Structural systematics of series of benzamides and carboxamides
 John F Gallagher* and Islam Ali Osman
 School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
 Poster PP-051 for the 31 ${ }^{\text {st }}$ DGK (2023, Frankfurt am Main)

Introduction

The effects of $\mathbf{X}\left(\mathrm{CH}_{3}, \mathrm{~F}, \mathrm{Cl}\right)$ and pyridine \mathbf{N} atom substitution patterns on molecular structure/conformation in benzamides, pyridinecarboxamides and isophthalimides have been reported by us (Figure 1). ${ }^{1-5}$ Research integrates crystal structure analyses, computational calculations of conformations, with NMR data and melting point data. ${ }^{1-5}$ This poster highlights the crystal structures of six isophthalimides (DxE) and pyridine relatives (PxE) ($\mathrm{D}=$ meta$\mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{P}=$ meta-pyridine; $\mathbf{x E}=2$-/3-/4-ethyl ester substitution).

Scheme 1: Mxx/NxxM/NxxF/Fxx benzamide and pyridinecarboxamide series Potential Energy Scans (PES) of the NmmF isomer (meta-F and meta-N).

Experimental methods

Nucleophilic acyl substitution (condensation) reactions of benzoyl chlorides (or isophthaloyl dichloride) with mono-substituted aminopyridines in the appropriate ratios produces benzamides or isophthalamides. Purification is by standard organic washing techniques, and sometimes chromatography. ${ }^{1-5}$ Single crystal X-ray data were collected using a XtaLAB Synergy, Dualflex, ATLAS2 at 100 (1) K. Spectroscopic data analysis as reported previously. ${ }^{1-5}$

Figure 1: A schematic diagram of the DxE/PxE series; view of D2E (overlay with a symmetry related D2E); the D2E crystal structure (as viewed along the b-axis).

FN N DD
$\frac{3 x i n}{18}$

(10)

HEA

Figure 3: An ORTEP plot and two views of $\mathrm{P} 2 \mathrm{E} \bullet(0.44) \mathrm{H}_{2} \mathrm{O}$; with $\mathrm{O}-\mathrm{H} \ldots \pi($ arene $)$ contact.

Figure 4: An ORTEP plot and view of the 'arrowhead' packing in $\mathrm{P} 3 \mathrm{E} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$.

Figure 5: An ORTEP plot and two packing views of $\mathrm{P} 4 \mathrm{E} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ (with $\mathrm{H}_{2} \mathrm{O}$ removed)
Computational analysis
The conformational analysis was performed as previously described and the PES scan for P4E is depicted on the RHS (Figure 7). ${ }^{1-4}$

Results and Conclusions
Over the past decade we have analysed the structures of several series of organic benzamides, pyridinecarboxamides and carbamates. Comparisons have been made between the $(\boldsymbol{n} \times \boldsymbol{m})$ isomer grids comprising many crystal structures. ${ }^{1-5}$ Recently we expanded the research into isophthalimides and their pyridine relatives, with mono-halo-derivatives as a starting point. ${ }^{6}$ Herein, six isophthalamide (DxE) and pyridinedicarboxamide diesters (PxE) are reported as analyzed by single crystal X-ray diffraction ($\mathbf{D}=$ meta- $\mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{P}=$ meta-pyridine; $\mathbf{x E}=2$-/3-/4-ethyl ester substitution).
D2E (Figure 1) is planar as induced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions. All 34 non-H atoms lie within $0.1 \AA$ of the D2E molecular plane. There is extensive intermolecular ring...ring stacking and the closest interplanar $\mathrm{C} \cdots \mathrm{C}$ is $3.372(2)$ A. For D3E $\left(Z^{\prime}=4\right)$ and D4E (Figure 2) the hierarchy of intermolecular interactions is an influential factor in driving structure formation. In P2E (GAPTUP) ${ }^{7}$, (Figure 3) the O1W molecule [site occupancy $=0.441(5)$] forms four interactions $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}, \mathrm{O} 1 \mathrm{~W}-\mathrm{H} \cdots \pi$ (arene) and two aromatic $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 1 \mathrm{~W}$. The meta- and para-substituted $\mathbf{P}(3 / 4) \mathrm{E} \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)$ structures have open conformations with pairs of water molecules hydrogen bonding in molecular niches between the side benzamide ester groups (Figures 4 and 5)
The entry point into the diester chemistry has provided six distinct (DxE/PxE) compounds and crystal structures. Further reaction yields the acid derivatives DxA/PxA which provides a platform for complexation with a range of metals providing new metal complexes. ${ }^{8}$

References:

1. P. Mocilac, M. Tallon, A.J. Lough, J.F. Gallagher, CrystEngComm, 2010, 12, 3080-3090.
2. P. Mocilac, K. Donnelly, J.F. Gallagher, Acta Crystallographica, 2012, B68, 189-203.
3. P. Mocilac, I.A. Osman J.F. Gallagher, CrystEngComm, 2016, 18, 5764-5776.
4. J.F. Gallagher et al., Crystal Growth \& Design, 2019, 19, 6141-6158.
5. J.F. Gallagher et al., Crystal Growth \& Design, 2022, 22, 3343-3358.
6. I. A. Osman, V. McKee, C. Jelsch, J.F. Gallagher, Symmetry, 2023,15, 738.
7. S. Abdolmaleki, M. Ghadermazi, Inorg. Chim Acta, 2017, 461, 221-232.
8. A.J.L. Pombeiro et al., Dalton Trans., 2020, 49, 8075.
