
  

  

Abstract—The training and optimization of neural networks, 

using pre-trained, super learner and ensemble approaches is 

explored. Neural networks, and in particular Convolutional 

Neural Networks (CNNs), are often optimized using default 

parameters. Neural Architecture Search (NAS) enables 

multiple architectures to be evaluated prior to selection of the 

optimal architecture. Our contribution is to develop, and make 

available to the community, a system that integrates open 

source tools for the neural architecture search (OpenNAS) of 

image classification models. OpenNAS takes any dataset of 

grayscale, or RGB images, and generates the optimal CNN 

architecture. Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO) and pre-trained models serve as base 

learners for ensembles. Meta learner algorithms are 

subsequently applied to these base learners and the ensemble 

performance on image classification problems is evaluated. Our 

results show that a stacked generalization ensemble of 

heterogeneous models is the most effective approach to image 

classification within OpenNAS. 

 
Index Terms—AutoML, transfer learning, pre-trained 

models, ensemble, stacking, super learner, PSO, ACO, CNN. 

 

I. INTRODUCTION 

 Open-source AutoML [1] solutions such as Auto-WEKA 

[2] and TPOT [3] focus on creating simpler neural 

architectures. Libraries capable of generating more complex 

CNN architectures are also available [4]. In addition to 

open-source options, many large corporations have 

developed powerful online platforms to enable the generation 

of neural architectures automatically. Chief among these 

solutions is Google’s Cloud AutoML and Microsoft Azure’s 

AutoML. However, the alternative of using commercial 

platforms is expensive leaving users with few practical or 

viable options.  

 The development of an open-source NAS tool, OpenNAS1 

[5] seeks to address these shortcomings by integrating 

multiple open-source NAS approaches. With OpenNAS, 

CNN architectures for grayscale and RGB image datasets are 

found through the Swarm Intelligence (SI) heuristics of 

Particle Swarm optimization (PSO) [6] and Ant Colony 

optimization (ACO) [7]. Pre-trained models using VGG16, 

VGG19 [8], ResNet50 [9] and MobileNet [10] architectures 

were fine-tuned and used as feature extractors. Finally, 

 
   

 

 
    

  

 
 

   

models derived using SI and pre-trained approaches were 

combined into network ensembles and evaluated.  

 

II. BACKGROUND 

A. Convolutional Neural Networks 

Initially proposed by LeCun [11], CNNs are feed-forward 

Deep Neural Networks (DNNs) used for image recognition. 

In this study, SI and ensemble approaches are used to find 

better combinations of convolutional, pooling and fully 

connected layers for CNN architectures.  

B. Neural Architecture Search 

The process of automatically finding and tuning DNNs is 

referred to as Neural Architecture Search (NAS). Systems 

implementing NAS typically consist of a search space, a 

search algorithm and an evaluation strategy. The 

architectures to be evaluated are set out in the search space, 

the search algorithm determines how the search space is to be 

explored and the evaluation strategy determines the best 

architectures on unseen data. Brute force training and 

evaluation of all possible model combinations is a crude 

approach to NAS whereas an improvement is to use SI 

heuristics. Ensembles, combining multiple models, is an 

alternative which frequently generates better results.  

C. Transfer Learning 

Transfer learning is used widely in the deep learning 

domains of computer vision and natural language processing 

[12], [13]. The approach involves taking a model developed 

for one task and applying it as the starting point for a new 

model which carries out different tasks.  

Training networks on large datasets, such as ImageNet, 

can take days of GPU time. Through the use of transfer 

learning, features learnt during this process and the 

underlying model architecture, can be rapidly transferred to a 

new model domain. Fortunately, many large corporations and 

research institutions, have made such pre-trained models 

publicly available.  

As part of this research, several pre-trained models are set 

as the starting point for new models which are fine-tuned and 

evaluated. These networks included shallow networks such 

as 16 layer and 19 layer VGG networks [8], a more complex 

50 layer ResNet [9] and a 28 layer MobileNet [10]. Original 

papers for each network type were studied to find the 

classification error rates on benchmark datasets. 

D. Swarm Intelligence 

Swarm Intelligence (SI) is an important category of 

heuristics within the domain of Evolutionary Computing. 

While many SI algorithms exist, the most prominent are 
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Particle Swarm Optimization (PSO) [14] and Ant Colony 

Optimization (ACO) [15]. Open-source libraries can 

facilitate SI implementation.  

Using a PSO algorithm, an open-source python library for 

CNN optimization, openCNN, was developed by Fernandes 

et al [16]. An alternative ACO based approach, known as 

DeepSwarm, was developed by Byla and Pang [17]. Both 

libraries have been demonstrated to offer competitive 

performance in the classification of CIFAR-10 [18] and 

Fashion_Mnist data [19]. 

E. Ensemble Techniques 

Cheng Ju et al. [20] explored the available options when 

designing an ensemble for image classification. A detailed 

analysis was conducted which encompassed the following 

ensemble techniques: unweighted average, majority voting, 

Bayes optimal classifier, stacked generalization and a super 

learner: a cross-validation based stacking method. In their 

study, the super learner proved the most accurate across all 

methods.  

The super learner approach is an extension of stacking in 

that it creates an ensemble based on cross-validation. A 

weighted combination of many candidate learners, developed 

using different algorithms, are combined to build the super 

learner [21].  

The effects of an ensemble of DNN acoustic models in 

automatic speech recognition is investigated by Geoffrey 

Hinton at al [22]. The results clearly show the value of the 

ensemble approach.  Using the same architecture and training 

methods as the baseline, 10 separate models were trained. 

Sufficient diversity was introduced through randomly 

initializing models with different initial parameter values. 

Such a simple approach allowed averaged predictions of the 

ensemble to significantly outperform individual models. 

 

III. PROPOSED APPROACH 

The number of hidden layers, the number of neurons per 

layer, the type of activation function and the choice of 

optimizer are among the parameters which need to be 

optimized as part of a neural architecture search. NAS 

implementation can be achieved through a variety of 

approaches including transfer learning using pre-trained 

networks, network morphism or swarm intelligence. 

Furthermore, the performance of NAS derived networks can 

often be enhanced through the use of ensembles.  

A. Pre-trained Networks 

The internal architecture of VGG16 is illustrated in Fig. 1. 

As with all CNNs, the architecture is subdivided into a series 

of blocks which are separated by pooling layers. These 

blocks may be composed of either convolutional layers or 

fully connected layers.  

Each convolutional layer has set of kernels (i.e. filters) 

with learnable parameters. The filter size, in both VGG16 and 

VGG19, is set to 3x3 pixels whereas the number of filters 

used varies between different blocks. With VGG 

architectures, the number of filters increases from 64 to 512 

as an image progresses through the layers. The filter size and 

number of filters used are shown in Fig. 1. The effectiveness 

of pre-trained VGG models, both as feature extractors and 

fine-tuned models, in generating optimal architectures is 

explored as part of the approach taken in this study. 

 

 
Fig. 1. Architecture of VGG16. 

 

In the context of this study, ResNet50 was also used which 

is a 50 layer ResNet implementation. ResNet shares many of 

the same characteristics of the VGG networks i.e. blocks of 

convolutional layers followed by a fully connected layer and 

SoftMax activation. However, Resnet differs from other 

architectures in that it uses a principle known as skip 

connections which reduces the problem of vanishing 

gradients associated with deeper networks. 

MobileNet, a family of computer vision neural networks 

designed by Google, was also evaluated. Its shallow 

architecture and fast performance allows for its use in mobile 

devices. The structure is broadly similar to the architectures 

of VGG and ResNet with convolutional layers feeding into a 

fully connected layer that uses SoftMax classification.  

Overall these networks can be viewed as performing two 

clear functions: feature extraction carried out by 

convolutional layers and classification which is implemented 

by the fully connected layers.  

Convolutional layers are used for feature extraction since 

they concentrate on smaller regions of the image using 

multiple small filters (e.g. 3x3 in the case of VGG). This 

eliminates the need for feature engineering or extraction, 

such as PCA, which is needed with other forms of artificial 

neural networks.  

With all approaches, the image is classified into various 

classes using a fully connected (FC) neural network, 

following feature extraction of the earlier convolutional 

layers. The last layer in all architectures is the SoftMax layer 

which converts the output of the previous layer into a 

probability distribution which can be used for classification. 

In the context of DNNs, there are two principal modes of 

transfer learning namely feature extraction and fine-tuning. 

These common features, identified above, enabled two types 

of transfer learning to be incorporated in the approach taken 

in the development of OpenNAS. 

1) Feature extraction on pre-trained networks 

Transfer learning was performed on the CIFAR-10 and 

Fashion_Mnist datasets using filters, learned by 

state-of-the-art networks. These pre-trained networks were 

initially developed through training on large datasets such as 

ImageNet. In this manner, transfer learning enabled the 

pre-trained networks to classify images it was not trained on. 

With feature extraction, pre-trained networks are treated as 

feature extractors. Input images propagate through the 

network and stop at a pre-specified layer. Outputs of this 

layer are then treated as the features which is illustrated in Fig. 

3. 
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Fig. 2. Super learner approach [21]. 

 
Fig. 3. Feature extraction. 

 

Features, which are the output of the max-pooling layer, 

were flattened into a feature vector. Given a dataset of N 

images, the process of feature extraction was repeated for all 

images in the dataset, resulting in a total of N feature vectors. 

These features, were then trained on scikit-learn machine 

learning models.  

2) Fine tuning of pre-trained networks 

With the implementation of fine tuning, hybrid model 

architectures were created by removing the fully connected 

layers from the top of the model.  

In the OpenNAS design, two blocks were added each of 

which had a fully connected layer, a batch normalisation 

layer and a dropout layer. The new hybrid structure was then 

trained. The inner layers of the model were unfrozen 

allowing both the convolutional and fully connected layers to 

be trained for a specific number of epochs. The resulting 

fine-tuned model architecture is illustrated in Fig. 4. 

 

 
Fig. 4. Fine-tuning. 

B. Ensembles 

 Ensembles were developed using stacked outputs from 

base learners. Subsequently, meta learners generated new 

models by using the stacked ensemble outputs to learn from 

the base learners. Meta learners using several different 

algorithms were evaluated. These algorithms include K 

Nearest Neighbor (KNN) [23], Support Vector Clustering 

(SVC) [24], Random Forest [25], Logistic Regression [26] 

and Multi-Layer Perceptron (MLP) [27]. Combinations of 

homogeneous or heterogeneous base learners were included 

in creating the network ensembles.  

 The approach taken in this paper is to focus on stacking 

ensembles, scikit-learn ensembles and super learner 

ensembles.  With stacking, the accuracy of predictions was 

improved by combining multiple weaker base learner models. 

Outputs of N weak learners were combined to form the 

feature set for a meta learner. Subsequently, the meta learner 

learns from the prediction outputs of each base learner. 

 

 
Fig. 5. Stacking approach. 

 

The single level stacking model is further developed with a 

multi stacked ensemble. With a multi stacked approach, the 

meta learner is replaced by another set of base learners 

increasing the model complexity.  

The super learner approach is an extension of stacking to 

k-fold cross-validation whereby all models use the same 

k-fold splits of the data. The meta-model is fit on the 

out-of-fold predictions from each model. The steps involved 

in the super learner approach are outlined in Fig. 2 from 

Hubbard’s original paper [21].  

With OpenNAS, other options for neural architecture 

search are also available. The system allows AutoKeras and 

auto-model approaches to be used in the search process. 

Swarm intelligence algorithms may also be selected for 

optimization. The swarm optimization techniques currently 

used are Particle Swarm Optimization and Ant Colony 

Optimization. 
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2) Stacking with neural networks 

As outlined in the system design, ensemble outputs are 

used to create a stacked training dataset for a meta learner. 

The meta learner is trained by firstly preparing the training 

dataset and then using the prepared dataset to fit a 

meta-learner model. In this manner, features of the meta 

learner dataset are created using predictions from the base 

learners.  

The stacking ensemble approach adopted by OpenNAS 

enables both heterogeneous and homogeneous ensembles of 

base learners models to be evaluated.  To develop meta 

learners, the meta-algorithms chosen as the secondary 

machine learning classifier included Random Forest, Logistic 

Regression, KNN, MLP and SVC classifiers.  With this 

implementation, there are two principle modes of operation. 

The first mode involves the creation of baser learners. These 

learners are then used to create ensemble outputs to train 

meta-learners. The second mode of operation simply loads 

previously built base learners to create the ensemble for the 

meta-learners. 

3) Stacking with scikit-learn 

With scikit-learn, ensemble stacking is achieved using the 

Stacking Classifier library. For the purposes of this study, 

two types of ensembles were implemented: a one layer 

stacking ensemble and a multi stacked ensemble consisting 

of two layers.  With the one layer model, illustrated in Fig. 6, 

two MLP classifiers with different learning rates were used as 

the base models. The outputs from these learners feed into a 

Random Forest which is used as the meta learner. A single 

Stacking Classifier is required. 

 

 
Fig. 6. Stacking with a single layer. 

 

As illustrated in Fig. 7, the multi stacked implementation 

consists of two layers of estimators. Layers of estimators are 

joined using separate Stacking Classifiers. The first layer 

consisted of a Random Forest, a KNN and 2 MLP classifiers 

(again with different learning rates). The outputs, i.e. 

predictions from layer 1 are passed to a layer consisting of a 

Decision Tree and a Random Forest. Layer 2 outputs are then 

combined with an SVC classifier to make the final prediction. 

 

 
Fig. 7. Multi stacking. 

 

4) Stacking with a super learner 

Using the python ML-Ensemble [28] library, a super 

learner was created. The configuration of base learners used 

algorithms from Logistic Regression, SVC, KNN, Bagging, 

Random Forest and Extra Trees. The approach is illustrated 

in Fig. 8 and the meta model was implemented using a 

Random Forest algorithm. 

 
Fig. 8. Stacking with a super learner. 

 

IV. DESIGN 

A high level system architecture overview is presented in 

Fig. 9. The system is organized into the following modules: 

OpenNAS, pre-processor, trainer, ensemble and loader. 

Transfer learning, as either a feature extractor or to fine-tune 

the pre-trained networks, is incorporated in the pre-train 

function.  

Metaheuristics of Particle Swarm Optimization and Ant 

Colony Optimization are used to search for the optimal neural 

architecture as part of the SI design. Particle swarms were 

created using a psoCNN library [16] and ant colonies were 

implemented using the DeepSwarm library [17]. Existing 

AutoML tools, such as AutoKeras [4], were also integrated 

into the OpenNAS system.  

With the ensemble module, there are options to build 

custom stacked ensembles using either homogeneous or 

heterogeneous base learners. In addition, there are options to 

create ensembles using either scikit-learn stacking or a super 

learner. Base learner outputs are subsequently passed to a 

suite of meta learner algorithms.  

The system outputs include the generation of optimal 

neural architecture models and their associated architecture 

diagrams. 

 

V.  EMPIRICAL EVALUATION 

A. Experimental Setup 

Two datasets were chosen for the experimental design, 

namely CIFAR-10 [18] and Fashion_Mnist [19]. A primary 

research objective is the development of a Neural 

Architecture Search tool which chooses the optimal 

architecture for generic datasets of either grayscale (one 

channel) or colour (three channel) images. The CIFAR-10 

dataset meets this requirement in that it is a challenging 

dataset of colour images. The Fashion_Mnist dataset is also 

suitable since it is a well-tested and well understood dataset 

of black and white images.  

For reference, the state of the art (SOA) accuracy achieved 

on CIFAR-10 is 98.5% whereas with Fashion_Mnist, the 

SOA accuracy is 94.6% [29]. 

Full models were developed using a lab of machines each 

of which has an AMD Ryzen 7 2700X processor, 16 GB 

memory, a 256 SSD and an NVIDIA GeForce GTX 1080 Ti. 

1) CIFAR-10 

CIFAR-10 is a dataset of 60,000 32x32 colour images in 

10 classes. There are 6,000 images per class creating a 
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well-balanced dataset. Furthermore, the dataset is divided 

into five training batches and one test batch, each with 10,000 

images. Therefore, there are 50,000 training images and 

10,000 test images. The test batch contains exactly 1,000 

randomly-selected images from each class. Training batches 

contain the remaining images in random order and contain 

exactly 5,000 images from each of 10 classes. CIFAR-10 

includes the following image categories: airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship and truck.  

 
Fig. 9. OpenNAS system design. 

 

2) Fashion_Mnist 

Fashion_MNIST is a dataset of grayscale images 

consisting of a training set with 60,000 examples and a test 

set of 10,000 examples. Each sample is a 28x28 grayscale 

image, associated with a label from 10 classes. Fashion item 

images are labelled according to the following classes: 

T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, 

Sneaker, Bag and Ankle boot. 

B. Pre-trained Models 

Using fine-tuning of pre-trained networks, models were 

developed with 5 and 10 epochs of training over five 

independent training runs. The pre-trained networks of 

VGG16, VGG19, MobileNet and ResNet50 were evaluated. 

Models were developed using both CIFAR-10 and 

Fashion_Mnist datasets. A summary of the test results, and 

their evaluation is presented in the tables and discussion 

below.  

1) Models trained on CIFAR-10 dataset 

 
TABLE I: PRE-TRAINED TEST RESULTS ON CIFAR-10 (5 EPOCHS) 

Model Acc 
(Mean) 

Acc 
(Max) 

Acc 
(StDev) 

Run (s) 
 

Layers 
(Base) 

VGG16 0.888 0.891 0.003 2533 16 

VGG19 0.885 0.889 0.003 2931 19 
MobileNet 0.813 0.825 0.007 2270 28 

ResNet50 0.815 0.823 0.006 3331 50 

The key findings of the experimental results for pre-trained 

models over 5 epochs, illustrated in Table I, indicate the most 

accurate pre-trained model for the CIFAR-10 dataset used 

VGG16 as the base model (88.8%). In terms of model 

accuracy there is little difference between VGG16 (Acc: 

88.8%) and VGG19 (Acc: 88.5%). The VGG16 and VGG19 

models both perform well.  

The consistency of results between VGG16 and VGG19 is 

not surprising given that the models are the same apart from 

an extra layer in each of the last two convolutional blocks in 

VGG19. MobileNet (Acc: 81.3%) and ResNet50 (Acc: 

81.5%) lagged significantly in terms of accuracy. 
 

TABLE II: PRE-TRAINED TEST RESULTS ON CIFAR-10 (10 EPOCHS) 

Model Acc 
(Mean) 

Acc 
(Max) 

Acc 
(StDev) 

Run (s) 
 

Layers 
(Base) 

VGG16 0.883 0.892 0.006 5024 16 

VGG19 0.890 0.893 0.003 5837 19 
MobileNet 0.814 0.821 0.006 4470 28 

ResNet50 0.807 0.812 0.007 6583 50 

 

Model training times over 10 epochs, outlined in Table II, 

are approximately double those of models trained for 5 

epochs, as one would expect. Using a greater number of 

epochs, with its associated longer training times, does not 

lead to better model accuracy. In fact, accuracy for all models 

trained over 10 epochs was nearly identical to that achieved 

over 5 epochs of training. Pre-trained models were 
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effectively converging at lower levels of training.  

Similar to the 5 epoch trained models, the standard 

deviations on accuracies were low indicating that consistent 

results can be achieved without significant outliers. The 

findings indicate that training over 5 epochs creates better 

performing pre-trained hybrids. It was therefore decided to 

maintain a cycle of 5 epochs of training for the pre-trained 

hybrid models. 

Training of all pre-trained hybrid models led to overfitting. 

All pre-trained models show overfitting at early stages. The 

rapid model convergence can be attributed, in some part, to 

the use of an image generator. 

2) Models Trained on Fashion_Mnist Dataset 

 

TABLE III: PRE-TRAINED TEST RESULTS ON FASHION_MNIST 

Model Acc 
(Mean) 

Acc 
(Max) 

Acc 
(StDev) 

Run (s) 
 

Layers 
(Base) 

VGG16 0.932 0.936 0.003 3033 16 

VGG19 0.933 0.936 0.001 3533 19 

MobileNet 0.910 0.913 0.004 2706 28 

ResNet50 0.913 0.918 0.005 3917 50 

 

From Table III, an analysis of models trained using 

Fashion_Mnist data clearly shows that higher accuracies can 

be achieved using a simpler dataset. Mean model accuracy 

varied between 91.0% and 93.3% for Fashion_Mnist relative 

to a range of 80.7% to 89.0% for CIFAR-10.  

The findings of test runs carried out on the one channel 

dataset of Fashion_Mnist are consistent with what was 

observed with CIFAR-10. There are 2 clear groups namely 

the higher performing VGG16 and VGG19 set compared 

with the lower performance of MobileNet and ResNet50. The 

difference at just 2% is much less marked than is the case for 

CIFAR-10 models where the mean accuracy differential is 

8%. It can concluded that the shallower models of 

VGG16/VGG19 again perform better than the deeper models 

of MobileNet and ResNet50.  

The average run time for classifying Fashion_Mnist data 

was notably faster than CIFAR-10 (approximately 40% faster) 

across all model types. Again, this is line with expectations 

given that CIFAR-10 is a more challenging dataset. As 

expected, MobileNet, designed as a light weight model, was 

the fastest of all model types for both Fashion_Mnist and 

CIFAR-10.  

Training the hybrid models on Fashion_Mnist showed 

similar characteristics to CIFAR-10 training. A high degree 

of overfitting occurred which again illustrates rapid accuracy 

convergence for pre-trained models on both triple channel 

and single channel datasets. 

3) Summary of pre-trained evaluation 

Several key observations can be made when assessing 

pre-trained model performance on CIFAR-10 and 

Fashion_Mnist. It can be seen, from Tables I-III, that deeper 

models are not necessarily more accurate than shallower 

networks. In all cases, it was observed that pre-trained hybrid 

models converge rapidly. This is not surprising given that 

such models have well developed weights from extensive 

prior training on large datasets such as ImageNet.  

The relative performance of pre-trained models with 

regard to validation accuracy is also highlighted in Table I 

and Table II. Of the four models evaluated, ResNet50 and 

MobileNet perform worse on both Fashion_Mnist and 

CIFAR-10 relative to the VGG architectures. Given that 

MobileNet is primarily designed for lightweight mobile 

applications, this finding is not surprising. 

C. Stacking with Neural Networks 

Using CIFAR-10 and Fashion_Mnist datasets, stacking 

ensembles were evaluated using Random Forest, KNN, 

MLPC, SVC and Logistic Regression as meta learners. Both 

homogeneous and heterogeneous stacking ensembles were 

created.  

The homogeneous ensembles used in this study simply 

consisted of two members. ACO ensembles consisted of two 

members whose architecture was derived from an ACO 

search whereas the PSO ensembles were developed using a 

PSO heuristic.  

In addition, the performance of heterogeneous ensembles 

was also explored. The ensemble, Hetero-4 comprised of four 

models using two VGG16 and two VGG19 models. The 

Swarm ensemble was also a four model ensemble consisting 

of two ACO trained models and two PSO trained models. 

1) Ensemble performance on CIFAR-10 

The relative performance of all meta learners in classifying 

CIFAR-10 data is clearly illustrated in Fig. 10. Two clear 

groups are identified in the relative performance of all meta 

learners in classifying CIFAR-10 data. The higher 

performing group of the Random Forest and KNN classifiers 

stand out in comparison to the poorer performing group 

consisting of the MLPC, SVC and Logistic Regression 

algorithms. For lower performing ensemble groups, the 

differential is substantial. In the case of the VGG16 ensemble, 

there is a difference of 3.7% in accuracy achieved between 

using a Random Forest and an SVC approach. The accuracies 

achieved by higher performing meta learners across all 

ensemble types are summarized in Table IV and in Table V. 

 

Fig. 10. Relative mean performance of ensembles on CIFAR-10. 

 

Ensembles consisting of weaker members performed 

worse than ensembles with higher performing members. This 

is evident from Table IV where the Hetero-4 ensemble 

achieves 84.7% using Random Forest whereas the Swarm 

ensemble came in at 92.5%.  

 With this study, the impact of the number and diversity of 

models, on overall ensemble accuracy can be seen. 

Increasing the number of models within an ensemble often 

increases ensemble accuracy. The Hetero-6 ensemble 

performed significantly better (93.1%) compared with its 

Hetero-4 counterpart (84.7%) using a Random Forest meta 

learner. Heterogeneous ensembles, containing diverse 

models, were seen to offer better performance compared to 

their homogeneous counterparts. 
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TABLE IV: ENSEMBLE MEAN PERFORMANCE ON CIFAR-10 

Model RF KNN Best 

Member 

Delta 

 

Run 

Time (s) 

Hetero-6 0.931 0.930 0.900 3.07% 341 

Swarm 0.925 0.921 0.900 2.46% 254 

PSO 0.918 0.916 0.900 1.80% 198 
ACO 0.895 0.889 0.848 4.67% 76 

Hetero-4 0.847 0.841 0.755 9.22% 170 
VGG19 0.818 0.822 0.755 6.31% 86 

VGG16 0.817 0.816 0.743 7.43% 76 

 

 

2) Ensemble performance on fashion_mnist 

 The relative performance of meta learners in classifying 

Fashion_Mnist data, using different types of ensembles, was 

investigated. The findings, illustrated in Fig. 11, are 

consistent with previous observations. Similar to the 

CIFAR-10 evaluations, there were two distinct groups of 

meta learners namely the higher performing set of Random 

Forest and KNN compared with the weaker performance of 

MLPC, SVC and LR. For all ensemble types, Random Forest 

was again the strongest performer of all meta learners.  

 

 
Fig. 11. Relative mean performance of ensembles on Fashion_Mnist. 

 

 Consistent with a previous observation, it can be seen that 

the ensemble set with the highest number of members offers 

the greatest performance. The Hetero-4 ensemble, with 4 

members, achieves an accuracy of 93% compared with a 

slightly lower accuracy of 92.2% on the VGG16 ensemble of 

two members. 

 
TABLE V: ENSEMBLE MEAN PERFORMANCE ON FASHION_MNIST 

Model RF KNN Best 

Member 

Delta 

 

Run 

Time (s) 

Hetero-4 0.930 0.924 0.831 9.89% 156 
VGG16 0.922 0.913 0.807 11.43% 75 

VGG19 0.906 0.903 0.831 7.52% 83 
ACO 0.902 0.904 0.867 3.44% 33 

PSO 0.747 0.768 0.686 6.09% 93 

 

 

D. Scikit-Learn Stacking and Super Learner 

For the purposes of this study, the effectiveness of 

scikit-learn in classifying CIFAR-10 and Fashion_Mnist data 

was evaluated. Scikit-learn stacking was compared with a 

super learner approach, which is a stacking ensemble 

variation incorporating cross fold validation. 

1)  Scikit-learn and super learner on CIFAR-10 

On first inspection of CIFAR-10 classification in Table VI, 

the accuracy results for both the super learner (49%) and 

scikit-learn (52%) appear poor. The performance of these 

approaches is governed by the algorithms chosen for the base 

learners and meta learners. Several variations of base learner 

and meta algorithms were tested. Variations included 

increasing the number, and diversity, of base learners. A 

multi stacked approach, with 2 layers, was also implemented. 

The accuracy of all OpenNAS approaches showed little 

deviation and stayed within a range of 49% to 53%. 

Experiments conducted, as part of the original Auto-Sklearn 

paper indicate a baseline accuracy of 51.7% on CIFAR-10 

demonstrating a consistency with the results observed as part 

of this study [30], [31]. 

 
TABLE VI: SCIKIT-LEARN STACKING AND SUPER LEARNER PERFOMANCE 

ON CIFAR-10 

 Accuracy (Mean) Runtime (s) 

1 Layer 0.524 8852 
2 Layers 0.520 11910 

Super Learner 0.490 5507 

 

2) Scikit-learn and super learner on fashion_mnist 

By comparison with the findings for CIFAR-10, the 

accuracies obtained on Fashion_Mnist when using either the 

scikit-learn or the super learner approach are much improved. 

As previously noted, Fashion_Mnist is a less challenging 

dataset given that it contains grayscale images.  

 The accuracies achieved, and their associated run times, 

are illustrated in Table VII. In comparing approaches, the 

super learner approach offered better performance in both its 

accuracy (88.7%) and run time of 2144 seconds. 

 
TABLE VII: SCIKIT-LEARN AND SUPER LEARNER 

PERFORMANCE ON FASHION_MNIST 

 Accuracy (Mean) Runtime (s) 

Super Learner 0.887 2144 
2 Layers  0.877 3366 

1 Layer  0.869 2418 

VI.  DISCUSSION 

For the CIFAR-10 dataset, the highest performing model is 

a heterogeneous ensemble of six base models feeding into a 

Random Forest meta learner, which in itself is an ensemble. 

Effectively this creates an ensemble of ensembles to ensure 

an accuracy of 93.1%. The base models consisted of two 

ACO derived models, two PSO derived models, two 

pre-trained models (i.e. one VGG16 and one VGG19 model). 

The accuracy achieved by the ensemble is significantly 

higher (3.1%) when compared with the best performing 

models in previous OpenNAS studies [5]. In comparison to 

approaches, which rely solely on SI heuristics [17], the 

difference is even greater (4.41%).  

The pre-trained networks of MobileNet and RestNet50 

delivered the poorest performance with CIFAR-10. The other 

pre-trained networks, using VGG architectures, performed 

very well on the same dataset. However the accuracy of the 

VGG ensembles was still 4% lower than the highest ranking 

ensemble, Hetero-6.  

Many of the characteristics exhibited with CIFAR-10 were 

also seen in Fashion_Mnist classification. The lowest 

performing models were again the pre-train set of Resnet50 

and MobileNet. The VGG16 and VGG19 models both 

performed well on Fashion_Mnist. In relation to the best 

performing ensemble, it is worth noting the highest 

performing base learner had an accuracy of 83.1% but still 

managed to deliver overall accuracy of 93%. A marginally 
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higher ensemble accuracy should be possible if better 

performing base models were included. It was shown that a 

mean accuracy of 93.3% on Fashion_Mnist could be 

achieved using a VGG19 model. 

Scikit-learn stacking and super learner approaches 

performed poorly on CIFAR-10. Clearly, they are not suited 

to the classification of complex triple channel image datasets, 

which demand a convolutional neural network approach to 

achieve accuracies greater than 90%. Run times associated 

with various ensemble types are illustrated in Tables I-IV. 

The difference in run time between stacking ensembles and 

that of the scikit-learn or super learner approaches is very 

significant. In fact, in classifying CIFAR-10, the run time of 

the slowest stacking ensemble (Hetero-6) is 15 times faster 

than the quickest of the super learner and scikit-learn 

approaches. The use of pre-built base models enabled such 

fast performance from stacking ensembles whereas the super 

learner and scikit learn approaches required new models to be 

built.  

 

VII. CONCLUSION 

With OpenNAS, a heterogeneous ensemble achieved the 

highest accuracy in classifying CIFAR-10 data. The accuracy 

achieved with OpenNAS ensembles is competitive with the 

current state of the art. 

Meta learner algorithms have a significant impact in 

determining stacking ensemble accuracies. The Random 

Forest classifier is consistently the best meta learner, 

irrespective of the underlying ensemble.  

The super learner and scikit-learn stacking approaches are 

fundamentally designed for simpler neural networks using 

classifier algorithms from the scikit-learn suite. However, 

they have also been shown to perform well on convolutional 

neural networks which classify less complex grayscale image 

datasets such as Fashion_Mnist.  

While Keras offers a powerful framework for neural net 

development, the strengths of the sci-kit learn library should 

not be overlooked. In particular, in the absence of pre-built 

base learners, it was shown how an scikit-learn or a super 

learner approach can be used to quickly develop high 

performing ensembles for simpler datasets. However, 

creating a stacking ensemble of pre-built models is 

significantly faster than building models from scratch using 

either scikit-learn or a super learner.  

It has been found that custom, heterogeneous stacked 

ensembles of pre-built SI and pre-trained models deliver 

superior performance for colour image datasets, both in 

accuracy and run time. 
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