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In this paper, we describe an extremely efficient method for computing the renormalized stress-energy
tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a
scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the
renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our
results to discuss the null energy condition and the semiclassical backreaction.
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I. INTRODUCTION

The semiclassical approximation to quantum gravity has
by now a long and fruitful history. In particular, Parker’s
discovery of particle production in an expanding universe
[1] and Hawking’s discovery that black holes radiate [2]
have had a profound impact on theoretical physics.
Formally, this approximation involves the propagation
and backreaction of quantized fields on a classical space-
time geometry described by the semiclassical equations

Gab − Λgab ¼ 8πhT̂abi; ð1Þ

where gab is the metric of spacetime, Gab is the Einstein
tensor, Λ is the cosmological constant and hT̂abi is the
(unregularized) expectation of the stress-energy tensor of
a quantum field in some quantum state. An immediate
difficulty arises in this framework, hT̂abi diverges every-
where and hence a regularization prescription is required.
Formally, this prescription is well understood through, for
example, point-separation [3]. This amounts to considering
instead a bitensor hT̂abðx; x0Þi which is evaluated at two
distinct spacetime points, then we can isolate and subtract
the divergent terms as x0 → x. The divergent terms are

geometrical in nature, depending only on the metric and its
derivatives. The semiclassical equations then become

Gab − Λgab þ αHð1Þ
ab þ βHð2Þ

ab ¼ 8πhT̂abiR; ð2Þ

where the right-hand side is now the renormalized stress-

energy tensor (RSET) and Hð1Þ
ab , H

ð2Þ
ab are geometrical terms

that are quadratic in curvature. This form of the semi-
classical equations illuminates the prescription for making
sense of the theory, the stress-tensor is regularized by point-
separation, then given physical meaning through renorm-
alizing the constants Λ, α, and β.
While the point-separation prescription offers a formal

resolution for regularizing the semiclassical theory, there
remains a stubborn technical challenge with its implemen-
tation. To elucidate this challenge, let us assume the
spacetime is static and that the quantum field is in the
Hartle-Hawking state [4,5]. In this case, we can work on
the Euclideanized version of the spacetime. We note that
the point-split stress-energy tensor for the Hartle-Hawking
state is related to a differential operator acting on the
(Euclidean) Green function. In order to renormalize, we
subtract from the Green function a two-point distribution
known as a Hadamard parametrix [6] before taking the limit
x0 → x. The parametrix is locally constructed in such a way
that subtracting from the Green function results in a smooth
two-point function in this limit. In 4-dimensional space-
time, we may take the Hadamard parametrix to be
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Kðx; x0Þ ¼ 1

8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ Vðx; x0Þ ln

�
2σðx; x0Þ

l2

��

where 2σðx; x0Þ is the square of the geodesic distance
between two nearby spacetime points x and x0, Δðx; x0Þ is
the Van Vleck-Morrette determinant and Vðx; x0Þ is a
symmetrical geometrical biscalar which encodes how
waves scatter off the geometry of the spacetime. The
parameter l is an arbitrary length scale required to make
the argument of the logarithm dimensionless; it is essen-
tially the well-known renormalization ambiguity (see, for
example, Ref. [7]). The important point is that Kðx; x0Þ is
locally constructed from the spacetime geometry through
the metric and its derivatives.
On the other hand, the Green function Gðx; x0Þ is not

locally constructed but depends on global properties of the
spacetime; we typically write Gðx;x0Þ¼Kðx;x0ÞþWðx;x0Þ
where Wðx; x0Þ is a nongeometrical (symmetric) biscalar
that encapsulates the global properties. Gðx; x0Þ is typically
expressed as a mode-sum representation where, for exam-
ple, global information such as the quantum state is
encoded in boundary conditions on the individual modes.
The singular behavior in the limit where spacetime points
are taken together is manifest as the nonconvergence of this
mode-sum. The technical challenge then is expressing the
local Hadamard parametrix as a mode sum that can be
subtracted from the Euclidean Green function mode by
mode, producing a sum which converges in the limit where
spacetime points coincide.
The first resolution to this technical problem for a

quantum field on a black hole spacetime was given in a
seminal paper by Candelas and Howard [8]. Other
approaches with a degree of novelty relied heavily on
the essential ideas in the Candelas-Howard prescription
[9–11]. Notwithstanding the ingenuity of the method, it is
cumbersome and inefficient to implement. In recent years,
there have been two new developments in this area. The
first, known as the “pragmatic mode-sum prescription” was
developed by Levi and Ori [12,13]. The method has proven
indeed to be pragmatic, both in its efficiency and its broader
applicability. Of particular note is the application of the
prescription to compute the RSET for a scalar field on a
Kerr black hole [14], a longstanding problem in the QFTCS
community. Second is a method developed by the authors
of this article known as the “extended coordinate method”
[15,16]. While this method has thus far only been devel-
oped for computing the simpler vacuum polarization in
static black hole spacetimes, it is extremely efficient
and applicable to arbitrary field parameters and arbitrary
spacetime dimensions.
In this paper, we present the extended-coordinate method

for the calculation of the RSET for an arbitrary scalar field
in four dimensions (though the extension of this method
to higher dimensions is straightforward). As an example of
our method, we present results for the RSET of a scalar

field in the Schwarzschild black hole spacetime with
various values of field mass and coupling constant. As
applications of our results, we examine (a) dependence of
the RSET components on the coupling (b) the semiclassical
backreaction and (c) the null energy conditions on the
photon sphere.

II. RENORMALIZING THE GREEN FUNCTION

We consider a quantum scalar field on a static, spheri-
cally symmetric black hole spacetime. Since we will
assume the field is in the Hartle-Hawking quantum state,
it is appropriate and convenient to work with the
Euclideanized line element

ds2 ¼ fðrÞdτ2 þ dr2=fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3Þ

It can be shown that the Euclidean metric would possess a
conical singularity on the horizon unless we enforce the
periodicity τ ¼ τ þ 2π=κ where κ is the surface gravity.
Imposing this periodicity discretizes the frequency spec-
trum of the field modes which now satisfy an elliptic wave
equation

ð□E − μ2 − ξRÞϕ ¼ 0; ð4Þ

where □E is the d’Alembertian operator with respect to
the Euclidean metric, μ is the field mass, R is the Ricci
curvature scalar of the background spacetime and ξ is the
coupling strength between the field and the background
geometry. The corresponding Euclidean Green function has
the following mode-sum representation (with r ¼ r0 for
simplicity):

Gðx;x0Þ ¼ 1

8π2
X∞
l¼0

ð2lþ1ÞPlðcosγÞ
X∞
n¼−∞

einκΔτgnlðrÞ; ð5Þ

where Δx≡ x0 − x ∼OðϵÞ is the coordinate separation, γ is
the geodesic distance on the 2-sphere and κ is the surface
gravity of the black hole horizon. We have also taken PlðzÞ
to be the Legendre polynomial of the first kind and gnl ¼
κNnlpnlðrÞqnlðrÞ is the one-dimensional radial Green
function evaluated at the same spacetime point r. The
radial modes pnlðrÞ, qnlðrÞ are solutions of the homo-
geneous radial equation:

�
d
dr

�
r2fðrÞ d

dr

�
− r2

�
n2κ2

fðrÞ þ ðm2 þ ξRÞ
�

− lðlþ 1Þ
�
YnlðrÞ ¼ 0;

where pnlðrÞ and qnlðrÞ are regular on the horizon and the
outer boundary (usually spatial infinity), respectively. The
normalization constant is given by
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Nnl ¼ −r2fðrÞWfpnlðrÞ; qnlðrÞg;

where Wfp; qg denotes the Wronskian of the two
solutions.
In the coincidence limit Δx → 0 (i.e., γ → 0 and

Δτ → 0), the mode-sum (5) diverges. To renormalize this
mode sum, we must find a way to express the locally-
constructed Hadamard parametrix Kðx; x0Þ as a mode sum
and subtract mode-by-mode. In [15,16] a mode sum
expression for the Hadamard parametrix was derived by
first introducing the so-called extended coordinates:

ϖ2 ¼ 2

κ2
ð1 − cos κΔτÞ;

s2 ¼ fðrÞϖ2 þ 2r2ð1 − cos γÞ:

For simplicity, the separation in the radial direction, Δr, is
set to zero but it is important to the development that the
separation in the other directions is maintained. Expressing
the Hadamard parametrix in terms of these extended
coordinates permits its decomposition in terms of
Fourier frequency modes and multipole moments where,
remarkably, the coefficients in this decomposition are
expressible in closed form for any static spherically-
symmetric spacetime in arbitrary dimensions. The details
are rather complicated and the expressions lengthy so we
relegate them to the Appendix, giving only a schematic
representation below. In four dimensions, the result is

Kðx; x0Þ ¼ 1

8π2
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
X∞
n¼−∞

einκΔτknlðrÞ

þ 1

8π2
fDð−Þ

11 ðrÞ þ ðT ðpÞ
10 þDð−Þ

22 ðrÞÞs2

þ ðT ðpÞ
11 þDð−Þ

21 ðrÞÞϖ2g þOðϵ2m log ϵÞ; ð6Þ

where the mode-sum regularization parameters are con-
tained in knlðrÞ which we further express as

knlðrÞ ¼
Xm
i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨðþÞ

nl ði; jjrÞ

þ
Xm−1

i¼0

Xi

j¼0

T ðlÞ
ij χnlði; jjrÞ

þ
Xm−1

i¼1

Xi−1
j¼0

TðrÞ
ij Ψ

ðþÞ
nl ðiþ 1; jjrÞ: ð7Þ

Herem denotes the order of the expansion. The coefficients

Dð�Þ
ij ðrÞ arise in the expansion of the direct part Δ1=2=σ of

the Hadamard parametrix when expanded in extended

coordinates s and ϖ, while the T ðlÞ
ij ðrÞ, T ðpÞ

ij ðrÞ and

T ðrÞ
ij ðrÞ arise in the expansion of the tail V logð2σÞ.

When the tail part of the Hadamard parametrix is expanded
in s and ϖ, we obtain terms that are logarithmic in s,
polynomial in s2 andϖ2 and rational in s2 and ϖ2. It is the

coefficients of these terms that we have labeled T ðlÞ
ij ðrÞ,

T ðpÞ
ij ðrÞ and T ðrÞ

ij ðrÞ, respectively. The terms ΨðþÞ
nl ði; jjrÞ

and χnlði; jjrÞ are the so-called regularization parameters
that arise in expressing Kðx; x0Þ as a mode-sum. In

particular, the ΨðþÞ
nl ði; jjrÞ are obtained by representing

terms of the form ϖ2iþ2j=s2jþ2 in a multipole and Fourier
decomposition

ϖ2iþ2j

s2jþ2
¼

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ1ÞPlðcosγÞΨðþÞ
nl ði;jjrÞ ð8Þ

and then using the completeness relations to invert these to

obtain closed-form representations of ΨðþÞ
nl ði; jjrÞ. The

particular form is given in the Appendix. Similarly,
the χnlði; jjrÞ regularization parameters are obtained by
inverting

s2i−2jϖ2j log ðs2=l2Þ

¼
X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 1ÞPlðcos γÞχnlði; jjrÞ; ð9Þ

where l on the left-hand side is the arbitrary length scale.
Again, explicit expressions for χnlði; jjrÞ are found in the
Appendix.
The important point is that the Hadamard parametrix

expressed in the form (6) can be subtracted from the
corresponding mode-sum expression for the Green function
(5) yielding a mode sum expression for the full, renormal-
ized Green function that is convergent in the coincidence
limit. Moreover the speed of convergence of this mode sum
can be accelerated by subtracting a higher-order expansion
of the singular field. It is worth noting that the error term in
Eq. (6) ignores terms that are polynomial in s2 and ϖ2, as
the mode sum decomposition of these terms does not aid
in the convergence of the mode sums, see [16] for further
details.
As a concrete example, this prescription for the vacuum

polarization in the Hartle-Hawking state yields

hϕ̂2iR ≡ ½Wðx; x0Þ�≡ wðrÞ

¼ 1

8π2
X∞
l¼0

X∞
n¼−∞

ð2lþ 1Þgnl −
Dð−Þ

11 ðrÞ
8π2

: ð10Þ

where, as above, Wðx; x0Þ≡Gðx; x0Þ − Kðx; x0Þ and we
have adopted the notation

gnlðrÞ≡ gnlðrÞ − knlðrÞ ð11Þ
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for the renormalized modes. Here and throughout, we have
adopted square brackets ½·� to denote the coincidence
limit x0 → x.
The modes gnlðrÞ converge like Oðl−2m−3Þ for large l,

fixed n and Oðn−2m−3Þ for large n, fixed l so that the sum
in (10) converges very rapidly for sufficiently high expan-
sion order m. In practice, provided m is chosen appropri-
ately, the sum in (10) can be computed to very high
accuracy by summing only a handful of l and n modes.

III. COMPUTING THE RSET

The calculation of the RSET has the potential to be much
trickier as the components of the RSET involve derivatives
with respect to r and r0 while our expansion above assumed
that radial points are taken together.
The Euclidean Green function describing our state

may be expressed as Gðx; x0Þ ¼ Kðx; x0Þ þWðx; x0Þ where
Wðx; x0Þ is regular near coincidence and symmetric in x and
x0. Correspondingly Wðx; x0Þ has a covariant Taylor series
for x0 near x of the form [17]

Wðx; x0Þ ¼ wðxÞ − 1

2
w;aðxÞσ;a þ

1

2
wabðxÞσ;aσ;b þ…

so

½Wðx; x0Þ;a0 � ¼ ½Wðx; x0Þ;a� ¼
1

2
w;aðxÞ;

½Wðx; x0Þ;a0b0 � ¼ ½Wðx; x0Þ;ab� ¼ wabðxÞ;

½Wðx; x0Þ;a0b� ¼
1

2
w;abðxÞ − wabðxÞ;

½Wðx; x0Þ;a0b0 � ¼ −½Wðx; x0Þ;a0b� þ ½Wðx; x0Þ;a�;b;

where the last line represents a special case of Synge’s
theorem [18].
In addition the wave equation requires [17]

wa
a − ξRw − μ2w ¼ −

3

4π2
v1 ð12Þ

where

v1 ¼
1

720
RpqrsRpqrs −

1

720
RpqRpq −

1

24

�
ξ −

1

5

�
□R

þ 1

8

�
ξ −

1

6

�
2

R2 þ 1

4
μ2
�
ξ −

1

6

�
Rþ 1

8
μ4: ð13Þ

The Hadamard renormalization prescription then yields
(up to the standard renormalization ambiguity) the follow-
ing definitions [17]

hϕ̂2iR ¼ wðxÞ ð14Þ

hT̂a
ξ biR ¼ −wa

b −
�
ξ −

1

2

�
w;a

;b þ
�
ξ −

1

4

�
□wδab

þ ξRa
bw −

1

8π2
v1δab ð15Þ

¼ −wa
b −

�
ξ −

1

2

�
hϕ̂2iR;a;b þ

�
ξ −

1

4

�
□hϕ̂2iRδab

þ ξRa
bhϕ̂2iR −

1

8π2
v1δab: ð16Þ

In the current context, Eq. (12) enables us to determine

wr
r ¼ −wτ

τ − wθ
θ − wϕ

ϕ − ξRw − μ2w −
3

4π2
v1 ð17Þ

without requiring any radial derivatives of W or corre-
spondingly G; we can do all calculations required with our
Δr ¼ 0 expressions. In addition, our previous work [16]
allows us to calculate hϕ̂2iR in spherically symmetric space-
times with great speed and accuracy so that the required
derivatives of hϕ̂2iR, which, of course in this case are only
functions of r, may be easily and accurately obtained by
interpolation.
In passing we note that similarly the trace may be

written as

hTa
ξaðxÞiR ¼ 3

�
ξ −

1

6

�
□hϕ̂2iR − μ2hϕ̂2iR þ

1

4π2
v1;

with the conformally invariant case yielding the standard
trace anomaly.
One final remark is in order, in general W and corre-

spondingly w and wab depend on the coupling ξ but in
space-times with vanishing Ricci scalar (which, of course,
includes electrovac solutions) they do not, while the stress
tensor, which is derived from the functional derivative with
respect to gab, does. However, our expression above shows
that in this case they are all simply related by, for example,

hT̂a
ξ biR ¼ hT̂a

0biR − ξðhϕ̂2iR;a;b −□hϕ̂2iRδab − Ra
bhϕ̂2iRÞ:

As we have already calculated hϕ̂2iR, all that is required
now is to calculate wτ

τ and wθ
θ ¼ wϕ

ϕ. The most straight-
forward way to do this is to compute coincidence limits of
Wðx; x0Þ with mixed time derivatives and mixed angular
derivatives, i.e.,

½gττ0W;ττ0 � ¼ −
1

4π2
X∞
l¼0

ð2lþ 1Þ
X∞
n¼1

n2κ2

fðrÞ gnlðrÞ

−
1

4π2

�
T ðpÞ

10 þDð−Þ
22 þ 1

fðrÞ ðT
ðpÞ
11 þDð−Þ

21 Þ
�
;

ð18Þ
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½gϕϕ0
W;ϕϕ0 � ¼ 1

16π2r2
X∞
l¼0

ð2lþ 1Þlðlþ 1Þ
X∞
n¼0

ð2− δn0ÞgnlðrÞ

þ 1

4π2
fT ðpÞ

10 þDð−Þ
22 g: ð19Þ

Provided the expansion order m is sufficiently high, the
mode sums here converge fast enough to be amenable to
calculation on a standard laptop.
We have therefore adapted the extended coordinate

method of Refs. [15,16] to the RSET without any signifi-
cant revisions or generalizations of the method. We
illustrate the utility of the method in the next section where
we apply it to compute the RSET for arbitrarily coupled
massive scalar fields on Schwarzschild spacetime.

IV. NUMERICAL IMPLEMENTATION
IN SCHWARZSCHILD

Implementing the prescription above in Schwarzschild
spacetime, while efficient, is still nontrivial but there are a
couple of ways that the calculation can be simplified.
The first is in generating the modes themselves. This is by

far the most computationally expensive aspect of the calcu-
lation. However, one can reduce the amount of modes
required by taking a high order expansion of the singular
field. Here we choose to take a 6th order expansion [setting
m ¼ 6 in Eq. (7)] and generate 20l modes and 10n modes,
which yields the RSET accurate to approximately 10-15
decimal places for the parameter sets considered in this paper.
We employed two distinctmethods for generating themodes.
In the first approach, we generated the modes numerically.
ThepnlðrÞmodeswere computed by specifying a high-order
Frobenius series as the initial value near the horizon and then
numerically integrating outwards, while the qnlðrÞ modes
were obtained by assuming a high-order asymptotic expan-
sion near infinity and integrating inwards. In the second
approach, the modes were computed without any significant
numerical undertaking. The radial equation can be recast in
the confluent Heun form [19]. This means that pnlðrÞ and
qnlðrÞ are combinations of confluent Heun functions satisfy-
ing appropriate boundary conditions. This is especially
advantageous since confluent Heun functions are built in
to modern software packages like Mathematica. There is a
difficulty, however, that on the Euclidean spacetime, the
second linearly independent confluent Heun function is of
the “logarithmic” type. These are not yet implemented in
Mathematica. Nevertheless, one can construct the second
linearly independent solution that satisfies the appropriate
boundary conditions. Let Hðq; α; γ; δ; ϵ; zÞ be the confluent
Heun function analytic in the vicinity of z ¼ 0. Thenwehave

pnlðrÞ ¼ zn=2eω̃zHðq; α; nþ 1; 1;−2ω̃;−zÞ ð20Þ

where z ¼ r=ð2MÞ − 1 and

ω̃ ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ n2κ2

q
; α ¼ 1

4
n2 þ ω̃2 − ðnþ 2Þω̃

q ¼ 1

4
n2 −

1

2
nþ ω̃2 þ lðlþ 1Þ − ðnþ 1Þω̃: ð21Þ

A second linearly independent solution is

YnlðrÞ ¼ zn=2eω̃zHðq − α;−α; 1; nþ 1; 2ω̃; 1þ zÞ: ð22Þ

We can construct qnlðrÞ by a linear combination of these
solutionsqnlðrÞ ¼ pnlðrÞ þ βnlYnlðrÞwhere the coefficients
βnl are chosen so that qnlðrÞ satisfies the appropriate
boundary conditions at infinity. In practice, we can compute
the βnl as follows. LetQ∞

nlðrÞ be an asymptotic expansion of
qnlðrÞ, then

βnl ≈ ðQ∞
nlðr∞Þ − pnlðr∞ÞÞ=Ynlðr∞Þ; ð23Þ

evaluated at a large radial distance r∞. This quasianalytical
method gives excellent agreement with the numerical results.
We add the caveat that computing theβnl requires tremendous
working precision in the calculation since the right-hand side
of (23) is a quotient of enormously large numbers.
The second practical simplification in our numerical

implementation is in the computation of radial derivatives
of hϕ̂2iR. Rather than compute the radial derivatives of the
individual modes and then performing the mode-sum, we
simply construct a high-order interpolation function of
hϕ̂2iR that can be differentiated. The interpolation order was
chosen to be sufficiently high to guarantee that derivatives
of the vacuum polarization up to second order are smooth.

V. RESULTS

In this section, we present some results of our method
applied to the computation of the RSET in the Schwarzschild
spacetime. We further discuss the implications for the
backreaction and the energy conditions.
In Fig. 1, we plot components of the RSET for a fixed

field mass μ ¼ 1
2
M, varying the coupling. Computing the

RSET for massive fields in Schwarzschild is trickier than
for massless fields since the Hadamard parametrix contains
logarithmic divergences which must be regularized. These
are contained in our regularization parameter χnlðrÞ. These
terms have an arbitrary length scale associated with the
renormalization ambiguity. We have set this length scale to
be the mass of the black hole.
We see from Fig. 1 that the components of the RSET

near the black hole are very sensitive to the coupling ξ. For
example, for the hTt

tiR components plotted in Fig. 2(c), we
see that when ξ is approximately less than the conformal
value ξ ¼ 1=6, then this component of the RSET is a
decreasing function of r near the horizon, while for ξ
approximately greater the conformal coupling, this com-
ponent of the RSET increases near the horizon. This strong
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dependence on the coupling presumably implies the back-
reaction is also sensitive to the coupling.
The dependence of the RSETon the mass appears to be a

simpler matter. It appears that the components are a
monotonically increasing function of the field mass, see
Fig. 2 for a characteristic plot.
Turning now to the calculation of the backreaction. One

can use the exact numerical calculation of the RSET to
solve a reduced-order version of the semiclassical equa-
tions (see [20,21] for details of the reduction of order

prescription) perturbed about the classical Schwarzschild
background. This is achieved by assuming the perturbation
respects the symmetry of the background and then express-
ing the perturbed metric components in the form:

gtt ¼ Ψ2ðrÞð1 − 2MðrÞ=rÞ;
grr ¼ ð1 − 2MðrÞ=rÞ−1: ð24Þ

By further expanding about the background metric as
ΨðrÞ ¼ 1þ ℏρðrÞ þOðℏ2Þ and MðrÞ ¼ Mð1þ ℏζðrÞÞ þ
Oðℏ2Þ (reinstating ℏ momentarily for transparency), the
reduced-order semiclassical equations give the following
simple ODEs for the unknown functions ρ and ζ:

2M
r2

ζ0ðrÞ − Λ ¼ −8πhT̂t
tiR

2

r
ρ0ðrÞ ¼ 8π

1 − 2M=r
ðhT̂r

riR − hT̂t
tiRÞ ð25Þ

where Λ corresponds to a renormalization of the (zero)
cosmological constant and is degenerate with the choice of
the renormalization length scale in hT̂a

biR. Armed with our
exact numerical results for the RSET, we may readily solve
the above equations for any given set of field parameters. In
Fig. 3, we investigate the accuracy of York’s approximate
solution to Eqs. (25), obtained via Page’s approximation [22]
for the RSET valid for conformal fields. We find that, as
expected, York’s solution closely approximates the full,
numerical solutions. An issue that arose during York’s
calculation of the backreaction induced by a conformal field
was that the perturbation was unbounded for large r and the
backreaction had to be computed in an artificial box and
matched to an asymptotically flat solution. However, the
backreaction induced by the large-mass approximation to
the RSET does not suffer this pathology [21,23].What about
the intermediate field masses? In Fig. 4, we plot the ratio
of the metric perturbations to the background metric for
various values of μ. We see that as μ increases, the growth of
these perturbations decrease and hence the location of the

FIG. 2. Plot of hT̂r
ri as a function of radius and field mass.(a)

(b)

(c)

FIG. 1. Plots showing various components of the RSET and
their dependence on the coupling ξ.
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outer boundary where the solution is matched to an asymp-
totically flat spacetime can beplaced further and further away
from the black hole. While the boundedness of the back-
reaction for large r is only strictly true in the μ → ∞ limit, in
practice, provided that μ is much larger than the black hole
temperature, one need not be concerned with the matching
procedure employed by York [22], especially since one is
usually interested in the backreaction near the black hole.
Turning, finally, to the application of our method to the

investigation of the energy conditions applied to the RSET
in the Hartle-Hawking state. In one approach to this
investigation, one could try to examine energy conditions
by considering the sign of the RSET measured by a local
observer, that is, by considering the RSET projected onto a
timelike trajectory. However, in general there is a problem
with this approach in that the RSET usually depends on the
renormalization length scale l and so it is possible that one
could have either sign for the locally measured RSET
depending on what choice is made for this length scale.
Hence, this approach cannot be physically meaningful.
On the contrary, by a serendipitous cancellation of terms

that depend on l, the energy density along the null circular
geodesic at r ¼ 3M is independent of the renormalization
length scale and so is physically meaningful. Applying our
method for a range of field masses, we find that, except

where the coupling is extremely negative (the semiclassical
perturbations are no longer small for such large couplings),
the energy density is positive and we find no evidence the
null energy condition is violated. This is in contrast to
the conclusion for a massless, minimally coupled field in
the Unruh state [13]. Below we give the energy density for
some sample field masses:

Tμ¼0
null ≃ ð1.2093 × 10−6 þ 6.5390 × 10−12ξÞa2ℏM−4

Tμ¼1=10
null ≃ ð9.1871 × 10−7 þ 6.3792 × 10−12ξÞa2ℏM−4

Tμ¼1=5
null ≃ ð5.2529 × 10−7 þ 6.0034 × 10−12ξÞa2ℏM−4

Tμ¼1=2
null ≃ ð8.5113 × 10−8 þ 4.6103 × 10−12ξÞa2ℏM−4

where a is arbitrary.

VI. CONCLUSIONS

In conclusion, we have presented a very efficient mode-
sum regularization prescription for computing the RSET for
a scalar field in the Hartle-Hawking state on static, spheri-
cally symmetric black hole spacetimes. The method offers
an “off-the-shelf” solution for rapidly computing the RSET
without recourse to an expensive numerical undertaking.We
show that all of the components of the RSET can be obtained
without taking any radial derivatives of the Green function.
This is a great simplification as it implies that we can set the
radial points together r ¼ r0 from the outset of the calcu-
lation. We prove the efficiency of the method by computing
and presenting results for the RSET in Schwarzschild
spacetime for a scalar field with arbitrarymass and coupling.
Given the efficiency of our method, it is a routine matter

to compute the RSET to sufficient accuracy that it can be
employed to numerically compute the backreaction. We
employ our results for the RSET to compute the semi-
classical backreaction on the classical Schwarzschild black
hole induced by the stress-energy of a quantum field with
various masses. We show that the asymptotic structure of
the perturbed spacetime is sensitive to the field mass. The
perturbation grows without bound for large r but the rate of
this growth is suppressed for more massive fields. Hence
the region for which we might expect this semiclassical
perturbation to be valid is larger for more massive fields.
As a final application of our results, we investigated the

null energy condition on the photon sphere in Schwarzschild.
We found no evidence that the NEC is violated except when
the coupling constant is very largely negative, but in this case
the perturbations to the background are so large that the
perturbative expansion on which our semiclassical approxi-
mation is based breaks down.
The current work may be extended in several directions.

Perhaps the most straightforward extension would be to
other quantum states. One could do this either by working
on the Lorentzian spacetime from the outset or by leverag-
ing a state subtraction scheme. It would also be of great

2 3 4 5 6 7

0.001

0.002

0.003

0.004

FIG. 3. Comparison of the exact solutions to the reduced order
field equations with York’s approximate results (dashed lines) for
a conformal field. Here M̂ represents the quantum dressed black
hole mass and ρ0ðrÞ ¼ ρðrÞ − ρð2M̂Þ, ζ0ðrÞ ¼ ζðrÞ − ζð2M̂Þ.

2 3 4 5 6 7

−0.0010

−0.0005

0.0005

0.0010

FIG. 4. Ratio of the metric perturbation component Δgrr ¼
2M̂ζ0ðrÞ=ðr − 2M̂Þ, to the background metric component grr, for
various field masses with ξ ¼ 1=6.
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interest to attempt to extend this regularization scheme to
spacetimes with less symmetry assumptions, such as
rotating black holes. In Kerr spacetime, there is no
Hartle-Hawking state so it would first be necessary to
extend the results of this paper to other quantum states.
Finally, we have presented only results in four spacetime
dimensions, it ought to be straightforward to extend these
results to arbitrary dimensions.

APPENDIX: HADAMARD COEFFICIENTS
AND REGULARIZATION PARAMETERS

Below we list the coefficients Dð�Þ
ij ðrÞ, T ðlÞ

ij ðrÞ, T ðrÞ
ij ðrÞ,

and T ðpÞ
ij ðrÞ to 2nd order. The higher order coefficients can

be found in the accompanyingMathematica notebook [24].

The regularization parameters Ψð�Þ
ln ði; jjrÞ, χnlði; jjrÞ are

listed on the next page.

DðþÞ
00 ðrÞ ¼ 2;

DðþÞ
10 ðrÞ ¼ −

fðrÞðr2f00ðrÞ− 2rf0ðrÞ þ 2fðrÞ− 2Þ
12r2

;

DðþÞ
11 ðrÞ ¼ fðrÞðr2ðf0ðrÞ2 − 4κ2Þ− 4fðrÞðrf0ðrÞ þ 1Þ þ 4fðrÞ2Þ

24r2
;

DðþÞ
20 ðrÞ ¼ 1

2880r4
ðfðrÞ½−5r2ð4κ2 − f0ðrÞ2Þðr2f00ðrÞ− 2rf0ðrÞ− 2Þ− 8fðrÞ2ð3r3fð3ÞðrÞ− 7r2f00ðrÞ þ 19rf0ðrÞ þ 10Þ

þ fðrÞð9r4f00ðrÞ2 − 20r2f00ðrÞ þ 86r2f0ðrÞ2 þ 4rf0ðrÞð3r3fð3ÞðrÞ− 14r2f00ðrÞ þ 20Þ− 40κ2r2 þ 4Þ þ 76fðrÞ3�Þ

DðþÞ
21 ðrÞ ¼ −

1

2880r4
ðfðrÞ½r4ð−20κ2f0ðrÞ2 þ f0ðrÞ4 þ 64κ4Þ þ r2fðrÞð−20κ2ðr2f00ðrÞ− 6Þ þ 120κ2rf0ðrÞ− 30rf0ðrÞ3

þ f0ðrÞ2ð11r2f00ðrÞ− 30ÞÞ þ 4fðrÞ3ð11r2f00ðrÞ− 52rf0ðrÞ− 40Þ− 2fðrÞ2ð10r2f00ðrÞ− 67r2f0ðrÞ2
þ f0ðrÞð22r3f00ðrÞ− 80rÞ þ 60κ2r2 − 28Þ þ 104fðrÞ4�Þ

DðþÞ
22 ðrÞ ¼ fðrÞ2ðr2ðf0ðrÞ2 − 4κ2Þ− 4fðrÞðrf0ðrÞ þ 1Þ þ 4fðrÞ2Þ2

1152r4
;

Dð−Þ
11 ðrÞ ¼ −

f0ðrÞ
6r

Dð−Þ
21 ðrÞ ¼

fðrÞð−9rf0ðrÞ2 þ 6rfðrÞðrfð3ÞðrÞ− 2f00ðrÞÞ þ 2f0ðrÞð7r2f00ðrÞ þ fðrÞ þ 5ÞÞ
720r3

Dð−Þ
22 ðrÞ ¼

7r2f0ðrÞ2 − 10rf0ðrÞ þ rfðrÞð9rf00ðrÞ þ 4f0ðrÞÞ− 3fðrÞ2 þ 3

720r4

T ðlÞ
00ðrÞ ¼

6μ2r2 − ð6ξ− 1Þðr2f00ðrÞ þ 4rf0ðrÞ þ 2fðrÞ− 2Þ
12r2

T ðlÞ
10ðrÞ ¼

1

480r4
ðr2f00ðrÞðð10ξð3ξ− 1Þ þ 1Þr2f00ðrÞ− 10ð6ξ− 1Þð2ξþ μ2r2ÞÞ þ 4ð5ξð24ξ− 5Þ þ 1Þr2f0ðrÞ2

þ 2rf0ðrÞðð5ξ− 1Þr3fð3ÞðrÞ þ 2ð60ξ2 − 5ξ− 1Þr2f00ðrÞ þ 40ð1− 6ξÞξþ 10μ2ð1− 12ξÞr2Þ
þ 2rfðrÞðð80ξð3ξ− 1Þ þ 6Þf0ðrÞ þ rðð20ξð3ξþ 2Þ− 8Þf00ðrÞ þ rðð5ξ− 1Þrfð4ÞðrÞ þ ð40ξ− 7Þfð3ÞðrÞÞÞÞ
− 40fðrÞξð6ξþ 3μ2r2 − 1Þ þ 4ð10ξð3ξ− 1Þ þ 1ÞfðrÞ2 þ 2ð15ð2ξþ μ2r2Þ2 − 2ÞÞ

T ðlÞ
11ðrÞ ¼

fðrÞ
480r4

ð−2ðr2f00ðrÞ þ 2Þðð1− 5ξÞr2f00ðrÞ þ 10ξþ 5μ2r2 − 2Þ þ 2ð1− 10ξÞr2f0ðrÞ2

þ rfðrÞðð16− 80ξÞf0ðrÞ þ rðð12− 80ξÞf00ðrÞ þ rðrfð4ÞðrÞ þ ð6− 20ξÞfð3ÞðrÞÞ þ 20μ2ÞÞ þ 8ð5ξ− 1ÞfðrÞ2
þ rf0ðrÞðð10ξ− 1Þr3fð3ÞðrÞ þ 4ð20ξ− 3Þr2f00ðrÞ þ 20ð6ξ− 1ÞÞÞ

T ðrÞ
10 ðrÞ ¼

fðrÞðr2ðf0ðrÞ2 − 4κ2Þ− 4fðrÞðrf0ðrÞ þ 1Þ þ 4fðrÞ2Þðð1− 6ξÞð2− rðrf00ðrÞ þ 4f0ðrÞÞ− 2fðrÞ þ 2Þ− 6μ2r2Þ
576r4

T ðpÞ
10 ðrÞ ¼

ðfðrÞ− 1Þðð1− 6ξÞð2− rðrf00ðrÞ þ 4f0ðrÞÞ− 2fðrÞÞ− 6μ2r2Þ
144r4

T ðpÞ
11 ðrÞ ¼

fðrÞðrf0ðrÞ− 2fðrÞ þ 2Þðð1− 6ξÞð2− rðrf00ðrÞ þ 4f0ðrÞÞ− 2fðrÞÞ− 6μ2r2Þ
144r4

: ðA1Þ
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The regularization parameters Ψð�Þ
ln ði; jjrÞ, χnlði; jjrÞ are given by

ΨðþÞ
nl ði; jjrÞ ¼ 2i−j−1i!ð2i− 1Þ!!ð−1Þnþj

κ2iþ2jr2jþ2j!

Xnþi

p¼n−i

�
1

η

∂

∂η

�
j P−jpj

l ðηÞQjpj
l ðηÞ

ði− nþpÞ!ðiþ n−pÞ!

Ψð−Þ
nl ði; jjrÞ ¼

ð1− jÞ2i−jð−1Þnþj

2κ2i−2jr2−2j
Xj

k¼0

ð−1Þk
�
j

k

� ðlþ 1
2
þ j− 2kÞ

ðlþ 1
2
− kÞjþ1

Xnþi−j

p¼n−iþj

P−jpj
lþj−2kðηÞQjpj

lþj−2kðηÞ
ði− j− nþpÞ!ði− jþ n−pÞ!

χnlði; jjrÞ ¼
8<
:

ð−1Þnði−jÞ!ð2jÞ!
2κ2jr2j−2i

P1þi−j
k¼0 ð−1Þk

	
1þi−j

k


 ðlþ3
2
þi−j−2kÞ

ðlþ1
2
−kÞ2þi−j

Pnþj
p¼n−j

P−jpj
lþi−jþ1−2kðηÞQ

jpj
lþi−jþ1−2kðηÞ

ðj−nþpÞ!ðjþn−pÞ! for l > i− j

2i−1r2i−2jð−1Þl
πκ2j−1

h
d
dλ ðλþ 1− lÞl

	
2r2

l2



λ−iþj R 2π=κ

0 ð1− cosκtÞje−inκtðz2 − 1Þðλþ1Þ=2Q−λ−1
l ðzÞdt

i
λ¼i−j

for l ≤ i− j:

In the regularization parameters above, we have used the
definitions

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðrÞ

κ2r2

r
; z ¼ 1þ fðrÞ

κ2r2
ð1 − cos κtÞ:

Moreover, ðxÞn represents the Pochhammer symbol, Pμ
νðηÞ,

Qμ
νðηÞ represent the associated Legendre functions of the

first and second kind, respectively, with the branch cut
along the real axis on ð−∞; 1�. Finally, Qμ

νðzÞ is Olver’s

definition of the associated Legendre function of the second
kind. In the expression for χnlði; jjrÞ for l ≤ i − j, it is
possible to express this integral in closed form in terms of
Euler’s beta functions. However, the expression is very
cumbersome so we instead express it in integral form.
Moreover, this integral is numerically evaluated very
rapidly and so the closed form representation is redundant.
We also point out that the l appearing in ð2r2=l2Þ is the
arbitrary length scale associated with the renormalization
ambiguity, not to be confused with the quantum mode
number l also appearing in this expression.
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