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Introduction

• The rise of Micromobility as a primary mode of transportation 

across the globe has brought about the need for effective rules 

and regulations governing the usage of E-scooters and E-bikes

• GPS and sensor technologies struggle to provide high-level 

precision and adaptation for real-time lane detection in variable 

road structures

• LASERS and LIDARS can be considered alternative solutions for 

lane detection; however, they are often computationally 

expensive and not ideal for all situations

• The limited and constrained Micromobility environment makes 

it impossible to utilize efficient AI-based solutions which require 

high computational resources

• To address these constraints, it's necessary to introduce AI 

solutions into low-spec platforms such as FPGAs or 

Microcontrollers

• A custom Lane Recognition dataset has been prepared that 

focuses on different lane segments such as road, bikelane and 

sidewalk specifically tailored for E-scooter rides

• A light-weight Convolutional Neural Network architecture is used 

to train a Lane Recognition model followed by different model 

compression techniques to deploy on low-spec Microcontroller 

Unit

Weight Pruning

• A technique used to reduce model complexity and improve its 

efficiency by removing computational units in an Artificial Neural 

Network

• All computational units in the network are necessary only during 

the training for adjusting the weights to minimize the loss 

function

• A neural network is often over-parameterised for the inference

• The importance of a connection is determined by the magnitude 

of the weight, with higher weights indicating a stronger

influence on the output of the network

• To reduce the size of the network, connections with low

weights are removed, as they are deemed to have a minimal 

effect on the output of the network.

• Once weight pruning is complete, the final compressed ANN can 

be deployed on microcontrollers or other embedded devices

Unstructured pruning

• A weight pruning technique which reduces model complexity by 

selectively removing individual weights

• Identify and remove less important weights based on a specific

criterion

• Typically, the criterion is low-magnitude weights, as they have 

a smaller impact on the model's output

Advantages

• Compatibility: The resulting models are sparse and tiny which 

are ultimately less reliant on GPUs but efficient for low-spec 

CPU platforms

• Flexibility: Selective removal of weights without being 

constrained by the model's architecture makes it adaptable to a 

wider range of network designs

• Fine-Tuning: Gradually pruning and retraining the model allows 

for recovery of the lost accuracy due to pruning

Disadvantages

• Not optimal: Many existing hardware accelerators and deep 

learning frameworks are optimized for dense models, making it 

challenging to efficiently execute sparse models produced by 

unstructured pruning

• Irregular sparsity patterns: The presence of irregular sparsity 

patterns may not be efficiently exploited by specialized hardware 

or software, limiting potential speedup or memory savings

Quantization Results
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• The growing popularity of Micromobility solutions necessitates 

the development of robust and efficient lane recognition systems 

• Model compression is essential due to the computational 

constraints within these vehicles 

• Weight pruning in CNNs presents a straightforward yet effective 

method for both reducing model size and its optimization

• Further compression can be achieved with Sparsity Aware QAT 

with a minimal trade-off between model size and performance

• Experimental results showed considerable model size reduction 

of 45.43% from the Float32 model to the pruned model and a 

72.08% reduction from the pruned to the INT8 quantized model

Conclusions

Need of Compression

Affine Quantization

• Converting high precision (e.g., Float32) weights and activations

of the network to the low precision (e.g., INT8) which leads to 

reduced memory footprint and faster computations

• The first step is mapping the original weights/activations to the 

desired integer range and the second step involves rounding them 

to the nearest integer value

• Quantization can be applied during training (quantization-aware 

training) or after training (post-training quantization), with the former 

generally yielding better performance.

Sparsity preserving Quantization Aware Training (QAT)

• QAT reduces the loss of accuracy when transitioning from floating-

point to lower precision, simulating low-precision behaviour in the 

forward pass while maintaining the same backward pass

• The quantization error generated during the forward pass 

accumulates in the model's overall loss, which encourages the 

optimizer to modify parameters accordingly

• Sparsity Aware QAT is a special case of QAT which combines the 

advantages of both weight pruning (sparsity) and quantization to 

compress and optimize neural networks for efficient inference

• Experimental results indicated that the sparsity achieved during 

pruning is not maintained when using standard QAT; however, it is 

preserved when employing Sparsity Aware QAT

Platform

Typically, the ANN models are huge in size

(~100 Mbs-100 Gbs)

Microcontrollers have extremely low- Storage

capacity, RAM, Processing power

Human brain works more efficiently with 1000 

times less neurons than in ANN models

Processor:         32-Bit Arm Cortex-M7 @400MHz

SRAM:               1 MB

Flash Memory:   2 MB

Power usage:     < 150-mA

Camera:             OV7725 (640X480)RGB

Comparative Analysis

Model Test 

Accuracy

Test F1 

Score

Test AUC Model

Size

Float32 Model 74.08 64.21 91.07 1.4 MB

Pruned Model 76.06 65.46 93.18 782 KB

Quantized int8 

TFLite model

74.28 66.18 92.73 218 KB

Fig 3. Symmetric Quantization 

Fig 2. The high-level idea of weight pruning in Neural Networks 

Fig 4. Asymmetric Quantization 
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Fig 1. The concept of Lane Recognition for Micromobilty users

Fig 5. ‘Road Detected’ after pointing the camera to the road area with 12.4 

FPS and 17.09 M FLOPS

Fig 6. ‘Sidewalk Detected’ after pointing the camera to the sidewalk area

Table 1. Comparison of performance and size between different models


