two or more of these, there seemed to be no such thing

as greenish-red or bluish-yellow. Hering called this the opponent colours theory, with

red opposing green and blue opposing yellow. While Hering’s ideas may seem to be

contrary to the three receptor theory, they were later explained by cells that gave an

excitatory response to one part of the spectrum and an inhibitory response to another

part.

The opponent colour view can form a cartesian colour space where all hues can

be defined in two dimensions. Zero on both axes is a complete absence of colour, an

achromatic white or grey. Adding a third orthogonal dimenion representing bright-

ness/luminance forms a family of colour spaces. Like in the case with tri-primary

colour spaces, the opponent axes can be arbitrary, and they do not need to match the

red-green, blue-yellow of the human eye [25].
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A potential use case for such a colour space came with the progression from black-

and-white television to colour television, which faced the problem of sending colour

and black-and-white signals simultaneously and still being compatible with existing

black-and-white television sets. For naming compatibility with CIE 1931 XYZ the

black-and-white signal was called Y. A gamma-corrected version Y’ is also widely used.

Y’ can be converted directly from sRGB in proportions (0.299, 0.587, 0.114), repre-

senting the perceived brightness. The arbitrary colour axes, orthogonal to Y, varied by

jurisdiction. YIQ was developed for NTSC (National Television Standards Committee)

analogue systems. At the same time, YUV was used in PAL (Phase Alternating Line)

analogue systems and the 2D plane of colours are an approximate rotation in the dif-

ference of 33o and the direction of colour change is reversed, [25]. Many variants of this

space are related to the various analogue and digital broadcast systems, with various

scaling factors. In some digital systems, chroma sub-sampling is used. The chroma

channels are sampled at a lower rate than the luminance channel because the HVS has

lower acuity for colour than luminance.

A family of colour spaces that relate to how artists think about colour was devel-

oped in the 1970s to assist in colour for computer graphics. Three variants are HSV

(Hue, Saturation, Value), HSL (Hue, Saturation, Lightness) [26], and HSI (Hue, Satu-

ration, Intensity). Hue is the wavelength of light (though it also contains values that

a wavelength cannot describe), and saturation is the amount of that hue. V is a value

related to the amount of light, while L is lightness, analogous to adding white paint. I

is the mean of the RGB values. When converting from RGB,

V = max(R,G,B) (2.2)

L =
max(R,G,B) +min(R,G,B)

2
(2.3)

I =
R+G+B

3
(2.4)

These spaces can all be seen as cylindrical polar representations of an RGB cube.

If chroma is used instead of saturation, the shape becomes bi-conic for HSL and conic

for HSV. These spaces do not match human perception, and from a colourisation point

of view, the luminance channels (V, I and L) do not match the human perception of

brightness, nor do they match historical black-and-white image capture techniques dis-

cussed later in Sections 2.2 and 2.3.

One problem not addressed by any of the colour spaces discussed so far, is that equal

Euclidean distance between pairs of colours in a space does not correspond to equal per-

ceived difference by the average person. Creating a perceptually uniform space cannot

be achieved with linear transformations of the other spaces defined above. Instead, it

requires non-linear transformations that are determined empirically with human trials
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under strict viewing conditions. CIEL*a*b*, developed in 1976 [5], [27], is the most

commonly used of the perceptually uniform spaces. The L*-channel is lightness. Radi-

ance is the purely physical amount of light energy in a scene. Brightness is the perceived

overall light in a scene and ranges from dim to dazzling. Lightness is the perceived light

relative to a region that appears white and ranges from black through grey to white.

The lightness in CIEL*a*b* was designed to closely match the human perception of

lightness and is a non-linear transformation of Y (Photopic Luminous efficiency curve)

from XYZ. The other channels are designed to match the opposing cones in the HVS.

a* represents Red (positive numbers) and Green (negative numbers). b* represents

Yellow (positive numbers) and Blue (negative numbers). CIEL*a*b* can be calculated

relative to any reference white but the CIE discuss the conditions for CIEL*a*b* as

“not too different from the average daylight”, along with generally recommending the

D65 illuminant [28]. D65 is also the reference white for sRGB and so by default D65

would be used for calculation of CIEL*a*b* from web images. The space is not a recog-

nisable geometric shape as it is warped by the non-linearity transforms. A competing

perceptual colour space, CIEL*u*v* [5], [27], developed at the same time used a dif-

ferent representation for the chroma channels but shared the L*-channel representation.

Despite its wide adoption, many flaws have since been discovered with CIEL*a*b*.

In particular, its perceptual uniformity in hue has been called into question, with the

blue part of the spectrum the worst affected. Work has continued to refine these per-

ceptual models, with the IPT colour space (1988) incorporating new data to improve

the perceptual uniformity of the hue [29]. Oklab, developed in 2020, is the latest per-

ceptually uniform colour space at the time of writing [30]. It uses IPT’s hue, but the

lightness and chroma from a colour-appearance model called CAM16. Colour appear-

ance models will be described in Section 2.1.3

Zhang and Wandell developed a spatial extension to CIEL*a*b* called S-CIELAB

[31]. S-CIELAB takes into account the HVS spatial sensitivity to colour. They argue

that CIEL*a*b* was designed to be perceptually uniform for changes between large

uniform segments of colour. When a colour segment has higher frequency colour, then

the perceptual difference between two colour reproductions will be over-emphasised if

measured in the CIEL*a*b* space. The parameters for S-CIELAB were derived from

psychophysical experimental measurement. The filtering parameters are related to de-

grees of visual angle, hence the measurement of colour difference must take into account

the distance of the viewer to the image.

Lαβ is a colour space devised by Ruderman et al. [32] in a bid to find a 3D space

that was maximally de-correlated in perceptual terms. To do this, they used a hyper-

spectral camera to measure the spectral distribution in natural images. Using twelve

full spectrum images and using the knowledge of cone response statistics, they anal-

ysed the data for L, M and S cones. They then transformed the points to a logarithmic
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(base 10) space and applied an orthogonal transformation to maximally de-correlate

the coordinate axes.

2.1.3 Colour appearance and chromatic adaption

Colour Appearance Models (CAM) have been developed to take account of some of the

more complex aspects of the HVS, [27]. These include

• Chromatic Adaption - the HVS’s ability to adapt colour perception with a change

in the illuminant’s colour, e.g. under a red illuminant the HVS will perceive

white as white, despite the red colour cast, and all other colours adjust with this.

Chromatic Adaption Transforms are designated as CAT, and most CAMs will

contain a CAT.

• Bezold–Brücke shift in Hue Appearance - The hue of a mono-chromatic light

appears to change with luminance.

• Abney effect is another hue appearance change, but this time, the hue of monochro-

matic light can change with the addition of white light.

• Stevens effect, where the appearance of contrast increases with luminance.

• Bartleson–Breneman effect, where image contrast increases with the luminance

of surrounding light, e.g. if viewing an image on a screen, the contrast of the

screen will increase if the ambient light increases.

• Hunt effect, where the colourfulness appears to increase with increased luminance.

• Helmholtz–Kohlrausch effect, where the perception of brightness increases with

increasing saturation.

• There are also spatial phenomena in appearance which are very hard to model

into a colour space representation, as they are dependent on relative position in

scenes.

CAM16 is the latest Colour Appearance Model, at the time of writing, following on

from CIECAM97s and CIECAM02. Each of these models includes a chromatic adap-

tion transform (CAT).

2.1.4 Colour spaces for colourisation

The colourisation task necessitates some system to measure the difference between

colours. This is especially important where the colourisation task will be a learned

one, as there needs to be a mechanism by which some loss can be minimised. This

task of measuring the difference between colours is not new, but neither has it been

satisfactorily resolved. For this purpose, the problem has been split into three different

types of systems.
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• Colour Appearance Systems: These make comparisons based on the human per-

ception of colour rather than some more objective criteria. This is motivated by

the fact that colour is subjective [33].

• Colour Difference Systems: These try to have some form of a metric that is

uniform across the space that will give a numerical result in any comparison of

colours. These systems tend to be concerned with small changes, often invisible

to the HVS. Changes over large distances, e.g. the difference between some shade

of red and some shade of blue, may have a number associated with them but are

probably not that reliable [27].

• Colour Order Systems: These are concerned with the order of colours over par-

ticular dimensions, which is particularly useful in materials manufacture, e.g.

swatch x is more saturated than swatch y, [27].

How does a system learn to compare colourisations to determine that one is better

than another and determine the correct direction to move the trainable parameters? If

the problem is classed as a colour appearance problem, the system must be human-like

with human deficiencies. Colour Order systems present a difficulty for learning meth-

ods as they partly cast the problem as one of classification, i.e. match or categorise

the colour to the closest in the order system. Some separate loss would then have to

measure how that compares to the ordering in the ground-truth image. Colour differ-

ence systems are the most popular system in the machine learning setting. These cast

the problem as a regression task and try to minimise the difference between colours.

The major deficiency is it assumes a single ground-truth when multiple are plausible [1].

Colour spaces are generally developed or chosen to match a specific application or

problem, e.g. RGB spaces are a good fit for current display technologies. The difficulty

with colourisation is that it encompasses much of colour science, and there is, therefore,

no specific colour space that is perfect for colourisation researchers to work in. Ballester

et al. [34] trained the same network on RGB, CIEL*a*b* and YUV colour spaces to

determine which is best, but unfortunately reach inconclusive results.

If the problem is constrained to only the colourisation of natural images with a

single ground-truth colour result, the problem can be treated as a regression problem

using colour difference. Minimisation in any colour space should be equivalent. Part of

the definition of a colour space is the definition of the transformation required to map

to some other space, most commonly CIE XYZ. Many colour spaces are only linear

transformations of each other, while others require non-linear elements. A deep neural

network could learn any of these mappings. There is no guarantee that minimisation

in a perceptual colour space will produce a better result than in an RGB space. Using
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a perceptual space may lead to a more interpretable network, but there is little evi-

dence yet that this is the case. While there may only be a single ground-truth colour

image for each grey-scale prior in a dataset, the same type of object could appear in

many images. It will have a distribution of plausible colours associated with it. We

can consider the plausible colours for an object to lie on a manifold. By treating the

problem as a colour difference regression task, the model is forced to produce a result

that minimises the distance to all points on the manifold weighted by the distribution

of occurrences on the manifold. Depending on the manifold’s shape, the average point

may not be on the manifold, thus producing an implausible colour prediction. The

manifold of plausibility is a fundamental problem in trying to learn colourisation, as it

is conditional on both the object and the grey-scale prior. There is no clear evidence

that it is easier to learn the plausibility manifolds in one colour space over another.

In choosing a colour space for colourisation, a luminance-chrominance space ap-

pears to match the problem. The idea is to use the luminance channel as the training

prior and the chrominance channels as the supervisory signal, [1], [9]. As there are

many luminance-chrominance spaces it would be ideal to pick one where the luminance

channel closely matched the types of priors that would be used at inference time. We

may think of auto-colourisation of natural images as a system that will recreate the

colour that was never captured in black-and-white archival media. If this is the case,

we must find the luminance channel that closely matches that archival black-and-white

media. The problem with this is that no luminance channel perfectly matches any one

type of archival media, and there were many types of archival media with very different

spectral response functions, see Sections 2.2 and 2.3.

In Chapter 3, experiments will be carried out using the Isola’s pix2pix framework

[9]. In this case, CIEL*a*b* will be used to match the method of the original frame-

work. In Chapter 4, several colour spaces will be considered. Still, the L*-channel

from CIEL*a*b* will be used in trials with human observers as this closely matches

how a human perceives luminousity in a colour scene. In Chapter 5, the problem of

creating grey-scale priors that match the various black-and-white archival media will

be considered.

2.2 Black-and-white photographic film

Photographic materials are made from silver halides, which are compounds that are

sensitive to light. They are formed from combinations of silver, and members of the

halogen element family, namely bromine and chlorine when used with the production of

positives (paper) and iodine when used with the production of negatives (film) [36]. The

range of wavelengths of light that silver halides are sensitive to are limited to the blue

and violet parts of the visible spectrum and also ultraviolet and shorter wavelengths not

visible to the HVS [37]. For visible light photography, capturing wavelengths outside

the visible range would give extra detail that is not visible to the human view of the
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Figure 2.4: Relative sensitivity to day-light (top) and tungsten (bottom) of broad categories
of black-and-white film as well as the visual luminosity curve of the human visual system, for
which the L*-channel is a close match. As shown, the photopic luminous efficiency curve does
not match any of the general categories of black-and-white film [35].
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Figure 2.5: Hawker Tornado photographed with blue-sensitive film [38]. The above inset is
the correct colour of the RAF roundel used at the time. Also, inset is the L*-channel of the
true colour version using CIEL*a*b* colour space, which is a good analogue for the photopic
luminous efficiency function of the human eye. As can be seen, the blues are captured as
lighter than they should be, while yellow and red are much darker than they should be. The
sky, which, even if cloud-covered will have a large blue component, is often overexposed by
the blue-sensitive film to get reasonable exposure for the rest of the image.

scene. In most cases, however, wavelengths below 330nm are absorbed by the lens’s

glass. What is of greater concern is that large parts of the visible light spectrum in the

green and red wavelengths are not captured or are largely attenuated. Film of this type

is variously referred to as blue-sensitive, ordinary, non-colour-sensitive or colour-blind

film, and its response to both daylight and tungsten can be seen in Figure 2.4. With

this type of film, greens and reds are rendered very dark or black, while blues are much

lighter than would appear to the HVS. An example of this can be seen in Figure 2.5.

A german photochemist, Hermann Wilhelm Vogel, discovered that silver halide

emulsion can gain sensitivity to light in the green part of the spectrum by adding suit-

able dyes [37]. Film of this type is known as orthochromatic. Vogel later found dyes

that extended as far as the orange part of the spectrum, and others followed, creating a

panchromatic film which was sensitive into the red part of the spectrum, see Figure 2.4.

The panchromatic film was commercially available from 1906. Still, further advances

into the infra-red were made though these are less interesting to colourisation as the

HVS cannot see those colours.

It would be incorrect to assume that from 1906 onwards all film was panchromatic.

Black-and-white film photography is still a popular hobby today, and blue-sensitive, or-

thochromatic and panchromatic films are all still in use. In particular, the panchromatic

film is problematic for photographers who process their own photographs as it requires
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complete darkness in processing. In contrast, orthochromatic and blue-sensitive can

be processed under a red light as the processor can see the process, but the film is

insensitive to the red light. As shown in Figure 2.4, none of the three general film types

matches the photopic sensitivity of the human eye in either daylight or tungsten light

[35].

Photographers often chose to use optical colour filters to attempt to correct for the

differences between panchromatic film and the photopic luminous efficiency curve [39].

A partial correction was possible with a single colour filter. Still, correction across the

entire spectrum required multiple colour filters, which significantly attenuated overall

light transmission and thus required increased exposure intervals. Photographers also

knew multiple colours could map to the same or similar grey tone. Colour contrast that

is obvious to the eye can be lost in black-and-white image capture. For this reason,

photographers could choose colour filters to substitute luminous contrast for colour

contrast. An example of this would be to use a Red filter (which transmits red but

blocks other colours, including blue) to darken the sky so that it would not map to the

same luminance value as a white building.

2.3 Black-and-white analogue television cameras

The switch from analogue black-and-white television to analogue colour television took

many decades, and the necessity for backward compatibility led to constraints and the

development of new competing colour spaces, as discussed in Section 2.1. When colour

television was broadcast, it was formulated as a luminance-chrominance space. The

luminance channel, Y, was a linear combination of RGB channels in the ratios of (0.299,

0.587, 0.114), determined to best approximate the photopic luminous efficiency curve.

The Y-channel was the channel decoded by the black-and-white TV receivers, but this

does not mean that Y or the photopic luminous efficiency curve closely represent the

sensitivity of black-and-white television camera tubes. Figure 2.6 shows the photopic

luminous efficiency curve compared to multiple types of black-and-white TV camera

capture response [40]. Interestingly, the early camera tube technology had the opposite

problem to early film; with early TV technology (1936-1939), reds were rendered too

bright while other colours (particularly blue) were rendered too dark. Alterations in

the manufacturing processes could alter the response curve to be closer to the photopic

luminous efficiency curve, shown in Figure 2.6 as “Standard Emitron” [40]. However,

these cameras had deficiencies in dynamic range, overall sensitivity, and instability to

light overload [41]. The Cathode Potential Stabilisation, CPS Emitron (EMI 1948)

and Photo Electric Stabilised, PES Photicon cameras (PYE 1949) [42] had a response

that was much more sensitive in the blue-green region, with red now considered too

insensitive. New Tri-alkali CPS Emitron cameras were developed (circa. 1956) that

were more sensitive to all wavelengths and had a very broad wavelength range. A

criticism of the first tri-alkali technology was that it had once again become relatively

too sensitive to the red part of the spectrum; In Figure 2.6 the shift in central peak
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Figure 2.6: The standard black-and-white TV Camera tubes had various response curves
as the technology progressed [40]. The earliest technology was heavily biased towards the
red and infra-red parts of the spectrum. As the technology progressed, the mechanisms were
found to bring it closer to the photopic luminous efficiency curve, which is also shown on the
graph for reference.

from the old CPS to the tri-alkali is very clearly shifted to the red side of the central

peak of the photopic luminous efficiency curve. Image Orthicon cameras (circa. 1964)

(EMI 203, Marconi Mk4, Pye Mk5) replaced the CPS models. Their response is much

closer to the photopic luminous efficiency curve, although the fall-off in response is not

as sharp around the central peak.

2.4 Colourisation techniques

Any attempt to categorise colourisation techniques will invariably encounter examples

that blur the lines between categories. One category is manual/hand colourisation,

which could be colouring on physical media or digital using a graphics tablet. For

automatic colourisation, there is a split into fully-automatic vs semi-automatic, with

semi-automatic techniques having the human in the loop in some manner. Some re-

views will separate colourisation techniques into scribble-based, exemplar-based and

dataset based. However, many techniques will use multiple of these categories, e.g.

choosing an image(s) from a dataset as an exemplar to choose colours for various pix-

els, which are then used as an input into the scribble-based techniques. The primary

focus of this thesis is deep learning and GAN-based techniques for auto-colourisation

of natural images, which fall more neatly into dataset techniques, i.e. techniques that

learn directly from a dataset and can colourise fully automatically. Even here, we will

see techniques that allow for user input at inference to guide the colourisation.
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2.4.1 Colourisation by hand

Hand colourisation dates back to the 1890s. Robert Paul [43] started by colouring

lantern slides, but, convinced that this could be introduced to film as well, enlisted the

services of an artist to hand colour film, which was much more difficult as the frames

were 1 inch by 3
4 of an inch. French colourist Elisabeth Thuillier and a workforce of

220 set up a production line to colour film, one object at a time [44]. Each colourist

was assigned a particular colour hue. It was meticulous work due to the size of the

film, with colourists often using brushes with only a single hair. Aniline dyes in water

followed by alcohol were used for the colourisation. Four primary colours were used:

Orange, Blue-Green, Magenta, and Bright-Yellow. These could be mixed to give a

palette of over 20 colours.

From 1903 the Pathé company transitioned to using stencils [43],[44], and eventu-

ally a mechanical method was developed. While cutting the stencils was arduous, it

meant many copies could be made for viewing the film in colour in many theatres. It

was common not to consider colourisation by this method unless a demand for at least

200 copies was required [43]. To get all the necessary colours, tri-chromatic stencilling

was used with Red, Yellow and Blue stencils being employed.

Wilson Markle, a NASA engineer, first introduced digital colourisation techniques,

[45]. He invented a system that he and his colleagues used to colourise images and film

from the Apollo space program. The process was as follows.

• A computer and scanner would determine the shade of grey for each object in the

scene.

• A colour would then be chosen digitally from a palette of approximately 4000

colours and would colour the object in the first frame.

• For successive frames, they would only re-colour any parts that moved.

Markle refined and commercialised the process [45], setting up a company called

Colorization Inc. When this was extended to the movie industry, the colourists would

have to spend time and effort determining what colour objects had been, and if this

could not be ascertained, they would have to apply a plausible one. The significant

refinements were to find the parts of the image that moved between frames and mask

these off. Colour was assigned to these areas, and the mask would move as the object

moved. Despite digitisation, this was still a labour-intensive operation costing approx-

imately $3,000 per minute of the film (24 frames) by 1988, [46]. It was still lucrative

for the movie studios, who typically made $500,000 at the box office for a $300,000
colourisation. It was, however, controversial, with many of the original directors and

fans protesting it as vandalism of art, [46].
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Hand colourisation is still in use today using packages such as Adobe PhotoshopTM

[47], [48]. One possible process for a professional hand colourist is broken down as

follows into six parts [49].

• Appraisal and Evaluation.

• Restoration and Reconstruction.

• Blocking in Colour: often thousands of layers to pick out the differences in hue,

colour gradation, light and shadow.

• Historical Research.

• Matching references: the blocks of colour from the layers are matched to the exact

colour reference and adjusted for lighting conditions.

• Global adjustments.

The quality of the result is not only related to the skill and knowledge of the

colouriser but also to the amount of time they are willing to spend. PhotoshopTM

has extensive functionality, with most users availing of only a small subset of these

functions. Therefore, it is unfeasible to outline all the methods that could be used to

hand colour images in PhotoshopTM; however, some methods include

• Simply painting on top of the image in a new layer and then blending that layer

using the various options for blending. In this case, the colour blend would be

the most obvious, though others can be utilised.

• In other cases, the image will be manually masked using various lasso-type tools,

some of which are fully manual. In contrast, others act in a smart manner at-

tempting to find the edges of areas within a certain luminosity value. Then the

masked section can all be set to a single value of hue and saturation. With

blending, this can then be modified at the user’s discretion.

• The colour can be easily chosen from a colour image with a colour chooser tool.

• Hue/saturation jittering can be used to randomly vary the hue or saturation

within desired parameters to give less of a sense of homogeneous colour.

• Users will often paint a distinct and highly saturated colour to allow them to

determine the edges of objects. Then, as a layer, the colour and saturation can

be blended as desired, e.g. painting skin purple and then modifying it later. This

is also used in colourisation in the animation industry; see Section 2.4.3.

2.4.2 Semi-automated colourisation

Semi-automated colourisation methods are those that colourise automatically only after

some human input. These typically involve the colourist “scribbling” on the grey-scale

prior with the desired colour. The auto mechanism must then determine how best
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to spread the scribbled colours to the rest of the image. Levin et al. [50] developed

a method motivated by the premise that neighbouring pixels in space and time with

similar intensities should have similar colours. So the user’s colour scribbles will be

automatically propagated in space and time to create a full colourisation over a single

image or a video sequence of frames. Huang et al. [51] utilise the optimisation algorithm

of [50] for propagating scribbles with some modification of weighting parameters, but

they add an adaptive edge detection scheme to ameliorate colour bleeding. Sapiro et al.

[52] also use a scribble input. They work on the assumption that the grey-scale channel

can represent the geometry of the full-colour image and spread the colour using the

gradient information from the grey-scale image. Yatziv et al. [53] improved on Sapiro’s

work with a more sophisticated model of gradient, which was more computationally

efficient and also showed their method could work better than other methods with a

sparse set of scribbles. Kim et al. [54] and Lagodzinski et al. [55] consider distance

measures based on random walks for the propagation of scribbles and preservation of

edges for spatial coherency. Heu et al. [56] use a prioritised mechanism for colouring

pixels based on scribbles that are then extended to subsequent frames of a video se-

quence. Pixels that don’t contain a scribble are colourised based on priority. Priority

is determined by whether neighbouring pixels are scribbled or already coloured with

similar luminance and distance to scribbles. Frames are then coloured sequentially,

performing motion compensated prediction from the previous frame. Luan et al. [57]

separate the colourisation process into the two stages of colour labelling and colour

mapping. In colour labelling, pixels are grouped together into coherent regions based

on similarity from broad user strokes. Here, pixels close to the stroke with similar in-

tensities and pixels remote to the stroke with similar textures are labelled. The colour

mapping stage then requires the user to pinpoint some more precise colours at multiple

points in each labelled region.

2.4.3 Colourisation in the animation industry

Perhaps the largest use of colourisation today is in animation. This is a special case

which is worth mentioning but will only be discussed briefly [58]. In the age of Computer

Generated Imagery (CGI) animation, there are still many animation studios creating

hand-drawn animation but using a graphics tablet and computer rather than pen and

ink. While processes differ, it is normal to have colourisation as a separate step in

the process of animation. In the industry, colourisation is referred to as Digital Ink

and Paint (DIP), which dates back to cell painting on acetate. In general, this hap-

pens after the animation process and is followed by compositing, where all animation,

background etc., are layered together. Compositing is often followed by a colour correc-

tion or grading stage so that this corrects or modifies the entire composition. For this

reason, the colourisation step refers to colouring objects to some reference standard,

e.g. daylight colour. In the animation industry, the reference colour is referred to as

local and should not be confused with “local” in terms of a pixel neighbourhood. This

means, for example, that characters are coloured the same throughout the story, and it
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is only at the final stage that they may be globally modified to portray the environment

or mood. Full auto-colourisation is not desirable in animation as the art form relies

on colour not just for its natural representation in terms of texture and light but also

because it can be used as an artistic tool to convey moods, emotions or motifs.

In general, what appears on the screen in animation can be split into background

and foreground. These are created separately. In general, the foreground is the ani-

mated part, whereas the background will either remain static or undergo translation

and/or similarity transforms (panning and zooming). While it would be unusual to do

so, the full animated feature could usually be created before colourisation, as all outlines

and animation are complete before this stage. Unlike the systems mentioned elsewhere

in this thesis, there is no split into different channels of luminosity and chrominance.

So, the colourists receive a binary black-and-white image or, in some cases, a grey-scale

image with shading, but any shading will be replaced by full RGB colour. While the

outlines will be visible in the final animation, they are normally drawn over, and the

areas within the lines are filled with colour. Any grey shading will not be seen in the

final production. The colourists may add some shading to the colour but this is nor-

mally left for a later stage of the process. In essence, colourisation is not a process of

adding channels but a process of painting over, much as a painter would paint over a

guide sketch.

The colourisation process for the foreground and background can be quite different.

The concern is that the production is consistent throughout, and consistency can be

difficult as many artists are required for the full production. Generally, a background

will be completed by a single artist, which maintains consistency in that segment of the

film. While strict direction will usually be given to the background artist, more craft

skill and artistic variance are expected here. The foreground often must be consistent

for the entire storyline as characters, etc. can appear throughout. Therefore, in pre-

production, the character design and colours will be defined and added to a Colour

Script, which will give detail for the full length of the storyboard of colour palette

progressions and colour motifs. While cost and time constraints are significant drivers

in determining the extent of the palette of colours, it is also a defining feature of the

medium. It is unlikely, in most cases, that if time and cost allowed, a director would

choose a larger palette of colours. The colourists are supplied with binary or grey-

scale outlines of each animated frame and a strict set of instructions on colour for each

object segment in the form of six-digit hex codes that define the 24-bit RGB colour.

A system like the scribbles mentioned in Levin et al. [50] is then used to colourise full

segments. Applications like TVPaintTM [59] can be used for this process, and it gives

a considerable amount of control to the user to make sure that it is filled correctly.

While it helps if the underlying binary image has segments that are fully closed, the

current packages can perform prediction, from simple scribbles, for where the colour

should stop.
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2.4.4 Automatic colourisation

Exemplar-based methods are those in which a source colour image is provided in order

to guide the colourisation of a target image. This can be considered “User-guided”, as

an appropriate source image should be provided in some cases. In others, the automatic

selection of an appropriate source image from a database is attempted. The goal is to

find a similar object or texture in the source and target images so that the colour from

the source can be used in the target.

Welsh et al. [60] were one of the first successful methods to do fully-automatic

colourisation. Using an L channel to which they wish to add colour αβ (they used

the Lαβ colour space of Ruderman et al. [32]), they take the statistics around the

chosen pixel. The statistics, in this case, are the weighted average and the standard

deviation of luminance in the neighbourhood around the pixel. This is then compared

to a reference colour image’s L-channel. From the closest match, it takes the αβ value

at that point and transfers it to the target image. Irony et al. [61] extend the work

of Levin et al. [50] by using Levin’s algorithm for colourisation, but only after they

have automatically generated the scribbles that Levin’s algorithm requires from the

user. Similar to Welsh et al. [60], the algorithm chooses colours from a reference colour

image. Unlike Welsh, however, they enforce spatial coherence. Using a source refer-

ence image, they either automatically segment the image or allow a colourist to mark

regions. Liu et al. [62] decompose grey-scale images into reflectance and illumination

components. Their concern was that the source and target images may have a similar

object/texture but different illumination, leading to an inaccurate transfer. Instead,

they transfer only the illumination-independent reflectance colour, combining this with

the illumination from the target. While this could be applied directly to the target

grey-scale image, there is a high likelihood of colour bleeding. Instead, they produce

a dense scribble map from only the best matches, then use the propagation method of

Levin et al. [50] to colour the full image. Chia et al. [63] leverage semantic text labels

from the user to search for likely exemplar source images from internet databases. They

also require the user to supply segmentation cues for foreground objects. As different

source images will colour the target in various manners, the user can then choose the

most appropriate result. Gupta et al. [64] require the user to supply a reference ex-

emplar image but approach the correspondence problem between reference and target

at super-pixel resolution. Super-pixel resolution speeds up the colourisation process

and enforces increased spatial consistency. Of course, this couples colourisation to the

superpixel problem, which is still an open research area.

Charpiat et al. [2] try to recognise texture by employing SURF descriptors [65] to

describe the patch around a pixel of interest. From a dataset they learn a distribu-

tion of likely colours that would match a particular SURF descriptor of the L* in the

CIEL*a*b* colour space. They directly learn how likely it is to have a colour variation

(based on the ground-truth colour dataset) at a pixel, conditional on the SURF de-
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scription of its grey-scale neighbourhood. So they learn the distribution of colours and

the likelihood of colour variation. The global spatial coherence is then implemented via

the Graph-Cut algorithm detailed in [66]. Deshpande et al. [67] also try to minimise a

cost function based on local colour prediction and spatial consistency. They also add

consistency with an overall histogram comparison. The predicted histogram and target

histogram are modelled with a Gaussian Mixture Model and then compared within

that space.

2.4.5 Colourisation with deep learning

Cheng et al. attempted a deep learning solution to colourisation in a preliminary work

[68] and an extended work [69]. This is a fully-connected network that takes a feature

description of a luminance pixel Y and outputs U and V channel prediction values that

it learns as a regression task. It outputs only a single pixel for each inference input, and

they trained separate networks depending on the type of image. The work of Iizuka

et al. [70] makes the transition to an image-to-image network for colourisation. Using

the CIEL*a*b* space, they input the L* channel and output the full a*b* channels in

a single pass. The hypothesis for their network type is motivated by the belief that the

best route to colourisation is to consider details in the grey-scale image at many levels of

abstraction. So global details may tell us whether the scene is inside or outside, the type

of weather, the type of lighting, and a broad category for the image such as landscape,

portrait, urban, etc. Medium-level features would inform details about the semantic

contents of images, such as people, buildings, vehicles and other objects. Low-level fea-

tures will determine textures in the grey-scale image, which are an excellent indicator,

in many cases, of what the colour should be. Zhang et al. [1] framed the colourisation

problem as a classification task. The goal is to predict plausible colourisations that

can fool a human observer. The aim is to model the statistical dependencies between

semantic information and textures in the grey-scale images with the colour versions.

So, they consider the problem multi-modal, in which objects can have a selection of

plausible colours but many that are not plausible. With this in mind, they predict a

distribution of colours for each pixel, and this loss is re-weighted during training to

emphasise rare colours, which encourages diversity. Larsson et al. [71] concentrated

on systems that could learn a histogram (distribution) of colours for a given grey-scale

pixel. They consider the problem as semantic composition and localisation. Larsson’s

system predicts the distribution for a pixel based on this semantic information. To do

so, they take an ImageNet pre-trained VGG-16 network [72] and concatenate features

from multiple layers into a hyper-column. Zhang et al. extended their work [1] in [73],

where the network learns not just a mapping from grey-scale to colour but also allows

for sparse user hints. Extra channels with a small number of sparse colour pixels are

concatenated to the grey-scale prior at input. The intention is that the network should

learn to give a high weighting to any of the sparse colour pixels, as this always matches

the ground-truth. Also, assuming spatial consistency, pixels close by or within the same
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colour segment in the image should likely have colours very close to the hinted pixel, as

this is also likely to be correct. At inference, the user could give as many hinted pixels

as desired, similar to the scribble techniques above. It also allowed the user to change

the colourisation if desired.

2.4.6 Generative adversarial networks

The Generative Adversarial Network (GAN) was introduced by Goodfellow et al. in

2014 [10]. A detailed review of GAN literature can be found in Appendix A, but a

short review of GANs will be given here to aid readability. The GAN is a form of

neural network architecture in which two networks, a generator and a discriminator,

operate as adversaries to each other. The generator network must attempt to generate

high-quality samples. The discriminator network, in opposition, must try to discrimi-

nate between generated samples (fakes) and real samples from some dataset. It is the

adversarial nature of training that defines a GAN rather than a specific architecture,

such as deep Convolutional Neural Networks (CNNs). The training takes place in an al-

ternating fashion. First the generator generates some fake samples. The discriminator

takes a training iteration by reducing its loss in classifying the real and fake samples.

Then the generator takes a training iteration, by passing a batch of fake samples to the

discriminator with labels that indicate they are real. The loss from the discriminator

on this batch is used to update the generator. The discriminator is not trained in

this step. By labelling fakes as real, the generator is trying to determine and reduce

the loss between the generated fake images and real images. However, it relies on the

discriminator to discriminate well in order for the generator to produce fakes that look

more real in an objective sense. At the beginning of training, the discriminator will not

be very good at telling the difference between real and fake. The goal is that as the

discriminator improves the generator will improve and in turn make the discriminator

work harder to tell the difference. If all goes well, a point will be reached where the

fake samples are so realistic that the discriminator cannot tell them apart from the real

ones. At that point, neither discriminator nor generator can improve any further. This

point is called a Nash equilibrium, named after the mathematician John Nash.

Due to the alternating training mechanism of the GAN, the loss function on the

output of the discriminator is slightly different depending on whether it is the discrim-

inator phase or the generator phase, see Appendix A.4. Goodfellow et al. [10] defined

two types of losses. One, which we’ll call the mini-max loss, was a good match for the

adversarial description of the GAN but sometimes caused problems at the beginning

of training when the distributions of the real and fakes were far apart. The second was

called the non-saturating loss and is the one that Goodfellow advised in practice. Ei-

ther should work, but the mini-max loss can be more problematic in training. Despite

the advice to use the non-saturating loss, the mini-max loss is still the default for many

researchers, particularly as it can be implemented as binary cross entropy loss for both
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generator and discriminator phases. Binary cross entropy is readily available in most

machine learning frameworks.

Due to the difficulty in training GANs, there has been a lot of research into creating

loss functions that improve training stability or overall performance. Ardjovsky et al.

[74] developed the Wasserstein GAN (WGAN), which uses the Wasserstein distance as

a loss, see Section A.4.3. The Wasserstein distance, also known as the earth mover

distance, is a measure of the difference between two distributions. In this case, the

distributions would be the real and fake distributions. This necessitates some potential

changes in the training regime and architecture but does have the advantage that the

loss function is more interpretable. Gulrajani et al. [75] improved on some of the com-

puter approximations of the theory in their iWGAN. Jolicoeur et al. [76] introduced the

relativistic discriminator, in which the loss for the generator phase of training labelled

fakes as real but also reals as fake. Jolicoeur et al. felt that the symmetry between

the loss for the discriminator phase and generator phase in the standard GAN setting

was problematic. The generator in this setting is not only updated based on the fakes

it is producing but also on how well the reals are misclassified by the discriminator.

The asymmetry in the loss functions in GANs causes problems for interleaving real and

fake images while training the discriminator phase. Normally the discriminator phase

has a separate update of the weights for a batch of real images and a batch of fakes.

The relativistic loss function’s symmetry allows the real and fakes to be used in a single

batch for updating weights. The relativistic loss is based on the non-saturating loss but

can be generalised to most other GAN losses. Lim et al. proposed a loss based on sup-

port vector machines, which has become known as the hinge loss [77]. This loss is very

popular for GAN training, with many other groups using it to achieve state-of-the-art

results [78], [79]. Jolicoeur et al. showed that a relativistic version of the hinge loss

performed better than some other relativistic losses in some but not all loss categories.

Mao et al. [80] were concerned that fake samples that were far from the centre of the

real distribution but were on the real side of the discriminator boundary, will give little

or no signal to the generator on how to improve. They introduced the least-squares loss

to better deal with this, see Appendix A.4.7. However, the concerns are related to the

mini-max loss and not the non-saturating loss, so this may not be an improvement over

the non-saturating loss. Conditional GANs are those that rely on some further piece

of information, such as a class label, or in image-to-image type GANs the condition

may be the input image. In these cases, there may be additional losses related to the

condition. It is often the case that there are additional losses directly on the generator.

The pix2pix formulation of Isola et al. [9] includes an L1 pixel loss between the fake

and real images in combination with an adversarial loss. The perceptual loss [81], [82]

is also popular in image-to-image type applications [83], [84]. Here the intermediate

feature activations of a pre-trained classification network are compared (L1 or L2) for

real and fake images. The idea is that fake images should show similar activations to

real images in pre-trained networks. While this is often used in a GAN setting, as it is
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not used to train the discriminator, these shouldn’t be seen as part of the GAN. They

are not part of adversarial training but instead are static minimisation methods.

Training of GANs is difficult for several reasons. While the generator and discrim-

inator must be sufficient to model the problem, if one outperforms the other, this can

lead to failures in training. While the Wasserstein loss indicates the training progres-

sion, the other losses can be very difficult to interpret. The adversarial nature means

that the discriminator changes the loss function for the generator and vice versa. As

with any two-player game, the score does not indicate the player’s ability in a general

sense; it only informs the relative ability of the players. If there is a good objective

measure of the quality of the samples that is tractable to calculate regularly during

training, then this can be used to determine how well training is progressing. However,

Fedus et al. [85] in critiquing Wasserstein GAN [74], [75] warns that there are many

paths to equilibrium, and not all reduce divergence at every step. There is no guarantee

then that a GAN would improve on a perfect metric score in a manner that would allow

for interpretation of training progression.

Appendix A.5.1 gives some heuristics-based advice on training GANs. Much of this

advice was collated by Chintala [86] in a GitHub repository that is no longer curated,

so some of the advice may no longer be useful. One of the pieces of advice is to con-

struct different mini-batches for real and fake samples. This heuristic will be looked

at in some detail in Chapter 3. Theoretical training advice is collected in Appendix

A.5.2. This advice includes the Two Time Update Rule (TTUR) from Heusel et al.

[87]. TTUR advocates using different learning rates for updating the discriminator

and generator to balance the adversarial training. Karras et al. [88] give theoretically

backed advice on how to grow GANs to increase the resolution of samples progressively.

Related to training is regularisation and stabilisation in GANs. Many of the same

techniques used in other deep neural network architecture training can be repurposed

in GANs, although they can be a bit more unpredictable in results. Dropout can be

used in the discriminator in the same manner as it is used in classification networks.

Isola et al. [9] did use dropout in the generator to insert some stochasticity in the

image-to-image GAN setting. Weight normalisation has been used by Salimans et al.

[89] in the discriminator. Weight decay has been used in generator and discriminator

[77], [87], [90]. Many of these methods have been superseded by Spectral Normal-

isation [78] introduced by Miyato et al. The idea is to ensure that weights do not

grow out of control during training. To do this, they re-normalise the weights in a

layer after each training iteration. Theoretically, all weights are re-scaled relative to

the largest singular value of the weight matrix, with the largest singular value being

re-scaled to 1.0. Having all singular values at 1.0 or below, the weights cannot grow.

However, unlike a simple weight penalty, this still allows the relative importance of

weights to change. Instead of the most important weight growing, the relatively less
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important weights decrease relative to 1.0. In practice, Miyato et al. do not calculate

the singular values but instead iteratively efficiently estimate them by calculating the

powers of the weight matrix. Further information about spectral normalisation can

be found in Appendix A.6. Batch Normalisation is also regularly employed in GANs.

However, there is a lot of conflicting advice about where and how to use it. More

detail on Batch Normalisation in GANs can be found in the Appendix A.6. Chapter 3

will also explore issues around using Batch Normalisation in the discriminator network.

Appendix A.7 details many of the main architecture types of GANs. However, large

and small changes in architecture often form the contribution of research on GANs, so

detailing every architecture is not feasible. Of most interest to this work are the DC-

GAN (Deep Convolutional GAN) of Radford et al., the U-net generator as used by

Isola et al. [9] derived from Ronneberger et al. [91]. The PatchGAN is used by Isola et

al. The pix2pix framework of Isola et al., which incorporates the U-net in the generator

and the PatchGAN discriminator, will also be detailed below and will form the basis

for experiments in Chapter 3.

The GAN concept is defined by the adversarial nature of the two networks and not

by specific architecture. To create a GAN is to create two networks, a generator and a

discriminator. The discriminator must be capable of taking the real and fake samples

at the input and outputting a binary classification of real/fake. The generation network

must output samples at full resolution. While Goodfellow et al. [10] originally showed

a generator network with a latent noise vector as input, image-to-image type GANs

admit an input image as a prior and an output image as the generated fake. Appendix

A.7 details many of the main architecture types of GANs. Still, the following will give

a brief summary, first of discriminators, then of generators and finally, overall architec-

tural advances.

Architectures used in classification applications can be reused as discriminators. In

most discriminators that give only a real/fake output, a sigmoid() activation is used at

the output to limit values to the range [0,1]. Isola et al. [9] introduced the PatchGAN,

which refers to the discriminator making real/fake judgements on patches of an image

rather than the whole image. Changing the number of down-sampling layers in the

discriminator will lead to varying patch sizes. In the pix2pix formulation introduced

by Isola et al., the final patch size was 16 × 16 pixels. For conditional GANs there is

a need to discriminate between real or fake based on some conditional data. Examples

of conditions could be a class label or, as in colourisation, an image prior. For colouri-

sation the image prior is included with both the real and fake images as one of the

channels. In this conditional discriminator, it is not sufficient to have plausible fakes

in the general sense. The fake must be plausible based on the image prior. Radford

et al. introduced the DC-GAN [92], where the main innovation was the generator ar-

chitecture. As shown in Figure A.5, a latent vector z is applied to a fully-connected
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layer, where it is reshaped to a 4 × 4 × 1024 activation. At each subsequent layer,

fractionally strided convolutions are used for upsampling the spatial resolution by two

while reducing the number of filters at each layer by two. At the output, the spatial

resolution is upsampled to meet the criteria for the generated image specification while

reducing the number of channels required by the generated image, e.g. three channels

for a colour image. There is a convention in generation networks to generate images

with values in the range [-1,1], which is generally achieved with a tanh() activation at

the output. Radford et al. also introduced the idea of using batch normalisation at all

layers, excepting the final layer of the generator and the first layer of the discriminator.

It was removed from these two layers as it seemed to cause sample oscillation and model

instability.

For image-to-image type generators, there is a need to encode information from the

input image before using that information to generate/decode the output image. The

fully-convolutional net (FCN) of Long et al. [93], the U-Net of Ronneberger [91], the

DeconvNet of Noh et al. [94], and the SegNet of Badrinarayanan et al. [95] are all

forms of this. A modification of the U-Net was used by Isola et al. in the pix2pix

framework [9]. The original U-Net was designed to be convolved across high-resolution

biomedical images. The pix2pix formulation dropped this requirement and allowed a

fixed 256× 256 input image size. This allowed for padded convolution. As well as the

down-sampling encoder and up-sampling decoder, the U-Net and its pix2pix version

have skip-concatenation links at each down-sampled resolution between the encoder

and decoder sections. Unlike the original U-Net, the pix2pix architecture does not in-

clude a skip-concatenate link at the input-output full resolution.

ResNets [96] have been used in both generator and discriminator. The ESRGAN

(Enhanced Super Resolution) of Wang et al. [84] extended the Residual Block intro-

duced in the ResNet [96] to a Residual-in-Residual Dense Block (RRDB). Self-attention

[97] was introduced into GANs by Zhang et al. [79] and channel attention introduced

by Woo et al. [98] is also seeing widespread use in GANs. StyleGAN by Karras et al.

[99] introduces a novel generator architecture which attempts to make the latent space

more interpretable. The latent variable is passed through a learned mapping network

to produce a new space W, see Figure A.15. W is, in turn, passed to learned affine

transforms that can then manipulate the Instance Normalisation layer at each scale of

an up-scaling generator. Noise is also added to each layer directly before the non-linear

activation.

2.4.7 Colourisation with GANs

The pix2pix formulation by Isola et al. [9] is the seminal work in colourisation using

GANs. The architecture is a conditional GAN with a U-net [91] in the generator, al-

though not a fully convolutional one. For each L*-channel prior, the generator produces
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fake a*b*-channels. pix2pix splits the job of minimising the error in the generated sam-

ples across two loss functions. They claim that for low-frequency information, L1 pixel

error is sufficient. They do this at the output of the generator network, where they

compare, pixel-wise, the real a*b* to the fake a*b*. This produces blurry images, so

to enforce quality high-frequency details, they use a patch discriminator rather than

determine real/fake on the whole image. The discriminator also receives the L*-channel

prior in both real and fake cases to make connections with it. The architecture is trained

by minimising the sum of the L1 and the adversarial loss, with the L1 loss weighted

100× the adversarial loss. Isola et al. presented pix2pix as a general framework for

image-to-image type problems, so despite it influencing many works on colourisation,

that was not their primary focus, and they did not make their trained colourisation

models available. Nazeri et al. [100] built on the work of pix2pix, focusing solely on

colourisation and making a few changes in line with best practices for the training of

GANs. They also make the trained model publicly available, which gives a reasonable

substitute for Isola et al. in terms of performance on the colourisation task.

Deoldify [101] is an unpublished but popular ongoing work by Jason Antic, which

has recently become a commercial product via the MyHeritage.com website. The sys-

tem seeks to both restore old images as well as colourise them. It is based on the

pix2pix [9] setup but the down-sampling side of the generator U-net is a ResNet-34

[96] that was pre-trained on ImageNet. Antic continues to add many state-of-the-art

techniques, such as Spectral Normalisation [78] and Self-Attention [79]. Antic’s latest

improvements appear to show significant improvements in terms of spatial coherency.

He has substituted in a ResNet-101 for ResNet-34. He has also introduced a scheme

called the NoGAN. In this scheme, the generator is first trained on a perceptual loss of a

VGG16 [72] net only. After convergence, the generator is used to produce fake samples

that are used in conjunction with real ImageNet samples to train the discriminator as a

real/fake classification classifier. Unlike the GAN setting, the generator is not trained

during this phase. After convergence of the discriminator, the two networks are put

together as a GAN and trained in an adversarial manner using the two-time update

rule (TTUR) [87].

Vitoria et al. [12] introduced the ChromaGAN for colourisation conditioned on

semantic information. They train the GAN to produce colourisations and class dis-

tribution of what is in the image, based on the 1000 classes of ImageNet [102]. The

class distribution is compared against the class distribution from a VGG16 [72] and

this is included as one of the loss terms to minimise. This is motivated by the belief

that if a network can learn semantic information about the image, it can colourise it

more accurately. In total, three losses are summed, the average L2 loss on the gener-

ator a*b* channels, the Wasserstein loss at the discriminator (often called a critic for

Wasserstein) with 0.1× the weighting of the L2 loss, and finally, the class distribution

loss with 0.003× the weighting of L2. In tests, with and without the class distribution
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loss, including the loss seemed to give a higher score on whether a human participant

judged the image to be realistic or not, but slightly reduced the score on PSNR (Peak

Signal to Noise Ratio) .

Kong et al. [103] develop a GAN framework for colourisation that incorporates edge-

awareness and output semantic segmentation predictions along with colour predictions.

The goal of jointly training for semantic segmentation and colour is to improve the plau-

sibility of colour applied to grey-scale objects and also ameliorate the problem of colour

bleeding at the edge of objects. Like Isola et al. [9] they use a U-net type architecture

for the generator and apply losses to the generator output directly in addition to the

discriminator loss. In parallel to the U-net encoder, they add a global feature extrac-

tion network, which is a VGG16 net [72] pre-trained on ImageNet [102]. Where Isola

et al. uses an L1 loss on the generator, Kong et al. use a CMC (Color Measurement

Committee) loss [104] and a segmentation loss in addition to the discriminator loss.

The CMC loss is a colour difference loss that takes into account some of the different

sensitivities of the HVS. Where L1 measured in the a*b* channels of CIEL*a*b* treats

all colours equally, the CMC loss weights colour difference of hue differently to differ-

ences in chroma. Like Isola et al., the adversarial loss is weighted 100× smaller than

the other two losses that are applied directly to the generator output. They achieve

better SSIM (Structural Similarity Index Measure), PSNR and image entropy scores

than other SOTA methods on the PASCAL VOC [105] dataset but achieve only better

SSIM scores on the ADE20K [106] dataset, with the best PSNR score going to Zhang

et al. [1]. The best image entropy score in their results went to Nazeri et al. [100] on

ADE20K. As SSIM and PSNR are regularly used in the colourisation literature, there

is a short explanation of each in Appendix C.

One concern that will be looked at in Section 3 is the contribution of the adversarial

loss in these networks. In [9], [100] it is weighted 100× smaller than the L1 loss directly

on the generator. It is also weighted 100× smaller than the CMC loss on the generator

used by Kong et al. [103]. For ChromaGAN by Vitoria et al. [12] the adversarial loss

is weighted 10× smaller than the L2 loss. Antic’s work [101] is a little of an outlier

here in that the NoGAN concept does not jointly minimise multiple losses but instead

minimises different losses at different times in training. As the NoGAN name suggests,

it does not really act like a GAN apart from fine-tuning at the end of training.

2.5 Measurement of colourisation in the literature

Appendix A.8 details the assessment of quality in GANs and Ali Borji presents a review

of the most recent advances in GAN evaluation [107]. What follows in this section is a

brief review of the techniques used to evaluate natural image colourisation, including

colourisation with GANs.

Most colourisation techniques rely on some form of human-visual inspection to
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determine efficacy or to compare to other techniques. Human-visual inspection can

include qualitative analysis [1], [9], [53], [60], [61], [73], [108]–[115], naturalness scor-

ing [70], [108], [116], user preference between two options [110], Visual Turing Test

(VTT) judged by human [1], [73], [114], [117], which of two colourisations best matches

a reference image’s colour [110], or which, from many images, appears closest to a

ground-truth [115].

Many attempt an objective measure based on absolute pixel value errors, such as

RMSE (Root Mean Squared Error) or L2 pixel distance [1], [67], [108], [118], MAE

(Mean Absolute Error) or L1 pixel distance [112], and PSNR [68], [73], [109], [112],

[116], [119], [120]. Lee et al. [113] develop a patch-based version of PSNR called

SC-PSNR (Semantically Corresponding PSNR), as they wish to compare colour to a

semantically similar patch from a reference image. SSIM [121] is used by [109], [120],

[122] and its multi-scale version MS-SSIM [123] is used by Wu et al. [124].

Kim et al. developed an objective measure called CDR (Cluster Discrepancy Ratio)

[119], based on SLIC (Simple Linear Iterative Clustering) superpixels [125]. CDR is

formulated by looking at the discrepancy between super-pixel assignment for ground-

truth versus colourisation. Similarly, [116] use mean Intersection over Union (IoU) of

segmentation results on the PASCAL VOC2012 [105] dataset.

Wu et al. [126] use a no-reference measure called colourfulness score [127], which in-

corporates the means and standard deviations of the a* and b* channels of CIEL*a*b*

in a parametric model to compute a measure of how colourful the image is. The pa-

rameters were learned from data based on psychophysical experiments.

Gorriz et al. [112] and Guadarrama et al. [117] compare histograms in the a* and

b* channels of CIEL*a*b* over a distribution of images.

Some methods, [1], [12], [71], utilise the concept that colour will assist in classifying

objects. Therefore a neural network designed to classify objects using colour images

will show a deterioration in performance if inferred with a poorly colourised image.

The difference can then be used as a proxy measure for colourisation performance.

Gorriz et al. [112] compare L1 distance between convolutional features in the VGG19

model for ground-truth and colourised samples. Similarly, [113] and [126] use Fréchet

Inception Distance (FID) [87], which requires comparing the inception score for colouri-

sations with ground-truth for 50K samples. Zhang et al. [128], developed a perception

measure based on the features of deep neural networks called the Learned Perceptual

Image Patch Similarity (LPIPS) metric, and this has also been used for the measure of

colourisation in [109], [115], [119].

The work of Anwar et al. [129] is the only work we have found that attempts to
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create a dataset specifically designed for colourisation. Their dataset is designed with

the idea of restricting synthetic objects or natural objects such as flowers that may have

a wide distribution of plausible colours. Instead, they include only natural objects that

would be considered to have a narrow distribution of plausible colours, such as specific

types of fruit and vegetables. The images contain only a single object type against a

white background. There are 20 categories and 723 images in all. They then use PSNR,

SSIM, PCQI (Patch-based contrast quality index) [130], and UIQM (Underwater Image

Quality Metric) [131] to test out SOTA algorithms on their dataset.

2.6 Other analysis of colourisation

Stapel et al. [132] explore colour bias in automated colourisation. Their work is limited

to investigating only the method of Antic (DeOldify) [101] and only the most recent

open source version of that method. They use the ADE20K dataset [106] (DeOldify

was trained on ImageNet [102]) to determine global and local bias in the colour of the

results. By comparing histograms in both RGB and CIEL*a*b, they find that globally

there is an increase in mid-to-high blue pixel values and a pronounced increase in the

number of neutral colours (central in the CIEL*a*b* ab space), which could be restated

as a pronounced desaturation from the ground truth. When analysing local colour bias,

they note that the global biases are not evenly distributed spatially over the dataset.

They identify a red shift in the periphery and a green shift in the bottom two-thirds of

the image. The green shift could be explained by the most common location of green

foliage in landscape images. The local blue shift is twice as large as the green, and

while almost every spatial location is shifted, the greatest shift is in the centre images.

The authors note then that the normal location of the sky cannot explain this blue

shift, and indeed in further tests of bias per category, they note that the colouriser

shifts the sky away from blue on average. At the time of writing, it is unclear if the

biases identified by Stapel et al. can be generalised to all colourisation methods and

whether the cause of these effects can be shown.

Ballester et al. present two complimentary works analysing how colour space [34]

and how loss function [133] affect colourisation performance. In both, they use a fixed

U-net style architecture [91], which outputs colour channels conditional on a grey-scale

prior. The encoder part of the U-net uses a pre-trained VGG [72] architecture. The

COCO dataset [134] is used for all training and testing. In [133] the network is trained

separately using the following losses, L1, L2, VGG-based LPIPS [128], WGAN plus L2,

and WGAN plus LPIPS. They try both CIEL*a*b* and RGB with each of these loss

functions. In [34] they train separately using the RGB, CIEL*a*b* and YUV colour

spaces, using L2 and LPIPS as loss functions. To measure the performance in both

papers, they use L1, L2, PSNR, LPIPS, and FID. Along with quantitive evaluation,

they present a qualitative discussion of a small number of images. The results are,

unfortunately, inconclusive in that there is no clear colour space that outperforms the

others. Specific choice of loss function does not seem to affect the quality of results
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either. The main conclusion then, in both cases, is that the architecture may be the

most important factor in determining colourisation quality. However, Section 4.4.1

will show that the objective measures used in these papers do not correlate well with

human opinion. Therefore any colourisation analysis that relies on agreement across

these measures will likely be inconclusive.
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Chapter 3

GANs for coloursation

3.1 Introduction

Much of the current research in colourisation uses the Generative Adversarial Network

(GAN) [10]. Therefore this chapter will look at some of the concepts around GANs

for colourisation, particularly the pix2pix framework of Isola et al. [9]. Appendix A

gives an in-depth review of GAN literature with regular reference to its use, or possible

future uses, in colourisation research.

The detailed algorithm for GANs is outlined in Section A.1. While both networks

are trying to minimise some objective, the objectives are in opposition to each other.

A training iteration of the discriminator changes the loss surface of the generator and

vice versa. This means that the GAN, as a unit, is not trying to reach a local or global

minimum but instead attempting to reach a Nash equilibrium.

The Nash equilibrium is a solution to a non-cooperative game involving two or more

players. In the case of a GAN, the two players are the discriminator and generator.

The Nash equilibrium is achieved when the players can no longer achieve anything

further by following their chosen strategy, but there is nothing to be gained by chang-

ing strategy so long as the adversary does not change their strategy. In the case of

colourisation using a GAN, the generator’s strategy is to produce fake colourisations

that fool the discriminator. The discriminator’s strategy is to tell the real apart from

the fake. The Nash equilibrium will be reached when the generator produces fakes that

the discriminator cannot tell apart from the real imagery. The belief then is that when

the Nash equilibrium is reached, the generator will be producing fake colourisations

that are indistinguishable from the real thing.

Since the GAN was first posited by Goodfellow et al. [10] they have gained status

as a panacea to solve all types of problems. Figure A.1 shows the exponential rise of

GAN mentions in research papers up to late 2018, and at the time of writing, October

2022, the initial GAN paper [10] has surpassed 50k citations. Despite this, GANs are

poorly understood and do not always live up to their promise. Training of GANs is
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particularly tricky, with many hyper-parameters whose effect is unpredictable, particu-

larly in combination. Unlike systems that search for a minimum of an objective, there

is little in the adversarial loss functions to interpret how training is progressing, see

Figure 3.5 for example. A Nash equilibrium can be reached relatively quickly simply

because each network has dependencies on the other for gradient. The discriminator

may be maximally confused early in training due to its initial state and not be able

to learn due to a lack of gradient to guide it. In turn, if the discriminator cannot

discriminate it cannot offer guidance through its loss function to the generator. This

sort of Nash equilibrium can be reached at any point in the training but it does not

mean that the generator is producing real-looking colourisations. The discriminator’s

architecture, loss function, training dynamics or inappropriate training data, can lead

to the discriminator being maximally confused for the wrong reasons.

The GAN literature, see Appendix A, has many architectural designs/components,

loss functions and optimisation techniques that attempt to guide the GAN to the desired

Nash equilibrium, but in general, these techniques are often repurposed from better-

understood static minimisation problems. Optimisation algorithms such as RMSProp

[135] and Adam [136] etc. are well understood in the static minimisation problem space

but are poorly understood in a dynamic regime such as the GAN. Likewise, ideas such

as over-fitting and under-fitting are difficult to determine in GANs while relatively

straightforward in static minimisation problems. Ideas like Batch Normalization can

be problematic in GANs while invaluable in the systems they were designed for. CNNs

excel at the recognition of textures but struggle with shape when trained on natural

image datasets such as ImageNet [137]. So when a CNN is used in a GAN’s discrimi-

nator it may prioritise discrimination of texture over discrimination of shape, leading

the generator to prioritise generation of texture while neglecting shape.

It will not be possible to address all concerns about GANs in this chapter. Instead,

we will look at a select issues as they relate to the colourisation problem. In particular,

we will look at the pix2pix framework [9], on which much of the recent colourisation

research is based, see Section 2.4.7. The pix2pix framework is a generalised image-to-

image framework, so any results here may have more general relevance. It uses a U-Net

style architecture [91] for the generator and a Patch type discriminator, giving rise to

the term PatchGAN for this type of GAN. The Patch type discriminator discriminates

on patches of the images rather than on the image as a whole. In pix2pix the patches

are 16× 16. The patch design is motivated by the need to model high-frequency com-

ponents of images as they deem it unnecessary to model low-frequency components of

images which are dealt with via a separate L1 loss on the generator. Both the generator

and discriminator use blocks of conv-batchNorm-relu, though they do leave Batch Nor-

malisation out of the final layer of the generator and the first layer of the discriminator.

A linear combination of adversarial loss and L1 loss directly on the generated pixels is

used for the total loss for the generator iteration. In the linear combination, the L1
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loss is weighted λ = 100× the adversarial loss. Optimising the L1 loss involves a search

for a minimum (local or ideally global), while optimising the adversarial loss involves

a search for a Nash equilibrium. The choice of λ = 100 is justified in [9] as λ = 0

gave sharper results but with visual artefacts, while using only L1 without the adver-

sarial loss led to blurry results. This value of λ is then held for all of the various tasks

to which pix2pix was applied. The tasks include colourisation, but also day-to-night

images, pixel-labels to facade, edges to photos, pixel-labels to street scenes and aerial

image to map. While pix2pix has been widely built upon in the colourisation literature,

colourisation does not appear to be the top priority in the pix2pix paper, with the origi-

nal model and parameters for the colourisation application not made publicly available.

3.2 The discriminator as a learned loss function

In the pix2pix framework Isola et al. [9] interpret the discriminator as a learned loss

function. Trying to engineer a loss function to suit each application is very difficult.

Deep Neural Networks (DNNs) were developed to learn unknown functions from data,

and this idea can be extended to the discriminator with millions of parameters being

available to learn the appropriate loss function, given the correct data and architecture.

In the case of colourisation, this means that if shown labelled real and fake colourisa-

tions, the discriminator should learn a loss function to discriminate between the two.

In comparison, the L1 loss, applied directly to the pixels on the generator output, is

arguably the simplest defined loss that could be applied. Given the promise of GANs,

two questions should be asked regarding the inclusion of the L1 loss.

• If the L1 loss is useful, why can a discriminator with millions of parameters not

learn it?

• If L1 loss is not useful, then why include it with 100× the strength of the learned

discriminator loss?

To answer the first question, the L1 loss must have a real and fake of the same im-

age for direct comparison. The discriminator is presented with real and fake separately

and must determine, from a single image, whether it is real or fake. While there is no

mechanism for a PatchGAN discriminator, in current form, to minimise L1 directly,

experiments below will investigate whether it can implicitly learn a loss function that

minimises L1. If the discriminator cannot minimise L1, or some other defined function,

it may make sense to include losses that the discriminator cannot learn. However, if the

included losses take precedence, then it may deceive us as to the usefulness of the GAN

itself. Having millions of extra parameters and training iterations is wasteful, if they are

not playing a part in training. To some extent, Chapter 4, on measuring colourisation,

has answered the second question above, is the L1 loss useful? As colourisation is an

ill-posed problem, then L1 is not well correlated with human opinion of the naturalness
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Figure 3.1: Example a*b* manifold of plausible hue for an item of clothing. Note: This ex-
ample is from the HECD Dataset that will be detailed in Chapter 4. The ’A’ and ’N’ desig-
nations in the legend represent images deriving from the ground-truth image (’A’), and those
deriving from a white-balance corrected version of the ground-truth image (’N’).

of a colourisation. This is because there are many plausible colourisations which will

be penalised by L1.

A related concern with L1 loss on the output of the generator is the concept of

the manifold [4]. The hypothesis is that the natural images lie on a relatively low-

dimensional manifold in the overall image space. Consider the following questions.

• Does the adversarial loss of the GAN learn a manifold?

• Does L1 loss on the generator learn a manifold?

• Will a combination of the two losses learn a manifold?

The GAN is posited as a mechanism to draw new samples from an implicit dis-

tribution, see Section A.3.2 in the appendix. The concept is that the discriminator is

concerned only with determining real from fake. If the discriminator confuses a fake

for a real it believes that the fake has come from its learned concept of real, however

accurate that may be. This has been interpreted as the adversarial loss learning a

manifold [138].

L1, however, is simply a distance measure. In a multi-modal setting, where real

images lie on a manifold, L1 loss will attempt to minimise the distance to all experi-

48



3.2. THE DISCRIMINATOR AS A LEARNED LOSS FUNCTION

enced real samples. The result of this is that L1 will favour a central point regardless

of whether that point is near the manifold. This is demonstrated in Figure 3.1. In

the figure, some images and results from the HECD, see Chapter 4, have been used

to illustrate the manifold. The small circles represent human opinion of naturalness

(plausibility), with the size of the circles proportional to the mean opinion score. The

only change in the images is the colour (hue) of the child’s top. The similar size circles

indicate that mean human opinion of each image is similar. The plausibility forms a

circle in a*b* space. The sampling is more dense in certain parts of the space than in

others, but this is due to the sampling arrangement that will be explained in Chapter

4, and it does not represent higher plausibility or higher density of a distribution. The

main takeaway from the figure is that mean human opinion remains mostly constant

for any hue for the garment. While this is an incomplete picture of the human opin-

ion of plausible colour for the garment, it is instructional in thinking about what the

various losses would learn from these images. If the discriminator could judge any of

these images as real, then that can be thought of as learning the manifold; the man-

ifold in this case forming a circular space in a*b*. However, L1 will try to minimise

the distance between the prediction and all of the plausible images. If the plausibility

forms a perfect circle in a*b* space then the point that minimises the distance to all

real images is the point in the centre of the circle. If the manifold is not a perfect

circle or the distribution has a higher density at some points on the manifold, then

L1 will tend to learn a point somewhere between the centre and the high-density part

of the distribution. In either case the resulting prediction that minimises the loss will

not be on the manifold and, therefore, will not represent a plausible image. While the

manifold is hypothesised to exist in a high-dimensional image space, the figure can be

considered as an incomplete projection of the plausible manifold into a*b*-space. The

net effect of this in a*b*-space is that L1 will favour predictions close to the centre of

the space, which represents a reduction in chroma and at the very centre an achromatic

prediction. It is a common observation of colourisation systems that follow this for-

mula that they predict colour images that lack colour or produce colours that are much

duller than the ground-truth, leading researchers to attempt to solve the lack of chroma

separately, see, for example, Zhang et al. [1]. The concept of incorporating extra losses

beyond the adversarial loss is common in the GAN literature, but this exacerbates the

difficulty in interpreting GAN’s training. In some cases, the extra loss may overpower

the adversarial loss. This means that if the adversarial loss could learn a manifold, it

will be hampered in this effort by the much larger L1 loss. The experiments below seek

to determine how much effect the adversarial loss is having on the training in pix2pix.
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3.3 Experiment 3.1: Train original pix2pix formulation

and analyse the various loss functions

In this experiment, we will use a 15k subset of colour training images from ImageNet

[102] of size 256 × 256 to train the original pix2pix formulation on the colourisation

task. This dataset size was chosen for memory and speed reasons as it could all be

placed in memory available, allowing faster training. The image data will be converted

from RGB to CIEL*a*b*; the L*-channel will be the input, and the generator must

predict the a*b* channels,

G : L→ (a, b). (3.1)

The predicted a*b* channels will be compared with the true a*b* channels at the

generator’s output using the L1 loss

L1 =
1

N

∑
all pixels

(|areal − afake|+|breal − bfake|). (3.2)

Then the L*-channel will be combined with the predicted a*b* channels to give a fake

colour image,

Ifake = (L, afake, bfake), (3.3)

where afake and bfake represent the predicted a* and b*-channels respectively. The

original CIEL*a*b* image will be used as the real colour image,

Ireal = (L, areal, breal), (3.4)

where areal and breal represent the ground truth a* and b*-channels respectively.

Batches of fakes will be fed to the discriminator with the label ‘fake’ (0), for a train-

ing iteration. Then a batch or real images will be fed to the discriminator with the label

‘real’ (1) for a training iteration. Then the discriminator will be fixed (non-trainable)

while a batch of fake images will be presented to it, this time with the label ‘real’. This

will be used in conjunction with the 100× L1 loss to update the generator to produce

more real-looking fake images. The iterations of the discriminator learning cycle for real

and fake batches separately is in accordance with the heuristic given in Section A.5.1.

The batch size used will be eight, meaning that there will be 1875 iterations (15k/8)

in an epoch and training will continue for 100 epochs, which is approximately 24 hours

on available hardware. The overall loss for generation (100× L1 + adversarial loss), as

well as the L1 loss, the adversarial loss, and the loss on the discriminator, are captured

and displayed in Figure 3.2. The overall loss on the generator seems to follow the L1

loss much more closely than the adversarial loss, which appears to have little influence.

The discriminator loss goes to zero very quickly, showing that it can discriminate well

between real and fake. As detailed in Section A.5.1 a discriminator loss that behaves in

this way is considered a concern as it suggests the discrimator may be more powerful

than the generator, and a redesign may be necessary. The fact that the discriminator
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Figure 3.2: Separate loss functions for training pix2pix [9] in the standard formulation. The
green dashed line represents the loss that would represent the Nash equilibrium. The com-
bined loss looks very similar to the L1 loss. The adversarial loss is very difficult to interpret.
The discriminator loss is at zero indicating it can easily tell real from fake but this does not
appear to influence the adversarial loss or combined loss.
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loss is almost always zero suggests that it is not learning anything new. The adversarial

loss is likely unable to learn anything to change the situation as any change it tries to

make would likely be suppressed if it caused an increase in the L1 loss. The overall

generator loss also shows a repetitive pattern with a cycle of every four epochs or 7500

iterations. The calculation of the loss happens every 100 iterations. So the observed

cycle is how often the same image batch appears for assessment. Some batches have

greater loss than others, and these repetitive patterns can be seen throughout the L1

loss. The L1 loss starts to reduce later in training, but the generator adversarial loss

seems to change little apart from some reduction in its extreme values.

There is one other concern in the loss functions of Figure 3.2, which may not be

obvious at first glance and will not be noticed at all if the individual losses are not

analysed. When the discriminator loss is effectively zero, this should mean that the

generator loss is high, i.e. in opposition. The dashed green line represents the loss

of 0.5, i.e. −ln(0.5) = 0.69. If a discriminator is completely confused and cannot

discriminate between real and fake it will apply a value of 0.5 at its sigmoid output.

The loss on this will be approximately 0.69. In the figure, both the generator and

discriminator loss average below this dashed line, despite the expectation that they

should be in opposition to each other across this line. While this may appear to

be a bug in the program, there are two reasons that can cause this to be the case.

Firstly, the losses that should be in opposition are not calculated at the same time.

One is calculated in the discriminator’s iteration, and the other is calculated during

the generator’s iteration. The change in loss can be quite significant over a single

iteration, and this makes interpretability in GAN training more difficult than in static

minimisation scenarios. However, with the discriminator so dominant here we should

expect little gradient for the generator adversarial loss to work with, and so we should

expect to see the generator loss averaging much higher. To understand why this is not

the case, the effect of Batch Normalisation on GAN training must be considered.

3.4 Batch Normalisation problem in GAN colourisation

Batch Normalization [139] is an invaluable technique that has become almost ubiquitous

in deep learning. When Ioffe and Szegedy introduced it in 2015 they claimed that on

a SOTA classification network, it could train to a matching performance in 7% of

the training iterations. The idea works similar to the whitening of data for input

to a DNN. It treats each layer as a network with its own input. The mini-batch of

activations undergoes an affine transformation to zero the mean and normalises the

standard deviation to one. Following this, a further learned affine transformation takes

place to change the mean and standard deviation to match what works best for the

training of that layer. The learned parameters also permit the identity function if

that proves to be useful. The reason that Batch Normalization is useful is that during

training, activations from the previous layer can start to drift to values that will cause

the non-linear activation into saturation and hence lose gradient. Once the gradient
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is lost, it cannot learn its way back into the useful part of the non-linearity. The

first part of the Batch Normalization algorithm is based on the statistics of the mini-

batch. A simplifying assumption is that the mini-batch statistics will be an unbiased

estimate of the overall statistics of the training set. In the training regime of a feed-

forward classification network, this assumption is generally found to hold quite well,

and the larger the mini-batch, the better the estimate. When training is finished,

Batch Normalization operates slightly differently. As inference could be based on a

single instance, each instance must be treated the same. During training, the first

part of the Batch Normalization algorithm depends on the statistics of the full batch,

but at inference, it is based on the statistics of the full training set. As such, Batch

Normalization can be expected to work slightly differently at inference than in training,

but as the mini-batch is generally a good estimate of the full set then this difference

should be small and the inference should be better than at any point in training.

Now consider Batch Normalization in the discriminator of a GAN. There is a train-

ing set of real images, and a varying set of fake images, which we hope will come to

resemble the distribution of real images, but at the beginning of training will certainly

not look anything like them. So we will start with the assumption that the statistics

of the set of real and fake images will be different. This is demonstrated in Figure

3.3A, which, for simplicity, shows just two features. There are two ways the GAN can

operate. The real and fake images can be interspersed and fed to the discriminator as a

batch together (A in the diagram) or they can be fed through as two separate batches,

one batch of real 3.3C and one batch of fake 3.3B, as recommended in heuristics in

Section A.5.1. If they are sent through interspersed together 3.3A, then the Batch

Normalization operation, to zero the mean and normalise the standard deviation, will

have to combine the two different sets of statistics and determine one mean and stan-

dard deviation between them, with the result shown in Figure 3.3D for the first part

of the Batch Normalisation algorithm. After each iteration of the discriminator, the

generator then applies a batch of only fakes to the discriminator with real labels so

that it can train the generator to produce more convincing fakes. This batch now looks

like Figure 3.3B and the resulting Batch Normalization operation will result in 3.3E.

Compare 3.3E with 3.3D to see that the same (or an unbiased representative sample)

fake data is presented to the discriminator very differently on each alternate iteration.

In 3.3D, we can see that with a logistic regression or the SVM algorithm, this data

could be relatively easily discriminated. However, if then presented with the data in

3.3E, any model of discrimination learned in the previous step would not recognise all

of these samples as fake. This difference in statistics seems to be the reason for the

heuristic to do separate iterations for real and fake on the discriminator; see Section

A.5.1.

Let’s consider the scenario where that heuristic is followed and separate real and fake

iterations for the discriminator are performed. A real batch is applied to the discrimi-

nator, Figure 3.3C, and its statistics are shifted to zero mean, and standard deviation of
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Figure 3.3: 2D examples of Batch Normalisation with GAN training. The top row shows
what happens to real and fake data if they are supplied together to a Batch Normalisation
layer. The middle row shows what happens if only fakes are applied to a Batch Normalisation
layer. The bottom row shows what happens if fakes only are applied to a Batch Normalisa-
tion layer. The generator iteration only applies to the middle row. While either the top row
or bottom row scenario can be applied during the discriminator iteration both will cause the
fake samples to be treated differently from the generator iteration.
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one, shown in Figure 3.3F, the standard deviation is then expanded/contracted by some

learned value, and the mean is shifted by some learned value, not shown in the figure,

and a training iteration takes place. Then a batch of fakes is applied, Figure 3.3B, and

its mean is shifted to zero and standard deviation of one, Figure 3.3E, it also undergoes

the learned affine transformation and a training iteration takes place. However, the

problem here is that as the initial shift to zero mean and standard deviation of one is

based on the batch in hand, neither the real nor the fake batch are a good estimate of

the training set as a whole. Instead, each is shifted to have the same first two moments

of statistics , i.e. µ = 0.0 and σ = 1.0. The discriminator has lost the most obvious dif-

ferences between the real and fake, the first two moments of the distributions, the mean

and standard deviation on each feature is now identical for both real and fake batches,

compare Figures 3.3E and 3.3F. Batch Normalization can shift all the fakes to look like

real images if they were only judged on these first two moments. Next, a batch of fakes

is supplied by the generator to the discriminator for the generator training iteration.

The discriminator now must determine how real are the samples in Figure 3.3E, but

this will be difficult as the samples now overlap with Figure 3.3F. For demonstration

purposes in the figures, the real and fake data have clear differences in distribution

beyond the primary moments of mean and standard deviation. There is still some use-

ful learning that a complex discriminator could carry out. In an image scenario where

the number of features can be very high, there may still be lots of learning to carry

out. In this case, learning something about the covariance of the features would help

in identifying some of the fakes. The generator may be able to learn to change some of

its features but will get no signal to change the mean or the standard deviation of them.

In pix2pix [9], they follow the heuristic to apply separate iterations of the discrim-

inator for real and fake batches. Hence the scenario where the generator cannot learn

anything about the two primary statistical differences between the real and fake images.

However, if the L1 loss on the generator output is combined with the adversarial loss,

then this should minimise the difference in mean between the two distributions. Out-

side the case of over-fitting, L1 does not have a mechanism to learn standard deviation.

The pix2pix paper states that using the adversarial loss alone leads to high-frequency

artefacts, while using only the L1 loss leads to blurry images being generated. They

recommend the combining of the L1 and adversarial losses to get both the low and

high-frequency elements. While it might be expected that L1 would lead to blurry,

low-frequency results, it is not clear why the discriminator should produce only high-

frequency results. Isola et al. made the high-frequency claim due to the PatchGAN,

where discrimination is done on patches rather than the whole image. While we may

expect this to have more local than global effects, the exact mechanism of ‘High Fre-

quency’ has little theoretical footing. The crossover between low and high frequency

cannot be clearly stated, nor whether middle frequencies are covered by either the dis-

criminator or L1. If, however, instead of thinking in terms of low and high frequency

we cast the problem as major and minor statistical components, the necessity for L1
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becomes more obvious. Batch Normalisation in the discriminator strips away the two

most significant statistical components, allowing the discriminator to learn differences

only in more minor statistical moments. Then L1 is used directly on the generator to

minimise the difference in major statistical components and the problem with batch

normalisation is partially masked.

The intention when developing pix2pix was as a general framework for diverse

image-to-image problems. There are many problems in which the mean and stan-

dard deviation of features are not informative. In classification problems, for example,

it would not be prudent to rely on the mean value of an intensity channel to help clas-

sify one object from another, as different types of lighting could cause misclassification.

This is why operations such as whitening of image data are often used to remove infor-

mation that we don’t want the model to use up resources trying to learn. However, a

whitened image is not a natural-looking image from a human observer’s point of view,

so it’s important to match a solution to a problem. In consideration of the difference

between what represents a plausible colourisation and what does not, then the mean

and standard deviation of channels and features is of vital importance. Colourisation

is not the only problem space in which the mean and standard deviation are impor-

tant. Many image generation problems will fall into this category. The question that

must be answered at this point is whether L1 is vital to this sort of generation task or

whether, by removing Batch Normalisation from the discriminator, the discriminator

could implicitly learn these statistics and do away with the necessity for the L1 loss

altogether. That is what the next experiment will answer.

3.5 Experiment 3.2: Train pix2pix without L1

To test whether the pix2pix formulation is capable of implicitly learning an L1 loss,

the original formulation of pix2pix will be modified to train using only the adversarial

losses. The L1 loss on the generator output will be calculated but not incorporated in

the training. This training will take place in two scenarios. In the first, Batch Normali-

sation will be used in the discriminator as in the original pix2pix formulation (no Batch

Normalisation in the first layer), and loss function results are shown in Figure 3.4. In

the second, Batch Normalisation will be removed from all layers of the discriminator,

and loss function results are shown in Figure 3.5.

Taking a look at the results in Figure 3.4, both the adversarial and discriminator

loss go quickly to zero. Once again we see that the two losses are not in opposition

to each other. While batch normalisation plays its part in the confusing result, it may

also be partly due to the losses being calculated at different parts of the iteration loop.

The L1 loss is calculated but not incorporated in the optimisation. Despite this, the L1

loss changes over time, showing that the generator is changing its output despite both

the adversarial and discriminator losses appearing to be at zero for the duration of the

training. We should also note that the L1 loss gets worse over the course of training,
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Figure 3.4: Separate loss functions for training pix2pix [9] when L1 is calculated but not used
as part of the loss function in training. Note that the L1 loss increases through training, sug-
gesting that the discriminator is not implicitly learning to lower the L1 loss. Contrast this to
the L1 loss in Figure 3.5 in which batch normalisation is removed from the discriminator.
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Figure 3.5: Separate loss functions for training pix2pix [9] when L1 is calculated but not used
as part of the loss function in training. In this case batch normalisation has been removed
from all layers on the discriminator. Note L1 loss reduced similar to Figure 3.2 despite not
being used in the optimisation. This suggests that the discriminator can learn to implicitly
minimise L1.

suggesting that whatever the discriminator is learning, it is not implicitly learning to

lower the L1 loss.

Now contrast this with what happens when batch normalisation is removed from

the discriminator and only the adversarial losses are used for optimisation. The re-

sults are shown in Figure 3.5. The discriminator loss is broadly in opposition to the

adversarial loss. The discriminator appears slightly stronger than the generator, due

to it averaging being below the dashed line of equilibrium, but the discriminator loss

has not gone to zero and the generator is able to produce new fakes that keep it in the

game. Training did not reach a Nash equilibrium in the 100 epochs. Despite the L1

loss not being incorporated into the optimised loss, the L1 loss reduces to levels that

are only slightly higher than where they are when the L1 loss is optimised directly,
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see Figure 3.2 and Figure 3.6. This shows us that the discriminator is able to learn

to implicitly optimise L1 as long as batch normalisation is not used in the discriminator.

When L1 loss is directly optimised on the generator it can achive a lower L1 loss

than the discriminator can manage implicitly. However, there are two reasons that

allowing the discriminator to learn implicitly, unencumbered by the direct L1 loss, is

preferable. Firstly, L1 does not correlate with the human opinion of plausible colourisa-

tion and, therefore, it is not a good proxy for what we want to learn, i.e. the manifold.

Secondly, the discriminator can learn what weighting to give to L1. In the standard

pix2pix formulation, L1 is weighted 100× higher than the adversarial loss for all of the

training. When the discriminator learns it implicitly it can learn how best to weight it

against other differences between real and fake that match the problem space.

However, if all the discriminator does is implicitly learn L1 almost as well as L1

directly being optimised, then the discriminator is not particularly useful and is an

unnecessary use of resources. In the next experiment, the generator will be trained on

L1 alone, but the discriminator and adversarial losses will be recorded to interpret if

the discriminator is learning something additional to L1.

3.6 Experiment 3.3: Train pix2pix with only L1 but record

adversarial losses

In this experiment, the generator from the original pix2pix formulation will be optimised

directly using the L1 loss only. The adversarial losses will be calculated but not used

in the optimisation of the generator. The discriminator will be trained but will not

form part of the training of the generator, and it will have no batch normalisation in

any of its layers, following the evidence presented in Experiment 3.2. Figure 3.6 shows

the losses in this scenario. It is worth comparing the combined generation loss in this

figure with that of Figure 3.2. These two losses look remarkably similar apart from

their magnitude, with Figure 3.2 being 100× Figure 3.6. When L1 loss alone is used,

the system’s L1 loss can go slightly lower than when the adversarial loss is added to

the optimisation. Note that this version of the discriminator has Batch Normalisation

removed and so, as shown previously, is capable of implicitly learning L1. If, however,

L1 was all that it could learn, then minimising L1 in the manner here should cause

the discriminator loss to go to the point of confusion, represented by the green dashed

line in the figure. The fact that it remains below this means that it is not confused

between real and fake, even when L1 is minimised. The discriminator seems to be

able to learn to separate real from fake relatively easily, and this also shows in the

increasing adversarial loss on the generator. This suggests that the adversarial loss

could lead to changes in generation that could go on to fool the discriminator, and

therefore the GAN is capable of learning something more than just implicitly learning

L1. However, once again, we come up against an interpretability problem with the
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Figure 3.6: Separate loss functions for training pix2pix [9] when the generator is optimised
with only L1 loss directly on the output of the generator. In this case batch normalisation
has been removed from all layers on the discriminator and the discriminator is trained, and
the adversarial loss is calculated, but not used to train the generator.
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GAN losses. The magnitude of the adversarial losses does not give any indication of

how significant their contribution would be. The small difference between Figure 3.2

and 3.6 suggests that the adversarial losses have little to contribute, but that could be

due to the weighting between L1 and the adversarial loss. Perhaps a better comparison

is between Figure 3.6 and 3.5. In Figure 3.5 we see that the discriminator is capable of

implicitly learning L1 but it chooses to give it slightly less weighting than the authors

of pix2pix [9]. Finally, we must consider that the discriminator may be capable of

forgetting. The idea here is that as the generator improves, or even just changes its

output, the discriminator no longer needs to use its capacity to discriminate between

real images and fakes from earlier in training. In the specific example here, if the

generator reduces L1 and never allows it to increase again, then the discriminator

could learn to forget any implicit learning of L1 in favour of using its capacity to learn

other features that do differentiate between the current fakes and the real images. In

Section A.5.1 one of the heuristics is to store fakes from different points in training

and re-apply them randomly during training so that the discriminator does not forget.

This may only seem useful if the discriminator is to later have some purpose beyond

training the GAN, but the danger is that as training progresses the discriminator could

begin to concentrate on relatively unimportant differences between real and fake and

encourage the generator to over-emphasise this minutia.

3.7 Visual inspection of colourisations for the experiments.

As documented in Section 2.5, a common form of evaluation of colourisation perfor-

mance is qualitative visual inspection. While objective measures are used in the lit-

erature, Section 4.4.1 shows that these do not correlate with human opinion of the

naturalness of a colour image. In this section, some sample images will be presented

showing the effect of colourisation using the various modifications of the pix2pix formu-

lation above. The final model after 100 epochs of training on 15k images will be used.

However, to avoid being fooled by potential over-fitting, the test images used will not

be from the same dataset. Instead, selected images from the Berekeley Segmentation

Dataset [140] that were repurposed in the Human Evaluated Colourisation Dataset will

be used as the test images. They will be cropped to 256 × 256 to fit the input to the

pix2pix framework. While more than one image will be presented, more than one crop

of one of the images will be looked at to see if any artefacts are linked to a specific set of

pixels or are related to position in the image. As the L*-channel tends to dominate the

information content in an image when presented to a human, each of the channels, L*,

a* and b*, will be presented separately in addition to the combined colourised version.

Figure 3.7 shows the comparison of the ground truth image against the four models

trained in this chapter. The first thing to notice here is that in most of the cases,

the shape of objects in the image is discernible in the a* and b* channels but seems

to be at lower contrast, more blurry, and less detailed than the ground-truth image.

An outlier here is the original pix2pix model with the L1 loss removed. In this case,
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the discriminator uses batch normalisation, and as explained above, this has stripped

away the two most significant statistical differences between real and fake images. The

discriminator is trying to discriminate only on what detail is left. The pattern that

forms seems to be some form of 16 × 16 grid, with each square having 16 × 16 pixels.

The reason for this is difficult to interpret, but 16× 16 is the size of the patch used in

the PatchGAN of the pix2pix formulation. A comparison of this column of Figure 3.7

with the same column in Figures 3.7 and 3.8 clearly shows that this pattern is mostly

unrelated to the specifics of the L*-channel input. In columns two and three, we can

compare the original pix2pix with (Loss = 100×L1+Ladv), where batch normalisation

is used in the discriminator. The inclusion of the adversarial loss seems to have added

some artefacts in a 16×16 grid again but also seems to have increased the contrast when

compared to column three, which shows the results when L1 loss on the generator is the

sole method of optimisation. Column four shows the output when only the adversarial

loss is used, but the discriminator does not use batch normalisation. It appears more

detailed and with higher contrast than either of the direct L1 solutions though not as

detailed or high contrast as the ground-truth. The repetitive 16 × 16 grid is absent.

A large artefact appears in both a* and b* channels. A larger but similar artefact

appears in the second image, see Figure 3.8. In Figure 3.9 a re-crop of the peppers

image from Figure 3.7 is colourised by the same models. The most interesting result

here is the effect on the model in column four. The artefacts are much worse here

and the output for similar pixels from Figure 3.7 is very different. Interpretability

in GANs has not progressed to the point where there is a clear cause or reason for

these artefacts. Even where there are no artefacts the colourisation for similar input

pixels is different. This suggests that the colour for a pixel is not just chosen based on

its local pixel neighbourhood but also on global information. While it’s possible that

this behaviour would disappear with further training, it is something that should be

tested with colourisation methods as it is not something that appears in results in the

literature.

3.8 Relating these findings to other GAN-based colouri-

sation architectures

Nazeri et al. [100] is essentially the pix2pix formulation with only small changes. It uses

batch normalisation in the discriminator in the same way as pix2pix and they continue

to use L1 with a λ = 100. Vitoria et al. ChromaGan [12] use L2 loss instead of the

L1 loss on the generator, along with the Wasserstein loss in place of the adversarial

loss and also a class distribution loss, over the 1000 classes of ImageNet [102]. The

weightings are 1.0 for L1, 0.1 for Wasserstein loss and 0.003 for class distribution loss.

The Wasserstein loss is explained in detail in Section A.4.3, but one important point to

make here is that implementing the Wasserstein does not allow batch normalisation to

be used. Therefore, the discriminator, in this case, does not have batch normalisation,

so it is possible that the L2 loss on the generator output was not necessary. They
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Figure 3.7: Channels top-bottom: Full-colour, L*,a*,b*
Left-right: Ground Truth, Original pix2pix, pix2pix using L1 loss only, pix2pix with batch-
norm removed from discriminator and adversarial loss only, pix2pix with adversarial loss only
and batch-norm used in discriminator. Figure 3.9 shows the results for a different crop of this
image. Interpretability in GANs has not progressed to the point where there is a clear cause
or reason for the artefacts, present in the fourth column.

63



CHAPTER 3. GANS FOR COLOURSATION

Figure 3.8: Channels top-bottom: Full-colour, L*,a*,b*
Left-right: Ground Truth, Original pix2pix, pix2pix using L1 loss only, pix2pix with batch-
norm removed from discriminator and adversarial loss only, pix2pix with adversarial loss only
and batch-norm used in discriminator.
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Figure 3.9: Channels top-bottom: Full-colour, L*,a*,b*
Left-right: Ground Truth, Original pix2pix, pix2pix using L1 loss only, pix2pix with batch-
norm removed from discriminator and adversarial loss only, pix2pix with adversarial loss only
and batch-norm used in discriminator. Figure 3.7 shows the results for a different crop of this
image.
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test with L2 alone, leaving out the discriminator, but they do not test the adversarial

approach without the L2 loss. Kong et al. [103] use a Colour Measurement Committee

(CMC) loss on the generator, which is a little more tailored to the colour problem than

simple L1 or L2 but is otherwise a similar concept. They weight it 99× the adversarial

loss, although they include a segmentation loss of equal weighting to the combined CMC

and adversarial loss. Unfortunately, they only say they use the same discriminator as

pix2pix rather than explicitly stating the architecture. We must assume then that

they employed batch normalisation in the discriminator in the same way as pix2pix [9].

DeOldify was originally based on pix2pix but utilised an idea called the NoGAN, in

which much of the training for the two networks takes place separately, and it is only

used in GAN mode for fine-tuning at the end of training. DeOldify is not a published

work, so it is difficult to interpret how this training corresponds to other GAN works.

We can assume that the other training has brought the real and fake distributions closer

to similarity before continuing with adversarial training.

3.9 Conclusion

Much of the GAN Literature on colourisation inherits from the pix2pix framework [9]

the misconception that the PatchGAN discriminator can only direct the generator to

generate high-frequency detail, and an additional loss on the generator is necessary to

generate low-frequency components. There is no theoretical reasoning given for why

this should be the case and were it true, it would suggest that the PatchGAN was of

little use in its intended purpose of implicitly learning distributions of data. The re-

sults in this chapter show that this misconception likely arises from an incompatibility

between GAN training methods and the batch normalisation method, leading to the

discriminator receiving data that has had important statistical information stripped

from it despite that information being vital to the discrimination of many tasks.

GANs hold much promise and have achieved excellent results in many areas of image

generation. There is, however, a reluctance in the colourisation literature to trust the

discriminator to learn the correct complex loss function, leading, in many cases, to the

adversarial loss playing little part in the training of the generator. The discriminator

should be able to learn the appropriate complex loss function implicitly from the data.

Introducing extra loss terms directly on the generator may be masking the discrimina-

tor’s poor architectural design or bypassing it entirely. Combining statically minimised

loss terms with dynamic adversarial loss leads to extra complexity and difficulty in-

terpreting results. Tuning hyper-parameters for optimisation methods such as ADAM

or RMSProp becomes much more difficult when static and dynamic losses are combined.

GANs are not showing a clear advantage over other methods in SOTA performance

in colourisation. In Section 4.4.4 the DeOldify (MyHeritage) method ranks highest of

SOTA methods according to the HECD user opinion survey. Still, the difference was

not very large over some non-GAN systems, and the most recent information on the
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DeOldify method is that it only uses a GAN for fine-tuning after training by other

methods.

The promise of the GAN is very seductive to researchers, but may be a poor choice

at present to make progress on colourisation due to the difficulty in interpreting how

training is progressing. The results in this chapter highlight the need for an objective

measure of plausible colourisation. The comparison between a simple L1 loss and an

adversarial loss does not suggest a clear winner. The L1 optimised colourisation has no

obvious artefacts but lacks sharpness and contrast. The adversarial optimised colouri-

sation (w/o batch norm in the discriminator) shows obvious artefacts but has contrast

closer to the ground-truth and sharper edges. It is also not clear if either of these

networks is continuing to improve or whether training has reached an optimum. With

an appropriate objective measure, this may be more obvious. Still, it should be noted

that Fedus et al. [85], when discussing the GAN losses, warned that GANs may not

approach the objective Nash in a monotonically reducing fashion, and so the same may

be true even if an objective measure of plausible colourisation might be found. There is

no reason to believe, at present, that the best GAN design would monotonically reduce

the distance from the fakes to the reals as training progresses. However, an appropriate

objective measure would be required to determine this and would be a significant step

forward in interpreting a GAN’s performance on the colourisation task.

The motivation for this chapter was to see if the L1 loss was necessary given con-

cerns about how it may hamper the learning of a manifold. The adversarial loss (w/o

batch normalisation in the discriminator) seemed to be able to implicitly lower the L1

loss which suggests that direct L1 optimisation is not necessary. However, if the dis-

criminator was learning a manifold we might expect that implicitly learning L1 would

not achieve this. The evidence is not conclusive here, but it could be that alternative

discriminator architectures could better achieve manifold learning.

Appendix A outlines many suggested generalised additions to GANs that may im-

prove GAN performance on the colourisation task. These include many different loss

functions in place of the standard mini-max loss on the discriminator, including the

Non-Saturating loss [10], Hinge Loss [77], Wasserstein loss [74], [75], and Relativistic

loss [76]. Spectral Normalisation [78] has been shown to make training more stable,

while the Two Time Update Rule [87] has been shown to improve the balance between

the relative strength of the generator and the discriminator. Various architectures and

elements, such as Transformers, RRDBs (Residual in Residual Dense Blocks) [84], and

spatial and channel attention [97], [98], have shown promise in other areas. However,

without methods to interpret and evaluate the results, it is difficult to validate the con-

tribution of these additions. In particular, where methods contain hyper-parameters,

there is little signal to aid the hyper-parameter search.
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The next two chapters will re-focus from architectures to data and measurement.

Chapter 4 addresses the knowledge gap regarding how appropriate objective measures

are in assessing colourisation plausibility and performance. Chapter 5 addresses the

differences between the L*-channel and legacy black-and-white media.

68



Chapter 4

Measuring colourisation

4.1 Introduction

The ill-posed nature of automatic colourisation makes the measurement of performance

ill-defined. The common strategy to train a colourisation algorithm is to take an existing

natural colour image dataset and convert it to one of the luminance-chrominance colour

spaces. The luminance channel can then be used as the grey-scale prior, and the

chrominance channels can be used as a ground-truth target. Various pixel-difference

methods and repurposed image quality measures can then be employed to measure the

distance between the predicted colour and the ground-truth target. In this chapter,

two issues with the common strategy for training described above will be considered.

1. It is not clear if the various pixel-difference or image quality measures that are

commonly used in the colourisation literature correlate with human perception

of colourisation plausibility. This chapter investigates how well the objective

measures commonly used in the colourisation literature, correlate with the human

opinion of naturalness.

2. Auto-colourisation of natural images is about producing plausible colour versions

of a grey-scale image rather than trying to recover an unknown ground-truth

colour image. By assuming a single ground-truth target, other plausible colouri-

sations will be penalised.

Colour is a perceptual phenomenon, and its encoding into triplets of values is a

direct consequence of the trichromatic nature of the Human Visual System (HVS).

Plausibility is a function of the HVS. Humans learn an implicit distribution of colours

for objects from visual interaction with the world. GANs were developed to implicitly

learn intractable distributions and sample from distributions. With enough data and

neural capacity, this means that it should be possible to learn the implicit manifold of

plausible colours from images that have only a single ground-truth target. However, it

is unclear that GANs are doing this as there is no way of measuring against unknown

distributions. With current knowledge, it is impossible to produce a dataset that con-

tains only plausible colourisations. Instead, this chapter will propose to make multiple
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colourisations that are modifications from the ground-truth image, and by presenting

these to human observers for judgement the hope is to learn something of the nature

of the distribution of plausibility of colourisations. By discovering the rank order and

producing a mean opinion score for each colourisation, the intention is to put colouri-

sation on a more firm quantitative footing.

The main contribution of this chapter is an extensible dataset of colourisations

with associated human opinion scores that can be used in future research to develop

better objective scores for colourisation. This dataset is called the Human Evalu-

ated Colourisation Dataset, HECD, and is publicly available at https://github.com/

seanmullery/HECD.

4.2 The human evaluated colourisation dataset (HECD)

The HECD is based on 20 images from the Berkeley Segmentation Dataset (BSD [140]).

From each of these 20 images, 65 images are created that differ in colour from the orig-

inal. While efforts are made to make changes that will be interpretable later, the

primary objective is to have many different colour versions for human evaluation to

allow appropriate comparison to objective measures. In total, 65 × 20 = 1300 and 20

original images will total 1320 images in the set. The BSD set was chosen as it has

a variety of natural images and multiple human segmentations of each image. The

segmentations, in many cases, segment colour sections, allowing the alteration of the

colour of specific sections without modification of the rest of the image, see Figure 4.1.

The original image will be referred to as the ground-truth from here on. The following

is a brief synopsis of the changes made to the ground-truth to create the HECD, fol-

lowed by more detail and examples.

The first recolour modification is to auto-white-balance correct the 20 ground-truth

images in PhotoshopTM [47], creating 20 new images. While there is no reason to believe

that Photoshop will change the L*-channel as part of this pipe line, the algorithm is

proprietary and there is a chance of degradation to the L*-channel through rounding

errors in conversion from one colour space to another. For this reason the L*-channel

is replaced with the ground-truth L*-channel to ensure that only changes are made to

a*b*-channels in this step. While the a*b*-channels are close to perceptually uniform,

they are not intuitive, so a reformulation of these channels to hue and chroma channels

is used via the equations of Fairchild et al. [141].

c =
√
(a∗2 + b∗2) (4.1)

h = tan−1 (b∗/a∗) (4.2)

Where h is hue, and c is chroma. From here, the following global changes are made to

the 40 images (20 ground-truth + 20 WB corrected). The changes below are arbitrary

70

https://github.com/seanmullery/HECD
https://github.com/seanmullery/HECD
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Figure 4.1: Example of an image from the BSD and the image’s human-annotated segmenta-
tion (ID:1105).

as there is no prior work to guide sample spacing or types of parameters:

• Alter intensity value of chroma by ±2σ,±1σ of the chroma of the image (4×40 =

160 images).

• Alter contrast of chroma by 1
4 ,

1
2 , 2, 4 (4× 40 = 160 images).

• Shift (offset registration) the a*b* channels spatially relative to the L*-channel by

0.01, 0.02, 0.03, 0.04 of the width and height of the image (4× 40 = 160 images).

The edges that had no donor pixels just retain their original value.

• Collect six SOTA colourisation algorithms’ predictions of colour given the L*-

channels of the 20 ground-truth images. The choice of which SOTA methods to

include was based on availability of implementation and ability to accept the BSD

image sizes without modification. 6× 20 = 120 images.

In addition to the global changes, some local changes are introduced. For each of

the 40 images, either a single segment is chosen, or multiple segments that are of the

same colour, and then the following modifications to just the chosen segment(s) are

made.

• For the segment, the intensity of the chroma is altered by ±2σ,±1σ of the chroma

of the image (4× 40 = 160 images).

71



CHAPTER 4. MEASURING COLOURISATION

• Hue is not a magnitude space; you cannot have an absence of hue or more/less

hue, and all hues are equally important. Therefore, the hue channel’s mean

and standard deviation statistics are not meaningful. The hue of the segment is

altered in a logarithmic fashion so that better resolution in results for hues closely

surrounding the reference hue will be obtained but still cover the full space of

hue values without the cost of sampling all 256 hue values. Future extensions

could more tightly sample the whole space. With the hue from Equation 4.2

forming a circular space ∈ [0, 255], the following alterations are made from the

reference hue. ±2,±4,±8,±16,±32,±64, and 128 (±128 results in the same

change). (13× 40 = 520 images).

While this is a small dataset by current standards, it has been designed with ex-

tensibility in mind. The arbitrary modifications above were chosen to return the most

information for the available resources. More ground-truth images and more recolour

modifications, along with tighter sampling between modification types, could be added

in the future by collecting data in a manner consistent with that given in Section 4.3.

4.2.1 Detail and samples of the global changes

Correct white-balance

The images from the BSD [140] appear to have small white-balance (WB) issues in

many cases. This was not uncommon with film photography, where white-balance was

not easy to alter. In general, a photograph is said to have poor white-balance when

objects which should naturally have a neutral colour (grey or white) appear to have

a colour cast. Skin tones also have a narrow range of hues which can also be used to

detect a white-balance issue. Most consumer image processing packages correct for this

by casting the image into the CIEL*a*b* colour space, or similar proprietary space, and

globally adjusting the a*b*-channels (often called Temperature (a*) and Tint (b*)) un-

til a neutral segment reaches a value of zero in both a* and b* (when a* and b* cover

the range [-100,100]). Other colours in the image are shifted along with this global

change, although the exact algorithm is often proprietary.

The first global change to colourisation will be to use auto white-balance correction

from PhotoshopTM [47] on the 20 BSD images. The L*-channel should not change,

but this can’t be guaranteed, so it is swapped directly in software for the original L*-

channel after the PhotoshopTM change. This will increase the number of images to 40.

All changes from here will be made to both the ground-truth and the white-balance

corrected images. The rationale is to test the hypothesis that correct white-balance

produces a more natural look to colourisations. If more of the correctly white-balanced

images score higher on average than those that are not, it suggests that correct white-

balance will be an important factor in measuring the quality of colourisations. See an

example in Figure 4.2.
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Figure 4.2: Example image from the dataset. On the left is the ground-truth reference image
from the BSD. Photoshop’s predicted white-balance corrected the image on the right with a
shift in a* (Temperature) of -12 and b* (Tint) of +25. Of particular note here are the sleeves
of the woman’s top, which show a colour cast in the ground-truth (left) image.
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Figure 4.3: On the top row, we see the ground-truth BSD image (centre) and four modifi-
cations of its chroma. Far left, the mean chroma has been reduced by −2σ, second from left
−1σ, fourth from left +1σ and far-right +2σ. The bottom row shows the same ordering but
for the white-balance corrected image.

Images will be created to determine the observer’s sensitivity to the chroma’s statis-

tics in an image. From each of the 40 images, four images will be created where the

mean of chroma is shifted ±1, 2σ of the chroma in the image, see example in Figure

4.3. The rationale here is to determine the effect of global saturation/chroma on the

naturalness of an image. Is there a maximally plausible chroma for a given image?

Expand and contract the range of chroma

Keeping the mean of the chroma channel fixed, the standard deviation of chroma will

be reduced by a factor of two and four and stretched by a factor of two and four. See

Figure 4.4. The rationale is to test whether there is a maximally plausible spread of

chroma/saturations for a given grey-scale reference image?

As the distribution of hues in the hue channel, Figure 4.5, does not conform to

a simple mathematical model, similar shifts and expansion/contraction will not be

performed, but later we will test shifting the hue of individual segments.

Spatial Coherence

Beyond the image statistics, it can be hypothesised that the HVS places some im-

portance on the colour being consistent within the boundary of a colour segment and

matching well to the edges of the boundary. To test this globally, various degrees of

spatial displacement of the colour channels relative to the L*-channel will be applied to

the 40 reference images. The displacement is a proportion of the image size in pixels,

e.g. for proportion 0.01, this corresponds to a shift to the right by 0.01 × width and
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Figure 4.4: On the top row, is the ground-truth BSD image (centre) and four modifications
of its chroma. The mean of the chroma is fixed. Far left, the standard deviation of chroma
has been reduced by a factor of four, second from left the standard deviation of chroma is
reduced by a factor of two, fourth from left the standard deviation of chroma is stretched by
a factor of two and far-right stretched by a factor of four. The bottom row shows the same
ordering but for the white-balance corrected image.

Figure 4.5: Histograms of the 20 reference images from the BSD, with the histogram for hue
on the left and histogram for chroma on the right.
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Figure 4.6: To determine the tolerance of spatial registration of colour to the underlying
grey-scale image, a proportion of the overall image shifts the colour channels. The top row
is related to the BSD reference image, with the left-most being the ground-truth. Each pro-
gressive image to the right shifts the colour right and down by 0.01, 0.02, 0.03 and 0.04 of
the image size. The same takes place on the bottom row, but relative to the PhotoshopTM

white-balanced image, bottom left.

down by 0.01× height. For edge pixels on the top and left that have no source pixel,

the pixel will retain the value from the non-displaced image. This effect can be seen in

Figure 4.6.

4.2.2 Current SOTA colourisation algorithms

To see how observers judge the current state-of-the-art colourisation systems the L*-

channel images will be applied to them and use their colour predictions as part of the

set. The six methods chosen were, PhotoshopTM Neural Filter [47], Deoldify [142],

available on MyHeritage.com, Larsson et al. [71], Zhang et al. [1], referred to as

Zhang1 in the results, Zhang et al. [73] (using straight-forward inference with no user

guidance) referred to as Zhang2 in the results, and Iisuka et al. [70]. The L*-channels

of the predictions will be directly replaced with the ground-truth L*-channel in case

any of the SOTA algorithms alter the L*-channel as part of their processing pipeline.

This will supply a further six images for each of the 20 ground-truth images.

4.2.3 Detail and samples of local changes

For the local changes, the aim is to explore how the observer responds to colour seg-

ments when they vary from the ground-truth. In each reference image, changes to a

specific segment or conceptually linked segments (e.g. face and hands even if these

segments are separated in the image) are made. Some of these segments will be natural

objects and some human-made objects.
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Figure 4.7: On the top-left is the PhotoshopTM white-balance corrected image. The im-
ages then follow in a clockwise fashion, changing the hue of the woman’s skin tones by
−2,−4,−8,−16,−32,−64,−128, 64, 32, 16, 8, 4, 2. The chroma is held constant. The shift in
hue moves the average for the skin tone segments. Any texture in the segment is maintained
after the shift. This same selection is repeated for the ground-truth reference BSD image.

Hue Changes

Given the histogram for hue in this dataset, see Figure 4.5, ideally, every possible hue

might be sampled, but this would lead to 256 images for this section alone, which is far

more than our resources to test and could result in observer fatigue or abandonment.

Instead, an attempt will be made to cover the range of hues in a logarithmic manner.

The hypothesis to test here is the observer’s tolerance around the ground-truth hue for

an object or segment of an object. Can differences in the trends between natural and

human-made object segments be observed? If the spread is related to the type of object

or surface then object classification will be a necessary part of any metric that hopes

to correlate well with the mean opinion score. The hue channel in Lhc is in the range

[0, 255] covering the full 360◦. The hue will be changed by ±2, 4, 8, 16, 32, 64, and 128.

Note that ±128 is the same hue in this circular space and so represents a single image.

In total then this adds 26 images, as this will be done for both the ground-truth BSD

and the PhotoshopTM white-balance corrected image. Examples are shown in Figure

4.7 in which the hue of the skin tones is shifted.

Chroma Changes

In the following images, the same segments will be used, but this time fixing the value

of the hue and making relative changes to the chroma of that segment. Note that unlike

the hue, which was a circular space, any change to chroma that is above 255 or below

0 will be truncated. To make the best use of resources a similar strategy to that taken

with the global changes to chroma will be used. For each image, the standard deviation

for the chroma channel will be calculated. Then the chromas in the chosen segment will

be shifted by ±2σ while retaining any texture in the chroma segment. The rest of the
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Figure 4.8: The centre image is the PhotoshopTM white-balance corrected image. To the left
and right the chroma of the skin tones is shifted by ±1σ,±2σ of the chroma channel as a
whole.

Figure 4.9: On the top-left is the PhotoshopTM white-balance corrected image. The images
then follow in a clockwise fashion, changing the hue of the swimming pool Omega timing sen-
sor surface. −2,−4,−8,−16,−32,−64,−128, 64, 32, 16, 8, 4, 2. The chroma is held constant.
The shift in hue moves the average for the surface segments. Any variance in the segment
is maintained after the shift. This same selection is repeated for the ground-truth reference
BSD image.

Figure 4.10: The centre image is the PhotoshopTM white-balance corrected image. To the
left and right we see the chroma of the Omega timing sensor board shifted by ±1σ,±2σ of
the chroma channel as a whole.

chroma channel will remain fixed. See Figure 4.8 for an example with human skin tones.

For completeness, an example with human-made colour segments is shown. Figure

4.9 shows a human-made object going through a selection of Hue changes. The object

selected is the Omega timing sensor board on the wall of the swimming pool. Figure

4.10 shows this object with modifications made to the chroma.

4.3 Collecting the data

The Amazon Mechanical Turk (AMT) was used to assess human opinion on colouri-

sation. Ethics approval was obtained in accordance with the Dublin City University’s

Research Ethics Committee guidelines, see Ethics approval, in Appendix F. Each as-

sessment consisted of three images appearing on the screen simultaneously: the L*-

channel (in the middle) and a colourisation on each side, see Figure 4.11. One of the

colourisations is the ground-truth colour image, and the other is one of the modifi-
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Figure 4.11: Each survey question displays three images. In the middle is the L*-channel,
common to the three images. On either side are the ground-truth colour image and a re-
colourisation. The participants are not informed that one image is the ground-truth and it
could appear on either right or left with equal probability. The participant must respond to
both before continuing. All surrounding text and buttons are achromatic.

cations described in Section 4.2. In this manner, all scores have a control image in

common. The observer is not informed that one image is the ground-truth and the

positions vary in a pseudo-random manner so that there is an equal likelihood that

the ground-truth could be on the left or the right. The user is asked to score the

two colour images on naturalness (how much the colour looks like it would appear in

real life). The scores are from 1-5 on an ordinal scale. Each observer rates 20 pairs.

They see each of the 20 ground-truth images in the dataset and a recoloured version.

For any set of 20, the type of recolourisation is pseudo-random, so the user does not

become accustomed to the type of colour change. As there are 65 recolour versions,

65 surveys of 20 comparisons are created for a total of 1300 responses. While each

survey is pseudo-random internally, the actual survey is identical for each observer

that responds to it. A participant is not allowed to respond to a unique survey twice.

In general, participants only completed one survey. A small number completed two

different surveys (19 participants). This is not a problem, but if participants were

allowed to do many surveys in a short period, it could lead to non-naivete, with the

participant learning that specific colour versions appear in all surveys, i.e. they may

learn to recognise the ground-truth colour image and be biased towards awarding it

the higher of the two scores. In all, there were 1281 participants. Twenty participants

completed each survey. Twenty-nine incomplete surveys were not used but also not

counted in the total 1300 complete surveys. In surveys with more than one response

for a pair of images (the respondent used the back button in the browser), the final

result was used on the assumption that this is what the respondent intended. There

were 25 surveys where the user gave the same value for all answers (straight-lining) and

15 where the respondent gave the same number for the two images under consideration

in all 20 comparisons; these were removed from the data, leaving 1260 complete surveys.
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4.3.1 Observer quality

Mortensen and Hughes [143] compared the AMT platform to conventional data col-

lection methods in the Health and Medical research literature. They concluded that

the literature overwhelmingly supports the claim that AMT is an efficient, reliable,

and cost-effective tool for generating sample responses comparable to those collected

via more conventional means. The AMT ecosystem is set up with reliability assurance

in mind. Requesters can approve completed HITs (Human Intelligence Task) before

paying for them. Approvals can be made manually or automatically based on some cri-

teria. AMT workers build a profile with statistics showing how many HITs they have

completed and their acceptance rate for these. Workers can be selected based on these

statistics. However, [144] recommend that solely picking workers with top statistics

can lead to reduced response diversity, and for the good of the ecosystem as a whole it

is beneficial to allow new workers to gain a reputation.

4.3.2 Processing the raw numbers

As the ground-truth image was used as the control, the difference between the score for

the ground-truth and the recoloured image is of interest. However, an account of differ-

ences in individual participants still needs to be taken that may bias the results. One

participant may score all pairs lower than another, with all else equal. As the ordinal

values for scoring and the gaps between them are subjective, two participants who per-

ceive the same difference between two images may still give a larger/smaller difference

in scores compared to each other. Differences in viewing equipment/environment may

also have systematic effects between two respondents. For this reason, it is necessary

to consider the trend for the participant over the 20 image pairs to which they respond.

The method of Sheikh et al. [145] can then be used to calculate the difference for each

pair.

dij = rij − riref(j) (4.3)

where rij is the raw score for the i-th participant and j-th image, and riref(j) denotes the

raw quality score assigned by the i-th participant to the reference image corresponding

to the j-th recolourised image. The raw difference scores dij for the i-th participant

and j-th image are converted into Z-scores.

zij = (dij − d̄i)/σi (4.4)

where d̄i is the mean of the raw difference scores over all of the images ranked by

participant i, and σi is the standard deviation of the differences for participant i. zij

then represents a score for an image j by participant i. In most cases, in this chapter,

the score for an image j is given as the mean over all the participants that responded

to it. Because the ground-truth is used as the control and the processing is based on

the statistics of the participants, the ground-truth images are all considered of equal

quality. When their z-scores are calculated and averaged, they all come to the same
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value. As more recolourisations scored lower than the ground-truth than those scoring

higher, the average score for the ground-truth will have a positive non-zero value.

4.4 Experiments and results

4.4.1 Experiment 4.1: Show how objective measures correlate with

mean human opinion

As outlined in Section 2.5, colourisation researchers have attempted to use many dif-

ferent types of objective measures to assess the quality of colourisations. Here the

correlation between human scores and the commonly used objective measures will be

determined. As ordinal data is used, two rank-order correlation measures will be used

to examine the rank-order correlation of the results, namely Spearman-r [146], see Ta-

ble 4.1 and Kendall-tau [147], see Table 4.2. The shaded values, in the tables, represent

values where the p-value of the rank-order correlation was less than 0.05, indicating

statistical significance. The rank-order of average human opinion is tested against

SSIM [121], MS-SSIM [123], MSE, RMSE/L2, MAE/L1, Colourfulness and Colour-

fulness Difference [127], PSNR, CDR [119] and LPIPS [128] for both VGG [72] and

Alexnet [148]. Neither FID [87], nor SC-PSNR [113] can be tested as they require

different data than have been used for the surveys. Where possible, established li-

braries for the measures are used. SKImage [149] for SSIM and PSNR, Sewar [150]

for MS-SSIM, RMSE (L2), and MSE, and SKLearn [151] for MAE (L1). Colourfulness

and Colourfulness-Difference are developed from the details in [127]. CDR is devel-

oped from the details in [119] and relies on SKImage’s SLIC library. Three different

colour spaces are tested, where the method is not specific to a particular colour space,

namely a*b*, hc (see Equations 4.1 and 4.2) and RGB. a*b* and hc do not include

the L*-channel in the comparison as L* is common in all pairings. RGB incorporates

the L*-channel but in a different formulation. As seen in the tables, each ground-truth

image is considered separately, and under the category “All”, the scores are combined.

The “All” category is problematic as it assumes that all ground-truth images are equal

in the eyes of the average human. This is unlikely to be true. While the “All” cate-

gory includes far more images and therefore can be much more statistically significant,

it may not be as reliable as the individual image correlations or an average of them.

As most of these objective measures also assume that the ground-truths are equal, any

bias is likely to be in the direction of showing a higher correlation than is true in reality.

Tables 4.1 and 4.2 show that MS-SSIM, when used with either a*b* or RGB, has

the strongest correlation with human judgement. Standard SSIM with a*b* is the only

other method with a statistically significant correlation for all images. hc seems to be

a poor space in which to use any of the current objective measures despite most of the

changes in the HECD being made in this formulation, see Section 4.2. Even for the top

performer, MS-SSIM with a*b*, the correlation for the complete set with Spearman-r

is 0.567 and Kendall-tau is 0.389. To put these numbers in perspective, MS-SSIM [123]
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Table 4.1: Spearman rank order correlation for all reference images individually and all com-
bined. The numbers represent the Spearman-r value, and the shaded numbers are those that
are statistically significant with a p-value < 0.05. The best performer in each row is shown in
bold. The up/down arrows beside each metric in the title indicate whether a higher number
on this metric is better (up), or a lower number is better (down). As higher is better for the
human evaluated score this will result in negative correlations with scores where a lower num-
ber is better.
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015004 gt.jpg 0.298 0.165 0.165 0.444 0.242 0.399 -0.294 0.118 -0.292 0.123 0.198 -0.029 -0.228 -0.228 0.367 0.115 -0.261 -0.291 -0.352

022090 gt.jpg 0.303 0.022 0.022 0.29 0.091 0.331 -0.121 0.06 -0.136 0.062 -0.183 -0.082 -0.078 -0.078 0.096 -0.078 -0.178 -0.114 -0.125

022093 gt.jpg 0.364 0.189 0.189 0.468 0.179 0.377 -0.225 -0.296 -0.211 -0.271 -0.437 -0.124 0.411 0.411 0.374 -0.075 -0.295 -0.165 -0.267

024004 gt.jpg 0.498 0.504 0.504 0.598 0.536 0.541 -0.401 -0.23 -0.434 -0.022 -0.459 -0.145 0.098 0.098 0.512 0.259 -0.457 -0.538 -0.502

025098 gt.jpg 0.37 0.193 0.193 0.457 0.099 0.487 -0.363 -0.088 -0.41 -0.032 0.055 0.457 0.018 0.018 0.568 0.069 -0.34 -0.369 -0.395

046076 gt.jpg 0.418 0.062 0.062 0.547 0.042 0.441 -0.194 -0.331 -0.209 -0.262 0.126 0.16 0.125 0.125 0.402 -0.101 -0.27 -0.314 -0.454

056028 gt.jpg 0.283 0.193 0.193 0.34 0.139 0.302 -0.219 -0.021 -0.255 0.093 -0.21 0.179 -0.195 -0.195 0.23 0.035 -0.243 -0.384 -0.368

065019 gt.jpg 0.443 0.6 0.6 0.386 0.636 0.444 -0.426 -0.282 -0.43 -0.285 -0.308 -0.428 0.215 0.215 0.346 0.538 -0.533 -0.399 -0.337

078019 gt.jpg 0.577 0.628 0.628 0.64 0.66 0.585 -0.617 0.212 -0.61 0.34 -0.112 0.504 -0.238 -0.238 0.561 0.685 -0.539 -0.602 -0.589

118020 gt.jpg 0.511 0.33 0.33 0.594 0.281 0.582 -0.517 -0.018 -0.508 0.023 -0.075 0.143 -0.321 -0.321 0.526 0.043 -0.448 -0.539 -0.513

118035 gt.jpg 0.673 0.489 0.489 0.694 0.626 0.617 -0.612 -0.315 -0.607 -0.254 0.177 0.445 -0.472 -0.472 0.565 0.651 -0.51 -0.596 -0.569

140075 gt.jpg 0.627 0.436 0.436 0.651 0.386 0.627 -0.6 -0.325 -0.611 -0.252 -0.176 -0.089 0.157 0.157 0.405 0.29 -0.438 -0.586 -0.545

151087 gt.jpg 0.633 0.57 0.57 0.65 0.597 0.618 -0.608 0.183 -0.608 0.19 0.0 0.061 -0.023 -0.023 0.611 0.299 -0.579 -0.583 -0.559

153093 gt.jpg 0.561 0.458 0.458 0.647 0.206 0.621 -0.28 0.029 -0.354 0.201 0.043 0.275 -0.112 -0.112 0.394 0.106 -0.728 -0.717 -0.709

187029 gt.jpg 0.545 0.338 0.338 0.522 0.39 0.541 -0.314 0.153 -0.354 0.172 0.025 0.48 0.273 0.273 0.538 0.053 -0.513 -0.527 -0.529

198023 gt.jpg 0.539 0.327 0.327 0.648 -0.034 0.667 -0.58 0.429 -0.589 0.433 0.218 0.468 -0.256 -0.256 0.608 -0.169 -0.694 -0.658 -0.726

239096 gt.jpg 0.578 0.585 0.585 0.532 0.438 0.583 -0.501 -0.258 -0.509 -0.138 -0.231 -0.002 0.012 0.012 0.455 0.192 -0.489 -0.604 -0.566

242078 gt.jpg 0.509 0.424 0.424 0.531 0.351 0.584 -0.441 -0.299 -0.422 -0.192 -0.072 0.032 -0.057 -0.057 0.135 0.161 -0.524 -0.736 -0.725

323016 gt.jpg 0.642 0.247 0.247 0.724 0.332 0.7 -0.531 0.172 -0.515 0.118 0.082 -0.315 -0.314 -0.314 0.496 0.315 -0.481 -0.57 -0.653

376001 gt.jpg 0.318 0.279 0.279 0.315 0.234 0.448 -0.238 -0.063 -0.245 -0.068 0.085 -0.057 -0.039 -0.039 0.378 0.129 -0.399 -0.394 -0.424

All 0.492 0.271 0.422 0.567 0.29 0.549 -0.416 0.015 -0.434 0.091 -0.135 0.034 -0.022 0.071 0.45 0.068 -0.461 -0.474 -0.495

Table 4.2: Kendall rank order correlation for all reference images individually and all com-
bined. The numbers represent the Kendall tau value, and the shaded numbers are those that
are statistically significant with a p-value < 0.05. The best performer in each row is shown in
bold. The up/down arrows beside each metric in the title indicate whether a higher number
on this metric is better (up), or a lower number is better (down). As higher is better for the
human evaluated score this will result in negative correlations with scores where a lower num-
ber is better.
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015004 gt.jpg 0.205 0.098 0.098 0.299 0.158 0.28 -0.194 0.075 -0.191 0.083 0.126 -0.014 -0.161 0.161 0.247 0.076 -0.19 -0.201 -0.234

022090 gt.jpg 0.205 0.016 0.016 0.197 0.071 0.215 -0.093 0.051 -0.104 0.055 -0.123 -0.072 -0.055 0.055 0.075 -0.058 -0.122 -0.083 -0.085

022093 gt.jpg 0.245 0.128 0.128 0.31 0.125 0.248 -0.149 -0.201 -0.145 -0.187 -0.306 -0.087 0.294 -0.294 0.241 -0.032 -0.217 -0.114 -0.192

024004 gt.jpg 0.35 0.351 0.351 0.425 0.371 0.38 -0.273 -0.169 -0.3 -0.025 -0.314 -0.085 0.07 -0.07 0.344 0.186 -0.316 -0.376 -0.346

025098 gt.jpg 0.27 0.138 0.138 0.333 0.072 0.342 -0.251 -0.065 -0.283 -0.032 0.031 0.316 0.012 -0.012 0.398 0.049 -0.243 -0.254 -0.271

046076 gt.jpg 0.276 0.063 0.063 0.378 0.044 0.295 -0.128 -0.235 -0.141 -0.191 0.096 0.123 0.101 -0.101 0.273 -0.02 -0.179 -0.21 -0.303

056028 gt.jpg 0.18 0.133 0.133 0.216 0.101 0.198 -0.152 -0.013 -0.174 0.065 -0.153 0.131 -0.138 0.138 0.142 0.027 -0.159 -0.265 -0.253

065019 gt.jpg 0.319 0.423 0.423 0.276 0.458 0.327 -0.29 -0.198 -0.293 -0.189 -0.193 -0.269 0.152 -0.152 0.241 0.373 -0.389 -0.302 -0.262

078019 gt.jpg 0.409 0.456 0.456 0.461 0.483 0.414 -0.43 0.141 -0.427 0.227 -0.097 0.357 -0.179 0.179 0.386 0.509 -0.38 -0.437 -0.432

118020 gt.jpg 0.35 0.229 0.229 0.412 0.215 0.401 -0.345 -0.028 -0.345 0.0 -0.055 0.1 -0.23 0.23 0.356 0.055 -0.309 -0.387 -0.359

118035 gt.jpg 0.476 0.325 0.325 0.485 0.433 0.447 -0.416 -0.227 -0.41 -0.175 0.119 0.303 -0.334 0.334 0.381 0.448 -0.362 -0.401 -0.404

140075 gt.jpg 0.448 0.305 0.305 0.473 0.267 0.441 -0.411 -0.231 -0.424 -0.183 -0.124 -0.066 0.098 -0.098 0.284 0.196 -0.302 -0.414 -0.37

151087 gt.jpg 0.437 0.37 0.37 0.451 0.404 0.42 -0.405 0.125 -0.404 0.134 0.002 0.051 -0.024 0.024 0.413 0.204 -0.397 -0.377 -0.356

153093 gt.jpg 0.401 0.316 0.316 0.468 0.118 0.45 -0.2 0.016 -0.262 0.136 0.023 0.175 -0.077 0.077 0.31 0.041 -0.545 -0.524 -0.514

187029 gt.jpg 0.371 0.228 0.228 0.352 0.263 0.371 -0.201 0.074 -0.226 0.076 0.011 0.361 0.221 -0.221 0.385 0.076 -0.357 -0.361 -0.367

198023 gt.jpg 0.372 0.242 0.242 0.458 0.001 0.48 -0.405 0.298 -0.415 0.303 0.131 0.319 -0.177 0.177 0.436 -0.106 -0.494 -0.459 -0.504

239096 gt.jpg 0.427 0.414 0.414 0.389 0.312 0.427 -0.383 -0.205 -0.39 -0.127 -0.132 -0.005 0.034 -0.034 0.344 0.127 -0.384 -0.463 -0.441

242078 gt.jpg 0.359 0.299 0.299 0.373 0.239 0.423 -0.313 -0.229 -0.292 -0.141 -0.043 0.014 -0.047 0.047 0.095 0.076 -0.367 -0.552 -0.527

323016 gt.jpg 0.446 0.153 0.153 0.521 0.212 0.492 -0.348 0.138 -0.334 0.107 0.056 -0.211 -0.221 0.221 0.317 0.216 -0.332 -0.375 -0.439

376001 gt.jpg 0.228 0.193 0.193 0.227 0.154 0.314 -0.167 -0.046 -0.174 -0.054 0.056 -0.03 -0.037 0.037 0.263 0.077 -0.279 -0.272 -0.298

All 0.334 0.181 0.283 0.389 0.194 0.375 -0.277 0.011 -0.289 0.063 -0.089 0.022 -0.015 -0.049 0.302 0.049 -0.315 -0.325 -0.341

achieve a Spearman-r of 0.966 on the LIVE database [152] which it was designed for,

with SSIM achieving 0.945 on the same set. The LIVE database for subjective image

quality of JPEG and JPEG2000 compression contained 344 grey-scale images of various

levels of compression. In short, the objective measures employed in the literature do

not work nearly as well for colourisation as they do for their original intended purpose.

There is scope here for a more targeted objective measure, and the HECD is publicly

available to help in this search.
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4.4. EXPERIMENTS AND RESULTS

4.4.2 Experiment 4.2: Determine if the ground-truth image is always

rated highest of all options in mean human opinion

The method currently employed in most deep-learning colourisation systems is to take

any natural image dataset, convert the images to CIEL*a*b*, then use the L*-channel

as the prior (input) and predict the a*b* colour channels, with the colour channels

from the dataset as the supervisory signal. Figure 4.12 shows that human observers do

not rate the ground-truth higher than all other colour versions created in the dataset.

Approximately 36% of the area is above the mean ground-truth score (to the right of

the blue-dashed line). This shows that many more plausible colourisations of a scene

exist than the ground-truth but will, in current training regimes, be penalised for being

different from the ground-truth.

The 20 ground-truth images in the dataset are professional level photographs, as

they come from the BSD dataset. The images are not necessarily natural or high-

quality in many commonly used large image datasets; they may be mono-tone, duo-

tone, stylised, or be of otherwise amateur quality, see examples in Appendix E. In

models trained to classify objects, these unnatural or poor-quality images are a fea-

ture rather than a bug. The desire is to train models to recognise objects even in

poor-quality images. It, therefore, makes sense for poor-quality images to have the

same label as high-quality images if they contain the same object. For generative

tasks, such as colourisation, when the task requires a model to generate high-quality

colourisations, then poor colourisations in the dataset should not have an equal label to

high-quality ones. However, the lack of a reliable no-reference measure for the quality of

a colourisation leaves little choice but to treat all images in a dataset as equal-maximum

colourisation quality. The only alternative is to assess and sort, in an unbiased fashion,

the large training datasets by resource-intensive human visual inspection.

4.4.3 Experiment 4.3: Determine if white-balance correction of im-

ages leads to a higher mean human opinion

Photoshop’s [47] white-balance auto-correction was used to produce a white-balance

corrected version of each ground-truth image. Using only the direct comparisons be-

tween the ground-truth images and WB-corrected images resulted in a mean opinion

score of 0.376 for the white-balanced corrected images and a mean opinion score of

0.364 for the ground-truth images. This difference is minimal and has a statistical

significance of p=0.058, using the Mann-Whitney u-test [153]. While the traditional

threshold of p < 0.05 is arbitrary, the mean difference has not reached this thresh-

old, and the difference in the mean value was small. This result is neither conclusive

enough to recommend white-balance correcting images but neither does it suggest we

should not. One caveat here is that while the BSD images showed some small colour

cast, they were, in general, quite good in terms of white-balance already. Many of the

large natural image datasets have samples that have considerably worse white-balance

issues, see Appendix E for samples of poor colour images in natural image datasets.
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Figure 4.12: The distribution of responses after the processing in Section 4.3.2 for all ref-
erence images individually and all together. The blue-dashed line shows the value of the
ground-truth images. All ground-truth images are assumed equal as the grades are based
on difference scores from the ground-truth. Any area under the curve to the right of the blue
line represents scores where the participant gave the recoloured version a higher score than
they gave the ground-truth. We can see that all references have a large area to the right
of the ground-truth score. This shows that the ground-truth is far from the most plausible
colourisation, as judged by human evaluation.

Future extensions to the HECD might consider intentionally introducing white-balance

problems to good images to give a more conclusive answer than recorded here.

4.4.4 Experiment 4.4: Determine how well SOTA colourisation algo-

rithms fare on mean human opinion

Six state-of-the-art colourisation algorithm outputs were included in the HECD. The

choice of algorithms was made primarily on the availability of implementation and

the ability to accept the exact image dimensions used in BSD images. The results

in Figure 4.13 and Table 4.3 show that the two commercial products, DeOldify (from

MyHeritage.com [142]) and PhotoshopTM [47], edge ahead of all the others, which

are considerably less recent than the commercial products. DeOldify came top in

the surveys, and the difference with PhotoshopTM was statistically significant with a

p-value of 0.001 using the Mann-Whitney u-test [153]. The mean score for the ground-

truth images was still higher than the mean for any of the SOTA methods, Table 4.3.

This tells us that, on average, none of the SOTA methods has yet matched the ground-

truth score.

The area under the curves in Figure 4.13 to the right of the dashed line, represent
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Figure 4.13: The blue dashed line shows the average Ground-Truth score, when compared
against SOTA colourisations, of 0.397. This is higher than the average of the SOTA Colouri-
sation methods, but we can see that all methods achieve some part of the distribution of
their scores which is higher than the average ground-truth score. The blue dots represent
the mean score of individual images. These can be explored further with the interactive tool.

Table 4.3: Mean value Z-Score for the six SOTA methods that were tested, shown in descend-
ing order. The mean of the ground-truth when compared with the SOTA algorithms was
0.397.

SOTA Colourisation Mean z-score

Ground-Truth 0.397
DeOldify 0.258
PhotoShop 0.001
Iizuka -0.151
Larsson -0.196
Zhang 2 -0.201
Zhang 1 -0.264

all the colourised images from SOTA methods that achieved a higher score than the

ground-truth image when it and the ground-truth appeared together for comparison

scoring. This is consistent with the findings of many of the human-evaluation methods

that were used to validate these algorithms in the original paper as outlined in Section

2.5. In many cases these methods did a simple comparison of the ground-truth with the

method’s colourisation, and found that on many occasions the human observer would

choose the colourised version over the ground-truth image.

4.4.5 Experiment 4.5: Determine the affect of recolourisation statis-

tics on the mean human opinion

Figure 4.14 shows the effect of making a single modification type to a reference image.

These are all relative changes that should be understood in terms of the reference

image. The L*-channel is held fixed for all these modifications. Units, such as standard

deviation, refer to the statistics of the reference image and so will represent a different
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(a) (b)

(c) (d)

(e)

Figure 4.14: In the figure, are various subsets of the data relating to specific modifications,
outlined in Section 4.2, and the effect of those on the mean opinion score. All graphs have
the same y-scale (mean opinion z-score) so that comparisons of different types of change can
be made at a glance. Sub-figures (a) and (b) look at relative global changes to the statistics
of the chroma of the reference image. Sub-figure (c) is the equivalent of (a) but for changes
to only a colour segment of an image, leaving all other pixels the same as the reference. (d)
shows the effect of spatially shifting (misaligning) the colour channels relative to the L*-
channel. (e) looks at the effect of changing the relative hue of a colour segment while leaving
all other pixels unchanged from the reference. Two data slices will be considered for global
changes, whether the recolour version derived from the ground-truth or the white-balance
corrected image. For segment modifications (c) and (e), those slices will also be considered as
well as slicing on whether the modified segment represented a natural or synthetic object.
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absolute value in each case. Figures 4.14 (a) and 4.14 (b) show that when the statistics

of the chroma of a reference image change, this will, in general, cause a deterioration

in the mean opinion score, with the caveat that the participants seemed to prefer

slightly higher chroma than the reference. Figure 4.14 (c) is the equivalent change to

4.14 (a) but for only a colour segment of the image, with results that are similar but

less pronounced, as the rest of the pixels in the image retain the reference statistics.

Figure 4.14 (d) shows the effect of spatially shifting the colour channels relative to the

L*-channel, causing deterioration with an increase in spatial misalignment. However,

it should be noted that slight misalignment leads to a relatively small drop in the

mean opinion score, particularly when we consider that all pixels are misaligned. We

can extrapolate that local colour bleeding across boundaries in colourisations by a

small number of pixels will have a relatively small impact on opinion score. Indeed

chroma subsampling, widely used in image and video encoding, utilises the HVS’s lower

acuity in chroma. Figure 4.14 (e) shows the effect of changing the hue of a segment.

When the data is split into its two reference image categories, namely ground-truth and

white-balance corrected image derived from the ground-truth, the responses of these

are broadly similar. However, when the data is separated into hue changes to colour

segments representing natural objects and those representing synthetic objects, a clear

difference between the two groups emerge. Examples of natural objects are skin tones

and foliage. Examples of synthetic objects are painted surfaces and textiles. Figure

4.14 (e) shows that both categories see a deterioration in opinion score with medium to

large changes in hue for a segment. However, this deterioration is relatively small for

synthetic segments compared to the large change for natural objects. While synthetic

objects can theoretically take on any hue, there is still a drop in opinion score with

large changes in hue for a colour segment. This may be because the L*-channel prior

and the surrounding colours (which did not change from the reference) constrain the

most plausible hues to a small band of hue values close to the ground-truth. For colour

segments of natural objects, the response is quite different. Small changes in hue to

a natural segment may increase the mean opinion score. This may be that the small

correction looks more plausible, but it could also be the inherent noise in opinion scores,

particularly due to the more dense sampling close to the reference hue. However, the

trend is that medium to large changes in natural segment hue see a large deterioration

in the mean opinion score. By directly comparing Figure 4.14 (e) with Figures 4.14

(a) and 4.14 (d) it can be seen that changing the hue of a natural segment by 64/256

of the full-scale has an equivalent effect on the opinion score of misaligning the colour

channels with L* of 0.03 of the dimensions of the image, and it has a greater effect than

globally changing all of the chroma values by two standard deviations of the chroma in

the reference image. This tells us that not all pixels are created equal in colourisation

performance.
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4.5 Limitations of the HECD and future extensions

The HECD is necessarily small due to the funding available for its creation. This first

iteration of the dataset was created using arbitrary modifications to a small number of

images. While it is possible to see how mean opinion varies due to changes in specific

variables, there is no way yet to combine multiple variables to see how they would

affect opinion together. The variables are not uncorrelated with each other. For exam-

ple, by offsetting the chrominance channels from the L*-channel, many segments will

have a large shift in hue. It is not yet possible to say that the observer is reacting to

the incorrect hue or to the fact that the colour is not well registered with the L*-channel.

While DeOldify and PhotoshopTM achieved the highest mean opinion scores for

SOTA systems, it should be noted that this is only testing on priors that are from

the same distribution as those used to train those algorithms. They were trained on

L*-channel images though not from the BSD dataset. As discussed in Chapter 5, the

standard application for which these algorithms are used is to colourise legacy black-

and-white image media, which are not from the same distribution as the L*-channel.

The tests in this chapter all relied on the L*-channel being a common reference for

the observer. This makes sense, as the L*-channel matches the photopic luminous effi-

ciency curve. Future work will extend the HECD to include performance on the various

simulated black and white media priors. This will include testing how the mean opin-

ion changes when the L*-channel is replaced with one of the simulated media. It will

also look at how the various SOTA methods perform using these priors in place of the

L*-channel.

4.6 Towards an objective measure of plausible colourisa-

tion

The greatest obstacle to progress in colourisation research is the lack of an objective

measure that allows for the fast and regular testing of colourisation models both during

and after training. The results in this chapter have shown that the current objective

measures are not fit for purpose, and their use is likely doing more harm than good.

However, the results have also shown that an objective measure that correlates with

the mean human opinion will be difficult to create. The variance in opinion scores, see

Figure 4.16, also shows that human observers differ considerably from each other in

their opinion of what constitutes a natural colour image. As stated in Chapter 1, the

obstacles to progress in colourisation are interlinked, and progress is likely best made

in an iterative fashion. To make progress, an objective measure that achieves a better

correlation than MS-SSIM with the results in this first iteration of the HECD is a step

in the right direction. Adding to the HECD will create an improved target for objective

measures to be correlated with mean human opinion.
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4.7 Training datasets for colourisation research

The HECD is too small to be used for the training of models. Its use in such a scenario

would likely lead to over-fitting. However, the core concept of creating many colourisa-

tions of an image with an assigned mean opinion score would seem a useful direction to

creating a colourisation dataset. Instead of a single ground-truth image target, there

could now be many targets with labels matching the mean opinion score, assisting a

deep learning model in exploring and learning the distribution of colourisation plau-

sibility. Semantic segmentation datasets such as the ADE20k [106] could be utilised

to make colour changes in line with the understanding gained from the HECD. For

example, natural objects could have their hue changed and their score heavily reduced,

while human-made objects could change their hue with only a small reduction in opin-

ion score. Similar strategies could be taken with global statistics of chroma. These

scores could then be applied as labels for use in training. The labels would be noisy,

with high variance, given the small scale of the HECD results they are based on. Still,

this noise could be reduced over time as the HECD is extended and our understanding

of what affects human opinion score deepens. Together with techniques developed in

Chapter 5 the training could be changed from a one-to-one regime to a many-to-many

regime which has a closer match to the problem.

4.8 Interactive tool to explore the HECD

• For a selected ground-truth image and modification type the mean values for

each modification are shown. In Figure 4.15 this is shown in the top left and is

shown at a more comfortable viewing size in Figure 4.16 on the left. The shift

segment in hue modification is shown for the 015004 image from the BSD. The

modifications to the ground-truth image are shown in blue (’A’ in the legend),

and the modifications to the white-balance corrected image in orange (’N’ in

the legend). The blue dashed line shows the mean opinion for the ground-truth

image so that it is clear which recolourisations preform better than the ground-

truth and which perform worse. While hovering the cursor over any of the dots,

the related image will be shown along with some details about the image, and this

is demonstrated by Figure 4.16 on the right. The dots show the mean opinion

score but the distribution shows the range of opinions.

• An a*b*-channel Cartesian grid is shown for the shift segment in hue modification

with the positions of the modification marked on the grid. As this is a change

in hue, with chroma fixed, the positions form a circle in the a*b* space. The

size of the dots is proportional to the mean opinion score, where larger dots have

a higher score. In the example shown in Figure 4.15 middle top and at a more

comfortable viewing size in Figure 4.17, the skin tones were changed and the

small dots represent skin tones that were deemed unnatural. This relates to the

image on the right in Figure 4.16.
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• The selected BSD reference image is always shown top right in the interface, see

Figure 4.15. An interactive tool, developed using the Bokeh library of Python, is

available for public download at https://github.com/seanmullery/HECD and a

sample of the interface is shown in Figure 4.15. There are seven outputs to the

tool as follows.

• The mean opinion score for all 1320 images is shown on the bottom left in Figure

4.15, and at a more comfortable viewing size in Figure 4.18. This is useful to

see the spread of image scores in comparison to each other. This graph does not

change via the selectors as it shows statistics for the full dataset at all times.

Of particular interest here is to look at outliers or the top image for a reference.

For example, the highest scoring image for 239096 is the PhotoshopTM colourised

version shown top-right in Figure 4.18, and it is quite an outlier compared to

the rest of the versions of that image, having a score of 1.139. The ground-truth

image shown bottom-right has a score of 0.397. This suggests that there are many

correct images that may still be rare in human experience and thus deemed less

plausible than the PhotoshopTM colourised version that is more conservative in

its colourisation, by choosing colours from a part of the distribution with higher

density. In particular, in the PhotoshopTM version, the upper background is

coloured blue, suggesting the model assumed sky here. The other out of focus

flowers have been assigned greens and browns rather than the pink/red. The

in-focus flower has been assigned a colour closer to the ground-truth.

• The distributions for all reference images are shown separately with a blue dashed

line to show the ground-truth score. This is shown second from left on the bottom

row in Figure 4.15 and at a more comfortable viewing size in Figure 4.12. The

output is discussed in detail in Section 4.4.2.

• The overall distribution of the dataset is shown with a dashed blue line for the

ground-truth score. This is shown third from left on the bottom row in Figure

4.15 and is discussed in Section 4.4.2.

• The distributions for the six SOTA algorithms are shown on the far right in

Figure 4.15 and at a more comfortable viewing size in Figure 4.13. This output

is discussed in Section 4.2.2. The dots in the graph show the mean opinion for

each of the 20 reference images when inferred with the SOTA method. This is

useful to see the ordering of images, and which algorithms perform well on which

images.
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Figure 4.15: A snapshot of the interactive tool for exploration of the HECD. Each of the
parts are detailed in Section 4.8

Figure 4.16: On the left we see the means and distributions of various colour versions of the
BSD reference image 015004. The blue dots represent the scores for modifications to the
ground-truth image and the orange dots the modifications to the white-balance corrected
version. The legend shows the modifications from the ground-truth denoted as ’N’ and the
modifications from the white-balance corrected version as ’A’. The modification number rep-
resents the extent of the modification, in this case to the shift in segment hue. Around each
dot in the same colour is the distribution of scores that the image received. The dashed blue
line shows the ground-truth score. The Figure on the right shows what happens when the
cursor is placed over one of the dots, in this case the orange dot for modification 13. The im-
age associated with that modification is displayed with information such as the score, the file
name and detail about the change to the image. As the segment here is the skin then this
represents an implausible skin colour, explaining the low score.
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Figure 4.17: Colourisation segment changes in hue shown on a Cartesian grid in a*b* space.
The larger the dot the higher the mean opinion score.

Figure 4.18: The scores for all 1320 images are shown on the left with each row represent-
ing the 66 versions of a single reference image from the BSD. The BSD reference image for
239096 is shown bottom right and the PhotoshopTM colourised version is shown top right.
As the arrow shows the PhotoshopTM version received a much higher mean opinion score
than the other 65 colourisations. While it is difficult to say definitively why this is, visual in-
spection via the interactive tool can generate useful hypotheses.
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4.9 Conclusion

The results in this chapter have shown that the widely-used objective measures utilised

in the colourisation literature do not correlate well with human opinion. MS-SSIM

shows the highest correlation in the findings but is still too low to make it an appro-

priate gauge of colourisation quality. SSIM and MS-SSIM are detailed in Appendix

C. They both consider the mean of the channel, the standard deviation (contrast) of

the channel and the structure when comparing two images or channels to each other.

The fact these measures are the best performing of those tested suggests that the first

two moments of statistics, mean and standard deviation, play a considerable role in

plausible colour. In Chapter 3 it was noted that batch normalisation, if used in the

discriminator under GAN training regimes, could strip these two moments, making it

impossible for the discriminator to learn to discriminate by them. However, the fact

that both SSIM and MS-SSIM still have relatively low correlation scores indicates the

there is much about colour plausibility that these measures cannot account for. Given

that both SSIM and MS-SSIM compare the test image to a single ground-truth means

that there is no mechanism for them to assess the distance from a manifold.

The hue of natural objects stands out in the results as significant to the average

human opinion of the naturalness of an image. Observers seem tolerant of minor dif-

ferences in hue to natural objects, but medium to large changes in hue are heavily

penalised. The observers are relatively tolerant of all changes to the hue of synthetic

objects.

There is a general trend towards a preference for more saturated (higher average

chroma) images. Small increases in the chroma of the ground-truth images led to higher

mean opinion scores. Still, increases beyond that led to a deterioration in opinion score,

as did any decrease in the chroma from the ground-truth. The trends were similar when

changes were made only to the chroma of small colour segments; the effects were smaller

because only some pixels were affected by the change. However, the effect is not nec-

essarily proportional to the number of pixels, as the observer may be guided by the

discrepancy in chroma to the surrounding regions. Both increasing and decreasing the

global contrast of chroma caused a deterioration in opinion scores.

The observers registered a slight change in mean opinion for small global regis-

tration discrepancies between the colour channels and the L*-channel. Increasing de-

registration led to a significant deterioration in opinion scores. This suggests some tol-

erance to small amounts of colour bleeding but intolerance to more significant amounts.

Some cross-over with the hue of natural objects can be assumed here; If de-registration

problems change the hue of a natural object, then a significant deterioration in the

mean opinion score can be expected due to sensitivity to the hue in natural objects.

Finally, caution should be exercised in simply treating all colour images in a data
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set as perfect colourisations. The results show that many versions in this limited set of

arbitrary modifications scored higher than the ground-truth. Auto-white-balance cor-

rection of ground-truth images brought only a minor improvement on average. However,

it may significantly improve if the white-balance is poor in the ground-truth images.
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Chapter 5

Priors for colourisation

5.1 Introduction

Many current deep-learning methods of colourisation use the following data processing

training scheme.

• Convert any natural colour image dataset into a luminance-chrominance colour

space.

• Use the luminance channel as a grey-scale prior to input to the system.

• Conditional on this prior, predict the two colour channels.

• The ground-truth chrominance channels can then be used as a supervisory signal

for training.

Much of the work in colourisation then concentrates on architectures, optimisation, and

loss functions. However, the primary application of natural image colourisation is to

hallucinate a plausible colour version of a legacy image captured by a black-and-white

medium. While the method above can give reasonable results if the input is a lumi-

nance channel computed from RGB, there is a gap in the knowledge of how applicable

the model is for colourising legacy black-and-white images. The reason for this knowl-

edge gap is that there is no mechanism to train/validate using legacy black-and-white

images as the colour ground-truth for the scene has been lost to history. The black-

and-white media represents an out-of-distribution test image, but it is unknown how

far out-of-distribution it is and the extent of the error caused. This chapter addresses

the following.

• Develop a method to simulate various types of black-and-white media from sRGB

to allow for future training of colourisation models with the types of priors they

will meet at deployment.

• Determine how well the L*-channel can model the legacy black-and-white media.
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• Determine how much error is introduced by inferring with a black-and-white

image, when the model is trained on the L*-channel.

The literature on colourisation makes sparse reference to the fact that the lumi-

nance channel is different to black-and-white media. Zhang et al. [1] mention that

their model colourises legacy images well despite the legacy capture not being the same

as an L*-channel, but they make this claim by subjective visual inspection. Recent

papers by Ballester et al. [34][133] mention that it could be an issue and suggest it as

future work. [154] make some effort to simulate the issue by using the blue channel

from RGB images to simulate blue-sensitive film, an average of blue and green channels

(0.5× (B+G) to simulate orthochromatic films and the standard Y-channel conversion

(0.299R + 0.587G + 0.114B)) to simulate panchromatic films. This chapter presents

a more precise mechanism to simulate many types of black-and-white media and is

directly extendable to any black-and-white media for which the spectral response is

known.

5.2 Simulating black-and-white media from sRGB images

The images in natural image datasets are generally sourced from internet archives where

the de facto standard colourspace is sRGB. The sRGB format allows for direct display

on computer screens as it encodes the non-linearities of the standard display directly in

the data. However, as shown in Figures 2.4 and 2.6, the spectral response of archival

black-and-white media is given over a range of wavelengths. Due to the phenomena

of metameres, where many different spectra can result in the same RGB triple, an

unambiguous recreation of the original spectra, given an sRGB triple, is impossible.

What is possible is to produce a plausible spectrum consistent with the sRGB triple,

which can then be multiplied by the sensitivity spectra, as shown in Figures 2.4 and

2.6. This will simulate the scene’s appearance if photographed with a specific black-

and-white medium.

5.2.1 Method

As sRGB includes non-linear gamma correction for screens, the non-linearity should

first be undone to yield linear-RGB values.

Clinear =


Csrgb

12.92 , Csrgb ≤ 0.04045(
Csrgb+0.055

1.055

)2.4
, Csrgb > 0.04045

(5.1)
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Then to produce the spectra from an lRGB triple, the method of Mallet and Yuksel

[155] can be utilised. The problem is to find the spectrum S in Equation 5.2. (D65 ⊙ x)T

(D65 ⊙ y)T

(D65 ⊙ z)T


︸ ︷︷ ︸

A∈R3×N

S = YD65M

 r

g

b


︸ ︷︷ ︸

b∈R3×1

(5.2)

M is the 3 × 3 matrix transform from lRGB to CIEXYZ, YD65 is a scaling constant.

The spectrum S ∈ RN×1 N = 81 is the spectrum specified at 5nm intervals. D65 is

the spectrum of natural daylight specified at 5nm intervals, and x,y and z are the CIE

XYZ colour matching functions, again specified at 5nm intervals. The CIE XYZ colour

matching functions are shown in Figure 2.2. S does not have a unique solution but can

be solved using least squares with the following constraints.

minimise: ||AS − b||2
subject to: 0 ≤ S ≤ 1

(5.3)

While this would only produce a spectrum for a single RGB triple, by determining

the spectra for the three primaries R, G and B, any other RGB triple can be found

via a linear combination of the three. However, as stated in Mallet and Yuksel, there

are infinitely many spectral bases that will solve the problem. Having a basis with

particular attributes requires further constraints to be applied during the optimisation

process. Mallet and Yuksel arbitrarily chose the following constraints

• The D65 illuminant is assumed.

• Energy conserving, the spectrum is within the range [0,1] for all wavelengths.

• No round-trip error up to numerical precision.

• Smooth variation in the input triple should result in smooth variation in the

output spectrum.

• Vary relatively smoothly in wavelength, following the behaviour of many natural

materials.

• The black and white points of the tristimulus colour space produce perfectly flat

spectra with all values being 0 or 1, respectively.

In their experiments, they also arbitrarily optimise for primaries that minimise

their maximum values or minimise the maximum differences between consecutive wave-

lengths (ensuring the smoothly varying wavelength criteria above). It should also be

noted that the optimisation algorithm has a major effect on the resulting spectral basis.

Mallet and Yuksel used Matlab’s fmincon function. They also suggest that this is just

one valid criterion and that finding the “right” energy function is left for later research.
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Figure 5.1: Spectral Reflectance Basis functions for lRGB triples from [155]

They provide a set of basis spectra for lRGB triples, which are shown in Figure 5.1,

though they show that other bases are possible. Section 5.2.2 will show a proposed

change to the basis suggested by Mallet and Yuksel. Taking the dot product of the

normalised film sensitivity with the spectra produced from the lRGB triple gives a

scalar result representing the grey value of that sRGB pixel if it was captured with the

chosen medium, Equation (5.4). To show this properly on screen, the standard gamma

correction is reapplied (opposite operation to Equation (5.1)) to the resulting pixels.

BW =
∑
λ

∑
Bas=R,G,B

Bas(λ)Filmresponse(λ) (5.4)

It must be assumed that the lower-sensitivity films would have been exposed for

longer to get a satisfactory image. Therefore, the film and television sensitivity spectra

are adjusted to have the same area under the curve as the photopic luminous efficiency

curve.

A problem with the simulation of legacy image capture methods is that they cannot

be simulated unambiguously. An infinite set of basis functions can be produced to

allow a round trip from lRGB-Spectral Basis-lRGB with only rounding loss. However,

converting to a spectral basis is only useful if the bases themselves are indicative of the

phenomena being simulated. The basis produced by Mallet and Yuksel [155] shown in

Figure 5.1 is a valid basis but is problematic at both ends of the spectrum. The section

of the basis functions between 380 nm and 430 nm, which are firmly in the blue part

of the spectrum, have a significant contribution from red and green. This is mirrored

by the unexpected contribution of blue and green in the red and infra-red parts of the

spectrum. Figure 5.2 shows the example of the basis from Figure 5.1 multiplied by the

blue-sensitive film’s daylight response. We can see that red and green will still have

more impact than would be the case in the real world.
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Figure 5.2: Spectral Reflectance Basis functions for lRGB triples from [155], multiplied by the
response curve of Blue Sensitive film in daylight.

5.2.2 Improved criteria for basis

By changing the criteria, we can achieve a response more in line with what is expected

from black-and-white film. The criteria, and hence the objective function, are mod-

ified only partially as much of Mallet and Yuksel’s criteria is still appropriate. The

minimising of maximum values of the primaries is discarded. Instead of the maximum

differences between consecutive wavelengths, minimising the squared norm of the dif-

ferences between wavelengths is used, as this seems to give a smoother response when

combined with the other new criteria. The other criteria added to the objective func-

tion is that red and green should be zero at the shortest wavelengths, while blue and

green should be zero at the longest wavelengths. The ultraviolet spectrum between

360 nm and 380 nm inclusive is also utilised, as these values are available for the D65

illuminant, the CIE XYZ spectral response and the black-and-white medium responses.

This changes the value of N in Equation 5.2 to 85. The optimisation algorithm used

was Scipy’s scipy.optimise.minimise using the ‘SLSQP’ method (Sequential Least

Squares Programming), as this allows for constraints and bounds. Using just the end-

point wavelengths in the objective was not as successful as using the mean of the

wavelengths from 360-455 nm for short wavelengths and 685-780 nm for long wave-

lengths. The resulting basis functions can be seen in Figure 5.3. Figure 5.4 shows the

basis multiplied by the blue-sensitive film’s daylight response.

5.2.3 Limitations of this technique

The example of the roundel from Figure 2.5 demonstrates both the problems with this

method and the differences between the choice of basis functions. In Figure 5.5, the

legacy capture of the roundel (cropped from Figure 2.5) shows that the outer orange

circle is rendered darker than the inner navy circle. If the simulation technique worked

unambiguously, the simulated blue-sensitive film would show a similar result. Instead,
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Figure 5.3: Spectral Reflectance Basis functions for lRGB triples following our new criteria.
The unexpected bumps in the red and blue spectra seem to be necessary for the basis func-
tions to be able to recreate the RGB values following a round trip. Setting the criteria to pe-
nalise those points for not being zero will either not work or will produce unwanted changes
elsewhere.

Figure 5.4: Spectral Reflectance Basis functions for lRGB triples based on our criteria, multi-
plied by the response curve of Blue Sensitive film in daylight.
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using the Mallet and Yuksel basis, the orange circle is still lighter than the navy circle.

In the proposed basis, the navy circle is slightly lighter than the orange circle but does

not show as extreme a contrast as in the legacy photograph. To understand why this

might happen, consider the RGB values of each. The orange segment has RGB values of

(250, 156, 40) and the navy (1, 34, 74). The navy section is dark overall but has a higher

blue value than the orange section. The orange section is light overall and has some

blue component (40). However, the high values of red and green contribute the most

here. The image showing only the blue channel from the RGB image seems closest to

the roundel captured in the legacy image because red and green do not affect the blue

channel. Caution should be exercised around the findings of a single image. Firstly, the

sRGB version of the roundel is idealised and is unlikely to perfectly represent colours as

painted on the planes in the 1940s. Some of these planes still exist to be photographed

today but tend to be kept in perfect museum condition, unlike the plane in the legacy

image, which was used in war. Wartime use will likely fade colours, which would likely

result in a lighter colour for the navy circle. Even in samples of modern images of

these planes, we can see considerable variation in the results for the roundel, which

could be due do different paint techniques, degrees of deterioration, lighting conditions,

type of camera used, and post-processing. The phenomena of metameres mean that

in any scene image, there may be spectral reflectances that would result in the same

tristimulus values but would be transformed differently by the black-and-white medium

response.

This proposed technique to simulate legacy black-and-white media reveals another

ill-posed problem related to colourisation. Mallet and Yuksel [155] showed that an

infinite number of basis function sets are possible, and one is chosen based on criteria

set by the user. Even if the chosen basis functions are a good match for simulating

black-and-white image capture, there is still the problem of metameres, where two

different spectra give rise to the same tristimulus triple response. The reverse operation

of creating spectra from tristimulus values is an under-constrained problem giving rise

to an infinite set of solutions, each of which is a metamere for that tristimulus triple.
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Figure 5.5: Top Row L-R: The Model image of the roundel in sRGB colour; The roundal
cropped from figure 2.5 which was a genuine capture with blue-sensitive film; The blue chan-
nel from the sRGB image.
Bottom Row L-R: The simulated version of this using our basis functions; The simulated ver-
sion of this using Mallet and Yuksel’s basis functions [155]; The L*-channel of CIEL*a*b*
calculated from sRGB image.

5.3 The L*-channel vs black-and-white media

As mentioned earlier, a common technique to train deep neural networks for colourisa-

tion is to convert a natural image dataset to CIEL*a*b* (or other luminance-chrominance

space) and use the luminance channel as input to predict the two chrominance channels.

There are a few key points related to this method.

• Firstly, the method learns only from the distribution of luminance channel images.

If it is presented with an image that is not the same type of luminance channel,

we cannot expect it to make reliable predictions about the chrominance.

• Secondly, the method is only capable of predicting two channels. The final

full-colour image combines the input luminance channel, and the two predicted

chrominance channels. Even if the chrominance channels are predicted correctly,

a luminance channel from the same colour space is required to complete the full-

colour image. The black-and-white image media are not from the same colour

space, so the full-colour image cannot be obtained using them.

The first problem above could be ameliorated by producing simulated black-and-

white images as augmented data, based on the technique presented above in Section

5.2. The second problem can only be solved by predicting all three channels instead of

two. Prediction of three channels does not necessarily mean the three channels have to
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be in a luminance-chrominance space; any colourspace can be chosen for the prediction

as long as it constitutes a full-colour space. For example, for training, the input could

be the simulated legacy black-and-white media images, while the output prediction

could be CIEL*a*b*, YUV, RGB, etc.

5.4 Experiment 5.1: Show that the black-and-white me-

dia simulation method, outlined in Section 5.2, corre-

lates with differences in the media’s spectral response.

Twenty natural colour images from the BSD dataset [140] are used along with the

method above to create simulations of eleven different black-and-white media using

Mallet and Yuksel’s basis functions and the proposed basis functions from Section 5.2.2.

The mean L1 pixel difference between the L*-channel image and the simulated images

is determined for each simulated media. Now treating the media response curves from

Figures 2.4 and 2.6 as probability distributions, each is normalised to have an area of

1.0. Each response curve is then compared to the photopic luminosity response using a

Jensen-Shannon divergence [156]. Jensen-Shannon divergence is explained in Appendix

D.2.

Figure 5.6 plots the Jensen-Shannon divergence against the mean L1 pixel difference

for the simulated images using each set of basis functions. The figure shows that the

proposed improved basis functions have a more pronounced change in the L*-channel

for a change in spectral sensitivity than those of Mallet and Yuksel. Both are well

correlated, with the Mallet and Yuksel’s basis giving a (Pearson) correlation of 0.922

(p=5.38e-05) and our basis having a slightly higher correlation of 0.980 (p=1.33e-07).

5.5 Experiment 5.2: Show how a difference in the spec-

tral response of black-and-white media will lead to a

difference in prediction in the a*b* channels if used

for inference.

It was shown above that the various black-and-white media would be different from the

L*-channel on which most colourisation systems are trained. Here we show the extent

of the error that will be introduced if a system is presented with a black-and-white scene

capture instead of an L*-channel. Note that this is not the error between the predicted

a*b* channels and the ground-truth a*b* channels. Instead, it is the error between

the a*b* channels predicted from an L*-channel and the a*b* channels predicted by a

black-and-white image with a specific spectral response.

Using the proposed basis functions and the method from Section 5.2, eleven sim-
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Figure 5.6: This figure shows the relationship between pixel change and the difference in
spectral response that caused the change. The difference between each media spectral re-
sponse and the photopic luminosity curve is determined by the Jensen-Shannon [156] di-
vergence (x-axis). The difference between the spectral response curve of a black-and-white
medium and the photopic luminosity curve has a proportional response to the pixel difference
between the L*-channel and the black-and-white media simulation. The proposed basis pro-
duces a more pronounced change in the L*-channel and is more highly correlated. The left-
hand y-axis represents the average pixel difference over the dataset. The right-hand y-axis
shows the difference proportional to the standard deviation of the pixel values in the original
L*-channel images over the dataset.
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ulated versions of twenty images from the BSD dataset are created. Each of these is

then inferred with three SOTA colourisation systems, Photoshop’s Colourisation neural

filter [47], MyHeritage.com (deOldify) [142], and Zhang’s CIC (Colorful Image Colouri-

sation) [1]. The results are shown in Figure 5.7. The error in prediction of the a*b*

channels introduced by inferring with images that are not L*-channels is highly corre-

lated with the difference between the black-and-white medium’s spectral response and

the photopic luminosity curve. The error is slightly higher in Zhang’s system than in

the two commercial systems, which are similar in response. The error in the predicted

a*b* channels is smaller than that of the equivalent error between L* and black-and-

white channel, but it should be noted that L*-channel values tend to cover a wider

range of values than a*b*-channel values. The right-hand y-axis of Figure 5.7 shows

the extent of the error as a proportion of the standard deviation of a*b* values in the

ground-truth images. In this context, the error between L*-channel and black-and-

white media seems to be broadly similar to the error introduced in the prediction of

the a*b* channels by inferring with the black-and-white media.

5.6 Experiment 5.3: Determine if the magnitude of the

error in the L*-channel is the sole cause of the error

in a*b* prediction.

While we see a strong correlation between the change in spectral response and a*b*

prediction error, it is necessary to understand if the prediction error is entirely caused

by the spectral response changing the L*-channel. To test this, L*-channel images will

be produced with added noise of the same magnitude as the change caused by the

spectral response. Two types of noise will be investigated: Gaussian Noise with the

same range of standard deviation as seen in the black-and-white simulated images and

additive noise, which has no variation per image but is simply the addition of a value

in the same range as that introduced to the L*-channel by the spectral change. Each of

these images is applied to the Photoshop Colourise Neural Filter [47]. Figure 5.8 shows

the error introduced to the a*b*-channel predictions. As seen in the figure, the addition

of Gaussian noise has a larger effect on the error in the prediction of the a*b*-channels

than the same magnitude error introduced by simulating the black-and-white media.

Adding a bias of the same magnitude has a much smaller effect on a*b* prediction

error.

5.7 Experiment 5.4: Show that predicting only two chan-

nels is insufficient to create a full-colour image

To show that predicting two channels is not enough, we will simulate the many different

types of black-and-white image media and then combine them with the original ground-

truth chrominance channels. The results are shown in Figures 5.9, 5.10, 5.11, and 5.12.

It is clear that the simulated black-and-white images are different from the L*-channel
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Figure 5.7: This figure charts the change in predicted a*b* channel prediction versus the
change in spectral response from a black-and-white media to the photopic luminosity curve.
The a*b* channels are predicted for three SOTA colourisation methods. The difference in
prediction of the a*b* channels is well correlated with the difference in spectral response.
Note that while the predicted pixel error is relatively small, the pixel error, when measured
proportionally to the standard deviation of values in the ground truth a*b* channels, is of a
similar magnitude to the errors shown for the L*-channel in Figure 5.6.
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Figure 5.8: This figure shows the relationship between L1 error on the L*-channel and the er-
ror in prediction on a*b* channels for Photoshop’s neural colourisation algorithm. If the error
in the L*-channel is Gaussian noise, this has the greatest impact. The error caused by chang-
ing the L*-channel to simulate black-and-white media types is less than the equivalent mag-
nitude error from Gaussian noise. The simple addition of a bias value (effectively additional
brightness) has the least effect on prediction error in a*b*. The right-hand y-axis shows the
error as a proportion of the standard deviation of the a*b* channels

107



CHAPTER 5. PRIORS FOR COLOURISATION

and different from each other. When the ground-truth a*b* channels are combined

with the various black-and-white simulated images, they cannot produce an image of

the correct colour. Note also from Figures 5.9, 5.10, 5.11, and 5.12 that while some of

the images look quite different, others are difficult to tell apart. This is a function of

how similar their spectral sensitivity functions are to each other.
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Figure 5.9: Simulation of black-and-white films with daylight illuminant. The top row shows
the Photopic luminous efficiency of the eye (left), which is what the L*-channel is modelled
on. The centre image shows the L*-channel, and the right image shows the original colour
version as captured (ground-truth). In the following three rows are the spectral sensitivity
to daylight, of the broad categories of black-and-white film (left column), along with their
simulated appearance (middle column) and a colour version in which the original ground-
truth’s a* and b* channels are combined with the simulated black-and-white film appearance.
We can see that even if a colourisation model could predict the correct a*b*-channels, they
could not recover the correct colour image.
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Figure 5.10: Simulation of black-and-white films with tungsten illuminant. The top row
shows the Photopic luminous efficiency of the human eye (left), which is what the L*-channel
is modelled on. The centre image shows the L*-channel, and the right image shows the orig-
inal colour version as captured (ground-truth). In the following three rows are the spectral
sensitivity to tungsten, of the broad categories of black-and-white film (left column), along
with their simulated appearance (middle column) and a colour version in which the ground-
truth’s a* and b* channels are combined with the simulated black-and-white film appearance.
We can see that even if a colourisation model could predict the correct a*b*-channels, they
could not recover the correct colour image. Note that the original image was shot in daylight
and not under tungsten lighting. For sRGB images the assumed white point is D65 even if
they are not shot in natural daylight.

110



5.7. EXPERIMENT 5.4 IS PREDICTING TWO CHANNELS ENOUGH?

Figure 5.11: Simulation of black-and-white TV camera tubes part 1. The top row shows the
Photopic luminous efficiency of the human eye (left), which is what the L*-channel is mod-
elled on. The centre image shows the L*-channel, and the right image shows the original
colour version as captured (ground-truth). In the following three rows are the spectral sen-
sitivity of some of the broad categories of black-and-white TV tube technology (left column),
along with their simulated appearance (middle column) and a colour version in which the
original capture’s a* and b* channels are combined with the simulated black-and-white TV
appearance. We can see that even if a colourisation model could predict the correct a*b*-
channels, they could not recover the correct colour image.
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Figure 5.12: Simulation of black-and-white TV camera tubes part 2. The top row shows the
Photopic luminous efficiency of the human eye (left), which is what the L*-channel is mod-
elled on. The centre image shows the L*-channel, and the right image shows the original
colour version as captured (ground-truth). In the following three rows are the spectral sen-
sitivity of some of the broad categories of black-and-white TV tube technology (left column),
along with their simulated appearance (middle column) and a colour version in which the
original capture’s a* and b* channels are combined with the simulated black-and-white TV
appearance. We can see that even if a colourisation model could predict the correct a*b*-
channels, they could not recover the correct colour image.
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5.8 The critical role of the L*-channel

The plausibility of colourisation is tightly linked to the human visual system and human

experience. Therefore, human visual inspection of colourisation remains the gold stan-

dard measure of plausible colourisation. When researchers use human visual inspection

to assess colourisation performance, it is either without reference to any grey-scale

image or with reference to the L*-channel image. It cannot be with reference to any

black-and-white media types simulated in this chapter as they do not match human

experience.

The average human does not see the world in black-and-white. However, they also

do not see all colours at equal brightness. When they see an image in black-and-white,

if a segment is brighter than other parts of the image, the reasonable intuition is that

the segment was a colour in the spectrum region close to 550 nm, i.e. cyan, green,

yellow or orange. If they see a very dark segment, they may assume this is in the deep

blue (e.g. navy) or deep red (crimson, burgundy). This relates directly to the photopic

luminous efficiency curve. The example roundal shown in Figure 2.5 shows that with-

out other prior information a human will find it difficult to determine the correct colour

from a legacy black-and-white segment, particularly for synthetic objects. Chapter 4

explores the average human opinion of colourisation plausibility and conditions on the

L*-channel.

5.9 Conclusion

This chapter explored the nature of the priors for colourisation. In the typical applica-

tion of colourisation, the priors used in deployment are not from the same distribution

as priors used for training. This mismatch leads to several problems. The prior is

incorporated in the final full-colour image in the standard training regime. Therefore

if the prior is not from the same distribution as used in training, a plausible full-colour

image cannot be created even if the colour prediction is correct, as shown in experi-

ment 5.4. However, as shown in experiment 5.1, Section 5.5, the colour prediction will

not be correct, as using a prior that is not from the same distribution as the training

data will result in prediction errors. The extent of error in prediction is proportional

to the difference between the prior and the training distribution but is also specific to

that type of error. As shown in experiment 5.3, an equivalent magnitude error in Gaus-

sian or additive noise in the prior will result in a different magnitude error in prediction.

The main contribution of this chapter is a mechanism to simulate many types of

black-and-white images from sRGB images. This will allow for new training regimes in

which the priors used for training are closer to those used for inference in the standard

application of colourisation. It is also clear from the findings in this chapter that future

colourisation algorithms must learn all three channels from a colour space instead of
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just two, as the priors used for inference do not match a channel from any currently

defined colour space. The best three-channel colour space for prediction is still an open

research question and will likely depend on future loss functions and measurement

techniques.
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Chapter 6

Contributions, limitations and

future work

6.1 Contributions

Colourisation research relies on human evaluation as it is the only method universally

trusted by the community. The necessity for human evaluation impedes the rapid de-

velopment and testing of algorithms due to the expense and time involved. The desire

for an objective metric has led to the widespread repurposing of metrics from other

problem spaces. The uncertainty of which metrics have legitimate use in assessing

colourisation is a significant knowledge gap. The first contribution of this work is to

validate the most popular metrics against human opinion and provide a simple mecha-

nism by which further measures can be validated via the HECD. As shown in Chapter

4, MS-SSIM correlated the best, of the tested measures, with human opinion. How-

ever, the correlation was low, indicating that much of the human opinion of plausible

colourisation cannot be accounted for by MS-SSIM. By filling this knowledge gap, re-

searchers now know to what extent they can rely on an objective metric and assess if

any alternative metric is closer to human opinion.

The search for better metrics for the assessment of colourisation is ongoing. How-

ever, the search is aided by the second contribution to this research: an analysis of the

human opinion of plausible colourisation. The analysis, presented in Chapter 4, shows

that human opinion of the plausibility of colour is most sensitive to errors in the hue

of natural objects while relatively insensitive to errors in the hue of synthetic objects.

On average, people prefer slightly higher chroma than the ground-truth image, but an

increasing error in chroma leads to deterioration in opinion. Small registration errors

between the chroma and luminance channels are tolerated, but large differences are

penalised by human opinion.

While the analysis presented in Chapter 4 concludes general attributes of the human

opinion of plausible colourisation, there are likely further subtle attributes that can be

discovered in the HECD. The third contribution of this work is an interactive tool for
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exploring the HECD. The tool allows researchers to see the relative scores of colouri-

sations. For various colourisation types, the tool shows the distributions of scores so

that trends for a specific image can be understood. Positioning in a*b* space is also

shown to demonstrate how the position relates to plausibility. While statistically sig-

nificant findings can be made regarding the mean scores of plausibility, the interactive

tool shows a high degree of variance in human opinion. This highlights the need for

researchers to ensure the findings are statistically significant whenever it is necessary

to useb human opinion to assess colourisation.

A common mechanism used in colourisation training is to take a natural image

dataset and convert it to a luminance-chrominance space; The luminance channel is

used as the training prior for the model to predict the chrominance channels. There was

an outstanding gap in the knowledge of how closely the luminance channel represented

the corpus of legacy black-and-white media that would be applied when the model is

deployed. Chapter 5 presents two important contributions to filling this knowledge

gap. The most important contribution here was a mechanism to simulate any black-

and-white media for which the spectral response is known. This has more general use

in photography for presenting contemporary digital colour images in the style of legacy

media. Specifically, in colourisation research, it means that training can now be ex-

tended to priors that match the distribution that will be presented at deployment. The

second contribution here is to show the error’s extent when a model trained using lu-

minance channels is inferred with legacy media. The identified errors are of two kinds.

The first error is the difference between the luminance channel and the legacy media.

The difference is proportional to the Jensen-Shannon divergence between the photopic

luminous efficiency curve and the spectral response of the legacy media. As the legacy

media must form one of the three channels of the final predicted colour image, the error

is directly carried over. The second error type is that of an out-of-distribution error.

When a model is inferred with a sample outside the training distribution, it can lead

to errors in prediction. Chapter 5 shows that errors in the prediction of the chromi-

nance channels are, again, proportional to the Jensen-Shannon divergence between the

photopic luminous efficiency curve and the spectral response of the legacy media. The

two error types cause all three channels of the final colour image to exhibit errors.

The lack of an objective metric for colourisation plausibility hampers progress in

architecture design for colourisation models. However, Chapter 3 makes some minor

contributions despite this. The popular pix2pix framework is often used as a base for

colourisation models. However, pix2pix employs an L1 loss directly on the generator.

L1 loss, used in this manner, will bias the results towards a single solution which does

not lie on the manifold of plausible colourisations. While it is hoped the adversarial

loss will encourage manifold learning, the weighting of the L1 loss is 100 times larger

than the adversarial loss, so its effect is limited. So the first contribution here is to

recommend the removal of the L1 loss. As shown in Chapter 3 this can lead to some
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extreme artefacts in the predicted images. However, the second contribution here is

to highlight the effect of batch normalisation in the discriminator under the standard

GAN training regime. Batch normalisation, in this case, will disable the discriminator’s

ability to learn the first two moments of the real and fake distributions. In applications

where these first two moments do not inform the discriminative task, this will not be

an issue and may speed up training. However, in the task of colourisation, it will be

important that the generator learns to produce fakes with a similar mean and standard

deviation as the real distribution. These two minor contributions are linked in that

the L1 loss directly on the generator compensates for the discriminator’s inability to

discriminate the mean and standard deviation.

6.2 Limitations and future work

While the HECD fills an important knowledge gap, it is necessarily incomplete due

to resources and the problem’s extent and uncertainty. The HECD was designed in a

manner that allows for relatively easy extension to the dataset. The degrees of freedom

of the recolourisations were arbitrarily chosen to address specific hypotheses. Future

extensions could include a more dense sampling of the variations in colourisation and

determine how combining variables effects opinion. Future researchers can extend the

HECD by changing colourisation along different variables to test future hypotheses.

Not all existing potential objective measures were tested. However, it is a straightfor-

ward extension to test other objective measures. A caveat is measures such as FID

[87], which require 50k samples as part of the measurement process, which the HECD

cannot test. Due to the small size of the dataset and the arbitrarily chosen degrees of

freedom, the HECD can only approximate the true average human opinion. This can

only improve with further exploration of the space combined with human validation.

Whenever a dataset is publicly released, there is a danger that researchers will over-fit

a model to it. It would be unsafe to trust a new model tested on the current HECD in

the manner other SOTA algorithms were assessed in Section 4.2.2. While the size of the

HECD is sufficient to make statistically significant inferences about certain hypotheses,

were it to be used in training, there would be concern about over-fitting.

The HECD relies on the L*-channel from CIEL*a*b* as a control image when dis-

playing two possible colourisations to a human assessor. Chapter 5 discussed the error

between the L*-channel and the various black-and-white media. There is a clear link

between the L*-channel and human perception of luminance via the photopic luminous

efficiency curve shown in Figure 1.3. However, there is no defined link between human

perception of luminance and the various black-and-white media types. The HECD

could be extended to allow the two colour samples being assessed to vary from the

L*-channel while still using the L*-channel as the control for the two colour images.

This extension could test colourisation methods with various black-and-white media

simulations to determine their colourisations’ plausibility when inferred with legacy

images.
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The phenomena of metameres are a distinct limitation of the mechanism of simu-

lation of black-and-white media introduced in Chapter 5. An indeterminate number

of spectral distributions can result in identical RGB values, known as metameres. The

various metameres would have produced different black-and-white media responses, but

the simulation method will only produce one of these. Likewise, the simulations are

based on a single plausible colourisation of a scene. Other plausible colourisations of

a scene would result in different black-and-white media responses. While this research

concentrated on foundational elements of colourisation, future research can look at how

the simulated black-and-white media priors can be incorporated into training. As these

priors are simulated, they can be associated with a label. However, the real black-and-

white media applied during deployment will not have an associated label unless there

is further a-priori information about the media used during capture. It would be in-

teresting to know if a deep neural network could learn to categorise the media type by

seeing enough samples.

There are of course other differences between the simulated black-and-white images

and the legacy black-and-white media, which were not addressed in this research. Op-

tics have continuously improved over time and the optics play a role in the final media

response. Often the optics’ response changes with wavelength and position within an

image. Most legacy images are also subject to various types of degradation due to time

and handling. Of particular concern is if degradation could be mistaken for textures

in the current natural image training sets. An important future task in colourisation

research is the simulation of the types degradation found in legacy images.

There are still major gaps in the knowledge regarding the architectures and meth-

ods for colourisation. The GAN holds promise in solving the colourisation problem,

but there is still limited understanding of what a GAN is doing in practice. The lack

of interpretability surrounding GANs, particularly in interpreting the progress of train-

ing, is a limitation in all applications of GANs. While the work in Chapter 3 would

recommend removing the L1 loss from the generator and batch normalisation from the

discriminator, it is still unclear whether the discriminator, under this regime, is learn-

ing a manifold. Without a trusted, objective colourisation metric, it will be difficult to

make future progress in designing GANs for colourisation.

Finally, the analysis of the HECD via the interactive tool shows the considerable

variance in human opinion scores that are used to calculate mean opinion. As colouri-

sation research is dependent on human opinion, this highlights the inherent uncertainty

in using human judgement.
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Appendix A

The generative adversarial

network

A.1 Introduction

The hypothesis on which generative networks are based is that whatever we wish to

generate has a distribution supported by a low-dimensional manifold inside a higher-

dimensional space [4]. For example, all colour images 32 pixel by 32 pixel of cats

exist inside the space of all colour images of 32 pixels by 32 pixels i.e. [−1, 1]32×32×3

or [−1, 1]3072. The objective for generator networks is to find a mapping from a

low-dimensional latent space, defined by a prior distribution, to a low-dimensional

manifold which supports the distribution of data in the high-dimensional space that

we wish to generate. e.g. a latent vector z ∈ [−1, 1]32 mapping to the distribution of

images ∈ [−1, 1]32×32×3 that contain cats.

The Generative Adversarial Network (GAN) [10] is a form of neural network archi-

tecture in which two networks, a Generator and a Discriminator, operate as adversaries

to each other. In the seminal paper by Goodfellow [10], the Generator network G takes

as input, a noise vector z (called a latent vector); pz(z) is normally defined to be some

simple prior such as a circular Gaussian, pz = N (n, µ, σ) where n is the dimension size

of z. The generator Gθ must be a differentiable function x̂ = Gθ(z) which produces the

Generator distribution over x̂ ( x̃ ∼ pg). The algorithm in [10] (reproduced below in

Algorithm 1) samples a mini-batch of m noise samples from pz and a mini-batch of m

examples from the data generating distribution pdata (keep in mind that pdata is only

approximated by holding a data set of examples, new real data cannot be generated on

demand). The real and generated (fake) batches are applied to its input to train the

discriminator, and the following loss function is calculated.

− 1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
(A.1)

The Discriminator Dϕ (with parameters ϕ) must learn to discriminate between pdata
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APPENDIX A. THE GENERATIVE ADVERSARIAL NETWORK

and pg. As we know from the generator which distribution it has drawn, we have

labelled data to train the discriminator. Samples from pdata are generally labelled as

one and samples from pg as zero.

The output of the discriminator is a sigmoid function that converts the network’s

output values ∈ [0, 1]. For real samples x(i), the perfect discriminator, D∗ (x(i)) should

produce one, which will give a theoretical log loss of zero. Anything less than one

should produce a negative loss. It should produce a value of zero for a generated

sample so that log
(
1−D

(
G
(
z(i)

)))
also produces zero. Note that the minus sign

converts the negative loss in each case to a positive loss. Generally, most frameworks

prefer to minimise a loss towards zero rather than maximise a loss towards zero.

The task of Gθ is to produce samples x̃ from pg, that are indistinguishable from a

sample x from pdata. For Gθ to learn, the samples x̃ are given misleading labels, i.e.

generated samples are labelled as real data samples. The samples are passed through

Dϕ, and the loss from equation (A.2) is calculated. The discriminator should give a

close-to-zero value for D
(
G
(
z(i)

))
which should give a large positive loss for Equation

(A.2). The gradient of this can then be used to train Gθ to produce better fakes

by descending the gradient of the loss of Equation (A.2). This loss is then used to

update the parameters θ of Gθ. Equation (A.4) shows the gradient update equation.

Importantly, the parameters of Dϕ are not updated during this step, even though Dϕ

is used to calculate the loss.

− 1

m

m∑
i=1

log
(
D

(
G
(
z(i)

)))
(A.2)

The above Equation (A.2) is referred to as the Non-saturating loss and is the loss

recommended by Goodfellow in [10] and re-iterated many times in [85]. Goodfellow

refers to this as the non-saturating loss because of the non-saturating nature of the

gradient when the distributions pg and pd are not overlapping. When describing the

min-max theory behind GANs, [10], and others use the min-max loss, which will be

described in Section A.4.1. The algorithm for the non-saturating GAN is given below

in Algorithm 1.
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A.1. INTRODUCTION

Algorithm 1: Mini-batch stochastic gradient descent training of GANs [10].
This has been modified from the original to achieve a standard notation
across this document. The number of steps to apply to the discriminator,
k, is a hyper-parameter. Goodfellow et al. [10] used k = 1, the least expen-
sive option, in their experiments.

for number of training iterations do
for k steps do

• Sample a mini-batch of m noise samples {z(1), z(2), ..., z(m)}
from noise prior pg(z)

• Sample a mini-batch of m examples {x(1), x(2), ..., x(m)} from data
generating distribution pdata(x)

• Update the discriminator by descending its stochastic gradient:

−∇ϕd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
(A.3)

• Sample a mini-batch of m noise samples {z(1), z(2), ..., z(m)} from
noise prior pg(z)

• Update the generator by descending its stochastic gradient:

−∇θg

1

m

m∑
i=1

log
(
D

(
G
(
z(i)

)))
(A.4)

The gradient-based updates can use any standard gradient-based learning
rule.
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A.2 Applications of GANs

Some of the image-processing applications of GANs are identified by Karpathy et al.

[157] and Cresswell et al. [138] and are itemised below.

• Image Synthesis: This can be from a latent variable, such as the DC-GAN of

Radford et al. [92] or synthesis conditioned on an input image, such as is the case

in colourisation, see Section A.7.10 on image-to-image type applications.

• Image Denoising: An image-to-image type application. Generating data is

straightforward. Any dataset can have noise added. The version without noise

represents the real data, and the versions with noise added are the priors to be

input to the generator. The generator must denoise the image so the denoised

version will be confused with real images in the discriminator.

• Inpainting: Filling in gaps in images with plausible pixels. Data can be generated

easily by taking any dataset and removing/obscuring pixels with blank patches.

This is useful in applications with blindspots, such as image-stitching for bird’s

eye simulation in automotive applications. A related application is image editing

to remove undesired objects from images, replacing them with plausible pixels,

e.g. Yu et al. [158].

• Super-Resolution: Increasing the resolution of an image more plausibly than with

classical techniques. The data is straightforward to create from natural image

datasets by downsampling the images and using the downsampled version as the

prior for an image-to-image generator. The generator must then create plausible

upsampled versions to fool the discriminator, which will also see the real images

from the dataset. Examples are Ledig et al. [83], and Wang et al. [84].

• Style Transfer: discussed later in the StyleGAN [99], see Section A.7.7.

• On demand Art: GauGAN by Park et al. [159] was an early example that could

generate plausible natural images from rudimentary semantic input such as colour

strokes.

• Image Editing: See the example above for Inpainting.

• Semantic Image Editing: Where image edits must maintain plausibility. Exam-

ples are Zhu et al. [160] and Ling et al. [161].

A.2.1 Network reuse

The name Generative Adversarial Network suggests the primary concern of GANs is

to produce a good generative network. However, GANs are composed of a generator

network and a discriminator network, and if training has progressed well, both may

be useful for later application. The discriminator may be used later for classification,

recognition or localisation of the data distribution. In general, whatever the re-use
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intended, this should be known in advance so that the network can be trained with

this in mind. For example, in the standard setting, the discriminator will only classify

as Real/Fake. If further classification is intended, it may make sense to design the

discriminator to have N + 1 output classes. One for each intended class and one for

Fake.

A.2.2 Layout of the GAN literature

The GAN literature has increased exponentially since the idea was first posited by

Goodfellow et al. [10], see Figure A.1.

Figure A.1: Cumulative GAN Papers by month [162]

This document will split the literature under the following headings to get a sense

of the GAN landscape.

• The place of the GAN in the field of machine learning.

• Types of Loss: Various loss types have been introduced to make GANs easier to

train. We consider each and the evidence for its performance.

• Architecture: We will look at the various architectures used for the generator and

the discriminator that appear in the literature.

• Training of GANs: GANs are notoriously difficult to train. We look at the advice

on how best to train GANs and categorise these into heuristics and theoretically

backed methods.
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• Regularisation and Normalisation: Various techniques have been suggested in the

literature to better condition GANs. We look at the various types, the evidence

for their improvements and the overlap between them.

• Conditional GANs: an essential subset of the GAN landscape are those which

determine Real/Fake, conditioned on some label or image.

• Image-to-Image GANs: These are a subset of conditional GANs in which the

generated image is conditional on some input image. We look at the various

types of this important subset.

• Assessment of Quality: A particularly tricky problem for GANs and all generative

schemes is determining the quality of the generated image and comparing it to

other schemes. We look at the various methods that have been posited in the

literature.

A.3 GANs place in the machine learning landscape?

At the core of most machine learning activities is the goal of finding some data dis-

tribution. This typically takes the form of finding a density function. For generative

systems, we wish to determine a data-generating distribution so that we can encode

this and generate new samples from that distribution on demand. The most common

technique for estimating a distribution is maximum likelihood estimation. An explana-

tion of Maximum Likelihood Estimation is provided in Appendix B. While the various

generative systems do not all use Maximum Likelihood, Goodfellow uses it as a good

mechanism to compare various generative strategies [11]. Several practical considera-

tions need to be appreciated here.

• How well does the empirical distribution match the true data distribution? This

is unknown, but it can be assumed that the more independent samples available,

the closer these distributions will match.

• Is the family of models, parameterised by θ, sufficient or in the correct form to

model the true data generating distribution. Neural networks with parameters

θ will often be used as the model to be trained. But has it enough parameters,

or could it have too many? If it does not have enough, the model will under-fit

and not find the full extent of the true distribution. Too many parameters may

overfit the empirical distribution. If the true data-generating distribution is

unknown, determining the appropriateness of the model is more difficult.

• The optimal value of θ will theoretically be the same whether we maximise

likelihood or minimise Kulback-Leibler (KL) divergence, KL-divergence is

explained in more detail in Appendix D.1. However, the objective function used
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in neural network training is different. Most frameworks prefer to minimise some

loss (usually via stochastic gradient descent). Thus the choice of the objective

here is governed by the desire to minimise the negative log-likelihood or minimise

cross-entropy.

The generative frameworks can be split into those that work with explicit or implicit

model densities.

A.3.1 Explicit density models

As the name suggests, these models have an explicit model of density, i.e. we can

describe the density mathematically and evaluate the log pm explicitly and get a real

number. However, the evaluation of the density may or may not be tractable. If the

distribution is complex, while the density may be modelled explicitly, it may not be

tractable.

Examples of generative models that have a tractable explicit density are, Fully

visible belief networks such as NADE [163], MADE [164], and PixelRNN [165], and

the Change of variables models or Non-linear ICA (Independent Component Analysis)

[166].

PixelRNN and PixelCNN are two architectures for achieving the same thing [165].

They seek to model the joint probability distribution of data streams x as a product of

element-wise conditional distributions for each element x in the stream. For example,

take an image x of size n × n. This is decomposed into an n2 × 1 vector by scanning

the pixels in a raster mode. Then the chain rule of probability is applied as follows:

p(x) =

n2∏
i=1

p(xi|x1, ..., xi−1) (A.5)

where xi is the ith pixel in the image. This is trying to model non-linear and

long-range correlations between pixels and their conditional distributions. To do

this, architectures with Recurrent Neural Networks or RNNs (PixelRNN) and CNNs

(PixelCNN) have been utilised. While this achieves good results, the time taken to

generate high-dimensional data makes these unfeasible for images.

NICE: Non-linear Independent Component Estimation by Dinh et al. [166] is

an example of Non-linear ICA. It takes a simple distribution (e.g. Gaussian) and

warps the samples from that distribution via a non-linear transformation to some

other desired space. If we can measure the determinant of the Jacobian of that

transformation, we can determine the density in the new space.

If the model models an explicit density that is not tractable, then it may be able to
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approximate the density in a tractable fashion. Generative examples of these include

Variational Autoencoders (VAE) and Boltzmann Machines. An autoencoder has the

basic form shown below in Figure A.2, where a low-dimensional compact encoding C

is learned from a dataset. A decoder is learned simultaneously by decoding from C

back to the space of natural images. Some loss function is then minimised between the

regenerated image and the ground-truth from the dataset. The difficulty here is that

C does not represent a latent space from which we can generate new images. C only

encodes a low-dimensional code of the dataset, but there is no relationship between

codes in C that would allow generation of new images in the space between the codes.

Figure A.2: Basic Autoencoder

The variational Autoencoder [167] seeks to encode the image space to some simple

low-dimensional latent space (such as a multi-dimensional circular Gaussian). It max-

imises the likelihood of a distribution in the low-dimensional latent space. The desire is

for a latent space with a structure that can be used for interpolation between samples.

This is referred to as variational, as the likelihood is maximised indirectly. Instead of

trying to maximise the likelihood over the actual data-generating distribution (which

is intractable), we try to maximise the likelihood over the variational distribution.

Doing so can ensure that the likelihood under the real distribution is always higher.

Therefore when training has reached convergence, we can be guaranteed that this is

the best we can do using the variational distribution. The likelihood over the real

distribution will not be lower. This is called a variational lower bound. Without

this, it could not be guaranteed that training has not gone on for too long and made

matters worse. As the variational distribution is one we can interpret and model, we

can produce new samples from it. As the samples are from the variational distribution,

they may be generated with a similar likelihood but not be as detailed as real data.

This is why VAEs outperform GANs on likelihood scores but are usually considered

inferior visual quality as they can appear blurry. The VAE, once trained, can generate

a sample immediately in a single step.

Unlike the VAE, a Boltzmann machine cannot generate a sample in a single step.

It uses Markov chain methods both in training and in the generation of samples.
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Like the VAE, this was an attempt to model an intractable density explicitly. The

Markov chain method is characterised by repeatedly drawing samples x′ ∼ q(x′|x) from
some transition operator q. While these methods can, in some situations, guarantee

that x will converge to a sample from the intractable explicit model pmodel(x), it is

challenging to know when this convergence has taken place. In the setting where

x is an image, the Boltzmann machine found it challenging to compete with other

schemes as the repeated Markov chain sampling, required to generate a single image

sample, took too long. When Goodfellow et al posited the GAN, it was partly in

response to the need for a scheme of generation that could be carried out in a single step.

A.3.2 Implicit density models

Rather than explicitly model the density, it may be sufficient to model it implicitly,

i.e. for a generative model, we wish to generate new samples from the distribution. It

will still serve our purpose if we can do this without explicitly modelling the density.

Markov chains were again employed here, with the Generative Stochastic Network

of Bengio et al. [168] being perhaps the best-known example. Like the Boltzmann

machines above, the Markov chain method proved very slow when these were scaled

to generate images.

This brings us to the GAN, an implicit density model from which we can draw

samples directly in a single step. This advantage allows us to directly generate new

samples from the distribution without explicitly knowing the distribution. This may

be the best way forward for complex distributions in high dimensions, such as the

distribution over natural images. Unlike the VAE, which tries to maximise the latent

code over the desired density model, we start with a latent code z with a known

structure in the GAN. The desire is that this structure will map in some meaningful

way to the data distribution. However, this is a one-way system. In most GAN settings,

we cannot map directly back from a real data sample to a position in the latent space.

This is because the generator in a GAN is differentiable but not necessarily invertible.

We will see later in Section A.7.9 how some researchers have attempted to circumvent

this problem.

A.3.3 Summary of the GAN’s place in the generative landscape

Goodfellow posited GANs to generate high dimensional data, such as images, with

intractable probability density functions. This was motivated by the need for sharp,

realistic data samples that could be generated in a single step. Unlike VAEs, they

do not maximise likelihood as they do not explicitly model the distribution or an ap-

proximation of it. GANs instead draw samples from the distribution without explicitly

trying to model it. This means that GANs produce more realistic samples subjectively

as they can explore more detailed facets of the distribution. Still, in general, as they

do not model the distribution, they will have a lower likelihood score than VAEs. As
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maximising likelihood is only a path to generating realistic samples, this is not consid-

ered a failure in GANs. Others have used Markov Chain Monte Carlo methods to try

to explicitly or implicitly model the distribution. While these showed some success,

they nonetheless were slow to train and slow in the generation of samples, which ruled

them out for high dimensional tasks such as image generation at reasonable resolutions.

GANs allow fast generation in a single step. VAEs appear to be a clear competitor

in the schemes to generate high-dimensional data. GANs are challenging to train and

poorly understood, but they produce more visually realistic samples when they work.

For GANs to improve, they will need more stable training methods and better condi-

tioning. For VAEs to improve, they will need to find variational distributions closer

to the true data distribution, which may be an intractable problem. PixelCNN and

methods like it seem to take too long in the generation phase and so do not appear to

be a good path to follow for the generation of images.

A.4 Types of loss used in GANs

One interpretation of the discriminator network in a GAN is that it is a learned loss

function [9]. Despite this, the discriminator still needs some explicit loss function on

its output to train the two networks that make up the GAN. The following will outline

some of the more prevalent losses from the GAN literature.

Recall that the GAN will typically have two loss functions on the output of the

discriminator. One is used to calculate the loss for the discriminator only, penalising

it for incorrectly classifying real and fake samples. The second loss penalises only the

generator, but the loss is calculated at the output of the discriminator. It penalises

the generator for the extent to which the generator’s fake images do not fool the

discriminator. Minimising this loss pushes the generator to make better fakes which

can fool the discriminator into incorrectly labelling the fakes as real. When Goodfellow

et al. [10] introduced the idea of the GAN, they introduced one loss function for

training the discriminator but two loss functions for training the generator. The

first loss function made intuitive and theoretical sense and had symmetry with the

discriminator loss function. It is most often used to describe the mathematical basis for

the GAN. In practice, however, it led to training difficulty, so a modified version was

recommended. The original will be referred to in this document as the mini-max loss,

whereas the recommended altered version will be referred to as the Non-saturating or

NS-loss.

A.4.1 Standard mini-max loss

The standard description of the GAN is that it is a mini-max game between two

players, the discriminator and the generator. The discriminator tries to minimise its

loss, while the generator tries to maximise the discriminator’s loss by producing better

fakes. The loss for training the discriminator is given as follows.
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The accompanying generator loss is as follows.
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A.4.2 NS Non-saturating loss

Many loss formulations will approach a saturation point or zero point at some point

in training. The difficulty in the mini-max formulation given above can happen at

the start of training or when the discriminator is very good at discriminating between

real and fake. In this circumstance, because the generator finds it so hard to fool the

discriminator, the loss of the discriminator as given in equation (A.6) is approaching

log(1) and the gradient of the loss at this point is close to zero. This results in

a situation where as the discriminator gets better, the generator finds it harder to

learn. Exactly the opposite of what we would like. So [10] recommended the following

Non-saturating loss as given in Equation (A.2). When the discriminator is good, this

loss approaches log(0) which has a substantial gradient, so the generator can learn

quickly from it.
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(A.2 revisited)

A.4.3 Wasserstein Distance

Much of the motivation to find a better loss was based on criticism of the saturating

loss [74][75]. However, Arjovsky & Bottou [169], through theoretical analysis, show

that while this NS-loss does not suffer from vanishing gradients, it does cause unstable

updates when the approximation of the optimal discriminator is noisy. They also

suggest that this loss produces good samples at the expense of varied samples, i.e. it

is prone to mode dropping.

Arjovsky et al. [74] introduced a new loss function to GANs, called the Wasserstein

distance and named their implementation the Wasserstein GAN (WGAN).

max
||D||L≤1

E
x∼pr

[D(x)]− E
z∼pz

[D(G(z))] (A.7)

Where D is the Discriminator (often called a Critic in the WGAN literature) and must

be a 1-Lipshitz function (explained below). . x is a real image from the training set and

z is the latent noise vector applied to the Generator G to produce synthetic samples.

The Wasserstein distance, sometimes called the Earth-mover distance, is a metric that
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can be thought of intuitively as the amount of probability mass that must be moved,

and how far it must be moved, to transform one probability distribution to another. It

is also meaningful here in that it conveys how training is progressing, something that

the original GAN loss functions cannot do. However, in this first implementation, the

Lipschitz constraint was crudely approximated through constraining the weights of D.

The mathematical underpinnings of these ideas are called Lipschitz continuity. This

states that a function is K-Lipschitz continuous if

∥D(x1)−D(x2)∥≤ K∥x1 − x2∥ (A.8)

where D() represents the derivative. For differentiable functions, the Lipschitz constant

K is the value of the largest gradient of the function. The Lipschitz constant K

tells us about the maximum change the function can undergo. Arjovsky used the

Kantorovich-Rubinstein Duality to approximate the Wasserstein distance, which

requires the function to be 1-Lipschitz, i.e. K = 1. Arjovsky et al. admitted that

they did not have a good way to enforce this constraint and implemented it simply

by constraining (clipping) the discriminator weights to ±0.01. Gulrajani et al. [75]

improved on this in their improved Wasserstein GAN by softly penalising the gradient

norm. However, this led to some restrictions, as linear interpolation was required

between generated and real samples. This meant the approximation was based

on imperfect generated samples. Only one sample at a time could be used with

the discriminator, so Batch Normalization had to be replaced with layer normalisa-

tion. Gulrajani’s architecture in [75] will be referred to as the iWGAN in this document.

A.4.4 Relativistic loss

Jolicoeur et al. introduced the relativistic discriminator [76]. They argue that the

original formulation [10] is flawed in that the generator phase only tries to increase

the probability that a fake sample appears real to the discriminator. They argue, for

the losses to be more symmetrical, and for that, the generator phase of optimisation

should also try to decrease the probability that a real sample from the data set appears

real to the discriminator. Jolicoeur et al. set out relativistic versions of the standard

non-saturating GAN but then extend it to a more general formulation that can work for

other popular losses. For the standard non-saturating GAN, the relativistic formulation

(labelled RSGAN in [76]) we have.

LRSGAN
D = −Exr,xf

(P,Q)[log(sigmoid(C(xr)− C(xf )))] (A.9)

LRSGAN
G = −Exr,xf

(P,Q)[log(sigmoid(C(xf )− C(xr)))] (A.10)

The symmetry here is very clear, the only change is C(xr) − C(xf ) is swapped to

C(xf )− C(xr). C is the final layer of the discriminator before the sigmoid activation.
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A subtle difference here is that the sigmoid output is based on the result of both a

real and a fake sample. In other formulations, updates are done on only real or only

fake. Mixing real/fake for an update is generally discouraged in GANs, [86] although

this advice is a heuristic and has no theoretical underpinnings. See Section A.5.1 for

further information on the heuristics in training GANs.

A.4.5 Hinge loss

Lim et al. consider a geometric structure for the GAN training [77]. They split this

into three steps.

• Separating hyper-plane search: Which finds a separating hyperplane for a linear

classifier.

• Discriminator parameter update which maximises the margin from the hyper-

plane.

• Generator update which pushes generator data along the normal towards the

hyperplane.

From this, they proposed a Geometric GAN, which uses a Support Vector Machine

(SVM) to separate the data with a maximal margin. The separating hyperplane has

to separate the two classes, real/fake. They choose a soft-margin SVM due to its

generality.

VD(Ĝ,D) = E
x∼q data (x)

[min(0,−1 +D(x))] + E
z∼p(z)

[min(0,−1−D(Ĝ(z)))] (A.11)

VG(G, D̂) = − E
z∼p(z)

[D̂(G(z))] (A.12)

Although Lim et al. [77] did not refer to their loss as the Hinge loss, it has been

branded that by many that have made use of it since.

Miyato et al. introduced spectral normalisation [78] (see Section A.6). When testing

spectral normalisation’s efficacy, they tested many different loss functions. They found

that the hinge loss gave greater performance than the other losses tested while using

spectral normalisation. Jolicoeur’s relativistic GAN loss [76] also looked at many losses

and modified them to the relativistic setting. They referred to [78] as the HingeGan

and claimed that their Relativistic version is an improvement in some loss categories

when those losses are modified to the relativistic setting. They did not find that it

improved on the original HingeGAN in results on small images (CIFAR 32 × 32) but

did have an improvement for larger size images (64 × 64). They didn’t show results
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for the hinge loss for higher resolution images although they did for other loss types.

Zhang et al. [79] introduced the Self-attention GAN which, along with the introduction

of the self-attention mechanism, they utilised the hinge loss to achieve state of the art

results.

A.4.6 Conditional GAN loss

In the conditional GAN setting (see Section A.7.9 for more detail on conditional

GANs) the loss is conditional on some a priori information. For example, they may

map from an observed image x and a random noise vector z, to generated image y.

G : {x, z} → y (A.13)

Isola’s pix2pix [9] state the following formulation.

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)]] (A.14)

They also use a loss at the output of the generator to penalise the difference between

the ground truth y and the generated image G(x, z). They use L1 loss here as they feel

L2 led to more blurry results.

LL1(G) = Ex,y,z [∥y − G(x, z)∥1] (A.15)

They then combine the two losses as follows.

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (A.16)

A few notes on the above.

• Equation(A.14) uses the mini-max formulation that [10] suggested not to use.

• L1 loss which is included in equation (A.16) is only applicable in the generator

iteration.

• The λ value suggested in [9] is 100. Isola tried L1 alone but got blurry results;

cGAN alone gave better results but with some visible artefacts. Setting λ = 100

gave the best results, reducing the artefacts. Chapter 3 takes a look at these loss

functions in detail.

• The colourisation experiments carried out by [9] used the CIEL*a*b* colour space.

Distances in this colour space are intended to be measured in L2. The decision to

use L1 was likely based on other applications and may not be the most suitable

for colourisation.
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• The results tended towards sepia coloured images rather than well-saturated

colourisations. As many objects can plausibily have a distribution of hues

associated with them, these colours will form a circle in ab space. Averages of

these points will tend towards the center of the circle in ab space. The centre of

ab space is zero chroma (saturation) and as such, averaging in ab space will tend

to desaturate colours.

A.4.7 Least Squares loss

The Least Squares GAN of Mao et al. [80] uses a formulation which, they show

theoretically, minimises the Pearson X 2 divergence. They note that cross-entropy

loss used in the original mini-max GAN formulation [10] will give almost no error

for generated samples that are on the real-data side of the discriminator’s decision

boundary despite these still being far from the centre of the real-data distribution.

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
(A.17)

min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]
(A.18)

Like many others Mao et al. [80] sets out to find a better loss than the original mini-

max loss that Goodfellow [10] advised not to use. Mao et al. did not show how this

compares to the non-saturating loss that Goodfellow does recommend.

A.4.8 Perceptual loss

In some image-to-image applications, particularly super-resolution [83], [84] a percep-

tual loss [81], [82] is combined with the adversarial loss. The idea of the perceptual loss

is to compare intermediate feature activations in a pre-trained classification network for

real and fake images. This only makes sense in the image-to-image conditional setting

as the comparison must be made between the generated image and its real conditional

counterpart. For example, in the super-resolution application, the low-resolution input

image xlr is a down-sampled version of a specific real image xhr from the dataset. The

generator generates an estimated high-resolution image x̂hr. Now x̂hr and xhr could

be compared directly as an L1 or L2 pixel distance, and this added to the loss as in [9]

but [83][84] argue that for the super-resolution task it is better to see if the two images

are perceptually alike rather than close in Euclidean distance between pixels. To check

how close the images are perceptually, the activations at various layers of a pre-trained

VGGNet [72] are used. Ledig et al. [83] followed the convention of [81] and used the

activation maps, whereas Wang et al. [84] later used the pre-activation maps. Wang

et al. state that this is because (a) the activation maps tend to be very sparse and (b)

the features after activation often have inconsistent reconstructed brightness compared

to the reference image. It is difficult to say if the perceptual loss is a good fit for the

colourisation task. Is a colour image perceptually different from a grey-scale image?
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The perceptual loss was used in [82] to capture style, which includes colour, suggesting

that incorrect colourisation may affect perception.

A.4.9 Summary of loss functions

While many loss functions can be used in the GAN setting, the current use of the Hinge

loss [77] in so many state-of-the-art formulations, suggests that it is the most advisable

to use unless the application specifically requires some alternative.

A.5 Training of GANs

GAN training, as envisioned by Goodfellow et al. in [10], is outlined in Algorithm

(1). However, it is well known that GANs are challenging to train, and it is difficult to

know how well training is progressing or when training should be halted. How to choose

good hyper-parameter values and optimisation algorithms are all open questions. What

follows in this section is, therefore, mostly heuristics that appear to bring good results

but are mostly unproven theoretically.

A.5.1 Training heuristics

Chintala et al. [86] brought together much of the combined wisdom of GAN practi-

tioners.

• Normalise the dataset images to the range [−1, 1]. Generally, tanh is the final

activation of the generator, so this will ensure that generated images are also in

this range.

• Use the non-saturating loss that is advised in [10] rather than the mini-max loss.

The mini-max loss suits the theoretical description of the GAN but supplies

vanishing gradients early in training or in cases where the discriminator is much

better than the generator.

• The latent space z (if you are using one) is usually a spherical Gaussian. When

interpolating in the latent space z, interpolate around the sphere’s edge along a

great circle. Do not go in a direct line [170].

• Construct different mini-batches for real and fake. This means, when performing

an update of the discriminator, feed a batch of real images and update the pa-

rameters, then supply a batch of fake and update the parameters. To display the

loss, add the losses from the real and fake batches and divide them by two. The

intuition for keeping them separate is poor. The claim is that it is more suitable

for the batch statistics for batch normalisation as the mean and variance of the

real and fake will be very different at the start of training. The Relativistic GAN
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of Jolicoeur does not use this convention [76]. This is a heuristic to reconsider as

new training improvements come to light. This heuristic is looked at in detail in

Chapter 3.

• Avoid Sparse Gradients that can arise from ReLU and MaxPool. While these

seem helpful in classification networks, they appear to be bad for GANs as

the game’s stability suffers from sparse gradients. Suggested replacements are

LeakyReLU particularly in the discriminator, though the advice seems to vary

on whether ReLU or leakyReLU should be used in the generator. When down-

sampling, the recommendation is to use Average Pooling or a 2D stride convo-

lution. For up-sampling, the advice is to use a PixelShuffle [171] or a fractional

stride with transpose convolution (sometimes referred to as de-convolution).

• Use Soft and Noisy Labels. Label Smoothing suggests that rather than labelling

1 or 0, the labels are randomly in a range [0.0, 0.3] and [0.7, 1.0]. Chintala [86]

suggested an example range that went outside the [0, 1] range. There may be some

difficulty with this as the labels are meant to represent a probability. Salimans

et al. 2016 [89] suggest making the labels the noise for the discriminator, i.e.

occasionally flip the labels (real for fake) when training the discriminator.

• Use stability heuristics from reinforcement learning, Pfau and and Vinyals [172]

such as Experience Replay. Keep a buffer of replays of past generations and

occasionally feed them to the discriminator. Keep weight checkpoints from the

past of the generator and the discriminator and occasionally swap them out for

a few iterations. The stability tricks that work for deep deterministic policy

gradients can also be useful.

• Adam [136] seems to be currently the optimiser of choice for GANs [9], [76], [77],

[79], [84], [173], [174] Most use it in both the generator and the discriminator.

Some suggest using SGD in the discriminator and Adam in the generator. There

is little theory here on why and this likely makes the discriminator learn more

slowly rather than overpowering the generator. The choice of hyper-parameters

for Adam has become quite different from classification networks. In some cases

β1 = 0 [79] while others use values β1 = 0.5 − 0.9. β2 has taken values from

0.5 − 0.999. Using the first moment of momentum may be problematic in a

dynamic training system that acts very differently from a standard minimisation

function.

• Try to track failures early in training to start training again with different settings.

While the discriminator loss signal does not tell us much about how training is

progressing, there are some signs. It is normally a failure mode if the discriminator

loss quickly goes to zero. The norms of the gradients should not be high. It is

suggested if the norm is over 100, problems have arisen. Spectral Normalisation

was introduced since this particular advice and should ensure weight gradients

below one, see A.6. There is a suggestion that the discriminator loss will have
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low variance and go down over time when things are working correctly. If the

generator loss steadily decreases, it is likely fooling the discriminator with poor

samples.

• When choosing the ratio by which iterations of the discriminator and the gener-

ator will run, the advice is to avoid dynamically varying this ratio based on the

loss of either/both the generator and discriminator. There is the possibility that

someone may introduce some good theory here on how to base the ratio on either

or both losses but trial and error is usually fruitless. This should not be confused

with the Two Time Update Rule, see below A.5.2.

• If the dataset has labels, then use them. This changes the GAN to the conditional

setting. The suggestion is to train the discriminator to classify the samples in

addition to determining whether they are real/fake.

• Add some image noise to real and generated data and decay the noise over time

[169]. At the beginning of training, the real and generated distributions may

not have an intersection, making it harder to get training started. Adding noise

can increase the chance of this intersection, but as training progresses, this noise

should be reduced to improve quality. Zhao et al. in the EBGAN [175] suggest

adding Gaussian noise to every layer of the generator, although this does not

seem to be followed widely.

• For Discrete variables in Conditional GANs, an Embedding layer should be used.

These can be added as an additional channel to images at the input. The sug-

gestion is to keep the embedding dimensionality low and upsample to match the

channel size. Since this advice was communicated, the projection discriminator

[176] has gained popularity which advocates combining the conditional variables

with an intermediate feature layer and projecting this to be added to the final

output of the discriminator. The projection discriminator is described in more

detail in Section A.7.5.

• Isola et al. [9] use Dropout in the generator in both the train and test phase.

They apply 50% dropout applied to several layers of their generator. They do this

in the place of noise. There is little stochasticity here as this is an image-to-image

with a single ground-truth.

A.5.2 Theoretically backed training advice

Heusel et al. [87] introduced the Two Time-Scale Update Rule (TTUR), which

has since gained a following [79]. This suggests using a different learning rate for

the discriminator and the generator. Unlike the ideas presented in the previous

section, they show proof. They use the premise that the discriminator converges to

a local minimum when the generator is fixed. The generator is not fixed, but if it

changes slowly enough, the discriminator still converges as the generator perturbations

are small. They claim that the Adam optimiser [136] will act like a heavy ball
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Figure A.3: Heavy ball with friction. Heusel et al. describe how the Adam optimiser will be-
have with a loss function with small perturbations. The ball will overshoot a shallow local
minimum like θ+ but settle on a broad minimum like θ∗ [87].

(momentum) with friction, and as such, it can overcome small perturbations. With

large perturbations, it would get stuck in poor local minima, see Figure A.3. While

this ensures convergence, it may also improve the performance of the GAN as the

discriminator must learn new patterns before the generator can learn them. If, on the

other hand, the generator learns too fast, this can force the discriminator into new

regions without the discriminator having time to capture information. So the idea is to

have the discriminator learn faster than the generator. Many factors can cause the two

networks to learn at different rates, but we mainly control the learning rate. So TTUR

advocates not setting them the same. This does not mean that the discriminator

should have a higher learning rate than the generator, as the discriminator may

naturally learn much faster. The proof shows that for the discriminator to converge

using TTUR the perturbations in the discriminator’s loss function should be small.

This matches with the observation [86](Heuristics above) that the discriminator loss

will have low variance and go down over time when things are working correctly. So,

determining each network’s learning rate requires a separate search and range.

Karras et al. [88] introduced a method of training GANs, which progressively

grow both the discriminator and the generator as the training progresses. This is

motivated by the fact that GANs seem more prone to training failure with increased

resolution. Karras et al. start with low resolution and only a small number of layers

and progressively add more layers as training progresses, see Figure A.4. This allowed

them to grow from 4 × 4 to 1024 × 1024. The existing layers remain trainable as new

layers are added. They claim that as most of the training iterations are carried out at

a low resolution they can train 4-6 times faster than comparably sized GANs. Karras

also computes the standard deviation for each feature in each spatial location over a
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Figure A.4: Karras et al. Progressive growing of GANs [88]

mini-batch of images to improve sample variation. They then average the estimates

over all the features and spatial locations, obtaining a single value. They make enough

copies of this value to shape into the output layer of the discriminator (4 × 4). They

then concatenate this to that layer, increasing the number of features in that layer by

one. The discriminator can then use this to decide if an image is fake based on the

statistics of the whole batch. As the statistics for the real image batch will likely vary,

the generated images must match this to fool the discriminator.

A.6 Regularisation and stabilisation in GANs

GANs, just as with other network architectures, can succumb to over-fitting, though

this is much harder to diagnose. The problem is that the discriminator may simply

learn to remember the real data, or the generator may simply reproduce copies of the

real data.

Dropout [177] has been used in the discriminator [89], [90] to ameliorate overfitting

and improve stabilisation. It has also been used by Isola et al. in the generator [9] to

insert some stochasicity in the image-to-image GAN setting.

Salimans et al. [89] also try weight normalisation in the discriminator. Weight

decay is also used in the discriminator [87] and the generator [90]. Lim & Ye [77]

experiment with it in both.

Batch Normalization [139] (BN) has enabled great breakthroughs in training deep

neural networks. Without it, the gradient in each layer is tightly coupled to all other

layers. Should the gradient on any layer be close to zero, this may choke off the

gradient to all subsequent layers during back-propagation of the gradient, a problem

we call vanishing gradients. BN works as follows. The activations from a layer, for

a full mini-batch, are passed to the BN function. It calculates the sample mean and
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standard deviation for this mini-batch. It subtracts this mean and divides by this

standard deviation to leave the activations for the mini-batch with a mean of zero

and a standard deviation of one. Next, it reverses this step by multiplying by a new

standard deviation called γ and adds a new mean called β. Importantly (γ, β) are

trainable parameters for each channel of activations in a layer. The net effect is that

the distribution of activations of one layer is shifted and expanded/contracted to

match the input to the next layer.

BN has been used in both the generator and the discriminator in GANs. However,

there is a lot of ambiguity over where exactly it should be used and its effect on

stability. Radford et al. [92] advise using BN in most layers except for the generator’s

final layer and the discriminator’s first layer. They noted that including BN in

those layers led to sample oscillation and model instability which was avoided when

removed. It should be noted here that we have also experienced this with the

DCGAN using the original loss regime from [10]. However, with some other designs

and loss regimes, we find that BN is a benefit and that this heuristic may not be

appropriate everywhere, see Mullery and Whelan [178]. Goodfellow [11] refers to the

key insights of the DCGAN, stating that BN is left out of these layers so that the

Model can learn the correct mean and scale of the distribution. BN has learnable

parameters (β, γ) that can represent these and are condensed into (β, γ) though

there may be reasons the [10]loss regime prefers to distribute this over the rest of the

weights in the network. To our knowledge, a clear explanation of why BN in these

specific layers causes oscillation and instability have not been resolved. In Chap-

ter 3, the issue of Batch Normalisation in the discriminator is considered in some detail.

One difficulty with GANs is their fragile stability, and many things can add up

to an unstable implementation. Removing something may help stability, but this

does not mean that this should be followed as a general rule. Huesel et al. [87] show

that training will be unstable if the discriminator and generator’s learning rates do

not work well together. They deal with this by setting different learning rates, the

so-called Two Time Update Rule. Still, they warn that the relative settings depend on

the architecture and other settings. So removing BN from some layers may have the

same effect as slowing one of the networks’ learning rates with respect to the other.

One of the most significant steps in stabilising GAN training comes in the form

of Spectral Normalisation [78]. The stability of systems is well studied in many other

areas. In control systems and digital signal processing, the weights of a system are

carefully chosen to ensure the system’s stability. Specifically, in digital systems where

feedback from the output to the input is used (recursive systems), the poles (singular

values) are kept ≤ 1. In systems where the weights are learned, circumstances

can cause the weights to increase to values that quickly become unstable (causing

exponential growth). Spectral Normalisation is a method to ensure that all weight
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values are constrained to stable values while training. The idea is that if we take

the singular value decomposition of each weight layer matrix we can find the largest

singular value. By dividing all the weights by the largest singular value, we ensure

that all weights are ≤ 1. This ensures that the weights cannot grow exponentially due

to exploding gradients.

Miyato et al. [78] showed that enforcing the 1-Lipschitz was useful for stability

in general and not just for approximating the Wasserstein distance as described

in Section A.4.3. They showed that in the non-saturating setting or Wasserstein

setting, using the 1-Lipschitz constraint led to a better behaved and more stable

discriminator. Their solution was implementing the 1-Lipschitz constraint using

spectral normalisation in the discriminator. However, calculating each layer’s spec-

tral norm via singular value decomposition is computationally intensive, particularly

given that it would have to be carried out after each iteration of the training algorithm.

Miyato et al. [78] outline an efficient algorithm for computing the spectral norm

called power iteration. This iterative technique starts with a random vector in the

space of the weight matrix W and iteratively estimate the largest singular value by

getting powers of the W TW on the basis that with increasing powers of WTW
||WTW || the

largest singular value will dominate. As the weight matrix normally changes quite

slowly, after each iteration of training, the largest singular value can be re-calculated

using a previous vector from the space of W in the last iteration and only one iteration

of the power iteration algorithm. This makes spectral normalisation by power itera-

tion very computationally efficient relative to computationally expensive operations

like standard forward and backward propagation. One concern with enforcing the

1-Lipschitz constraint is that the discriminator cannot learn quickly and thus requires

more iterations to maintain an approximation to optimality for the generator’s current

state. This requires greater computation time. Heusel et al. [87], however, suggested

that different learning rates deal with this in the generator and the discriminator, see

Section (A.5.2). There seems to be a broad consensus since [78] was published that

spectral normalisation should be used in all settings, and Zhang et al. [79] advocated

using it in the generator as well as the discriminator.

A.7 GAN architectures

In terms of architecture, there are two main considerations concerning GANs. Firstly

the architectures of the individual networks need to be considered. Secondly, we need

to consider the overall architecture of how the generator and the discriminator interact.

The discriminator design can, in most cases, be considered similar to the feed-forward

convolutional neural networks used for binary classification over the past few years.

These have been well studied and only undergo some minor tweaks in terms of the

GAN. Chapter 3 discusses some architectural issues related to batch normalisation in
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Figure A.5: The DC-GAN generator architecture of Radford et al. [92]

the discriminator of the GAN. The generator, however, is a newer idea which requires

a mechanism to go from a low-dimensional latent space, such as a circular Gaussian, to

a high-dimensional image. In Goodfellow’s original paper [10], there was no attempt

to model images.

A.7.1 DC-GAN

The most prevalent generator architecture for image generation using GANs is the

DC-GAN (Deep Convolutional) [92] introduced by Radford et al. The architecture is

depicted in Figure A.5. To tackle the problem of scaling up, Radford leveraged the

all-convolutional net of Springenberg et al. [179]. The all-convolutional net allows

CNNs to learn their spatial downsampling with strided convolutions rather than

using max-pooling or other hand-engineered solutions. Radford et al. generalised

these to also learn their up-sampling so that the generator could scale up images.

Besides the input to the generator (and the discriminator output), Radford eliminated

fully-connected layers. At the input to the generator, the latent vector z ∈ Rn is fully

connected to an input vector ∈ R16f which is immediately reshaped into a tensor

∈ R4×4×f . From this layer onwards, convolutions are used to upscale in the spatial

domain but halve the number of filters/feature channels f . The example in Figure A.5

above shows an input latent vector z ∈ R100. This is fully connected to a layer that

is reshaped to 4 × 4 × 1024. At the next layer this becomes 8 × 8 × 512 and so on to

16 × 16 × 256, 32 × 32 × 128. Finally, at the last layer, this is resized spatially to the

output resolutions, in this case, 64× 64× 3. Note that 3 refers to the three channels of

a colour image. The colour space is expected to match that of the ground truth data set.

Batch Normalisation (BN) is used in all layers apart from immediately before the

final layer. Radford et al. found that BN stabilised learning in the deep networks but

that in the final layer, it resulted in sample oscillation and model instability. While

it may be the case that removing BN from the final layer alleviated these problems,

there is no theoretical basis put forward for this. In our work [178], we find that
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Figure A.6: The U-Net of Ronneberger et al. [91]

removing BN from the final layer may be a poor heuristic and that inserting it there

could speed up training. Radford et al. used the ReLU activation [180] at the output

of all layers in the generator apart from the final layer, which uses a tanh. They use

the LeakyReLU activation in all the layers of the discriminator apart from the last

layer, which is flattened and uses a sigmoid output to give a probability of real or fake.

A.7.2 U-Net

The U-Net architecture [91] is used in GANs primarily as the generator network. Olaf

Ronneberger et al. introduced the U-Net to solve Biomedical Image Segmentation

problems in settings with minimal data sets. Biomedical images tend to be high in

spatial resolution but few in the number of samples, so the solution was to allow the

network to be fully convolutional and to convolve across the high-resolution image.

This meant that a high-res image could act as a greater volume of data samples. The

architecture consists of two parts, a contracting path on the input side and an expanding

path on the output side. See Figure A.6

The contracting path is very similar to most feedforward CNNs with several convolu-

tional layers, and after each couple of these, there is a 2×2 max pooling to downsample

the image. At each down-sampling, the number of feature channels is doubled. The

convolutions are unpadded, so edge pixels are lost at each convolution. Just before each

down-sampling, there is a direct link to an appropriate point in the expanding path.

Many of the ideas in this architecture were first introduced by Long et al. [93] in the

so-called Fully Convolutional Network (FCN), including the up-sampling mechanisms
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and the links between higher resolution feature maps in lower layers with up-scaled

low-resolution feature maps in upper layers. The FCN architecture introduced by Long

et al. can be seen in Figure A.7.

Figure A.7: The Fully Convolutional Net of Long et al. [93]

However, Ronneberger et al. added many more feature channels and convolutional

layers after each up-scaling/concatenation allowing the network to propagate more

contextual information to the higher resolution layers. This also meant that the

expanding path of the network was almost (apart from any edge pixels lost) the mirror

of the contracting part. This design leads to the title of U-Net. After each pair of

convolutions and ReLUs, there is a 2 × 2 up-convolution which doubles the image’s

resolution in both spatial dimensions and halves the number of feature channels.

As mentioned above, direct links are made between the contracting and expanding

paths. These are made just before the down-sampling and connect to just after the

up-sampling at an equivalent size. We say equivalent size as due to all the un-padded

convolutions, there have been a lot of edge pixels lost at each convolution, so the direct

link must be cropped to be an equivalent size in the expanding path. This link is a

copy of the contracting path’s features and is concatenated onto the feature maps that

have come from the 2× 2 up-sampling convolutions.

Other segmentation networks similar to U-net were derived from the FCN [93].

DeconvNet [94] abandoned the idea of the fully convolutional net but did keep the

general form of contracting and expanding. They saw this as a type of Encoder-

Decoder (Convolutional network - Deconvolutional Network) where they had a compact

representation of the image at the end of the encoder. The decoder would then attempt

to upscale this to the target representation, in this case, a segmentation of the input

image. While they did not use the skip-concatenation, they did record the indices of the

max-pooling operations in the down-sampling to use as information for reconstruction

in the up-sampling part (unpooling), see Figure A.8. DeconvNet is very similar to U-
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Figure A.8: Unpooling using recorded pooling indices in the DeconvNet [94]

Figure A.9: The DeconvNet [94]

Net in the symmetry of the contracting-expanding paths, except that there are no skip

connections, and it cannot be used fully convolutionally, see Figure A.9. They claim

that this achieves different things to the FCN and can be used in a complementary

fashion in an ensemble with the FCN. The DeconvNet is good for capturing fine details

of an object and can handle objects of various scales. The FCN is better at extracting

the overall shape of an object and, with a coarse scale, may be able to capture context

within an image.

SegNet [95] followed in the footsteps of DeconvNet and removed all fully connected

layers, replacing them with convolutional layers. This has a significant saving of mem-

ory. This didn’t work as well as DeconvNet but it was much more efficient. See Figure

A.10 for the SegNet architecture.
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Figure A.10: The SegNet architecture of Badrinarayanan et al. [95]

In the GAN setting, the U-Net is handled with padded convolutions, so there is

no need for cropping in the skip connections. This U-net in a GAN, cannot utilise

smaller datasets of higher resolution images as it cannot be convolved across a larger

image. Apart from taking the full feature map across the skip connection, this makes

the U-net in GANs similar to that used in DeconvNet [94] and particularly SegNet

[95]. It is unclear whether the skip connections that take the full high-res feature map

across the U versus merely taking the max-pooling indices is the better idea in a GAN.

It is worth considering that GANs are large, as they also contain the discriminator

network, so memory savings like these should not be ignored. It is also worth noting

some of the other ideas from FCNs. The FCN used a pre-trained image classification

network which it modified and fine-tuned. It also initialised the up-scaling convolutions

to bilinear interpolators before it started the learning process, which is a good starting

point for up-scaling.

A.7.3 ResNet

The ResNet family of architectures [96] have been very popular for image recognition

and classification since its victory in the ImageNet challenge in 2015 [102]. This makes

it an ideal candidate for the discriminator in a GAN. However, it has also been employed

in the generator. The ResNet was developed in response to the difficulty of training

very deep networks, which, despite intuition to the contrary, will often perform worse

than shallow networks. To do this, ResNets introduced the Residual block; see Figure

A.11.
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Figure A.11: Residual Block [96]

A Residual block is a unit containing two or more convolutional layers with a

skip connection connecting the input directly to the output of the block, where it is

summed with the activations from the convolutional layers. We can call the function of

the convolutional layers F(x) where x is the input activations. The sum of the output

is then F(x) + x. The intuition here is that rather than the network trying to learn

some function g(x) it instead only needs to learn the difference between the input x

and the output F(x) + x. F(x) is called the residual (hence ResNet and Residual

block). If the network chooses to learn zero residual at some point in a deep network,

the gradient can still flow back through the skip connection to the deeper part of the

network allowing training of very deep networks. While the intuition is based on a

hypothesis rather than a proven theory, the impressive results of the ResNet are in no

doubt.

ResNets use strided convolutions or pooling layers between residual blocks to

downsample the input image and transform the representation into a compact feature

vector that can be used for classification or discrimination. The Residual block can

be employed in the generator by exchanging down-sampling for up-sampling and

convolution for deconvolution. Here, up-sampling or deconvolutional layers are used to

up-sample the image. For images generated from a latent space z, this is an inversion

of the ResNet for classification/discrimination, where we start with a compact vector

and upscale to an image. A down-scaling and up-scaling ResNet can be used as an

encoder/decoder for image-to-image applications. Or, as in CycleGAN [181], some

other encoder/decoder can be used, but residual blocks are placed in between to

transform the compact feature space from the output of the encoder to the input of

the decoder.

Gulrajani et al. [75] used ResNets as deep as 101 layers in a GAN to show that

their improved Wasserstein GAN could train even with such a deep network. Their

standard ResNet of choice used more modest-sized ResNets that depended on the size
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Figure A.12: A comparison of the Standard residual Block with the Residual in Residual
Dense Block (RRDB) of [84]. Conv is a standard convolutional layer, BN is a batch normal-
isation layer and ReLU is a rectified linear unit non-linearity. The LReLU is a Leaky ReLU
where there is small positive slope for values < 0.

of the images to be generated. Miyato et al. [78] tested their Spectral Normalisation

method on Gulrajani’s ResNet GAN and found that it improved the results. Miyato et

al. use a ResNet in the generator, and use projection with their ResNet discriminator

[176], see Section A.7.5 for more details.

A.7.4 Residual dense net

The ESRGAN of Wang et al. [84] introduced a Residual-in-residual dense block

(RRDB) as the basic building block of their Enhanced Super Resolution GAN. See

Figure A.12 for a pictorial view of RRDB. They also use the relativistic average GAN

in their discriminator, extending the work of [76], which was discussed in Section A.4.4.

They argue that Batch Normalisation (BN) introduces unpleasant artefacts and limits

the generalisation ability when the statistics of the training and testing datasets differ

a lot. They also claim empirical evidence that the artefacts are worse when using BN

with a network that is deeper and trained under a GAN framework.

They use an encoder/decoder type generator design but remove BN and introduce the

RRDB block. They base this on the intuition that more layers and connections could

always boost performance. They also scale the residuals by multiplying them by a

constant in the range [0, 1] before they are added to the skip path, and they use smaller

initialisations. These are carried out for stability and ease of training. Note that this

pre-dates spectral normalisation [79], which may achieve this stability better. While

they perform well on this task, it remains to be seen if other researchers will validate

the RRDB block.

A.7.5 Projection discriminator

The projection discriminator of Miyato et al. [176] is an alternative form of a

discriminator for the conditional GAN setting that is gaining a lot of traction [79].

Conditional information could mean a class label where the generator is tasked with

generating images of many classes. For image-to-image GANs, the conditional would

be the input image, so in the case of colourisation, the conditional would be the

greyscale image. See Section A.7.9 for more details on conditional GANs.

Previously, the conditional information was concatenated to the real/fake data fed
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Figure A.13: The Projection GAN of Miyato et al. The discriminator is split into ϕ and ψ
as the parts before and after the tap-off to make an inner product with the conditional data
y to project into the discriminator. The extent of ϕ and ψ are application dependent and
dependent on the shape of the conditional data y.

to the discriminator. Miyato et al. [176] consider a form in which the probability

distribution of the conditional variable y, given the data x, is a discrete or uni-modal

continuous distribution. While they consider super-resolution, this is also the case for

colourisation, as many colourisations all translate to the same grey-scale image.

They call their discriminator a projection discriminator. They do not concatenate

the conditional variable but instead tap off from one of the intermediate layers of the

discriminator, convolve this set of feature activations with a trainable 3 × 3 filter and

then take an inner product of the result with the conditional variable. This result is

then added to the output of the final activation of the discriminator. In the example

of super-resolution, they tap off after four ResBlocks and after the image has been

down-sampled to the same size as the conditional variable. In other cases where they

use a class label, they tap off much later (closer to final activation), where the feature

vector will be the same size as the condition variable in the form of a one-hot vector.

The results are promising both in this paper [176] and in others that have used it

[79]. As they use many other state-of-the-art ideas, such as spectral normalisation

[78], the ResNet design of [75], and the Hinge loss [77] in their comparison tests with

the concatenation method, we can be somewhat hopeful that this method brings an

improvement that is separate to the improvements from those methods. However, some

thought (and experimentation) would have to be undertaken to determine how best to

project the conditional information of the greyscale image into the discriminator in the

colourisation GAN.
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Figure A.14: The Self-Attention mechanism of Zhang et al. [79]

A.7.6 Modelling long-range dependencies in GANs

A problem all convolutional neural networks face is modelling long-range dependencies

in the spatial domain. Convolutional filters, by their very nature, are fixated on

local attributes. While deep networks allow the receptive field of deeper layers to be

influenced by a wider view, it has been accepted that CNNs fail to model this well. This

did not hamper the early progress of classification networks, but it was immediately

obvious in generative settings using CNNs. For example, a GAN designed to generate

an image of a dog could do quite well with colour and texture, but the dog would of-

ten be deformed and have the wrong number of limbs or other features such as eyes [11].

Many are trying to find a solution to this problem. CoordConv [182] was a

mechanism from Uber AI Labs, that concatenated the coordinates of a pixel as an

extra channel so that the CNN could learn this information. Sabour et al. introduced

the idea of the Capsule Network [183], which attempts to model objects and orienta-

tions. The Self-attention mechanism was introduced to GANs by Zhang et al. [79] as

another mechanism for adding long-range dependencies to CNN architectures. The

self-attention mechanism calculates the response at a spatial position as a weighted

sum of the features at all the other spatial locations, see Figure A.14. f(x) and g(x)

are derived from the feature maps at a given activation. f(x) is transposed and then

matrix multiplied by g(x). This is effectively like correlating the feature map with

itself to determine features that activate in sympathy with each other even though

they do not activate in the same location. Each row of the result of this matrix

multiply is passed through a softmax to normalise the response. The results from

the softmax are called the attention map, as this map shows the relative correlations

between a feature response and each other response. However, this will also have the

effect of setting all rows equal, i.e. even noisy rows that show little correlation will

be normalised, giving them equal precedence with those with a significant correlation.

This necessitates the h(x) function. Again it is derived directly from the feature map

via 1 × 1 convolutions. f(x) is matrix multiplied by the attention map to give the

final self-attention map. The idea here is that for attention map features to transfer
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to the self-attention map, they must occur at a feature with a significant activation. If

the activation is small, then any normalised correlations will be treated as insignificant.

Comparing each pixel position’s activations with each other pixel position’s

activations can lead to a lot of processing. So instead, each pixel is only com-

pared to a pooling of the other positions. The 1 × 1 convolutions can also bring

down the number of filter channels to a more manageable level. Even with these

reductions in dimension size, the computation and memory required are still significant.

Zhang et al. [79] test various locations to put the self-attention mechanism in both

the generator and the discriminator. It appears to have a more significant positive

impact on Frechet Inception Distance and Inception Score at medium to high-level

features. They do not show its effect if used at multiple layers, so it is difficult to tell

if multiple layer use would improve or deteriorate its effect.

Woo et al. [98] extended attention to channels with their Convolutional Block

Attention Module. This is an attention block that infers attention in the activations

of a layer both spatially and between filter channels. Channel attention could also

be used separately from spatial attention if the application called for it. In terms of

colourisation, both could be potentially useful. Spatial coherency across the image may

be assisted by spatial attention. We can also assume some correlation between channels

of colour images, e.g. the colour channels’ edges would line up with the L*-channel’s

edges. Therefore channel attention would likely be useful to capture these interchannel

dependencies.

A.7.7 StyleGAN

Style transfer is the process of applying an artistic style to an image. For example, take

a natural image and render it in Van Gogh’s Starry Night style. Gatys et al. pioneered

this work [82]. The process was to use the intermediate layers of a VGG network [72].

First, pass the artistic image through VGG and, at various feature maps of the network,

calculate the Gram matrix of the features. This represents the style. Next, they pass

the natural image through the VGG network and record the feature maps produced at

various layers, called the content. They then take a white noise image and minimise its

loss on the recorded style and content. This occurs by backpropagation to the input

pixels of the noise image, i.e. the pixels of the input image are the trainable parameters.

A problem in GANs has been user control over what is generated. By changing the

latent variable, we should get new images, but as mentioned previously, the structure

of the latent space is uncertain, and interpolation between points is not clear-cut. This

problem is referred to as entanglement, and finding a solution to it is referred to as

disentanglement. Karras et al. [99] introduced StyleGan as a method to disentangle

the latent space and allow more linear interpolation between semantic vectors in the
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space, e.g. apply glasses to a subject. The word style may be a little misleading here

but is a product of the use of the ideas of Gatys et al. [82] to achieve this outcome.

Figure A.15 shows the architecture of the StyleGan Generator. Rather than the latent

variable z being inserted directly at the input layer, it has a small network of its own

that transforms it to a new space W. Vectors from this are inserted at various points

in the up-scaling generator network via a learned affine transformation, denoted as A

in Figure A.15. Following the affine transformation the manipulation of the network is

achieved controlling the instance normalisation layers at the various scales in the up-

scaling network. Instance Normalisation is akin to batch normalisation but on a single

sample. Adaptive Instance Normalisation, (AdaIN in the figure), allows the learnable

parameters in Batch/Instance Normalisation to instead be controlled by another input.

In this case the latent variable is transformed by a learned mapping network and then

transformed by a learned affine transform to control the parameters in the normalisation

layer. The Adaptive Instance Normalisation operation is defined as

AdaIN (xi,y) = ys,i
xi − µ (xi)

σ (xi)
+ yb,i (A.19)

Separately, noise is inserted at various points in the up-scaling network to introduce

stochasticity. At insertion into the network, it passes through a learned per-channel

scaling factor. It is added to the activations from the AdaIN before the non-linear

activation. Layers close to the input are considered coarse styles, e.g. Pose, face shape

etc. Layers in the middle of the network are considered middle styles, e.g. facial

features, eyes etc.; towards the output, the layers are considered fine styles, e.g. colour,

freckles etc. The network learns to produce a more disentangled representation of the

latent space Z in its W space. This allows for easy interpolation between semantic

properties. The noise can be varied to add stochasticity. Inserting different noise at

different levels will produce different changes at various levels. For example, a change

in W may lead to glasses or no glasses, whereas changing noise might determine the

attributes or colour of the glasses.

A.7.8 SPIRAL

Synthesising Programs for Images using Reinforced Adversarial Learning (SPIRAL)

[184] combines GANs with Reinforcement Learning. This represents a significant

departure from other GAN architecture. While the discriminator still tries to minimise

the error in predicting whether a sample is real or fake, the generator does not use the

discriminator output directly to minimise its loss. Instead, the generator is treated as

a graphics engine. Graphics engines require a program to tell them what to output.

SPIRAL uses reinforcement learning to determine a program that will produce a good

output. Reinforcement Learning works on a reward signal; In this case, the reward

is the score given by the discriminator. The advantage of this method is that it can

discover a meaningful program for generating images. For example, MNIST [185]

characters are not just generated but are broken down into individual strokes. They
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Figure A.15: Standard Generator (left) compared to The Style GAN Generator (right) [99].
For the StyleGAN, the latent variable is passed through a learned mapping network to pro-
duce W, which is then introduced to the up-scaling generator via learned affine transforma-
tions called A in the diagram. The outputs from the A are used to adaptively control In-
stance Normalisation at each scale in the up-scaling network, thereby controlling ”Style”.
Noise is introduced at each scale via B in the diagram, a learned per-channel scaling factor.
The outputs from B are added to that activations just before the non-linearity.
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Figure A.16: The basic Conditional GAN. z is the latent variable, and c is the conditional
variable. G represents the generator while D represents the discriminator. x is a real data
sample, and x̂ is a generated sample. The discriminator takes both a sample and the condi-
tional variable as input.

demonstrate that this can then be used to have a robot arm draw MNIST characters.

A.7.9 Conditional GANs

Conditional GANs extend the GANs to the conditional setting. This takes the form

of some supplementary piece of information which is given to the GAN. For example,

if the GAN generates images from a set of classes, it generates images and the class

label. As the discriminator is fed both the image and the class label for both real and

fake images, this constrains the space of possible manifolds on which the data could be

resident. It means that the GAN can generate better images in a multi-modal setting.

Mirza & Osindero [186] introduced the Conditional GAN, which can be seen pictori-

ally in Figure A.16. Here, z, the latent space variable, is fed to the generator G as usual,

but the conditional variable c is also fed to G. G then produces a generated image x̂,

conditional on c. The conditional variable c is, of course, linked to the real data sample

x. D is either fed real x or fake x̂ samples but always fed the conditional variable c. D
must then predict whether the sample it received was real or fake conditional on c. A

typical example here would be c is a class label for the class of image being produced.

In the case of [186], the condition is fed to the generator and the discriminator as an

additional layer.

Xi Chen et al. [187] introduced the InfoGAN, as shown in Figure A.17. The idea

here is to learn about the latent space by applying a latent code and the condition

variable to G. D must then determine if it is real or fake and predict the latent code

c. c could be the class label or other information about the data.

One of the issues with both the above conditional GANs and the original formulation
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Figure A.17: The InfoGAN of Chen et al. [187] is different from the basic Conditional GAN
in that the conditional data is not directly input to the discriminator. The discriminator,
instead, must learn to output the conditional variable, given the data.

by Goodfellow [10] is that the latent space z does not have a structure that allows the

mapping of observed samples x̂ to latent vectors z. Keep in mind that the generator is

differentiable but not necessarily invertible. While some attempts have been made to

invert the generator, others have investigated having the discriminator accept a tuple

of the sample and the latent vector. This way, the sample is conditional on the latent

vector z. While the latent vector for a specific generated sample is easy to obtain

during training, there is no latent vector for a data sample. Instead, the idea is to

learn an inference mechanism while also learning the generator jointly. So a network

E is employed to learn the inverse of G as shown in Figure A.18. This architecture is

referred to as a Bidirectional GAN (BiGAN) [174] by Donahue et al. z is fed to both

G and D. D receives a tuple of x̂ and z for the fake samples. For the real samples, is

fed a real data sample x and a learned z′. When D is at maximum confusion, E should

have learned the z vector that relates to a real sample. From here, interpolations can

be made between real samples to produce new images. However, this doesn’t guarantee

a simple structure to the z space as it merely learns a mapping. Dumoulin et al. [188]

studied the same architecture independently of [174] although in their case, they looked

at a stochastic (rather than deterministic) E network. Dumoulin also showed that this

architecture gives the latent space some structure, which does not happen when the

inference network is learned separately from the G network.

A.7.10 Image-to-Image GANs

A special case of conditional GAN is the image-to-image network. Rather than use a

latent vector z, the input to the generator is an image. This image is also considered

the conditional variable. For example, in the colourisation application, the input image

is the grey-scale image. The generator must then output two colour channels. So for

CIEL*a*b*, the input would be L*, and the output would be a*b*. All three real

channels are input for real samples presented to the discriminator. The generated a*b*
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Figure A.18: The BiGAN [174], or Bi-directional GAN learns both a generator and an en-
coder that should be the inverse of the generator, allowing for exploration of the latent space
using real samples from the data set.

Figure A.19: The Image-to-image conditional GAN. Rather than a latent variable input, an
image is an input to the generator. The generator’s output is also image data but in the tar-
get format. The input image x is the conditional data in this case. The conditional data x
and the real or generated data are passed to the discriminator together.

is concatenated with the conditional L* for fake samples. D is always presented with

all three channels. In this manner, D can discriminate on whether the colourisation is

real, conditional on the grey-scale image. Figure A.19 below shows the basic structure

of an image-to-image network.

x represents the input image but also the conditional image. y is the real data

channels that will be combined with x to represent a real image sent to D. The two

arrows on the input to D represent the x and either y or y′. y′ is the generated image,

which again is combined with x to be input to D. G is shown here as a rectangle but

in fact can take the form of an up-sampling (e.g. super-resolution), down-sampling,

down-sampling followed by up-sampling (U-net [91], DeConvNet[94] and SegNet[95])

or maintain input resolution. D, however, is still usually a down-sampling network

that produces a real/fake output prediction. The PatchGAN discriminator of Isola

et al. [9] is a down-sampling discriminator but does not down-sample to a single
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value. Instead produces a real/fake prediction for patches of the image of 16×16 pixels.

Image-to-image GANs work well in examples where a pair of images, x and y,

exists in some data set. For instance, in colourisation, the general method employed is

to convert any natural image data set into a colour-space like CIEL*a*b* and then set

x = L∗ and y = a ∗ b∗. In cases where pairs are unavailable, such as painting-to-photo

or photo-to-painting, the CycleGAN of Zhu et al. [173] can be used.

A.7.11 Summary of GAN architectures

The GAN uses two networks, the discriminator and the generator. For the discrimina-

tor, the current state-of-the-art seems to be a classification network with spectral nor-

malisation. Where conditional data is applicable, the projection discriminator should

be considered. For the generator, the suggested encoder/decoder type network with

skip links seems to be state-of-the-art in image-to-image type applications. At present,

the U-net is the obvious choice. Again spectral normalisation appears to be the best

conditioning mechanism here. Self-attention mechanisms in either/both the discrimina-

tor or the generator look promising. The research so far seems to hint that it improves

spatial coherency in the colourisation task; However, a mechanism to measure this be-

yond human evaluation has not yet been produced. The StyleGAN [99] appears to

be a significant step forward in disentangling the latent space and allowing user direc-

tion of generation. It is unclear at this point how this could be used in colourisation.

Still, the idea of users directing the colourisation task in some way via a StyleGAN

implementation could be a worthwhile direction.

A.8 Assessment of quality in GANs

A difficulty arises in generative settings regarding determining the quality of the

results. For example, it is well known that Variational Autoencoders achieve much

better likelihood scores than GANs [11], but to the human observer, VAE outputs

appear blurry. In contrast, when a GAN is trained successfully, it can achieve very

realistic images but will not necessarily achieve a high likelihood score [189]. Almost

all GANs are judged by human visual fidelity, but many have proposed other measures.

While two measures (Fréchet Inception Distance [87] and Inception Score [89]) are

starting to gain a consensus, it is still clear that they are imperfect measures.

As outlined in Section A.3.1, maximising likelihood does not necessarily equate

to excellent visual fidelity. GANs do not directly model the data distribution, so

comparing GANs on this measure would be counter to using the GAN in the first

place. The advice is quite clear if you wish to maximise the likelihood for a generation

task, use a VAE.

Simple measures such as L1 or L2 pixel intensity difference can be considered and
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utilised in image-to-image type GANs with only one ideal answer. Isola et al. [9]

directly minimise L1 distance on the generator. In most GANs, however, the idea is

not to reproduce a sample but to generate unseen samples from the same distribution.

While Isola et al. uses L1 directly in the colourisation task, chapter 4 argues that this

directly penalises plausible colourisations that don’t exactly match the ground truth,

i.e. it penalises all but a single mode.

Arjovsky et al. [74] introduced the Wasserstein GAN, which tried to minimise

the Wasserstein distance between the data and generating distributions. While some

argue that it is not best to try to minimise this distance directly, see Fedus et al. [85],

if the Wasserstein distance can be approximated, then it can give some measure of the

performance of GANs and is used in some settings.

Given the importance of human visual fidelity, Salimans et al. introduced the

Inception Score [89]. The intuition here is based on two requirements,

• Firstly, generated images of objects should contain recognisable objects that a

human or classification network should easily classify. Therefore if a state-of-the-

art network like Inception [190], pre-trained on ImageNet, places a high score on

a particular class for a generated image. The image must be recognisable as that

class. They state this as a conditional probability p(y|x = G(z)) and state that

the conditional probability of label y, given generated sample x, should have low

entropy.

• Secondly, to ensure that a generator does not continuously produce a small num-

ber of samples that meet the criteria above, they also assume that a good gen-

erator will also produce images over time that will contain a large range of the

objects in the data set, i.e. the marginal
∫
p(y|x = G(z))dz should have high

entropy.

The full score is then given by

e(ExDKL(p(y|x)||p(y))) (A.20)

Where DKL is the Kullback-Leibler divergence between two distributions. The

exponentiation is for ease of comparison of scores but will not change the ordering.

Salimans et al. [89] have shown empirically that the Inception score correlates well

with human evaluation.

The Fréchet Distance of Dowson et al. [191] measures the distance between two

multivariate normal distributions. Heusel et al. [87] introduced the Fréchet Inception

Distance (FID). They state that the Inception score alone [89] is at a disadvantage

in that it does not use the statistics of the real samples compared to the statistics of

the data samples. They take the coding units of an Inception Network (last pooling

layer) [190], which are assumed to hold vision-related features and assume the coding
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units follow a multivariate Gaussian. Equation (A.21) shows how to calculate the FID

between the Gaussian with mean and co-variance (m,C) from the model distribution

pmodel, and the mean and co-variance (mw, Cw) from the Gaussian obtained from the

data distribution pdata.

d2 ((m,C), (mw, Cw)) = ∥m−mw∥22 +Tr
(
C + Cw − 2 (CCw)

1/2
)

(A.21)

Shmelkov et al. [192] argue that both Inception score and Frétchet Inception

distance are inappropriate as they are bound too tightly to the ImageNet data

set and are crude measures which do not capture subtle details. They propose an

evaluation measure to compare class-conditional GAN architectures with GAN-Train

and GAN-Test scores. To compute the GAN-Train, they train a classification network

with the images generated by the GAN and then evaluate the network’s performance

on a test set of real images. The intuition is that if the network can classify real images

trained by fake images, the fake images must be similar to the real ones. They state

that GAN-Train is equivalent to a recall measure as a good performance suggests the

generated samples are diverse enough. The GAN-Test measure does the opposite. A

classification network is trained on real images from the data set. The network is then

evaluated using generated images. They claim this is akin to a precision measure with

a high score here, showing that the generated samples are a plausible approximation of

the distribution of natural images. They show their measures are consistent with FID

and Inception Score, in that models rank the same in all cases but also show that they

can better distinguish between problems. For example, FID cannot tell poor quality

from poor image diversity. GAN-Test and GAN-Train measures do not seem to have

propagated far in other’s research, perhaps because they require a lot of extra training

of networks or because FID and Inception scores suffice to differentiate the results of

a GAN. Of note, at least here, is that in their tests, the Spectral Normalisation GAN

(SNGAN) achieved higher scores than Wasserstein GAN with gradient penalty [75],

DCGAN [92] and PixelCNN++ [193]. This suggests that spectral normalisation is

important in all GAN training. See Spectral Normalisation Section A.6.

It is essential to distinguish between loss functions and metrics for assessing

quality. While approximations of the Wasserstein distance have been used directly

as a loss function for minimisation, most other metrics have not been useful as loss

functions. The approximations of Wasserstein distance in [74][75] can be used as

both a meaningful measure of performance and a loss function to minimise. However,

approximating the distance leads to restrictions on the training, which can slow it

down. The discriminator (critic) in WGANs must be close to optimal at all times

to reasonably approximate Wasserstein distance. This often entails the discriminator

having k training iterations for every generator iteration. A value of k = 5 is quite

normal, but sometimes k = 50 or higher is used at the beginning of training and at

regular intervals after that. E.g. every 500 generator iterations. This adds a lot of
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computation between each generator update. The L1 distance was used by [9] as

part of the loss to minimise. Salimans et al. [89] introduced and recommended the

Inception Score as a useful metric for evaluation that correlates well with human

judgement but failed in using it as a training objective. FID [87] requires quite a lot

of once-off computation on the whole data set and a large number of generated images

(50,000). For computational efficiency, they only calculated this periodically; Every

1000 DCGAN iterations or 5000 iterations for WGAN-GP [75]. This shows that it is

not feasible to use FID as an objective to minimise.

The evaluation of GANs is currently an active area of research with many new

methods being published. While Inception Score and Fréchet Inception Distance are

the most prevalent there are many works that try to ameoliorate the deficiencies of

these methods. Ali Borji [107] has a recent (2022) review of the latest developments in

GAN evaluation measures. Section 2.5 details how colourisation is currently measured,

including GANs.
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Appendix B

Maximum likelihood

The idea here is that we have some distribution which is unknown but that samples

can be drawn from. We will call the set of examples X . We then consider a parametric

family of probability distributions modelled by pm(x; θ) which gives an estimate of the

true probability pd(x). Maximum Likelihood estimation is then given by

θML = argmax
θ

pm(X ; θ) (B.1)

θML = argmax
θ

m∏
i=1

pm(x(i); θ) (B.2)

There can be numerical instability problems with the product of many probabilities as a

product of many numbers all ∈ [0, 1] can give underflow problems in computer systems.

We can take the log of the probabilities to make the numbers a more convenient size

and also transforming from a product to a sum. While this changes the actual numbers

involved it does not change the argmax.

θML = argmax
θ

m∑
i=1

log pm(x(i); θ) (B.3)

We can go a step further here and divide by the number of samples m to obtain an

expectation with respect to the empirical distribution (data set) which we denote as p̂d

θML = argmax
θ

Ex∼p̂d log pm(x; θ) (B.4)

If the set of parameters θ is sufficient to model the data generating distribution then

this method should find a model that best approximates pd. Of course we don’t actually

know pd so the best we can test for is how similar pm is to p̂d. One way to measure

this is Kulback-Leibler (KL) divergence, although it should be noted that this is not a

measure in the strict mathematical sense as it is not symmetrical. i.e. DKL(p̂d||pm) ̸=
DKL(pm||p̂d)

DKL(p̂d||pm) = Ex∼p̂d [log p̂d(x)− log pm(x)] (B.5)

Minimizing KL only requires the pm term, as pd is a function only of the data-
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generating process. The negative sign can also be taken outside the expectation.

−Ex∼p̂d [log pm(x)] (B.6)

Minimisation of equation (B.6) is the same as maximisation of equation(B.4). Min-

imising KL divergence corresponds to minimising the cross-entropy between p̂d and

pm. So Maximum Likelihood is an attempt to match a model distribution to the em-

pirical distribution. Our aim is to find the data generating distribution and therefore

we would like our model to match that instead. We do not however know the actual

data generating distribution but only the sample set that has been generated by that

distribution.
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Important measures

C.1 SSIM

SSIM [121] stands for Structural Similarity Index Measure. It is a measure of image

quality that attempts to take into account the structure of the pixels over a local

neighbourhood. Other measures of quality, such as MSE (mean squared error)

measure only the pixel-wise difference between a degraded image and the full-reference

ground-truth image. Wang et al. argue that in circumstances where the degraded

image is intended to be presented to a human viewer, measures like MSE do not

represent perceived visual quality. When trying to measure perceived visual quality, it

may be necessary to go through various non-linear operations to mimic the response

of the eye. These can include CSF filtering (Contrast Sensitivity Function) which is

sensitive to different spatial and temporal frequencies. They may also include eye-lens

effects, point wise operations that simulate light adaption etc. SSIM does not try to

mimic the eye’s response directly. However, due to the structural component of SSIM,

it should act similarly, to the eye’s response, when applied over a local region. Image

statistics are usually spatially non-stationary; many distortions are space invariant,

and the human visual system only fixates on small local areas by projecting onto the

high-resolution fovea.

SSIM is carried out on the luminance channel only. If the image is multi-channel,

then it can be treated in either two ways. First, it can be converted to a colour-space

that separates the luminance so that SSIM can be carried out on that channel alone.

This method clearly cannot work for comparing colourisations as it removes all colour

information before comparison. The second option is to treat each channel separately

as if it was a luminance channel.

The name, Structural Similarity, can be misleading. As shown in Figure C.1, the

structural part makes up the final third of the measure. The first part compares the

mean, representing the overall luminance, the second the standard deviation, repre-

senting the contrast, and then finally the structure. In mathematical form below f is
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Figure C.1: The SSIM system as a block Diagram [121]

the function for combining the three.

S(x⃗, y⃗) = f(l(x⃗, y⃗), c(x⃗, y⃗), s(x⃗, y⃗)) (C.1)

The luminance function l is given as follows.

l(x⃗, y⃗) =
2µxµy + C1

µ2x + µ2y + C1
(C.2)

µx is the mean of the x image and µy is the mean to the y image. l will be in the

range 0 → 1 with 1 representing maximum similarity and 0 representing maximum dis-

similarity. C1 is present for numerical stability to prevent a divide by zero. However,

[121] suggest a value for C1 = (K1L)
2 with L being the dynamic range of pixel values

(255 for 8-bit) and K1 << 1. They use K=0.05, so K1L = 12.75. So this is not simply

a small number that is added for numerical stability but is a parameter that effects the

measurement that has a significant effect on small value differences. This along with

the squaring used in equation (C.2) results in a non-linear effect where the measure of

dis-similarity is much more pronounced for differences that are large, relative to the

absolute values, and recorded as similar for small relative changes. This is consistent

with the response of the human visual system which is sensitive to relative difference

rather than absolute difference; if the eye cannot see the difference then it should get a

high score on similarity. It also means that small absolute changes are treated as more

similar than large absolute changes even if the relative change is the same. This is

particularly useful when artefacts, that are imperceptible to the human eye, are present.

To get a measure of the contrast, c(x⃗, y⃗) is defined as follows.

c(x⃗, y⃗) =
2σxσy + C2

σ2x + σ2y + C2
(C.3)

This is very similar to the luminance equation except that we are using the standard

deviation of each image instead of the mean. To calculate the standard deviation

184



C.2. MS-SSIM

we must first calculate the mean which is why in Figure C.1 we see this feed into

the contrast measurement. The mean (average luminance) is subtracted from all

pixels which results in a mean of zero and pixels can now take on positive and

negative values. The standard deviation can then be calculated. Again, like the

response of the human visual system it is the relative change in contrast that mat-

ters here and not the absolute change. The result will once again be in the range 0 → 1.

For the structure part, s(x⃗, y⃗) we use the following formula.

s(x⃗, y⃗) =
σxy + C3

σxσy + C3
(C.4)

σxy is the correlation (inner product) of the deviations and can be estimated as follows.

σxy =
1

N − 1

N∑
i=1

(xi − µx) (yi − µy) (C.5)

Once again the result will be in the range 0 → 1. Intuitively you can think of the

structure comparison as taking place after the mean luminance has been subtracted

and the resulting signal has been divided by the standard deviation. So it is working

on comparing the structure of normalised signals.

The function to combine the three parts is given by

SSIM(x⃗, y⃗) = [l(x⃗, y⃗)]α · [c(x⃗, y⃗)]β · [s(x⃗, y⃗)]γ (C.6)

where α > 0, β > 0 and γ > 0.

By setting α = β = γ = 1 all three are given equal importance and the range for the

entire SSIM is 0 → 1. Wang et al. [121] use this setting and this results in the following

reformulation of SSIM

SSIM(x⃗, y⃗) =
(2µxµy + C1) (2σxy + C2)(

µ2x + µ2y + C1

) (
σ2x + σ2y + C2

) (C.7)

C.2 MS-SSIM

Wang et al. extended SSIM to the multi-scale setting with MS-SSIM [123]. As shown,

the image is scaled down at each iteration by low-pass filtering and down-sampling by

two. The luminance from the original SSIM is only calculated at the full-resolution

setting but contrast and structure are calculated at each scale. The exponent for the

structure, γj , in Equation C.8 is set to 1 for every scale. The exponent for contrast is

different at each scale, based on experiments carried out on the LIVE dataset [152].

MS-SSIM(x,y) = [lM (x,y)]αM ·
M∏
j=1

[cj(x,y)]
βj [sj(x,y)]

γj (C.8)
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Figure C.2: The MS-SSIM system as a block Diagram [123]

C.3 PSNR

PSNR stands for Peak Signal to Noise Ratio. It is a ratio between the peak signal and

the noise. When using this to compare images the Max signal is the maximum value

allowable in the signal, e.g. 255 for 8-bit images, and the difference (MSE) between the

ground-truth image and the degraded image is the noise. A logarithmic scale is used,

where higher number is better.

PSNR = 20log10(MaxI)− 10log10(MSE) (C.9)
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Kulback-Leibler and

Jensen-Shannon divergence

D.1 Kulback-Leibler divergence

Kulback-Leibler divergence is a measure of the divergence between two probability

distributions. It is not a statistical metric and it is asymmetric. If we assume two

probability distributions, P and Q. Then the KL divergence (discrete case) is given by

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(D.1)

Assumptions: Where Q(i) = 0, P (i) is assumed zero, and so divergence at that point

is assumed zero. P (i) is not necessarily zero at that point (indeed most likely not),

but there will be a divide by zero where Q(i) = 0, which is undefined. Equation (D.1)

calculates an expectation, as it is multiplied by P (i) before it is summed. As P is

a probability, its area is 1. So we are getting a weighted average of log P (i)
Q(i) where

P (i) is the weighting. Note: KL divergence is asymmetrical: DKL(P ||Q) ̸= DKL(Q||P ).

Figure D.1 shows two probability distributions that are estimated from data. The

distribution P is a N (µ, σ) where µ = 0 and σ = 1. Q is a U(min,max) where

min = −1 and max = 5.

KL divergence can measure the difference between these two but as Figures D.2 and

D.3 show, there is a clear difference between DKL(P ||Q) and DKL(Q||P ). As it is not
symmetric, it cannot be a metric.

Apart from the fact that it is not a metric, there are other issues to consider. In

Figure D.3, take a look at the peak on the right of the DKL(Q||P ); this is caused

by the difference between Q and P at this point. At this point, Q(i) is a reasonably

sized number divided by a minuscule one producing a very large number. The log of

this is taken, and multipiled by Q(i) again. Only a little further to the right of this

point, where we assume P (i) = 0 we assume a zero value for DKL(Q||P ), which is
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Figure D.1: A Gaussian distribution P (blue) and a uniform distribution Q (orange) with
some overlap

very different to the large number just slightly to the left. In the case where DKL = 0,

P and Q are expected to exhibit similar, though not necessarily identical behaviour,

but if the two do not overlap at any point in their distributions, then we also have

DKL = 0. It doesn’t matter how far they are from overlapping the difference is

zero since for DKL(P ||Q), Q(i) = 0 implies P (i) = 0. So if two distributions are

so divergent as to be non-overlapping, then the DKL measure is of no utility. One

advantage of KL divergence is that it is never negative.

KL divergence is related to cross-entropy.

H(P,Q) = H(P ) +DKL(P ||Q) (D.2)

H(P,Q) = −Ex∼P logQ(x) (D.3)

Minimising a cross-entropy loss w.r.t. Q is equivalent to minimising the KL divergence,

as Q is not in the omitted term in Equation D.2.
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D.1. KULBACK-LEIBLER DIVERGENCE

Figure D.2: DKL(P ||Q) shown superimposed on the distributions.

Figure D.3: DKL(Q||P ) shown superimposed on the distributions.
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APPENDIX D. KULBACK-LEIBLER AND JENSEN-SHANNON DIVERGENCE

D.2 Jensen-Shannon divergence

Jensen-Shannon Divergence [156] is another method of measuring the similarity of two

probability distributions. It is based on the KL divergence but has some advantages

over it. Unlike DKL, DJS is symmetric, so

DJS(P ||Q) = DJS(Q||P ). Secondly, it always has a finite defined value. Recall that

when DKL(Q||P ) was undefined (or infinite), we set it to zero. This is not necessary

with DJS . DJS is not itself a metric but
√
DJS is a metric and is sometimes referred

to as the Jensen-Shannon Distance.

DJS(P ||Q) =
DKL

(
P ||

(
P+Q
2

))
2

+
DKL

(
Q||

(
P+Q
2

))
2

(D.4)
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Appendix E

Examples of poor colourisation in

natural image datasets

The following examples show images from ImageNet [102] and Places [194] datasets.

While the artistic merit of any of the images can be argued, they do not represent

natural colour scenes. White balance issues, mono-chrome, duo-tone, stylised, infra-

red, and over processed High Dynamic Range (HDR) images are all represented. Poor

natural colour scenes are not rare in these datasets. For most colourisation algorithms

today, these would all be labelled as ground-truth natural colour images.

Figure E.1: Some examples of poor colour images in the Places dataset [194].The image in
(a) shows a challenging scene for white balance, in which snow (which should be white) is
both orange and green due to lighting. The image in (b) may be poor white balance or inten-
tional artistic processing. The image in (c) appears to be an infrared image or possibly just
processed to look this way. The image in (d) is mono-chrome. The images in (e) and (f) are
mono-chrome with a colour tone applied, sometimes referred to as duo-tone images. The im-
ages in (g) and (h) are heavily-processed HDR images that show unnatural levels of contrast
in colour.
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APPENDIX E. EXAMPLES OF POOR COLOURISATION IN NATURAL IMAGE
DATASETS

Figure E.2: Some examples of poor colour images in the ImageNet dataset [102]. (a) shows
poor white balance, the paws of the dog have a green cast. It is difficult to tell if (b) is poor
white balance, duo-tone or an accurate representation of the scene. If pictures were being
curated for the colourisation process it would likely be left out of the dataset. The image in
(c) has poor contrast in general and seems to be badly scanned from a physical photograph.
The images in (d) and (e) show different levels of stylised processing of an image. The image
in (f) is a mono-chrome image. The images in (g) and (h) are both mono-chrome images with
a colour tone, sometimes referred to as duo-tone images.
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Research ethics committee

approval

APPLICATION FOR APPROVAL OF A PROJECT INVOLVING HUMAN PARTIC-

IPANTS
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Dublin City University 
RESEARCH ETHICS COMMITTEE 

 

APPLICATION FOR APPROVAL OF A PROJECT 
INVOLVING HUMAN PARTICIPANTS 

 

Application No. (office use only)  DCUREC/2021/____  

 
Please read the following information carefully before completing your application. Failure to adhere to these 
guidelines will make your submission ineligible for review. 
 

⮚ Applications must be submitted via the Research Ethics Application Portal here – no hardcopy required.   
All queries relating to submission should be e-mailed to the DCU Research Ethics Committee (REC) at 
rec@dcu.ie 
 

⮚ Section 4 of this form addresses the possible data protection issues of the proposed research and it must 
be completed prior to making a formal REC application.   
 

⮚ Student applicants must include their supervisor as an investigator on the Research Ethics Application 
Portal – this applies to all masters by research and PhD students. The form should be checked, approved and 
signed by the supervisor in advance of submission to REC. NB – Taught Masters and Undergraduate students 
apply for ethical review via their local ethics review panel, not via REC.  

 

⮚ The application should consist of one electronic file only, with an electronic signature from the PI (and 
supervisor if applicable). The completed application must incorporate all supplementary documentation, especially 
those being given to the proposed participants. The application will go through an initial triage process and will be 
returned to the applicant(s) if the form is incomplete or documentation is missing. If extensive changes are required, 
it will be reviewed at the next REC committee meeting. The application must be proofread and spellchecked before 
submission to the REC.   
 

⮚ All sections of the application form must be answered as instructed and within the word limits given.  
 
 
Applications which do not adhere to all of these requirements will not be accepted for review and will be returned directly to 
the applicant. 
 

Applications must be completed on the form; answers in the form of attachments will not be accepted, except where 
indicated.  No hardcopy applications will be accepted.  Research must not commence until written approval has been 
received from the Research Ethics Committee. 
 
Note: If your research requires approval from the Biological Safety Committee (BSC) this must be in place prior to 
REC submission. Contact bio.safety@dcu.ie. Please attach the responses from these committees to this submission as 
directed below. 
 

PROJECT TITLE 

 

Measuring Colourisation 

PRINCIPAL INVESTIGATOR(S) 
The named Principal Investigator is the person with 
primary responsibility for the research project. In the 
case of PhD/D.Ed./MSc Research projects the 
supervisor must be listed as Principal Investigator, in 
addition to the student.  

 

Seán Mullery (PhD student) 
Prof. Paul Whelan (PhD Supervisor) 

START AND END DATE 

 

October 2021 – December 2021 

LEVEL OF RISK 
Please indicate whether this project requires (a) 
notification (b) expedited or (c) full committee review. 
Justification for your choice is required under section 
3.1 

Notification 
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1. ADMINISTRATIVE DETAILS 
 

PROJECT TYPE: 
(mark Y to as many as 
apply) 
 
 

Research Project 
 

Y Funded Consultancy 
 
 

… 

Clinical Trial … 

 Student Research Project  
(please indicate level below, e.g. 
PhD/D.Ed./MSc Research) 

Y Other  - Please Describe:       … 

      PhD / Other Doctorate Y 

      D.Ed.  

      MSc Research … 

 
 
1.1 INVESTIGATOR CONTACT DETAILS 
 
PRINCIPAL INVESTIGATOR(S): In the case of PhD/D.Ed./MSc Research projects the supervisor must be listed as Principal Investigator. 
Doctoral researchers and Research Masters may be listed as Principal Investigators, depending on the conventions of the discipline and 
on the individual case. It should be made clear, in subsequent sections of this application, who is carrying out the research procedures. 

 

NAME SCHOOL/UNIT EMAIL 

     Seán Mullery      Electronic Engineering      
Sean.mullery@mail.dcu.ie 

     Prof. Paul Whelan      Electronic Engineering Paul.whelan@dcu.ie 
 

 
OTHER INVESTIGATORS:  

 

NAME SCHOOL/UNIT EMAIL 

                  

                  
 
 
1.2 WILL THE RESEARCH BE UNDERTAKEN ON-SITE AT DUBLIN CITY UNIVERSITY?  

YES or NO 

No 
 

 
If NO, state details of the off-campus location – provide details of the approval to gain access to that location in section 
2.7. 

 
Online via the Amazon Mechanical Turk. 
 

 

 
1.3 WILL THIS RESEARCH INVOLVE ANIMALS? 

YES or NO 

No 
 

 
If YES, please provide details on the outcome from BRAG and attach copies of approval(s) received etc. 

 
 
 

 

 
1.4 HAS THIS RESEARCH PROPOSAL BEEN SUBMITTED TO ANOTHER ETHICS COMMITTEE?  

YES or NO 

No 
 

 
If YES, please provide details on the outcome and attach copies of approval(s) received etc. 
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1.4.1 HAS THIS RESEARCH PROPOSAL BEEN REFUSED ETHICAL APPROVAL FROM THIS OR ANOTHER 
RESEARCH ETHICS COMMITTEE PREVIOUSLY? 

 
If YES, please provide details. 

 
No 
 

 

 
 
 

 

DECLARATION BY PRINCIPAL INVESTIGATOR(S) 
The information contained herein is, to the best of my knowledge and belief, accurate.  I have read the 
University’s current research ethics guidelines, and accept responsibility for the conduct of the procedures set 
out in the attached application in accordance with the form guidelines, the REC guidelines, the University’s 
Conflict of Interest Policy, its Code of Good Research Practice and any other condition laid down by the Dublin 
City University Research Ethics Committee.  I have attempted to identify all risks related to the research that 
may arise in conducting this research and acknowledge my obligations and the rights of the participants. 
 
If there exists any affiliation or financial interest for researcher(s) in this research or its outcomes or any other 
circumstances which might represent a perceived, potential or actual conflict of interest this should be declared 
in accordance with the University’s Conflict of Interest Policy.  
 
I and my co-investigators and/or supporting staff have the appropriate qualifications, experience and facilities 
to conduct the research set out in the attached application and to deal with any emergencies and contingencies 
related to the research that may arise. Supervisor(s) signature(s) is / are required as evidence that they have 
read and approve this submission. 
 
Please note: 

1. Any amendments to the original approved proposal must receive prior REC approval. 
 

2. As a condition of approval investigators are required to document and report immediately to the 
Secretary of the Research Ethics Committee any adverse events, any issues which might negatively 
impact on the conduct of the research and/or any complaint from a participant relating to their 
participation in the study. 

 
 
 
Electronic Signature(s): 
 
Principal investigator(s):  ________________________________________________________________________ 
 
Print Name(s) here: Seán Mullery 
 

Date: 31-Aug-2021 
 
 
I, the main supervisor of this research proposal, have read and approve this submission. 
 

Supervisor(s) signature (where relevant):  
 

Print Name(s) here:   Prof Paul F Whelan 
 

Date:  31-Aug-2021 
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2. PROJECT OUTLINE  

 
2.1 LAY DESCRIPTION, AIMS & JUSTIFICATION, METHODOLOGY (Approx.900 words)  

Please outline, in terms that any non-expert would understand, what your research project is about, including what participants 
will be required to do. Please explain any technical terms or discipline-specific phrases. State the aims and significance of the 
project. Where relevant, state the specific hypothesis to be tested. Please provide a brief description of background research, a 
justification as to why this research project should proceed in that context and an explanation of any expected benefits to the 
community. NB – all references cited should be listed in an attached bibliography. Provide an outline of the proposed method 
and state who is doing which task – include details of data collection techniques, the tasks participants will be asked to do, the 
estimated time commitment involved, and how data will be analysed. If the project includes any procedure which is beyond 
already established and accepted techniques, please include a description of it. There should be enough detail provided to 
facilitate ethical review, but applicants are encouraged to keep it as succinct as possible. 
  

 
 
This project is about the auto-colourisation of black and white images. For any black and white 
image, there are many possible colourisations, and this makes it challenging to grade how well the 
auto-colourisation algorithm has performed. The quality of a colourisation is subjective and is 
determined by human perception. We wish to create a dataset of multiple colourisations for a given 
black and white image. We then require these to be ranked in order of "naturalness" by human 
participants. 
We require the participants to be numerous enough to ensure the statistical significance of the 
resulting ranking. Once we have a ranking based on human perception, we can then compare this 
(rank correlation) to the ranking determined by current and future objective (non-human) measures 
of colourisation.  
The participants will be shown the black and white image along with two different colourisations. 
They will be asked to give each a grade out of 5. One of the two is always a control image so that 
we can see the other image's score relative to it. No participant will be shown the same control 
image twice. 
As we wish to have a large cohort of respondents, each participant will only be required to make a 
relatively small number of scores (20 pairs ). It is expected that this will take three to five minutes 
per participant (10-12 seconds to score each pair). 
The participants will be sourced from the Amazon Mechanical Turk (AMT). The AMT has 
approximately 100,000 workers available at any given time.  
The workers come from over 190 countries, although the USA and India make up the largest 
cohorts. The Demographics (age, gender, ethnicity) seem to follow quite closely the demographics 
of internet users in the USA.  
For any task, the Requester (Seán Mullery in this case) will offer the Human Intelligence Task (HIT) 
on the AMT system. A worker can preview what is expected and what remuneration is offered. They 
then decide whether to accept the task or not. They are paid upon satisfactory completion of the 
task. If the Requester determines that the task has not been completed satisfactorily, they can reject 
the work. This means the worker will not get paid, and there will be a mark against their reputation. 
As tasks can be limited to workers with a specific reputation ranking, this is one method to ensure 
the quality of the results i.e. the worker will take care with the task in order to protect their reputation. 
In the case of our research, we plan to pay the respondent automatically if they complete the 20 
pairs in the survey, whether the task is carried out satisfactorily or not. While we will reject 
unsatisfactory results from our findings, we do not wish to tarnish a worker's reputation for three 
minutes of work. The quality of the results will be determined as follows. We will test how well the 
workers' results correlate with each other. If most correlate closely, then significant outliers with 
poor correlation can be removed.  
Payment will be set at $0.80 for completing the 20 pairs in the survey. This is approximately 
equivalent to €10 per hour, assuming just over five minutes to complete the survey. Workers can 
work quicker or slower than this pace. The amount paid is a set amount for the task, and it is up to 
the worker how quickly they wish to complete it. 
The greatest stress reported by AMT workers is finding well-paid tasks. So-called super-turkers are 
skilled at finding and capturing high paid tasks. There is no evidence that super-turkers produce 
better results. We will try to limit super-turkers to 30% of the respondents, offering more 
opportunities to others. Likewise, women tend to earn less on AMT than men. It is not entirely clear 
what factors lead to this, but we can remedy this by stipulating a 50:50 split of male/female. 
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2.2 INVESTIGATORS’ QUALIFICATIONS, EXPERIENCE AND SKILLS (Approx. 200 words) 
List the academic qualifications and outline the experience and skills relevant to this project that the PI, other researchers and 
any supporting staff have in carrying out the research and in dealing with any emergencies, unexpected outcomes, or 
contingencies that may arise. State specifically who will be carrying out the research procedures. 

 

 
 
Seán Mullery (who will carry out the research) is a lecturer (19 years) in Electronic Engineering at 
IT Sligo and is in year six of a part-time PhD in Computer Vision. Seán currently holds a Masters 
by research in Computer Vision.  
 
Prof Paul F Whelan (http://paulwhelan.eu) is a Full Professor in the Faculty of Engineering and 
Computing. He has worked in both industry and academia and has been member of academic staff 
in DCU for over 30 years. He has been involved in numerous large scale research projects (PRTLI, 
SFI, EU ..) as both PI and I. In particular, a focus of his work is in computer aided medical diagnosis 
and as such has run multi participant medical technology (computer-aided diagnosis) trials in a 
number of hospitals (coordinated in conjunction with my clinical partners in the Mater Hospital, 
Dublin). This work has led to the commercialization (royalty bearing license) of this technology. 
 
Seán has designed and will run the research tasks outlined in this document. This will be done 
under the supervision of Prof. Whelan (PhD supervisor). 
 
 

 
2.3 PARTICIPANT PROFILE 
 List and very briefly describe each participant group where applicable. For instance, participant group 1 will consist of…, 

participant group 2 will consist of… etc. Provide the number, age range and source of participants.  Please provide a justification 
of your proposed sample size. 

  

 
Respondents will be restricted to 50% male 50% female. The demographics of AMT tend to change 
throughout the day so every effort will be made to release the tasks at various times of the day to 
capture various nationalities and age demographics. No participant will be permitted to carry out 
more than one task. For our small survey this should lead to 640 participants though we may 
increase this if the 640 participants does not produce statistically significant results for sub-sections 
of the survey data. AMT, restricts access to over 18 years. 
 

 
2.4 PARTICIPANT RECRUITMENT 
 Please provide specific details as to how you will be recruiting participants. How will people be informed that you are doing this 

research? How will they be approached and asked if they are willing to participate? If you are mailing or phoning people, please 
explain how you have obtained their names and contact details. If a recruitment advertisement is to be used, please ensure you 
attach a copy to this application (Approx. 100 words). 

  

 
We will use the Amazon Mechanical Turk for recruitment 
 

 
2.5 IS IT LIKELY THAT ANY PARTICIPANTS COULD BE CONSIDERED POTENTIALLY VULNERABLE?  
 Are some or all participants vulnerable in any way? (e.g. by virtue of the group they belong to, people who have undergone 

traumatic or adverse emotional events, people with diminished cognitive ability, power relations between researchers and 
participants etc.)? 

 

YES or NO 

No 
 

 
If Yes, please state and describe what this vulnerability (or vulnerabilities) is and justify why this research is being done with such 
participants 

 
 
 

 
2.6 WILL THE IDENTITY OF THE PARTICIPANTS BE PROTECTED? 

YES or NO 

Yes 
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If NO, please explain why 

 
 
 

 

 
IF YOU ANSWERED YES TO 2.6, PLEASE ANSWER THE FOLLOWING QUESTION: 
 
2.7 HOW WILL THE ANONYMITY OF THE PARTICIPANTS BE RESPECTED? 
 Please bear in mind that where the sample size is very small, it may be impossible to guarantee anonymity/confidentiality of 

participant identity.  Participants involved in such projects need to be advised of this limitation in the Plain Language 
Statement/Information Sheet. If you intend to fully anonymize the data, please provide details.  

 
We are not gathering any personal information. We will see a unique AMT ID for each participant 
but that will only be used for sorting of data and will be discarded after that.  
We will not be retaining or publishing any information that could identify an individual. 
 

 
 
2.8 LEGAL LIMITATIONS TO DATA CONFIDENTIALITY  

Participants need to be made aware that confidentiality of information provided cannot always be guaranteed by researchers and 
can only be protected within the limitations of the law - i.e., it is possible for data to be subject to subpoena, freedom of information 
claim or mandated reporting by some professions. This information should be included in your Plain Language Statement and 
Informed Consent Form. Depending on the research proposal and academic discipline, you may need to state additional specific 
limitations. 
 
State how and where participants will be informed of these limitations.  

This will be stated in the Plain language statement on the landing page of the survey. 
 
 

 
 
2.9 CHILD PARTICIPANTS (anyone under 18 years old) 
 If your participants include children, you must confirm that you are in compliance with the research specific guidelines as detailed 

in Keeping Children Safe - Policies and Procedures supporting Child Protection at DCU.  
 

Please indicate your compliance with the following guidelines: Mark here 
We confirm that we have read and agree to act in accordance with the DCU Child Protection 
policy and procedures 

NA 

We confirm that we have put in place safeguards for the children participating in the 
research 

NA 

We confirm that we have supports in place for children who may disclose current or 
historical abuse (whether or not this is the focus of the research) 

NA 

 
 
2.10 PLEASE EXPLAIN WHEN, HOW, WHERE, AND TO WHOM RESULTS WILL BE DISSEMINATED, INCLUDING 

WHETHER PARTICIPANTS WILL BE PROVIDED WITH ANY INFORMATION AS TO THE FINDINGS OR 

OUTCOMES OF THE PROJECT? 
  

 
We plan to publish the results in a computer vision journal. We will also make them available on 
Github and Arxiv as is the norm for work in computer vision. No personal information will be either 
gathered or published. 
 

 
 
2.11 ARE OTHER APPROVALS REQUIRED TO GAIN ACCESS TO ANOTHER LOCATION, ORGANISATION, 

SCHOOL ETC.? 

YES or NO 

No 
 

 
If YES, please specify from whom and attach a copy of the approval documentation.  If this is not yet available, please explain 
when this will be obtained.  
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3. RISK AND RISK MANAGEMENT 
 
3.1 EXPLAIN AND JUSTIFY THE STATED LEVEL OF RISK TO PARTICIPANTS  

You must provide a justification for the stated level of risk and its corresponding level of review (Full Committee, Expedited, 
Notification), as indicated on the cover page of your application. Note that the level of risk may be influenced by the vulnerability 
of the research group, the methods employed and the nature of the research itself. For further information on risk levels, please 
refer to the Levels of Review information on the Research Support Services website. 
 

 
As we are only asking for the participants opinion on a colour image there is no identifiable risk. The 
participants are all people who have signed up to Amazon Mechanical Turk to do this type of work 
so they are likely very used to this sort of work. 
 
 
 
 

 
 
3.2 POTENTIAL RISKS TO PARTICIPANTS AND RISK MANAGEMENT PROCEDURES 

Identify, as far as possible, all potential risks to participants (physical, psychological, social, legal, economic, etc.), associated 
with the proposed research. Will your research involve deception, investigation of participants involved in illegal activities, 
performance of any acts which might diminish the self-esteem of participants or cause them to experience embarrassment, regret 
or depression, administration of any substance or agent, collection of body tissues or fluid samples, use of non-treatment of 
placebo control conditions, collection and/or testing of DNA samples, administration of ionising radiation? Please explain what 
risk management procedures will be put in place to minimise these risks. 

  

 
No identified risks 
 

 
 
3.3 ARE THERE LIKELY TO BE ANY BENEFITS (DIRECT OR INDIRECT) TO PARTICIPANTS FROM THIS 

RESEARCH? 

YES or NO 

Yes 
 

 
If YES, provide details 

 
Payment 
 

 
 
3.4 ARE THERE ANY SPECIFIC RISKS TO RESEARCHERS? 

Examples include use of dangerous materials, asking certain types of questions, research being undertaken in certain locations, 
researchers working alone in isolated areas, etc. 
 

YES or NO 

No 
 

 
 If YES, please describe and explain what risk management procedures will be put in place to minimise these risks  

 
 
 

 

 
3.5 DEALING WITH ADVERSE / UNEXPECTED OUTCOMES 

Please describe what measures/protocols you have put in place in the event that there are any unexpected outcomes or adverse 
effects to participants arising from involvement in the project.  
 

 
No adverse or unexpected outcomes identified. 
 

 
3.6 SUPPORT FOR PARTICIPANTS 

Depending on risks to participants you may need to consider having additional support for participants during/after the study.  
Consider whether your project would require additional support, e.g., external counselling available to participants.  Please advise 
what support will be available. 
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No risks identified. 
 

 
 
3.7 HOW WILL THE CONDUCT OF THE PROJECT BE MONITORED? 

Please explain how the principal investigator will monitor the conduct of the project (especially where several people are involved 
in recruiting or interviewing, administering procedures, etc.) to ensure that it conforms to the procedures set out in this application.  
In the case of student projects please give details of how the supervisor(s) will monitor the conduct of the project. 
 

 
It will be conducted through the Amazon Mechanical Turk. The surveys will be released slowly so as 
to monitor that the first few are running as anticipated when the first results come in.  
 

 

 
3.8 DO YOU PROPOSE TO OFFER PAYMENTS OR INCENTIVES TO PARTICIPANTS? 

YES or NO 

Yes 
 

 
If YES, please provide further details 

 
Payment will be set at $0.80 for completing the 20 pairs in the survey. This is approximately 
equivalent to €10 per hour, assuming just over five minutes to complete the survey. Workers can 
work quicker or slower than this pace. The amount paid is a set amount for the task, and it is up to 
the worker how quickly they wish to complete it. 
 

 

 
3.9 DO ANY OF THE RESEARCHERS ON THIS PROJECT HAVE A PERSONAL, PHILOSOPHICAL, FINANCIAL, 

POLITICAL, IDEOLOGICAL, OR COMMERCIAL INTEREST IN ITS OUTCOME THAT MIGHT INFLUENCE THE 
INTEGRITY OF THE RESEARCH, OR BIAS THE CONDUCT OR REPORTING OF THE RESEARCH, OR 
UNDULY DELAY OR OTHERWISE AFFECT THEIR PUBLICATION? 

 

YES or NO 

No 
 

 
If YES, please specify how this conflict of interest will be addressed  
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4. PERSONAL DATA  

 
Definition of Personal Data 
Personal data is any information about a living person, where that person is either identified or could be 
identified, from the data itself or when it is combined with other data. Typical examples of personal data in a 
research context are: 

a) paper based records e.g. consent forms, research participant files, patient records, interview notes etc. 

b) electronic records e.g. database of participant details, online survey returns, photos, audio & visual 
recordings, IP addresses, diagnostic / clinical imaging etc.  

c) other e.g. genetic data, biometric data, clinical or medical samples etc.   

Note: If personal data is to be obtained and / or processed in the course of the proposed research then there 
are certain legal obligations and principles to be followed. These are set out in the 2016 General Data Protection 
Regulation (GDPR) and associated Irish Law.  

Any data that is fully and completely anonymous is not considered to be ‘personal data’. However, any data that 
is merely pseudo-anonymised is deemed to be ‘personal data’.  

Further information on data protection issues is available from the University’s Data Protection Unit 
(DPU). You should also consider consulting with your Unit’s GDPR Advocate for help and advice on 
filling out this section of the form. 

 

(A) Your knowledge of Data Protection  

Have you taken and completed the online data protection training course (‘Data 
Protection Course’) that that is available to all staff and students through the DCU Loop 
System?  
 

YES or NO 
     
Ye
s 

If you answered ‘No’ to the previous question then the DPU strongly recommends that all applicants complete 
the course on Loop before completing section # 4 of the REC Application Form. 

If you experience difficulties in accessing the Loop course at the link above, please contact the Teaching 
Enhancement Unit for assistance.  

 

(B) Initial Assessment of whether any of the data to be used in the proposed research is ‘Personal 
Data’ (see definition above) 
  

1 Will the proposed research include living human subjects? 

Rationale – personal data applies only to living individuals. 

YES or NO Yes  

2 Will the proposed research use any data that can be linked to an identified, or 
an identifiable, person?  

Rationale – to be personal data it must be possible to associate it with an 
identified, or an identifiable, living person. 

YES or NO No 

3 Will the proposed research use any data identifiers that can be linked to a living  
person? Examples are a participant’s name, code or ID number, their address, 
their IP address etc. 

Rationale: fully anonymised data is not deemed to be ‘personal data’ but data 
that has been deemed to be merely pseudo-anonymised is deemed to be 
‘personal data’. 

YES or NO  Yes  

If you answered ‘Yes’ to any of the questions 1 to 3 in sub-section (B), then continue to sub-section (C) and 
answer questions 1-8. If you answered ‘No’ to all of the questions 1 to 3 in sub-section (B), then proceed directly 
to section # 5 of this Application Form. 

 

(C) Assessing the degree of risk inherent in the personal data 
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1 
 
 
 

Will the proposed research involve the use of personal data on individuals 
that reveals any of the following attributes or characteristics about them?  

(State ‘Yes’ or ‘No’ as appropriate to all of the following) 

 

 

 

 

 Racial or Ethnic Origin YES or NO No 

 Political Opinions YES or NO No  

 Religious or Philosophical Beliefs YES or NO No  

 Trade Union Membership YES or NO No  

 Genetic Data YES or NO No  

 Biometric Data YES or NO No  

 Data Concerning Health YES or NO No  

 Data concerning a Person's Sex Life or Sexual Orientation YES or NO No  

2 Will the proposed research involve the use of personal data relating to children 
or vulnerable individuals?  

A child, for data protection purposes, is defined as an individual below 18 years 
of age. Where the processing relates to ‘electronic marketing’ the age limit is 
reduced to 16 years. A vulnerable individual may be anyone who is unable to 
consent to, or to oppose, the processing of his or her data for any reason, 
including disability. 

 

YES or NO No  

3 Will the proposed research involve the use of data relating to an individual’s 
criminal convictions and / or offences? 

 

YES or NO No  

4 Will the proposed research involve the large-scale processing of personal 
data?    

This may include: a wide range or large volume of personal data; processing 
which takes place over a large geographical area; processing where a large 
number of people are affected (e.g. over 100 individuals); or where the 
processing is extensive or it has potential long-lasting effects on individuals.  

YES or NO No  

5 Will the proposed research involve any form of automated processing of 
personal data?   

In particular, to analyse or predict aspects concerning that person's 
performance at work, economic situation, health, personal preferences, 
interests, reliability, behaviour, location or movements. 

YES or NO No  

6 Will the proposed research involve the sharing or transferring of any personal 
data to a 3rd party outside of DCU?  

For example, other research partners, providers of translation or transcription 
services, etc. 

For clarity, this question is not intended to refer to any standard software 
services already provided by DCU, for example the university’s email system 
or its cloud-based storage provider (Google Drive).    

YES or NO No  
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7 Will the proposed research require the sharing or processing of personal 
data outside the EU or the EEA? (e.g. the US, the UK, Canada, Australia, 
China etc.) 

The EEA refers to the ‘European Economic Area’ (i.e. the EU plus Norway, 
Liechtenstein and Iceland). 

 

YES or NO No  

8 Will the proposed research involve the matching or combining of separate 
datasets of information on individuals in a way that would exceed their 
reasonable expectations of privacy?  

This is especially important where two or more previously anonymous datasets 
are combined in such a way so as to allow for the identification of individuals. 
An example would be combining mobile phone location data along with any 
other dataset to identify individuals. 

YES or NO No  

Important Point: Next Step 

If you answered ‘Yes’ to one or more of the questions 1 to 8 in sub-section (C) you must contact the Data 
Protection Unit (DPU) prior to submitting this application form to the REC. The DPU will assess whether 
there are any further data protection issues to be addressed or additional procedures to be followed. 

 
 

5. DATA / SAMPLE STORAGE, SECURITY AND DISPOSAL 
For the purpose of this section the term ‘Data’ includes personal data that is in a raw or a processed state (e.g. interview audiotape, 
transcript or analysis, etc.). The term ‘Samples’ include body fluids and/or tissue samples. 

 
5.1 HOW AND WHERE WILL THE DATA / SAMPLES BE STORED?  
 DCU recommends that any data stored electronically offsite should utilise the DCU Google Drive. Alternative offsite storage will 

need to be justified and must meet data protection and GDPR compliance requirements.  

We intend to publish the opinion scores and make the scores for images publicly available at 
https://github.com/seanmullery/ColourisationOpinionScores.  

No personal data will be collected or published. 

 
 

 
5.2 WHO WILL HAVE ACCESS TO DATA / SAMPLES? 

If people other than the main researchers have access, please name who they are and explain for what purpose. 

We intend to make the samples publicly available on 
https://github.com/seanmullery/ColourisationOpinionScores. 
This is so that any other researcher has access to them and can build on them. 
 
Neither the researchers nor the public will have access to any personal data. 
 
 
 

 
 

5.3 HOW LONG IS THE DATA TO BE HELD OR RETAINED? 
Note that, with very few exceptions, Personal Data may not be retained indefinitely. It is up to the research team to establish an 
upper retention limit for each category of Personal Data used within the project and to ensure it is applied at the expiry of that 
limit.   

We intend to make the samples publicly available on 
https://github.com/seanmullery/ColourisationOpinionScores and to leave them their indefinitely.  
 
No personal data will be collected, published, or retained. 

 
5.4 WILL THE PERSONAL DATA BE USED AT A LATER DATE FOR THE PURPOSE OF PUBLICATION OF THE 

RESULTS OF THE RESEARCH?  
 

YES or NO 

No 
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Where it is intended that the personal data used in the project will be used at a later date for the purposes of publication please 
explain how consent to do so will be obtained. 

 
No personal data 

 
5.5 IF THE DATA/SAMPLES ARE TO BE DISPOSED OF AT THE END OF THE PROJECT PLEASE EXPLAIN 

HOW, WHEN AND BY WHOM THIS WILL BE DONE? 
 

Note that simply deleting files is not sufficiently secure. The additional steps to be taken to maintain data security should be 
given. Personal data must be disposed of in a safe and secure manner at the end of its retention period. If the data is stored in 
(a) a paper-based format, then shredding or disposal via a secure bin is recommended; or (b) in an electronic-based format, then 
deletion of the record or the full anonymization of the data is recommended. If data/samples are not being disposed of, please 
justify that intention. 
 

How will the data/samples be 
disposed?  

Please describe the means by 
which the personal data will be 
deleted or destroyed. This 
includes personal data held in 
hard copy and digital formats. 

No personal data is retained but non-personal data will be 
retained indefinitely and available publicly on 
https://github.com/seanmullery/ColourisationOpinionScores for 
use by the research community to use or build upon. 

When will the data/samples be 
disposed?  

Please indicate the intended 
retention period of the personal 
data, and reasons for this 
retention period. Please note 
that retention periods must be 
GDPR compliant and must be 
consistent with the DCU 
Retention Policy. 

No personal data is retained but non-personal data will be 
retained indefinitely and available publicly on 
https://github.com/seanmullery/ColourisationOpinionScores for 
use by the research community to use or build upon. 

By whom will the 
data/samples be disposed?  

Please indicate the designated 
team member(s) with 
responsibility for deletion and/or 
destruction of the research 
project’s personal data. 

No personal data is retained but non-personal data will be 
retained indefinitely and available publicly on 
https://github.com/seanmullery/ColourisationOpinionScores for 
use by the research community to use or build upon. 

 
 

6. FUNDING OF THE RESEARCH 

 

6.1 HOW IS THIS WORK BEING FUNDED? 

 
Self-funded by the Student. Seán Mullery. 
 

 

 
6.2 PROJECT GRANT NUMBER (If relevant and/or known – otherwise mark as N/A) 

NA 
 

 
 
6.3 DOES THE PROJECT REQUIRE APPROVAL BEFORE CONSIDERATION FOR FUNDING BY A GRANTING 

BODY? 

YES or NO 

No 
 

 
6.4 HOW WILL PARTICIPANTS BE INFORMED OF THE SOURCE OF THE FUNDING? (E.g. included in the Plain 

Language Statement) 

 
NA – self funded. 
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6.5 DO THE FUNDERS OF THIS PROJECT HAVE A PERSONAL, FINANCIAL, POLITICAL, IDEOLOGICAL, OR 

COMMERCIAL INTEREST IN ITS OUTCOME THAT MIGHT COMPROMISE THE INDEPENDENCE AND 
INTEGRITY OF THE RESEARCH, OR BIAS THE CONDUCT OR REPORTING OF THE RESEARCH, OR 
UNDULY DELAY OR OTHERWISE AFFECT THEIR PUBLICATION?  

YES or NO 

No 
 

 
If YES, please specify how this conflict of interest will be addressed 

 
NA 
 
 

 
 

7. PLAIN LANGUAGE STATEMENT (Attach to this document. Approx. 400 words) 

 
A Plain Language Statement (PLS) should be used in all cases. This is written information in plain language that you will be providing to 
participants, outlining the nature of their involvement in the project and inviting their participation. The PLS should specifically describe what 
will be expected of participants, the risks and inconveniences for them, and other information relevant to their involvement. Please note that 
the language used must reflect the participant age group and corresponding comprehension level– if your participants have different 
comprehension levels (e.g. both adults and children) then separate forms should be prepared for each group. The PLS can be embedded 
in an email to which an online survey is attached, or handed/sent to individuals in advance of their consent being sought. See the link to 
sample templates on the Ethics Approval section of the Research Support Services website. 

 
PLEASE CONFIRM WHETHER THE FOLLOWING ISSUES HAVE BEEN ADDRESSED IN YOUR PLAIN LANGUAGE 
STATEMENT/ INFORMATION SHEET FOR PARTICIPANTS: 

 

 YES or NO 

Introductory Statement (PI and researcher names, school, title of the research) Yes 

What is this research about? Yes 

Why is this research being conducted? Yes 

What will the participant be expected to do/have to do if they decide to participate in the 
research study? 

Yes 

How will their privacy be protected? Yes 

How will the data be used and subsequently disposed of? Yes 

What are the legal limitations to data confidentiality? Yes 

Are there any benefits of taking part in the research study? Yes 

Are there any risks of taking part in the research study? Yes 

Confirmation that participants can change their mind at any stage and withdraw from the study Yes 

How will participants find out what happens with the project? Yes 

Contact details for further information (including REC contact details) Yes 

Details relating to GDPR Compliance where Personal Data is being sought Yes 

 
If any of these issues are marked NO, please justify their exclusion: 

 
 
 
 

  
 

 
8. INFORMED CONSENT FORM (Attach to this document. Approx. 300 words) 

 
In most cases where interviews or focus groups are taking place, an Informed Consent Form is required. This is an important document 
requiring participants to indicate their consent to participate in the study and give their signature. In cases where an anonymous 
questionnaire is being used, it is not enough to include a tick box in the questionnaire. Participants should indicate their consent to each 
aspect of the research in a staged manner by checking mandatory checkboxes. 
See link to sample templates on the Ethics Approval section of the Research Support Services website.  

 
NB – IF AN INFORMED CONSENT FORM IS NOT BEING USED, THE REASON FOR THIS MUST BE JUSTIFIED HERE.  
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9. ASSENT FORM & PLAIN LANGUAGE STATEMENT FOR CHILDREN (Attach to this document.) 

 
A child specific Plain Language Statement (PLS) should be used in research where children will be involved. The PLS must be written in a 
way that is understandable for children within your targeted age group. It also must state, in plain language, the nature of their involvement 
in the project and inviting their participation. The PLS should specifically describe what will be expected of participants, the risks and 
inconveniences for them, and other information relevant to their involvement. In addition, child participants should also be provided with an 
Assent Form. Parents/guardians will be provided with the Informed Consent Form, but each child should provide assent before taking part 
in the research. The Assent Form needs to be understandable to the age-group you are targeting. See link to sample templates on the 
Ethics Approval Section of the Research Support Services website.   
 

 
NB – IF AN ASSENT FORM IS NOT BEING USED, THE REASON FOR THIS MUST BE JUSTIFIED HERE.  

 
 
 
Children will not be able to take this study. 
 

 
 
 

 
10. SUBMISSION CHECKLIST (Attach to this document) 

 
Please confirm that all supplementary information is included in your application (in electronic copy). If 
questionnaire or interview questions are submitted in draft form, please indicate this by putting (draft) after YES. 
A copy of the final documentation must be submitted for final approval when available. 

 

My application has been collated as one electronic file which 
includes the following documentation: 

INCLUDED 
(mark as YES) 

NOT APPLICABLE 
(mark as N/A) 

Bibliography  NA 

Recruitment advertisement  NA 

Plain language statement/Information Statement Yes  

Informed Consent form Yes  

Informed Assent form   NA 

Evidence of external approvals related to the research  NA 

Questionnaire / Survey Yes  

Interview / Focus Group Questions  NA 

Debriefing material  NA 

Other (e.g. BSC approval review letter, Data Protection Impact 
Assessment) 

 NA 

 
  

207



Research and Innovation Support 

Last updated June 2021  Page 15 

DUBLIN CITY UNIVERSITY 
Sample Template – Plain Language Statement (approx. 400 words) 

 
A Plain Language Statement (PLS) should use language that reflects the participant age group and 
corresponding comprehension level.  It should contain the following information. The headings are there for 
guidance and do not need to be included in your form. 

 
Introduction to the Research Study 
Identify the Research Study Title, the university department involved, the principal investigator (including his/her 
DCU contact details) and any other investigators 

Privacy Notice   
An appropriate Privacy Notice is the means by which data subjects are informed about the use of their data. If 
personal data is being collected and processed, please refer to the University’s Data Protection Unit website for 
advice and include the following information in the PLS: 
 

• The identity of the Data Controller (or in some cases the Joint Data Controllers) plus the details of any 
Data Processor (where applicable) should be clearly stated on the PLS. The Data Controller will nearly 
always be DCU (where the researcher is a DCU researcher). The PLS should also state the name of 
the research project and the identity of the particular School / Unit of DCU from which it originates. A 
Data Processor may hold or process personal data but does not exercise responsibility for or control 
over the personal data, for example, a transcription service, or a software or cloud hosting company.  

• The identity of the DCU Data Protection Officer – Mr. Martin Ward (data.protection@dcu.ie  Ph.: 
7005118 / 7008257) 

• The purpose of the data processing i.e. the reasons why the data is being requested and the purpose 
to which it will be applied. 

• The reason(s) for which the data will be processed or held. 

• The categories or types of personal data to be processed. 

• The details of any third parties (i.e. data processors) with whom the data will be shared or transferred, 
and the reasons for sharing. 

• The details of any external (i.e. non-DCU) parties with whom the data will be shared or transferred, and 
the reasons for sharing. 

• Where relevant, details of any intention to transfer the data to other countries, especially if outside of 
the EEA (European Economic Area), and the legal basis invoked for such transfers. 

• The data’s retention period or the criteria used to determine retention periods. 

• The right of the individual to lodge a complaint with the Irish Data Protection Commission. 

• Information on the rights of the data subject - Individuals’ have the right to access their own personal 
data and PLS should inform them how to do this and who to contact either within the research team, or 
alternatively by contacting the Data Protection Unit. 

• Information on their rights to withdraw consent (if invoked) and who to contact to withdraw consent.  

• If it is intended that the data be used for future studies, you must specify the general parameters of the 
future further research uses to which the participant’s personal data may be used. 

• In cases where personal data will later be anonymized (e.g. for statistical or aggregated data), it is best 
practice to describe this, so that the participant is fully informed. 

 

Statement as to whether or not the research data is to be destroyed after a minimum period 
Clearly state (if applicable) when data will be destroyed or fully anonymized after the end of the research project. 
 
Details of what participant involvement in the Research Study will require 
E.g., involvement in interviews; completion of questionnaire; audio/video-taping of events, and the estimated 
time commitment for the activities 

 

Potential risks to participants from involvement in the Research Study (if greater than that encountered 
in everyday life) 
 

Any benefits (direct or indirect) to participants from involvement in the Research Study 
 

Advice as to arrangements to be made to protect confidentiality of data, including that confidentiality 
of information provided is subject to legal limitations  
Participants need to be made aware that confidentiality of information provided cannot always be guaranteed 
by researchers – please include the following statement: 
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“Confidentiality of information can only be protected within the limitations of the law - i.e., it is possible for data 
to be subject to subpoena, freedom of information claim or mandated reporting by some professions”.  
Depending on the research proposal and academic discipline, you may need to state additional specific 
limitations. 
 

Statement that involvement in the Research Study is voluntary 
State that participants may withdraw from the Research Study at any point. You should explain to the participant 
that their participation in the project will end, at the point they withdraw, and refer back to the data 
protection/privacy notice as to what will happen regarding their data. For example, withdrawing consent may 
mean that no future data collection will take place but previously collected data will still be processed etc. 
 
 

Any other relevant information – e.g. 

• if the sample size is small, advice to participants that this may have implications for privacy / anonymity.  

• if participants are in a dependent relationship with any of the researchers, a clear statement that their 
involvement / non-involvement in the project will not affect their ongoing assessment / grades / 
management. 

 

A Plain Language Statement must end with the following statement: 
 
If participants have concerns about this study and wish to contact an independent person, 
please contact: 
 
The Secretary, Dublin City University Research Ethics Committee, c/o Research and Innovation Support, Dublin City University, 
Dublin 9.  Tel 01-7008000, e-mail rec@dcu.ie 
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DUBLIN CITY UNIVERSITY 
 

Sample Template – Informed Consent Form (approx. 300 words) 
 
 

An Informed Consent Form should generally contain the information detailed below. It should be written in the 
first person, e.g. “I will be asked to attend…I may withdraw from the research study at any point…..I am aware 
that the data…etc.” The headings are there for guidance and do not need to be included in your form. 
 

Research Study Title 
Also identify the school / centre involved, the principal investigator and any other investigators.  

Clarification of the purpose of the research 
If personal data is being collected and processed, please ensure that the participants acknowledge the identity 
of the data controller and the purpose(s) of the processing for which the personal data are intended. 
 
Confirmation of particular requirements as highlighted in the Plain Language Statement 
Requirements may include involvement in interviews, completion of questionnaire, audio / video-taping of 
events etc..  Getting the participant to acknowledge requirements is preferable, e.g.        

 
Participant – please complete the following (Circle Yes or No for each question) 
I have read the Plain Language Statement (or had it read to me)   Yes/No 
I understand the information provided      Yes/No 
I understand the information provided in relation to data protection    Yes/No 
I have had an opportunity to ask questions and discuss this study    Yes/No 
I have received satisfactory answers to all my questions     Yes/No 
I am aware that my interview will be audiotaped     Yes/No 

 
Confirmation that involvement in the Research Study is voluntary 
E.g. I may withdraw from the Research Study at any point.   
 

Confirmation of arrangements to be made to protect confidentiality of data, including that confidentiality 
of information provided is subject to legal limitations  
 
Confirmation of arrangements regarding the retention / disposal of data  
 

Confirmations relating to any other relevant information as indicated in the PLS 
E.g. I consent to the use of my data for future studies within the following parameters (provide detail) 
 
Signature: 

I have read and understood the information in this form.  My questions and concerns have been answered 
by the researchers, and I have a copy of this consent form.  Therefore, I consent to take part in this research 
project 

 Participants Signature:         
  
 Name in Block Capitals:         
  
 Witness:           
 
 Date:             
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Anonymous Online Consent Form Template  
 

In cases where an anonymous questionnaire is being used, researchers are required to provide a separate tick 
box for each statement that the participant is being asked to consent to / acknowledge. Each statement must 
be included as an essential field in order to ensure that full informed consent has been obtained (see example 
below). 
 

An Informed Consent Form should generally contain the information detailed below. It should be written in the 
first person, e.g. “I will be asked to attend…I may withdraw from the research study at any point…..I am aware 
that the data…etc.” The headings are there for guidance and do not need to be included in your form. 

 
 

Research Study Title 
Also identify the school / centre involved, the principal investigator and any other investigators.  

Clarification of the purpose(s) of the research 
 
Confirmation of particular requirements as highlighted in the Plain Language Statement 
Getting the participant to acknowledge the requirements is mandatory. Participants should not be able to access 
the survey until they have agreed to all items and indicated their consent. e.g. 
 
Example: 

 
Participant – please complete the following (by clicking Yes/No for each question) 
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Survey Layout 
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