
BeTwin: Enhancing VR Experiences
with BLE Beacon-based Digital Twins

Andrei George Rosu∗, Anderson Augusto Simiscuka†, Mohammed Amine Togou‡ and Gabriel-Miro Muntean§
School of Electronic Engineering, Dublin City University, Dublin

E-mails: ∗andrei.rosu2@mail.dcu.ie, †anderson.simiscuka2@mail.dcu.ie, ‡mohammedamine.togou@dcu.ie,
§gabriel.muntean@dcu.ie

Abstract—Bluetooth Low Energy (BLE) is one of the tech-
nologies that can be used for short-range communications. BLE
beacons are small wireless devices that can store URLs and
real-world data, including GPS locations and identifiers. This
article proposes BeTwin, an efficient solution that integrates BLE
beacons with a digital twin environment in order to enhance
and customise a virtual 3D platform, bridging the real and
virtual worlds. The beacons are used to bring information from
real objects into the virtual platform. We extend the Eddystone
messaging protocol and investigate the impact of beacon distance,
energy levels, and number of beacons on the system performance.
We also describe a testbed consisting of a virtual environment,
a beacon reader along with beacons, and assess its performance
in terms of communications latency, Received Signal Strength
Indicator (RSSI), and number of beacons.

Index Terms—Digital Twins, Beacons, BLE, Virtual Reality

I. INTRODUCTION

Bluetooth Low Energy (BLE) beacons have been used in
a wide range of contexts over the past years, from tracking
devices within a building to sending push notifications con-
taining promotions to customer phones in supermarkets. BLE
beacons use the Eddystone protocol that allows the beacon
to continuously transmit short messages. Nearby Bluetooth-
enabled devices can retrieve these messages and use the info
for different purposes [1]. BLE beacons are also able to
store important data about real-world objects such as unique
identifiers and location.

Digital Twinning (DT) [2], [3] refers to having an interactive
representation of physical objects, systems or processes in
a virtual world. The twins constantly share and synchronise
information, including object properties and status data [4],
[5]. Creating DT environments, however, can be a challenging
task as it involves 3D immersive scenarios, which can be very
complex, with multiple objects and systems.

Authors in [6] acknowledge that high-quality digitalisation
of virtual objects requires a comprehensive mechanism for
real-time rendering. The work also points that there is a need
for novel approaches in relation to data exchanges between
physical twin systems with the digital twin counterparts,
requiring synchronisation of device states with low commu-
nication traffic and delays. Li et al. [7] discussed the lack of
techniques for automatic resource representation during device
registration, with physical details of digital objects being added
to DT environments manually.

DT platforms can take advantage of BLE beacons for
addressing these issues, thanks to their ability of storing and
communicating data related to physical objects into digital

Fig. 1. BeTwin’s digital twin environment with added objects.

systems. When users acquire a new device, system or object
compatible with the platform, beacons can easily update the
DT environment with the new virtual counterparts synchro-
nised with the physical objects details. The beacons also
provide security measures in relation to traceability of objects
as they support unique identifiers and geolocation features.

This paper proposes BeTwin, an innovative mechanism
which employs beacons to easily add and remove objects in
a real-virtual world twinned context. The VR environment is
shown in Fig. 1. The beacons can also be used to customise



existing virtual objects, such as modifying rich media content
(e.g., images, videos, and audio) being displayed. The BeTwin
mechanism is instantiated and tested using BLE beacons in a
real-life DT platform. The testbed considered in this paper
contains multiple beacons, a Raspberry Pi as the beacons’
controller, and a VR server hosting the DT environment.

Thorough testing investigates the time and latency for
generation of virtual objects with different number of beacons
indicating that BeTwin supports seamless and near real-time
experience.

The rest of the paper is organised as follows. Section II
describes the technology-enablers of BeTwin, while Section
III discusses its design. Section IV describes the testbed im-
plementation. Results are presented in Section V. Conclusions
and directions for future work end this paper (Section VI).

II. BACKGROUND AND RELATED WORK

This section describes the protocols, approaches and tools
employed in the design of the proposed BeTwin solution.

Bluetooth is a wireless communication protocol that uses
the 2.4 GHz frequency to transmit data at a rate of up
to 2 Mbps with its newer version. The effective range is
between 10 and 100 metres, depending on the transmitted
power [8]. Bluetooth employs the Attribute Protocol (ATT)
and Generic Attribute Profile (GATT) to handle connections
[9]. In addition, it uses the Generic Access profile (GAP) to
advertise data without a connection and to make a device
discoverable by other Bluetooth devices [10]. Bluetooth Low
Energy (BLE) is a version of Bluetooth that was designed for
low power consumption. As a result, its data rates are also
low (i.e., maximum advertised data rate for BLE is 1 Mbps
while maximum advertised data rate for classic Bluetooth is
2 Mbps). BLE is in a constant state of sleep, waking up only
when a connection is established [11]. It is mainly used in
communications where there is not a significant amount of data
to be exchanged between devices. Another important feature
of BLE devices is that they can survive for up to five years on
the same battery, without being recharged. This makes BLE
suitable for beacons and sensors [12].

BLE beacons are small devices that are used to continuously
transmit a radio signal containing information such as beacon’s
UID and other service data. These devices have typically been
used in positioning systems or proximity marketing (sending
promotions to customers’ phones in supermarkets). They can
live on the same battery for a very long time, but when
the battery dies, the beacon must be replaced as batteries
cannot be changed or charged. Different BLE beacons have
different expected battery life [13], [14]. They are naturally in
a sleep state, and they wake up every time there is a need to
broadcast information. The advertising interval can be changed
by the user, affecting the beacon’s battery life. The shorter the
advertising interval, the faster other devices will retrieve the
advertised data. The default TX power set on the beacon also
affects battery life [15].

Eddystone is a Google protocol for beacons. It broadcasts
service messages with a service ID and the corresponding

service data [16]. There are four types of Eddystone frames
defined: Eddystone-UID, Eddystone-URL, Eddystone-TLM
and Eddystone-EID. The first is used to advertise a user-set 16-
byte ID while the second is used to advertise a URL set by the
user. Eddystone-TLM is used to advertise telemetry data, such
as beacon battery voltage and beacon temperature whereas
Eddystone-EID is used to advertise an encrypted ephemeral
ID that changes at a rate set by the user [17]. All frames
share the same service ID. They can all be used on one
single beacon, but the service data for the next type is sent
every other advertising cycle. Assume we want to transmit
Eddystone-UID, Eddystone-URL, and Eddystone-TLM. In the
first advertising cycle, Eddystone-UID will be sent. Then, the
Eddystone-URL frame will be sent on the next advertising
cycle. Finally, the Eddystone-TLM frame will be transmitted
in the following advertising cycle. Note that even though
Eddystone is not currently supported by Google, it is still
suitable for the proposed prototype of the platform.

Unity is an IDE mainly used for creating 3D applications
or games for different platforms. Unity has also been used
for the creation of a number of digital twin platforms [18],
[19]. A Unity application is composed of scenes, representing
a level, a map or a menu. A scene contains several 2D and 3D
objects, or empty objects that have scripts attached to them.
These objects can be added, removed, or managed using the
Unity Editor. Most of the interaction in the application is done
using scripting, preferably in C. Scripts must be attached to
an object to work and can be used to manipulate any other
object from the scene [20].

Based on the features of BLE, Eddystone and Unity, it
is possible to design and implement a digital twin platform
and test the mechanism proposed in this paper. BeTwin aims
to simplify the manual process of adding, removing and
customising objects in the virtual environment with the use
of beacons representing real devices.

III. BETWIN SOLUTION DESIGN

The architecture of BeTwin, illustrated in Fig. 2, consists of
these main components: physical objects (e.g., smart devices,
appliances, furniture, machinery) and their individual BLE
beacons, a beacon reader, a 3D environment with the virtual
objects and a visualisation device (e.g., VR headset, computer
screen).

A. Beacon-based Physical Devices

As mentioned in Section II, Eddystone is a suitable messag-
ing structure for BLE beacons. The Eddystone-URL protocol
advertises a message set by the real-world object related to
that beacon. Bluetooth devices can read this message and
take action. BeTwin addresses challenges imposed by the
beacon technology, making it feasible to use them in the
platform: First, a messaging solution is proposed to work with
Eddystone-URL 18 characters limit. Second, as VR headsets
along with some computers are not equipped with Bluetooth
adapters, or they are placed in areas that may be too distant
from the beacons, a beacon reader solution is introduced.



Fig. 2. BeTwin solution architecture.

Finally, communications between BLE beacons and the reader
along with communications between the reader and the VR
headset or VR server (i.e., the device that renders the digital
twin environment) are performed in a timely manner.

B. Virtual Environment

In BeTwin, beacons are able to bring and remove physical
objects into and from the virtual world and perform media-
related functions. They can also give access to and install
complex systems, create Internet of Things (IoT) virtual
representations, and add or remove objects in a smart city
simulation environment.

Once a user places a beacon close to the beacon reader, if
the beacon contains the name of the object, the VR application
adds that object and allows the user to use it. Rich media
scenarios, such as virtual representations of smart homes are
customised with songs or videos added by the beacons, played
on a virtual screen in the VR world (as illustrated in Fig. 1).
The virtual world is created in a 3D rendering engine, such as
Unity and visualised with a VR headset (e.g., Oculus Rift) or
a computer screen.

IV. TESTBED IMPLEMENTATION

BeTwin has been implemented on a prototype in order to
facilitate testing and evaluation of the solution. A Raspberry
Pi is used to retrieve messages from beacons, manufactured
by HID Beeks, with the TinyB library [21], as well as the
Bluetooth GATT and GAP profiles. The Raspberry Pi is used
as the beacon reader due to its portability, price, and Bluetooth
signal strength. Smartphones can also be used as the beacon
reader; however, the Raspberry Pi is more flexible in terms of
development and Bluetooth profiling.

The TinyB library accesses the DBus BlueZ API from Linux
and makes it possible to control Bluetooth devices and adapters
using a Java program. Once the Raspberry Pi retrieves beacon
messages, it forwards them to the server with the digital twin
environment. This is done wirelessly via Java TCP sockets
in a local network. The VR application will then use these
messages to perform actions such as adding, removing or
sending different parameters to virtual objects. The Raspberry
Pi tracks when a new beacon is detected or removed.

Two new classes were implemented in BeTwin’s prototype
to retrieve and customise beacon messages, check if messages

were updated and if a beacon was removed. The beacons’
Eddystone URLs and messages are configured with an An-
droid/iOS application called Beeks Toolkit.

A. Beacon Messaging

The class “BeaconMessaging” handles beacons communi-
cation. First, it imports the TinyB “BluetoothDevice” class and
adds flags for when a message is updated and for when a bea-
con is removed. It also stores the beacon’s decoded messages.
In addition, this class implements the “BluetoothNotification”
interface from TinyB, starting a new thread per beacon and
allows the messages to be updated asynchronously. These
threads are killed when beacons are removed (i.e., the RSSI
is lower than a threshold, which is discussed in Section V.A).

Beacon messages are detected within a few seconds (approx.
3s) after a beacon is discovered. However, this depends on the
beacon’s advertising rate and the adapter’s scan interval and
scan window. A timeout argument is introduced to allow the
search to be stopped if no messages can be found.

The BlueZ API returns the beacons’ advertising data in the
form of a map having the service ID and its bytes as the pair
⟨key, value⟩. The advertising data contains the Eddystone-ID,
Eddystone-URL and Eddystone-TLM. Only Eddystone-URL
is required for BeTwin’s communications. The first byte of
the map determines the frame type. If the first byte has a
value of 16, it means that the frame type is Eddystone-URL.
The service data is retrieved from the beacons using the TinyB
library, which checks for the following conditions:

• The map is not empty.
• The map contains the Eddystone service ID as a key.
• The first byte of its value is 16.

When these conditions are met, the value, which is a byte
array, is passed to the “resolveEddystoneURL” method that
turns it into a string. The byte array structure can be described
as follows. The first byte determines the frame type while the
second indicates the TX power. The third byte determines the
URL scheme (i.e., http or https). Bytes four to 20 represent
the part of the message after the URL scheme. To make it
possible to send longer URLs, Eddystone-URL encodes top-
level domains in the last byte. If a top-level domain is not
specified in the message, the last byte will simply be the last
character of the message.



TABLE I
TESTBED SETTINGS

Parameter Value

VR Server Model Alienware Aurora
Processor Intel Core i7-8700K CPU 3.70GHz
RAM 32GB
GPU Intel Integrated HD Graphics
VR Engine Unity
Real-life Beacons HID Beeks
Simulated Beacons Between 2 and 300 TinyB Beacons
Bluetooth Reader Raspberry Pi 3B

Algorithm 1: Populating the HashMap of BeTwin
initialiseList(bluetoothManager, rssiThreshold, timeout)
{

if bluetoothManager is not in discovery mode then
start discovery;
wait for 1 second;

end
foundDevices = get devices from bluetoothManager
foreach device in deviceList do

set remove flag to true;
end
foreach device in foundDevices do

if allowedDevices contains device address then
if device rssi is bigger than rssiThreshold and

device rssi is smaller than 0 then
if deviceList contains device then

set remove flag to false;
else

add device to deviceList;
set service data for device with timeout;
enable service notification for device;

end
end

end
end
}

Unlike the URL scheme, the top-level domain is not re-
quired to be added. Not adding the URL scheme will cause
the message to be reset to a default URL. The “resolveEd-
dystoneURL” method also checks the byte array size. If it
is shorter than three bytes, it returns an empty string, as it
means that there is no message set. Otherwise, it checks if
the fourth byte is equal to an apostrophe character. This is a
solution employed to allow beacons to transmit plain messages
along with URLs, as the Eddystone-URL protocol allows only
short URLs to be sent. Therefore the first character is used
to indicate the type of message (i.e., string or URL) after
“http://”. When the Unity application retrieves messages, it
treats messages as strings or URLs based on this character.

B. Beacons Management

The “BeaconsManagement” class creates a “BeaconMes-
saging” object for each beacon discovered by the Bluetooth
manager. It has a Java HashMap of “BeaconMessaging” ob-
jects. The HashMap “deviceList” contains a key that represents

Fig. 3. Eddystone messaging.

the MAC address of a BLE beacon. The program assumes that
all BLE beacons have different MAC addresses.

Algorithm 1 is included in the “initialiseList” method,
which is used to populate the HashMap of devices found by the
Bluetooth manager. It only adds the devices that are within a
certain range, determined by the “rssiThreshold”. The method
always checks if discovery mode is turned on at the start. In
case it is off, the method turns it on and waits for one second to
enable the Bluetooth adapter to start discovering devices. All
discovered Bluetooth devices are put in a list and the “remove
flag” of each beacon in the “devicesList” is set to true. The
method then checks if the RSSI value of each of the discovered
devices is higher than the pre-defined threshold and different
from 0. BlueZ shows a value of zero decibels when it cannot
retrieve the RSSI value of a Bluetooth device. If the RSSI
of a Bluetooth device is lower than the threshold or 0 and
the corresponding object is already in the “devicesList”, the
“remove flag” is set to false. If it is not in the “devicesList”,
a new object is created and stored in the “devicesList”. The
remove flag is set to true for every object in the “devicesList”
at the start as there needs to be a way to know when a device
is no longer in range. If the device is either not in range or
cannot be discovered anymore, the remove flag will remain set
to true. A “remove” message is then sent to the VR application,
which removes the objects generated by that beacon or stops
any media or customisation related to that beacon, unless they
are permanent objects, specified by their unique MAC. The
object is then removed from the “devicesList”. The thread that
updates the beacon messages is also stopped.

The “BeaconsManagement” class enables sending messages
to the VR application via TCP sockets using the following
format: Beacon_MAC_Address : message.

C. Unity Application

A VR Application was developed in Unity with the VRTK
library in which the proposed BeTwin solution was deployed.
An Oculus Rift VR headset is employed for visualisation.
The virtual space is large enough to display several objects,
including a screen in which videos and songs are played.
Additional objects such as furniture, virtual appliances and



Fig. 4. Testbed - Beacons and Raspberry Pi.

industrial models are loaded once the BLE beacons are near
the Raspberry Pi.

3D objects can be saved as prefabs. Prefabs can then be
loaded at runtime and cloned using a C script. This script
will control what objects are displayed or removed as well as
multimedia playback. A separate thread is required to handle
the server connection with the Raspberry Pi.

Another important method of the VR application, “Pro-
cessQueueString”, is used for processing received messages
from Beacons. If the message is a URL, the application plays
the multimedia content found at that URL. If the message
contains the apostrophe character (as depicted in Fig. 3),
indicating it is a simple string, it will generate the object with
the same name as the string. If the message is “remove_obj”
and an object was generated by the beacon ID that sent this
message, the object will be removed. If the beacon originally
sent a URL and then sent a “remove_obj” message, the video
or song will stop playing.

V. RESULTS AND DISCUSSION

The feasibility of using beacons to integrate real objects
with their digital counterparts in BeTwin has been investigated
in terms of RSSI and distance as well as the time needed for
retrieving messages, storing beacons, and generating objects.

A. RSSI, Distance and Message Retrieval Time

In the first test, the distance between a beacon and the
Raspberry Pi is increased, so the impact on the RSSI is
analysed. Two beacons are placed on the same axis as the
Raspberry Pi, with no obstructions between them. Fig. 4
illustrates the beacons placed very close to the Raspberry
Pi. Ten measurements were taken and averaged per analysed
distance. Fig. 5 indicates that as the distance between the
Raspberry Pi and the beacon increases, the RSSI decreases.
The RSSI decreases rapidly within the first metre from the
Raspberry Pi.

The second test investigates the effect of RSSI on the time
required by the Bluetooth adapter of the Raspberry Pi to
retrieve the message from one beacon. To change the RSSI, the
beacon is gradually moved further away from the Raspberry
Pi. Fig. 6 clearly indicates that the lower the RSSI, the longer

Fig. 5. Distance vs. RSSI.

Fig. 6. Message Retrieval Time vs. RSSI.

Fig. 7. Number of beacons vs. time to store beacons, receive messages and
generate objects.

it takes for the Bluetooth adapter to retrieve data. Distance
should not necessarily be a problem for the designed platform,
as it is expected that beacons are placed close to the Raspberry
Pi (so the RSSI is adequate). Based on the results presented
in Fig. 6, we recommend a threshold of -85dB or higher for
the HashMap algorithm and the overall detection of beacons,
in order to minimise communications delays.

B. Effect of Number of Beacons

The third test verifies the effect of increasing the number
of beacons on the time it takes the Raspberry Pi program to



fill the device HashMap and set messages for each device in
the HashMap. The high number of beacons tested required a
simulation where multiple “BeaconMessaging” objects from
the same beacon were created and assigned new MAC ad-
dresses to simulate beacon devices. Simulation settings are
available in Table I. This test checks the efficiency of the
algorithm that decodes the message from the beacon. As
shown in Fig. 7, the application itself only needs between 77
and 294 milliseconds to process between 50 and 300 simulated
beacons, not including Bluetooth discovery times.

The fourth test investigates how the number of simulated
beacons affects the time required to receive all the beacon
messages through the Java socket. This test was performed
in order to understand how long the VR application takes to
get the message from the Raspberry Pi in case of a larger
number of beacons. As portrayed in Fig. 7, there is very little
difference between the time it needed by the server to send the
message from two beacons and the time required by the server
to send the message from 300 beacons. This can be explained
by the fact that the messages sent are very short: approximately
40 to 50 bytes per beacon. That means approximately 15000
bytes for 300 beacons, which is not a massive considering the
network available bandwidth.

The final test verifies how the number of beacons affects the
time needed for objects to be rendered in the VR application.
As seen in Fig.7, object generation requires substantially more
time than the messaging process. The rendering, however,
depends on how fast the application receives the data from the
Raspberry Pi and how fast it converts messages into strings,
splits them and insert them into the queue.

These results show that the slowest part of the system is the
object spawning, which is influenced by the time it takes the
VR application to receive the message from the Raspberry Pi
and process it.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper presents BeTwin, a solution for enhancing the
VR experience by using BLE beacons in the process of adding
new virtual objects and content into a digital twin environment.
The approach was deployed and tested with the aid of a
prototype that includes a 3D Unity application running on
a server, a Raspberry Pi used as a beacon reader, and real
and simulated beacons employing the Eddystone protocol.
The solution includes a number of algorithms for the beacon
messaging system, device discovery and rendering of the
virtual objects.

The tests demonstrated that the application is able to process
the beacon messages and generate the corresponding virtual
content in a timely manner, as long as the beacons are placed
near the beacon reader.

For future work, we aim to integrate a larger number of
virtual devices to the platform and include a decentralised
multi-user approach.

ACKNOWLEDGEMENTS

This work was supported by the European Union’s Hori-
zon 2020 Research and Innovation programme under grant

870610 (TRACTION Project) and the Science Foundation
Ireland (SFI) via the Frontiers Projects grant 21/FFP-P/10244
(FRADIS) and Research Centres grant 12/RC/2289_P2 (IN-
SIGHT).

REFERENCES

[1] N. Kajikawa, Y. Minami, E. Kohno, and Y. Kakuda, “On Availability
and Energy Consumption of the Fast Connection Establishment Method
by Using Bluetooth Classic and Bluetooth Low Energy,” in Proc. of the
Int. Symposium on Computing and Networking (CANDAR), 2016, pp.
286–290.

[2] M. Kuller, F. Kohlmorgen, N. Karaoğlan, M. Niemeyer, I. Kunold, and
H. Wöhrle, “Conceptual Design of a Digital Twin Based on Semantic
Web Technologies in the Smart Home Context,” in Proc. of the IEEE
Int. Conf. and Workshop in Óbuda on Electrical and Power Engineering
(CANDO-EPE), 2020, pp. 167–172.

[3] V. Gopinath, A. Srija, and C. N. Sravanthi, “Re-Design of Smart Homes
with Digital Twins,” in Journal of Physics: Conf. Series, vol. 1228, no. 1,
2019, pp. 1–9.

[4] A. A. Simiscuka, T. M. Markande, and G.-M. Muntean, “Real-Virtual
World Device Synchronisation in a Cloud-enabled Social Virtual Reality
IoT Network,” IEEE Access, vol. 7, pp. 106 588–106 599, 2019.

[5] A. A. Simiscuka and G.-M. Muntean, “Synchronisation between Real
and Virtual-World Devices in a VR-IoT Environment,” in Proc. of the
IEEE Int. Symposium on Broadband Multimedia Systems, 2018, pp. 1–6.

[6] X. Li, B. He, Y. Zhou, and G. Li, “Multisource model-driven digital
twin system of robotic assembly,” IEEE Systems Journal, vol. 15, no. 1,
pp. 114–123, 2021.

[7] J. Li, Y. Zhang, and C. Qian, “The Enhanced Resource Modeling
and Real-Time Transmission Technologies for Digital Twin Based on
QoS Considerations,” Robotics and Computer-Integrated Manufactur-
ing, vol. 75, p. 102284, 2022.

[8] A. Aza, D. Melendi, R. Garcia, X. G. Paneda, L. Pozueco, and
V. Corcoba, “Bluetooth 5 Performance Analysis for Inter-Vehicular
Communications,” Wireless Networks, vol. 28, no. 1, pp. 137–159, 2022.

[9] K. T’Jonck, B. Pang, H. Hallez, and J. Boydens, “Optimizing the
Bluetooth Low Energy Service Discovery Process,” Sensors, vol. 21,
no. 11, p. 3812, 2021.

[10] M. Perri, F. Cuomo, and P. Locatelli, “BLENDER - Bluetooth Low En-
ergy Discovery and Fingerprinting in IoT,” in Proc. of the Mediterranean
Communication and Computer Networking Conf. (MedComNet), 2022,
pp. 182–189.

[11] L. Reichert, S. Brack, and B. Scheuermann, “A Survey of Automatic
Contact Tracing Approaches Using Bluetooth Low Energy,” ACM Trans.
Comput. Healthcare, vol. 2, no. 2, mar 2021.

[12] E. Park, M.-S. Lee, and S. Bahk, “AdaptaBLE: Data Rate and Trans-
mission Power Adaptation for Bluetooth Low Energy,” in Proc. of the
IEEE Global Communications Conf. (GLOBECOM), 2019, pp. 1–6.

[13] A. Mackey and P. Spachos, “Experimental Comparison of Energy
Consumption and Proximity Accuracy of BLE Beacons,” in Proc. of
the IEEE Global Communications Conf. (GLOBECOM), 2019, pp. 1–6.

[14] P. I. Andreev and B. R. Aprahamian, “Analytical Comparison of Blue-
tooth Low Energy Beacons,” in Proc. of the Int. Symposium on Electrical
Apparatus and Technologies (SIELA), 2018, pp. 1–4.

[15] P. Bulić, G. Kojek, and A. Biasizzo, “Data Transmission Efficiency in
Bluetooth Low Energy Versions,” Sensors, vol. 19, no. 17, p. 3746, 2019.

[16] A. Bbosale, G. Benny, R. Jaison, A. Kbot, and S. Pati, “Indoor
Navigation System using BLE Beacons,” in Proc. of the Int. Conf. on
Nascent Technologies in Engineering (ICNTE), 2019, pp. 1–6.

[17] J. Kang, J. Seo, and Y. Won, “Ephemeral ID Beacon-Based Improved
Indoor Positioning System,” Symmetry, vol. 10, no. 11, p. 622, 2018.

[18] Z. Wang, K. Han, and P. Tiwari, “Digital Twin Simulation of Connected
and Automated Vehicles with the Unity Game Engine,” in IEEE Int.
Conf. on Digital Twins and Parallel Intelligence (DTPI), 2021, pp. 1–4.

[19] Y. Yang, W. Meng, and S. Zhu, “A Digital Twin Simulation Platform
for Multi-Rotor UAV,” in Int. Conf. on Information, Cybernetics, and
Computational Social Systems (ICCSS), 2020, pp. 591–596.

[20] J. Halpern, “Introduction to Unity,” in Developing 2D Games with Unity.
Springer, 2019, pp. 13–30.

[21] Intel, “TinyB,” 2017. [Online]. Available: https://github.com/intel-iot-
devkit/tinyb


