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Abstract: Gas is the transaction-fee metering system of the Ethereum network. Users of the network 

are required to select a gas price for submission with their transaction, creating a risk of overpaying 

or delayed/unprocessed transactions involved in this selection. In this work, we investigate data in 

the aftermath of the London Hard Fork and shed insight into the transaction dynamics of the net-

work after this major fork. As such, this paper provides an update on work previous to 2019 on the 

link between EthUSD/BitUSD and gas price. For forecasting, we compare a novel combination of 

machine learning methods such as Direct-Recursive Hybrid LSTM, CNN-LSTM, and Attention-

LSTM. These are combined with wavelet threshold denoising and matrix profile data processing 

toward the forecasting of block minimum gas price, on a 5-min timescale, over multiple lookaheads. 

As the first application of the matrix profile being applied to gas price data and forecasting that we 

are aware of, this study demonstrates that matrix profile data can enhance attention-based models; 

however, given the hardware constraints, hybrid models outperformed attention and CNN-LSTM 

models. The wavelet coherence of inputs demonstrates correlation in multiple variables on a 1-day 

timescale, which is a deviation of base free from gas price. A Direct-Recursive Hybrid LSTM strategy 

is found to outperform other models, with an average RMSE of 26.08 and R2 of 0.54 over a 50-min 

lookahead window compared to an RMSE of 26.78 and R2 of 0.452 in the best-performing attention 

model. Hybrid models are shown to have favorable performance up to a 20-min lookahead with 

performance being comparable to attention models when forecasting 25–50-min ahead. Forecasts 

over a range of lookaheads allow users to make an informed decision on gas price selection and the 

optimal window to submit their transaction in without fear of their transaction being rejected. This, 

in turn, gives more detailed insight into gas price dynamics than existing recommenders, oracles 

and forecasting approaches, which provide simple heuristics or limited lookahead horizons. 
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1. Introduction 

Blockchain technologies and their applications such as cryptocurrencies, smart con-

tracts, Non-Fungible Tokens (NFTs) and DeFi (Decentralized Finance) show great poten-

tial for disruption and innovation, and they are much discussed. The development of these 

decentralized applications is enabled through the Ether cryptocurrency, the associated 

blockchain Ethereum, and the Ethereum Virtual Machine. Ether (ETH) is the second larg-

est cryptocurrency by market cap after Bitcoin. Use of the Ethereum network is growing; 

daily transactions rose from 500,000 to 2,000,000 between 2018 and 2023 [1]. 

Ethereum network transactions are cryptographically signed instructions between 

accounts. These instructions can be as simple as a transfer of ETH or more complex con-

tract deployments that enable a variety of decentralized applications. Gas is the unit of 

computational work used when processing a transaction on the network. The number of 



 

 

gas units consumed by a transaction is dependent on the computational complexity of the 

transaction. Gas has a price per unit in ETH, and the price is submitted by the sender with 

the transaction [2]. The process of packing transactions into blocks proceeds as follows: 

many transactions can go into a single block in Ethereum with miners carrying out a num-

ber of tasks:  

The list of pending transactions arranged by gas price—and hence processing prior-

ity—is the first parameter that the miners have to work with. In addition, the amount of 

transactions that miners can add to a block is restricted. After the miners have decided 

which transactions should be packed, the Proof of Work procedure starts [3]. If the total 

amount of gas used by all the transactions is greater than the block’s upper limit, the block 

will not be recognized by the Ethereum network. If this is not the case, the transaction can 

be included in the block and the associated reward is given to the miner who finds the 

new block first. The selection of transactions by miners has been shown to be almost ex-

clusively based on the submitted gas price [4]. 

There is risk associated with gas price selection when submitting a transaction; too 

high will result in unnecessarily high fees, while selecting too low can incur transaction 

wait times or failure of the transaction to be processed if not selected by miners. High gas 

fees are seen as a major impediment to applications on the Ethereum network. The impact 

of gas fees on applications can be seen in cases such as ConstitutionDAO [5]. 

It was in part to address such issues that the Ethereum London Hard Fork was intro-

duced on 5 August 2021 [6]. One innovation introduced here is the move from Proof of 

Work to Proof of Stake. The main motivation behind this was rather than processing 

power being used for voting, users become validators on the basis of the number of staked 

coins they have. Proof of Stake is designed to allow for better energy efficiency and a lower 

bar for entry [7].  

Prior to the introduction of Ethereum 2.0 (Serenity) [8] and the switch to the Proof of 

Stake system, it was necessary to make several preparations, and these were introduced 

in the five further Ethereum Improvement Proposals (EIPs) [9]. One of these, EIP-1559, 

was designed to make fees more user-friendly and increase the uniformity of the transac-

tions mined in a block. Additionally, this proposal is aimed at reducing overpayments to 

miners. EIP-1559 offers a variable block size with a 50% target usage. Thus, the majority 

of the time slots will be only halfway full. There may still be spikes when there are full 

blocks for a while, but it is more likely to happen for brief intervals. As the dataset used 

for this paper post-dates this introduction, we cover the details of EIP-1559 briefly below.  

Several gas price recommenders (or oracles) exist to aid the gas price prediction task 

currently. These recommenders use simple heuristics and past data to generate a number 

of recommendations. Go-Ethereum (Geth) recommends a gas price to submit for the next 

block based on a percentile of minimum block gas prices for the past number of blocks, 

defaulting to the 60th percentile of the last 20 blocks [10]. EthGasStation estimates the 

number of blocks waited when a transaction is submitted at a specified gas price, which 

is based on a Poisson regression model using the previous 10,000 blocks of data [11]. Gas-

Station—Express estimates the likelihood of a transaction being included in the next block 

at a gas price based on proportion of the last 200 blocks with a transaction at that price or 

lower [12]. The performance of these oracles has, however, not lived up to expectations in 

many cases (as will be detailed below) [13]. 

This paper is related to previous gas price forecasting and recommender work by 

Mars et al. [14] and Werner et al. [15]. The aim of this study is to first investigate the rela-

tion between potential model inputs in blockchain and exchange data, using wavelet co-

herence as seen Garrigan et al. [16], Sun and Xu [17] and Qu et al. [18]. The next stage is 

development of a forecasting model based on these inputs. Previous approaches have ap-

plied Long Short-Term Memory (LSTM) and Attention-Gated Recurrent Unit (GRU) mod-

els [3]. This study intends to investigate performance over different forecast horizons, us-

ing multiple approaches; a direct-recursive hybrid LSTM forecasting approach, inclusion 

of an attention mechanism with the matrix profile (as seen applied to low-granularity 

daily COVID data by Liu et al. [19]) and also Convolutional Neural Networks (CNNs) fed 



 

 

to LSTM architectures, or CNN-LSTMs. A comparison of these methods has been made 

recently by Chandra et al. [20]. 

Wavelet denoising will also be investigated, as seen in Dyllon et al. [21] and Qiu et al. 

[22]. A combination of wavelet transforms, matrix profile and attention-LSTM methods 

toward time-series forecasting is a novel approach to our knowledge, particularly in the 

domain of blockchain transaction fees. 

We feel that our paper contributes to the literature through: 

1. First and foremost, the time period studied is in the aftermath of the so-called 

Ethereum London Hard Fork when the immediate aftereffects of this had passed. In 

particular, we feel that Research Question 3 of our study provides an update on Pi-

erro and Rocha’s work of 2019 [23] on the link between EthUSD/BitUSD and gas 

price. 

2. This study is the first that we have found to investigate performance over different 

forecast horizons. These time horizons are useful, as a user must select between these 

and potentially be penalized in terms of cost or missed transactions for choosing one 

over the other. There is thus a real cost penalty for the user in not choosing correctly 

here. 

3. In our study, we use multiple approaches: a direct-recursive hybrid LSTM forecast-

ing approach, inclusion of an attention mechanism with the matrix profile, as seen 

applied to low-granularity daily COVID data and also Convolutional Neural Net-

works (CNNs), fed to LSTM architectures, or CNN-LSTMs. In the case of matrix pro-

files, this is the first incidence that we could find of the use of the method in gas price 

prediction. 

These, we feel, provide an academic and practical justification for why this research 

is warranted at the current time. Specifically, the Research Questions and aims of this pa-

per are as follows, to be addressed using data from 26 November 2021 to 31 April 2022: 

RQ1. What is the best method to forecast minimum block price across multiple 

lookaheads, comparing several modeling approaches? 

RQ2. Wavelet transforms and the matrix profile are unstudied methods in this area; can 

these methods improve forecasting metrics or provide insight into gas price mechanics? 

RQ3. How do blockchain and ETH cryptocurrency exchange data relate to gas price, and 

can these data be used to improve forecasting metrics? 

The sections contained in this paper are: Section 2. Glossary; Section 3. Gas Mechanics 

Literature Survey; Section 4. Previous Work on Gas Price Prediction; Section 5. Materials 

and Methods; Section 6. Methods for Data Modeling; Section 7. Results; Section 8. Discus-

sion; Section 9. Conclusions. 

2. Glossary 

Ethereum Network Terminology [4] 

 Block: Batch of transactions added to the blockchain. 

 Contract/Smart Contract: Complex transaction, with clauses and dependencies for 

operation; not a simple transfer of ETH. Basis of complex applications. 

 ETH: Ether, cryptocurrency of the Ethereum network. 

 Gas: Unit of computational work completed when processing transaction on the 

Ethereum network. The gas required to process transactions increases with transac-

tion complexity. 

 Gas Price: Fee paid to miners by transaction sender, per unit of gas, to process a trans-

action and include it in the blockchain. Operates on priority queuing basis: the high-

est gas price transactions are selected by miners, the gas price is selected by transac-

tion senders. Price is typically quoted in gwei. 



 

 

 Gwei: The denomination of ETH cryptocurrency. One ETH is equivalent to 1018 wei. 

A giga-wei, or gwei, is equivalent to 109 wei, or 10-9 ETH. All gas price values given 

in this work are in gwei.  

 Mempool: Cryptocurrency nodes that function as a way to store data on unconfirmed 

transactions, acting as a transaction waiting room prior to inclusion in a block. 

 Miner: Third party that performs necessary computations for the inclusion of trans-

action on the blockchain, at a fee.  

 Transaction: Cryptographically signed instruction from one Ethereum network ac-

count to another, which includes simple ETH transfer and more complex contract 

deployments that allow for various applications on the network. 

3. Gas Price Mechanics Literature Survey 

3.1. Economics of Ethereum Gas Price 

Economic determinants of gas price based on blockchain and cryptocurrency ex-

change data are investigated by Donmez et al. [24]. A strong non-linear association is 

found between block utilization and both marginal and median daily gas prices. Gas price 

is found to be highly influenced by block utilization above 90%, with minimal impact be-

low 90%. ETH transfer transactions are found to be more urgent than smart contact trans-

actions, and a higher proportion of transfers is found to be associated with higher gas 

prices. Gas price is found to be negatively associated with ETH value. This is consistent 

with the principle of network users being concerned with network usage costs in term of 

real currency value [23].  

The inclusion of transactions in the next mined block operates on a priority queuing 

mechanism and is shown to comply with economic predictions from queueing theory and 

supply/demand theory [23]. Basic ETH transfer-type transactions are observed to have 

higher urgency and thus typically higher gas price submission. This is because miners 

select transactions for inclusion based almost solely on gas price [5]. It is assumed that the 

observed minimum gas price variable will begin to rise when sufficient numbers of high-

priority, higher paying transactions are available to fill mining capacity, and transactions 

close to the base fee are no longer selected. We can observe that the min-gas price rarely 

deviates from the base fee; however, cases do occur where there is significant deviation. 

It is possible that lower and upper percentiles of gas prices within blocks may contain 

some predictive information as to these events, as mining capacity is gradually filled. 

The block base fee, the minimum gas price for a submitted transaction in order for it 

to be eligible for inclusion in the block, is related to block size through a process known 

as tâtonnement. Blocks have a target size of 15 million gas, and the size is adjusted to meet 

network demands up to a maximum of 30 million gas worth of transactions per block. The 

base fee is increased by up to 12.5% of the previous blocks base fee, when the previous 

block is above the target, continually increasing until the block size has returned to the 

target [4]. The process from transaction submission to inclusion in the blockchain is shown 

in Figure 1. 



 

 

 

Figure 1. Ethereum Blockchain Flow (reproduced with permission from Mars et al. [14]). 

3.2. Influencing Factors on Ethereum Gas Price 

Influencing factors of gas price, and also the reliability of gas price oracles, are inves-

tigated by Pierro et al. [24]. Ref. [24] defines gas price as the Etherchain “Fast” price, which 

is defined as the price where 90% of the previous 200 mined blocks contain a transaction 

at this price. Transactions submitted at this price are expected to be processed by miners 

within 1–2 min. The gas price is indicated to have pairwise Granger causation with miner 

count and unconfirmed transaction count at p = 0.05. Both cases have negative Pearson 

correlation. Gas price was not found to share Granger causality with the other tested var-

iables: hash rate, bloc time, block difficulty, ETH/US Dollar, and ETH/Bitcoin. Strangely, 

although some (Werner et al. [15] and Liu et al. [25]) have used the ETH price as an input 

for their models, and Donmez et al. [24] also talk about a negative association between 

ETH and gas price, this current work is the first we have found to investigate the relation-

ship between them as opposed to just modeling based on the ETH price. It is to address 

this—particularly in light of EIP-1559—that we relook at this issue here. 

Liu et al. also looked at influencing factors on gas price [25]. They present a Machine 

Learning Regression (MLR)-based approach to predicting gas prices with the goal of lo-

cating the next block’s lowest transaction gas price for conducting cost-effective Ethereum 

transactions. Specifically, they identify five influencing parameters from the Ethereum 

transaction process (i.e., difficulty, block gas limit, transaction gas limit, ether price, and 

miner reward) and use a traditional machine learning regression to develop the predictive 

model. The proposed MLR technique appears to function effectively and can lead to con-

siderable potential savings for all transactions with a 74.9% accuracy, according to their 

empirical analysis on 194,331 blocks. 

3.3. Experiences around The Ethereum Hard Fork 

The lack of clarity around Ethereum gas fees was in part the reason that Ethereum-

London Hard Fork was introduced on 5 August 2021. Prior to the introduction of 

Ethereum 2.0 (Serenity) and the switch to the Proof of Stake system (PoS), it was necessary 

to make several preparations, and these were introduced in the five further Ethereum Im-

provement Proposals (EIPs). The element of the Ethereum protocol that establishes the 

cost for every transaction added to the blockchain is the transaction fee mechanism. His-

torically, Ethereum employed a first-price auction fee mechanism. EIP-1559 suggested 



 

 

making several changes to this, e.g., introducing variable-size blocks, a history-dependent 

reserve price, and the burning of a large part of the transaction fees, to conserve the value 

of the currency [26]. EIP-1559’s influence on user experience and market performance in 

the immediate aftermath of its launch was assessed by Reijsbergen et al. [27] using on-

chain data. Empirical results indicate that although EIP-1559 generally succeeds in achiev-

ing its objectives, its short-term behavior is characterized by severe, chaotic oscillations in 

block sizes (as predicted by the authors’ most recent theoretical dynamical system analy-

sis) and sluggish adjustments during demand spikes (such as NFT drops). Unwanted in-

ter-block fluctuation in mining rewards is caused by both occurrences. An alternate base 

fee adjustment method is suggested that uses an additive increase, multiplicative decrease 

(AIMD) updating strategy to account for this. Simulations demonstrate that under various 

demand scenarios, the latter robustly beats EIP-1559. Results show that variable learning 

rate methods may be a viable alternative to EIP-1559, advancing ongoing talks on the cre-

ation of transaction fee marketplaces with higher levels of efficiency. 

Liu et al. also looked at the impact at the impact of the introduction of EIP-1559 [28] 

using the available data from the Ethereum blockchain, the Mempool, and exchanges. To 

investigate its causal impact on blockchain transaction cost patterns, transaction waiting 

times, and consensus security, they found that EIP-1559 enhances user experience by min-

imizing intra-block variations in gas prices paid and cutting down on user wait times. 

However, they also discover that waiting time is substantially longer when Ether’s price 

is more erratic.  

Lan et al. [29] propose a machine learning-based method to forecast the gas price of 

upcoming blocks paired with a dynamic feature also explored from Mempool. In partic-

ular, they took into account pending transactions and their gas cost in the Mempool and 

used them for the first time as a machine learning feature. For prediction, they mix the 

Mempool features with machine learning models with results showing good prediction 

ability, especially in the two indices MAE and RMSE.  

4. Previous Work on Gas Price Prediction 

4.1. The Role and Performance of Gas Price Oracles  

The role of gas price recommenders or oracles in the prediction of the gas price has 

been discussed by a number of authors [30–34]. In brief, the gas price oracle attempts to 

predict the future gas price on the basis of previous block utilization. If the oracle indicates 

a lower than 100% utilization, this tends to show that there was spare capacity and hence 

there could be an opportunity to reduce gas price bid. Conversely, utilization at more than 

100% would indicate that a reduced bid would incur the risk of its transaction not being 

selected by the miners. To help set the right gas price, the Gas Oracle categorizes the gas 

price into categories based on the interval of time the user might be willing to wait and 

for each of them suggests a gas price to set [31]. 

Empirical analysis of historic gas price data, proposal of a gas price recommendation 

algorithm and driving GRU-network based gas price forecast can be seen in Werner et al. 

Implementing an additional wait time of 4.8 blocks (~60 s) with the proposed approach 

resulted in a saving of 75% on gas fees when compared to the popular Go-Ethereum 

(Geth) recommender. Forecast evaluation metrics are not discussed. The recommendation 

algorithm was fed ground truth gas price data, which showed further improvement on 

the GRU-driven forecast, indicating room for improvement on the forecasting model. Em-

pirical analysis of the gas price data shows high volatility with mean maximum gas price 

exceeding mean minimum gas price by orders of magnitude and the average block gas 

price having a mean of 113.96 and standard deviation of 46.46. The autocorrelation of 1 h 

interval gas price averages indicates daily seasonality. A pre-processing approach of 

down-sampling gas price data to 5 min resolution, deletion of outliers above 2 standard 

deviations, and Fourier transform based denoising is employed [15]. 



 

 

Pierro [31,32] looked at Gas Oracles’ forecasts, finding they are less accurate than 

claimed and user-defined categories for these prices are incorrect. To evaluate the accu-

racy of current Gas Oracles, the authors propose a user-oriented model based on two gas 

price categories that correspond to user preferences and a new way to estimate the gas 

price. Their method used Poisson regression at more frequent intervals, forecasting the 

price of gas with a narrower margin of error than the real one, giving users a more useful 

gas price to set. 

Turksonmez et al. [33] developed a new gas prediction accuracy metric to assess or-

acle performance. They showed that oracles overprice transactions, leading them to reach 

the delay target but at a larger cost than necessary, as well as underprice transactions, 

causing them to miss the delay target. The authors compared five gas price oracles with 

results demonstrating relative accuracy, transaction accept rates, price stability, and dis-

cussion of factors that affect oracle accuracy. They noted that the ETHGasStation oracle 

generated the most precise and consistent pricing forecasts.  

In an attempt to improve on oracle performance, particularly during times when 

transaction volumes are increasing rapidly and gas price oracles can underperform, 

Chuang and Lee [34] showed that Gaussian process models can accurately forecast the 

distribution of the lowest price in an upcoming block in the face of such increasing trans-

action volumes. Using the GasStation-Express and Geth gas price oracles, a hybrid model 

combining the two was proposed, providing a superior estimate when transaction volume 

fluctuates significantly. 

Several modeling approaches are compared by Mars et al. [14]. Sliding windows of 

300 previous blocks are used as input to forecast the next block ahead. GRU and LSTM 

models are found to have similar performance. Geth recommendations and Facebook 

Prophet forecasts are found to have similar performance, and they are outperformed by 

the RNN models. Down-sampling and outlier deletion pre-processing steps as found in 

Werner et al. are also employed before RNN modelling [15]. It is on the latter forms that 

we will concentrate for our study. 

Laurent et al. provided a system of equations for calculating the probability a trans-

action is mined in a given period, given a gas price and knowledge of all transactions. The 

system was extended to predicting the probability of transactions being mined by the in-

clusion of a model for arrival or future transactions. The optimal gas price for a transaction 

to yield a specified probability of the transaction being accepted, in a given time frame, 

was achieved using a binary search of the transaction position within the set of modeled 

transactions. The authors state that comparison was difficult with previous works, as the 

probability estimate is a fundamentally different output to existing oracles or machine 

learning forecasts [35]. 

4.2. Time Series Signal Processing and Data Mining 

Dyllon et al. demonstrates wavelet transforms for denoising and signal frequency-

time density visualization. Of particular relevance is that a wavelet decomposition-based 

denoising approach is able to reduce noise in the high granularity, high noise signal while 

preserving seasonal elements. Continuous Wavelet Transform (CWT) is also used to vis-

ualize changing the signal frequency content over time [21]. 

Barry and Crane [36] showed that motifs and matrix profiles can be effective in im-

proving the performance of LSTMs and the prediction of Bitcoin through the use of an 

LSTM neural network, yielding an 8% decrease in RSME for one test case. Sun and Xu 

applied wavelet coherence for the analysis of co-movement and lead–lag effect in multiple 

stock markets. Wavelet coherence allows a three-dimensional analysis of two signals on 

the axes of time, frequency and strength of correlation. Phase difference analysis is used 

to provide information on co-movement sign and lead–lag relationships [17]. Wavelets 

have application to a wide variety of time-series data, as shown by application to wide-

band power signals [16], widespread use in financial market studies [17] and Geodetic 

signals [18].  



 

 

4.3. Deep Learning Models 

An Encoder–Decoder LSTM with attention guided by a matrix profile, as seen in Liu 

et al., can outperform other RNN models on low granularity data [19]. Fajge et al. [37] 

used a number of machine learning methods to determine if a transaction with offered gas 

fees is likely to be added to the blockchain within the anticipated period or not. Their 

results (evaluated on almost one million actual transactions from the Ethereum MainNet) 

showed that the proposed model outperformed existing ones at the time with an achieve-

ment of 90.18% accuracy and 0.897 F1-score when the model is trained with Random For-

est on the dataset balanced with SMOTETomek. Qiu et al. apply an Attention-LSTM, with 

the degree of matching of each input element used to generate the attention distribution, 

and wavelet denoising is also applied; both wavelets and the attention mechanism im-

prove performance compared to a standard LSTM [22].  

CNN-LSTM models, LSTM models with pre-LSTM convolution filtering and feature 

pooling layers have seen widespread use in time-series forecasting. An attractive feature 

of CNN-LSTM models is the ability to effectively handle multiple inputs. Livieris et al. 

apply a CNN-LSTM toward gold price forecasting [38]. Widiputra et al. apply a single-

headed convolution layer, fed into a two layer LSTM network, toward multiple output 

predictions of stock indices of Shanghai, Japanese, Singaporean and Indonesian markets 

[39]. 

Ferenczi and Bădică [40] investigated the prediction of Ethereum gas price with Am-

azon SageMaker DeepAR [41] and found that the choice of covariates had a large effect 

on model performance. They found that gas prices were impacted by various factors viz 

including seasonality, volume of transactions, transaction values, number of token trans-

actions and amount of gas used per block.  

4.4. Research Gaps and Innovations 

We feel that our paper contributes to the literature through the following: 

1. While a number of authors have covered the time period following the Ethereum 

London Fork (e.g., Refs. [26–28]), cited above, we feel that the relationship between 

EthUSD/BitUSD and gas price posited in Research Question 3 of our study provides 

an update on Pierro and Rocha’s work of 2019 [24] on the link. This, we think, is an 

important addition to the corpus of research given the wide fluctuations in the price 

of cryptocurrencies. 

2. Specifically investigating the performance of forecasts over different horizons. These 

time horizons are useful, as a user must select between these and potentially be pe-

nalized in terms of cost or missed transactions for choosing one over the other. There 

is thus a real cost penalty for the user in not choosing correctly here. 

3. In our study, we use multiple approaches: a direct-recursive hybrid LSTM forecast-

ing approach, inclusion of an attention mechanism with the matrix profile, as seen 

applied to low-granularity daily COVID data and also Convolutional Neural Net-

works (CNNs) fed to LSTM architectures or CNN-LSTMs.  

In the case of matrix profiles, as noted above, this is the first incidence that we could 

find of this method used in gas price prediction. With the developing work on this 

method, we feel there is considerable potential for the method to be used to characterize 

patterns in gas price time series. 

5. Materials and Methods 

5.1. Research Framework and Methodology 

The essence of the problem at hand is optimizing costs for a transaction sender. Send-

ers are required to submit the price they pay per unit of gas with their transaction; the 

risks associated with under/overpaying lie with the sender. Oracles exist to recommend a 

gas price to address this risk; however, these are limited to simple heuristics.  



 

 

Previous studies have attempted to improve upon these oracles with time-series fore-

casting-based approaches; however, these are limited to a short lookahead window. To 

our knowledge, existing recommenders and studies are limited to short lookaheads on the 

order of 5 min [14], a single block [25,29], or a handful of blocks [15]. 

This study seeks to provide insight into gas prices further into the future than existing 

oracles and studies. Knowledge of when gas prices will be low, or high, and the magni-

tude of these movements are proposed to provide value when planning transactions. For 

the purpose of generating this insight, the problem is framed as a time-series forecasting—

supervised learning problem. Working within this framework is advantageous, as there 

as there are a wealth of available methods within this framework and a large body of 

existing work to draw from. LSTM models, attention models, and CNN-LSTM are all iden-

tified as powerful modeling approaches toward time-series forecasting. [20].  

Time-series forecasting methods often make use of several data pre-processing meth-

ods before modeling. This study has identified wavelet transforms and the matrix profile 

as pre-processing and exploratory methods novel to gas price prediction and seeks to con-

tribute understanding as to their applicability. 

The presented methodology intends to investigate forecasting performance, across 

the identified modeling approaches, and pre-processing methods. Additionally, wavelet 

coherence is investigated as an exploratory tool. 

5.2. Description of Dataset 

Ethereum blockchain data were collected by query from the publicly available 

BigQuery database. Data spanning 26 November 2021 to 27 April 2022 were used in final 

modeling. Data were retrieved on a block-by-block basis with the final modeled dataset 

consisting of 953,336 blocks, averaging one block every 14 s, with an average of 203 trans-

actions per block. Transactions were grouped by block to determine the block minimum, 

maximum and percentile gas price data, block transaction and contract counts. The gas 

used, base fee and size are provided on a block-by-block basis as is on the blockchain. The 

value of ETH cryptocurrency is known to affect gas prices [16]. Minute-wise tick opening 

prices of ETH, in US Dollar Tether, a stable coin tied to the price of the US dollar, were 

retrieved from Binance exchange historic records [42]. There were no missing data in the 

dataset. 

5.3. Wavelet Coherence  

Wavelet coherence is a bi-variate framework that probes the interaction of two time 

series on the basis of a wavelet function, over varying frequency scales, through time [17]. 

A wavelet ψ is a time and frequency localized function with zero mean. The popular mor-

let wavelet can be defined as in Equation (1), with 𝜔0 denoting the dimensionless central 

frequency. 

𝜓(𝑡) = 𝜋−1 4⁄ 𝑒𝑖𝜔0𝑡𝑒−𝑡2 2⁄   (1) 

In order to compute the wavelet coherence spectrum, we first compute the Continu-

ous Wavelet Transforms (CWTs) and cross-wavelet transform for the two time series. 

Equation (2) shows the CWT 𝑊𝑥(𝜏, 𝑠) of time series x(t). The CWT is yielded by the inner 

product of x(t) with a continuous family of “daughter wavelets” 𝜓𝜏,𝑠(𝑡). 

𝑊𝑥(𝜏, 𝑠) = 〈𝑥(𝑡), 𝜓𝜏,𝑠(𝑡)〉 = ∫ 𝑥(𝑡), 𝜓𝜏,𝑠
∗ (𝑡)𝑑𝑡

+∞

−∞

 (2) 

Equation (3) shows the general form of a daughter wavelet. Daughter wavelets result 

from stretching the mother wavelet by varying |s|, and translating through time by vary-

ing τ with s,τ∈R, s ≠ 0. Complex conjugation of the daughter functions is denoted by 𝜓𝜏,𝑠
∗ . 

Varying s,τ in a continuous manner yields the set of daughter wavelets used in the CWT. 



 

 

𝜓𝜏,𝑠(𝑡)  =  |𝑠|−1
2⁄   𝜓

𝑡 − 𝜏

𝑠
 (3) 

Equation (4) shows the cross-wavelet transform 𝑊𝑥𝑦(𝜏, 𝑠), which can be defined in 

terms of the CWT of the investigated time series 𝑊𝑥(𝜏, 𝑠) and 𝑊𝑦
∗(𝜏, 𝑠). These wavelet 

transforms can be interpreted as 𝜏 × 𝑠 matrices, indicating amplitude at scale s and time 
τ. |𝑊𝑥𝑦(𝜏, 𝑠)|, the cross-wavelet power, indicates local covariance. 

𝑊𝑥𝑦(𝜏, 𝑠) =  𝑊𝑥(𝜏, 𝑠) 𝑊𝑦
∗(𝜏, 𝑠) (4) 

Equation (5) shows wavelet coherence 𝑅𝑥𝑦
2 (𝜏, 𝑠), which can be estimated by using the 

cross-wavelet and auto-wavelet power spectrum, as laid out in Torrence et al. [43]. The 

𝜏 × 𝑠 wavelet coherence matrix can be viewed as the time and frequency localized corre-

lation of two time series on the basis of a wavelet convolution. The bi-wavelets package 

used in this project uses a modified version of this equation, as found in Liu et al. [44]. 𝑆 

is a smoothing operator, which is achieved by convolution in time and scale.  

𝑅𝑥𝑦
2 (𝜏, 𝑠) =

|𝑆 (𝑠−1𝑊𝑥𝑦(𝜏, 𝑠))|
2

𝑆(𝑠−1 |𝑊𝑥  (𝜏, 𝑠)|2) 𝑆(𝑠−1 |𝑊𝑦 (𝜏, 𝑠)|2)
 (5) 

Coherency does not distinguish between positive and negative correlation due to the 

squaring of terms. Equation (6) shows phase difference, incorporating the imaginary ℑ 

and real ℜ parts of the of the power spectrum, which can be used to differentiate between 

these movements and give information as to the leading/lagging nature of the correlation. 

𝜙𝑥𝑦  =  𝑡𝑎𝑛−1 (
ℜ{𝑆(𝑠−1𝑊𝑥𝑦(𝜏,𝑠))}

ℑ{𝑆(𝑠−1𝑊𝑥𝑦(𝜏,𝑠))}
) (6) 

A phase is visualized as arrows in high-correlation regions. Right-pointing arrows 

indicate signals in phase, while left-pointing arrows indicate signals in anti-phase. The 

lead–lag relationship is indicated by arrows pointing right–up for first variable leading 

and left–down for second variable leading. 

5.4. Wavelet Denoising 

The Discrete Wavelet Transform (DWT) is a variation on the wavelet transform that 

uses a discrete set of mutually orthogonal wavelet scales as opposed to the continuous set 

found in the CWT. DWT decomposition is typically achieved through use of high/low-

pass convolution filter banks. These convolution filters are designed using wavelet basis 

functions with perfect reconstruction and no-aliasing constraints. High- and low-pass fil-
ters are applied to the input to generate Detail 𝐷𝑗  and Approximation coefficients 𝐴𝑗. The 

same filters can be recursively applied to these coefficients to yield additional decompo-

sition levels, as shown in Figure 2 [45]. DWT can be used to denoise specific frequency 

bands of a signal by applying a threshold to particular decomposition levels. The signal 

can then be reconstructed from the thresholded decomposition coefficients, using an ad-

ditional set of inverse filters, which are orthogonal to the decomposition filters [21]. A hard 
thresholding approach is used, where values in decomposition level 𝐷𝑗  that are below a 

threshold 𝑢 are set to zero. Equations (7)–(9) show calculation of the threshold 𝑢 for a 
given decomposition level 𝐷𝑗 . The threshold 𝑢 is calculated based on the mean absolute 

deviation of the decomposition level 𝑀𝐴𝐷(𝐷𝑗), a user-defined denoising factor 𝜆, and the 

number of time points in the decomposition level #𝐷𝑗 . 

𝑀𝐴𝐷(𝐷𝑗)  =  
1

𝑛
 ∑ |𝐷𝑗𝑖 − (�̅�𝑗)| 

𝑛

𝑖=1
 (7) 

𝜎𝐷𝑛
 =  

1

𝜆
(𝑀𝐴𝐷(𝐷𝑗) ) (8) 



 

 

𝑢𝐷𝑗
=  𝜎𝐷𝑗

(√3𝑙𝑛(#𝐷𝑗)) (9) 

 

Figure 2. Wavelet Decomposition. 

The effect of denoising can be evaluated by comparing the performance of models on 

raw vs. denoised data. However, this approach requires modeling for all denoising pa-

rameter sets to be tested, which is computationally expensive. The Signal-to-Noise Ratio 

(SNR) of the denoised signal and the RMSE of the raw vs. denoised signal can be used to 

indicate the effectiveness of the denoising approach and degradation of the signal, as seen 

in Qiu et al. [22]. Figure 3 shows how these RMSE and SNR measures are affected by 

altering the denoising factor 𝜆. 

 

Figure 3. Evaluation of denoising of minimum block gas price using wavelet threshold denoising. 

Average RMSE and SNR of the top 5 wavelets by SNR shown across a range of denoising factor, λ 

values. As λ is increased, we see a decrease in RMSE and SNR. 

  



 

 

5.5. Down-Sampling and Normalization  

Data are down-sampled to the mean over a 5 min window before modeling. Initial 

modeling approaches truncated outliers in the block minimum gas price to a max of 2 

standard deviations with min/max normalization. Z-score normalization, as shown in 

Equation (10), with no outlier truncation was used in later approaches. Z-score normali-

zation of datapoint 𝑥 to 𝑥′ involves subtraction of the sample mean 𝜇 and division by 

standard deviation, 𝜎. 

𝑥′ =
𝑥 − 𝜇

𝜎
 (10) 

5.6. Matrix Profile 

The matrix profile is a companion time series [46] that indicates a similarity of subse-

quences in the parent time series. Given a subsequence size and input time series, the 

distance profile indicates the minimum Euclidian distance in terms of subsequence simi-

larity to another subsequence of that size; points in the time series with a high matrix 

profile indicate the start of a discord, which is a subsequence with little to no repetition in 

the time series; and low values indicate a motif, which is a subsequence that repeats within 

the time series [46]. It has been shown [36] that motifs and matrix profiles can be effective 

at improving the performance of LSTMs. 

The matrix profile is calculated for minimum gas price data, and used as an addi-

tional input in modeling, to indicate the proximity of the nearest discord. The matrix pro-

file is calculated on a rolling basis as the forecasting windows move forward to prevent 

leakage into the training data. The matrix profile series is always one full window size 

shorter than the input data. One window size of data is removed from start of the gas 

price and other variables, after calculation of the matrix profile, to align the size of the 

inputs model. Figure 4 shows the minimum gas price for a training example with its com-

panion matrix profile. The matrix profile foundation Python package is used for the com-

putation of matrix profiles throughout with a window size of 1 day. 

 

Figure 4. Minimum gas price and matrix profile. 

  



 

 

6. Methods for Data Modeling 

6.1. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) features in a wide domain of time-series forecast-

ing applications, including in stock market price prediction [22,38,39,47] and use in previ-

ous gas price forecasting studies [14]. LSTM networks were developed to address the 

problem of exploding and vanishing gradients in recursive neural networks (RNNs), par-

ticularly when information-carrying inputs are found several timesteps from the forecast 

window. 

LSTM networks can be trained using a modified backpropagation algorithm, back-

propagation through time, with gradient descent and its variations. The ADAM optimi-

zation algorithm is used throughout this project, and tanh activation is used in all cases to 

allow for GPU support with the cuDNN library. 

6.2. Recursive and Hybrid Strategies 

There are several forecasting strategies available for tackling the challenge of multi-

step forecasting [48]. As shown in Equation (11), the recursive strategy first trains a model 

𝑓  to predict one timestep ahead 𝑦𝑡+1  given an input series of 𝑁  observations; 𝑡 ∈

 {𝑛, . . . , 𝑁 − 1} . Extension of the forecast horizon past a one timestep lookahead is 

achieved by recursively appending the output to the input series and then feeding this 

new appended input back into the model. 

𝑦𝑡+1 = 𝑓(𝑦𝑡 , … , 𝑦𝑡−𝑛+1) (11) 

Equation (12) shows a direct strategy, which trains an independent model 𝑓ℎ  for 

each timestep in the lookahead horizon H; ℎ ∈  {1, . . . , 𝐻} 

𝑦𝑡+ℎ = 𝑓ℎ(𝑦𝑡 , … , 𝑦𝑡−𝑛+1) (12) 

Equation (13) shows a direct-recursive hybrid strategy, which combines the direct 

and recursive approaches. An initial model 𝑓0 is trained as in the above models. A sepa-

rate model 𝑓1, as in the direct strategy, is then trained using the appended input of 𝑓ℎ, as 

in the recursive strategy. This process is recursively applied, learning H models 𝑓ℎ. This 

takes advantage of the stochastic dependency of the recursive approach while addressing 

its tendency for compounding errors with the direct multi-model approach. A hybrid 

LSTM model was trained to a lookahead of 10 timesteps, using hyperparameters from 

Mars et al. [13] for the base one-step lookahead model. 

𝑦𝑡+ℎ = 𝑓ℎ(𝑦𝑡+ℎ−1, … , 𝑦𝑡−𝑛+1) (13) 

Equation (14) shows a multiple output strategy. This strategy trains a single model 

𝑓, which outputs [𝑦𝑡+1, … , 𝑦𝑡+𝐻] given (𝑦𝑡 , … , 𝑦𝑡−𝑛+1). This strategy approach allows for 

the modeling of dependency on future values, and it is a solution to impact stochastic 

dependency and compounding errors found in the single-output mapping models previ-

ously discussed. This is of particular concern when considering extended forecast hori-

zons. 

[𝑦𝑡+1, … , 𝑦𝑡+𝐻] = 𝑓(𝑦𝑡 , … , 𝑦𝑡−𝑛+1) (14) 

Multiple output models can be further applied in a direct-recursive manner. The 𝐻 

step horizon can be segregated into several blocks. An initial model is trained to output 

the first block in the horizon; then, recursive training of new models with the inclusion of 

the previous models output as input is applied to generate the full horizon. 

6.3. Encoder–Decoder and Attention Mechanism  

Encoder–decoder networks function by first passing inputs into an encoder network. 

The encoder generates an intermediate representation of the inputs, which contains suffi-

cient information for the decoder network to generate the target output. Encoder–decoder 



 

 

networks were originally developed to address sequence-to-sequence prediction prob-

lems in natural language processing, but they have since been widely adapted to time-

series forecasting. The attention mechanism is a development that involves weighting out-

puts with an alignment of queries and keys [22]. A schematic of this is shown in Figure 5. 

 

Figure 5. Schematic of Attention Head. 

Equations (15)–(17) show the generalized attention mechanism, involving three pri-

mary components: queries 𝑄, keys 𝐾, and values 𝑉. The dot product of query vectors 𝑞 

and value vectors 𝑣, their alignment scores, is passed through a softmax activation to gen-

erate weights 𝛼𝑞,𝑘𝑖
. The final attention score or Context vector 𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑞, 𝐾, 𝑉) is the sum 

of all weighted value vectors 𝛼𝑞, 𝑘𝑖
𝑣𝑘𝑖

. 

𝑒𝑞, 𝑘𝑖
= 𝑞 ∙ 𝑘𝑖 (15) 

𝛼𝑞,𝑘𝑖
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑞, 𝑘𝑖

) (16) 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑞, 𝐾, 𝑉) = ∑ 𝛼𝑞, 𝑘𝑖
𝑣𝑘𝑖

𝑖
 (17) 



 

 

Equations (18)–(20) show the attention mechanism used in this project. 𝑘𝑖 and 𝑣𝑘𝑖
are 

both set to the encoder hidden state at timestep 𝑖, ℎ𝑖. 𝑞 is set to the hidden states of an 
alignment model ℎ̃, which takes the encoder output ℎ𝑓 as input. The mechanism essen-

tially trains the alignment model to weight all hidden states [ℎ𝑖] of the encoder to gener-

ated the context vectors. These weighted hidden states are then passed to a feedforward 

layer to generate the forecast or to a second attention layer followed by a feedforward 

layer in the two-layer models. 

𝑒ℎ̃𝑖, ℎ𝑖
= ℎ̃𝑖 ∙ ℎ𝑖 (18) 

𝛼𝑞,𝑘𝑖
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒ℎ̃𝑖, ℎ𝑖

) (19) 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑞, 𝐾, 𝑉) = 𝛼𝑞, 𝑘𝑖
∙ ℎ𝑖 (20) 

A multiheaded approach is applied, with one attention head, and one set of weighted 

hidden states being constructed for each input, with each head being fed all inputs. In the 

final model, these context vectors are concatenated and passed to a second layer of atten-

tion heads before passing this to a final linear layer. Both encoder and alignment LSTMs 

are set to 30 units each in the multiheaded models and 200 units each in the single-headed 

model. Training times were found to be similar for a multiheaded vs. single-head model 

with these hyperparameters of units.  

6.4. CNN-LSTM 

Convolutional Neural Networks (CNNs) consist of a bank of convolution filters and 

pooling layers. Convolutional layers function by scanning a convolution filter kernel 

across the data to generate new combined features. CNNs were originally developed for 

image processing, using two-dimensional filters. Multivariate time-series data can be 

treated in the same manner by representation in structured matrix form or by simply scan-

ning a 1-D filter across each variable independently. Convolution layers are typically fol-

lowed by a non-linear activation function, such as tanh or ReLU. Pooling layers then ag-

gregate the output of convolution layer, typically taking the minimum, maximum, or av-

erage of a number of kernel outputs to generate a single datapoint [38]. 

A CNN-LSTM then passes the output of the CNN to an LSTM. This combined ap-

proach has seen much use in time series modeling, particularly financial data with com-

plex multivariate dependencies. This project employs two layers of 1-D convolutional fil-

ters with a tanh activation function and no pooling layer. The final model uses a multi-

headed architecture with independent convolution layers being fed all inputs. The num-

ber of heads is set to the number of inputs. After a grid search on the first month of data, 

a final filter size of 7 with nine filters per convolutional layer were used. These were fed 

to two LSTM layers of 100 units each. 

6.5. Training Strategies 

A sliding window of fixed input timesteps followed by a fixed number of forecast 

timesteps is used to generate training/validation examples. In all models, 70% of these 

examples are used for training, and 30% are used for validation. A walk-forward approach 

is desirable; however, the dataset contains over 40,000 timesteps even when down-sam-

pled to a 5 min resolution. It is not feasible to walk-forward with every timestep. A daily 

walk is employed in the univariate, single-step lookahead analysis displayed below in 

Figure 6 In all other cases, a model, or set of models in the hybrid strategy, is trained and 

validated on one month of data with metrics averaged over 5 months. Models are trained 

for 15 epochs in all cases, with callbacks set to save weights for the lowest validation loss 

model during training. 



 

 

 

Figure 6. Univariate 1-step Walk-Forward Metrics. Blue lines refer to validation metrics for walk-

forward, univariate, single-timestep lookahead model. Model is trained on one month of data vali-

dated with a 70:30 training: validation split; then, the data training/validation window was walked 

forward one day. x-axis represents start of the training period. (a) represents RMSE, (b) represents 

MAE, (c) represents MAPE, (d) represents R2. 

7. Results  

7.1. Wavelet Coherence 

Figure 7 shows coherence plots of block minimum gas price versus (a) Block Base 

Fee, (b) Gas Used, (c) Smart Contract-Type Transaction Counts, and (d) ETH/USDT ticker 

price. Base fee shows high correlation with signals in phase. Low-correlation areas can be 

seen in the time scale of 60–1000 min over narrow time periods. As can be seen from Figure 

7a, volumes of high-priority, high-tipping transactions are sufficient to deviate the block 

minimum transaction gas fee selected by miners from the block base fee. Gas used, 

ETH/USDT and contract counts plots display noisy spectra at low time scales. Contract 

counts show strong anti-phase correlation at 1000 to 2000 min time scales across the ma-

jority of time periods. This is consistent with findings on a 1-day timescale in Donmez et 

al [24] regarding smart contract-type transactions being of lower urgency, and having 

lower gas price, than ETH transfers. 



 

 

 



 

 

Figure 7. Wavelet Coherence Plots. Wavelet coherence plots of secondary variables against block 

minimum gas price. Time scale is in minutes. Period is in Month–Date. Data are down-sampled to 

a 5 min resolution before plotting. Heat indicates correlation and arrows indicate phase. Results 

show coherence plots of block minimum gas price versus (a) Block Base Fee, (b) Gas Used, (c) Smart 

Contract-Type Transaction Counts, and (d) ETH/USDT ticker price. Base fee shows high correlation 

with signals in phase. Low-correlation areas can be seen in the time scale of 60–1000 min over nar-

row time periods. 

7.2. Single Step Lookahead 

Figure 6 shows validation metrics for a univariate LSTM model, predicting one step 

ahead. The dramatic increase in RMSE and R2 seen in Figure 6a,c, in windows starting in 

January and March is associated with extreme minimum gas price values in the validation 

data. This highlights the volatile nature of the data, sensitivity of metrics to changes in the 

data, sensitivity of metrics to changes in the data, and the need for a back-testing strategy 

to account for this behavior in the data. 

Table 1 shows validation metrics for an LSTM model using minimum, 5th and 95th 

percentile gas prices, with additional variables. Hyperparameters as optimized by Mars 

et al. [14] were used for basic LSTM modeling. Increasing the depth or width of the net-

work did not noticeably improve performance. Additionally, the 10th to 90th block gas 

price percentiles in increments of 10 were tested as inputs with marginal differences in 

metrics. This architecture is unable to model the complex dependencies between the var-

iables or that the majority of variance in a one-step lookahead scenario is accounted for by 

minimum gas price variable. 

Table 1. Multivariate Single-Lookahead LSTM Error Metrics. Validation metrics for multivariate, 

single-step lookahead LSTM models. Average of 5 models, each trained/validated on different 

month of data taken. 

Variable RMSE MAE MAPE R2 

No Additional Variables 20.28 10.50 0.142 0.680 

Block Size (Gas) 19.18 9.55 0.125 0.715 

Base Fee 19.89 10.28 0.132 0.693 

Transaction Count 20.00 9.94 0.129 0.687 

Block Size (Bytes) 19.96 10.16 0.133 0.687 

ETH/USDT 20.14 10.42 0.135 0.685 

Average Gas Price 20.11 10.46 0.142 0.683 

Maximum Gas Price 20.42 10.75 0.140 0.674 

Smart Contract Count 20.09 10.40 0.135 0.684 

All of Above 19.35 9.74 0.126 0.711 

7.3. Hybrid Models 

Direct-recursive hybrid strategies were employed with univariate and multivariate 

models. The base one-step lookahead models in the multivariate test showed poor perfor-

mance metrics on variables aside from the minimum gas price. The ability to accurately 

predict multiple outputs indicates potential avenues for the development of a multivariate 

approach. 

Tables 2–5 show the performance metrics for hybrid and multiple output models. 

Modeling strategies are applied to five separate one-month blocks of data; then, monthly 

metrics are averaged to yield Tables 2–5. Figure 8 shows RMSE and R2 degradation as the 

lookahead horizon is extended. 

  



 

 

Table 2. Hybrid Model: Average of 5 Lookaheads *, All Months. Validation metrics for multivariate, 

single-step lookahead LSTM models. Average of 5 models, each trained/validated on different 

months of data taken. 

Variable RMSE MAE MAPE R2 

Att 1 Head 27.15 15.89 0.226 0.435 

Multi-Att 1 Layer 28.46 15.86 0.245 0.389 

Multi-Att 2 Layer 24.70 14.00 0.199 0.521 

Multi-Att 2 Layer MP 25.63 14.33 0.206 0.486 

Multi-Att 2 Layer Uni 25.74 14.47 0.190 0.484 

Multi-Att 2 Layer Uni MP 27.38 15.76 0.220 0.421 

* Model parameter shorthand: Att  Attention; Multi  Multiheaded; MP  Matrix Profile; Uni  

Univariate; Rev  MP fed in reverse; DB4  DB4 denoised gas price; Bior 3.3  Bior 3.3 denoised 

gas price. 

Table 3. Hybrid Model: Average of 10 Lookaheads *, All Months. Validation metrics for multivariate, 

single-step lookahead LSTM models. Average of 10 models, each trained/validated on different 

month of data taken. 

Variable RMSE MAE MAPE R2 

CNN 27.30 16.25 0.230 0.414 

CNN MP FWD 27.68 16.42 0.238 0.414 

Multi-Att 2 Layer 27.00 15.60 0.217 0.436 

Multi-Att 2 Layer MP 28.27 17.30 0.237 0.402 

Multi-Att 2 Layer MP DB4 27.13 15.37 0.213 0.435 

Multi-Att 2 Layer Uni Bior 3.3 27.85 16.38 0.232 0.410 

Hybrid 26.08 13.09 0.171 0.5421 

Hybrid MP 27.02 14.29 0.195 0.5166 

Hybrid MP DB4 27.27 14.34 0.193 0.5082 

* Model parameter shorthand: Att  Attention; Multi  Multiheaded; MP  Matrix Profile; Uni  

Univariate; Rev  MP fed in reverse; DB4  DB4 denoised gas price; Bior 3.3  Bior 3.3 denoised 

gas price. 

Table 4. Multiple Output Model: Average of 5 Lookaheads *, All Months. Validation metrics for 

multivariate, single-step lookahead LSTM models. Average of 5 models, each trained/validated on 

different month of data taken. 

Variable RMSE MAE MAPE R2 

Multi-Att 2 Layer MP Rev 25.07 14.02 0.193 0.509 

Multi-Att 2 Layer Uni MP Rev 25.54 14.17 0.194 0.501 

* Model parameter shorthand: Att  Attention; Multi  Multiheaded; MP  Matrix Profile; Uni  

Univariate; Rev  MP fed in reverse; DB4  DB4 denoised gas price; Bior 3.3  Bior 3.3 denoised 

gas price. 

Table 5. Multiple Output Model: Average of 10 Lookaheads *, All Months. Validation metrics for 

multivariate, single-step lookahead LSTM models. Average of 10 models, each trained/validated on 

different month of data taken. 

Variable RMSE MAE MAPE R2 

Multi-Att 2 Layer MP Rev 26.78 15.49 0.221 0.452 

Multi-Att 2 Layer MP Rev DB4 26.82 15.17 0.212 0.450 

Multi-Att 2 Layer MP Rev Bior 3.3 27.25 15.65 0.228 0.431 

Hybrid MP Rev 27.33 13.92 0.184 0.509 

Hybrid MP Rev DB4 27.40 13.82 0.179 0.508 

* Model parameter shorthand: Att  Attention; Multi  Multiheaded; MP  Matrix Profile; Uni  

Univariate; Rev  MP fed in reverse; DB4  DB4 denoised gas price; Bior 3.3  Bior 3.3 denoised 

gas price. 



 

 

 

Figure 8. Validation Forecasts for Different Methods and Lookahead Window Lengths from 5 to 50 

min (a) Hybrid 5 Min Lookahead; (b) Multihead Attention 5 Minute Lookahead; (c) Hybrid 50 Min 

Lookahead; (d) Multihead Attention 50 Minute Lookahead. Gas price values are quoted in gwei. 

7.4. CNN-LSTM 

Results of the grid search of multiheaded models found nine filters with a kernel size 

of seven to have the lowest achieved validation loss on the first month of data. The final 



 

 

model was then trained with the same inputs as the attention models. Metrics were com-

parable to the attention models and inferior to the hybrid model. The use of two-dimen-

sional convolution filters has seen use in previous works involving multivariate time-se-

ries data, and we would recommend their investigation in future works [38]. 

7.5. Attention 

The attention models were trained with a single-headed architecture, a multiheaded 

architecture, one and two attention layers, with a wavelet and matrix profile data pre-

processing. The inclusion of multiple heads and multiple layers was found to improve 

validation metrics. Additionally, multivariate attention models showed better perfor-

mance than univariate in contrast to the hybrid models. This may be because the more 

complex architecture is better suited to learning the complex dependencies between vari-

ables. 

Figure 9 shows the performance of models at different lookaheads. Hybrid models 

were found to significantly outperform attention models at shorter lookaheads; however, 

only the univariate hybrid model has comparable metrics to the attention models at longer 

lookaheads. Averaging over all lookaheads, the best attention and hybrid models had sim-

ilar RMSE; however, the hybrid model outperformed on other metrics. For reference, Fig-

ure 8 shows validation forecasts of hybrid and attention models for the 5 and 50 min 

lookahead. Comparing Figure 9a and 9b, respectively, it is evident that the hybrid model 

is much better able to track the stochastic movements of the data at the 5 min lookahead. 

 

Figure 9. Performance Metrics (R2 and RMSE) at different Lookaheads of the various models. (a) 

refers to R2 metrics for different lookaheads and (b) refers to RMSE metrics for different 

lookaheads. 

  



 

 

7.6. Matrix Profile 

The matrix profile was fed as input to hybrid and attention models in both reverse 

and forward chronological order. In the case of hybrid models, addition of the matrix pro-

file to the training examples had a negative effect on validation metrics. There is little dif-

ference in metrics between the reverse/forward matrix profile model in the hybrid case. 

This is likely to be due to the fact that hyperparameters had been tuned for a univariate 

model; the model may also not be sufficiently complex to extract the necessary features to 

make use of the matrix profile. We would suggest that optimizing the base one-step 

lookahead model with these inputs would be of interest in future works. 

The addition of the matrix profile as an input to attention multiple output models 

showed inconsistent results. Inclusion of the forward matrix profile had a negative effect 

on the validation metrics in all attention models, and it had a marginal effect on the CNN 

model. Interestingly, the addition of the reversed matrix profile noticeably improved R2 

in the univariate five-step and all 10-step lookahead attention models as opposed to a de-

crease seen with the forward matrix profile. A reversed matrix profile did not improve 

metrics in the five-step lookahead multivariate model; however, the decline in metrics was 

less pronounced than with the addition of the forward matrix profile; the reversed matrix 

profile performed better than the forward in all attention models. This behavior could be 

explained by the introduction of some degree of bi-directionality into the models. 

7.7. Wavelet Denoising 

Wavelet denoising was applied with a Daubechies mother wavelet with scaling func-

tion 4, to the second decomposition level, 𝜆 = 3. Denoising with a biorthogonal wavelet 

with scaling functions (3,3) to the second decomposition level and 𝜆 = 10 was also tested, 

showing a noticeable decrease in R2. The biorthogonal wavelet was selected as this wavelet 

provided the greatest signal to noise ratio gains at 𝜆 = 10, with RMSE of the denoised signal 

vs. the original of 2.37. The Daubechies wavelet was selected due to its popularity and use 

in wavelet coherence. In all cases, wavelet denoising was found to have marginal to neg-

ative effects on validation metrics. Between the selection of decomposition levels, mother 

wavelet, and thresholding parameters, the parameter space for wavelet denoising is con-

siderable. A wider search of this parameter space would be of interest in future work. 

Comparison with previous works is difficult; to our knowledge, no previous studies 

have attempted to forecast on a similar time scale. Additionally, the gas price optimization 

problem can be framed in a number of manners; as a forecasting problem, as a transaction 

selection probability estimate, or the various heuristic approaches found in existing rec-

ommenders/oracles. Future works could benefit from a reframing of the problem, such as 

applying machine learning toward a transaction inclusion probability estimate. 

8. Discussion 

8.1. Research Questions 

In terms of Research Question 1, we found hybrid, multiheaded CNN-LSTM and at-

tention approaches to be the best methods to forecast block minimum gas price. These 

were successfully applied to forecast multiple timesteps ahead, up to 50 min. The hybrid 

univariate model outperformed other models, particularly at earlier lookaheads. Atten-

tion models had comparable RMSE to the hybrid model at longer lookaheads but were 

outperformed on other metrics.  

As regards Research Question 2, whether wavelet transforms and the matrix profile 

can improve forecasting metrics, or provide insight into gas price mechanics, wavelet de-

noised and matrix profile data were tested with a variety of modeling approaches, with 

mixed results. Wavelet denoising was not found to have any beneficial impacts on valida-

tion metrics; however, a narrow set of possible parameters was tested, so broad conclu-

sions cannot be drawn as to the utility of the method in this domain. Matrix profile data 

fed in forward chronological order were not found to improve validation metrics in any 



 

 

models. However, interestingly, feeding matrix profile data in reverse was found to im-

prove some attention models.  

In order to answer Research Question 3, on the relationship between blockchain and 

ETH cryptocurrency exchange data on the one hand and gas price on the other, and 

whether these data can be used to improve forecasting metrics, we looked to wavelet co-

herence for insights. Wavelet coherence demonstrated a tendency for variables to correlate 

on a 1-day timescale. Smart contract counts were found to have strong anti-phase correla-

tion on a 1-day timescale, which is in agreement with previous works [24]. Additionally, 

deviation of the base fee from the block minimum gas price can be seen at specific time 

periods, across a wide range of time scales, indicating periods of high numbers of high-

priority transactions. Variability in univariate walk-forward metrics demonstrates the vol-

atile and changing nature of the data, and it is an indication of the challenges modeling 

these data presents. The utility of additional variables beyond the gas price appears to be 

dependent on modeling architecture; additional variables had no effect on hybrid/one-

step lookahead models but were beneficial in attention models.  

8.2. Comparison with Previous Works 

Comparison with previous works is difficult; to our knowledge, no previous studies 

have attempted to forecast on a similar time scale. Additionally, the gas price optimization 

problem can be framed in several manners; as a forecasting problem, as a transaction se-

lection probability estimate, or the various heuristic approaches found in existing recom-

menders/oracles. Future works could benefit from a reframing of the problem, such as 

applying machine learning toward a transaction inclusion probability estimate. 

Work by Mars et al. [14] is the most directly comparable. Mars and this work both 

operate with data down-sampled to a 5 min window, with Z-score normalization, within 

a supervised learning framework and with similar performance metrics. We can easily 

compare one timestep lookahead metrics; however, Mars do not provide forecasts past 

the first 5 min window. The authors in [14] provide MSE, MAE, RMSE and R2 metrics, as 

found in this work. R2 is most directly comparable as it dimensionless. Mars achieved an 

R2 score of 0.896 on both GRU and LSTM-based forecasts, forecasting the minimum block 

gas price averaged for all blocks in the next 5 min. This study was able to achieve an R2 of 

0.715 within the same forecasting framework. The difference in performance can be at-

tributed the more complete hyperparameter search performed by Mars et al. [14] and 

modeling on different time periods of data. MAE, MSE and RMSE metrics are quoted on 

a different scale to those found in this work, so a direct comparison is not possible. 

Liu et al. [25] produce forecasts looking one block into the future. Forecasts presented 

by Liu achieve significantly better metrics than the models presented in this work that 

looked at 5 min windows; however, it is not clear how directly comparable these are given 

the timescale difference. This work was also completed before the London Fork. Liu et al. 

measured the proportion of their forecast values that falls into three categories: below 

lowest gas price and thus fail, above lowest gas price but below real gas price and thus 

succeed while saving costs, and higher than the real gas price, which succeeds but increase 

costs. This evaluation could prove useful in future works. Lan et al. [29] also produce sim-

ilar one block ahead forecasts with improvements based on the addition of pending trans-

actions in the Mempool as features. XG-boost based models outperform LSTM-based 

models in both cases and could be of interest in future forecasting studies on extended 

lookaheads. 

Chuang and Lee [34] measure the performance of their model using two metrics: the 

first is success rate, or the proportion of their recommended transaction prices that are 

above the minimum gas price of the block, and the second is an Inverse Probability Weight 

measure (IPW), which increases with predicted gas price and decreases with success rate. 

IWP is used as the goal is to produce gas prices prediction that will result in successful 

transactions while keeping costs down. It is difficult to compare these metrics with those 



 

 

produced in this work. The success rate and IPW could be calculated for the forecasts 

generated in this work in future works. 

9. Conclusions 

9.1. Summary 

In summary, this project has furthered forecasting attempts in an understudied area, 

with a novel combination of techniques, following a major update to the network in ques-

tion. Gas price has been demonstrably forecasted at extended lookaheads; wavelet coher-

ence has been shown to provide insight into the relation between gas price and blockchain 

variables, and the inclusion of matrix profile data showed a potential improvement of 

forecasting metrics. Direct Recursive Hybrid LSTM models were found to perform better 

than other modeling approaches given the limitations of the study. Further investigation 

is needed before drawing conclusions as to wavelet threshold denoising due to the limi-

tations of the study. 

9.2. Contributions 

This study is the first that we have found to investigate gas price forecasting over 

different forecasting horizons. This study provides a methodology for forecasting gas 

prices up to 50 min ahead, in windows of 5 min. Forecasts over a range of lookaheads 

allow users to make an informed decision on gas price selection and the optimal window 

to submit their transaction in without fear of their transaction being rejected. This meth-

odology provides more detailed and verbose information regarding gas price dynamics, 

in comparison to existing recommenders, oracles and forecasting approaches, that pro-

vide simple heuristics or limited lookahead horizons. 

We have investigated multiple approaches toward generating the above-mentioned 

forecasts. Direct Recursive Hybrid LSTM models, attention models, CNN fed to LSTM 

architectures (CNN-LSTM), with matrix profile data and wavelet denoising were investi-

gated. This is the first application of a matrix profile being applied to gas price data and 

forecasting that we are aware of. This study also demonstrated the applicability of wavelet 

coherence toward the analysis of movements in gas price data and related time-series 

data, insight regarding co-movements of gas price, block gas used, smart-contract trans-

action volume and ETH cryptocurrency price. 

This study demonstrated that matrix profile data can enhance an attention-based 

model; however, given the hardware constraints, hybrid models outperformed attention 

and CNN-LSTM models. The potential for forecasting in extended and varying 

lookaheads was demonstrated with the utility of these time horizons being that a user 

must select between these and potentially be penalized in terms of cost or missed transac-

tions for choosing one over the other. 

The focus of this study was also to investigate data in the aftermath of the London 

Hard Fork, and it sheds insight into the transaction dynamics of the network after this 

major fork. We feel that this time period is of interest, as Research Question 3 of our study 

provides an update on Pierro and Rocha’s work of 2019 [23] on the link between 

EthUSD/BitUSD and gas price. 

9.3. Limitations of the Study 

The limitations of this study are primarily related to available computing resources. 

Model training time was considerable on the available hardware. All data analysis, train-

ing and testing were performed on a desktop PC with a AMD Ryzen 5 1600 CPU and 

Nvidia 3060 GPU. The robustness of the training and testing strategy could be improved 

with a more thorough cross-testing method, such as a full implantation of walk-forward 

validation. The timespan of data considered is also limited due to the training time of 

models.  

Optimizations of pre-processing methods and model hyperparameters were also re-

stricted due to hardware limitations. A more thorough hyperparameter grid search or 



 

 

Bayesian optimization would be of interest in future studies with more resources availa-

ble. It is likely that the direct recursive hybrid model, an aggregate of many relatively 

simple models, outperformed the more complex CNN and attention models due to the 

above-mentioned limitations. Hybrid model hyperparameters are optimized for the sin-

gle-timestep lookahead case; optimizing hybrid performance for longer lookaheads is also 

of interest. 

The investigation of wavelet denoising and matrix-profile parameters were also lim-

ited by the model training time. The investigation of model performance when fed data 

using different wavelet-denoising approaches and different matrix profile window sizes 

and thresholds over different time periods with the varying model architectures previ-

ously mentioned would be of interest in future investigations.  

9.4. Future Work 

As mentioned in the limitations, future works would address limitations relating to 

the robustness of training/testing, time span of data investigated, and thoroughness of 

hyperparameter and pre-processing parameter search. Transformer models have shown 

promise in natural language and time-series forecasting problems; investigation would be 

of interest with sufficient resources for a through parameterization [49]. The XG-Boost-

based model has also shown good performance in previous studies on this domain [25,29]. 

Several studies have investigated the use of Mempool data, investigation of these data 

toward improving forecasting performance and price dynamic understanding is also of 

interest [28,29,34,40].  

Future works could also take advantage of domain-specific evaluation metrics such 

as those found in Chuang and Lee [34] and Liu et al. [25] to allow for better comparison 

of performance and more meaningful measures of performance. 

To conclude, this project has furthered forecasting attempts in an understudied area, 

with a novel combination of techniques. Gas price has been demonstrably forecasted at 

extended lookaheads; wavelet coherence has been shown to provide insight into the rela-

tion between gas price and blockchain variables, and the inclusion of matrix profile data 

was demonstrated to show a potential improvement of forecasting metrics. Further inves-

tigation is needed before drawing conclusions as to wavelet threshold denoising.  
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