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Abstract—Gaps, dropouts and short clips of corrupted audio
are a common problem and particularly annoying when they
occur in speech. This paper uses machine learning to regenerate
gaps of up to 320ms in an audio speech signal. Audio regeneration
is translated into image regeneration by transforming audio into
a Mel-spectrogram and using image in-painting to regenerate
the gaps. The full Mel-spectrogram is then transferred back to
audio using the Parallel-WaveGAN vocoder and integrated into
the audio stream. Using a sample of 1300 spoken audio clips
of between 1 and 10 seconds taken from the publicly-available
LJSpeech dataset our results show regeneration of audio gaps in
close to real time using GANs with a GPU equipped system. As
expected, the smaller the gap in the audio, the better the quality
of the filled gaps. On a gap of 240ms the average mean opinion
score (MOS) for the best performing models was 3.737, on a
scale of 1 (worst) to 5 (best) which is sufficient for a human to
perceive as close to uninterrupted human speech.

Index Terms—Gappy audio, Mel-spectrograms, image in-
painting, GANs

I. INTRODUCTION

Spoken audio can suffer from dropouts, gaps and short clips
of corrupted data when transmitted over networks, includ-
ing cellular networks. This paper examines how generative
adversarial networks (GANs), a form of machine learning
can enhance the quality of spoken audio by filling such
gaps in real time. While there are classical machine learning
approaches to enhance the quality of speech audio based on
Principal Component Analysis or others that can clean an
audio signal, there is no good approach for real-time gap-
filling. Our approach is to transfer audio regeneration into
image in-painting by converting gappy audio into to Mel-
spectrograms, similar to work presented in [22]. We examine
data transmission packet loss conditions that produce gaps in
audio varying from 40ms to 320ms, simulating a sequence of
network packet losses of up to 8 packets.

The next section reviews relevant research covering GAN
applications and variant architectures, and speech enhance-
ment in noisy domains. Following that we present our exper-
imental setup and then our results followed by conclusions.

This work was partly supported by Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/ 2289 P2.

II. RELATED WORK

A. Speech Enhancement in Noisy Audio

Speech enhancement is an improvement task to the per-
ceptual and aesthetic aspects of a speech signal which has
been degraded by noise. This task is performed in mobile
communications, hearing aids and robust speech recognition
[12], [16], [17]. Even if the minimum required quality to un-
derstand what a person is saying is met, speech enhancement
is still desirable as it can reduce listener fatigue. The aesthetic
enjoyment of listening to speech can be taken away due to low
fidelity of the speech in audio. Simply increasing the fidelity of
the speech signal may also boost the performance of speech-
to-text algorithms [14].

Noise in a speech signal may come from a noisy com-
munication channel or the speech signal may originate in a
noisy location. In cases of voice-over-IP transmission, network
packet loss is an issue that causes gaps in transmission and
reduces the perceptual and aesthetic features of a speech
signal. Today, there is still no good solution available to
the issue of regenerating gaps in audio signals in real-time
communications.

There are several approaches to speech enhancement in-
cluding using principal component analysis, statistical model-
based algorithms, spectral subtraction and Wiener filtering.
Recently speech enhancement has been addressed using GANs
[12], [16], [17], though in those works they train on either
462,880 utterances or 224,000 sentences, much greater than
what is done here. GANs that work with audio and/or speech
enhancement typically use Mel-spectrograms, an image rep-
resentation of an audio signal as shown later in Figure 1. A
Mel-spectrogram captures how humans perceive sound better
on lower frequencies compared to higher, and the spectrogram
is a visualisation of the frequency composition of a signal over
time. Features of this can then be adjusted in order to improve
the aesthetic or quality of the regenerated speech audio.

The existence of generative deep learning architectures,
such as GANs, allows us to address the problem of gappy
speech. A GAN’s capability to generate from any complex data
distribution suggests that a GAN may be trained to regenerate
missing audio in real-time. The data required to train such a
model in a real setting may be collected from a speaker’s979-8-3503-4057-0/23/$31.00 ©2023 IEEE



previous speech and a model trained to regenerate gappy
audio signals for that speaker. As part of a protocol among
speakers, speech models could be exchanged that would be
used to enhance an incoming speech signal by resolving gaps
in communication due to packet loss.

B. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are an approach
to generative modelling using deep learning first introduced
by Goodfellow et al. in 2014 [7]. Generative models allow
learning a distribution of data without the need for extensively
annotated training data. Based on training data, GANs allow
generating new data similar to its training set.

GAN architecture is based on game theory, where back-
propagation signals are derived through a competitive process.
Two neural networks, a Generator (G) and Discriminator (D)
compete with each other. G learns to model distributions of
data by trying to deceive D to recognise the generated samples
as real [8]. What is particularly useful is that GAN models can
be trained to mimic any distribution of data, so there are many
practical applications yet to be discovered [1].

The application of GANs was initially limited to image
enhancement tasks like producing high-quality images, until
about 2017 when the first GAN capable of facial image
generation was created. GANs attracted attention and now we
see GANs used where synthetic data generation is required
including natural language Processing [3], computer vision [2]
and audio generation [4].

For some applications, it is difficult to train a GAN using
the original GAN architecture as some generators do not
learn the distribution of training data well enough and so
the Deep Convolutional GAN (DCGAN) was proposed in
2015 [18]. In this architecture, instead of the fully connected
multi-layer perceptron NNs, CNNs were used. The authors
in [18] identified a sub-set of CNNs that were suitable for
use in the GAN framework. To stabilise the training process,
the generator used the ReLU activation function across the
layers, except in the final layer, where the Tanh function was
used. Some specific constraints on the model identified during
the development of the DCGAN laid the foundation of many
further GAN architectures based on DCGAN. These include
the Conditional Generative Adversarial Network (cGAN) [15]
which can include labelling, WaveGAN which is used for
audio synthesis [4] and Parallel WaveGAN [20] also used in
audio and which uses auxiliary input features in the form of
the Mel-spectrogram.

For the speech enhancement, the Speech Enhancement GAN
(SEGAN) architecture was introduced in [16]. The generator
network is used to perform enhancement of the signal, its
input being the noisy signal and latent representation, and its
output is the enhanced signal. The generator is structured in
the same way as the auto-encoder. Encoding involves a number
of strided convolutional layers followed by parametric rectified
linear units (PReLUs), where the result of every N steps of
the filter is a convolution. The discriminator plays the role
of expert classifier and conveys if the distribution is real or

fake and the generator adjusts the weights towards the realistic
distribution.

As GANs are well developed in the areas of image-to-image
translation and image in-painting [9], [11], [19], [22], which
are similar to gap regeneration tasks, we propose to transform
an audio signal into a Mel-spectrogram and use an image in-
painter to fill the image gap. Mel-spectrograms can then be
in-painted and transferred back to audio via a neural vocoder,
such as Parallel-WaveGAN [20]. We propose to train a model
to regenerate the gap in the fixed position at the end of the
Mel-spectrogram, which would make this problem simpler to
tackle for a GAN as it would always know where to in-paint
the image.

III. EXPERIMENTAL SETUP

A. Dataset

The public domain LJSpeech data-set [10] is used which
consists of 13,100 single-speaker short audio clips where the
speaker reads passages from 7 non-fiction books in English.
The entire duration of the clips, which range in length from
1 to 10 seconds, is approximately 24 hours, and the dataset
consists of 13,821 distinct words. For our experiments a
random subset of 1,300 clips was used with 1,000 used for
training and 300 for testing. Our reason for using a sub-set
is to more closely represent a real world use case where less
training data is available for a given voice requiring gap-filling
in audio telephony and video conferencing. As mentioned
earlier, related work such as [12], [16], [17] trains on either
462,880 utterances or 224,000 sentences.

B. Data Pre-Processing

Before the original 22kHz audio clips were converted via
short-time Fourier transform (STFT) into Mel-spectrograms
[5], the signal was trimmed at the start and end to remove
silence. Thereafter STFT was performed on the audio with a
frame length of 1024 points (corresponding to 46ms) and a
hop size of 256 points (11ms). STFT peaks were elevated by
square function, to highlight voice pitch and then transformed
to Mel scale using 80-channel characteristics. An additional
parameter of Mel filterbank as frequency was set to include
audio in the range from 80Hz to 7.6kHz.

Mel-spectrograms were scaled to have an approximately
constant energy per channel, followed by log10 dynamic range
compression. They were normalised by subtracting the global
mean (µ) of the dataset then dividing by the standard deviation
(σ). As a final step, values were normalised to the range [-1,1].
In order to perform normalisation, statistics from the overall
dataset were collected. The length of the clips was standardised
to 256 frames in the time domain (corresponding to 2.8s).

To mimic faulty communications typical of packet-based
IP, Mel-spectrograms with audio gaps from 40ms to 320ms
were created at the end of the Mel-spectrogram as the real-
time nature of audio communication requires regeneration to
be applied as quickly as possible. Thus a trailing audio signal
following the gap is not available. The 40ms to 320ms gaps
allow mimicing of packet loss of up to 8 packets in a row,



with the assumption that audio compression captures 40ms of
audio in one packet. Gaps longer than 320ms introduce a risk
of generating words that were not said because typical word
rate for fast speech is up to 160 words per minute [21] (375ms
each) so this sets the upper target for our gap-filling.

The complete dataset is formed from Mel-spectrogram pairs
of source (Mel-spec with a gap) and target (ground truth)
images. An example of a training pair is shown in Figure 1.
The input to the model is the masked image and the model
tries to generate a complete image similar to the ground truth.

Figure 1: Training pairs used as input to our model, ground
truth (top) and masked Mel with gap in green (bottom).

C. Model and Loss Function

The starting point for our in-painting was Pix2Pix GAN
[9]. This was previously used on multiple image-to-image
transition tasks and also used in similar work [22]. In that
related work the authors studied the creation of a joint feature
space based on synchronised audio and video where the video
consisted of spectrograms from the audio. That work focused
on in-painting of the spectrogram to re-generate noisy or
corrupted audio though their experiments were on music audio
rather than on speech, which is our focus here.

To form a baseline for this work, a standard U-Net-based 5-
layer generator presented in Figure 2 was used with L1 pixel-
wise loss and input dimensions of 256x256. As part of the
Pix2Pix architecture, the Patch-GAN discriminator was used
for adversarial loss, which creates scalar adversarial loss and
Mean squared error (MSE) comparison of small patches of an
image that form a grid and produce scores from 0 to 1, where
each piece is classified as real or fake.

Alterations to the standard U-Net architecture Were per-
formed. Stride configuration in the CNN layers was adjusted to
allow different size input dimensions of 125x128 and 256x80
pixels respectively to closely match our dataset profile. We
also used different variants of the loss functions by introducing
more advanced loss criteria as proposed in more recent image
in-painting work [11], [19]. We replaced the L1 pixel-wise

Figure 2: U-Net network (top) with skip connections denoted
with the same colour blocks, GMCCN network (bottom).

loss with VGG19 feature match loss using VGG19 CNN’s
feature extraction layers to compare generated and ground
truth images and updated gradients in the network based on
comparative MSE error. VGG19 was pre-trained on Imagenet
and the VGG19 feature match loss was added to the in-painted
segment.

The Generative Multi-column Convolutional Neural Net-
work (GMCCN) [19] was used in the same setting as the U-
Net-based Generator. As shown in Figure 2, GMCCN uses
3 networks in parallel and their output is concatenated at
the final layer. We used the Patch-GAN discriminator for
adversarial loss and VGG19 feature match loss for the GM-
CCN Generator. Modifications to the GMCCN were performed
by introducing batch normalisation layers, as the network
was susceptible to the exploding gradient problem as was
discovered during our experiments.

The final stage of our pipeline was the Parallel-WaveGAN
vocoder to convert Mel-spectrograms into waveforms. Typ-
ically Parallel-WaveGAN vocoder is used in the Tactron 2
Text to speech (TTS) pipeline [20] where text is converted to
Mel-spectrograms and vocoder generates audio and that may
be used for any Mel-spectrogram to audio conversion. The
method used to train the Parallel WaveNet does not use any
distillation process thus making the resulting model small and
the overall processing fast. A pre-trained Parallel-WaveGAN
model pre-trained on the LJSpeech data was used here to avoid
a costly training process.

Our implementation was based on TensorFlow and trained
on an NVIDIA GTX 1660 Super GPU. Networks were trained
using the Adam optimiser with a learning rate set to 1e − 4
and batch size set to 1. All data pre-processing, conversion
to Mel-spectrograms and dataset matrix multiplications were
computed via the TensorFlow API. Model performance dur-
ing was recorded under Tensorboards. The implementation



of the Parallel-WaveGAN vocoder was based on PyTorch,
and weights were fetched from the public git repository at
https://github.com/kan-bayashi/ParallelWaveGAN

Initial experimental models were trained for 40 epochs on
the subset of 1,300 exemplars, with a fixed learning rate
of 1e − 4 and beta of 0.5 set in the Adam optimiser. The
default gap size was set to 240ms corresponding to 6 network
packets. The gap was not variative in order to objectively
assess different model performances in the same setting though
later we present experiments with variative gap sizes using the
best performing model.

D. Evaluation Metrics

We approach evaluation from the image aspect of the Mel-
spectrograms and from the audio aspect of the reconstructed
WAV audio. Three evaluation metrics are used. As a first mea-
sure, we compute the mean squared error (MSE) of the pixels
of the reconstructed image vs. the target image. As a second
metric, we measure the MSE of the VGG19 CNN feature
extraction layers of the Mel-spectrograms and compare ground
truth and generated data structures. We favour the VGG19
feature MSE metric over the L1 loss metric as it is more
descriptive visually, except in Table IV, which presents results
in full. Because an image comparison metric does not clearly
indicate how close to realistically sounding audio the generated
in-painting actually generates, a third metric measures the
quality of generated audio using the Perceptual Evaluation
of Speech Quality (PESQ) [13] which is calculated for each
test model. PESQ is a widely used standard for automated
assessment of speech in telecommunication systems. It takes
2 audio samples as input and produces a Mean Opinion Score
(MOS) from 1 (worst) to 5 (best).

IV. EXPERIMENTAL RESULTS

The first results reported are related to data normalisation.
Our first test runs on the U-net architecture indicate that
without normalisation of the Mel-spectrograms, the model
fails to learn valid patterns and fails to produce meaningful
results. A set of normalisation techniques were applied that
were described in Section III-B. Evaluation results for the
models are summarised in Table I.

The baseline approach of in-painting with normalised data
shows the algorithm is capable of learning the structure of the
Mel-spectrogram and in-painting missing pieces with an MOS
score of 2.348. However, its performance does not give the
required result for a real life application. We tried to match
Mel-spectrogram dimensions to be closer to 256x80 pixels
by changing the U-Net stride to 1 in the encoder-decoder
connecting layers, however a rapid drop in map shrinking in
the earlier layers caused a performance drop with MOS falling
to 2.138. we identified that with minimal structural alteration
the input size of 256x128 gave in-painting performance in line
with the original 256x256. Thus all subsequent U-Net models
had an input size of 256x128.

Following recent in-painting approaches such as [11], [19],
we identified that newer approaches use more sophisticated

loss functions and that loss function alterations may boost
performance. Enhancements to our loss function, specifically
VGG19 feature match loss for the whole image in addition
to L1 loss were then applied. The in-painted image became
closer to real data distribution and our VGG19 feature match
error decreased substantially from 6.056 to 2.896 and MOS
increased from 2.348 up to 3.657. We also implemented an
idea from [11] where additional loss of the in-painted area was
applied to the overall error. Therefore, the in-painted area loss
was added to concentrate the attention of the algorithm more
specifically on the in-painted area. That decreased VGG19 loss
further to 2.721 and increased MOS to 3.737.

To understand whether the length of the Mel-spectrogram
plays a role in predicting the masked segment, input size
was reduced from 256px (2.8s) to 125px (1.4s) by cutting
Mel-spectrograms in half thus reducing the complexity of the
problem as well as computational cost. Training and testing
found that reduction in data input significantly reduced the
performance of the model. The VGG19 feature match score
degraded from 6.056 (the baseline) to 9.962 indicating that
the baseline algorithm used information from the whole of
the Mel-spectrogram. Experiments were performed around
increasing the dimensionality of the data, but as that would
have added additional computational cost, it was out of scope.

In addition to the U-Net generator, we conducted experi-
ments with the GMCCN CNN architecture. The performance
of GMCCN after our standard 40 training epochs was dis-
appointing, with a VGG19 feature match loss of 3.402 and
significant drop in MOS to 2.465. In addition, GMCCN has
increased computational cost as the architecture includes 3
networks running in parallel as shown earlier in Figure 2.

To investigate the significance of the masked gap size, we
conducted experiments based on the assumption that the algo-
rithm would need to regenerate gaps from 40ms up to 320ms.
Thus models were trained for different gap sizes. Results
showed that reducing the gap size required less training time to
achieve good performance as seen in Figure 3. An interesting
finding was that when Mel-spectrograms were generated on
the 320ms gap model and others on the 160ms gap model, the
error on the 320ms gap model Mel-spectrogram was the same
if we had taken the first 160ms of the sample. This tells us
that models perform the same if we for the same gap window.
Our subsequent experiments were carried out on segments
with gaps of 320ms. Results also showed that performance
degrades linearly and the model regenerates Mel-spectrograms
with good confidence at the start, however the further into the
time domain, the less accuracy results as shown in Table II.

We also experimented with training models on variative gap
sizes. In the data processing pipeline, random gap selection
was performed in the range 40ms to 320ms. After training the
model for the default 40 epochs, the models that performed
significantly worse than the fixed gap models were identified
and the performance dropped by 70% compared to fixed-size
models. We trained the model on a full data set of 13,000
samples (increasing the step amount from 40× 1000 to 40×
13, 000). The model still did not perform as well as those with



Table I: Summary of model output metrics

Metric VGG19 Feature Loss L1 Loss MOS

U-Net Baseline 256x128 6.056 0.415 2.348
U-Net 256x80 7.716 0.503 2.138

U-Net 128x128 9.962 0.636 2.029
U-Net with VGG19 loss 2.896 0.249 3.657

U-Net with VGG19 loss + chunk loss 2.721 0.238 3.737

GMCCN 3.402 0.255 2.465

Table II: Evaluation results for different mask sizes (in multiples of 40ms)

1 2 3 4 5 6 7 8

MOS 4.514 4.321 4.185 4.074 3.938 3.832 3.520 3.214
VGG19 Loss 0.501 0.989 1.338 1.832 2.314 2.762 3.138 3.738

Figure 3: Training loss with different gap size settings

fixed gap sizes, the VGG19 feature loss was 6.785, which is
significantly higher than the 2.721 produced by the fixed gap
model, even though trained on a substantially larger dataset.

A series of tests of the inference speed on both the Parallel-
WaveGAN and U-Net based generator Were performed to
identify if the model is usable in real-time. The U-Net based
model generates an in-painted Mel-spectrogram in approxi-
mately 50ms on a GPU, in line with results presented in [6].
Parallel-WaveGAN converts a Mel-spectrogram to audio in
5ms on a GPU in line with results presented in [20].

Finally, we examined the worst performing in-painted Mel-
spectrograms and best performing Mel-spectrogrms, identified
by VGG19 feature loss and MOS. A summary of the results
is shown in Table III and Figure 4 shows some representative
examples. A sample model output comparison may be seen in
Table IV, along with ground truth and the Mel-spectrogram
used as its input.

Table III: Best and worst performing Mel-spectrogram results

MOS VGG19 Loss

Best Performing by MOS 4.792 0.250
Best Performing by VGG19 / MSE 4.592 0.238

Worst Performing by MOS 2.735 3.871
Worst Performing by VGG19 / MSE 2.935 5.303

Figure 4: Example of the best (left) and worst (right) perform-
ing Mel-spectrograms as determined by VGG19 feature MSE.
The black vertical line in the GT for the worst performing is
a gap in the LJSpeech dataset sample audio

V. CONCLUSIONS

This paper presented a technique that improves a speech
signal degraded by the introduction of variable length gaps
which arise frequently in in real-time audio telephony and
video conferencing. Missing audio gaps are generated using
GANs as currently there is no good solution available for
this task making comparison with prior work difficult. Our
key findings are that U-Net-based GANs with a loss function
based on VGG19 feature match [19] for Mel-spectrograms
from the audio are capable of in-painting gaps in those
Mel-spectrograms in near real-time. After transforming an
in-painted Mel-spectrogram back to audio via the Parallel-
WaveGan vocoder [20] and following the use of an enhanced
U-net generator with a more advanced loss function similar
to one in [11], [19], we generated audio fragments that
are structurally similar to the real distribution with a MOS
from 3.214 for gaps of 320ms up to a MOS of 4.514 for
gaps of 40ms. The total time taken to regenerate a gap is



Table IV: Comparing model outputs, Mel-spectrograms (size adjusted to fit)

Input Ground Truth

U-Net Baseline With VGG19 loss With VGG19 loss GMCNN
+ chunk loss

approximately 105ms on a GPU, an acceptable performance
for real-time communications.

For larger regenerated gaps our model is capable of almost
exactly regenerating the missing area in the Mel-spectrogram.
The model uses information from all of the Mel-spectrogram,
as reducing the size of the input Mel-spectrogram leads to
a large drop in performance. We found that fixed gap size
models are capable of learning distributions from smaller data-
sets as the complexity of the problem is reduced and the most
efficient way to address variative gap sizes is to train a model
capable of filling large gaps and use it for all gap sizes. The
performance of such an approach is similar to that of models
trained on smaller gap sizes.

We conclude that it is possible to use our in-painter-Vocoder
pipeline to regenerate audio gaps in real-time on systems
equipped with a GPU and that the result can be perceived
by humans as good quality. Further work should identify if
there are reduced sized models similar to SD-UNET [6] that
could perform well enough on CPU-only systems.
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