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Abstract. A method for pedestrian detection from real world outdoor
scenes is presented in this paper. The technique uses disparity informa-
tion, ground plane estimation and biometric information based on the
golden ratio. It can detect pedestrians even in the presence of severe oc-
clusion or a lack of reliable disparity data. It also makes reliable choices
in ambiguous areas since the pedestrian regions are initiated using the dis-
parity of head regions. These are usually highly textured and unoccluded,
and therefore more reliable in a disparity image than homogeneous or
occluded regions.

1 Introduction

Real-time pedestrian detection and tracking is valuable in many situations, such
as security applications in airports, the study of crowd flow patterns for city
planning, or automated driving assistants. Many computer vision based applica-
tions [1-3] depend on accurate detection and segmentation of pedestrians from
a given background as a first step in their algorithmic process.

Various different techniques for segmenting individual pedestrians have been
investigated using with 2D computer vision techniques. Some require a certain
camera orientation which is difficult to achieve in outdoor scenarios [4], others
search images for pedestrian shapes [3]. Multiple cues, such as skin color and
face detection, have also be applied [5]. The results of many approaches are de-
preciated in unconstrained real-world environments due to dynamic conditions
such as rapidly changing lighting conditions causing shadows, pedestrian occlu-
sion and the large variability in a pedestrians local and global appearance due
to pose, orientation and clothing. 3D stereo information has been proposed as
a technique to guide pedestrian detection, as stereo and shape are more reliable
and helpful cues than color and face detection in general situations. The use of
stereo information carries with it some distinct advantages over conventional 2D
techniques [6]: (a) it allows explicit occlusion analysis and is robust to illumi-
nation changes; (b) the real size of an object derived from the disparity map
provides a more accurate classification metric than the image size of the object;
(c) using stereo cameras can detect both stationary and moving objects.

* This material is based on works supported by Science Foundation Ireland under
Grant No. 03/IN.3/1361.
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Fig. 1. System Overview

In this paper we define a pedestrian detection technique that can be applied
using a stereo camera system that is located, as most surveillance cameras are,
above human height and orientated at approximately a 45 degree angle to look
down on pedestrians below, making this technique applicable to both indoor
and outdoor scenarios. The proposed technique is based on the use of disparity
information, ground plane estimation and human biometric information. It can
detect pedestrians even in the presence of severe occlusion or a lack of reliable
disparity data. It also makes reliable choices in ambiguous areas since the pedes-
trians are initiated using the disparity of head regions. These are usually highly
textured and unoccluded, and therefore more reliable in a disparity image than
homogeneous or occluded regions. As the technique uses disparity information,
pedestrian characteristics, such as the variability in clothing colour, for exam-
ple, does not affect the approach. In addition, biometric information, based on
the Golden Ratio is used to remove regions that do not adhere to a pedestrians
global shape.

This paper is organized as follows: Section 2 presents the details of the de-
veloped algorithmic approach. Firstly, an overview of post-processing the dense
disparity estimation process; we then illustrate how individual pedestrians are
segmented and post-processed. In Section 3 we present experimental results from
a real world outdoor situation containing multiple pedestrians at various depths,
some with severe occlusion, displaying a large variability in both local and global
appearance. Finally, Section 4 details conclusions and future work.

2 Algorithm Detalils

Figure 1 illustrates an overview of the system. As a starting point, a dense
disparity image is obtained using the technique defined in [7]. This technique can
suffer; as can all other dense disparity estimation algorithms, from inaccuracies.
These artifacts can be removed by post-processing the resultant disparity image,
described in Section 2.2. This stage of the algorithmic process, as shown in Figure
1, is split into two separate steps. The first step removes disparity points that
are outside a predefined search space. The second step removes artifacts that
were generated during the disparity estimation process itself.

The resultant foreground disparities are then clustered together, as described
in Section 2.3. Initially, so called Vertical Drip Regions are created which are
regions of 1 pixel wide and 1 or more pixels in height. These regions are then



clustered together using knowledge of the camera position and biometric infor-
mation.

Finally, in Section 2.4, the clustered regions are post-processed into individual
pedestrians. As shown in Figure 1, this is a 6 step process. The first four steps
remove background regions, which includes regions due to noise. The fifth step
applies biometric information to segment multiple pedestrians that exist in an
individual region. The final post-processing step merges, if necessary, two or
more regions that belong to the same pedestrian.

2.1 Camera Position and Orientation

The technique described in this paper has been designed specifically for surveil-
lance type applications. Most surveillance camera systems are located above
human height and orientated at approximately a 45 degree angle to look down
on activity below. This camera setup can be easily applied to both indoor and
outdoor scenarios. Our stereo camera system emulates this setup and is attached
to a crossroads traffic light at approximately 2.5 meters above the ground. Due
to position of the camera, pedestrians can have a large range of disparities, an
example of this can be seen for pedestrian g in Figure 4(e). Simply breaking the
input image into disparity layers will not result in the detection of individual
pedestrians. The camera setup, however, can be advantageous when detecting
pedestrians using stereo information. For instance, depending on the distance of
a pedestrian from the camera, the following observations can be made:

1. a pedestrian can have roughly the same disparity throughout its region;

2. the parts of a pedestrian which are higher above the groundplane, such
as the head and shoulders, can have greater disparity than the rest of the
pedestrians bodys;

3. if a pedestrian, ped;, is occluded by another pedestrian, peds, then peds
must be closer to the camera than ped; and therefore, in general, peds has
a greater disparity than that of ped;.

2.2 Dense Disparity Estimation

The observations made in Section 2.1 assume that ideal dense disparity has
been obtained and is used as the input to the algorithm. This assumption is not
realistic, as every disparity estimation technique proposed in literature to date
is subject to errors, especially in regions of homogeneous colour or occlusion.
The technique used to obtain dense disparity information used in this paper
is suffers, as all others techniques do, from inaccuracies. These artifacts can
be greatly reduced by integrating certain constraints into the dense disparity
estimation algorithm and by post-processing the resultant disparity image.
The technique used to obtain dense disparity information in this paper is
based on the work described in [7], that details a dynamic programming based
stereo correspondence technique that has been specifically developed for pedes-
trian surveillance type applications. It employs two background models, a back-
ground disparity and an edge model. In addition, it introduces a technique for



obtaining a dynamic disparity limit constraint, whereby a separate disparity
limit is defined for each scanline based on the background disparity model, the
previous scanlines maximum disparity and Ground Control Points (GCPs). An
advantage to this is that if an inaccuracy occurs within the dense disparity es-
timation, then the disparity will be equal to or lower to the previous scanlines
maximum disparity unless there is an error in either the background model or
the GCPs. This is an important constraint as although the disparity image may
contain errors, we can still expect that, in general, the three observations set
out in Section 2.1 to hold true. Figures 5(b) and (f) show results of the dense
disparity estimation technique.

The technique described in this paper post-processes the dense disparity
image for two reasons; (1) we are interested in detecting pedestrians within a
certain depth range, therefore we can remove points that are outside a predefined
search space; (2) to remove artifacts that were generated during the disparity
estimation process.

Defining a Search Space The first post-processing step involves removing
disparity points that are outside a predefined search space. However, in order
to achieve this, the search space must be defined. In general, the scenes from
which the detection of pedestrians is required are man-made scenes such as
crossroads, streets, airports, railway stations, etc. A common factor to all these
scenarios is a relatively flat ground plane. Information about this 3D plane can
be advantageous as it allows us to gauge the position of a 3D point with respect
to the scene in a more effective way than can be achieved using just its position
with respect to the camera rig.

A geometric constraint called a homography, as described in [8], is used to
map points on a plane in one image to the corresponding plane points in a
second image of the same scene. Using a homography it is possible to obtain
corresponding ground plane points between two different images of the same
scene. From these correspondences disparity is obtained, and thus the 3D infor-
mation of multiple ground plane points are determined. A Least Mean Squares
(LMS) approach is then applied to obtain an equation of the 3D groundplane
from the multiple 3D input points. This 3D ground plane is used in conjunction
with pedestrians’ biometric information and assumptions about pedestrian pose
to define a predefined search space.

For each 2D point in the dense disparity image, the 3D information is de-
termined from the rectified images using triangulation, as defined in [9]. The
minimum Euclidean distance between the 3D ground plane and each 3D point
is then determined via:

AxxP+Bxy?P+Cx 2P + D (1)
VAZ+ B2+ C?

where Axxz + Bxy+ C %24+ D = 0 is the equation of the 3D ground plane

and (zP,yP, zP) is the 3D point. Each point is then defined as either background

or foreground. A point is defined as background and removed from the disparity
image if any of the following is true:

heighteye =



1. No disparity data exists at that point due to occlusion.

2. If 2P > zpaz, Where 2,42 is a threshold value that represents the maximum
relevant zP value. In our experiments, z,,q. is set to 8 meters, due to the
image resolution and the degradation of accurate stereo information beyond
this distance.

. heighteye < height,in. In our experiments, height,,;, is set to 0.9 meters.

4. heighteye < height,,q.- In our experiments, height,,q, is set to 2.4 meters.

w

height, i, and height,,q, are set to the minimum and maximum expected
pedestrian height above the groundplane, but allowances are made for fluctua-
tions in the groundplane and disparity inaccuracies.

Removing Dense Disparity Artifacts In unconstrained conditions inaccu-
racies can appear in the output of dense disparity estimation techniques. These
are mainly due to lack of texture, occlusion or inefficiencies inherent in the cho-
sen stereo correspondence algorithm. How these artifacts manifest themselves
depends upon the stereo correspondence algorithm. In dynamic programming
based algorithms they tend to take the form of horizontal streaks of inaccurate
disparity data. A typical example of this can be seen in Figure 2(a), which shows
a closeup of pedestrian e from Figure 4 (b). Note the lack texture in the midsec-
tion of the pedestrian due to the colour of the pedestrians coat being similar to
the background colour on both sides. After the first post-processing step, a large
streak can be seen through this area, see Figure 2(c). Also notice smaller streaks
in the top left of the image and at the back of the pedestrians head. Fortunately,
the streaks can be removed by searching the image for the characteristic vertical
bar of constant disparity.

In order to remove streaks the image is traversed vertically. When a pixel,
(z,y), is a foreground point and the previous pixel, (z,y — 1), is not, the y value
is noted as the start of a strip, ystar+- The value of y is incremented until (z,y)
is a background point, whereupon the y value is noted as the end of the strip,
Yend- The height of a strip is determined via heightsirip = Yend — Ystart- For a
strip to be part of a streak, then:

— (2 + 1, Ystart — 1), (x + 2, Ystart — 1)....(x + widthstrip, Ystart — 1) must be a
background point, where widthgrip = heightgrip * 3, where 8 determines
how wide a streak must be compared to its height for it to be retained. In
our experiments § = 1.

— All points (z+1,y), (+2,y)....(x +widthsrip, y) must be foreground points
and have the same disparity value as (z,y), where y is any value from ys;qr¢
to Yend-

= (241, Yena+1), (@42, Yena+1)....(x+widthsirip, Yena+1) must be background
points.

If a streak is found then all points within it are declared as background points.
widthstrip is then incremented and the next line is tested. If the strip continues
onto this next column and the above 3 properties hold then the strip on this line
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Fig. 2. Remove Streaks; (a) Input Region; (b) Dense Disparity; (c) Foreground Dis-
parity; (d) Found Streaks (in Red); (e) Post-processed Disparity

is also removed and widthssrp is incremented again. Figure 2(d) shows in red
the regions that have been determined to be streaks in the foreground disparity
image.

2.3 Clustering Regions

Vertical Drip Regions The clustering of foreground disparities is a two step
process. In the first step, regions that are 1 or more pixels in height but only
1 pixel in width are created. These resemble drips of paint, and so we refer to
them as vertical drip regions. To create vertical drip regions, each column y of
the image is traversed vertically, from top to bottom. A new region is created
at the pixel, (z,y) if; (a) (z,y — 1) was a background point; (b) the disparity at
(x,y) is greater than the disparity at (z,y—1). Otherwise (x,y) is clustered into
the same region as (z,y—1); or (¢) (z,y) is an edge. We create a new vertical dip
region at every edge otherwise drips emanating from regions above pedestrians
heads, such as high walls, will pass down the image covering pedestrians below.
Results from this step can be seen in Figure 4(f), where each colour represents
a different region.

Clustering Regions The second step involves merging these drip regions to
form more coherent foreground objects. The merging of these drip regions needs
to be achieved in a way that the final regions adhere to the three rules set out in
Section 2.1. These rules can be summed up by the statement that, for a single
object, as the y value increases the disparity remains constant or decreases. We
will refer to this as the Decreasing Disparity Rule.

In order to merge two regions, r1 and 73, and adhere to this rule, two separate
tests must be made; (a) two neighbouring pixels, p; from 71, and ps from ro,
must have similar disparities, and; (b) if 71 has a lower minimum disparity than
ro then r1 must have a greater, or similar, disparity to ro, or vice versa.

Two disparities, disp; and disps, are declared to have similar disparities if
the following is true:

(dispy — disp2)? < LSI){: i (2)

where disp, is the minimum of disp; and disps, and 6 is the maximum disparity
difference allowed for every o pixels of disparity that exists in disp,.. For example,



if # = 1.5 and o = 10, this allows 1.5 pixels disparity difference when disp, = 10,
3 pixels disparity difference when disp, = 20, and so on. This allows pixels closer
to the camera to cluster together easier, allowing for fluctuations in an objects
surface.

In order to implement the second test, a value must be found for the disparity
of a region. Using the maximum disparity of a region would make the assumption
of a perfect input disparity image, but a single erroneous high disparity value
may split a pedestrian into two separate regions that would never be allowed to
merge. The average disparity of the whole region is also not adequate, due to
the possibility of occlusion of regions. Figure 3 illustrates this point. Pedestrian
b is occluded by pedestrian a. Due to this only pedestrian b’s head can be
seen, which is the area of pedestrian b with the highest disparity. The whole
of pedestrian a can be seen. However, due to the lower disparity of pedestrian
a’s torso, the average disparity of the region of pedestrian a could drop below
that of pedestrian b, thereby allowing the two regions to merge. This would
then violate the Decreasing Disparity Rule. A solution to this problem is to use
biometric information.

Applying Biometric Information The height above the groundplane, found
using Equation 1 for defining a search space in Section 2.2, can also be used
to define the proportions of a human body by applying the number @, (¢ =
V5% 0.5 + 0.5 ~ 1.618). This number is known as the Divine Proportion or
the Golden Section/Ratio/Mean/Number [10]. Figure 3 (a) shows how a body
is segmented using @. Let |aj| be the Euclidean distance between the horizontal
lines a and j. Therefore, |aj| is the height of a human body. Using @ and |aj|
various other points on the human body can be defined. In Figures 3 (a) and

) Jail = B jan) = B jab) = 29 [10] and jn| is equivalent to |ac.
Similarly |lo| = |ag| and |kp| = |ah|. Distances of interest include; |ac|, which is

the distance from the head to the forehead; |ae| which is the width of the head;
|af] which is the the distance from the head to the base of the skull; |ag| which
is the width of the shoulders; and |ah| which defines the distance from the head
to the navel and the elbows.

This biometric information constitutes useful information for assisting region
clustering. Statistics, such as a region’s maximum height and bounding box, and
therefore the value of |ac| are built up about each region as they are created. The
value |ac| is chosen as, in our scenario, a pedestrian is assumed to be unoccluded
by at least this amount in an image. The average disparity is then summed
for all pixels that occur between the minimum y value of the region, ¥, and
Ymin + |ac|. In Figure 3 (f) the two regions are obtained using the proposed
technique to merge vertical drip regions. Figures (h) and (i) show the biometric
data of two regions overlaid onto the image. From this it can be seen that for
each region the average disparity is calculated from region pixels between the
lines a and c.

Merging is implemented in two stages, in the first stage, 8 = 0, and in the
second stage 8 = 1.5 and o = 10. The first stage is implemented to allow initial
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Fig. 3. Golden Ratio; (a) Vertical; (b) Horizontal; (a) Initial Image; (b) Tagged Image;
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regions to grow in order to obtain more accurate region statistics before the
second stage, which allows pixels closer to the camera to cluster together easier,
allowing for fluctuations in disparity in an objects surface.

2.4 Region Post-processing

The clustered regions are post-processed to obtain a single pedestrian in each
region. The post-processing is split into six distinct steps. The first four steps
removes background regions, which includes regions due to noise. The fifth step
applies biometric information to segment multiple pedestrians that exist in an
individual region. The final post-processing step merges, if necessary, two or
more regions that belong to the same pedestrian.

The first step removes noise regions. These regions generally occur due to
small inaccuracies in the disparity image. Regions that have a number of pixels
less than a threshold, pixzels,,;,, are removed. In addition, as the height of a
pixel is known, if the absolute difference between the maximum and minimum
height values appearing in a region is less than a threshold, height,,;,, then the
region is also removed. In our experiments pizels;,;, is set to 1000, assuming
this to be the minimum size of a pedestrian in pixels, and height,,;, is as defined
in Section 2.2.

The second step is used to remove large background regions. This is achieved
using the background edge model referred to in Section 2.2. Let the foreground
image edges be referred to as edge activity points. All the edge activity points that
are within the search space, as defined in Section 2.2, are clustered together in to
edge activity regions, EARs. Then, as before, if the maximum height difference
between all the pixels in the FAR is less than a threshold, height,,;,, then the
EAR is removed. Figure 4(c) shows the edge activity points (in red) that pass
this test. Notice how there is no EAR pixels on the background wall. Finally,
all foreground regions are removed that do not have at least one FAR pixel
contained in that region.



The third step is almost identical to Section 2.2, and removes streaking effects
caused by the disparity estimation process. It differs from Section 2.2 as each
region is taken in isolation and searched for streaks, whereas before all foreground
points were taken all at once. This is necessary as a streak could easily join two
separate pedestrians together.

The forth post-processing step finds the bounding box of EARs in each region
and then trims the region to remove any pixels outside this bounding box. It
then checks each region to make sure it has more pixels than pizels,,;,. This
removes any remaining background regions that exist due to a small number of
E AR pixels that are locally spread in the region. The final two post-processing
steps are biometric segmentation followed by merging of detached regions.

Biometric Segmentation Biometric information, introduced in Section 2.3,
can be applied to segment multiple pedestrians that exist in an individual region.
Each region is taken independently and its width is examined. If the width of
the region on any given scanline is greater than the estimated width of the
pedestrians shoulders, |[lo|, then the possibility exists that the region is more
than a single pedestrian.

If two pedestrians become merged into the same region, it is assumed that
the pedestrians are at roughly the same depth, and therefore standing in a
side by side orientation. Two such pedestrians a and b in Figure 4(g) have been
merged. From the shape of this region the separation point of the two pedestrians
is visible due to the rise and fall of height in the region. The region contains two
maximum height points which are the two heads and a minimum height point
which is where the two bodies meet. It is this characteristic rise and fall of height
greater than |ac| that is used to segment multiple pedestrians in a single region.
In addition, at the point of a drop, there must be a distance of the width of
a head, |mn|, within the region on both sides of the drop. This is necessary as
otherwise areas of a single pedestrian, such as extended arms, may be incorrectly
split into a separate region. If more than one possible drop and rise is found,
then the one with the largest drop in height is selected, and the region is split
at the mid-distance between the drop and the rise. The two separate regions are
then independently tested to see if any more pedestrians are located within that
region.

If, however, no drop and rise can be found within the region, the width of the
region is again examined. If its width is greater than |kp| then it is removed as
it is an object that has not of the correct dimensions of a pedestrian, otherwise
the region is left intact.

Merging Detached Regions The final post-processing step merges, if neces-
sary, two or more regions that belong to the same pedestrian. Figure 4 (g) shows
that, due to the lack of reliable disparity information, pedestrian e has been split
in two. Although their positions and average disparities indicate that the two
could merge, this has been impossible up until this point due to the lack of any
foreground disparity information between the two regions.
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Fig. 4. Results; (a) Input Image; (b) Tagged Pedestrians; (¢) Edge Activity; (d) Dense
Disparity; (e) Foreground Disparity; (f) Vertical Drip Regions; (g) Merge Drip Regions;
(h) Final Pedestrian Regions;

In order to merge two distinct regions, 1 and ro, the center point, cp, of each
region is obtained using the regions bounding box. If either: (a) ¢p; is within
the x bounds of ry and ¢ps is within the x bounds of r1; or (b) the x bounds
of ro are contained within the x bounds of r1; or (¢) the x bounds of r; are
contained within the x bounds of r9; then it is possible that the two regions
could be merged together. To determine if the two regions can merge then the
region with the highest minimum y value for its ¢p is determined, for argument
sake, let this be the region r1. The two regions are then merged if: (a) cp; is lower
down in the image than ro’s bounding box; (a) ¢ps is higher up in the image
than r1’s bounding box; (c) either Equation 2 holds for the average disparity of
r1 and the mazimum disparity of ro, or r1’s average disparity is greater than the
mazimum disparity of ro.

Finally, the first four post-processing steps are repeated on any new regions
that have been created. Figures 4(h) and 5(d) and (h) show examples of the
final post-processed regions, where each colour region represents an individual
pedestrian.

3 Experimental Results

Figures 4 and 5 show results from various stages of the algorithmic process.
These images are from a real world outdoor scenario with unconstrained con-
ditions. They contain difficult scenarios where multiple pedestrians at various
depths, some with severe occlusion, are detected. The pedestrians display a large
variability in both local and global appearance. In some cases there is no dis-
tinct point of separation between pedestrians and other objects, whether they be
other pedestrians or background. Inaccuracies in the dense disparity estimation
process occurs in a number of these examples, but the inaccuracies are removed
or overcome by the technique.

Table 1 displays an overview of results for 1000 images at various pedes-
trian densities. numyeq and numge; indicates the total number of pedestrians
that exist and that are found in this search space respectively within these im-
ages. % found defines the overall percentage of pedestrians correctly segmented.
A correctly segmented pedestrian is defined as a region that contains at least
the pedestrians head and no substantial area of a second pedestrian. The final



Image Pedestrian Numbers||numped [numaer |%found |Yomuit  |Yovack |Yodisp
1-3 964 850 88.17  [60.53 [7.02  [21.05
4-6 1186 [954 80.44  ]66.38 [14.66  |6.47
>6 521 407 7812  [59.65 [15.79  [8.77
Total 2671 [2211  [82.78 [63.26 [13.04 [10.65

Table 1. Results Overview

four columns of the table represents the percentage of pedestrians that were not
segmented correctly for the following reasons: %, due to the region containing
more than one pedestrian; %pqc; due to the pedestrian becoming merged into
the background, which is caused by the pedestrian having almost an identical
disparity as an area of the background model, such as a wall, and finally removed
by biometric segmentation; %gisp due to a severe lack of reliable disparity and
edge information for the pedestrian.

From these results it can be seen that 63.26% of the pedestrians that have not
been segmented correctly can be attributed to the pedestrian becoming merged
with another pedestrian. These results point could be improved by improving the
biometric segmentation section. However, it is unrealistic to define and search
for every possible orientation of a pedestrian that has become joined together,
in a single region, with another object. However the use of temporal informa-
tion could prove very useful as an additional pointer to pedestrian segmentation.
Temporal information could also be employed as a feedback into the dense dis-
parity estimation technique to further improve results, possibly helping to detect
the 23.69% of missed pedestrians defined by %pect and %gisp-

4 Conclusions and Future Work

This paper described a pedestrian detection technique based on disparity in-
formation, ground plane estimation and biometric information. The approach
can detect pedestrians even in the presence of severe occlusion or a lack of re-
liable disparity data and will make reliable choices in ambiguous areas. As the
technique uses disparity information, pedestrian characteristics, such as the vari-
ability in clothing colour, for example, does not affect the approach. In addition,
biometric information, based on the Golden Ratio is used to remove regions that
do not adhere to a pedestrians global shape.

In future work, the use of temporal data along with the improvement of
the dense disparity algorithm to enforce better inter scanline consistency would
increase the accuracy of both dense disparity estimation and pedestrian seg-
mentation. In addition, the pedestrian model can be improved by taking into
account the projective distortion of the image and the camera position relative
to the groundplane. The biometric segmentation can also be improved to in-
cluded other common cases when pedestrians get clustered together and there
is no characteristic rise and fall of pedestrians heads. Other biometric informa-
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Fig. 5. Results; (a)/(e) Input Image; (b)/(f) Dense Disparity; (c)/(g) Foreground Dis-
parity; (d)/(h) Final Pedestrian Regions;

tion such as skin colour could also be detected and used for the segmentation of
possible heads within a region.
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