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ABSTRACT
Hyperparameters enable machine learning algorithms to be cus-
tomized for specific datasets. Choosing the right hyperparameters
is a challenge often faced by machine learning practitioners. With
this research, tuning of hyperparameters for regression models
was explored. Models predicting house prices in King County were
created using a detailed suite of regression algorithms. Traditional
approaches, and evolutionary algorithms, for improving model
accuracy were evaluated. A variety of feature selection methods
and hyperparameter tuning using grid search, random search and
pipeline optimization were also studied as part of the traditional
approaches. Furthermore, evolutionary algorithms were applied to
model optimization. In this paper, it is shown that an evolutionary
approach, implemented with TPOT, achieves the highest accuracy
for a regression model based on the King County dataset. Regard-
ing metrics, combining the RMSE and R2 metrics is shown to be
an effective means of determining model accuracy. Finally, greedy
feature selection performed best when a variety of feature selection
methods are compared.
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1 INTRODUCTION
To evaluate the effective tuning of regression model parameters,
models were developed using a dataset provided by King County,
Washington, USA [1]. The dataset contains detailed records of
homes which were sold in the King County area of Washington
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between May 2014 and May 2015. There are 21,613 observations
in the dataset which contains 20 house features plus the target
regression value price.

The objective of the research was to investigate all aspects of
building a predictive model and to use these findings in creating the
optimal regression model for predicting house prices in the King
County area. Therefore, several key areas were explored namely
pre-processing techniques, scaling methods, choice of regression
models, feature selection techniques and hyperparameter tuning.
In addition, hyperparameter tuning using pipelines and genetic
algorithms was explored.

2 BACKGROUND
Automated Machine Learning (AutoML) [2] generates optimized
models automatically when provided with datasets, thus reducing
the need for data scientists. AutoML tools, including those that use
genetic programming, were investigated as part of this research.
Well known AutoML tools include Auto-WEKA [3], Hyperopt-
Sklearn [4], AutoKeras [5], Auto-Sklearn [6, 7] and TPOT [8].

2.1 Hyperparameter Optimization
In order to customize machine learning models to particular
datasets, hyperparameters are employed. The performance of stan-
dard machine learning libraries can be improved through hyperpa-
rameter optimization (HPO) of its default settings [9, 10]. Further-
more, HPO reduces the human effort required for implementing
machine learning [11].

Grid search is a tuning technique which calculates the best hy-
perparameter values through an exhaustive search. The search is
performed on a user defined set of parameter values [12]. However,
such an approach suffers from the curse of dimensionality in that
as the number of features grows, the amount of data needed to
generalize accurately grows exponentially [13]. An effective and
less computationally intensive alternative to grid search is to use
random search [14] which samples random configurations. In the
context of this research, both grid search and random search are
evaluated.

2.2 TPOT
TPOT is a python based automated machine learning tool that
optimizes pipelines using genetic programming. Aspects of machine
learning are automated by exploring different pipelines to identify
the best fit for the model’s data. TPOT considers multiple machine
learning algorithms such as Random Forest (RF), linear models and
SVM in a pipeline with different pre-processing steps including
missing value imputation, scaling, PCA and feature selection. In
addition, the model hyperparameters are selected.
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Figure 1: System Overview

Layered TPOT is a modification to the TPOT approach which
accelerates pipeline optimization. This approach is explored by
Gijsbers et al [15]. The adopted approach aspires to producing
pipelines equally as good as the original in significantly less time.
In the modified approach to TPOT, time is reduced by initially
evaluating the pipelines on a small subset of the data, and only
allowing promising pipelines to be evaluated on the full dataset. As
an algorithm based on genetic programming, TPOT was chosen for
its ease of use coupled with the fact that it is widely used in the
research community.

2.3 Tuning Evolutionary Parameters
Finding appropriate parameter values for evolutionary algorithms
(EA) is one of the challenges experienced in the field of evolutionary
computing. The effect of parameter tuning on EAs is discussed in
some detail by Eiben and Smit [16] in their general framework of an
evolutionary algorithm. The results show that population size is the
most significant control parameter for improving model accuracy.
This finding is consistent with the experiences of other researchers
[17] in their work on efficient genetic algorithms for improving
optimization.

In developing a predictive model for the King County dataset,
the application both implements TPOT and adheres to the key
elements of the general framework of Eiben and Smit. While the
implementation does not allow control of all parameters, it does
enable the key parameters to be set.

3 APPROACH
Multiple pre-processing techniques were applied when evaluating
the performance of a range of models. Furthermore, a comprehen-
sive suite of feature selection methods was investigated. Selecting
different functions for scaling has significant effects on model accu-
racy. It is difficult to anticipate, in advance, which scaling method
is most suitable. Therefore, different scaling methods were applied
depending on user specified parameter values. The scaling methods
of Min Max Scaler, Standard Scaler and Normalization are made
available and set as parameters specified when invoking the appli-
cation.

Modelling of datasets, using machine learning, provides a wide
array of choices. It is difficult to anticipate which of these algorithms
will perform best for themodel under development without running
adequate tests. A regressors array was used as a parameter for all
functions which tested regression models.

4 DESIGN
Key components of the system are highlighted in Figure 1. Hyperpa-
rameter optimization, with both grid search and random search, was
implemented and the optimum parameters were selected. Building
on this, suitable pipelines were recommended. Regression algo-
rithms were tested with and without feature selection. The feature
selection techniques employed were PCA, Random Forest (RF) and
greedy feature selection.

TPOT, and the faster approach of Layered TPOT were used to im-
plement the genetic algorithm which searched for optimal machine
learning pipelines.
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Figure 2: Feature Selection Impact on Accuracy

Table 1: Regression Model Performance without Feature Se-
lection

Algorithm R2 RMSE

Random Forest Regressor 0.869 0.016
Decision Tree Regressor 0.753 0.022
KNeighbors Regressor 0.752 0.020

5 EVALUATION
5.1 Metrics
Several metrics were evaluated in determining model performance
namely : R2 coefficient, Mean Absolute Error (MAE), Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE).

In assessing the performance of various models, RMSE was se-
lected, instead of MAE and MSE since it gives a better measure of
fitness. RMSE gives a high weighting to large errors since errors
are squared before they are averaged:

RMSE =

√√
1/n

n∑
i=1

(Si −Oi )
2

where Si are the predicted values and Oi are the observations and
n is the number of observations.

The R2 coefficient compares the performance of a model on a
test set with the performance of an imaginary model that always
predicts the average values from the test set.

R2 = 1 −
∑n
i=1 (y − ŷi )

2∑n
i=1 (yi − ȳi )

2

where y is the actual value, ŷi is the predicted value, ȳi is the mean
of the y values and n is the number of observations.

5.2 Regression Model Performance
A combination of metrics is often required to assess model perfor-
mance [18]. A combination of R2 with RMSE was used to determine
algorithm performance. Algorithms which demonstrate a high R2

and a low RMSE should perform well. The performance of a large
suite of regression models was tested. A summary of the results,
using the R2 and RMSE metrics, is shown in Figure 2 and in Figure
3

The best performing algorithms are extrapolated from these
results and presented in Table 1. The RF Regressor is the best per-
forming algorithm across both key metrics of R2 and RMSE.

5.3 Feature Selection
A broad range of feature selection techniques, and their impact on
model performance, was evaluated. The feature selection techniques
examined in detail included PCA selection, tree based selection and
greedy backward selection.

5.3.1 PCA Feature Selection. It can be seen, from Figure 2 and
Figure 3, that PCA adversely affects R2 and RMSE scores across
the best performing regressor models. Therefore, as a method of
reducing dimensionality, it works well but this comes at a high cost
of significantly reducing model accuracy across the key metrics. For
example, the R2 coefficient for the RF Regressor is 0.869 without
PCA and this drops to an R2 of 0.79 when PCA is employed. Given
this cost, PCA is not recommended for this dataset. These results are
supported by the grid search experiments, the pipeline evaluations
and the genetic algorithms, none of which recommended using
PCA.

5.3.2 Random Forest Feature Selection. The experimental findings,
summarized in Figure 2 and in Figure 3, compare model perfor-
mance on all algorithms using the R2 and RMSE metrics.

The best performing model was KNeighbors Regressor which
had an R2 of 0.821 and RMSE of 0.019, after RF feature selection,
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Figure 3: Feature Selection Impact on RMSE

compared to R2 of 0.751 and RMSE of 0.023, prior to RF feature
selection. Clearly RF feature selection led to an improvement in
model accuracy when KNeighors Regressor is used as the model’s
algorithm.

However, from Table 1, it can be seen that the R2 and RMSE
results of the top performing model without feature selection was
0.869 and 0.016, respectively, for the RF Regressor. These metrics
are significantly better than the KNeighbors Regressor with an R2

of 0.821 and RMSE of 0.019 with RF feature selection. Therefore, fea-
ture selection using random forest feature selection is not advised
for the King County dataset.

5.3.3 Greedy Feature Selection. The results presented in Figure 2
and in Figure 3 are based on greedy selection using a Passive Ag-
gressive Regressor estimator and the KNeighbors Regressor model.

In comparing greedy feature selection with both PCA and ran-
dom forest feature selection, it can be seen that the greedy algorithm
performs best. Top model accuracy, where greedy selection was
initially applied on the dataset, was better than in cases where
greedy selection had not been applied. The associated R2 score of
the best performing model, with greedy selection, is higher than
the R2 score achieved on running the regressors without feature
selection.

There are two components in the greedy algorithm which deter-
mine how effective greedy feature selection is: the estimator and the
model. An array of regressor algorithms was used to create an ex-
haustive set of (estimator, model) combinations. Each combination
applied greedy feature selection to the King County dataset.

With this approach, the greedy algorithm was run on estimator
/ model combinations to see their effect on model performance.

Figure 4: Grid Search Impact on Accuracy
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Figure 5: Grid Search Impact on RMSE

Using a Passive Aggressive Regressor as estimator and a RF Regres-
sor as the model, feature selection was initially performed on the
dataset. The transformed data was then used by all algorithms in
the regressors array. The RF Regressor was the best performing
regressor with an R2 of 0.88.

Therefore, it was shown that feature selection can improvemodel
performance and it is recommended to choose a greedy strategy
for feature selection on the King County dataset.

5.4 Hyperparameter Optimization
The approach taken to the evaluation of hyperparameters is con-
sistent with how previous evaluations are conducted. An array of
regressor algorithms is used and the parameters specific to that
algorithm are applied. The appropriate models are subsequently
built and assessed. The full test run contains the R2, MAE, MSE and
RMSE as evaluation metrics. In the graphical depiction of the test
results, model accuracy is displayed using the key metrics of R2

and RMSE.

5.4.1 Optimization with Grid Search. Figures 4 and 5, illustrate
that grid search improved or maintained model accuracy, for all
algorithms. The best performing model, with its tuned parameters
is the Random Forest Regressor using n estimators of 100 and a
max depth of 20 achieving an R2 of 0.8724.

5.4.2 Optimization with Random Search. The results, from Figures
6 and 7, illustrate that random search improved model accuracy,
or at a minimum maintained accuracy, for all algorithms. The best
performing model using random search, with its tuned parameters
is the Random Forest Regressor with n estimators of 91 and a max
depth of 22 achieving an R2 of 0.8717. On comparing the perfor-
mance of grid search with random search it can be seen there is
little difference in terms of model accuracy with both approaches.
Such a finding is consistent with the literature [14]. Grid search
is marginally better at hyperparameter tuning for model accuracy.
The best parameters found for grid search yielded an R2 of 0.8724
whereas random search has an R2 of 0.8717.

Table 2: Pipeline Accuracy using TPOT (full dataset)

Test Pop Gen Pipelines R2 Time / s

1 10 5 50 0.8969 367
2 20 10 200 0.8914 1846
3 200 10 2000 0.9090 29394

5.4.3 Optimization with Pipelines. Hyperparameter optimization
through pipelines was implemented as part of the research.
Pipelines were constructed using SVM, a DT regressor and a RF
regressor. The model with the highest R2 coefficient used the RF
Regressor algorithm. While hyperparameter optimization, using
pipelines, produced good R2 values (RF: 0.83, DT: 0.737), it is worth
noting that it is considerably lower than the R2 (0.869) achieved
using a Random Forest without feature selection, as illustrated in
Table 1

5.5 Optimization with Genetic Pipelines
The performance of TPOT was evaluated against traditional ap-
proaches to machine learning. To accelerate model development,
a layered TPOT approach using 25% of the King County dataset,
was adopted. The results, displayed in Table 2 and Table 3, support
the findings of Gijsbers [15]. While the R2 accuracy achieved on
the reduced dataset is lower than the full dataset, the difference
is trivial for higher population sizes. Using default crossover and
mutation parameters with a population size of 200 and 10 genera-
tions, 2000 pipelines were evaluated for both the full and reduced
datasets. The best performing pipeline within the full dataset built
a model with an R2 accuracy of 0.9090 in a time of 489 minutes. By
comparison, the best performing pipeline using the reduced dataset
achieved model accuracy of 0.8859 in a time of just 44 minutes
illustrating that simple TPOT configurations work well. In fact, it
has been shown that a simple TPOT configuration provides greater
accuracy than an exhaustive grid search or random search. A TPOT
configuration with a population size of 10, 5 generations, mutation
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Figure 6: Random Search Impact on Accuracy

Figure 7: Random Search Impact on RMSE

Table 3: Pipeline Accuracy using layered TPOT (25% of original dataset)

Mut 0.9 Cross 0.1 Mut 0.45 Cross 0.1 Mut 0.3 Cross 0.1

Test Pop Gen Pipelines R2 Time / s R2 Time / s R2 Time / s
1 10 5 50 0.8476 86 0.8476 115 0.8390 430
2 20 10 200 0.8396 500 0.8330 584 0.8390 326
3 200 10 2000 0.8859 2683 0.8471 989 0.8524 623

(0.9) and crossover (0.1) achieved a model accuracy of 0.8969 in 6
minutes compared with grid search, which achieved an R2 model
accuracy of 0.874 in 34 minutes.

6 CONCLUSION
The Random Forest Regressor was identified as the top performing
algorithm on initial test runs carried out without feature selec-
tion, grid optimization, pipeline optimization or the use of genetic
algorithms.

Feature data, which is PCA transformed, is unsuitable for im-
proving the model accuracy of the King County dataset. Random
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forest selection was an improvement over PCA but ultimately back-
ward greedy selection both reduced dimensionality and improved
model accuracy. The best performing estimator/model combina-
tion for greedy feature selection, in the case of this dataset, is the
Passive Aggressive Regressor as estimator using a Random Forest
Regressor as the model. The transformed dataset using this optimal
combination achieved an R2 accuracy of 0.88 which illustrated that
feature selection is a useful tool in improving the accuracy.

Hyperparameter tuning using grid search and random search
was investigated. Even though the improvements were only mar-
ginal, both approaches improved model accuracy. Running a Ran-
dom Forest Regressor, without hyperparameter tuning yielded an
R2 of 0.869. In fact, it is interesting to note that running a Random
Forest Regressor on a dataset, transformed using greedy feature
selection, provided better accuracy results (R2 of 0.88) than grid
search.

The use of genetic algorithms ultimately led to the greatest im-
provements in model accuracy. A genetic search algorithm, as a
TPOT implementation, identified the most suitable pipeline en-
abling an R2 of 0.909 using the full dataset. This represents a 4%
increase in accuracy when compared with the non-evolutionary
approach of a Random Forest Regressor, which achieved a score of
0.869. More complex genetic configurations, with higher population
sizes and a greater number of generations does not always lead to
better solutions due to the stochastic nature of such algorithms.
Using the full dataset, test run 2 generated a marginally lower R2

coefficient (0.8914) compared with test run 1 (0.8969) even though it
was four times more complex and took 5 times longer to complete.
Genetic algorithms are good at identifying algorithms that would
not have previously been considered. In the cases of test run 1 and
test run 2, with the full dataset, the XGB Regressor algorithm was
identified as optimal. This algorithm was not initially considered
when modelling the King County dataset.
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