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Abstract

In a celebrated paper of 1893, Hadamard proved the maximal determinant theo-
rem, which establishes an upper bound on the determinant of a matrix with complex
entries of norm at most 1. His paper concludes with the suggestion that mathe-
maticians study the maximum value of the determinant of an n × n matrix with
entries in {±1}. This is the Hadamard maximal determinant problem.

This survey provides complete proofs of the major results obtained thus far. We
focus equally on upper bounds for the determinant (achieved largely via the study of
the Gram matrices), and constructive lower bounds (achieved largely via quadratic
residues in finite fields and concepts from design theory). To provide an impression
of the historical development of the subject, we have attempted to modernise many
of the original proofs, while maintaining the underlying ideas. Thus some of the
proofs have the flavour of determinant theory, and some appear in print in English
for the first time.

We survey constructions of matrices in order n ≡ 3 mod 4, giving asymptotic
analysis which has not previously appeared in the literature. We prove that there
exists an infinite family of matrices achieving at least 0.48 of the maximal deter-
minant bound. Previously the best known constant for a result of this type was
0.34.

Mathematics Subject Classifications: 05B20, 15B34
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1 introduction

The story, of course, does not begin with Hadamard. Thomson conjectured in 1885
a bound on the determinant of a matrix in terms of the norms of its rows; this was
established shortly afterward by Muir. In his Résolution d’une question relative aux
déterminants of 1893, Hadamard gives (i) a proof of the so-called Hadamard determinant
bound (which is essentially the Muir–Thomson bound), (ii) an explicit statement of the
maximal determinant problem (for R), and (iii) solutions to this problem at orders 2t, 12
and 20. Nevertheless, in Section 2 we follow Hadamard’s exposition (his paper being as
readable today as in 1893), before tracing a little of the history of the determinant bound
before and after Hadamard. Again following the original exposition, we give the proof of
Fischer’s inequality using compound matrices, which generalises Hadamard. In Section 3
we describe the (real) maximal determinant problem, which is to construct {±1} matrices
attaining the determinant bound, and describe some results from the theory of Hadamard
matrices.

In quick succession in the 1960s, Ehlich and Wojtas produced sharper bounds than
Hadamard’s for {±1} matrices of orders n ≡ 1, 2, 3 mod 4. Their bounds are presented
in Section 4. Each of the three cases has its own peculiarities, discussed in turn in
Sections 5, 6 and 7 respectively. In each case, we survey the known constructions which
achieve a determinant within a constant factor of the best known bound, and comment on
computational and theoretical work at small orders. In Section 7.1 we analyse the known
theoretical constructions for matrices with large determinant at orders n ≡ 3 mod 4. We
generalise a construction of Neubauer and Radcliffe, allowing us to prove that there exists
an infinite family of matrices exceeding 0.48 of the Ehlich bound.

In writing this paper, the authors made the conscious decision to present the main
results for the maximal determinant problem with some historical context. Thus our pre-
sentation is approximately chronological, and we attempt to follow the techniques of the
original authors. These choices result in some heterogeneity of style: Hadamard worked
with Hermitian matrices while Fischer worked with real symmetric matrices, for exam-
ple, and we have not attempted to reconcile these accounts. We perceive two underlying
themes which run through many proofs in this area.

1. The Gram matrix of a real-valued matrix is symmetric positive definite. All its
eigenvalues are real and positive. Most of the determinant bounds that we present
use linearity of the determinant in the rows of a matrix to express the determinant
as the sum of a positive and a negative term. The positive term becomes an upper
bound on the determinant, and minimising the negative term saturates the corre-
sponding bound. Slightly intricate induction hypotheses appear to be a necessary
feature of these proofs. Theorem 1 is the prototype of this result, and Theorems 8
and 19 follow the same pattern, which reaches its most developed form in the results
of Section 7.

2. Going hand-in-hand with non-constructive upper bounds are constructive lower
bounds. Outside the large literature on Hadamard matrices, there are only a
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few construction techniques. Direct constructions use combinatorial designs ob-
tained from finite fields (specifically affine planes and quadratic residue designs):
these techniques are introduced in Section 3.1 and developed more extensively in
Section 5.1. Tensor products and block matrices assembled from these basic matri-
ces produce further results: Proposition 13 and Theorem 19 are easy examples of
this method; Section 5.1 again supplies the most detailed applications.

2 The Hadamard determinant bound

A curiosity of Hadamard’s paper to the eye of the modern reader is the absence of concepts
from linear algebra. For Hadamard, a matrix is nothing but an array from which the
determinant (considered a homogeneous polynomial function of degree n in n2 variables) is
computed. Our proof follows Hadamard’s, with notation modernised and what Hadamard
refers to as an identité bien connu presented explicitly.

In this paper, matrices are square unless stated otherwise. We use In and Jn to
denote the n×n identity and all-ones matrices respectively, and drop the subscript when
the order is clear from context. Recall that a matrix is Hermitian if G∗ = G, and
positive definite if its eigenvalues are positive real numbers. The Gram matrix of M
is the matrix MM∗, which has as entries the inner products of rows of M . A positive
definite Hermitian matrix G is a Gram matrix: via the square root of a positive matrix,
it can be shown that there exists a matrix X such that XX∗ = G. Conversely, the Gram
matrix of a set of linearly independent vectors is Hermitian positive definite. There is
a well-developed theory for positive definite matrices; see for example the monograph of
Horn and Johnson [28]. We follow Hadamard in considering a minor of order k to be the
determinant of a k × k submatrix.

Theorem 1 (Paragraphes 2–4, [26]). Let M be an n × n matrix with entries from the
complex unit disk. Then | det(M)| 6 nn/2.

Proof. Define G = MM∗, and recall that the (i, j) entry of G, which we denote gi,j, is
the inner product of rows i and j of M . Since its diagonal entries are real and gi,j = g∗j,i,
the matrix G is Hermitian. Furthermore, det(G) = det(M) det(M∗), being the product
of a complex number and its conjugate, is real and non-negative.

For a subset I of {1, 2, . . . , n}, denote by GI the principal submatrix of G with rows
and columns indexed by I. We write PI for det(GI) and NI for the determinant obtained
upon setting the bottom-right entry of GI to zero. If I = {1, 2, . . . , k} then we write Pk
for PI and Nk for NI . Since the determinant is linear in the rows of the matrix,

det


g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

...
...

...
...

gk−1,1 . . . gk−1,k−1 gk−1,k

gk,1 . . . gk,k−1 gk,k

= det


g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

...
...

...
...

gk−1,1 . . . gk−1,k−1 gk−1,k

0 . . . 0 gk,k

+det


g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

...
...

...
...

gk−1,1 . . . gk−1,k−1 gk−1,k

gk,1 . . . gk,k−1 0

. (1)
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Equation (1) illustrates the Laplace expansion of the determinant of Gk. We gather
all terms containing gk,k and see that

Pk = gk,kPk−1 +Nk. (2)

By induction on |I| we will establish that NI is always non-positive. For this we
require a general determinantal identity. Let U1 and U4 be invertible square matrices of
size k × k and (n− k)× (n− k) respectively. For any U2 and U3 such that the displayed
matrix U is invertible, set V = U−1, and decompose into blocks as in U :

U =

(
U1 U2

U3 U4

)
, V =

(
V1 V2
V3 V4

)
.

Now, take determinants on both sides of the expression(
U1 U2

U3 U4

)(
V1 0
V3 I

)
=

(
I U2

0 U4

)
(3)

to see that
det(U) det(V1) = det(U4). (4)

We return to our inductive proof. Suppose that I = {i, j}. Recalling that gi,j = g∗j,i
because G is Hermitian,

NI = det

(
gi,i gi,j
gj,i 0

)
= −|gi,j|2,

and the result is established for the base case |I| = 2. Suppose now that the inductive
hypothesis holds for all I for which |I| 6 k− 1. For notational convenience, we will work
with the set {1, 2, . . . , k}, but I can be taken to be arbitrary of size k. Take V to be the
rightmost matrix displayed in Equation (1), so that det(V ) = Nk. If det(Nk) = 0 the
induction hypothesis holds, so suppose that Nk is invertible. Let V1 be Gk−2, which is the
submatrix of Gk containing the first k− 2 rows and columns. The entries of U = V −1 are
the (k − 1) × (k − 1) cofactors of V . So det(U) = N−1k and det(V1) = Pk−2. We denote
by γ the (non-principal) minor obtained by deleting row k − 1 and column k of V . Then
up to some (−1) factors which cancel in the determinant,

det(U4) = det

(
Pk−1 γ
γ∗ N{1,...,k−2,k}

)
= Pk−1N{1,...,k−2,k} − |γ|2.

Applying Equation (4), we obtain

N−1k Pk−2 = Pk−1N{1,...,k−2,k} − |γ|2.

The terms Pk−2 and Pk−1 are determinants of Gram matrices and hence non-negative.
By the inductive hypothesis, N{1,...,k−2,k} 6 0 so the right-hand side is non-positive. The
signs of N−1k and Nk agree, and so Nk is non-positive and the result is established by
induction.
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Since the gk,k are real and positive, and the Nk are non-positive, Equation (2) now

shows that Pk 6
∏k

i=1 gi,i. By hypothesis, all entries in M have modulus bounded by 1 so
each term in the product satisfies |gk,k| 6 n and det(G) 6 nn. Finally, | det(M)| 6 nn/2

and the proof is complete.

Equality holds in the identity Pk = gk,kPk−1+Nk if and only if det(Nk) vanishes. Since
Nk contains a positive definite minor Pk−1, this occurs if and only if the final column of
Nk is identically zero. Applying this observation repeatedly, equality in Theorem 1 holds
if and only if all of the minors Nk vanish, which forces MM∗ to be diagonal.

The most substantial part of Hadamard’s proof is devoted to establishing that the
determinant of a symmetric positive definite matrix is bounded by the product of its
diagonal elements. This more general result was conjectured by William Thomson (later
Lord Kelvin) in 1885. As recounted by Maritz in his masterly mathematical biography
of Thomas Muir [35], the result was established by Muir shortly afterward. For reasons
never elaborated upon, Muir’s publication was delayed until 1901. Even then, the result
is established only for 4 × 4 matrices, with the claim that the proof extended easily to
larger dimensions1. In 1899, Fredholm [25] also established Thomson’s conjecture, but
acknowledged in 1900 that this result was a direct consequence of Theorem 1.

In the form of a bound on the determinant of a symmetric positive definite matrix,
Hadamard’s result gained importance due to connections to Fredholm’s theory of integral
equations, with a new proof by Wirtinger in 1907 [53] and a generalisation by Fischer in
1908 [24]. In fact, we shall have use for Fischer’s inequality in later sections of this paper,
and so provide a proof modeled closely on the original. Both results in this section are
easily established using techniques of positive definite matrices. Bechenbach and Bellman
claim that there are perhaps a hundred proofs of the Hadamard inequality [2]; a one-line
proof is given on page 505 of Horn and Johnson [28].

Theorem 2 (Satz III, [24]). Suppose that G is positive definite and symmetric, and that

G =

(
A B
B∗ D

)
,

where A and D are square submatrices. Then det(G) 6 det(A) det(D) with equality if
and only if B = 0.

Proof. To fix notation, let A be k×k and D be (n−k)× (n−k). We will follow Fischer’s
proof, which involves the kth compound of G. This is the matrix with rows and columns
indexed by the distinct k-subsets of {1, . . . , n} with the entry in row X and column Y
the minor GX,Y of G with rows labelled by X and columns labelled by Y . We denote the

1Muir returned to this topic in 1910, beginning his paper with the claim that Hadamard’s result is
neither short nor simple, the method being that known as “mathematical induction”. It concludes twelve
pages later, having considered the 3 × 3 and 4 × 4 cases extensively with a postscript containing yet
another proof of the inequality, this time featuring the minors of order 2 of a 4 × 4 matrix, claimed by
Muir to be of the most direct and simple character [37]. Hadamard’s proof is preferable, at least to the
authors.
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kth compound of a matrix M by M (k). The following results on compounds would have
been well known to Fischer’s contemporaries (for further discussion, see, for example,
Section 0.8 of [28]):

1. The Sylvester–Franke theorem: det(M (k)) = det(M)(
n−1
k−1).

2. Jacobi’s formula for the kth adjugate: Adj(M (k))X,Y is (−1)σ(X,Y )MX,Y , where MX,Y

is the complementary minor of MX,Y and σ(X, Y ) =
∑

x∈X x+
∑

y∈Y y. The kth adjugate

satisfies the relation Adj(M (k))M (k) = det(M)I(n
k)

.

3. The (generalised) Cauchy–Binet formula: (M1M2)
(k) = M

(k)
1 M

(k)
2 .

Fischer establishes a Hadamard-type bound for positive definite matrices. In the
notation of Theorem 1,

det(G) 6 Pn−1gn,n. (5)

This result is immediate from the proof of Theorem 1, which also shows that the bound
is attained precisely when gi,n = 0 for 1 6 i 6 n− 1.

Next, Fischer decomposes the kth compound as

G(k) =

(
F f
f ∗ det(A)

)
,

where F is square of order
(
n
k

)
− 1, and f is a column vector. We evaluate det(F ) via

the method of Equation (3). Set U = G(k) and U1 = F . By the Sylvester–Franke

theorem, det(U) = det(G)(
n−1
k−1). By Jacobi’s formula for the adjugate, V4 is proportional

to the minor of G complementary to A, namely V4 = det(G)−1 det(D). Hence det(F ) =

det(G)(
n−1
k−1)−1 det(D).

By hypothesis, G is symmetric positive definite, so G = MM∗ for some matrix M .
By the Cauchy–Binet formula, M (k)(M (k))∗ = G(k) and hence G(k) is positive definite. So
we may apply Equation (5) to G(k) to obtain

det(G(k)) = det(G)(
n−1
k−1) 6 det(A) det(F ) = det(A) det(D) det(G)(

n−1
k−1)−1

from which Fischer’s inequality follows by cancelling the common factor of det(G)(
n−1
k−1)−1.

If det(A) = 0 then det(G) = 0 and Fischer’s inequality holds trivially, so suppose that
A has full rank. The entries of f are minors of G in which the columns of A are held fixed
and the rows vary: these are precisely the minors with rows drawn from A and B∗. For a
fixed row br of B∗ consider the minors consisting of k − 1 rows of A and br. All of these
minors vanish if and only if br = 0. But equality holds in Equation 5 precisely when all
entries of the vector f are zero; hence B∗ (and B) are zero matrices.

In the original paper, Fischer characterises the cases of equality in Theorem 2 via an
argument similar to Hadamard’s demonstration that the minors Nk are non-positive. We
substitute a slightly more direct (if anachronistic) proof. Fischer also provides a direct
proof of Equation (5), so his theorem gives an independent proof of Theorem 1. To see
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this, apply Theorem 2 recursively to the Gram matrix G = MM∗ until 1 × 1 blocks on
the diagonal are obtained. Then the determinant of G is bounded by the product of its
diagonal entries, and the last sentence of the proof of Theorem 1 completes the proof.

3 Hadamard matrices and the maximal determinant problem

Let G be a symmetric positive definite matrix. As we have previously seen, the key step
in Hadamard’s proof of Theorem 1 is establishing the bound det(G) 6

∏n
i=1 gi,i. From

Hadamard (but more explicitly from Fischer), one sees that that this bound is met with
equality precisely when G is diagonal. When G = MM∗ is a Gram matrix, we see that
the maximal determinant is obtained precisely when the rows of M are orthogonal. Ge-
ometrically, the volume of a parallelopiped with fixed edge lengths is maximised when
the edges are orthogonal. This geometric approach was used by Craigen [16] to establish
Hadamard’s inequality directly from Pythagoras. There is no existence question to con-
sider here: orthogonal matrices are plentiful and rows can be renormalised at will. As
noted already by Sylvester [50], the discrete Fourier transform matrices furnish examples
which saturate Hadamard’s determinant bound in any dimension over the complex field.
In contrast, there is a non-trivial existence theory for matrices saturating Hadamard’s
determinant bound over R, which we consider in this section.

Suppose now that M is a real-valued n×n matrix of maximal determinant with entries
of norm at most 1. Since the determinant is a linear function of the matrix entry Mi,j,
without loss of generality, the entries can be chosen from {±1}. The remainder of this
survey is devoted to the following problem, originally suggested as a topic for investigation
by Hadamard.

Maximal determinant problem. What is the maximal determinant of an n×n matrix
with entries in {±1}?

Initial progress on this problem was made by Hadamard, who established the following:

Proposition 3. Suppose that H is a real matrix saturating the determinant bound. Then:

1. All entries of H belong to {±1}.
2. The rows and columns of H are orthogonal.
3. The order of H is 1, 2 or a multiple of 4.

Proof. The first two claims follow directly from Hadamard’s observation that the bound
is saturated if and only if HH> = nIn. For the last claim, observe that the matrices

(1) and

(
1 1
1 −1

)
saturate the bound in dimensions 1 and 2. Suppose that H has dimension n > 3. Since
the magnitude of the determinant is invariant under permutation and negation of rows
and columns, we may assume that the first row of H has all entries positive. Orthogonality
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then forces an equal number of positive and negative entries in the second row. Hence n
is even.

The proof that n is divisible by 4 is only slightly more involved. Consider permuting
the columns of H so that the first three rows are in the form1a 1b 1c 1d

1a 1b −1c −1d
1a −1b 1c −1d

,
where 1x denotes an all-ones vector of length x. Orthogonality of rows forces the equations

a+ b− c− d = 0, a− b+ c− d = 0, a− b− c+ d = 0.

These equations are solved precisely when a = b = c = d and hence the dimension is a
multiple of 4.

Matrices which meet the determinant bound with equality have become known as
Hadamard matrices. There is a substantial literature devoted to Hadamard matrices;
we refer the reader to three monographs which have appeared in the past 15 years for
further details, [19, 27, 46]. Existence of Hadamard matrices is well-studied. The fol-
lowing omnibus result provides references to some well-known constructions of Hadamard
matrices.

Proposition 4. Hadamard matrices exist at the following orders.

1. 2t for t > 0 [50].
2. pa + 1 where p is prime and pa ≡ 3 mod 4 [44].
3. 2(pa + 1) where p is prime and pa ≡ 1 mod 4 [44].
4. p(p+ 2) + 1 where p and p+ 2 are twin primes [49].
5. 4p4t where p is prime and t > 1 [55]
6. 4t for all values of t 6 250 except for t ∈ {167, 179, 223} [31].
7. n = ab/2 or n = abcd/16 where a, b, c, d are orders of Hadamard matrices [18, 47].
8. There exist constants α and β such that, if t is an odd positive integer, then there

exists a Hadamard matrix of order 2dα+β log2(t)et; see [17, 46].

As demonstrated, the maximal determinant problem for n ≡ 0 mod 4 is extensive.
Paley conjectured in the 1930s that the bound is attained in every dimension divisible
by 4. We note that Hadamard matrices have found application in the construction of
error-correcting codes, experimental designs and more recently in the design of quantum
algorithms. The reader is referred to the monographs of Horadam [27] and Bengtsson and
Zyczkowski [3] for further details.

3.1 Finite fields, quadratic residues and the Paley construction

The guiding principle in the assembly of this survey was to produce a self-contained
reference on the maximal determinant problem. Upper bounds are only half of this story.
To establish that the bounds are optimal, infinite families of matrices achieving these
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bounds are required. As illustrated in Proposition 4, there are many constructions for
Hadamard matrices. We shall see in Section 5 that there are just two known constructions
for infinite families of matrices when n ≡ 1, 2 mod 4 saturating the relevant determinant
bounds. All of these constructions rely on properties of quadratic residues in finite fields.
We will assume the following results about finite fields, proofs of which can be found in a
standard textbook on abstract algebra, e.g., [30].

1. For each odd prime power q there exists a finite field with q elements, unique up to
isomorphism. We denote this field by Fq.

2. The multiplicative group of Fq is cyclic of order q − 1.
3. An element x ∈ Fq is a quadratic residue if there exists y ∈ Fq such that y2 = x.

Otherwise, x is a quadratic non-residue. The function χ : Fq → C given by χ(0) = 0,
χ(x) = 1 if x is a quadratic residue and χ(x) = −1 otherwise is a multiplicative

character of Fq and χ(x) = x
q−1
2 . Hence the number of non-zero quadratic residues

is q−1
2

.

4. It follows that χ(−1) = (−1)
q−1
2 , so−1 is a quadratic residue if and only if q≡1 mod 4.

The matrices constructed in Proposition 5 and their variants are frequently useful
in the construction of maximal determinant matrices, and also occur in multiple other
contexts.

Proposition 5. Suppose that p is an odd prime number and χ is the quadratic character
of Fp. We define χ(0) = 0. Then the Paley core matrix

Q = (χ(x− y))06x,y6p−1
has zeroes on the diagonal and off-diagonal entries in {±1}. Further, Q is circulant and
satisfies QQ> = pI − J .

Proof. The matrix is circulant since (x+1)− (y+1) = x−y. The matrix has zero entries
on the diagonal and ±1 entries off the diagonal (depending on whether the equation
z2 = x − y has a solution or not). So it suffices to compute the inner product of two
rows. Since the number of non-zero quadratic residues equals the number of non-residues,∑

x∈Fp
χ(x) = 0.

We compute the inner product of the rows labelled a and b. It will be convenient to
sum over the non-zero terms in the inner product:

〈ra, rb〉 =
∑
x 6=a,b

χ(a− x)χ(b− x)

=
∑
y=a−x
y 6=a−b,0

χ(y)χ(b− a+ y)

=
∑

y 6=a−b,0

χ(y)χ(y)χ

(
b− a
y

+ 1

)
=

∑
y 6=a−b,0

χ

(
b− a
y

+ 1

)
= −χ(1).
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In moving from the second line to the third, we used that χ is multiplicative. In moving
from the third line to the fourth, we use that χ(y2) = 1. In moving form the fourth line
to the fifth, we used that the sum

∑
x χ(x) is equal to 0. The terms excluded from the

sum are χ(1) + χ(0), but χ(0) = 0, and the result follows.

The next result is the Paley type I construction of Hadamard matrices. Following well-
established conventions, a Hadamard matrix H with is called skew-symmetric if H − I is
skew-symmetric in the usual sense; (H − I)> = −(H − I).

Proposition 6 (Lemma 2, [44]). Suppose that p ≡ 3 mod 4 is prime, and let jp denote
the column vector of length p of all ones. Then the matrix

M =

[
Q+ I −jp
j>p 1

]
is a skew-symmetric Hadamard matrix of order p+ 1.

Proof. First observe that Q>[x, y] = Q[y, x] = χ(y−x) = −Q[x, y]. Hence Q> = χ(−1)Q.
Since q ≡ 3 mod 4, the matrix Q is skew-symmetric, and

(Q+ I)(Q+ I)> = QQ> +Q+Q> + I = (p+ 1)I − J.

Since all entries of M are in {±1} it suffices to check that distinct rows of M are
orthogonal to verify that MM> = (q + 1)Iq+1. Each non-terminal row contains 1 + q−1

2

negative entries coming from the last column and the non-residues, and so is orthogonal
to the last row. The inner product of any two non-terminal rows gains a contribution +1
from the last column and a contribution of −1 from the remaining q columns.

Throughout this survey we describe constructions for primes p ≡ 3 mod 4. In all cases,
the constructions generalise (possibly with minor variations) to all odd prime powers.
Thus the construction of Paley type I matrices is essentially unchanged for prime powers
q ≡ 3 mod 4, though indices are drawn from {Fq,+}, and the resulting matrix has a
block-circulant submatrix, rather than a circulant submatrix. Then for prime powers
q ≡ 1 mod 4, the Paley core is symmetric, and a variant of this construction gives a
Hadamard matrix of order 2q + 2. For analysis of the corresponding matrix of order
p ≡ 1 mod 4, see Proposition 23.

4 The Ehlich–Wojtas bound

We have seen that Hadamard’s bound is attained infinitely often, conjecturally in every
dimension which is a multiple of 4. On the other hand, the proof of Proposition 3 shows
that in all other dimensions no three {±1} vectors are pairwise orthogonal. In this
section, we follow the treatment of Wojtas [54] to establish tighter bounds on maximal
determinants in these dimensions. The next lemma will be a key tool in bounding the
determinant of a non-diagonal positive definite matrix.

the electronic journal of combinatorics 28(4) (2021), #P4.41 10



Lemma 7. Let B be the following positive definite symmetric matrix, and assume further
that 0 < b 6 |bi| for 1 6 i 6 k:

B =


m g1,2 g1,3 . . . g1,k b1
g2,1 m g2,3 . . . g2,k b2

...
...

... . . .
...

...
gk,1 gk,2 gk,3 . . . m bk
b∗1 b∗2 b∗3 . . . b∗k b

.

Then det(B) 6 b(m− b)k.

Proof. For each i in the interval from 1 to k, subtract bi/b times the last row from the ith

row. Similarly, subtract b∗i /b times the last column from the ith column. The result is a
symmetric matrix B′ conjugate to B, which is therefore positive definite:

B′ =


m− |b1|

2

b
g′1,2 g′1,3 . . . g′1,k 0

g′2,1 m− |b2|
2

b
g′2,3 . . . g′2,k 0

...
...

... . . .
...

...

g′k,1 g′k,2 g′k,3 . . . m− |bk|
2

b
0

0 0 0 . . . 0 b

. (6)

Clearly, det(B′) = det(B) = b∆ where ∆ is the determinant of the k × k matrix in the
upper left of B′. We apply the Hadamard bound (as interpreted for positive definite
matrices) and the bound |bi|b−1 > 1 to complete the proof:

det(B) 6 b
k∏
i=1

(
m− |bi|

2

b

)
6 b

k∏
i=1

(m− |bi|) 6 b(m− b)k.

The next theorem was established independently by Ehlich [22] and Wojtas [54], via
essentially the same argument. We have followed Wojtas’ proof, which is determinant
theoretic, in the style of Hadamard.

Theorem 8. Let G be an n × n real positive definite symmetric matrix, with diagonal
entries m. Let b be a positive real number such that b 6 |gi,j| for all off-diagonal entries
of G. Then

det(G) 6 (m+ nb− b)(m− b)n−1.

Proof. Since the determinant is linear in the rows of G, we rewrite the determinant as
follows:

det(G) = det


m g1,2 . . . g1,n−1 g1,n
g2,1 m .. . g2,n−1 g2,n

...
... . . .

...
...

gn−1,1 gn−1,2 . . . m gn−1,n
0 0 . . . 0 m−b

+det


m g1,2 . . . g1,n−1 g1,n
g2,1 m .. . g2,n−1 g2,n

...
... . . .

...
...

gn−1,1 gn−1,2 . . . m gn−1,n
gn,1 gn,2 . . . gn−1,n b

. (7)
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Consider the second term on the right-hand side of Equation (7): the principal minors
of the matrix are positive, so the matrix is positive definite if and only if the determi-
nant is positive. This is Sylvester’s characterisation of positive definite matrices (see
Theorem 7.2.5, [28]), so Lemma 7 applies. We obtain the inequality

det(G) 6 (m− b) det(Gn−1) + b(m− b)n−1, (8)

where Gn−1 is the (n − 1) × (n − 1) principal minor of Gn. In the case that the second
term is non-positive, we obtain

det(G) 6 (m− b) det(Gn−1) 6 (m− b) det(Gn−1) + b(m− b)n−1,

so this inequality holds in either case.
Finally, we establish the result by induction. Observe that for the case n = 2, the

result holds:

det

[
m g1,2
g2,1 m

]
= m2 − |g1,2|2 6 m2 − a2 = (m+ a)(m− a)

for any a 6 |g1,2|. Now, assume the result holds for (n−1)×(n−1) matrices, in particular
for the matrix Gn−1 in Equation (8). Then

det(G) 6 (m− b)(m+ (n− 1)b− b)(m− b)n−2 + b(m− b)n−1

6 (m+ nb− b)(m− b)n−1.

This completes the proof.

Later a characterisation of certain matrices meeting the bound of Theorem 8 will be
required.

Corollary 9. Let G be an n×n symmetric positive definite matrix, with diagonal entries n
and |gi,j| > b for all i 6= j. If det(G) = (n+ (n− 1)b)(n− b)n−1, then up to permutation
and negation of rows and columns,

G = (n− b)I + bJ,

where J is the all-ones matrix.

Proof. The bound in Theorem 8 is attained if and only if the bound in Lemma 7 is
attained. This relies on the Hadamard bound, which is attained only if the displayed
matrix B′ of Equation (6) is diagonal.

Suppose there is an off-diagonal entry gi,j of magnitude larger than |b|. Without loss of
generality, we permute the rows and columns of G so that this entry is in the last column.
Negating rows and columns, we may assume that all entries in the last row and column
of G are positive. Then we calculate the determinant in the manner of Equation (7).
Evaluate the determinant of the rightmost term as in Lemma 7, observing that |gi,j| > b
forces a strict inequality. Hence |gi,j| = b for all off-diagonal entries in the matrix.

Tracing the proof of Theorem 8 with this matrix, we are led again to Lemma 7, in
which the bottom-right entry of G is replaced with b. Subtracting the final row of this
matrix from all others results in subtracting b from all entries in the matrix. This matrix
is diagonal precisely when all off-diagonal entries are equal to b, completing the proof.
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5 The Barba bound and matrices with n ≡ 1 mod 4

The next result was first established by Barba [1], but follows easily from Theorem 8. For
an overview of the history of this result, see Neubauer and Radcliffe [39].

Corollary 10. Let M be a matrix of odd order with entries in {±1}. Then det(M) 6√
2n− 1(n− 1)

n−1
2 .

Proof. The diagonal entries in the Gram matrix are n and the minimal magnitude of the
off-diagonal entries in the Gram matrix is 1. Applying Theorem 8 with b = 1 and m = n
we obtain

det(MM∗) 6 (2n− 1)(n− 1)n−1.

Hence |det(M)| 6
√

2n− 1(n− 1)
n−1
2 .

We will now work to characterise the Gram matrices which attain the bound of Corol-
lary 10. If M is a {±1} matrix of odd order, then no two rows of M are orthogonal. It
is possible to say a little more.

Proposition 11. Let M be a {±1} matrix of odd order n. There exists a diagonal {±1}
matrix D such that N = DM satisfies NN> ≡ nJ mod 4. That is, all inner products in
the normalised matrix N are congruent to n mod 4.

Proof. Define D to be the diagonal {±1} matrix which contains a −1 in row i if and only
if the number of negative entries in row i of M is odd. Then every row of N = DM has
an even number of −1 entries.

Let u, v be {±1} vectors of length n with 2a and 2b negative entries respectively.
Suppose that the negative entries coincide at c positions. Then

〈u, v〉 = n− 2(2a− c)− 2(2b− c) = n− 4(a+ b− c) ≡ n mod 4.

So the proposition holds for the matrix N .

Following Ehlich now, we apply Proposition 11 to characterise the {±1} matrices (if
any) which meet the bound of Theorem 8 with equality. (Wojtas’ proof of this result
involves a rather lengthy discussion of elementary row operations.)

Theorem 12. Let M be an n × n matrix with entries in {±1}. If det(M) meets the
bound of Corollary 10 with equality then:

1. 2n− 1 is a perfect square and n ≡ 1 mod 4.

2. Up to permutation and negation of rows and columns, MM> = (n− 1)I + J .

Proof. Since M is a matrix with integer entries, |det(M)| =
√

2n− 1(n − 1)
n−1
2 is an

integer. Hence n is odd and 2n − 1 is a perfect square. Thus 2n − 1 ≡ 1 mod 8, and it
follows that n ≡ 1 mod 4.

By Proposition 11, we may assume that all entries in MM> are congruent to 1 mod 4.
In particular, the off-diagonal entries belong to the set {. . . ,−7,−3, 1, 5, . . .}. Theorem 8
applies with b = 1 if and only if all off-diagonal entries are equal to 1. The matrices
attaining the bound are characterised in Corollary 9.
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Section 5.1 contains an explicit construction for an infinite family of matrices satisfying
the conditions of Theorem 12. Before describing that construction, we give an easy
construction for near-maximal determinants (i.e., determinants within a constant factor
of the bound). Define the excess of a Hadamard matrix to be the sum of its entries.

Proposition 13 ([23, 45]). Let H be a Hadamard matrix of order n−1, with excess e(H).
Then

M =

(
H 1
−1> 1

)
satisfies det(M) = det(H)(1 + e(H)n−1).

Proof. This follows directly from the Schur complement formula (Section 0.8, [28]). For
any block matrix in which A is invertible,(

I 0
−CA−1 I

)(
A B
C D

)(
I −A−1B
0 I

)
=

(
A 0
0 D − CA−1B

)
.

Apply this result to M , observing that 1>H1 = e(H).

It is well known that the maximal excess of a Hadamard matrix of order n is bounded
above by n

√
n, and that equality is achieved if and only if n = 4t2 is the square of

an even integer, and every row has sum 2t [4]. A Hadamard matrix with constant row
sums is called regular in the literature. If there exists such a Hadamard matrix2 then
Proposition 13 gives a matrix of order 4t2+1 with determinant (2t+1)(4t2)2t

2
. This should

be compared to the bound of Corollary 10: upon making the substitution n = 4t2 + 1
we obtain the bound det(M) 6

√
8t2 + 1(4t2)2t

2
. Comparing (2t + 1) to

√
8t2 + 1 we

see that this determinant exceeds 1/
√

2 of the Barba bound (and indeed is somewhat
better for small values of t). Constructions for infinite families of regular Hadamard
matrices are known: there exist regular Hadamard matrices of order 4q4 for every odd
prime power q, and there exists a regular Hadamard matrix of order 16n2 whenever there
exists a Hadamard matrix of order 4n [36, 38]. Orrick and Solomon [42] have developed
a normalisation technique which suggests that Hadamard matrices with large excess are
relatively common.

5.1 Designs and the Brouwer–Whiteman construction

In this section, we construct a matrix of order 2p2 + 2p + 1 satisfying the conditions of
Theorem 12, where p ≡ 3 mod 4 is prime. This result was obtained independently by
Brouwer [11] and by Whiteman [52]. The construction extends readily to all odd prime
powers. For the general case, we refer the reader to the work of Neubauer and Rad-
cliffe [39]. We begin this section by introducing the matrices I, J and C and establishing
some of their basic properties. In Propositions 16 and 17 we combine these ingredients
to form large sets of orthogonal vectors in dimensions p2 and p2 + 2p respectively. Then

2A regular Hadamard matrix necessarily has square order, and is equivalent to the existence of a
so-called Menon–Hadamard 2-design. Designs will be discussed further in Section 5.1.
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in Theorem 18, we add a single row and column to these matrices to yield a maximal
determinant matrix in dimension 2p2 + 2p+ 1.

Recall that I and J denote the identity and all-ones matrix respectively, where the
dimension is clear from context. Let jm denote the row vector of length m with all entries
equal to 1. A useful observation is that for any matrix M , the entries of JM are the
column sums of M while the entries of MJ are the row sums of M .

Let Q be the p× p Paley core of Proposition 5, and let C = Q− I. The reader should
verify that C has all entries in {±1} and, since p ≡ 3 mod 4, that Q is skew-symmetric,
and

CC> = (Q− I)(Q− I)> = QQ> −Q−Q> + I = (p+ 1)I − J .

It follows from Proposition 5 that JC = CJ = −J .
Finally, define the tensor product A⊗ B = [ai,jB]i,j. If the matrices have compatible

dimensions, matrix multiplication distributes over the tensor product: (A⊗B)(M⊗N) =
AM ⊗ BN . We will require some well-known results from the theory of combinatorial
designs in this section; for further information the reader is directed to the monograph of
Beth, Jungnickel and Lenz [5].

Definition 14. Let V be a set of size v whose elements are called points, and a set B
of blocks, each of which is a k-subset of V . The pair (V,B) is a 2-(v, k, λ) design if each
pair of points is contained in precisely λ blocks. An incidence matrix M of the design
(V,B) has rows labelled by points, columns labelled by blocks and mv,b = 1 if v ∈ b and
0 otherwise. A matrix M with entries {0, 1} is the incidence matrix of a 2-design if and
only if

MM> = (k − λ)Iv + λJv.

The affine designs are an important family of 2-designs obtained from vector spaces
over finite fields.

Definition 15. Let U be a vector space of dimension 2 over Fp. Let V be the set of
vectors of U and B be the set of 1-dimensional subspaces and their translates. Since any
two vectors determine a unique line, (V,B) is a 2-(q2, q, 1) design. The incidence matrix
is q2 × (q2 + q), and can be partitioned into q + 1 parallel classes : sets of blocks which
partition the point set.

Let us be a little more explicit in our description of the affine plane: parallel classes
consist of pencils of parallel lines in the plane. One pencil consists of “vertical” lines,
which are all of the form {(c, x) : x ∈ Fp} for fixed c ∈ Fp. The remaining lines consist of
point-sets of the form {(x, ax + b) : x ∈ Fp} for some a, b ∈ Fp. The parallel classes are
obtained by fixing a and varying b.

The incidence matrix of the affine plane has p2 rows and p2 + p columns. We will
assume that the columns are grouped into p + 1 parallel classes. By elementary linear
algebra, each p2× p submatrix contains a unique 1 in each row, and p non-zero entries in
each column. Denote this matrix by Mp, and observe that MpM

>
p = pI + J .
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Proposition 16. Let Mp be the incidence matrix of the affine plane of order p and let
C = Q − I be the Paley core of order p. Then M = Mp (Ip+1 ⊗ C) is a p2 × (p2 + p)
matrix with entries in {±1} which satisfies

MM> = p2Ip2 .

Each row of C occurs p times in each column-block of M . Each row of C occurs at least
once in each row of M . It will be convenient to write M as a block matrix, which we
denote [M0 |M1] where M0 consists of a single parallel class.

Proof. Consider the p2×p submatrix F of Mp corresponding to the ith parallel class. The
corresponding block of M is just FC. Since each row of F contains a single 1, every row
of FC is just a row of C. Hence the entries of M all belong to ±1, and the diagonal
entries of MM> are all p2.

By the 2-design property, any pair of points are contained in a unique block, so the
inner product of two rows in Mp is 1. Hence for any two distinct rows of M , there is a
unique parallel class in which they have the same row of C. In all other parallel classes
they differ. Hence, the inner product gains a +p term from the parallel class where they
agree, and p terms −1 from the parallel classes in which they disagree, and every pair of
rows is orthogonal.

The next proposition, like the previous one, constructs a large set of orthogonal vectors
with rows drawn from J and C.

Proposition 17. Let C be the Paley core of order p, where p ≡ 3 mod 4. Let J be
the all-ones matrix of order p, and let jp be a vector of ones of length p. Then the
(p2 + 2p)× (2p2 + 2p) matrix

N =

 −J −C ⊗ jp J (C + 2I)⊗ jp
−j>p ⊗ C −(C + I)⊗ C + I ⊗ J j>p ⊗ C (C + I)⊗ C + I ⊗ J

+J jp ⊗ C −J jp ⊗ C


satisfies NN> = (2p2 + 2p)Ip2+2p.

Proof. Essentially, the proof reduces to computing NN> and carefully evaluating each of
the terms. Let us compute the inner product of the first block of the matrix with itself
(equivalently, the inner product of any two rows from the first block). First observe that N
is a {±1} matrix, so the diagonal of NN> is as claimed. Recall that CC> = (p+ 1)I−J ,
and that since p ≡ 3 mod 4, we have C + C> = −2I.

N1N
>
1 =

[
−J −C ⊗ jp J (C + 2I)⊗ jp

] [
−J −C ⊗ jp J (C + 2I)⊗ jp

]>
= JJ> + (C ⊗ jp)(C ⊗ jp)> + JJ> + ((C + 2I)⊗ jp)((C + 2I)⊗ jp)>

= 2pJ + CC> ⊗ jpj>p + (C + 2I)(C + 2I)> ⊗ jpj>p
= 2pJ + pCC> + p(CC> + 2C + 2C> + 4I)

= 2pJ + p((p+ 1)I − J) + p((p+ 1)I − J)

= 2p(p+ 1)I.
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In particular, we conclude that two distinct rows from this block are orthogonal. We now
verify the orthogonality of rows from two distinct blocks. To perform this computation
by hand, it is convenient to simplify each term in the product individually, using that
jp ⊗ J = J ⊗ jp, and that J(jp ⊗ C) = jp ⊗ JC = −J ⊗ jp:

N1N
>
2 =

[
−J −C⊗ jp J (C+2I)⊗ jp

]
×
[
−j>p ⊗C −(C+I)⊗C+I⊗J j>p ⊗C (C+I)⊗C+I⊗J

]>
= −J ⊗ jp + (J − (p+ 1)I − (p+ 1)C)⊗ jp − J ⊗ jp

+ (J + (p− 3)I + (p− 1)C − 2C>)⊗ jp
= −2J ⊗ jp + (J − (p+ 1)I − (p+ 1)C)⊗ jp

+ (J + (p− 3)I + (p+ 1)C − 2C − 2C>)⊗ jp
= (−(p+ 1)I + (p− 3)I − (p+ 1)C + (p+ 1)C + 4I)⊗ jp
= 0⊗ jp.

The remaining verifications are similar and are left for the reader.

In Propositions 16 and 17, the assumption that p ≡ 3 mod 4 is necessary. Using the
affine plane, we constructed p2 pairwise orthogonal vectors with entries {±1} in dimension
p2 + p. For primes p ≡ 1 mod 4 this is impossible, by Proposition 3. Using tensor
products, we constructed p2 + 2p orthogonal vectors in dimension 2p2 + 2p. To complete
our construction of maximal determinant matrices, we assemble M and N into a square
matrix of dimension (p+ 1)2 + p2.

Theorem 18. Let W be the following matrix, assembled from the matrices of Proposi-
tions 16 and 17 with a single row and column appended:

W =



1 jp −jp2 jp jp2

j>p −J −C ⊗ jp J (C + 2I)⊗ jp
j>p2 −j>p ⊗ C −(C + I)⊗ C + I ⊗ J j>p ⊗ C (C + I)⊗ C + I ⊗ J
j>p J −jp ⊗ C J jp ⊗ C
−j>p2 −M0 −M1 −M0 −M1


. (9)

Then WW> = (2p2+2p)I+J , and so W is a maximal determinant matrix. Furthermore,
W has constant row sums 2p+ 1.

Proof. The displayed rows 2 to 4 of W consist of the matrix N of Proposition 17 with
an initial column of ones added. The final row of W contains an initial column of ones
followed by a submatrix [−M,−M ] where M is as in Proposition 16. It follows from these
results that all entries of W come from {±1}. We must show that the inner product of
any two distinct rows is 1. Since orthogonality of the rows of M and N has already been
established, two tasks remain: to compute the inner product of the intial row with any
other row, and to show that the inner product of a row of [−M,−M ] with a row of N is
equal to 2.
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The inner product of the first row with any other can be computed from the row sums
of the component blocks of W . The row sums of C are −1. Hence each row of M0 has
sum −1 and each row of M1 has sum −q. Recall also that the row sum of u ⊗ v is the
product of the row sums, and that row sums are linear. For example, the inner product
of the first row of W with any row from the third block evaluates as

1 + (1 · (−1)2) + (−1)(0 · (−1) + p) + (1 · 1(−1)) + (1)(0 · (−1) + p) = 1.

The remaining verifications are similar, and left to the reader.
In light of the first column, we need to show that the inner product of a row of

[−M,−M ] with a row of N is +2. Take for example a row from the first block of N .
Since the rows of M0 all come from C, the contributions in the second and fourth displayed
columns are −1 and 1 respectively. Since C contains p−1

2
entries +1 and p+1

2
entries −1,

and the rows of M1 are concatenations of rows of C, the contribution from the third block
is p+1

2
− p−1

2
. The contribution from the final block is also +1, and hence the inner product

evaluates as

−1− 1 +
(p+ 1

2
− p− 1

2

)
+ 1 +

(p+ 1

2
− p− 1

2

)
= 1.

Here, too, we leave the remaining verifications to the reader.

We note again that this result extends readily to odd prime powers; such a matrix has
order (q + 1)2 + q2. There are nine orders n = 4t + 1 with n 6 200 for which 2n − 1 is
a perfect square. Of these, n = 5, 13, 41 are sufficiently small that maximal determinant
matrices may be found by ad hoc means. Orders n = 25, 61, 113, 181 are of the form
q2 + (q+ 1)2, and so Theorem 18 applies. The remaining two cases are open. For n = 85,
the Barba bound is 13 · 8442, while Proposition 13 produces a matrix with determinant
10 · 8442. A matrix with a larger determinant, 501

49
· 8442, was constructed by Orrick and

Solomon [40]. For n = 145, the Barba bound is 17 · 14472 while Proposition 13 gives a
matrix with determinant 13 · 14472.

At orders n ≡ 1 mod 4 where the Barba bound cannot be attained, rather less is
known. Chadjipantelis, Kounias and Moyssiadis [12] gave an analysis of the Gram ma-
trices of maximal determinant matrices at orders 17 and 21, and found explicit matrices
of maximal determinant. Their method was extended by Brent, Orrick, Osborn and
Zimmerman [7] to find the Gram matrices of maximal determinant at order 37. To our
knowledge, these are the only cases not covered by Theorem 12 for which the maximal
determinant is known. To be entirely explicit: we are not aware of work establishing the
maximal determinants at orders 29, 33, 45 or 49, and these are the only open cases with
n ≡ 1 mod 4 and n 6 50. Computational work by Orrick and Solomon shows that for
all orders n 6 100, matrices attaining at least 0.7 of the Barba bound exist, and can be
obtained from Hadamard matrices of large excess using Proposition 13.

6 A refined bound and the case n ≡ 2 mod 4

The analysis of the case n ≡ 2 mod 4 is a continuation of the techniques developed thus
far. The results in this section were obtained by Cohn [14], Ehlich [22], Whiteman [52]
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and Wojtas [54].

Theorem 19. Let M be an n× n matrix with entries {±1} where n ≡ 2 mod 4. Then

det(M) 6 (2n− 2) (n− 2)
n−2
2 .

If M attains the bound then

MM> =

(
(n− 2)I + 2J 0

0 (n− 2)I + 2J

)
,

up to permutation and negation of rows of M , where all blocks of the Gram matrix are
n/2× n/2.

Proof. We start with the first statement. Let G := MM>, with entries gi,j, then G is
positive definite and symmetric. Since n ≡ 2 mod 4 and M has entries in {±1}, it follows
that gi,i = n and gi,j is even, for all 1 6 i, j 6 n.

If no pair of rows of M are orthogonal then every entry of G has magnitude at least 2,
and Theorem 8 applies with b = 2 yielding the required bound

det(G) 6
(
3n2 − 8n+ 4

)
(n− 2)n−2 6 (2n− 2)2(n− 2)n−2.

Otherwise, gi,j ≡ 0 mod 4 for some i 6= j. Up to simultaneous permutation of rows and
columns of G, we may assume that g1,j ≡ 2 mod 4 for 1 6 j 6 k and g1,j ≡ 0 mod 4 for
k + 1 6 j 6 n. Set

G =

(
A B
B> D

)
,

where A is k × k and D is (n − k) × (n − k). We claim that all entries of A and D are
2 mod 4 and that all entries of B are 0 mod 4. For any r, s, t in the range 1 to n, we have

gr,r + gr,s + gs,t + gt,r =
∑
i

m2
r,i +mr,ims,i +ms,imt,i +mt,imr,i

=
∑
i

(mr,i +ms,i)(mr,i +mt,i).

Since mi,j ∈ {±1}, each of the terms (mr,i+ms,i) and (mr,i+mt,i) is even, so their product
is divisible by 4. Since gr,r ≡ 2 mod 4, it follows that gr,s + gs,t + gt,r ≡ 2 mod 4. Setting
t = 1 and r, s 6 k we see that gs,1 ≡ gr,1 ≡ 2 mod 4 and hence gr,s ≡ 2 mod 4. Hence,
every entry of A is 2 mod 4. Similarly, it can be shown that the entries of D are 2 mod 4
and, exploiting that G is symmetric, that the entries of B are 0 mod 4.

Next, we apply Theorem 2 to see that

det(G) 6 det(A) det(D).

Since the elements of A and D are all 2 mod 4, we can apply the bound of Theorem 8
with m = n and b = 2:

det(G) 6 (n+ 2(n− k)− 2)(n− 2)n−k−1(n+ 2k − 2)(n− 2)k−1

= ((2n− 2)2 − (n− 2k)2)(n− 2)n−2.
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This bound is maximised when n− 2k = 0, or, equivalently, when k = n/2.
The bound is attained when equality holds in both Fischer’s inequality, which requires

that B = 0, and in the Ehlich–Wojtas bound with b = 2, characterised by Corollary 9.

A little further work gives a necessary Diophantine condition for the existence of a
matrix meeting the bound of Theorem 19.

Theorem 20. If M is an n × n matrix meeting the bound of Theorem 19 with equality,
then 2n− 2 is the sum of two squares.

Proof. Suppose that M meets the bound of Theorem 19. Then there exists a signed
permutation matrix P1 such that P1MM>P>1 = G, where G is the Gram matrix given
in the theorem statement. By the argument of Theorem 19, any Gram matrix with
determinant equal to det(G) is similar to G by permutation and negation of rows and
columns. Because det(MM>) = det(M>M), there exists another signed permutation
matrix P2 such that P2M

>MP>2 = G. Let N = P1MP>2 . Then

NN> = P1MM>P>1 = G, N>N = P2M
>MP>2 = G.

Thus N commutes with N>, and it follows that N commutes with G. It will be convenient
to write

N =

(
A B
C D

)
,

where all blocks are n/2 × n/2, as established in the proof of Theorem 19. We then see
that XJ = JX for all X ∈ {A,B,C,D}. But XJ is constant on rows, while JX is
constant on columns. We conclude that XJ = JX = xJ , where all row and column sums
of X are equal to x. To conclude the proof, consider the matrix product(

J 0
0 J

)(
A B
C D

)(
A B
C D

)>(
J 0
0 J

)
.

Evaluating the product of the first two and the last two matrices, we obtain(
aJ bJ
cJ dJ

)(
aJ bJ
cJ dJ

)>
=

(
(a2 + b2)J2 (ac+ bd)J2

(ac+ bd)J2 (c2 + d2)J2

)
.

On the other hand, evaluating NN> first, we obtain(
J 0
0 J

)(
(n− 2)I + 2J 0

0 (n− 2)I + 2J

)(
J 0
0 J

)
=

(
(2n− 2)J2 0

0 (2n− 2)J2

)
.

Equating these expressions, we conclude that a2 + b2 = 2n− 2, as required.

It is possible to continue the argument of Theorem 20 a little further: from ac = −bd
and a2 + b2 = c2 + d2, it follows that a = ±d and b = ∓c. So matrices attaining the
bound of Theorem 19 are intimately related to sums of two squares. The well-known
characterisation of Fermat shows that an integer fails to be a sum of two squares if and
only if its square-free part is divisible by a prime p ≡ 3 mod 4; see, for example, [29].
From Theorem 18 we obtain matrices meeting the bound of Theorem 19.
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Corollary 21. Let W be a matrix of order n ≡ 1 mod 4 meeting the bound of Theorem 12.
Then (

W W
W −W

)
is a matrix of order 2n ≡ 2 mod 4 which meets the bound of Theorem 19.

Proof. Compute the Gram matrix: the off-diagonal blocks are 0, while the diagonal blocks
are of the form 2WW> = (2n− 2)In + 2Jn.

Of course, not every maximal determinant matrix arises from Corollary 21. As ob-
served by Koukouvinos, Kounias and Seberry, a construction of Spence using difference
sets and projective planes yields a second infinite family. Note that (2q + 1)2 + 1 =
2(2q2 + 2q + 1).

Theorem 22 (Theorem 1, [48]; Theorem 2, [32]). For any odd prime power q there exists
a pair of circulant matrices R and S of order v = q2 + q + 1 with entries {±1} such that

RR> + SS> = (2v − 2)Iv + 2Jv.

The matrix (
R S
S> −R>

)
has maximal determinant. The row-sums of R are all equal to 2q + 1 and the row sums
of S are −1.

For an odd prime power q, Corollary 21 gives matrices of order 4q2 + 4q + 2 while
Theorem 22 gives matrices of order 2q2 + 2q + 2. To our knowledge, these are the only
known constructions for infinite families of maximal determinant matrices in dimensions
n ≡ 2 mod 4. The following result, seemingly due to Cohn, provides a denser family of
matrices which come within a factor of 2 of optimality.

Proposition 23 (Theorem 3, [14]). Let q ≡ 1 mod 4 be a prime power, and let Q be the

matrix obtained from the quadratic residue symbol by Qi,j = (i− j)q−1/2. Then the matrix

M =

(
Q+ I −jq
j>q 1

)
has order n = q + 1 and determinant n(n− 2)

n−2
2 .

Proof. Since q ≡ 1 mod 4, we have that −1 is a quadratic residue in Fq. So Q is symmetric
and by Proposition 5, QQ> = qI − J . In particular, the eigenvalues of QQ> are 0 with
multiplicity 1 and q with multiplicity q − 1. Since Tr(Q) = 0, the eigenvalues of Q are 0
with multiplicity 1, and ±√q each with multiplicity q−1

2
. We compute:

MM> =

(
(q + 1)Iq + 2Q 0

0 q + 1

)
.
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So the eigenvalues of MM> are: (q + 1) with multiplicity 2, and q + 1 ± 2
√
q each with

multiplicity q−1
2

. Hence

det(MM>) = (q + 1)2(q + 1 + 2
√
q)

q−1
2 (q + 1− 2

√
q)

q−1
2

= (q + 1)2(1 +
√
q)q−1(1−√q)q−1

= (q + 1)2(1− q)q−1

= (q + 1)2(q − 1)q−1.

Hence |det(M)| = (q + 1)(q − 1)
q−1
2 , within a multiplicative factor of q+1

2q−2 ∼
1
2

of the
bound of Theorem 19.

There are several other constructions in the literature for matrices of order n ≡ 2 mod 4
with large determinant. Brent and Osborn [8] consider submatrices of order n − 2
of a Hadamard matrix of order n. Brent, Osborne and Smith [9] add two rows and
columns to a Hadamard matrix. This work is discussed further in Section 7.1. We
conclude this section with an overview of known results for small orders. Computa-
tional results by Djoković and Kotsireas [20, 21] show that a pair of circulant matri-
ces R, S satisfying the identity RR> + SS> = (2n − 2)I + 2J exists at all orders n
for which 2n − 2 is a sum of two squares up to n = 198. As in Proposition 22,
such matrices easily yield maximal determinant matrices of order n. In contrast to
the Diophantine condition for matrices meeting the Barba bound, the condition that
2n − 2 be a sum of two squares is relatively easy to satisfy3: the only orders with
n ≡ 2 mod 4 with n 6 100 for which 2n − 2 is not a sum of two squares are n ∈
{22, 34, 58, 70, 78, 94}.

Recent work of Chasiotis, Kounias and Farmakis [13] addresses the smallest of these
cases, n = 22. Having identified two matrices with large determinant, they perform an
exhaustive search for potential Gram matrices with determinant exceeding those of their
examples, finding 25 such matrices. Each of these is excluded from being a Gram matrix,
and thus the maximal determinant is established to be 40 · 2010, with two inequivalent
Gram matrices being realisable. This should be compared to the bound 42 · 2010. To our
knowledge, the maximal determinant at any order greater than 22 satisfying n ≡ 2 mod 4
for which 2n− 2 is not a sum of two squares remains open.

7 Ehlich’s analysis of the case n ≡ 3 mod 4

Ehlich develops a bound for maximal determinants when n ≡ 3 mod 4 through a careful
analysis of the minors of such a matrix. These results were previously translated into
English and the analysis sharpened by Brent, Osborn, Orrick and Zimmerman [7], but we
include our analysis (which differs slightly from theirs) for the sake of completeness.

For each integer 1 6 m 6 n, define the following set of m×m matrices:

Cm = {M | mi,i = n, mi,j ≡ 3 mod 4, |mi,j| < n}.
3Recall that the only obstruction occurs when the square-free part of 2n − 2 has a prime divisor

p ≡ 3 mod 4. For example, for n = 22, we find that 2n− 2 = 42 is divisible by 3.
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The m×m minors of an n×n matrix with entries in {±1} all belong to Cm, though the set
does not consist exclusively of Gram matrices. We will study the maximal determinant
of an element of Cm, via inductive methods of the type that we have seen previously. In
contrast to previous proofs, the bounds typically cannot be met with equality. Denote
by γm the maximal determinant of an element of Cm.

Proposition 24. For all 1 6 m 6 n− 1, we have γm+1 > (n− 3)γm.

Proof. The proof is by induction. Observe first that

γ1 = n, γ2 = det

(
n −1
−1 n

)
= n2 − 1 > n(n− 3).

Suppose that γm > (n− 3)γm−1, and let C be the following (m+ 1)× (m+ 1) matrix,
chosen such that the top-left m × m minor is γm, and the last row and column are as
displayed:

C =

A a a
a> n 3
a> 3 n

.
We evaluate the determinant as follows:

det(C) = det

A a a
a> n 3
0 0 n− 3

+ det

A a a
a> n 3
a> 3 3


= (n− 3)γm + det

A a 0
a> n 3− n
0 3− n n− 3


= (n− 3)γm + ((n− 3)γm − (n− 3)2 det(A)).

But det(A) 6 γm−1 by definition, so the second term is (strictly) positive by the induction
hypothesis. Hence γm+1 > det(C) > (n− 3)γm.

Next, we show that an element of Cm having maximal determinant has, without loss
of generality, all off-diagonal elements from the set {−1, 3}.

Proposition 25. If det(C) = γm then, without loss of generality, ci,j ∈ {−1, 3}.

Proof. Suppose that C1 is a positive definite matrix in Cm with some entry α 6∈ {−1, 3},
and that det(C1) = γm. Then up to conjugation by a permutation matrix we may assume
that

C1 =

A a1 a2
a>1 n α

a>2 α n


where |α| > 3 and we further assume that

det

(
A a2
a>2 n

)
> det

(
A a1
a>1 n

)
. (10)
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If this does not hold, we may permute the final two rows and columns of C1 and replace
it with a similar matrix with the required property. By the argument of Proposition 24,
both matrices of Equation (10) are positive definite. Then let

C2 =

A a2 a2
a>2 n 3

a>2 3 n

.
We will show that det(C2) > det(C1), contradicting the assumption that C1 has maximal
determinant. As before, we use that the determinant is linear in the rows:

det(C1) = det

A a1 a2
0 n− 3 0

a>2 α n

+ det

A a1 a2
a>1 3 α

a>2 α n


= det

A a1 a2
0 n− 3 0

a>2 α n

+ det

A a1 a2
a>1 3 α

0 0 n− α2/3

+ det

A a1 a2
a>1 3 α

a>2 α α2/3

.
Denote the rightmost term in the expansion above by R. We have established that

the (n− 1)× (n− 1) submatrix at the top-left of R is positive definite. So R is positive
definite if and only if its determinant is positive. But the bottom-right 2 × 2 submatrix
of R is degenerate. So by Fischer’s inequality, if R were positive definite we would have
det(R) 6 det(A) · 0, which is a contradiction. Thus det(R) 6 0.

Discarding det(R) we have an upper bound for det(C1) as follows:

det(C1) 6 (n− 3) det

(
A a2
a>2 n

)
+ (n− α2/3) det

(
A a1
a>1 3

)
. (11)

Compute, in the same fashion, the determinant of C2:

det(C2) = det

A a2 a2
a>2 n 3

0 0 n− 3

+ det

A a2 a2
0 n− 3 0

a>2 3 3

+ det

A a2 a2
a>2 3 3

a>2 3 3

.
Again the third term vanishes, and the first two may be evaluated as before:

det(C2) = (n− 3) det

(
A a2
a>2 n

)
+ (n− 3) det

(
A a2
a>2 3

)
.

Comparing this with (11) and recalling the inequality (10), we get that det(C2) > det(C1)
and this inequality is strict if |α| > 3. We conclude that an element of maximal determi-
nant in Cm has entries in the set {−1, 3}.
Definition 26. Let Jt be the t × t matrix with all entries equal to 1. Define Bt =
(n− 3)It + 3Jt to be an Ehlich-block of size t. An Ehlich-block matrix is an n× n matrix
with Ehlich-blocks along the diagonal, and all other entries outside the Ehlich-blocks
equal to −1. To each Ehlich-block matrix there is associated a partition of n, given by
the Ehlich-block sizes.
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Theorem 27. If det(Cm) = γm then, up to similarity, Cm is an Ehlich-block matrix.

Proof. We follow the same proof strategy as in Proposition 25: we explicitly produce a
matrix with a larger determinant from an element of Cm which is not an Ehlich-block
matrix. Up to simultaneous permutation of rows and columns we may assume that the
matrices have the form

C1 =


A a1 a2 a3
a>1 n −1 3

a>2 −1 n 3

a>3 3 3 n

, C2 =


A a1 a3 a3
a>1 n 3 3

a>3 3 n 3

a>3 3 3 n

.
Without loss of generality, we assume that the principal minor obtained from deleting

the last row and column of C1 is less than or equal to the corresponding principal minor
of C2. (If not, we relabel the rows of C1 and redefine C2.) We evaluate the determinant
of C1 using linearity in the rows:

detC1 =det


A a1 a2 a3
a>1 n −1 3

a>2 −1 n 3

0 0 0 n− 3

+ det


A a1 a2 a3
a>1 n −1 3

a>2 −1 n 3

a>3 3 3 3



= det


A a1 a2 a3
a>1 n −1 3

a>2 −1 n 3

0 0 0 n− 3

+ det


A a1 a2 a3
a>1 n −1 3

0 0 n− 3 0

a>3 3 3 3

+ det


A a1 a2 a3
a>1 n −1 3

a>2 −1 3 3

a>3 3 3 3



= (n− 3)

det

A a1 a2
a>1 n −1

a>2 −1 n

+ det

A a1 a3
a>1 n 3

a>3 3 3

+ det


A a1 a2 a3
a>1 n −1 3

a>2 −1 3 3

a>3 3 3 3

.
As before, the rightmost term in this expression violates Fischer’s inequality, but has a

positive definite submatrix of order m − 1, so has non-positive determinant. Expanding
the determinant of C2 in the same way gives an expression where each term dominates
the corresponding term of det(C1), completing the proof.

Having established the maximal determinant of a matrix in the class Cn has the struc-
ture of Theorem 27, Ehlich evaluates the determinant in terms of the corresponding
partition n = r1 + r2 + . . .+ rs, obtaining

det(C) = (n− 3)n−s
s∏
i=1

(n− 3 + 4ri)

(
1−

s∑
i=1

ri
n− 3 + 4ri

)
.

Via a lengthy and intricate analysis, Ehlich obtains the following explicit result.
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Theorem 28 (Satz 3.3, [22]). For n ≡ 3 mod 4, the Ehlich-block matrix of maximal
determinant has the following structure:

1. The partition of n is into f(n) parts where f(n) = 5 for n = 7, 11 and f(n) = 6 for
11 6 n 6 59 and f(n) = 7 for all n > 59.

2. Each part has size bn/f(n)c or dn/f(n)e, and this partition is uniquely determined.

For n> 63, an explicit upper bound on the maximal determinant of an n×n matrix M is

det(MM>) 6
4 · 116

77
n(n− 1)6(n− 3)n−7.

In fact, no matrices are known which achieve the bound given by Ehlich. Inspecting
the approximations made during the proof, this is perhaps unsurprising: already in the
n = 2 case of Proposition 24, the approximations are not sharp. Detailed but elementary
analysis of the proof of Theorem 28 shows that equality in the bound could be achieved
if and only if n = 7m. Cohn [15] has shown using number theoretic techniques that the
Ehlich bound is integral only when n is of the form 112t2 ± 28t + 7, while Tamura [51]
has applied the Hasse–Minkowski criteria for equivalence of quadratic forms to show that
the smallest order at which the Ehlich bound could be achieved is at least 511. On the
other hand, Ehlich’s bound is asymptotically optimal up to some constant factor.

Orrick [41] attributes the solution of the maximal determinant problem at orders
n = 3, 7 to Williamson and n = 11 to Ehlich. In the same paper, Orrick determines
the maximal determinant of order 15. The corresponding Gram matrix has three Ehlich-
blocks of size 4 and one of size 3. Later work of Brent, Osborn, Orrick and Zimmermann [7]
computed the maximal determinant at order 19. At both orders, the technique used is
a careful refinement of the method of Chadjipantelis, Kounias and Moyssiadis [12]: a
candidate matrix with large determinant is identified, its Gram matrix is computed, and
all symmetric positive definite matrices with larger determinant are ruled out as Gram
matrices. Interestingly, at order 19, the matrices with largest determinant are not Ehlich-
block matrices though they contain 18× 18 submatrices which are in Ehlich-block form.
Bounds on the maximal determinant for n ≡ 3 mod 4 are described in Table 1 at the end
of the paper.

7.1 Improved lower bounds for n ≡ 3 mod 4

We finish with an investigation of direct constructions for {±1}matrices with n ≡ 3 mod 4
having large determinant. First we describe results of Brent, Osborn and Smith using the
probabilistic method. Recall that in Proposition 13, a Hadamard matrix was augmented
by a row and column of 1’s to obtain a matrix with n ≡ 1 mod 4 and large determinant.
Even when using the optimal Hadamard matrices for this method (those with maximal
excess), the ratio of the determinant obtained to the bound of Corollary 10 tends to zero
as n tends to infinity. A remarkable generalisation of this result was obtained by Brent,
Osborn and Smith [9], in which multiple rows and columns are added to a Hadamard
matrix. Columns are chosen uniformly at random, while the rows added are chosen
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deterministically. Via careful analysis, the authors show that the ratio of the determinant
to the Hadamard bound does not tend to 0 as n tends to infinity. The reader is referred
to the original paper for the proof of the following result.

Theorem 29 (Theorem 3.6, [9]). If 0 6 d 6 3, and h is the order of a Hadamard matrix
then there exists a matrix M of order n = h+ d such that(

2

eπ

)d/2
nn/2 6 det(M) 6 nn/2 .

A more general result is possible in which the parameter d is not bounded, but all
results obtained by these methods contain a factor (2/eπ)d/2. Thus results obtained by
this method decay exponentially in the distance to the nearest Hadamard matrix, but
are independent of the order of the matrix. In the case n ≡ 3 mod 4, we set d = 3 in
Theorem 29 to obtain a constant 0.1133. But this comparison is to the Hadamard bound:
as n → ∞ the ratio of the Ehlich and Hadamard bounds tends to 0.4284, so that for
sufficiently large n, Theorem 29 shows that whenever there exists a Hadamard matrix of
order n there exists a matrix of order n+ 3 achieving at least 0.264 of the Ehlich bound.
As a special case of this result, we highlight the following.

Corollary 30. If p ≡ 3 mod 4 is a prime, then there exists a {±1} matrix of order p+ 4
which achieves 0.264 of the Ehlich bound.

Now we analyse two constructions which have appeared in the literature: a con-
struction of Orrick, Solomon, Dowdeswell and Smith [43] using skew-Hadamard matrices
(though we state the result only for Paley cores); and a generalisation, inspired by Propo-
sition 13, of a construction of Neubauer and Radcliffe [39].

Proposition 31. Let Q be the Paley core matrix of order q, let

R = jq ⊗

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

, H4 =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


and let P = Q⊗H4 − Iq ⊗ J4. Then

M =

(
P R>

R J3

)
is a matrix of order 4q + 3 with det(MM>) = 16(4q)3q+3(4q + 16)q−1.

Proof. Let T = 4qI4q + 4Iq ⊗ J4 − J4q and v = jq ⊗ (3,−1,−1,−1). The Gram matrix of
M has the form

MM> =


T v> v> v>

v 4q + 3 3 3
v 3 4q + 3 3
v 3 3 4q + 3

.
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Subtract row 4q + 2 from row 4q + 3, then subtract row 4q + 1 from row 4q + 2, and
similarly for columns. Then use linearity of the determinant in row 4q + 1:

det(MM>) = det


T v> 0 0
0 4q + 3 −4q 0
0 −4q 8q −4q
0 0 −4q 8q

+ det


T v> 0 0
v 0 0 0
0 −4q 8q −4q
0 0 −4q 8q

.
Since these matrices are respectively block-upper triangular and block-lower triangular,
the determinant may be evaluated as follows:

det(MM>) = (64q3 + 144q2) det(T ) + 48q2 det

(
T v>

v 0

)
.

Standard techniques suffice to evaluate the determinant of T , which is det(T ) =
16(4q)3q(4q + 16)q−1. The determinant of the bordered matrix may be computed via
the Schur complement method4, evaluating to (−3) det(T ). The result follows:

det(MM>) = (4q)3 det(T ) = 16(4q)3q+3(4q + 16)q−1 .

In line with previous theorems, we state Proposition 31 for Paley cores, but the result
holds more generally whenever there exists a skew-Hadamard matrix of order q + 1. In
particular this holds for q = 15.

In dimension 4q+3, the Ehlich bound takes the form 4·116 ·7−7(4q+3)(4q+2)6(4q)4q−4.
Cancelling common factors, the ratio of the determinant of the Gram matrix of Orrick,
Solomon, Dowdeswell and Smith to the Ehlich bound is

287q7

116(4q + 4)(4q + 2)6(q + 4)

(q + 4)q

qq
.

Taking the limit as q → ∞, the second fraction tends to e4, while the first tends to 0.
For small prime powers the construction yields matrices remarkably close to the Ehlich
bound. Some explicit computations are given in Table 1.

We now begin the analysis of the second construction, described in Proposition 33.

Lemma 32. For real numbers a, b, c, d, the eigenvalues of the 2k × 2k matrix

M =

(
aI + bJ cJ
cJ aI + dJ

)
are kr1 + a and kr2 + a with multiplicity 1 where the ri are the roots of the equation
λ2 − (b + d)λ + (bd − c2), and the eigenvalue a with multiplicity 2k − 2. This implies
det(M) = (a2 + ak(b+ d) + k2(bd− c2))a2k−2.

4It would be remiss of the authors to finish this survey without commenting on the practical evaluation
of determinants. Computing the rank of T − 4qI easily gives the multiplicity of 4q as an eigenvalue, for
example, and the remaining factors of the determinant are only slightly more difficult to guess and verify.
Via Cauchy interlacing, one sees that (4q)3q−2(4q+16)q−2 divides the determinant of the bordered matrix.
The quotient is a polynomial function of degree at most 5. Evaluating the determinants of a few small
matrices computationally and solving a polynomial interpolation problem, the result follows. For much
more on the evaluation of determinants, see the work of Krattenthaler [34].
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Proof. If (
b c
c d

)(
x1
x2

)
= λ

(
x1
x2

)
, then

(
bJ cJ
cJ dJ

)(
x1jk
x2jk

)
= kλ

(
x1jk
x2jk

)
.

Since M − aI2k clearly has rank 2, all other eigenvalues are zero. The eigenvalues of
M are of the form a + λ where λ is an eigenvalue of M − aI, so the result follows. The
determinant evaluation follows by identifying the sum and product of the eigenvalues with
the trace and determinant of the 2× 2 matrix, respectively.

The proof of the next result is identical for the displayed matrices. The matrices
of Corollary 21 are in the form of matrix M1 while those of Theorem 22, and those
constructed by Djoković and Kotsireas are in the form of matrix M2.

Proposition 33. Suppose that R and S are k × k matrices satisfying the identities

RJ = JR = rJ, SJ = JS = sJ, RR> + SS> = (2k − 2)I + 2J.

Let

M1 =

R S j>k
S −R −j>k
jk jk 1

, M2 =

 R S j>k
S> −R> −j>k
jk jk 1

.
Then

det(MiM
>
i ) = (4k2r2 − 16k2r + 16k2 − 16k + 8kr + 4)(2k − 2)2k−2

with the condition that RS> = SR> for M1 and no additional condition for M2.

Proof. Given the hypotheses, it may be computed directly that

MiM
>
i =

(2k − 2)I + 3J −J (1 + r + s)j>k
−J (2k − 2)I + 3J (−1− r + s)j>k

(1 + r + s)jk (−1− r + s)jk 2k + 1

.
Subtracting multiples of the last row, we clear the last column:(2k − 2)I + bJ cJ 0

cJ (2k − 2)I + dJ 0
(1 + r + s)jk (−1− r + s)jk 2k + 1

,
where b = 3− (1+r+s)2

2k+1
, c = −1− (1+r−s)(1+r+s)

2k+1
and d = 3− (−1−r+s)2

2k+1
. Applying Lemma 32

to the sub-matrix complementary to the last row and column with a = 2k−2 and b, c, d as
given, with simplification performed in MAGMA [6], we obtain the following factorisation
of the determinant:

(48k3 − 8k2r2 − 16k2r − 12k2s2 − 24k2 + 4kr2 + 8kr + 4ks2 − 8k + 4)(2k − 2)2k−2.

Recall that r2 + s2 = 4k − 2, and eliminate the s2 terms:

det(MiM
>
i )

= (48k3−12k2(r2+s2)+4k2r2−16k2r−24k2+4k(r2+s2)+8kr−8k+4)(2k−2)2k−2

= (4k2r2−16k2r+16k2−16k+8kr+4)(2k−2)2k−2.
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In Proposition 33 the result appears asymmetric in r and s. In fact, from a pair of
matrices R, S satisfying RR> + SS> = (2k − 2)I + 2J , four different determinants are
obtained, depending on the row-sum of the matrix on the principal diagonal, which is
drawn from {±r,±s}. For sufficiently large values of k, the terms 4k2r2−16k2r dominate
and the determinant is maximised when r is large and negative.

Theorem 34. Let M be a matrix of order n = 2k+1 as in Proposition 33, with r2 +s2 =
4k − 2. Then det(M) achieves a fraction at least r2/3n of the Ehlich bound.

• A matrix exceeding 0.34 of the Ehlich bound exists of order n = 4q2 +4q+3 for each
prime power q > 379. A matrix exceeding 1

3
of the bound exists for each q > 47.

• A matrix exceeding 0.48 of the Ehlich bound exists of order n = 2q2 +2q+3 for each
q > 233. A matrix exceeding 0.47 of the bound exists for each q > 43.

Proof. In terms of k, the Ehlich bound is 4 ·116 ·7−7(2k+1)(2k)6(2k−2)2k−6. Let r and s
be the constant row sums of a matrix achieving the Ehlich–Wojtas bound. Without loss
of generality, we may assume that |r| > |s| and r < 0. Since r2 + s2 = 4k − 2, it follows
that −

√
4k − 2 6 r 6 −

√
2k − 1. It will be convenient to write r = −α

√
2k − 1 where

1 6 α 6
√

2. So Proposition 33 gives a matrix with determinant bounded below by

det(M) = (4k2r2 − 16k2r + 16k2 − 16k + 8kr + 4)(2k − 2)2k−2

> (4α2k2(2k − 1) + 16αk2
√

2k − 1 + 16k2 − 16k − 8αk
√

2k − 1 + 4)(2k − 2)2k−2

> (8α2k3 + 16α
√

2k5/2)(2k − 2)2k−2,

where moving from the first line to the second we use that 4k2r2 − 16k2r + 8kr grows
as r 6 −

√
2k − 1 tends towards −

√
4k − 2. Moving from the second line to the third

we observe that the sum of the discarded terms is positive and increasing for all k > 4.
Cancelling common factors, the ratio to the Ehlich bound is at least

(8αk3 + 16
√

2αk5/2)(2k − 2)4

4·116
77

(2k + 1)(2k)6
=

77

4 · 116

(
α2k3 + 2

√
2αk5/2

)
(k − 1)4

k7 + (1/2)k6

=
77

4 · 116

α2k7 + 2
√

2αk13/2 − 4k6 +O(k11/2)

k7 + (1/2)k6
.

Setting α = 1 corresponds to row sums r = s in the maximal determinant matrix of
order n ≡ 2 mod 4. Taking the limit as k → ∞ gives 77

4·116 ∼ 0.1162 which is a ratio of
the determinants of Gram matrices. Taking a square root gives the claimed lower bound√

77 · 2−2 · 11−6 ∼ 0.34. A computation shows that the ratio exceeds 1
3

for n > 8563 and
exceeds 0.34 for n > 569659. The bound 4q2 + 4q + 3 > n holds for prime powers q > 47
and q > 379 respectively.

Setting α =
√

2 corresponds to setting r ∼
√

4k − 2 while s is bounded. Evaluating
the displayed equation yields a determinant achieving

√
77 · 2−1 · 11−6 ∼ 0.48 of the Ehlich

bound. The row sums of Corollary 21 satisfy r = s, while those of Theorem 22 satisfy
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r2 = 4k − 3 and s2 = 1. A computation shows that the ratio exceeds 0.47 for n > 3571
and exceeds 0.48 for n > 106357. The bound 2q2 + 2q + 3 > n holds for prime powers
q > 43 and q > 233 respectively.

Note that while the constant of Corollary 30 is smaller than that obtained in Theo-
rem 34, the set of orders at which these matrices exist is much denser.

We conclude with a table of large determinants for n ≡ 3 mod 4, with 23 6 n 6 99.
Following Brent and Yedidia [10], we display the Barba bound for n 6 59 and the Ehlich
bound for n > 63. In all cases we report the ratio of the determinant of the constructed
matrix with the bound given in the second column.

The construction of Koukouvinos, Mitrouli and Seberry [33] uses minors of Hadamard
matrices and symmetric designs5. We use Proposition 31 to obtain the entries of the fourth
column and the results of Djoković and Kotsireas [21], together with Proposition 33, to
obtain the entries of the fifth column.

n Upper Bound KMS [33] Prop. 31 Prop. 33 Computation

23
√

45 · 2211 0.3882 - - 0.7091

27
√

53 · 2613 0.3600 - 0.3639 0.7359

31
√

61 · 3015 0.3371 0.7060 0.4354 0.7278

35
√

69 · 3417 0.3181 - - 0.7141

39
√

77 · 3819 0.3020 - 0.3853 0.7253

43
√

85 · 4221 0.2881 - 0.4477 0.7358

47
√

93 · 4623 0.2760 0.7035 0.4273 0.7035

51
√

101 · 5025 0.2653 - 0.3347 0.6481

55
√

109 · 5427 0.2557 - 0.3936 0.6544

59
√

117 · 5829 0.2471 - - 0.7351
63 µ · 631/2 · 623 · 6028 0.2878 0.8146 0.5216 0.9662
67 µ · 671/2 · 663 · 6430 0.2808 - 0.4296 0.8635
71 µ · 711/2 · 703 · 6832 0.2742 - - 0.8804
75 µ · 751/2 · 743 · 7234 0.2608 - 0.4834 0.8613
79 µ · 791/2 · 783 · 7636 0.2623 0.7921 - 0.8591
83 µ · 831/2 · 823 · 8038 0.2569 - 0.3909 0.8561
87 µ · 871/2 · 863 · 8440 0.2517 - 0.5222 0.8527
91 µ · 911/2 · 903 · 8842 0.2469 - 0.5117 0.8501
95 µ · 951/2 · 943 · 9244 0.2424 0.7653 - 0.8447
99 µ · 991/2 · 983 · 9646 0.2380 - 0.4925 0.8496

Table 1: Large determinants with n ≡ 3 mod 4, where µ =
√

4 · 116 · 7−7.
5Koukouvinos, Mitrouli and Seberry provide two bounds in orders of the form n = 4t2. From a

maximal minor of a normalised Hadamard matrix, one obtains a matrix with determinant (4t2)2t
2−1.

From the {±1}-incidence matrix of a design with parameters (4t2, 2t2 + t, t2 + t) one obtains a matrix

with determinant 2t · (4t2)2t
2−2. The first bound always exceeds the second, but a mis-transcription of

the second bound appears in Table 2 of [33].
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For many years, Orrick maintained a webpage listing the largest known determinant
at orders up to 120. While this page is no longer available it can be accessed via the
WayBack Machine [40]. The entries in the last column of Table 1 are drawn from this
source. For n 6 59, the bound given in Table 1 is not the best known, so the ratios
computed in the final column differ from the values computed by Orrick.
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[3] I. Bengtsson and K. Życzkowski. Geometry of quantum states. An introduction to
quantum entanglement. Cambridge University Press, 2nd edition, 2017.

[4] M. Best. The excess of a Hadamard matrix. Indagationes Mathematicae, 80(5):357–
361, 1977.

[5] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2nd edition, 1999.

[6] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I: The user
language. J. of Symbolic Comput., 24:235–265, 1997.

[7] R. P. Brent, W. Orrick, J. H. Osborn, and P. Zimmermann. Maximal determinants
and saturated D-optimal designs of orders 19 and 37. arXiv:1112.4160, 2011.

[8] R. P. Brent and J. H. Osborn. General lower bounds on maximal determinants of
binary matrices. Electron. J. Combin., 20(2): #P15, 2013.

[9] R. P. Brent, J. H. Osborn, and W. D. Smith. Probabilistic lower bounds on maximal
determinants of binary matrices. Australas. J. Combin., 66:350–364, 2016.

[10] R. P. Brent and A. B. Yedidia. Computation of maximal determinants of binary
circulant matrices. J. Integer Seq., 21(5): art. id. 18.5.6, 2018.

[11] A. E. Brouwer. An infinite series of symmetric designs, volume 202 of Afdeling
Zuivere Wiskunde. Mathematisch Centrum, Amsterdam, 1983.

the electronic journal of combinatorics 28(4) (2021), #P4.41 32

https://arxiv.org/abs/1112.4160


[12] T. Chadjipantelis, S. Kounias, and C. Moyssiadis. The maximum determinant of
21 × 21 (+1,−1)-matrices and D-optimal designs. J. Statist. Plann. Inference,
16(2):167–178, 1987.

[13] V. Chasiotis, S. Kounias, and N. Farmakis. The D-optimal saturated designs of order
22. Discrete Math., 341(2):380–387, 2018. Corrigendum: ibid 342(7):2161, 2019.

[14] J. H. E. Cohn. On determinants with elements ±1. II. Bull. London Math. Soc.,
21(1):36–42, 1989.

[15] J. H. E. Cohn. Almost D-optimal designs. Util. Math., 57:121–128, 2000.

[16] R. Craigen. A direct approach to Hadamard’s inequality. Bull. Inst. Combin. Appl.,
12:28–32, 1994.

[17] R. Craigen. Signed groups, sequences, and the asymptotic existence of Hadamard
matrices. J. Combin. Theory Ser. A, 71(2):241–254, 1995.

[18] R. Craigen, J. Seberry, and X. M. Zhang. Product of four Hadamard matrices. J.
Combin. Theory Ser. A, 59(2):318–320, 1992.

[19] W. de Launey and D. Flannery. Algebraic design theory. Mathematical Surveys and
Monographs, vol. 175. American Mathematical Society, Providence, RI, 2011.
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