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Abstract: Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be
used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation,
biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged
to design effective anticancer systems. This article is the first comprehensive review of CNM-based
nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of
CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems
have been analysed and compiled into a database. The entries are organised by anticancer drug type,
and the composition, drug loading/release metrics, and experimental results from these systems
have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the
most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity.
Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents
being the most common payload due to their compatibility with CNM surfaces. The benefits of the
identified systems are discussed, and the factors affecting their efficacy are detailed.

Keywords: carbon nanomaterial; chemotherapy; nanocarrier; carbon nanotube; graphene; theragnostic;
targeted drug delivery; formulation; carbon dot; side effects

1. Introduction

While cancer remains one of the world’s leading causes of death, advances in di-
agnostics and treatment have seen an overall improvement in detection and mortality
rates. However, the current treatment approaches are either highly invasive, in the case of
surgical operations, or can cause unwanted toxic side effects, as commonly experienced
with chemotherapeutic agents and radiotherapy [1,2]. In particular, the effectiveness of
chemotherapeutic agents is often limited by their poor aqueous solubility and nonselective
nature, resulting in poor bioavailability and the indiscriminate death of both healthy and
cancer cells [3]. To overcome these issues, there has been much research into the use of
nanocarriers for the targeted and controlled release of anticancer drugs [4], where carbon
nanomaterials (CNMs) have emerged in recent years as very promising candidates for
this purpose. CNMs are a distinct class of materials that show altered characteristics to
those of bulk carbon materials, such as diamond or graphite. They are classified as 0D, 1D,
or 2D, according to the number of dimensions they possess which exist on the nanoscale
(<100 nm) [5]. The allotropic nature of carbon means that a variety of these materials
exists, some examples of which include graphene [1], carbon nanotubes (CNTs) [6], carbon
nano-onions (CNOs) [7], nanodiamonds (NDs) [8], and carbon nanohorns [9]. CNMs
have garnered widespread attention for their biomedical applications, such as drug deliv-
ery and diagnostics, because of their unique and highly desirable physicochemical and
mechanical properties, such as size, biocompatibility, high tensile strength, and ease of
chemical functionalisation.

By carefully selecting the production method, the particle sizes of CNMs can be
precisely controlled, allowing for the creation of particles comparable in size to biomolecules

Pharmaceutics 2023, 15, 1545. https://doi.org/10.3390/pharmaceutics15051545 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15051545
https://doi.org/10.3390/pharmaceutics15051545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-6051-3348
https://orcid.org/0000-0001-7375-8259
https://orcid.org/0000-0002-9212-5067
https://doi.org/10.3390/pharmaceutics15051545
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15051545?type=check_update&version=1


Pharmaceutics 2023, 15, 1545 2 of 49

(<100 nm) [10]. This size control enables CNM-based particles to take advantage of the leaky
vasculature surrounding tumour cells through the enhanced permeation and retention
(EPR) effect, facilitating the passive targeting of tumour cells [11]. However, passive
targeting is generally limited, as not all tumours exhibit the EPR effect, and the random
nature of the process makes it difficult to control and can lead to drug resistance [4]. Instead,
it is preferable to actively target tumour tissues using targeting moieties that improve drug
uptake through mechanisms such as receptor-mediated endocytosis [12]. The advanced
surface chemistries provided by CNMs enable the attachment of various targeting ligands
(such as folic acid (FA) [13]), imaging agents (such as BODIPY [14]), and anticancer drug
molecules (such as cisplatin [15]), facilitating the creation of multifunctional nanocarriers.
These nanocarriers can efficiently target, image, and deliver therapeutic agents directly to
cancer cells, capitalizing on the unique properties of CNMs. Therefore, CNMs can be used
as scaffolds to create theragnostic systems, combining imaging, detection, and treatment
modalities in one tiny package to effectively diagnose and treat various illnesses [16].

As mentioned previously, there are many options for functionalising CNMs, with
oxidation being one of the most straightforward approaches. This method introduces
hydroxyl, carbonyl, and carboxyl groups to the surface of the nanomaterial, allowing for
further functionalisation, and significantly increasing the material’s aqueous solubility in
the process. Highly soluble CNMs can be utilised to increase the solubility of hydrophobic
drugs, an approach taken by Cakmak and Eroglu, who employed graphene oxide (GO)
to solubilise tamoxifen [16]. Facilitating the delivery of poorly soluble and/or poorly
permeable drugs is a major benefit of the nanocarrier approach, as it does not require
extensive modification of the drug molecule itself.

A range of other examples of covalent CNM modification exists, such as amidation,
fluorination, and alkylation [17]. Covalent functionalisation methods have their drawbacks,
mainly because this type of modification can damage the nanomaterial’s surface [7]. This
surface damage can lead to a loss in the CNM’s unique electronic and physical properties,
which may be essential to the nanocarrier’s effectiveness.

To circumnavigate issues associated with covalent modification, noncovalent func-
tionalisation methods have been employed to attach components to the CNM. In this
case, interactions, such as π–π stacking and hydrophobic interactions, are used to bind a
molecule to the CNM surface [18].

A crucial aspect to consider when attaching drug molecules to a CNM is the drug
release mechanism, which includes factors such as the release trigger and drug release
profile, ensuring controlled and targeted delivery. Noncovalent attachment is particu-
larly suited to reversible drug binding and can be utilised to design pH-responsive [19],
redox-responsive [20], and NIR-responsive [21] drug delivery systems. Due to the acidity
of tumour microenvironments, pH-sensitive systems are particularly relevant to cancer
therapy [22]. This approach can be used to release the bound drug exclusively in the
target tumour tissues, reducing unwanted side effects. Covalent strategies, such as drug
attachment via hydrolysable ester bonds, have also been used for pH-responsive drug
delivery, and often have the benefit of reduced drug leakage at neutral pH [23].

Herein, we present a database of nearly 200 CNM-based nanocarriers that have been
utilised as drug delivery systems for clinically approved anticancer drugs. We curated this
database through a comprehensive literature analysis, the details of which are provided
in the following section. The entries are organised by drug type, and the composition,
experimental results, drug loading and release metrics, and biological study models used
are detailed. We also provide a critical analysis and discussion of the database and ex-
plore possible future research directions in the utilisation of CNM-based nanocarriers for
anticancer drug delivery.
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2. Methods and Metrics Used to Construct the Database
2.1. Preparation of the Database

This database is an in-depth overview of carbon nanomaterial (CNM)-based anticancer
drug delivery systems. To construct the database, CAS SciFindern [24] was utilised as
the data source. Combinations of keywords, such as “carbon nanomaterial”, “carbon
nanotube”, “chemotherapy drug”, “anticancer drug”, and “doxorubicin”, were used to
gather references, and the Boolean operators “AND” and “OR” were used to combine these
search terms. Only English research articles that specifically focused on using CNMs to
deliver clinically approved anticancer drugs were selected. The following information
was extracted from each paper and entered into the database: (1) the anticancer drug
used; (2) the composition of the nanocarrier system, including the CNM, and any targeting
ligands, fluorophores, dispersants, etc., that were used; (3) the in vitro, in vivo, and ex vivo
biological study models that the nanocarrier was tested on, including cell lines and animal
breeds; (4) the drug loading and release metrics; these were taken only when explicitly
given in the paper and were not calculated in this review; (5) the experimental results
and observations, which were typically taken from the Conclusions section of each paper.
The references were grouped based on the anticancer drug used, and the database was
organised by sorting these drugs alphabetically.

2.2. Drug Loading and Release Metrics

The therapeutic efficacy of a nanocarrier system depends on its ability to absorb and
release anticancer drugs; as such, quantitative metrics are needed to measure these systems.
Such metrics are used to describe and compare the drug loading and release capabilities of
different nanocarrier systems in the database.

The drug loading content (DLC) describes the amount of drug loaded onto the nanocar-
rier (Equation (1)). It is important to note that whilst most studies use the total mass of the
nanocarrier (the CNM base, plus the drug, plus any other components), some studies just
use the mass of the CNM itself [25], which leads to artificially higher DLC values.

DLC (wt%) =
mass of drug bound to nanocarrier

total mass of nanocarrier
× 100 (1)

The drug loading efficiency (DLE), sometimes called the encapsulation or entrapment
efficiency, is a measure of the effectiveness of the drug loading process and not a quantitative
measure of the drug content (Equation (2)).

DLE (wt%) =
mass of drug bound to nanocarrier

total mass of drug added
× 100 (2)

The drug release efficiency (DRE) quantifies the cumulative release of a therapeutic
agent from the nanocarrier (Equation (3)). This is the total amount of bound drug released
throughout the experiment.

DRE (wt%) =
total mass of drug released

mass of drug bound to nanocarrier
× 100 (3)

3. Database of Carbon-Nanomaterial-Based Cancer Therapeutics

Herein, we present a database of CNM-based nanocarrier systems that transport
clinically approved anticancer drugs, seen in Table 1 The database includes the composition
of the nanocarrier, the in vitro and in vivo biological models the system was tested on, the
drug loading and release metrics, and a summary of the experimental results. The database
is organized alphabetically by the anticancer drug used in the formulation; an index can be
seen in Table 2.
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Table 1. Database of CNM-based anticancer nanocarriers.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.
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release data 
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CS-coated Fe3O4–
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quantum dot 
(GQD) nanohy-
brid 

in vitro: A549 cells 
90% DLC, 84% DRE, with pH-de-
pendent drug release 

This system has magnetic resonance/fluorescence imaging capabilities and displayed signif-
icantly higher cytotoxicity than free 5-FU, whilst the unloaded nanocarrier is biocompatible. 

[33] 

 HPMC/GO 
in vitro: Vero, HepG2, 
and A549 cells 

 
No quantitative drug loading/release studies were performed. The blank nanocarrier dis-
plays high biocompatibility in normal cells, whilst the drug-loaded system displays a 
higher antitumour efficacy than free 5-FU. A green synthesis method was used. 

[34] 

 TAU-GO 
in vitro: HepG2 cells; in 
vivo: SD rats 

50% DLE, 90% DRE, with pH-trig-
gered 5-FU release 

This biocompatible nanocarrier improved the circulation time and anticancer efficacy of 5-
FU. 

[35] 

 
Carbon dot (CD)-
BT 

in vitro: MCF-7, HeLa, 
and HEK-296 cells 

35% DLE, 81% DRE, with pH-trig-
gered drug release 

An initial burst of 5-FU is followed by sustained release; this nanocarrier also displays fluo-
rescence imaging capabilities. BT-mediated targeting of cancer cells resulted in high cyto-
toxicity towards neoplastic cells and increased cellular uptake due to biotin-receptor-medi-
ated endocytosis. 

[36] 

5-fluorouracil (5-FU)—
pyrimidine antimetabolite

CS-carbon quantum dot (CQD)-Apt in vitro: MCF-7 cells
32% DLC, approximately 100% DRE,
and pH-sensitive, controlled
5-FU release

The unloaded nanocarrier is biocompatible,
and the use of an aptamer increases uptake
and cytotoxicity in breast cancer cells.

[26]

FA-PEG-bis-amine multiwalled carbon
nanotube (MWCNT) in vitro: MCF-7 cells

99% DLE, ~90% DRE, with
pH-triggered drug release sustained
over 900 min

This nanocarrier increases circulation time,
half-life, and accumulation of 5-FU in target
tissues, and this leads to the effective killing
of breast cancer cells in vitro.

[27]

CS/Au/MWCNT in vitro: MCF-7 cells 43% DLC, 59% DRE, with prolonged,
sustained drug release

Reduced potential side effects and
increased efficacy compared to free 5-FU
were observed. A reduction in cancer cell
viability was observed at low
nanocarrier concentrations.

[28]

Nanodiamond (ND)-ADH in vitro: MCF-7 and HepG2 cells 88% DLE, 35% DRE, with pH-mediated,
sustained drug release

This nanocarrier showed potent anticancer
effects with low haemolytic toxicity in
human blood.

[29]

Mesoporous carbon nanoframe (mCNF) in vitro: HeLa cells 31% DLC, 80% DRE, with dual
pH/NIR-triggered drug release

This system displayed excellent
photothermal efficiency with the NIR
pulse-triggered burst release of 5-FU. The
photothermal conversion efficiency of this
system was found to be 21%. This
synergistic chemo–photothermal therapy
combined with photoacoustic imaging
capabilities can effectively treat cancer
in vitro.

[30]

PEG-C60 fullerene–alanine in vitro: MCF-7 and
BGC-823 cells

1% DLC, with no quantitative drug
release data

The unloaded nanocarrier displays good
biocompatibility and the system is stable in
murine serum for over 24 h. This
formulation results in the significantly
better inhibition of cancer cells compared to
free 5-FU.

[31]

Graphene oxide (GO) in vitro: A549 cells 31% DLC, 35% DRE, with pH-triggered
drug release

The blank nanocarrier is biocompatible and
the loaded system improved the stability
of 5-FU.

[32]

CS-coated Fe3O4–NH2/graphene quantum
dot (GQD) nanohybrid in vitro: A549 cells 90% DLC, 84% DRE, with

pH-dependent drug release

This system has magnetic
resonance/fluorescence imaging
capabilities and displayed significantly
higher cytotoxicity than free 5-FU, whilst
the unloaded nanocarrier is biocompatible.

[33]
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Table 1. Cont.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.

HPMC/GO in vitro: Vero, HepG2, and
A549 cells

No quantitative drug loading/release
studies were performed. The blank
nanocarrier displays high biocompatibility
in normal cells, whilst the drug-loaded
system displays a higher antitumour
efficacy than free 5-FU. A green synthesis
method was used.

[34]

TAU-GO in vitro: HepG2 cells;
in vivo: SD rats

50% DLE, 90% DRE, with pH-triggered
5-FU release

This biocompatible nanocarrier improved
the circulation time and anticancer efficacy
of 5-FU.

[35]

Carbon dot (CD)-BT in vitro: MCF-7, HeLa, and
HEK-296 cells

35% DLE, 81% DRE, with pH-triggered
drug release

An initial burst of 5-FU is followed by
sustained release; this nanocarrier also
displays fluorescence imaging capabilities.
BT-mediated targeting of cancer cells
resulted in high cytotoxicity towards
neoplastic cells and increased cellular
uptake due to
biotin-receptor-mediated endocytosis.

[36]

N-doped mesoporous carbon sphere
(NMCS)-DSPE-PEG in vitro: B16F0 cells 38% DLC, 78% DRE, with dual

pH/NIR-triggered drug release

This nanocarrier produces reactive oxygen
species when irradiated with an NIR laser,
and the resulting
PDT/PTT/chemotherapeutic combination
therapy effectively kills melanoma cells
much more efficiently than 5-FU alone.

[37]
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purine antimetabolite

CD-BT in vitro: CHO, MCF-7, and
HepG2 cells
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(in cancer cells) with much lower
cytotoxicity (in healthy cells). A
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group was used to bind 6-MP to BT.

[38]
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[12]
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tency than free CP. Excellent biocompatibility and stability were observed in vitro. 

[43] 

Capecitabine—pyrimidine
antimetabolite

Single-walled carbon nanotube
(SWCNT)-FL-FA-NCC in vitro: Caco-2/TC7 cells

No quantitative drug loading/release data
shown. This nanocarrier is nontoxic and
has fluorescence imaging capabilities. The
effective targeting of colon cancer cells
leads to an increase in anticancer activity
compared to the free drug.

[40]

oxiSWCNT-CS-FA in vitro: COLO320DM and HT29
cells; in vivo: albino rabbits 94% DLE, 89% DRE

An increase in cytotoxicity compared to free
drug was noticed during in vitro
experiments. The capsule formulation of
this nanocarrier is exclusively released in
the colon in vivo, avoiding premature
release in the stomach. Active targeting of
cancer cells was achieved via the
FA-targeting ligand.

[41]
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release data shown 

This formulation displays effective CP delivery and uptake in vitro, resulting in a higher po-
tency than free CP. Excellent biocompatibility and stability were observed in vitro. 

[43] Carboplatin (CP)—DNA
alkylating agent

GO-PAMAM in vitro: hMSC and HeLa cells

No quantitative drug loading/release
data shown.
The 100 nm width GO (unloaded) was
found to be the least toxic. This system
displayed enhanced anticancer activity
compared to free CP, with
decreased cytotoxicity.

[42]

GO-gelatine in vitro: IMR-32 and hMSC cells 99% DLE, with no quantitative drug
release data shown

This formulation displays effective CP
delivery and uptake in vitro, resulting in a
higher potency than free CP. Excellent
biocompatibility and stability were
observed in vitro.

[43]

oxiMWCNT-HA in vitro: TC–1 and NIH/3T3 cells No quantitative drug loading/release
data shown

This system displayed the selective uptake
and targeting of cancer cells over healthy
cells, resulting in significantly higher
cytotoxic effects in neoplastic cells and
lower side effects in healthy cells.

[44]

Aminated MWCNT in vitro: MDA-MB-23
and MCF-12A 89% DLC, 21% DRE

This formulation provided increased cancer
cell death compared to free CP and killed
cells via an ROS-triggered
autophagy mechanism.

[45]

FA-CDT-C60 fullerene

in vitro: HeLa, HeLa-RFP, and
A549 cells; in vivo: Danio rerio,
both healthy and bearing
HeLa tumours

37% DLC, ~80% DRE, with
pH-triggered drug release

This system displayed increased anticancer
effects compared to the free drug alone due
to the active targeting of
folate-receptor-overexpressing cancer cells
and improved cellular uptake. Low toxicity
and improved antitumour effects compared
to the free drug were also seen in vivo.

[46]

CS-Fe3O4-GO in vitro: HepG2 and MCF-7 cells 74% DLE, 90% DRE, with pH-triggered
drug release

A very high amount of CP was released at
neutral pH.
Despite this, an increase in CP potency and a
reduction in systemic toxicity was observed.

[47]

GO-CS-FA in vitro: LX-2 and SKOV3 cells 14% DLC, ~90% DRE

CP release was similar in neutral and acidic
environments; hence, this system is
unsuitable for pH-triggered drug release
via noncovalent drug attachment. The
system showed slightly lower cancer cell
inhibition than free CP.

[48]

GO-Fe3O4-PANI in vitro: SMMC-7721, HepG2,
and HL-7702 cells

~95% DRE; the qualitative drug loading
data provided does not account for
unbound CP that was removed

The blank nanocarrier showed efficient
cellular uptake and negligible cytotoxicity.
This nanocarrier has magnetic properties
and pH-triggered drug release.

[49]
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nanocarrier has magnetic properties and pH-triggered drug release. 
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Carmustine—DNA 

alkylating agent 

GO-PAA in vitro: GL261 cells 
19% DLC, with no quantitative drug 
release data shown 

A significant increase in half-life, >70% decrease in IC50 value, and 30% increase in inter-
strand DNA crosslinking was observed compared to the free drug in vitro. 

[50] 

N-doped carbon 
nanotube (CNT) 
sponges 

in vitro: rat astrocytes, 
C6, RG2, and U87 cells  

~90% DRE, with no quantitative drug 
loading data 

This nanocarrier displayed similar cytotoxicity to the free drug, with a sustained-release 
profile. The sponges appear to be more biocompatible than CNTs alone; hence, the blank 
nanocarrier showed low cytotoxicity, whilst the drug-loaded system displayed strong anti-
cancer effects. 

[51] 

 
Chlorambucil—DNA 

alkylating agent 

Reduced gra-
phene oxide 
(rGO)-FA-gela-
tine 

in vitro: Siha cells 
35% DLC, 82% DRE, with pH-trig-
gered drug release 

A significant decrease in IC50 value compared to the free drug was observed. The use of gel-
atine facilitated sustained drug release. This system is a promising treatment for cervical ad-
enocarcinoma. 

[52] 

 
Cisplatin (CisP)—DNA 

alkylating agent 

GO-Ala in vitro: MCF-7 and 
HepG2 cells 

4% DLC and ~70% DRE, with sus-
tained drug release at neutral pH 

The blank nanocarrier is biocompatible, whilst the CisP-loaded material is effective at kill-
ing cancer cells in vitro. 

[53] 

Oxidised carbon 
nanohorn (CNH) 

in vitro: NCI-H460 
Approximately 1% DLC and 80% 
DRE, with sustained CisP release 

This nanosystem displayed similar anticancer effects to the free drug in vitro. [54] 

 
CNH-quantum 
dot 

in vitro: AY-27 cells 
18% DLC and 70% DRE, with a sus-
tained drug release profile 

This theragnostic system displayed a significant reduction in anticancer potency compared 
to free CisP; however, it has imaging capabilities arising from the inclusion of CdSe quan-
tum dots. 

[55] 

Carmustine—DNA
alkylating agent

GO-PAA in vitro: GL261 cells 19% DLC, with no quantitative drug
release data shown

A significant increase in half-life, >70%
decrease in IC50 value, and 30% increase in
inter-strand DNA crosslinking was
observed compared to the free drug
in vitro.

[50]

N-doped carbon nanotube (CNT) sponges in vitro: rat astrocytes, C6, RG2,
and U87 cells

~90% DRE, with no quantitative drug
loading data

This nanocarrier displayed similar
cytotoxicity to the free drug, with a
sustained-release profile. The sponges
appear to be more biocompatible than CNTs
alone; hence, the blank nanocarrier showed
low cytotoxicity, whilst the drug-loaded
system displayed strong anticancer effects.

[51]
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CNH-quantum 
dot 

in vitro: AY-27 cells 
18% DLC and 70% DRE, with a sus-
tained drug release profile 

This theragnostic system displayed a significant reduction in anticancer potency compared 
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[55] 

Chlorambucil—DNA
alkylating agent

Reduced graphene oxide (rGO)-FA-gelatine in vitro: Siha cells 35% DLC, 82% DRE, with pH-triggered
drug release

A significant decrease in IC50 value
compared to the free drug was observed.
The use of gelatine facilitated sustained
drug release. This system is a promising
treatment for cervical adenocarcinoma.

[52]

Pharmaceutics 2023, 15, x FOR PEER REVIEW 6 of 40 
 

 

 oxiMWCNT-HA 
in vitro: TC–1 and 
NIH/3T3 cells 

No quantitative drug loading/release 
data shown 

This system displayed the selective uptake and targeting of cancer cells over healthy cells, 
resulting in significantly higher cytotoxic effects in neoplastic cells and lower side effects in 
healthy cells. 

[44] 

 
Aminated 
MWCNT 

in vitro: MDA-MB-23 and 
MCF-12A 

89% DLC, 21% DRE 
This formulation provided increased cancer cell death compared to free CP and killed cells 
via an ROS-triggered autophagy mechanism. 

[45] 

 
FA-CDT-C60 full-
erene 

in vitro: HeLa, HeLa-RFP, 
and A549 cells; in vivo: 
Danio rerio, both healthy 
and bearing HeLa tu-
mours 

37% DLC, ~80% DRE, with pH-trig-
gered drug release 

This system displayed increased anticancer effects compared to the free drug alone due to 
the active targeting of folate-receptor-overexpressing cancer cells and improved cellular up-
take. Low toxicity and improved antitumour effects compared to the free drug were also 
seen in vivo. 

[46] 

 CS-Fe3O4-GO 
in vitro: HepG2 and 
MCF-7 cells 

74% DLE, 90% DRE, with pH-trig-
gered drug release 

A very high amount of CP was released at neutral pH. 
Despite this, an increase in CP potency and a reduction in systemic toxicity was observed. 

[47] 

 GO-CS-FA 
in vitro: LX-2 and SKOV3 
cells 

14% DLC, ~90% DRE 
CP release was similar in neutral and acidic environments; hence, this system is unsuitable 
for pH-triggered drug release via noncovalent drug attachment. The system showed slightly 
lower cancer cell inhibition than free CP. 

[48] 

 GO-Fe3O4-PANI 
in vitro: SMMC-7721, 
HepG2, and HL-7702 
cells 

~95% DRE; the qualitative drug load-
ing data provided does not account 
for unbound CP that was removed 

The blank nanocarrier showed efficient cellular uptake and negligible cytotoxicity. This 
nanocarrier has magnetic properties and pH-triggered drug release. 

[49] 

 
Carmustine—DNA 

alkylating agent 

GO-PAA in vitro: GL261 cells 
19% DLC, with no quantitative drug 
release data shown 

A significant increase in half-life, >70% decrease in IC50 value, and 30% increase in inter-
strand DNA crosslinking was observed compared to the free drug in vitro. 

[50] 

N-doped carbon 
nanotube (CNT) 
sponges 

in vitro: rat astrocytes, 
C6, RG2, and U87 cells  

~90% DRE, with no quantitative drug 
loading data 

This nanocarrier displayed similar cytotoxicity to the free drug, with a sustained-release 
profile. The sponges appear to be more biocompatible than CNTs alone; hence, the blank 
nanocarrier showed low cytotoxicity, whilst the drug-loaded system displayed strong anti-
cancer effects. 

[51] 

 
Chlorambucil—DNA 

alkylating agent 

Reduced gra-
phene oxide 
(rGO)-FA-gela-
tine 

in vitro: Siha cells 
35% DLC, 82% DRE, with pH-trig-
gered drug release 

A significant decrease in IC50 value compared to the free drug was observed. The use of gel-
atine facilitated sustained drug release. This system is a promising treatment for cervical ad-
enocarcinoma. 

[52] 

 
Cisplatin (CisP)—DNA 

alkylating agent 

GO-Ala in vitro: MCF-7 and 
HepG2 cells 
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in vitro: NCI-H460 
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tained drug release profile 
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[55] 

Cisplatin (CisP)—DNA
alkylating agent

GO-Ala in vitro: MCF-7 and HepG2 cells 4% DLC and ~70% DRE, with sustained
drug release at neutral pH

The blank nanocarrier is biocompatible,
whilst the CisP-loaded material is effective
at killing cancer cells in vitro.

[53]

Oxidised carbon nanohorn (CNH) in vitro: NCI-H460 Approximately 1% DLC and 80% DRE,
with sustained CisP release

This nanosystem displayed similar
anticancer effects to the free drug in vitro. [54]

CNH-quantum dot in vitro: AY-27 cells 18% DLC and 70% DRE, with a
sustained drug release profile

This theragnostic system displayed a
significant reduction in anticancer potency
compared to free CisP; however, it has
imaging capabilities arising from the
inclusion of CdSe quantum dots.

[55]

Ultra-short SWCNT
in vivo: SCID/beige mice
bearing MCF-7, BCM-4272, and
MDA-MB-231 tumours

This nanoformulation effectively treated
CisP-resistant breast cancer in a xenograft
mouse model. The nanocarrier also displays
an enhanced circulation time and increased
tumour localisation, leading to increased
potency compared to the free drug.

[56]
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Silane-modified ND in vitro: HeLa cells

This unique system has a Pt loading of
0.25 mmol/g ND, and CisP is not released
from the conjugate. Despite this, the system
displayed a similar IC50 value to CisP. The
main advantage of this system is the
prevention of CisP isomerisation, leading to
enhanced aqueous stability. No quantitative
drug loading/release data were given.

[15]

SA/ND in vitro: HepG2, HeLa, A549,
and RAW264.7 cells

This sustained-release drug platform
improved the CisP accumulation in cancer
cells, with improved drug safety. Whilst no
quantitative drug loading or release data
were given, no change in the antitumour
mechanism was observed compared to the
free drug.

[57]

EGF-ND in vitro: HepG2 cells 1% DLC, with no quantitative drug
release data shown

This nanoformulation was capable of
selectively killing liver cancer cells and
displayed increased potency compared to
free CisP. This was due to the
EGF-mediated targeting of cancer cells. In
addition, the NDs are probes for 3D Raman
microscopy imaging. This nanocarrier
system induces morphological changes in
cancer cells, resulting in higher surface
areas for CisP absorption with a lower risk
of adverse side effects.

[58]

C60 fullerene in vivo: BALB/c mice 50% DLC, with no quantitative drug
release data shown

A two-fold decrease in systemic toxicity
(LD50) compared to free CisP was observed.
Specifically, the nanocarrier decreased
drug-induced leukopenia, anaemia,
thrombocytosis, and inflammation.

[59]

C60 fullerene in vitro: LLC cells No quantitative drug loading or release
data given

A 4.5× decrease in IC50 value compared to
the free drug was observed in vivo. The
fullerene itself was found to increase the
cellular uptake and accumulation of CisP.

[60]

oxiC60 fullerene in vitro: L929 cells 16% DLC, 60% DRE, with pH-triggered
drug release

This nontoxic nanocarrier displayed
outstanding fluorescence properties for
cellular imaging experiments.

[61]



Pharmaceutics 2023, 15, 1545 10 of 49

Table 1. Cont.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.

C60 fullerene

in vitro: HCT-116, HeLa, HL-60,
HL-60/adr, and HL-60/vinc cells;
in vivo: C57BL/6J mice bearing
LLC tumours

No quantitative drug loading/release
data shown

This nanocarrier killed
chemotherapy-resistant leukaemia cells
in vitro and exhibited effective lung cancer
tumour growth inhibition in vivo.
Molecular docking studies suggested that
the fullerene binds to proteins involved in
chemotherapy resistance.

[62]

CS-GO in vitro: HeLa cells 71% DLE, 88% DRE, with pH-triggered
drug release

The functionalisation of GO with CS and
CisP dramatically reduced protein binding.
This biocompatible nanocarrier triggered
apoptosis in drug-resistant cancer cells.

[63]

CQD-GE11-DOX
in vitro: CNE-2 cells; in vivo:
BALB/c mice bearing
CNE-2 tumours

5% DLC and 57% DRE, with
pH-triggered drug release

Specific tumour targeting and inhibition
was observed in vivo, and the effective
killing of nasopharyngeal carcinoma cells
was exhibited in vitro. This nanocarrier has
fluorescence imaging capabilities and
showed no obvious side effects in vivo.

[64]

GO-PEG
in vitro: MG63, SAOS-2, U2-OS,
MDA-MB-231, MDA-MB468,
U118, and U87 cells

64% DLE, with no quantitative drug
release data shown and redox-sensitive
drug delivery using a CisP prodrug

This nanoformulation displayed high
uptake and proliferation inhibition in
osteosarcoma cells, and effective
internalisation, but reduced potency in
glioblastoma cells. This system is capable of
inhibiting cell migration in highly invasive
breast carcinoma.

[65]

MnO2-GO-Ce6-HA

in vitro: MDA-MB-231 and
RLE-6TN cells; in vivo: BALB/c
mice bearing
MDA-MB-231 tumours

7% DLC and 60% DRE, with
pH-triggered drug release

Combination therapy of (1) MnO2 to
regulate the tumour microenvironment,
enhancing the anticancer effect of (2) CisP
chemotherapy and (3) Ce6 PDT. The
incorporation of HA facilitates tumour
targeting for a true theragnostic system.
This system also shows excellent
biocompatibility and antitumour efficacy
in vivo.

[66]

rGO-PHEMA-DOX in vitro: MCF-7 cells 82% DLE and 64% DRE, with
pH-triggered drug release

A significant decrease in IC50 value
compared to free CisP and DOX was
observed. This biocompatible nanocarrier
displayed efficient cellular uptake and a
synergistic effect between the two loaded
drugs, resulting in the effective killing of
breast cancer cells.

[67]
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Fe3O4-rGO-PHEMA-MET

in vitro: HepG2 and Caco-2 cells;
in vivo: BALB/c mice, both
healthy and bearing
HepG2 tumours

82% DLE, 60% DRE, with pH-triggered
drug release

No side effects and potent antitumour
efficacy was noted in vivo. This highly
biocompatible nanosystem effectively killed
hepatocellular carcinoma in vitro.

[68]

GO-PEG-DOX
in vitro: CAL-27, L929, and
MCF-7 cells; in vivo: nude mice
carrying CAL-27 tumours

37% DLC and 65% DRE, with
pH-triggered drug release

A 2× increase in cancer cell apoptosis and
necrosis compared to the
single-drug-loaded nanocarrier was
observed. An attenuation of toxicity and
enhanced anticancer effects compared to
free DOX/CisP were observed.

[69]

S-doped CD in vitro: A2780 and A2780 cells No quantitative drug loading/release
data shown

The unloaded CDs were found to be
biocompatible and could interact with
proteins and lipids on the surfaces of cancer
cells. A similar IC50 value to the free drug
was seen in normal ovarian cancer cells,
and the nanoformulation could kill
drug-resistant cancer cells.

[70]

CD-iRGD in vitro: A549, HUVEC,
and HEL-299

No quantitative drug loading/release
data shown

This nanocarrier destroyed lung cancer cells
whilst leaving healthy cells unharmed. [71]

MWCNT
in vitro: A549 and A549/DDP
cells; in vivo: BALB/c mice
carrying A549/DDP tumours

No quantitative drug loading/release
data given

The unloaded MWCNTs were found to be
biocompatible, whilst the loaded
nanocarrier had higher cytotoxicity against
cancer cells than free CisP. This
nanoformulation could effectively treat a
drug-resistant lung cancer in vivo model.

[72]

PDA CD-anti-EpPCAN
in vitro: HepG2 cells;
in vivo: BALB/c mice bearing
HepG2 tumours

This synergistic nanocarrier combined a
cisplatin prodrug with significant PTT and
fluorescence imaging capabilities for
effective image-guided
chemo–photothermal therapy. This
biocompatible system exhibited excellent
antitumour effects in vitro and in vivo.

[73]

CD-PEG in vitro: GES-1 and
MGC-803 cells

5% DLC, with no quantitative drug
release data given and
pH/redox-mediated drug release
achieved via a hydrolysable benzoic
imine bond

A CisP prodrug was used, and the resulting
system had comparable anticancer efficacy
to free CisP, with reduced side effects. This
system also exhibited fluorescence
imaging capabilities.

[74]

CD-PEG in vitro: A549, HUVEC, and
HEL-299 cells

No quantitative drug loading data
given, 86% DRE and redox-sensitive
drug release

This fluorescent nanocarrier could
effectively kill cancer cells whilst leaving
healthy cells unharmed.

[75]
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Curcumin (CUR)—ROS scavenger 

and lipid peroxidation inhibitor 

GQD-GlcN in vitro: MCF-7 cells 
No quantitative drug loading infor-
mation, 37% DRE with pH-triggered, 
sustained drug release 

The unloaded nanocarrier is biocompatible, whilst the loaded system exhibits effective can-
cer cell targeting and internalisation in vitro. This system also has fluorescence imaging ca-
pabilities. 

[77] 

SWCNT in vitro: PC-3 cells 
94% DLE, 95% DRE, with pH-trig-
gered drug release 

The combination of efficient CUR delivery and SWCNT-mediated PTT successfully inhib-
ited tumour cell growth. This nanocarrier also reduced CUR biodegradation and increased 
its solubility. 

[78] 

SWCNT-PC-PVP 

in vitro: PC-3 and S180 
cells; in vivo: Kunming 
mice bearing S180 tu-
mours 

 

No quantitative drug loading/release data. This biocompatible nanocarrier increased CUR 
cellular uptake, plasma concentration, and bioavailability. The system overcomes the main 
barrier to the low anticancer effect of free CUR (low plasma concentration) whilst display-
ing low in vivo toxicity. This is a combination therapy with the SWCNT-mediated photo-
thermal ablation of cancer cells. 

[79] 

 oxiND-ADH 
in vitro: MCF-7 and 
HepG2 cells 

93% DLE, 36% DRE, with pH-trig-
gered, sustained drug release 

The use of a pH-sensitive amide bond to bind CUR slows release and increases stability, re-
sulting in potent cytotoxicity. 

[29] 

 

Graphene oxide 
quantum dot 
(GOQD)-CS-
PEG-MUC-1 ap-
tamer 

in vitro: MCF-7 and HT-2 
cells 

99% DLC, 64% DRE, with pH-respon-
sive drug release 

This system effectively targets MUC-1-overexpressing cancer cells whilst displaying photo-
luminescence imaging and cancer detection abilities. An increase in therapeutic efficacy and 
cellular uptake compared to free CUR and low haemolysis with human blood was observed 
with this system. 

[19] 

 CD-PNM in vitro: SH-SY5Y cells No qualitative CUR loading infor-
mation, 82% DRE 

This formulation resulted in a 10× enhancement of CUR solubility whilst displaying excel-
lent photophysical properties and low toxicity. 

[80] 

 CD 
in vitro: HepG2 and A549 
cells 

3% DLC, ~90% DRE, with pH-medi-
ated drug release 

This cost-effective, photoluminescent nanocarrier is nontoxic to normal cells and displayed 
potent anticancer effects with enhanced CUR bioavailability and a small size. 

[81] 

 
CoFe2O4/GO-
ADH-CMC 

in vitro: MDA-MB-231 
and MCF-10A cells 

2% DLC, 86% DRE, with pH-trig-
gered, controlled drug release 

A decrease in cancer cell viability compared to free CUR was noted when using this system. [82] 

 GQD-HA 
in vitro: HeLa and L929 
cells 

98% DLE, ~100% DRE, with pH-trig-
gered drug release 

This nanoformulation displayed excellent anticancer activity compared to CUR alone and 
has no toxic effect on healthy cells. The system is also highly fluorescent when CUR is re-
leased. 

[83] 

 
GO-BSA-AS1411 
aptamer 

in vitro: MCF-7 and 
SKBR3 cells 

9% DLC, 70% DRE, with pH-trig-
gered drug release 

Efficient targeting of nucleolin-overexpressing MCF7 cancer cells was achieved, facilitated 
by aptamer attachment. This resulted in increased CUR antitumour activity. BSA decoration 
was found to improve nanocarrier biostability and slow CUR degradation. 

[84] 

 CS-Fe3O4-RGO in vitro: MCF-7 cells 95% DLE, 96% DRE 
This system successfully targeted and induced apoptosis in breast cancer cells. The super-
paramagnetic nanocarrier increased the rate of CUR delivery compared to the free drug. 

[85] 

Hollow mesopo-
rous carbon 
sphere (HMCS) 

in vitro: CNE cells; in 
vivo: nude mice with 
CNE tumours 

20% DLC, with no release experi-
ments carried out with PTX 

The HMCSs themselves exhibited strong antitumour effects through PTT. [86] 

Curcumin (CUR)—ROS
scavenger and lipid

peroxidation inhibitor

Fluorinated GO-LIN
in vitro: MCF-7 and MCF10A
cells; in vivo: BALB/c mice with
4T1-induced breast cancer

61% DLC, 95% DRE, with pH-sensitive
drug release

This simple, low-cost system acts as a
contrast agent for magnetic resonance
imaging. It also displays improved
cytotoxicity, tumour suppression, and
reduced side effects compared to free CUR
due to effective cancer cell targeting.

[76]

GQD-GlcN in vitro: MCF-7 cells
No quantitative drug loading
information, 37% DRE with
pH-triggered, sustained drug release

The unloaded nanocarrier is biocompatible,
whilst the loaded system exhibits effective
cancer cell targeting and internalisation
in vitro. This system also has fluorescence
imaging capabilities.

[77]

SWCNT in vitro: PC-3 cells 94% DLE, 95% DRE, with pH-triggered
drug release

The combination of efficient CUR delivery
and SWCNT-mediated PTT successfully
inhibited tumour cell growth. This
nanocarrier also reduced CUR
biodegradation and increased its solubility.

[78]

SWCNT-PC-PVP
in vitro: PC-3 and S180 cells;
in vivo: Kunming mice bearing
S180 tumours

No quantitative drug loading/release data.
This biocompatible nanocarrier increased
CUR cellular uptake, plasma concentration,
and bioavailability. The system overcomes
the main barrier to the low anticancer effect
of free CUR (low plasma concentration)
whilst displaying low in vivo toxicity. This
is a combination therapy with the
SWCNT-mediated photothermal ablation of
cancer cells.

[79]

oxiND-ADH in vitro: MCF-7 and
HepG2 cells

93% DLE, 36% DRE, with pH-triggered,
sustained drug release

The use of a pH-sensitive amide bond to
bind CUR slows release and increases
stability, resulting in potent cytotoxicity.

[29]

Graphene oxide quantum dot
(GOQD)-CS-PEG-MUC-1 aptamer in vitro: MCF-7 and HT-2 cells 99% DLC, 64% DRE, with

pH-responsive drug release

This system effectively targets
MUC-1-overexpressing cancer cells whilst
displaying photoluminescence imaging and
cancer detection abilities. An increase in
therapeutic efficacy and cellular uptake
compared to free CUR and low haemolysis
with human blood was observed with
this system.

[19]

CD-PNM in vitro: SH-SY5Y cells No qualitative CUR loading
information, 82% DRE

This formulation resulted in a 10×
enhancement of CUR solubility whilst
displaying excellent photophysical
properties and low toxicity.

[80]
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CD in vitro: HepG2 and A549 cells 3% DLC, ~90% DRE, with pH-mediated
drug release

This cost-effective, photoluminescent
nanocarrier is nontoxic to normal cells and
displayed potent anticancer effects with
enhanced CUR bioavailability and a
small size.

[81]

CoFe2O4/GO-ADH-CMC in vitro: MDA-MB-231 and
MCF-10A cells

2% DLC, 86% DRE, with pH-triggered,
controlled drug release

A decrease in cancer cell viability compared
to free CUR was noted when using
this system.

[82]

GQD-HA in vitro: HeLa and L929 cells 98% DLE, ~100% DRE, with
pH-triggered drug release

This nanoformulation displayed excellent
anticancer activity compared to CUR alone
and has no toxic effect on healthy cells. The
system is also highly fluorescent when CUR
is released.

[83]

GO-BSA-AS1411 aptamer in vitro: MCF-7 and SKBR3 cells 9% DLC, 70% DRE, with pH-triggered
drug release

Efficient targeting of
nucleolin-overexpressing MCF7 cancer cells
was achieved, facilitated by aptamer
attachment. This resulted in increased CUR
antitumour activity. BSA decoration was
found to improve nanocarrier biostability
and slow CUR degradation.

[84]

CS-Fe3O4-RGO in vitro: MCF-7 cells 95% DLE, 96% DRE

This system successfully targeted and
induced apoptosis in breast cancer cells.
The superparamagnetic nanocarrier
increased the rate of CUR delivery
compared to the free drug.
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tive drug release via a hydrolysable 
amide linkage 

This nanosystem possesses remarkable fluorescence stability, and CS wrapping enhanced 
the water solubility of this system. 

[88] 

Au/GQD/MPA/P
EI 

in vitro: HL-60 cells 
68% DLE, 78% DRE, with dual pH- 
and NIR-triggered drug release 

Cytarabine was attached via charge–dipole interactions. The chemo–photothermal combina-
tion therapy had higher efficacy than PTT alone. 

[21] 

 
Dabrafenib—reversible ATP-competi-

tive kinase inhibitor 

GO-BSA 

in vitro: A375, HDF, 
SKmel28, SKmel23, Mel-
JuSo, MNT-1, and NHEM 
cells 

No quantitative drug loading/release 
data, with pH-triggered drug release 

The potency of dabrafenib was retained, with effective BRAF and HDAC inhibition in hu-
man melanoma cells. 

[89] 

 
Dasatinib—tyrosine kinase 

inhibitor 

PLA-PGA-PEG-
CNT 

in vitro: U-87 cells 4% DLC, ~65% DRE 
This nanocarrier system was synthesised via a simple one-pot method and demonstrated 
improved therapeutic efficacy compared to the free drug in vitro. The drug release profile of 
this system can be controlled by varying the composition of the polymer coating. 

[90] 

Cyclophosphamide—DNA
alkylating agent

Hollow mesoporous carbon sphere (HMCS) in vitro: CNE cells; in vivo: nude
mice with CNE tumours

20% DLC, with no release experiments
carried out with PTX

The HMCSs themselves exhibited strong
antitumour effects through PTT.

[86]

PAA/PEG/CNT/MTX Approximately 80% DRE, with no
quantitative drug loading data shown

The system displayed dual pH- and
temperature-triggered drug release, with an
initial burst of drug followed by
sustained delivery.

[87]
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Cytarabine—DNA
polymerase inhibitor

GQD-CS
73% DLE, 72% DRE, with pH-sensitive
drug release via a hydrolysable
amide linkage

This nanosystem possesses remarkable
fluorescence stability, and CS wrapping
enhanced the water solubility of
this system.

[88]

Au/GQD/MPA/PEI in vitro: HL-60 cells 68% DLE, 78% DRE, with dual pH- and
NIR-triggered drug release

Cytarabine was attached via charge–dipole
interactions. The chemo–photothermal
combination therapy had higher efficacy
than PTT alone.

[21]
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The potency of dabrafenib was retained,
with effective BRAF and HDAC inhibition
in human melanoma cells.

[89]
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Dasatinib—tyrosine
kinase inhibitor

PLA-PGA-PEG-CNT in vitro: U-87 cells 4% DLC, ~65% DRE

This nanocarrier system was synthesised
via a simple one-pot method and
demonstrated improved therapeutic
efficacy compared to the free drug in vitro.
The drug release profile of this system can
be controlled by varying the composition of
the polymer coating.

[90]
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Daunorubicin (DNR)— 
topoisomerase II inhibitor 

P-gp-GGN 

in vitro: adriamycin-re-
sistant leukaemia cell 
lines KA and K562/A02 
cells; in vivo: KA nude 
mice with drug-resistant 
leukaemia-cell-induced 
tumours 

32% DLC, roughly 45% DRE, with re-
dox-triggered DNR release facilitated 
by increasing glutathione concentra-
tion 

This nanocarrier overrides the cell�s drug resistance to facilitate DNR uptake, resulting in a 
remarkable inhibition of tumour growth in vivo. 

[20] 

PLA/MWCNT/ 
FE3O4 

in vitro: K562 cells 
96% DLE, roughly 55% DRE, with 
dual magnetic field- and pH-medi-
ated drug release 

The most effective killing of leukaemia cells was observed at a 20 µg/mL nanocarrier con-
centration. 

[91] 

 ND in vitro: K562 cells 
~95% DLC, most of the bound DNR 
was released 

This formulation achieved a three-fold reduction in the IC-50 value compared to free DNR 
for the treatment of drug-resistant K562 cells. 

[92] 

 f-CNTs  
94% DLE at 3:1 DNR:f-CNT ratio, 
with no quantitative drug release 
data provided 

Hydroxylated CNTs provided the best DNR binding (through electrostatic interactions). [93] 

 
Bi2MoO6/NH2-
GO/PEG 

in vitro: HUVEC and 
MCF-7 cells 

33% DLC, 86% DRE, with pH-trig-
gered drug release 

DNR was selectively released in cancer cells. Haemolysis and coagulation tests prove sys-
tem has no negative effects on the blood. [94] 

 
Decitabine—DNA methyltransferase 

inhibitor 

A1-GO 

in vitro: A549, NCI-H157, 
NCI-H520, NCI-H1299, 
NCI-H446, MCF-7, and 
HeLa cells 

64% DLE, 75% DRE, with pH-de-
pendent drug release 

Specific recognition and targeting of lung cancer cells over other cancer cells was achieved 
by using the A1 aptamer. This system achieved much higher anticancer efficacy than the 
free drug. 

[95] 

 
Docetaxel (DTX)—microtubule 

growth inhibitor 

GO-PEG in vitro: DU-145 cells 
No quantitative drug loading or re-
lease data provided 

This system was highly effective at killing prostate cancer cells due to a decrease in IC50 
compared to free DTX. The nanocarrier displayed low dispersion stability in biological flu-
ids. 

[96] 

RGD-CS-SWCNT 

in vitro: A549 and MCF-7 
cells; in vivo: BALB/c 
mice inoculated with 
A549 tumours 

32% DLC, 68% DRE, with pH-trig-
gered drug release 

Significant drug uptake and growth inhibition in A549 cells was observed. The system en-
tered cells via clathrin- and caveolin-mediated endocytosis and displayed strong tumour 
targeting, growth inhibition, and biosafety in vivo. 

[97] 

Oxi-carbon nano-
horn (CNH)-
PEG-mAb 

in vitro: MCF-7; in vivo: 
ICR mice xenografted 
with H22 tumours 

74% DLE, 59% DRE 

The adsorption of DTX to the nanohorns was achieved via π–π stacking. Prolonged diffu-
sion-controlled DTX release was achieved. The use of mAb resulted in the selective killing 
of cancer cells in vitro and in vivo and a lower IC50 and no significant side effects compared 
to free DTX in vivo. This nanocarrier also leveraged the enhanced permeability and reten-
tion effect. 

[98] 

Daunorubicin (DNR)—
topoisomerase II inhibitor

P-gp-GGN

in vitro: adriamycin-resistant
leukaemia cell lines KA and
K562/A02 cells; in vivo: KA
nude mice with drug-resistant
leukaemia-cell-induced tumours

32% DLC, roughly 45% DRE, with
redox-triggered DNR release facilitated
by increasing glutathione concentration

This nanocarrier overrides the cell‘s drug
resistance to facilitate DNR uptake,
resulting in a remarkable inhibition of
tumour growth in vivo.

[20]

PLA/MWCNT/FE3O4 in vitro: K562 cells
96% DLE, roughly 55% DRE, with dual
magnetic field- and pH-mediated
drug release

The most effective killing of leukaemia cells
was observed at a 20 µg/mL
nanocarrier concentration.

[91]

ND in vitro: K562 cells ~95% DLC, most of the bound DNR
was released

This formulation achieved a three-fold
reduction in the IC-50 value compared to
free DNR for the treatment of drug-resistant
K562 cells.

[92]

f-CNTs
94% DLE at 3:1 DNR:f-CNT ratio, with
no quantitative drug release
data provided

Hydroxylated CNTs provided the best DNR
binding (through electrostatic interactions). [93]

Bi2MoO6/NH2-GO/PEG in vitro: HUVEC and MCF-7 cells 33% DLC, 86% DRE, with pH-triggered
drug release

DNR was selectively released in cancer cells.
Haemolysis and coagulation tests prove
system has no negative effects on the blood.

[94]
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Specific recognition and targeting of lung cancer cells over other cancer cells was achieved 
by using the A1 aptamer. This system achieved much higher anticancer efficacy than the 
free drug. 

[95] 

 
Docetaxel (DTX)—microtubule 

growth inhibitor 

GO-PEG in vitro: DU-145 cells 
No quantitative drug loading or re-
lease data provided 

This system was highly effective at killing prostate cancer cells due to a decrease in IC50 
compared to free DTX. The nanocarrier displayed low dispersion stability in biological flu-
ids. 

[96] 

RGD-CS-SWCNT 

in vitro: A549 and MCF-7 
cells; in vivo: BALB/c 
mice inoculated with 
A549 tumours 

32% DLC, 68% DRE, with pH-trig-
gered drug release 

Significant drug uptake and growth inhibition in A549 cells was observed. The system en-
tered cells via clathrin- and caveolin-mediated endocytosis and displayed strong tumour 
targeting, growth inhibition, and biosafety in vivo. 

[97] 

Oxi-carbon nano-
horn (CNH)-
PEG-mAb 

in vitro: MCF-7; in vivo: 
ICR mice xenografted 
with H22 tumours 

74% DLE, 59% DRE 

The adsorption of DTX to the nanohorns was achieved via π–π stacking. Prolonged diffu-
sion-controlled DTX release was achieved. The use of mAb resulted in the selective killing 
of cancer cells in vitro and in vivo and a lower IC50 and no significant side effects compared 
to free DTX in vivo. This nanocarrier also leveraged the enhanced permeability and reten-
tion effect. 

[98] 

Decitabine—DNA
methyltransferase inhibitor

A1-GO

in vitro: A549, NCI-H157,
NCI-H520, NCI-H1299,
NCI-H446, MCF-7, and
HeLa cells

64% DLE, 75% DRE, with
pH-dependent drug release

Specific recognition and targeting of lung
cancer cells over other cancer cells was
achieved by using the A1 aptamer. This
system achieved much higher anticancer
efficacy than the free drug.

[95]
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Oxi-carbon nano-
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Docetaxel (DTX)—microtubule
growth inhibitor

GO-PEG in vitro: DU-145 cells No quantitative drug loading or release
data provided

This system was highly effective at killing
prostate cancer cells due to a decrease in
IC50 compared to free DTX. The nanocarrier
displayed low dispersion stability in
biological fluids.

[96]

RGD-CS-SWCNT
in vitro: A549 and MCF-7 cells;
in vivo: BALB/c mice inoculated
with A549 tumours

32% DLC, 68% DRE, with pH-triggered
drug release

Significant drug uptake and growth
inhibition in A549 cells was observed. The
system entered cells via clathrin- and
caveolin-mediated endocytosis and
displayed strong tumour targeting, growth
inhibition, and biosafety in vivo.

[97]

Oxi-carbon nano-horn (CNH)-PEG-mAb
in vitro: MCF-7; in vivo: ICR
mice xenografted with
H22 tumours

74% DLE, 59% DRE

The adsorption of DTX to the nanohorns
was achieved via π–π stacking. Prolonged
diffusion-controlled DTX release was
achieved. The use of mAb resulted in the
selective killing of cancer cells in vitro and
in vivo and a lower IC50 and no significant
side effects compared to free DTX in vivo.
This nanocarrier also leveraged the
enhanced permeability and retention effect.

[98]

Acylated C60 fullerene in vitro: MCF-7 and MDA-MB-23
cells; in vivo: Wistar rats 81% DLC, 84% DRE

This system achieved 4.2× higher
bioavailability and 50% lower drug
clearance compared to free DTX. This
resulted in enhanced cancer cell cytotoxicity,
low haemolysis, and high
erythrocyte compatibility.

[99]

Hexagonal nanostructured GO in vitro: A549 cells 41% DLE and approximately 20% DRE,
with pH-mediated drug release

The nanostructured material improved the
drug loading capacity compared to pristine
GO and displayed good biocompatibility.

[32]

Carbon nanoparticle (CNP)-HIF-PLGA
in vitro: Walker256 cells; in vivo:
rats xenografted with
Walker256 tumours

16% DLC, with no qualitative release
data shown and NIR-activated
drug release

This nanocarrier displayed photothermal
properties. The synergistic effect of
chemotherapy and image-guided NIR PTT
gave this system the ability to effectively
target and treat metastatic lymph nodes both
in vitro and in vivo, with minimal
side effects.

[100]
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CNP-PLGA

in vitro: MDA-MB-231 and
HUVEC cells; in vivo: New
Zealand white rabbits bearing
VX2 liver tumours

NIR-triggered drug release, with no
quantitative drug loading/release
data shown

This system relied on a combination of PTT
and photoacoustic imaging to treat cancer
in vitro and in vivo. Highly targeted drug
delivery was achieved by transport through
the lymphatic system to produce an
excellent therapeutic effect on metastatic
lymph nodes with favourable
biocompatibility and biosafety.

[101]

CNS in vitro: MDA-MB 231 cells 92% DLE, with no quantitative release
data shown

CS nanopores substantially assisted in drug
loading to give this system favourable
anticancer properties.

[102]

Hydroxylated CNT-APA in vitro: MDA MB-231 cells;
in vivo: Wistar rats

51% DLE, with no quantitative drug
release data shown and pH-triggered
drug release in cancer cytosol

This formulation achieved a 2.8×
enhancement in cytotoxicity and superior
pharmacokinetics compared to free DTX,
with substantial hemocompatibility with
human blood and reduced side effects
compared to the drug alone in vivo.

[103]

RBC@GQD

in vitro: A549 cells;
in vivo: CAnN.CgFoxn mice
carrying A549-induced tumours;
C57BL/6J mice with ALTS1C1
intracranial tumours

Approximately 40% DRE, with no
qualitative drug loading data and
NIR-triggered drug release

This system achieved an eight-fold increase in
the accumulation in tumour tissues compared
to the free drug. The synergy between the
chemotherapy and photolytic properties of
the nanocarrier allowed for deep penetration
into tumours and effective treatment in vivo.

[104]

C60 fullerene-APA in vitro: MDA MB-231 cells;
in vivo: Wistar rats

48% DLE, 96% DRE, with pH-triggered
drug release

A substantial decrease in haemolysis (human
blood) and protein binding (BSA) compared
to free DTX was observed. The
nanoformulation also increased bioavailability
and potency compared to free DTX.
Fullerenes display partial P-gp efflux
inhibition.

[105]
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gered drug release 

A substantial decrease in haemolysis (human blood) and protein binding (BSA) compared 
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Doxorubicin (DOX)— 

topoisomerase II inhibitor 

GO/PEI.Ac-FITC-
PEG-LA 

in vitro: SMMC-7721 and 
PIEC cells 

85% DLC, ~80% DRE, with pH-de-
pendent drug release 

The nanocarrier shows specificity for ASGPR-receptor-containing cancer cells whilst retain-
ing DOX therapeutic efficacy. 

[106] 

GO-PRM/SA in vitro: MCF-7 cells  29% DLC, 49% DRE, with pH-de-
pendent drug release 

Protein adsorption in physiological environments was suppressed and the system showed 
enhanced cytotoxicity compared to GO-DOX alone. 

[107] 

 Tf/FA/GO/PF68 
in vitro: SMMC-7721 and 
L-02 cells 

96% DLC, 55% DRE, with pH-de-
pendent drug release 

The nanocarrier displayed low toxicity and high specificity due to the synergistic effect of 
Tf- and FA-targeting ligands on cancer cell targeting. The DOX-loaded nanosystem was not 
tested on healthy L-02 cells. 

[108] 

Doxorubicin (DOX)—
topoisomerase II inhibitor

GO/PEI.Ac-FITC-PEG-LA in vitro: SMMC-7721 and
PIEC cells

85% DLC, ~80% DRE, with
pH-dependent drug release

The nanocarrier shows specificity for
ASGPR-receptor-containing cancer cells
whilst retaining DOX therapeutic efficacy.

[106]

GO-PRM/SA in vitro: MCF-7 cells 29% DLC, 49% DRE, with
pH-dependent drug release

Protein adsorption in physiological
environments was suppressed and the
system showed enhanced cytotoxicity
compared to GO-DOX alone.

[107]

Tf/FA/GO/PF68 in vitro: SMMC-7721 and
L-02 cells

96% DLC, 55% DRE, with
pH-dependent drug release

The nanocarrier displayed low toxicity and
high specificity due to the synergistic effect
of Tf- and FA-targeting ligands on cancer
cell targeting. The DOX-loaded nanosystem
was not tested on healthy L-02 cells.

[108]
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GNRs/GO@PDA nanosheets in vitro: MCF-7 cells 81% DLE, 49% DRE
This system displayed dual
pH/NIR-responsive drug release. The
GNRs act as a probe for PTT.

[109]

CNH/DCA-HPCHS in vitro: 4T1 cells; in vivo: mice
bearing 4T1 tumours

This system combines chemotherapy with
NIR-mediated PTT for the treatment of
cancer in vitro and in vivo. The nanocarrier
displays pH-dependent drug release;
however, no DOX quantification for drug
loading/release was included.

[110]

oxiCNH/SA-mAb

in vitro: MCF-7 and HEK293
cells; in vivo: CR male mice
bearing subcutaneous hepatic
H22 tumours

100% DLC, 67% DRE, with
pH-dependent drug release

DOX is released in the endosomes of MCF-7
cells. Specific targeting of VEGF-containing
cancer cells over healthy HEK293 cells was
achieved by using mAb as a targeting
ligand. This nanocarrier was more effective
than free DOX both in vivo and in vitro,
whilst showing reduced liver and
cardiac toxicity.

[9]

PEG-SWCNT in vivo: SCID mice bearing Raji
lymphoma xenografts

100% DRE, with pH-dependent
drug release

Increased tumour inhibition and reduced
systemic toxicity compared to free DOX was
determined through in vivo experiments.

[111]

C60 fullerene in vitro: CCRF-CEM, Jurkat,
THP1, and Molt-16 cells

Long-term nanocarrier stability was
observed in physiological saline solution.
Complexation with C60 fullerene promoted
Dox entry into leukemic cells, resulting in
≤ 3.5 higher cytotoxicity compared to
free DOX.

[112]

Fullerenol

in vitro: MCF-7 and
MDA-MB-231 cells;
in vivo: zebrafish embryo
(Danio rerio, wild type)

This formulation resulted in enhanced
uptake, decreased proliferation, and
remarkable cytotoxicity of DOX in breast
cancer cells. A decrease in zebrafish
embryotoxicity compared to DOX alone
was noted. No drug loading or release
analysis was included in this study.

[113]

C82 fullerene-cRGD in vitro: NCl-H2135 cells
Redox-dependent DOX release,
triggered by increasing
glutathione concentration

Significant cytotoxicity at low doses was
observed due to enhanced cellular uptake
relative to free DOX.

[114]

DSPE-PEG-ND
in vitro: 4T1 cells;
in vivo: BALB/c mice injected
with 4T1 cells and SD rats

Approximately 95% DLE and 34% DRE

Favourable circulation time, accumulation
in tumour tissues, and ability to deliver
DOX to tumour cell nucleus was observed.
This leads to a significant enhancement of
DOX efficacy and biocompatibility.

[115]
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ND-PEG in vitro: A549 cells 65% DLC, approximately 60% DRE

The nanocarrier was readily soluble in PBS
and water, and unloaded ND-PEG
displayed excellent biocompatibility. This
system was able to deliver DOX directly to
cancer cells.

[116]

Carbon nanoring (CNR) in vitro: A549, Hela, L929, and
BEAS-2B cells

51% DLE, approximately 80% DRE,
with pH-mediated drug release

Enhanced antitumor activity compared to
free DOX was achieved. The DOX-CNR
system was highly selective, with much
higher cytotoxicity for cancerous cells than
normal cells. DOX was released in the
nuclei of cancer cells.

[117]

GA-MWCNT
MA-MWCNT

in vitro: MDA-MB-231
and MCF-7 cells

97% DLE and 71% DRE for
MA-MWCNTs, and 96% DLE and
72% DRE for GA-MWCNTs, with
pH-controlled drug release

The unloaded nanocarrier displayed high
biocompatibility, whilst the drug-loaded
systems showed slightly higher cytotoxicity
than DOX in cancerous cells. Overall, the
systems could effectively target cancer cells
and deliver DOX to them.

[118]

SWCNT-PEG-PEI-FA-CS in vitro: MCF-7 cells 74% DLE and approximately 60% DRE,
with pH-mediated drug release

Excellent dispersibility, cellular uptake, and
antitumor activity was observed in this
system. This nanocarrier caused apoptosis
in cancer cells by triggering
ROS overproduction.

[6]

Fucoidan-decorated silica–carbon
nano-onion (FSCNO)-HM

in vitro: HUVEC,
NCI/ADR-RES, A2780ADR, and
OVCAR-8 cells; in vivo: NU/NU
nude mice xenografted with
NCI/ADR-RES, A2780ADR, and
OVCAR-8 cells

4% DLC and approximately 60% DRE
for DOX, with NIR-triggered
drug release

The co-delivery of DOX and P-gp pump
inhibitor (HM) to counteract chemotherapy
resistance increased DOX bioavailability
and cytotoxicity. The nanosystem could
effectively target and treat both drug- and
non-drug-resistant tumour models with
decreased side effects. FSCNOs also display
photothermal capabilities.

[119]

ATRA-ND

in vitro: HepG2, MCF-7, and
CRL1730; in vivo: HepG2- and
MCF-7-induced tumour-bearing
BALB/c nude mice

25% DLC and >80% DRE, with
pH-triggered drug release

Co-delivery of DOX and ATRA in
conjunction with ultrasound treatment.
ATRA enhances DOX cytotoxicity, whilst
ultrasound enhances nanocarrier
permeability into tumour blood vessels.
This approach resulted in effective DOX
delivery and dramatic tumour
growth inhibition.

[120]



Pharmaceutics 2023, 15, 1545 20 of 49

Table 1. Cont.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.

ND-PEG-HYD-FA
in vitro: HeLa, HepG2, MCF-7,
and CHO cells; in vivo: BALB/c
mice inoculated with HepG2 cells

8% DLC, 85% DRE, with pH-triggered
drug release

This nanocarrier has fluorescence imaging
capabilities. Low drug release at pH 7 was
due to the use of a cleavable hydrazone
linkage. The FA-targeting ligand facilitated
endocytosis and the rapid build-up of
nanocarrier in cells. In vivo, experiments
showed better tumour inhibition along with
minimal cardiotoxicity, hepatotoxicity and
nephrotoxicity when compared to free DOX.

[121]

CNT/HA-DMPE in vitro: MDA-MB-231
and A2780 cells

20% DLC, 18% DRE, with pH-triggered
drug release

This biocompatible nanocarrier is highly
stable in biological buffers. The system is
easy to prepare and exhibits good
targetability towards CD44-overexpressing
cancer cells, resulting in a remarkable
increase in DOX efficacy.

[22]

AL-PEG-MWCNTs

in vitro: OPM2, HOS, MCF-7,
3T3-L1, and Raji Burritt’s
lymphoma cells; in vivo:
CD-1, Ath/nu, and CB.17 SCID
mice; ex vivo: C57BL/6J bones

35% DLC, 51% DRE

This system uses individual MWCNTs to
improve DOX pharmacokinetics. Its
biocompatibility was confirmed through
neoplastic transformation, chromosomal
aberration, and cytotoxicity assays.
Treatment-related weight loss was
eliminated in a lymphoma in vivo model,
whilst retaining DOX efficacy.

[122]

Alginate–urea CDs in vitro: MFC-7 cells >70% DLE, ~45% DRE, with
pH-triggered drug release

This fluorescent CD system is nontoxic and
could be incorporated into hydrogels as a
toughening agent. The nanohybrid
displayed controlled drug release.

[123]
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This fluorescent CD system is nontoxic and could be incorporated into hydrogels as a 
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Enzalutamide—androgen 

receptor antagonist 

TP-PEG-Ami-
nated GQD 

in vitro: C4-2B and 
LNCaP cells; in vivo: 
BALB/c nude mice bear-
ing C4-2B tumours 

60% DLE, 95% DRE, with redox-sen-
sitive drug release 

This nanocarrier was rapidly uptaken by prostate cancer cells via endocytosis. This caused 
the effective inhibition of said prostate cancer cell growth in vitro and enhanced targetabil-
ity and reduced side effects compared to the free drug in vivo. 

[124] 

SWCNT-DSPE-
HA 

in vitro: A549, AGS, and 
Taxol-resistant A549 cells 

47% DLC, 60% DRE, with pH-medi-
ated drug release 

This system displayed high cancer cell targetability and biosafety. By facilitating the accu-
mulation of EPI in cells by CD44-receptor-mediated endocytosis and preventing EPI efflux 
by P-gp, this system markedly improved the EPI anticancer efficacy in drug-resistant cancer 
cells. 

[125] 

Enzalutamide—androgen
receptor antagonist

TP-PEG-Aminated GQD
in vitro: C4-2B and LNCaP cells;
in vivo: BALB/c nude mice
bearing C4-2B tumours

60% DLE, 95% DRE, with
redox-sensitive drug release

This nanocarrier was rapidly uptaken by
prostate cancer cells via endocytosis. This
caused the effective inhibition of said
prostate cancer cell growth in vitro and
enhanced targetability and reduced side
effects compared to the free drug in vivo.

[124]
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This nanocarrier prevents the efflux of EPI by ABC transporters to counter chemoresistance 
in cancer stem cells. 

[127] 

 CD-TR-TM 
in vitro: SJGBM2, 
CHLA266, CHLA200, 
and U87 cells 

75% DRE with no information pro-
vided on drug release 

No reference study was performed with healthy cells. The synergistic anticancer effect of 
the EPI/TM combination, combined with TR-facilitated targeting, drastically reduces cancer 
cell viability, even at low concentrations. 

[128] 

 
HPPH/CPP-PEG-
GO 

in vitro: MG-63 cells; in 
vivo: osteosarcoma xeno-
graft nude mouse model 

Approximately 70% DRE, with no 
quantitative drug loading infor-
mation provided 

The synergistic effect of HPPH-mediated PDT and EPI chemotherapy allows for control 
over cancer cell growth. The incorporation of CPP further increases nanocarrier effective-
ness by improving cancer cell targeting and internalisation. 

[129] 

 
Erlotinib—tyrosine kinase 

inhibitor 

GO-PEG in vitro: NPC TW01 cells 
38% DLC, 98% DRE, with pH-medi-
ated drug release 

This nanoformulation achieved suppression of nasopharyngeal cancer migration, prolifera-
tion, and invasion via several molecular mechanisms. 

[130] 

Carboxylated 
NDs 

in vitro: A549, NCI-H460, 
and NCI-H1975 cells 

~57% DLE, no quantitative drug re-
lease data shown 

This nanocarrier caused a decrease in drug-resistant cancer cell viability. Efficient uptake of 
nanocarrier via clathrin-dependent endocytosis was the key to its effectiveness, and the sys-
tem was preferentially consumed by cancer cells. 

[131] 

 GO in vivo: mice 
30% DLC, 80% DRE, with pH-trig-
gered drug release 

The drug was released in a quick-burst fashion. [132] 

GO-COOH 
in vitro: HepG2 and 
RPMI-1640 cells 

83% DLE, 98% DRE 
The nanocarrier improved the cytotoxic effect of Et, with no change to its apoptosis path-
way. The sustained release of Et offered by this formulation allowed for higher cytotoxicity 
and efficiency compared to the free drug. 

[133] 

Epirubicin (EPI)—
topoisomerase II inhibitor

SWCNT-DSPE-HA in vitro: A549, AGS, and
Taxol-resistant A549 cells

47% DLC, 60% DRE, with pH-mediated
drug release

This system displayed high cancer cell
targetability and biosafety. By facilitating
the accumulation of EPI in cells by
CD44-receptor-mediated endocytosis and
preventing EPI efflux by P-gp, this system
markedly improved the EPI anticancer
efficacy in drug-resistant cancer cells.

[125]

Fe3O4-MWCNTs
in vitro: T24 and 5637 cells;
in vivo: MNU-induced
rat-bladder tumour model

40% DLE, 100% DRE, with
magnetic-field-triggered EPI release

This system displayed prolonged retention,
enhanced antitumor activity, and enhanced
cytotoxicity compared to free EPI. Low
systemic toxicity was also seen in vivo. The
nanocarrier was also simple and quick
to make.

[126]

ND
in vitro: LT2-MYC cells; in vivo:
FVB/N mice with
MYC-induced tumours

48% DLE, >80% DRE, with pH- and
intracellular charged
protein-triggered release

This nanocarrier prevents the efflux of EPI
by ABC transporters to counter
chemoresistance in cancer stem cells.

[127]

CD-TR-TM in vitro: SJGBM2, CHLA266,
CHLA200, and U87 cells

75% DRE with no information provided
on drug release

No reference study was performed with
healthy cells. The synergistic anticancer
effect of the EPI/TM combination,
combined with TR-facilitated targeting,
drastically reduces cancer cell viability,
even at low concentrations.

[128]

HPPH/CPP-PEG-GO
in vitro: MG-63 cells; in vivo:
osteosarcoma xenograft nude
mouse model

Approximately 70% DRE, with no
quantitative drug loading
information provided

The synergistic effect of HPPH-mediated
PDT and EPI chemotherapy allows for
control over cancer cell growth. The
incorporation of CPP further increases
nanocarrier effectiveness by improving
cancer cell targeting and internalisation.

[129]

Pharmaceutics 2023, 15, x FOR PEER REVIEW 15 of 40 
 

 

 
Epirubicin (EPI)— 

topoisomerase II inhibitor 

Fe3O4-MWCNTs 

in vitro: T24 and 5637 
cells; in vivo: MNU-in-
duced rat-bladder tu-
mour model 

40% DLE, 100% DRE, with magnetic-
field-triggered EPI release 

This system displayed prolonged retention, enhanced antitumor activity, and enhanced cy-
totoxicity compared to free EPI. Low systemic toxicity was also seen in vivo. The nanocar-
rier was also simple and quick to make. 

[126] 

 ND 
in vitro: LT2-MYC cells; 
in vivo: FVB/N mice with 
MYC-induced tumours 

48% DLE, >80% DRE, with pH- and 
intracellular charged protein-trig-
gered release 

This nanocarrier prevents the efflux of EPI by ABC transporters to counter chemoresistance 
in cancer stem cells. 

[127] 

 CD-TR-TM 
in vitro: SJGBM2, 
CHLA266, CHLA200, 
and U87 cells 

75% DRE with no information pro-
vided on drug release 

No reference study was performed with healthy cells. The synergistic anticancer effect of 
the EPI/TM combination, combined with TR-facilitated targeting, drastically reduces cancer 
cell viability, even at low concentrations. 

[128] 

 
HPPH/CPP-PEG-
GO 

in vitro: MG-63 cells; in 
vivo: osteosarcoma xeno-
graft nude mouse model 

Approximately 70% DRE, with no 
quantitative drug loading infor-
mation provided 

The synergistic effect of HPPH-mediated PDT and EPI chemotherapy allows for control 
over cancer cell growth. The incorporation of CPP further increases nanocarrier effective-
ness by improving cancer cell targeting and internalisation. 

[129] 

 
Erlotinib—tyrosine kinase 

inhibitor 

GO-PEG in vitro: NPC TW01 cells 
38% DLC, 98% DRE, with pH-medi-
ated drug release 

This nanoformulation achieved suppression of nasopharyngeal cancer migration, prolifera-
tion, and invasion via several molecular mechanisms. 

[130] 

Carboxylated 
NDs 

in vitro: A549, NCI-H460, 
and NCI-H1975 cells 

~57% DLE, no quantitative drug re-
lease data shown 

This nanocarrier caused a decrease in drug-resistant cancer cell viability. Efficient uptake of 
nanocarrier via clathrin-dependent endocytosis was the key to its effectiveness, and the sys-
tem was preferentially consumed by cancer cells. 

[131] 

 GO in vivo: mice 
30% DLC, 80% DRE, with pH-trig-
gered drug release 

The drug was released in a quick-burst fashion. [132] 

GO-COOH 
in vitro: HepG2 and 
RPMI-1640 cells 

83% DLE, 98% DRE 
The nanocarrier improved the cytotoxic effect of Et, with no change to its apoptosis path-
way. The sustained release of Et offered by this formulation allowed for higher cytotoxicity 
and efficiency compared to the free drug. 

[133] 

Erlotinib—tyrosine kinase
inhibitor

GO-PEG in vitro: NPC TW01 cells 38% DLC, 98% DRE, with pH-mediated
drug release

This nanoformulation achieved suppression
of nasopharyngeal cancer migration,
proliferation, and invasion via several
molecular mechanisms.

[130]

Carboxylated NDs in vitro: A549, NCI-H460, and
NCI-H1975 cells

~57% DLE, no quantitative drug release
data shown

This nanocarrier caused a decrease in
drug-resistant cancer cell viability. Efficient
uptake of nanocarrier via
clathrin-dependent endocytosis was the key
to its effectiveness, and the system was
preferentially consumed by cancer cells.

[131]

GO in vivo: mice 30% DLC, 80% DRE, with pH-triggered
drug release

The drug was released in a
quick-burst fashion. [132]
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Etoposide (Et)— 

topoisomerase II inhibitor 

oxiCNH/PEG-PA 

in vitro: A549 and A549R 
cells; in vivo: BALB/c 
nude mice inoculated 
with A549R cells 

39% DLC, 81% DRE, with NIR-trig-
gered Et release 

Slow and steady delivery of Et was observed at neutral pH, which was accelerated 1.5× 
upon NIR irradiation. CNHs are also photosensitizers, and the synergistic effect of PTT and 
Et chemotherapy killed multidrug-resistant cells by combating P-gp-mediated drug efflux. 

[134] 

 
FA-CβCDT-
MSCD 

in vitro: HeLa and 
HepG2 cells 

14% DLC, 25% DRE, with pH-medi-
ated drug release 

This nanocarrier displayed preferential targeting of folate-receptor-overexpressing cells. 
The encapsulation of Et in cyclodextrin prevented premature drug release. 

[135] 

 
oxiMWCNT-
PEG-Aso 

in vitro: DMS53 and 
NCIH2135 cells 

45% DLC, 88% DRE, with pH-sensi-
tive drug release 

This biocompatible nanocarrier allowed for the cellular internalisation of negatively 
charged nucleic acids, such as Aso. Aso binding increased the chemosensitivity of drug-re-
sistant lung cancer cells, leading to superior cytostatic efficacy compared to the free drug. 
This system also displayed good aqueous dispersibility and low haemolytic activity. 

[136] 

 
Gefitinib (GEF)—tyrosine 

kinase inhibitor 

GO-PVP 
in vitro: PA-1 and IOSE-
364 cells 

46% DLE, 35% DRE, with GEF release 
at neutral pH 

This biocompatible nanocarrier is a combination therapy with quercetin and was found to 
enter cells via receptor-mediated endocytosis. The synergistic effect of GEF and quercetin 
results in significant therapeutic efficacy with ovarian cancer cells, higher than that of drugs 
delivered separately. 

[137] 

PEG-CQD-PVA-
PLA 

in vitro: NCI–H522 cells 
~65% DRE, with no quantitative drug 
loading data shown 

The PLA microspheres degrade via a hydrolytic reaction in acidic conditions, releasing 
GEF. The nanosystem delivered the drug directly to lung cancer cells, resulting in a signifi-
cant decrease in the IC50 value compared to free GEF. 

[138] 

 GO nanosheets  
43% DLC, 51% DRE, with pH-trig-
gered drug release 

Effective control over GO nanosheet size was achieved; GEF was converted to nanocrystals 
and then loaded onto GO. 

[139] 

 GO-HA 

in vitro: A549 and HELF 
cells; in vivo: BALB/c 
nude mice bearing A549 
tumours 

13% DLC, 60% DRE, with redox-de-
pendent GET release (glutathione-
mediated) 

This nanocarrier displayed efficient cancer cell uptake via CD44-receptor-mediated endocy-
tosis, resulting in a significant enhancement of the GEF efficacy. The system showed 
stronger tumour inhibition than the free drug in vivo, with no obvious side effects. 

[140] 

HA-PEG-
MWCNT 

in vitro: HT-29 cells; in 
vivo: SD rats bearing HT-
29 tumours 

90% DLE, ~85% DRE, with a pH-me-
diated, sustained drug release profile 

A reduction in haemolytic activity and remarkable improvement in pharmacokinetic pa-
rameters compared to free GEM was observed. This was due to improved cellular internali-
sation, leading to enhanced anticancer effects. 

[141] 

Etoposide (Et)—
topoisomerase II inhibitor

GO-COOH in vitro: HepG2 and
RPMI-1640 cells 83% DLE, 98% DRE

The nanocarrier improved the cytotoxic
effect of Et, with no change to its apoptosis
pathway. The sustained release of Et offered
by this formulation allowed for higher
cytotoxicity and efficiency compared to the
free drug.

[133]

oxiCNH/PEG-PA
in vitro: A549 and A549R cells;
in vivo: BALB/c nude mice
inoculated with A549R cells

39% DLC, 81% DRE, with
NIR-triggered Et release

Slow and steady delivery of Et was observed
at neutral pH, which was accelerated 1.5×
upon NIR irradiation. CNHs are also
photosensitizers, and the synergistic effect of
PTT and Et chemotherapy killed
multidrug-resistant cells by combating
P-gp-mediated drug efflux.

[134]

FA-CβCDT-MSCD in vitro: HeLa and HepG2 cells 14% DLC, 25% DRE, with pH-mediated
drug release

This nanocarrier displayed preferential
targeting of folate-receptor-overexpressing
cells. The encapsulation of Et in cyclodextrin
prevented premature drug release.

[135]

oxiMWCNT-PEG-Aso in vitro: DMS53 and
NCIH2135 cells

45% DLC, 88% DRE, with pH-sensitive
drug release

This biocompatible nanocarrier allowed for
the cellular internalisation of negatively
charged nucleic acids, such as Aso. Aso
binding increased the chemosensitivity of
drug-resistant lung cancer cells, leading to
superior cytostatic efficacy compared to the
free drug. This system also displayed good
aqueous dispersibility and low
haemolytic activity.

[136]
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in vitro: HT-29 cells; in 
vivo: SD rats bearing HT-
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diated, sustained drug release profile 

A reduction in haemolytic activity and remarkable improvement in pharmacokinetic pa-
rameters compared to free GEM was observed. This was due to improved cellular internali-
sation, leading to enhanced anticancer effects. 

[141] 

Gefitinib (GEF)—tyrosine
kinase inhibitor

GO-PVP in vitro: PA-1 and IOSE-364 cells 46% DLE, 35% DRE, with GEF release
at neutral pH

This biocompatible nanocarrier is a
combination therapy with quercetin and
was found to enter cells via
receptor-mediated endocytosis. The
synergistic effect of GEF and quercetin
results in significant therapeutic efficacy
with ovarian cancer cells, higher than that
of drugs delivered separately.

[137]

PEG-CQD-PVA-PLA in vitro: NCI–H522 cells ~65% DRE, with no quantitative drug
loading data shown

The PLA microspheres degrade via a
hydrolytic reaction in acidic conditions,
releasing GEF. The nanosystem delivered
the drug directly to lung cancer cells,
resulting in a significant decrease in the
IC50 value compared to free GEF.

[138]
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GO nanosheets 43% DLC, 51% DRE, with pH-triggered
drug release

Effective control over GO nanosheet size
was achieved; GEF was converted to
nanocrystals and then loaded onto GO.

[139]

GO-HA
in vitro: A549 and HELF cells;
in vivo: BALB/c nude mice
bearing A549 tumours

13% DLC, 60% DRE, with
redox-dependent GET release
(glutathione-mediated)

This nanocarrier displayed efficient cancer cell
uptake via CD44-receptor-mediated
endocytosis, resulting in a significant
enhancement of the GEF efficacy. The system
showed stronger tumour inhibition than the
free drug in vivo, with no obvious side effects.

[140]
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22% DLC, 83% DRE, with pH-trig-
gered drug release 
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responsive to external magnetic fields. 

[147] 

 rGO 

in vitro: A549, HEL-299, 
and NIH-3 T3 cells; in 
vivo: BALB/c mice (both 
healthy and xenografted 
with A549 tumours) 

No quantitative drug loading/release 
data shown. NIR-triggered drug re-
lease 

This system displayed excellent in vitro cytotoxicity against multiple lung cancer cell lines 
and low systemic toxicity, and a significant enhancement in antitumour activity compared 
to the free drug in vivo. 

[148] 

 CD 
in vitro: MCF-7 and HeLa 
cells 

34% DLC, 54% DRE, with pH-medi-
ated drug release 

This highly fluorescent nanosystem increased the potency of GEM with minimal cytotoxic 
effects on healthy cells. This was due to the effective transport and delivery of GEM to can-
cer cells. 

[149] 

 MWCNT-LE 
in vitro: MCf-7 cells; in 
vivo: BALB/c nude mice 
bearing MCf-7 tumours 

Approx. 31% DLE, with no qualita-
tive drug release data 

This combination chemotherapy and PTT nanocarrier achieved good antitumour activity in 
vitro and in vivo, with reduced side effects seen in animal studies. 

[150] 

N-prGO-CMC  
74% DLC, 58% DRE, with pH-trig-
gered IM release 

The drug is bound to the nanocarrier via π–π stacking and hydrogen-bonding interactions. [151] 

Gemcitabine (GEM)—
ribonucleotide reductase

inhibitor

HA-PEG-MWCNT in vitro: HT-29 cells; in vivo: SD
rats bearing HT-29 tumours

90% DLE, ~85% DRE, with a
pH-mediated, sustained drug
release profile

A reduction in haemolytic activity and
remarkable improvement in
pharmacokinetic parameters compared to
free GEM was observed. This was due to
improved cellular internalisation, leading to
enhanced anticancer effects.

[141]

SWCNT-PEG

in vitro: A549 and MIA
PaCa-2 cells; in vivo: B6 athymic
nude mice (both healthy and
with A549 tumours)

37% DLC, ~80% DRE, with
pH-triggered drug release, via a
hydrolysable ester bond

This nanocarrier system accumulates in
tumour cells and releases considerable
amounts of GEM, resulting in the inhibition
of tumour growth and a reduction in GEM
side effects. This system also improved the
stability of GEM.

[142]

PEG-Fe3O4@GO@
mSiO2-FA in vitro: A431 cells 14% DLC, 85% DRE, with pH-triggered

drug release
This system demonstrated enhanced GEM
cytotoxicity and cellular uptake. [143]

ND-PEI-PAA-PEG-GFLG

in vitro: BxPC-3;
in vivo: BALB/c nude mice
xenografted with
BxPC-3 tumours

No quantitative drug loading/release
studies were performed

Significant nanocarrier stability was
observed in physiological conditions, with
long-term circulation due to PEG
attachment and enzyme-sensitive GEM
release. This system showed similar
anticancer effects in vitro and a significant
increase in antitumour effects in vivo
compared to free GEM.

[8]

ND-PEG in vitro: AsPC-1 cells No quantitative drug loading/release
data were provided

The fluorescent NDs provide imaging and
cell-tracking capabilities, and whilst no
cytotoxicity enhancement compared to free
GEM was seen, the nanocarrier successfully
delivered GEM directly to pancreas
cancer cells.

[144]

ND@PHEA-co-POEGMEA in vitro: AsPC-1 cells 7% DLC, ~100% DRE, with
pH-triggered drug release

GEM was incorporated into HEA polymer
and then loaded onto NDs. This resulted in
slow, sustained GEM release delivered
directly to cancer cells, with a similar IC50
value to free GEM.

[145]
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GO/MMT/CS in vitro: MDA-MB-231 cells
99% DRE, with no qualitative drug
loading data shown and pH-triggered
drug release

GEM intercalated between MMT silicate
layers, preventing burst release. The
unloaded nanocarrier is nontoxic, and the
sustained release of GEM from the system
results in the excellent growth inhibition of
breast cancer cells.

[146]

FA-CS/Fe3O4/GO 22% DLC, 83% DRE, with pH-triggered
drug release

This system was tested in simulated cancer
fluid and simulated human blood, and it is
also responsive to external magnetic fields.

[147]

rGO

in vitro: A549, HEL-299, and
NIH-3 T3 cells; in vivo: BALB/c
mice (both healthy and
xenografted with A549 tumours)

No quantitative drug loading/release
data shown. NIR-triggered drug release

This system displayed excellent in vitro
cytotoxicity against multiple lung cancer
cell lines and low systemic toxicity, and a
significant enhancement in antitumour
activity compared to the free drug in vivo.

[148]

CD in vitro: MCF-7 and HeLa cells 34% DLC, 54% DRE, with pH-mediated
drug release

This highly fluorescent nanosystem
increased the potency of GEM with
minimal cytotoxic effects on healthy cells.
This was due to the effective transport and
delivery of GEM to cancer cells.

[149]

MWCNT-LE
in vitro: MCf-7 cells; in vivo:
BALB/c nude mice bearing
MCf-7 tumours

Approx. 31% DLE, with no qualitative
drug release data

This combination chemotherapy and PTT
nanocarrier achieved good antitumour
activity in vitro and in vivo, with reduced
side effects seen in animal studies.

[150]
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The system causes a significant decrease in leukaemia cell viability and metabolism. Cell 
death was caused by apoptosis via an ROS-dependent mechanism. 

[152] 

GQD 
in vitro: RPMI 8226, 
MDA-MB-231, and NCI-
ADR/RES cells 

No quantitative drug loading/release 
data given 

The system demonstrated efficient internalisation and remarkable cytotoxicity for cancer 
cells and was shown to localise in nuclei of neoplastic cells. 

[153] 

 
Irinotecan— 

topoisomerase I inhibitor 

Fe3O4-GO-CS-
PEG 

 
3% DLC, 90% DRE, with pH-trig-
gered drug release 

A large percentage of drug bound to this nanocarrier was released at neutral pH. This sys-
tem has magnetic targeting capabilities. 

[154] 

CD-PEG-BT 
in vitro: MDA-MB231 
and MCF-7 cells 

23% DLC, 90% DRE, with NIR-trig-
gered drug release 

This combination chemotherapy/PTT nanosystem caused drug-resistant breast cancer cell 
death via necrosis and apoptosis pathways. The CDs also have fluorescence imaging capa-
bilities. 

[155] 

Fe3O4-GO-CS-
UA-GRP-SLP2 

in vitro: U87 cells; in 
vivo: BALB/c nude mice 
with U87 tumours 

58% DLC, 62% DRE, with pH-respon-
sive drug release 

This system displayed excellent targeted drug delivery, antitumour efficacy, and prolonged 
animal survival in brain tumour models using intravenous administration coupled with 
magnetic guidance. A 4.9× increase in drug uptake compared to the free drug was measured 
in vitro. A 6.5× enhancement in the ability to cross the blood–brain barrier compared to the 
free drug was seen in vivo. Highly biocompatibility was also seen in vivo. 

[156] 

Imatinib—tyrosine
kinase inhibitor

N-prGO-CMC 74% DLC, 58% DRE, with pH-triggered
IM release

The drug is bound to the nanocarrier via
π–π stacking and
hydrogen-bonding interactions.

[151]

ZnO/CNT@Fe3O4 in vitro: CML-derived K562 cells No quantitative drug loading/release
data shown

The system causes a significant decrease in
leukaemia cell viability and metabolism.
Cell death was caused by apoptosis via an
ROS-dependent mechanism.

[152]

GQD
in vitro: RPMI 8226,
MDA-MB-231, and
NCI-ADR/RES cells

No quantitative drug loading/release
data given

The system demonstrated efficient
internalisation and remarkable cytotoxicity
for cancer cells and was shown to localise in
nuclei of neoplastic cells.

[153]
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PEG 

 
3% DLC, 90% DRE, with pH-trig-
gered drug release 

A large percentage of drug bound to this nanocarrier was released at neutral pH. This sys-
tem has magnetic targeting capabilities. 

[154] 

CD-PEG-BT 
in vitro: MDA-MB231 
and MCF-7 cells 

23% DLC, 90% DRE, with NIR-trig-
gered drug release 

This combination chemotherapy/PTT nanosystem caused drug-resistant breast cancer cell 
death via necrosis and apoptosis pathways. The CDs also have fluorescence imaging capa-
bilities. 

[155] 

Fe3O4-GO-CS-
UA-GRP-SLP2 

in vitro: U87 cells; in 
vivo: BALB/c nude mice 
with U87 tumours 

58% DLC, 62% DRE, with pH-respon-
sive drug release 

This system displayed excellent targeted drug delivery, antitumour efficacy, and prolonged 
animal survival in brain tumour models using intravenous administration coupled with 
magnetic guidance. A 4.9× increase in drug uptake compared to the free drug was measured 
in vitro. A 6.5× enhancement in the ability to cross the blood–brain barrier compared to the 
free drug was seen in vivo. Highly biocompatibility was also seen in vivo. 

[156] 

Irinotecan—
topoisomerase I inhibitor

Fe3O4-GO-CS-PEG 3% DLC, 90% DRE, with pH-triggered
drug release

A large percentage of drug bound to this
nanocarrier was released at neutral pH. This
system has magnetic targeting capabilities.

[154]

CD-PEG-BT in vitro: MDA-MB231 and
MCF-7 cells

23% DLC, 90% DRE, with
NIR-triggered drug release

This combination chemotherapy/PTT
nanosystem caused drug-resistant breast
cancer cell death via necrosis and apoptosis
pathways. The CDs also have fluorescence
imaging capabilities.

[155]

Fe3O4-GO-CS-UA-GRP-SLP2
in vitro: U87 cells; in vivo:
BALB/c nude mice with
U87 tumours

58% DLC, 62% DRE, with
pH-responsive drug release

This system displayed excellent targeted
drug delivery, antitumour efficacy, and
prolonged animal survival in brain tumour
models using intravenous administration
coupled with magnetic guidance. A 4.9×
increase in drug uptake compared to the
free drug was measured in vitro. A 6.5×
enhancement in the ability to cross the
blood–brain barrier compared to the free
drug was seen in vivo. Highly
biocompatibility was also seen in vivo.

[156]
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in vitro: MCF-7 cells; in 
vivo: healthy C57BL/6 
mice 

No qualitative drug loading/release 
data shown 

This nanocarrier has sustained release properties, with no obvious side effects and an in-
crease in retention time compared to the free drug in vivo. The effective killing of cancer 
cells was seen in vitro due to E2-mediated targeting. 
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 PEG-CNT-FITC in vitro: HepG2 cells 
72% DLC, 80% DRE, with pH-trig-
gered, sustained drug release and flu-
orescence imaging properties 

This nanocarrier can effectively enter and kill liver cancer cells, with increased cytotoxicity 
observed up to 72 h. 
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in vitro: MAD-MB-231 
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15% DLC, 55% DRE; this system uti-
lises pH-triggered drug release 

The drug is released quickly at neutral pH, which could cause toxicity due to premature 
leakage. This system displayed favourable tumour targeting, cytotoxicity, and accumula-
tion. 

[25] 

CMC-GO 

in vitro: NIH-3T3 and 
HT-29 cells; in vivo: 
BALB/c mice and nude 
mice xenografted with 
HT-29 tumours 

39% DLC, 82% DRE, with pH-trig-
gered drug release 

This system reduced drug toxicity against healthy cells and facilitated a higher plasma con-
centration, superior tumour cytotoxicity, and liver cancer metastasis inhibition compared to 
free METX. 

[159] 

Hydroxylated C60 
fullerene 

in vitro: MDA-MB-231 
cells; in vivo: Wistar rats 

No quantitative drug loading data 
shown, with 85% DRE and pH-sensi-
tive drug release 

This nanosystem drastically increased plasma half-life and AUC compared to the free drug, 
resulting in a large reduction in its IC50 value. Enhanced bioavailability, erythrocyte compat-
ibility, protein binding, and haemolysis in human blood compared to free METX were also 
observed. 

[23] 

 
AF-FA-99mTc-
MWCNT 

in vitro: A549 and MCF 7 
cells; in vivo: New Zea-
land rabbits and FR+ 
EAT-bearing mice 

33% DLC, >85% DRE, with pH-trig-
gered drug release achieved via a 
cleavable ester linkage 

Effective targeting and treatment of folate-receptor-overexpressing cancer cells with re-
duced side effects and increased efficacy in vivo was observed. This nanocarrier also had 
fluorescence imaging and radio-tracing capabilities. 

[160] 

 
Mitomycin C (MMC)— 
DNA alkylating agent 

TAT-graphene in vitro: OCM-1 and 
ARPE-19 cells 

22% DLC, 45% DRE, with pH-trig-
gered drug release; however, the re-
lease in acidic and neutral environ-
ments was very similar 

This system could specifically target cancer cells over healthy cells in a co-culture environ-
ment. The nanocarrier localised in the cancer cell nuclei, resulting in strong growth suppres-
sion. 

[161] 

CD in vitro: MCF-7 cells 

Approximately 80% DRE, with no 
quantitative drug loading infor-
mation provided and pH-mediated 
MMC release 

MMC was bound to the CDs via hydrogen bonding. This nanocarrier showed high affinity 
towards cancer cell membranes and could effectively enter them and accumulate. This re-
sulted in a significant improvement in anticancer potency compared to free MMC. 

[162] 

 
SWCNT-PEG-
CWKG(KWKG)6 

in vitro: A549 cells 
Approximately 80% DRE, with pH-
mediated MMC release 

The unloaded nanocarrier showed high biocompatibility whilst the drug-loaded system ex-
hibited similar anticancer efficacy to free MMC. 

[163] 

 
Graphene-BOD-
IPY-PEG 

in vitro: HeLa cells 
10% DLC, with no quantitative drug 
release data given 

This nanocarrier possesses excellent photothermal conversion efficiency and ROS produc-
tion capabilities for combination PTT/PDT. The system also has fluorescence and photother-
mal imaging capabilities and displayed outstanding anticancer effects. 

[14] 

GO-Fe2O3-MitP in vitro: A549 cells 
19% DLC, 38% DRE, with magnetic-
field-triggered MTX release 

MitP grafting improves the drug loading capability of this nanocarrier. Successful targeting 
and disruption of tumour mitochondria was achieved, causing cell death. 

[164] 

Lobaplatin—DNA
alkylating agent

E2-PEG-CNT in vitro: MCF-7 cells; in vivo:
healthy C57BL/6 mice

No qualitative drug loading/release
data shown

This nanocarrier has sustained release
properties, with no obvious side effects and
an increase in retention time compared to
the free drug in vivo. The effective killing
of cancer cells was seen in vitro due to
E2-mediated targeting.

[157]

PEG-CNT-FITC in vitro: HepG2 cells
72% DLC, 80% DRE, with pH-triggered,
sustained drug release and fluorescence
imaging properties

This nanocarrier can effectively enter and
kill liver cancer cells, with increased
cytotoxicity observed up to 72 h.

[158]
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shown, with 85% DRE and pH-sensi-
tive drug release 

This nanosystem drastically increased plasma half-life and AUC compared to the free drug, 
resulting in a large reduction in its IC50 value. Enhanced bioavailability, erythrocyte compat-
ibility, protein binding, and haemolysis in human blood compared to free METX were also 
observed. 

[23] 

 
AF-FA-99mTc-
MWCNT 

in vitro: A549 and MCF 7 
cells; in vivo: New Zea-
land rabbits and FR+ 
EAT-bearing mice 

33% DLC, >85% DRE, with pH-trig-
gered drug release achieved via a 
cleavable ester linkage 

Effective targeting and treatment of folate-receptor-overexpressing cancer cells with re-
duced side effects and increased efficacy in vivo was observed. This nanocarrier also had 
fluorescence imaging and radio-tracing capabilities. 

[160] 

 
Mitomycin C (MMC)— 
DNA alkylating agent 

TAT-graphene in vitro: OCM-1 and 
ARPE-19 cells 

22% DLC, 45% DRE, with pH-trig-
gered drug release; however, the re-
lease in acidic and neutral environ-
ments was very similar 

This system could specifically target cancer cells over healthy cells in a co-culture environ-
ment. The nanocarrier localised in the cancer cell nuclei, resulting in strong growth suppres-
sion. 

[161] 

CD in vitro: MCF-7 cells 

Approximately 80% DRE, with no 
quantitative drug loading infor-
mation provided and pH-mediated 
MMC release 

MMC was bound to the CDs via hydrogen bonding. This nanocarrier showed high affinity 
towards cancer cell membranes and could effectively enter them and accumulate. This re-
sulted in a significant improvement in anticancer potency compared to free MMC. 

[162] 

 
SWCNT-PEG-
CWKG(KWKG)6 

in vitro: A549 cells 
Approximately 80% DRE, with pH-
mediated MMC release 

The unloaded nanocarrier showed high biocompatibility whilst the drug-loaded system ex-
hibited similar anticancer efficacy to free MMC. 

[163] 

 
Graphene-BOD-
IPY-PEG 

in vitro: HeLa cells 
10% DLC, with no quantitative drug 
release data given 

This nanocarrier possesses excellent photothermal conversion efficiency and ROS produc-
tion capabilities for combination PTT/PDT. The system also has fluorescence and photother-
mal imaging capabilities and displayed outstanding anticancer effects. 

[14] 

GO-Fe2O3-MitP in vitro: A549 cells 
19% DLC, 38% DRE, with magnetic-
field-triggered MTX release 

MitP grafting improves the drug loading capability of this nanocarrier. Successful targeting 
and disruption of tumour mitochondria was achieved, causing cell death. 

[164] 

Methotrexate (METX)—
nucleotide synthesis inhibitor

oxiSWNH-PEG-Tf
in vitro: MAD-MB-231 and
HepG2 cells; in vivo: ICR mice
carrying H22 tumours

15% DLC, 55% DRE; this system utilises
pH-triggered drug release

The drug is released quickly at neutral pH,
which could cause toxicity due to
premature leakage. This system displayed
favourable tumour targeting, cytotoxicity,
and accumulation.

[25]

CMC-GO

in vitro: NIH-3T3 and HT-29
cells; in vivo: BALB/c mice and
nude mice xenografted with
HT-29 tumours

39% DLC, 82% DRE, with pH-triggered
drug release

This system reduced drug toxicity against
healthy cells and facilitated a higher plasma
concentration, superior tumour cytotoxicity,
and liver cancer metastasis inhibition
compared to free METX.

[159]

Hydroxylated C60 fullerene in vitro: MDA-MB-231 cells;
in vivo: Wistar rats

No quantitative drug loading data
shown, with 85% DRE and
pH-sensitive drug release

This nanosystem drastically increased
plasma half-life and AUC compared to the
free drug, resulting in a large reduction in
its IC50 value. Enhanced bioavailability,
erythrocyte compatibility, protein binding,
and haemolysis in human blood compared
to free METX were also observed.

[23]

AF-FA-99mTc-MWCNT
in vitro: A549 and MCF 7 cells;
in vivo: New Zealand rabbits
and FR+ EAT-bearing mice

33% DLC, >85% DRE, with
pH-triggered drug release achieved via
a cleavable ester linkage

Effective targeting and treatment of
folate-receptor-overexpressing cancer cells
with reduced side effects and increased
efficacy in vivo was observed. This
nanocarrier also had fluorescence imaging
and radio-tracing capabilities.

[160]
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DNA alkylating agent 

TAT-graphene in vitro: OCM-1 and 
ARPE-19 cells 

22% DLC, 45% DRE, with pH-trig-
gered drug release; however, the re-
lease in acidic and neutral environ-
ments was very similar 

This system could specifically target cancer cells over healthy cells in a co-culture environ-
ment. The nanocarrier localised in the cancer cell nuclei, resulting in strong growth suppres-
sion. 

[161] 

CD in vitro: MCF-7 cells 

Approximately 80% DRE, with no 
quantitative drug loading infor-
mation provided and pH-mediated 
MMC release 

MMC was bound to the CDs via hydrogen bonding. This nanocarrier showed high affinity 
towards cancer cell membranes and could effectively enter them and accumulate. This re-
sulted in a significant improvement in anticancer potency compared to free MMC. 

[162] 

 
SWCNT-PEG-
CWKG(KWKG)6 

in vitro: A549 cells 
Approximately 80% DRE, with pH-
mediated MMC release 

The unloaded nanocarrier showed high biocompatibility whilst the drug-loaded system ex-
hibited similar anticancer efficacy to free MMC. 

[163] 

 
Graphene-BOD-
IPY-PEG 

in vitro: HeLa cells 
10% DLC, with no quantitative drug 
release data given 

This nanocarrier possesses excellent photothermal conversion efficiency and ROS produc-
tion capabilities for combination PTT/PDT. The system also has fluorescence and photother-
mal imaging capabilities and displayed outstanding anticancer effects. 

[14] 

GO-Fe2O3-MitP in vitro: A549 cells 
19% DLC, 38% DRE, with magnetic-
field-triggered MTX release 

MitP grafting improves the drug loading capability of this nanocarrier. Successful targeting 
and disruption of tumour mitochondria was achieved, causing cell death. 

[164] 

Mitomycin C (MMC)—
DNA alkylating agent

TAT-graphene in vitro: OCM-1 and
ARPE-19 cells

22% DLC, 45% DRE, with pH-triggered
drug release; however, the release in
acidic and neutral environments was
very similar

This system could specifically target cancer
cells over healthy cells in a co-culture
environment. The nanocarrier localised in
the cancer cell nuclei, resulting in strong
growth suppression.

[161]

CD in vitro: MCF-7 cells

Approximately 80% DRE, with no
quantitative drug loading information
provided and pH-mediated
MMC release

MMC was bound to the CDs via hydrogen
bonding. This nanocarrier showed high
affinity towards cancer cell membranes and
could effectively enter them and
accumulate. This resulted in a significant
improvement in anticancer potency
compared to free MMC.

[162]

SWCNT-PEG-CWKG(KWKG)6 in vitro: A549 cells Approximately 80% DRE, with
pH-mediated MMC release

The unloaded nanocarrier showed high
biocompatibility whilst the drug-loaded
system exhibited similar anticancer efficacy
to free MMC.

[163]
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Graphene-BODIPY-PEG in vitro: HeLa cells 10% DLC, with no quantitative drug
release data given

This nanocarrier possesses excellent
photothermal conversion efficiency and
ROS production capabilities for
combination PTT/PDT. The system also has
fluorescence and photothermal imaging
capabilities and displayed outstanding
anticancer effects.

[14]
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II inhibitor 

oxiMWCNT 
in vitro: NIH3T3 and 
MDA 231 cells 

95% DLC, 30% DRE 
MTX was bound to oxiMWCNTs via electrostatic interactions. This formulation resulted in 
increased MTX efficacy; however, the system was more toxic to healthy cells than cancerous 
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[165] 

ND 
in vitro: MDA-MB-231 
and MDA-MB231-
ABCG2 cells 

87% DLE, 80% DRE, with pH- and 
soluble-protein-triggered MTX re-
lease 

MTX release was found to be higher in FBS than in water, suggesting that the presence of 
soluble biological matter increases the DRE. A marked increase in MTX retention and effi-
cacy was observed when using this nanocarrier. 

[166] 

 
oxiSWCNT-PEG-
FA 

in vitro: HeLa cells 
~35% DLE, 55% DRE, with pH-medi-
ated, sustained drug release 

This system selectively targeted cancer cells. [167] 

 
EXO-GO-CO-
γPGA 

in vitro: MDA-MB-231 
and BEAS-2B cells 

73% DLE, 56% DRE, with pH-medi-
ated, sustained drug release 

This nanocarrier displays excellent cancer cell targetability. The attachment of exosomes 
was found to improve drug loading, pH response, and biocompatibility. 

[168] 

 rGO-PEG-SB 

in vitro: 4T1, CT26, and 
bone marrow macro-
phages + DCs harvested 
from BALB/c mice; in 
vivo: BALB/c mice with 
4T1 tumours 

48% DLE, with no quantitative drug 
release data provided and NIR-trig-
gered drug release 

The synergistic combination of PTT, chemotherapy, and immunotherapy facilitated the de-
struction of local primary tumours and distant metastases in an in vivo model. rGO acted as 
a photosensitizer, whilst the SB immunotherapeutic increased effectiveness of rGO and 
MTX by TGF-β inhibition. 

[169] 

 
Oxaliplatin (OP)— 

DNA alkylating agent 

GO-PNVCL-PGA in vitro: MCF-7 cells 
12% DLC, 80% DRE, with pH- and 
thermal-responsive OP release 

Improved cytotoxicity compared to free OP against breast cancer cells was observed. The 
blank nanocarrier is nontoxic. 

[170] 

GO-HSA NPs in vitro: HFFF2 
61% DLE, ~97% DRE, with pH-medi-
ated, sustained drug release The use of HSA nanoparticles increased nanocarrier biocompatibility. [171] 

 MWCNT-PEG in vitro: HT29 cells 
43% DLC, no quantitative drug re-
lease data 

A drastic increase in cytotoxicity towards human bowel cancer cells was observed. [172] 

 
GO-CB 
[7]/Ce6/AQ4N/A
DA-HA 

in vitro: B16 and L02 
cells; in vivo: C57BL/6 
mice (both healthy and 
carrying B16 tumours) 

58% DRE, with spermine-triggered 
OX release 

Significant antitumour efficacy was observed, resulting from synergistic PTT (GO)/PDT 
(Ce6), and chemotherapy (OP and AQ4N) properties. The enhanced hypoxia resulting from 
PTT bolsters the effects of chemotherapy drugs. This strategy has the benefit of being able to 
noncovalently attach nonaromatic drug molecules via host–guest complex formation. 

[173] 

Mitoxantrone
(MTX)—topoisomerase

II inhibitor

GO-Fe2O3-MitP in vitro: A549 cells 19% DLC, 38% DRE, with
magnetic-field-triggered MTX release

MitP grafting improves the drug loading
capability of this nanocarrier. Successful
targeting and disruption of tumour
mitochondria was achieved, causing
cell death.

[164]

oxiMWCNT in vitro: NIH3T3 and MDA
231 cells 95% DLC, 30% DRE

MTX was bound to oxiMWCNTs via
electrostatic interactions. This formulation
resulted in increased MTX efficacy;
however, the system was more toxic to
healthy cells than cancerous cells.

[165]

ND in vitro: MDA-MB-231 and
MDA-MB231-ABCG2 cells

87% DLE, 80% DRE, with pH- and
soluble-protein-triggered MTX release

MTX release was found to be higher in FBS
than in water, suggesting that the presence
of soluble biological matter increases the
DRE. A marked increase in MTX retention
and efficacy was observed when using
this nanocarrier.

[166]

oxiSWCNT-PEG-FA in vitro: HeLa cells ~35% DLE, 55% DRE, with
pH-mediated, sustained drug release This system selectively targeted cancer cells. [167]

EXO-GO-CO-γPGA in vitro: MDA-MB-231 and
BEAS-2B cells

73% DLE, 56% DRE, with pH-mediated,
sustained drug release

This nanocarrier displays excellent cancer
cell targetability. The attachment of
exosomes was found to improve drug
loading, pH response, and biocompatibility.

[168]

rGO-PEG-SB

in vitro: 4T1, CT26, and bone
marrow macrophages + DCs
harvested from BALB/c mice;
in vivo: BALB/c mice with
4T1 tumours

48% DLE, with no quantitative drug
release data provided and
NIR-triggered drug release

The synergistic combination of PTT,
chemotherapy, and immunotherapy
facilitated the destruction of local primary
tumours and distant metastases in an
in vivo model. rGO acted as a
photosensitizer, whilst the SB
immunotherapeutic increased effectiveness
of rGO and MTX by TGF-β inhibition.

[169]
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Significant antitumour efficacy was observed, resulting from synergistic PTT (GO)/PDT 
(Ce6), and chemotherapy (OP and AQ4N) properties. The enhanced hypoxia resulting from 
PTT bolsters the effects of chemotherapy drugs. This strategy has the benefit of being able to 
noncovalently attach nonaromatic drug molecules via host–guest complex formation. 

[173] 

Oxaliplatin (OP)—
DNA alkylating agent

GO-PNVCL-PGA in vitro: MCF-7 cells 12% DLC, 80% DRE, with pH- and
thermal-responsive OP release

Improved cytotoxicity compared to free OP
against breast cancer cells was observed.
The blank nanocarrier is nontoxic.

[170]

GO-HSA NPs in vitro: HFFF2 61% DLE, ~97% DRE, with
pH-mediated, sustained drug release

The use of HSA nanoparticles increased
nanocarrier biocompatibility. [171]

MWCNT-PEG in vitro: HT29 cells 43% DLC, no quantitative drug
release data

A drastic increase in cytotoxicity towards
human bowel cancer cells was observed. [172]

GO-CB [7]/Ce6/AQ4N/ADA-HA

in vitro: B16 and L02 cells;
in vivo: C57BL/6 mice (both
healthy and carrying
B16 tumours)

58% DRE, with spermine-triggered
OX release

Significant antitumour efficacy was
observed, resulting from synergistic PTT
(GO)/PDT (Ce6), and chemotherapy
(OP and AQ4N) properties. The enhanced
hypoxia resulting from PTT bolsters the
effects of chemotherapy drugs. This
strategy has the benefit of being able to
noncovalently attach nonaromatic drug
molecules via host–guest
complex formation.

[173]

TAT-BT-PEI-MWCNT

in vitro: C6 glioma (cell and
tumour spheroid) and CHEM-5
and L02 cells; in vivo: mice
bearing C6 tumours

19% DLC, with no quantitative drug
release data shown

The nanocarrier shows enhanced
blood–brain barrier penetration compared
to free OX, resulting in a significant
decrease in the IC50 value. The system
shows low cytotoxicity towards healthy
cells; however, a build-up of cerebrospinal
fluid was noticed during treatment of
in vivo models.

[174]

GO-CS-FA in vitro: LX-2 and SKOV3 cells 34% DLC, ~80% DRE
This nanoformulation shows similar
potency to free OX in ovarian cancer cells
and good biocompatibility.

[48]

CD in vitro: L929, HeLa, and
HepG2 cells

4% DLC, with redox-sensitive
drug release

The CDs have multicoloured emission
capabilities and high fluorescence stability.
This system shows good biocompatibility,
bio-imaging, and anticancer effects both
in vitro and in vivo.

[175]



Pharmaceutics 2023, 15, 1545 30 of 49

Table 1. Cont.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 21 of 40 
 

 

 
TAT-BT-PEI-
MWCNT 

in vitro: C6 glioma (cell 
and tumour spheroid) 
and CHEM-5 and L02 
cells; in vivo: mice bear-
ing C6 tumours 

19% DLC, with no quantitative drug 
release data shown 

The nanocarrier shows enhanced blood–brain barrier penetration compared to free OX, re-
sulting in a significant decrease in the IC50 value. The system shows low cytotoxicity to-
wards healthy cells; however, a build-up of cerebrospinal fluid was noticed during treat-
ment of in vivo models. 

[174] 

 GO-CS-FA in vitro: LX-2 and SKOV3 
cells 

34% DLC, ~80% DRE This nanoformulation shows similar potency to free OX in ovarian cancer cells and good bi-
ocompatibility. 

[48] 

 CD 
in vitro: L929, HeLa, and 
HepG2 cells 

4% DLC, with redox-sensitive drug 
release 
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growth inhibitor 
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in vitro: MDA-MB-231 
cells; in vivo: SD rats with 
DMBA-induced mam-
mary carcinoma 

40% DLC, 71% DRE 

PTX was attached to GO via π–π stacking and hydrophobic interactions. This system inhib-
ited cancer cell growth in vitro and reduced tumour size in vivo via cell cycle arrest and 
apoptosis. Highly specific targeting and drug release for folate-receptor-overexpressing can-
cers was observed. 

[176] 

SWCNT/DOA-
PEG-FA 

in vitro: MCF-7 cells; in 
vivo: athymic nude mice 
with MFF-7-induced tu-
mours and BALB/c mice 

No quantitative drug loading or re-
lease data were provided 

This system displayed high specificity, biocompatibility, and efficacy compared to free PTX 
in vitro. In vivo, studies revealed significant tumour growth inhibition, with no side effects 
on the blood and major organs of mice observed. 

[177] 

 
PLA composite 
nanofibers/C70 
fullerene 

in vitro: HepG2 cells 
No quantitative drug loading infor-
mation, 72% DRE 

Control of in vitro PTX release profile was achieved by varying fullerene content. Successful 
control of cancer cell growth was achieved using this nanoformulation. 

[178] 

 Rf-MWCNTs 
in vitro: MCF-7 cells; in 
vivo: SD rats 

82% DLE, 99% DRE 
Haemolysis in human blood was much lower than free PTX. This system also showed better 
cytotoxicity than free PTX, with low systemic toxicity, favourable biodistribution, and renal 
excretion observed in vivo. 

[179] 

 
Au–N-doped car-
bon nanotube 
cup (NCNC) 

in vitro: MDSC cells; in 
vivo: B16 melanoma cells 
inoculated into C57BL/6 
mice 

36% DLE, with no quantitative drug 
release data shown 

The PTX-containing NCNCs capped with Au nanoparticles exhibited strong surface-en-
hanced Raman scattering effects, allowing for extremely sensitive detection. A single injec-
tion of nanocarrier solution given to an in vivo model significantly reduced tumour growth 
and eliminated tumours in ~30% of mice. This system targeted lymphoid tissues surround-
ing tumours to boost the host immune system response. 

[180] 

 
Graphene-PLA-
PEG 

in vitro: U-138 cells; in 
vivo: athymic nude 
Foxn1nu mice implanted 
with U-138 tumours 

4% DLC, 6% DRE 
This nanocarrier is nontoxic and expressed long-term sustained drug release over 19 days. 
The system was found to be six times more potent than free PTX in vitro and is capable of 
reducing U-138 cell viability despite low drug loading and release. 

[181] 

Paclitaxel (PTX)—microtubule
growth inhibitor

GO-MA/FA

in vitro: MDA-MB-231 cells;
in vivo: SD rats with
DMBA-induced
mammary carcinoma

40% DLC, 71% DRE

PTX was attached to GO via π–π stacking
and hydrophobic interactions. This system
inhibited cancer cell growth in vitro and
reduced tumour size in vivo via cell cycle
arrest and apoptosis. Highly specific
targeting and drug release for
folate-receptor-overexpressing cancers
was observed.

[176]

SWCNT/DOA-PEG-FA

in vitro: MCF-7 cells; in vivo:
athymic nude mice with
MFF-7-induced tumours and
BALB/c mice

No quantitative drug loading or release
data were provided

This system displayed high specificity,
biocompatibility, and efficacy compared to
free PTX in vitro. In vivo, studies revealed
significant tumour growth inhibition, with
no side effects on the blood and major
organs of mice observed.

[177]

PLA composite nanofibers/C70 fullerene in vitro: HepG2 cells No quantitative drug loading
information, 72% DRE

Control of in vitro PTX release profile was
achieved by varying fullerene content.
Successful control of cancer cell growth was
achieved using this nanoformulation.

[178]

Rf-MWCNTs in vitro: MCF-7 cells; in vivo:
SD rats 82% DLE, 99% DRE

Haemolysis in human blood was much
lower than free PTX. This system also
showed better cytotoxicity than free PTX,
with low systemic toxicity, favourable
biodistribution, and renal excretion
observed in vivo.

[179]

Au–N-doped carbon nanotube cup (NCNC)
in vitro: MDSC cells; in vivo: B16
melanoma cells inoculated into
C57BL/6 mice

36% DLE, with no quantitative drug
release data shown

The PTX-containing NCNCs capped with
Au nanoparticles exhibited strong
surface-enhanced Raman scattering effects,
allowing for extremely sensitive detection.
A single injection of nanocarrier solution
given to an in vivo model significantly
reduced tumour growth and eliminated
tumours in ~30% of mice. This system
targeted lymphoid tissues surrounding
tumours to boost the host immune
system response.

[180]

Graphene-PLA-PEG
in vitro: U-138 cells; in vivo:
athymic nude Foxn1nu mice
implanted with U-138 tumours

4% DLC, 6% DRE

This nanocarrier is nontoxic and expressed
long-term sustained drug release over 19
days. The system was found to be six times
more potent than free PTX in vitro and is
capable of reducing U-138 cell viability
despite low drug loading and release.

[181]
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HMCS in vitro: CNE cells; in vivo: nude
mice with CNE tumours

19% DLC, no release experiments were
carried out with PTX

HMCSs themselves exhibited strong
antitumour effects through PTT. [86]

CNT-PMAA self-assembled micelles in vitro: L929 and HeLa cells 36% DLE, 74% DRE, with pH-triggered
drug release

The blank nanocarrier is nontoxic, with low
haemolysis observed. Higher anticancer
activity than free PTX was also noted. The
self-assembly of CNT-PMAA is
pH-dependant, and at low pH, the
nanocarrier disassembles.

[182]

FA-CD-GOx
in vitro: MDA-MB-468 (cells and
tumour spheroids); TNBC and
HEK293 cells

82% DLE, 95% DRE, with GOx and PTX
release occurring at pH 7.4

GOx-induced cancer starvation, which had
a synergistic effect with PTX chemotherapy,
and resulted in significant cancer cell death.
This biocompatible nanocarrier also
efficiently targets cancer cells over
normal cells.

[13]

FCDb
in vitro: NIH3T3 and
B16F10 cells

82% DLC, with no quantitative release
data given

This nanocarrier targeted cancer cells in a
co-culture with healthy cells due to its
biotin-targeting ligand. It caused the
selective sensing and activation of H2O2,
and it also has fluorescence
imaging capabilities.

[183]
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Sorafenib—tyrosine kinase 

inhibitor 

rGO in vitro: SGC7901 cells 
No quantitative drug loading/release 
data 

A significant increase in cytotoxicity compared to the free drug in gastric cancer cells was 
observed, with apoptosis being the main mechanism of cell death. 

[184] 

CS nanoparticles-
FA 

in vitro: HepG2, HDFa, 
and HT29 cells 

19% DLC, 91% DRE, with pH-trig-
gered, sustained drug release profile 

This system showed negligible toxicity to healthy cells and enhanced anticancer properties 
compared to the free drug. 

[185] 

CNT-PEG 

in vitro: HepG2 cells; in 
vivo: Wistar rats, both 
healthy and with DENA-
induced liver tumours 

95% DLC, ~100% DRE 
A negligible change in potency or morphology was observed over a 3-month stability study. 
This system displayed superior anticancer abilities compared to the free drug both in vitro 
and in vivo. 

[186] 

DSPE-PEG-ND 
in vivo: healthy rats and 
BALB/c mice carrying 
BGC-823 tumours 

~90% DRE, with no quantitative drug 
loading data shown 

A 14-fold increase in drug concentration in tumour tissues compared to the free drug was 
observed. This caused considerable growth inhibition for the in vivo gastric cancer model. 
A 7.64× increase in oral bioavailability compared to the free drug was also seen in vivo. 

[187] 

 
Tamoxifen (TAM)—oestrogen recep-

tor antagonist 

rGO 
in vitro: MCF-7 cells; in 
vivo: BALB/c mice bear-
ing MCF-7 tumours 

 
This system displayed lower cytotoxicity than free TAM but had promising photothermal 
properties. No quantitative drug loading/release data were shown. The nanocarrier has ex-
cellent stability. 

[188] 

NGR-SWCNT-
PF68 

in vitro: 4T1 cells; in vivo: 
BALB/c mice carrying 
4T1 tumours 

 
This targeted nanocarrier could effectively enter cancer cells whilst retaining TAM cytotoxi-
city. Receptor-mediated tumour targeting combined with PTT capabilities resulted in signif-
icant anticancer efficacy in vivo. No quantitative drug loading/release data shown. 

[189] 

 MWCNT-LE in vitro: MCF-7 cells 
28% DLC, no quantitative drug re-
lease data 

Enhanced cellular uptake, apoptosis, and antitumour activity (compared to free TAM) were 
observed. This system also has PTT properties. LEN acts as both a dispersant and a potent 
anticancer agent itself. Combination chemo–PTT results in cancer cell destruction at low 
drug concentrations. 

[190] 

Sorafenib—tyrosine
kinase inhibitor

rGO in vitro: SGC7901 cells No quantitative drug
loading/release data

A significant increase in cytotoxicity
compared to the free drug in gastric cancer
cells was observed, with apoptosis being
the main mechanism of cell death.

[184]

CS nanoparticles-FA in vitro: HepG2, HDFa, and
HT29 cells

19% DLC, 91% DRE, with pH-triggered,
sustained drug release profile

This system showed negligible toxicity to
healthy cells and enhanced anticancer
properties compared to the free drug.

[185]

CNT-PEG

in vitro: HepG2 cells; in vivo:
Wistar rats, both healthy and
with DENA-induced
liver tumours

95% DLC, ~100% DRE

A negligible change in potency or
morphology was observed over a 3-month
stability study. This system displayed
superior anticancer abilities compared to
the free drug both in vitro and in vivo.

[186]

DSPE-PEG-ND in vivo: healthy rats and BALB/c
mice carrying BGC-823 tumours

~90% DRE, with no quantitative drug
loading data shown

A 14-fold increase in drug concentration in
tumour tissues compared to the free drug
was observed. This caused considerable
growth inhibition for the in vivo gastric
cancer model. A 7.64× increase in oral
bioavailability compared to the free drug
was also seen in vivo.

[187]
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 MWCNT-LE in vitro: MCF-7 cells 
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[190] 

Tamoxifen (TAM)—oestrogen
receptor antagonist

rGO
in vitro: MCF-7 cells; in vivo:
BALB/c mice bearing
MCF-7 tumours

This system displayed lower cytotoxicity
than free TAM but had promising
photothermal properties. No quantitative
drug loading/release data were shown. The
nanocarrier has excellent stability.

[188]

NGR-SWCNT-PF68
in vitro: 4T1 cells; in vivo:
BALB/c mice carrying
4T1 tumours

This targeted nanocarrier could effectively
enter cancer cells whilst retaining TAM
cytotoxicity. Receptor-mediated tumour
targeting combined with PTT capabilities
resulted in significant anticancer efficacy
in vivo. No quantitative drug
loading/release data shown.

[189]

MWCNT-LE in vitro: MCF-7 cells 28% DLC, no quantitative drug
release data

Enhanced cellular uptake, apoptosis, and
antitumour activity (compared to free TAM)
were observed. This system also has PTT
properties. LEN acts as both a dispersant
and a potent anticancer agent itself.
Combination chemo–PTT results in cancer
cell destruction at low drug concentrations.

[190]
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C60 fullerene-Gly in vitro: MCF-7 cells; in vivo:
Wistar rats

66% DLC, 85% DRE, with pH-triggered
TAM release

This nanocarrier vastly improved the
pharmacokinetic properties and cytotoxicity
of TAM against breast cancer cells. The
system displayed minimal haemolysis
towards human blood. The bioavailability,
half-life, and cancer cell penetration of the
drug were all markedly improved.

[191]

TEG-MWCNT-quercetin in vitro: MDA-MB-231 cells;
in vivo: Wistar rats

No quantitative drug loading info, 93%
DRE, and pH-triggered drug release
using a TAM prodrug

This haem-compatible formulation reduced
the IC50 values and increased the uptake in
drug-resistant cells. These favourable
properties carried over to in vivo studies,
resulting in enhanced efficacy,
pharmacokinetics, and biocompatibility.

[192]

DES-graphene in vitro: MCF-7 cells No quantitative drug
loading/release data

Nanocarrier possesses acute, selective
anticancer activity achieved through
intracellular ROS-production-triggering cell
cycle arrest.

[193]
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chemically controlled drug release 
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This nanocarrier has fluorescence imaging capabilities and displays remarkably higher anti-
cancer efficacy compared to the free-drug combination due to the synchronised targeting of 
multiple targets in cancer cells at once. 
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PEI-GO-TT-CisP in vitro: HeLa cells 
51% DLC for TT, no quantitative drug 
release data 
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 TT/GO-CD/DOX in vitro: HeLa cells 
16% DLE and 77% DRE for TT, with 
sustained, pH-triggered drug release 

This system demonstrated superior anticancer efficacy compared to free drugs and single-
drug-loaded nanocarrier due to the synergistic effect between the drugs and GO. 
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Vinblastine—mitosis inhibitor 

CQD 

in vitro: Hela, HGC-27, 
A549, MCF-7, CF-STTG, 
and Vero cells; in vivo: 
NOD-SCID mice carrying 
A549 tumours  

95% DLC, with no qualitative drug 
release data 

The cytotoxicity of vinblastine was reduced in normal cells and increased in cancer cells 
compared to the free drug. Significant inhibition of tumour growth was observed in vivo, 
with no liver toxicity. The synergistic combination of chemotherapy and PTT allowed for 
the control of cancer cell growth. 

[199] 

Temozolomide—DNA
alkylating agent

GO-Fe3O4 in vitro: rat glioma C6 cells 90% DLC and 74% DRE, with
pH-mediated drug release

The blank nanocarrier is biocompatible,
whilst the loaded system showed better
inhibitory effects than the free drug in rat
glioma cells. This formulation also has
strong magnetic properties.

[194]

rGO in vitro: LN229 cells
84% DLC and 83% DRE, with
electrochemically controlled
drug release

This system retained the anticancer potency
of temozolomide. [195]
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pH-triggered drug release

This nanocarrier has fluorescence imaging
capabilities and displays remarkably higher
anticancer efficacy compared to the
free-drug combination due to the
synchronised targeting of multiple targets
in cancer cells at once.
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PEI-GO-TT-CisP in vitro: HeLa cells 51% DLC for TT, no quantitative drug
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This nanocarrier has
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of cervical cancer cells, leading to cell death.
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[197]

TT/GO-CD/DOX in vitro: HeLa cells 16% DLE and 77% DRE for TT, with
sustained, pH-triggered drug release
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efficacy compared to free drugs and
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[198]



Pharmaceutics 2023, 15, 1545 34 of 49

Table 1. Cont.

Chemotherapeutic—Drug Class CNM-Based Nanocarrier Biological Study Models Drug Loading and Release Metrics Experimental Results Ref.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 23 of 40 
 

 

 C60 fullerene-Gly 
in vitro: MCF-7 cells; in 
vivo: Wistar rats 

66% DLC, 85% DRE, with pH-trig-
gered TAM release 

This nanocarrier vastly improved the pharmacokinetic properties and cytotoxicity of TAM 
against breast cancer cells. The system displayed minimal haemolysis towards human 
blood. The bioavailability, half-life, and cancer cell penetration of the drug were all mark-
edly improved. 

[191] 

 
TEG-MWCNT-
quercetin 

in vitro: MDA-MB-231 
cells; in vivo: Wistar rats 

No quantitative drug loading info, 
93% DRE, and pH-triggered drug re-
lease using a TAM prodrug 

This haem-compatible formulation reduced the IC50 values and increased the uptake in 
drug-resistant cells. These favourable properties carried over to in vivo studies, resulting in 
enhanced efficacy, pharmacokinetics, and biocompatibility. 

[192] 

 DES-graphene in vitro: MCF-7 cells 
No quantitative drug loading/release 
data 

Nanocarrier possesses acute, selective anticancer activity achieved through intracellular 
ROS-production-triggering cell cycle arrest.  

[193] 

 
Temozolomide—DNA 

alkylating agent 

GO-Fe3O4 
in vitro: rat glioma C6 
cells 

90% DLC and 74% DRE, with pH-me-
diated drug release 

The blank nanocarrier is biocompatible, whilst the loaded system showed better inhibitory 
effects than the free drug in rat glioma cells. This formulation also has strong magnetic 
properties. 

[194] 

rGO in vitro: LN229 cells 
84% DLC and 83% DRE, with electro-
chemically controlled drug release 

This system retained the anticancer potency of temozolomide. [195] 

 
Topotecan—topisomerase I 

inhibitor 

GO/TT/CisP/cho-
lesterol-DOX en-
capsulated in a 
DSPE-PEG nano-
cell 

in vitro: HeLa cells 
29% DLC and 40% DRE for TT, with 
pH-triggered drug release 

This nanocarrier has fluorescence imaging capabilities and displays remarkably higher anti-
cancer efficacy compared to the free-drug combination due to the synchronised targeting of 
multiple targets in cancer cells at once. 

[196] 

PEI-GO-TT-CisP in vitro: HeLa cells 
51% DLC for TT, no quantitative drug 
release data 

This nanocarrier has subcellular-organelle-targeting capabilities and can effectively impair 
the mitochondria of cervical cancer cells, leading to cell death. This resulted in a 4.4× de-
crease in IC50 compared to the free-drug cocktail. 

[197] 

 TT/GO-CD/DOX in vitro: HeLa cells 
16% DLE and 77% DRE for TT, with 
sustained, pH-triggered drug release 

This system demonstrated superior anticancer efficacy compared to free drugs and single-
drug-loaded nanocarrier due to the synergistic effect between the drugs and GO. 

[198] 

 
Vinblastine—mitosis inhibitor 

CQD 

in vitro: Hela, HGC-27, 
A549, MCF-7, CF-STTG, 
and Vero cells; in vivo: 
NOD-SCID mice carrying 
A549 tumours  

95% DLC, with no qualitative drug 
release data 

The cytotoxicity of vinblastine was reduced in normal cells and increased in cancer cells 
compared to the free drug. Significant inhibition of tumour growth was observed in vivo, 
with no liver toxicity. The synergistic combination of chemotherapy and PTT allowed for 
the control of cancer cell growth. 

[199] 

Vinblastine—mitosis inhibitor

CQD

in vitro: Hela, HGC-27, A549,
MCF-7, CF-STTG, and Vero cells;
in vivo: NOD-SCID mice
carrying A549 tumours

95% DLC, with no qualitative drug
release data

The cytotoxicity of vinblastine was reduced
in normal cells and increased in cancer cells
compared to the free drug. Significant
inhibition of tumour growth was observed
in vivo, with no liver toxicity. The
synergistic combination of chemotherapy
and PTT allowed for the control of cancer
cell growth.

[199]
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Table 2. Index of anticancer drug molecules in the CNM nanocarrier database.

Drug Page Drug Page

5-fluorouracil 5 epirubicin 23
6-mercaptopurine 6 erlotinib 24
anastrozole 7 etoposide 24
bortezomib 7 gefitinib 25
capecitabine 7 gemcitabine 26
carboplatin 7 imatinib 27
carmustine 9 irinotecan 28
chlorambucil 9 lobaplatin 29
cisplatin 9 methotrexate 29
curcumin 13 mitomycin C 30
cyclophosphamide 15 mitoxantrone 30
cytarabine 15 oxaliplatin 31
dabrafenib 16 paclitaxel 33
dasatinib 16 sorafenib 34
daunorubicin 16 tamoxifen 35
decitabine 17 temozolomide 36
docetaxel 17 topotecan 36
doxorubicin 19 vinblastine 37
enzalutamide 23 vincristine 37

4. Discussion

A total of 38 approved anticancer drugs were used in CNM-based nanocarriers in
the literature, a breakdown of which can be seen in Figure 1. The anticancer drugs were
further classified according to their mechanism of action, and the prevalence of each class is
shown in Figure 1. The classes are as follows: (1) Alkylating agents—these work by adding
alkyl groups to DNA, which can lead to DNA strand breaks and inhibit DNA replication;
(2) Antimetabolites—these interfere with the synthesis of DNA, RNA, and proteins by
mimicking essential cellular metabolites; (3) Natural products—this category consists of
chemotherapeutic agents derived from natural sources, such as plants, microorganisms, or
marine organisms. These agents often target specific aspects of cell division or DNA replica-
tion; (4) Hormone therapies—these target hormone-dependent cancers by interfering with
the action of specific hormones or hormone receptors; (5) Antimicrotubule agents—these
drugs target the microtubules, which play an essential role in cell division. By disrupting
the formation or function of microtubules, these agents can inhibit cell division and lead to
cancer cell death; (6) Miscellaneous agents—these include chemotherapeutic drugs that do
not fit neatly into any of the other categories. The most diverse class of anticancer drugs
used were alkylating agents, which is not surprising, as this class includes many Pt-based
drugs, which can be easily complexed with oxidized CNMs. The miscellaneous-agent
section contained five tyrosine kinase inhibitors, indicating the popularity of this class of
drug. Hormone therapies were the least popular class of chemotherapy agents, with only
three entries.

For each of the anticancer drugs in the database, several CNM-based nanocarriers
have been investigated for their use in drug delivery. A total of 191 examples of CNM-
based nanocarrier systems were found in the literature, many of which displayed higher
anticancer efficacy with reduced side effects. As discussed in the introduction, the ease of
functionalisation of CNM surfaces (graphene and CNT in particular) offers many different
approaches to developing nanocarriers. A huge number of ligands were found to be used
for drug delivery in the literature. These included polymers, such as PEG, which offer
biocompatibility, water solubility, and reduced aggregation in situ [65,96], and biomolecules,
such as folic acid, which enable the active targeting of folate receptors on tumour cells [177].
Other commonly used ligands were fluorescent agents, an example of which is Alexa Fluor,
which is used for the fluorescent imaging of tumour cells [160], and peptides and proteins,
offering improved bioavailability and stability [84]). Many of these approaches combined
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in the nanocarriers found in the literature show the complexity and breadth of options
available to use.
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The numerical analysis of the database shown in Figure 2 reveals that graphene (GO
in particular) is the most popular class of CNMs to be incorporated into these systems,
likely because it is one of the most well-established carbon nanomaterials. Over the years,
a catalogue of functionalisation procedures has been developed, allowing for a range of
moieties to be attached to the material’s surface [201]. The flat, aromatic surface of graphene
lends itself excellently to π–π stacking, which allows for the easy noncovalent stacking
of drug molecules. Graphene is also a PTT agent, a property that can be used to bolster
the effectiveness of chemotherapy [14]. This is beneficial for the nanocarrier developed
in [188], where free TAM is more efficacious than the nanocarrier-bound drug but the PTT
potential of rGO makes it an attractive combinatorial therapy. Nonfunctionalised GO and
rGO were found to successfully deliver anticancer drugs. GO and rGO showed pH- and
NIR-triggered releases in some cases [32,132,148]. This offers a site-specific release of the
drug, as the pH in tumour cells is typically lower than that in healthy cells, and NIR offers
similar delivery.
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CNTs came second in terms of popularity, which is surprising, as they are the oldest
and most well-studied class of CNMs. This could be due to their tendency to aggregate into
bundles in aqueous solutions, which could affect their biocompatibility. CNTs also do not
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have much in the way of intrinsic therapeutic or imaging properties; however, they do have
large surface areas for drug loading. One example of pristine CNTs shows pH-dependent
release and PTT [78]. Oxidised MWCNTs were found to be more toxic to healthy cells than
cancer cells, which shows a need for further functionalisation [155]. The lack of control of
intracellular accumulation also highlights the need for the attachment of targeting ligands
to these systems.

Carbon dots, including GQDs, were the third most popular CNM to be used in these
systems. The carbon allotropes that make up this new and rising class are tiny, even
compared to other CNMs; this allows them to penetrate deep into cells to deliver drug
molecules. They are even small enough to cross the blood–brain barrier [202], and their
excellent biocompatibility [203] and ease of production in many cases [204] make them
excellent nanocarrier scaffolds.

Many types of carbon dots are also water-soluble and have fluorescence imaging
capabilities in the pristine form, for dual imaging and drug delivery [175]. Other types
of CNMs, such as fullerenes, NDs, CNOs, HMCS, and CNHs, may not be as popular, but
they show potential as nanocarriers due to their unique properties. For example, NDs offer
improved biocompatibility over other CNMs [114,166], whilst fullerenes and CNOs display
ease of functionalisation, narrow PDI, and ease of production [23,59].

In terms of drug moieties, antimicrotubule agents were the most popular payloads for
these nanocarriers (Figure 2). This is due to the presence of multiple aromatic rings in these
molecules, which facilitate noncovalent attachment to the CNM surface.

Anthracyclines, such as doxorubicin and epirubicin, are particularly popular. Alkylat-
ing agents are also quite popular, with platinum-based drugs often being complexed to
the surface of the nanomaterial host. This is a particularly popular strategy with highly
oxidised materials, such as GO, as the Pt can complex directly with oxygen-containing
functional groups. Smaller hydrophilic organic molecules that lack any aromatic rings,
such as those in the hormone therapy class, tend to not be so popular in CNM nanocarrier
systems due to the lack of noncovalent interactions with the host CNM.

Designing systems that incorporate the intrinsic properties of CNMs allows for ad-
ditional capabilities without having to chemically modify the material. The fluorescence
of CDs and GQDs have proven to be useful for cellular imaging and tracking experi-
ments [36,74,88]. Certain CNMs may also be utilised for killing cancer cells; for example,
graphene has been used as a PTT agent, bolstering the effect of traditional chemother-
apy [14,148]. Utilising this synergistic approach means that lower amounts of toxic
chemotherapy drugs can be given to achieve the same therapeutic effect. The nπ* state of a
CNM is essential for its intrinsic photothermal properties, and this state can be modulated
by the addition of dopants (such as nitrogen) to the CNM [205]. Strong light absorption
is required for a material to display photothermal properties, and a high photothermal
conversion efficiency (η) is needed for a nanocarrier to be an effective PTT agent. For
example, Forte et al. achieved photothermal-triggered drug release using a carbonised
polymer dot-based system with an η value of 67.9% [206].

In general, systems that incorporate combination therapies exhibit some of the strongest
anticancer effects due to the synergistic effects of PTT, PDT, single-drug and combination
chemotherapy, or immunotherapy [67,129,169,190]. CNMs are the perfect class of nanopar-
ticles for this approach, as they are easy to modify both covalently and noncovalently, with
a range of functionalisation approaches available, allowing for the attachment of many
different therapeutic agents. This, combined with the intrinsic properties of CNMs, can be
leveraged to construct a range of nanocarrier systems.

The DLCs, DLEs, and DREs of nanocarriers are given as the number of entries above
and below 50% in Figure 3. This was performed to make the entries more comparable
given the differences in the sample sizes. A total of 152 out of 191 nanocarriers found in the
literature had DLC, DLE, and/ or DRE data, and where DLC data were given, less than
35% of the nanocarriers were found to display values above 50%. This is similar for all
CNMs, and surprisingly, graphene is the lowest, with only 22% of nanocarriers above 50%
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DLC. A much greater proportion of nanocarriers show DLEs above 50%, with fullerenes
showing the lowest percentage of DLE values above 50%, and nanohorns displaying the
highest at 100%; however, only one entry was available. This indicates that drug loading is
an efficient process. In general, either a DLC or DLE value was given, with the DLE higher
than the DLC.
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The DRE, where given, was found to be quite high, on average, for all CNMs, with
NDs displaying the lowest values; however, the sample size for this material was small
compared to those for graphene and CNTs. Graphene-based nanocarriers incorporating
Fe3O4 showed particularly high loading and release: [47,85,193]. GO-COOH also displayed
high loading and release properties [133]. A lot of CNT-based systems with very high
loading and release were observed; for example, the FA-PEG-bis-amine MWCNT system
displayed 99% DLE and 90% DRE [27], SWCNTs showed 94% DLE and 93% DRE [78], and
CNT-PEG displayed 95% DLC and 100% DRE [186].

For carbon dots, the CS-coated Fe3O4–NH2/GQD hybrid displayed 90% DLC + 84%
DRE [33], whereas the GQD-HA system showed 98% DLE + 100% DRE [83], and the
FA-CD-GOx nanocarrier yielded 82% DLE + 95% DRE [13]. Whilst there were much fewer
fullerene systems with high drug loading/release metrics, acylated C60 fullerene displayed
81% DLC and 84% DRE [99]. A single ND system yielded 87% DLE and 80% DRE [166],
whereas NHs and NPs do not show high combined loading and release.

The biocompatibility of these formulations must be further investigated, as certain
CNMs are known to be toxic [207]. On the one hand, in the case of CNTs, the pristine
form is toxic in mice and is dependent on the types of CNTs present [208]. On the other
hand, pristine fullerenes such as C60 show no apparent toxicity, whereas some function-
alised derivatives are highly toxic [209]. However, as previously discussed, the breadth
of functionalisation methods and biocompatible ligands available to modify the surface
chemistries of CNMs offers a variety of routes for overcoming this issue. The leakage of a
drug at physiological pH is another issue that must be addressed in many systems, as toxic
side effects are induced in vivo when the drug is released at neutral pH.
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5. Conclusions and Future Directions

Overall, CNMs are incredibly versatile materials that can be used as both the foun-
dation of nanocarrier systems and as therapeutic agents themselves. These systems can
be designed to detect, image, and treat a range of tumours, from colorectal, brain, breast,
liver, and stomach cancers. CNTs and graphene (GO in particular) were by far the most
popular CNMs used in these systems due to their small size, high surface area, and ease
of functionalisation. Other CNMs, such as carbon dots, are also growing in popularity
due to their unique properties. A huge range of molecules, such as targeting ligands,
fluorophores, dispersants, and drugs, can be easily attached to CNM surfaces, allowing for
the construction of complex nanosystems.

Extensive in vivo biological work needs to be undertaken to fully understand the
toxicity of these systems towards animals, and to overcome the regulatory hurdles needed
to move these treatments into clinical trials.

The trend of designing theragnostic systems that incorporate the intrinsic properties
of CNMs (such as PTT and fluorescence imaging) will likely be seen more in the future, as
it allows for additional capabilities without damaging the CNM itself. Nanocarriers that
leverage combinations of different therapies displayed the most potent anticancer effects,
and therefore these systems will likely grow in popularity in the coming years.
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5-FU 5-Fluorouracil HPMC Hydroxypropyl methylcellulose
6-MP 6-Mercaptopurine HSA Human serum albumin
A1 A549-cell-targeting oligonucleotide HYD Hydrazone
ADA Adamantane IM Imatinib
ADH Adipic acid dihydrazide iRGD PEGylated RGD peptide
AF Alexa Fluor, AF488/647 LA Lactobionic acid
AL Alendronate LE Lentinan
Anti-EpCAM Epithelial cell adhesion molecule antibody LIN Linoleic acid
APA Aspartic acid MA Mannose
Apt Aptamer mAb Anti-VEGF monoclonal antibody
AQ4N Banoxantrone dihydrochloride mCNF Mesoporous carbon nanoframe
Aso Bcl-2 phosphorothioate antisense deoxyoligonucleotide MET Metformin
ATRA All-trans retinoic acid MitP Mitochondrion-targeting peptide
BSA Bovine serum albumin MMC Mitomycin C
BT Biotin MMT Montmorillonite

CB[7] Cucurbit[7]uril MMT7
Macrophage membrane hybridized
with T7 peptide

CD Carbon dot MPA Mercaptopropionic acid
CDT Cyclodextrin MSCD Mesoporous silica carbon dot
Ce6 Chlorin e6 MTX Mitoxantrone
CisP Cisplatin METX Methotrexate
CMC Carboxymethyl cellulose MWCNT Multiwalled carbon nanotube
CNP Carbon nanoparticle NCC Nanocrystalline cellulose
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CNH Carbon nanohorn NCNC Nitrogen-doped carbon nanotube cup
CNM Carbon nanomaterial ND Nanodiamond
CNR Carbon nanoring N-GO Nitrogen-doped graphene oxide
CNT Carbon nanotube NGR Aspargine–glycine–arginine peptide
CO Chito oligosaccharide NIR Near-infrared

CP Carboplatin NMCS
Nitrogen-doped mesoporous
carbon sphere

CQD Carbon quantum dot N-prGO
Nitrogen-doped porous reduced
graphene oxide

cRGD Cyclic RGD motif OP Oxaliplatin
CS Chitosan PA P-gp monoclonal antibody
CNS Carbon nanosphere PAA Poly(acrylic acid)
CUR Curcumin PAMAM Poly(amidoamine)
CWKG(KWKG)6 H-(-CysTrp-Lys-Gly-)(-Lys-Trp-Lys-Gly-)6-OH peptide PANI Poly(aniline)
CβCD Carboxymethyl β-cyclodextrin PC Phosphatidylcholine
DCA-HPCHS Deoxycholic acid-modified hydroxypropyl chitosan PDA Polydopamine
DES Deep eutectic solvent PDT Photodynamic therapy
DLC Drug loading content PEG Polyethylene glycol
DLE Drug loading efficiency PEI Polyethyleneimine
DMPE 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine PF68 Pluronic F68
DOA 2-(2-(docosyloxy)-2-oxoethoxy)acetic acid PGA Poly(glycolide)
DOX Doxorubicin P-gp P-glycoprotein antibodies
DPPTE 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol PHEA Ethanolamine
DRE Drug release efficiency PHEMA Polyhydroxyethyl methacrylate
DSPE 1,2-distearoyl-sn-glycero-3-phosphoethanolamine PLA Poly(lactic acid)
DTX Docetaxel PLGA Poly(lactic-co-glycolic acid)
E2 β-estradiol PMAA Poly(methacrylic acid)
EGF Epidermal growth factor PNM Poly(N-isopropylacrylamide)
EPI Epirubicin PNVCL Poly(N-vinylcaprolactam)

Et Etoposide POEGMEA
Poly(oligoethylene glycol methyl
ether acrylate)

Exo Cancer cell exosomes PRM Peptide protamine sulphate
FA Folic acid PTT Photothermal therapy
FCDb Biotinylated Fe2+-doped carbon dot PTX Paclitaxel
f-CNTs Functionalised carbon nanotubes PVA Poly(vinyl acetate)
FITC Fluorescein isothiocyanate PVP Polyvinylpyrrolidone
FSCNO Fucoidan-decorated silica–carbon nano-onion RBC Red blood cell membrane
GA Galactose Rf Riboflavin
GE11 EGFR antagonist peptide rGO Reduced graphene oxide
GEF Gefitinib ROS Reactive oxygen species
GEM Gemcitabine SA Sodium alginate
GFLG Gly-phe-leu-gly enzyme-sensitive peptide SB SB-431542 (TGF-β inhibitor)
GGN Graphene–gold nanocomposites SLP2 shRNA plasmid DNA
GlcN Glucosamine SWCNT Single-walled carbon nanotube
GNR Gold nanorod TAM Tamoxifen

GO Graphene oxide TAT
Trans-activating transcriptional
activator peptide

GOQD Graphene oxide quantum dot TAU Taurine
GOx Glucose oxidase TEG Tetra(ethylene glycol)
GQD Graphene quantum dot Tf Transferrin
GRP Gastrin-releasing peptide TM Temozolomide

HA Hyaluronic acid TP
Tumour-targeting peptide
(CKQFSALPFNFYT)

HIF Anti-hypoxia-inducible factor 1α antibody TR Transferrin
HM HM30181A transmembrane P-glycoprotein inhibitor TT Topotecan
HMCS Hollow mesoporous carbon sphere UA Urocanic acid
HPMC Hydroxypropyl methylcellulose VEGF Vascular endothelial growth factor
HSA Human serum albumin γPGA γ-polyglutamic acid
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