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Abstract
Objective
The NEX project has developed an integrated Internet of Things (IoT) system coupled with data analytics to offer
unobtrusive health and wellness monitoring supporting older adults living independently at home. Monitoring currently
involves visualising a set of automatically detected activities of daily living (ADLs) for each participant. The detection of
ADLs is achieved to allow the incorporation of additional participants whose ADLs are detected without re-training the
system.
Methods
Following an extensive User Needs and Requirements study involving 426 participants, a pilot trial and a friendly trial
of the deployment, an Action Research Cycle (ARC) trial was completed. This involved 23 participants over a 10-week
period each with c.20 IoT sensors in their homes. During the ARC trial, participants each took part in two data-informed
briefings which presented visualisations of their own in-home activities. The briefings also gathered training data on the
accuracy of detected activities. Association rule mining was then used on the combination of data from sensors and
participant feedback to improve the automatic detection of ADLs.
Results
Association rule mining was used to detect a range of ADLs for each participant independently of others and was then
used to detect ADLs across participants using a single set of rules for each ADL. This allows additional participants to
be added without the necessity of them providing training data.
Conclusions
Additional participants can be added to the NEX system without the necessity to re-train the system for automatic
detection of the set of their activities of daily living.
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Introduction

Using IoT technologies, the use of ambient sensors to detect
activities in the homes of older or more vulnerable people
has grown in recent years1. In its basic form, the use case for
this has been to record and visualise the raw data from actual
sensor triggers and activations and to present aggregated
views of this data spanning days, weeks or even months. This
allows a clinician, a caregiver or a family member to observe
whether certain sensors have been triggered or not. In turn
it also allows an observer to use their observation of sensor
activations to deduce whether or not higher level activities
to do with eating, cleaning or social interaction with others,
have taken place. For example if IoT sensors on the kettle and
on the doors to the cupboards where cups, tea and sugar are
stored are all activated within a short time frame during the
morning, then the observer could infer that a mid-morning
tea or coffee was made.

Visualising raw data from sensors can allow patterns
of in-home behaviour to be observed but this is far more
challenging because typically there are a large number of

sensor activations that are not connected with the higher
level activities which we may wish to observe as well as
the general visual “noise” from visualising so much data.
For example, just because a sensor on the entrance door
to a home has been activated does not mean the occupant
has left or arrived, the activation could have been caused
by a caller to the home, or by a delivery. It is only by
looking at combinations of sensor activations in occasions
of ADL activities that the actual behaviour can be accurately
determined. So if presence sensors in more than one part of
the home are simultaneously activated after the entrance door
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Figure 1. Visualisation of raw sensor data from a participant’s home showing activations of 16 different sensors categorised into
motion, environmental, electrical device use and contact sensors (y-axis). The data visualisation spans 7 days (x-axis) with the
weekend (March 18th and 19th) highlighted.

sensor has been activated that implies there is a caller to the
home.

While the approaches to gathering and visualising raw
sensor activations are useful, their limitation is that they
place the burden on the clinician or observer to interpret
raw sensor activations into higher level activities which
correspond to the things that people do in their everyday
life by grouping combinations of sensor activations. This
can be seen in Figure 1 from our deployed system showing
one week of raw sensor data from a participant’s home. A
total of 16 sensors are deployed including motion sensors, 6-
in-1 environmental sensors, smartplugs and contact sensors
on doors and presses. While scanning this visualisation
can reveal daily daytime and evening patterns of activities
particularly in the kitchen and other rooms, it is difficult to
get an overall view and especially to extend an overall view
of activities into multiple weeks

Activities of Daily Living (ADLs) are a set of known,
pre-defined and agreed daily physical or movement activities
which most people will carry out and which correspond to
the skills required to manage our basic physical needs2.
Proposals for what make up a definitive set of ADLs have
been around for many years3 and some have been revised
since those first proposals and specialised for areas including
activities for people with dementia and activities for stroke
patients4–6. Even with such subject specialisms, the set of
ADLs commonly used today are fairly stable2.

ADLs are typically used to provide a summative
assessment of whether a person is able to reach a certain
level of movement and to competently complete basic
tasks so self-manage their lives and typically this would

be used in assessments of older citizens7. ADLs are
essential and routine tasks that most healthy individuals can
perform without assistance3. The inability to accomplish
essential activities of daily living may lead to unsafe
conditions, poor quality of life and may be indicative of a
physical or cognitive disability in older adults. Eligibility
for home care is frequently associated with deficits in
ADL ability8,9. Assessment of ADLs through self-reported,
observed or objective data provides evidence to individuals
and caregivers on existing baselines and potential deficits in
self-care ability and supports potential interventions which
may be required for continued independence.

The state of the art in the field of recognition of
activities of daily living is already well developed as shown
by systematic reviews published within the last decade
including10–14. These works describe a field which has
received much attention because it is an important topic and
it has a very practical and useful nature.

In this paper we present a technique to automatically
detect a subset of common ADLs from raw sensor data in
the homes of older citizens living alone and to “tag” their
routine behaviour. The sensors used in our study of ADL
generation are not wearable sensors but are in-situ sensors
in the home though participants did use a smartwatch which
was not used in this study. The set of ADLs are chosen as
indicators of routine everyday behaviour. The ability to infer
and visualise higher level activities as well as viewing the
raw sensor data means that caregivers and family, as well as
participants themselves, can assess behaviour and behaviour
changes over time in a more natural and intuitive way.
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The technique we use for inferring ADLs uses association
rule mining and relies on an initial set of manual annotations
from participants but once this is in place we can incorporate
additional participants without the necessity for further
manual annotation. While our approach to ADL detection is
data-driven, other approaches to ADL detection have been
taken including a knowledge-driven approach in15 which
uses domain knowledge, structured ontologies and semantic
reasoning to disambiguate potential conflicts. The focus of
the work in15 is on real-time detection of ADLs as they
happen, in an incremental way hence the use of semantic
reasoning and ontologies to disambiguate. In the work in this
paper the detection of ADLs happens retrospectively, at the
end of each day because our use case does not require real-
time detection.

The work which is possibly closest to what we report
here is a series of works by researchers from INRIA
in France16,17. Their work involved several older healthy
participants, living normally in their homes and targeting a
range of daily activities to detect while using sensor data to
assist in the detection. That work culminated in a method to
detect 6 generic activity types including meal preparation,
leaving the home, and dressing/waking up which overlap
with the ADLs we use in this paper, and was tested on 5
adults over a short period of 5 days18. In that work the target
was activity verification where the participants’ declarations
of their own daily activities were refined with sensor logs
and visualised for them for confirmation. The work we report
in this paper targets detection of similar activities of daily
living but we take a more data-driven approach, are less
reliant on participants’ self-verification of their activities and
our experiments are larger with more participants and over a
longer period of data logging.

Methods
The overall aim of the Action Research Cycle Trial
(ARC) trial was to investigate the technical performance
and participant evaluation of a refined version of the
NEX system. Ethical approval to conduct the ARC trial
was obtained from the Dublin City University Research
Ethics Committee (DCUREC202221) on 25/1/2022. The
NEX ARC Trial was advertised through various networks
including the Age Friendly University, Dublin City
University and NEX study social media platforms. Eligibility
criteria to participate in the trial included: demonstrated
capacity to provide written consent as determined by
a cognitive assessment19, willingness to provide written
informed consent to participate, aged 60 years or over,
with or without one or more stable chronic condition/s,
fully vaccinated against COVID-19 and had an active Wi-Fi
connection at home. Older adult participants were enrolled
to the study for a 10-week period if they met the eligibility
criteria.

Between January 2022 and July 2022, twenty-six healthy
older adults (aged 60 years and over) who were living
independently at home in the community participated in the
trial. The gender profile was predominantly female (81%
n=21) with a total population mean age of 73.2 years. All
participants resided in Dublin, Ireland (100% n=26) and
the majority lived in urban locations (96% n=25). This

was a well-educated sample as 65% (n=17) received third
level education. The majority of participants within this
sample present as independent and high functioning as only
8% (n=2) reported difficulties in completing activities of
daily living (ADLS) such as dressing etc. and only 4%
(n=1) reported difficulties in completing more complex tasks
defined as instrumental activities of daily living (IADLS)
such as shopping for groceries etc. Three participants
dropped out and one participant was no longer able to stay
involved with the trial as her Wi-Fi connection was deemed
too weak to support the NEX system on inspection by the
technical engineer during a site visit, resulting in a final
sample of n=22.

The research team devised a study design which greatly
minimised face-to-face contact with participants in an effort
to minimise the risk of COVID-19 spread. This meant that
the majority of study visits were completed over Zoom. After
enrolment to the trial, participants met with a researcher
on Zoom to complete a demographics questionnaire, a
questionnaire about technology use, and a compilation
of health and well-being assessments. Additionally during
these research calls, the researcher completed a home
configuration assessment in collaboration with participants.
The purpose of this home configuration was to inform the
research team about the participant’s home layout and their
routine so that decisions about the appropriate placement of
IoT sensors and smart plugs could be made. The assessment
consisted of a number of questions e.g. the type of home
where the participant lived, number of rooms, number of
external doors, doors used most often, the layout of the
participants’ kitchen, which cabinets were used to store food,
what appliances were used most frequently, etc.

During a second visit, a researcher and technical engineer
visited the participant in their home environment to
facilitate the installation of the NEX system technology.
The researcher, technician and participant complied with a
very strict COVID-19 study protocol which was developed
by the research team and consisted of antigen testing prior
to, and mask wearing during, home visits. The researcher
and technician used home configuration assessment with
the participant in Visit 1 to determine the most appropriate
placement of preconfigured technology. The NEX system
design consisted of a range of IoT technologies, including
a smartwatch (for measurement of sleep and step count),
voice activated assistant (entertainment and reminder
functionality), contact sensors (detecting activity around the
home and opening and closing of doors and cupboards),
smart plugs (measuring energy use of appliances), motion
sensors (detecting movement, temperature, humidity, and
light in the home), hub (a central connection point for sensor
devices), tablet (display NEX system data to participants),
and a cloud hosted secure device management platform.

The technologies were deployed in combination to
facilitate the detection of some of the key ADLs from
participants’ in-home sensor and smart plug use data over
the trial period. Face-to-face training on the technology was
provided to participants at the time of installation, and a
training manual and a series of training videos were also
provided. Throughout the remainder of the ARC trial the
researchers met with 19 of the 23 participants individually on
two subsequent occasions over Zoom and met with the other
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4 once, to present them with a snapshot of raw data that was
collected via the NEX technologies in the previous 24 hours.
In preparation for these, sensor data for each participant was
pre-processed to generate candidate occurrences of ADLs.
These were presented to participants for validation and the
briefings also included gathering recollections of in-home
activities in the day or days immediately preceding the
briefings e.g. confirming What time did they have breakfast
at? etc. These provided training data for subsequent ADL
detection.

At the end of the ARC trial the technical engineer
visited the participant in their home and removed all
of the technology. During the final research visit, the
researcher interviewed participants about their experience
of the trial and the NEX technology and completed an
assessment of the system acceptability and usability (adapted
version of the Technology Acceptance Model20 and System
Usability Scale21. The researcher also repeated the health
and wellbeing measures administered at the start of the trial
to investigate whether having NEX installed in participants’
homes for the duration of the trial affected their wellbeing
and other aspects of life.

While there are many individual ADLs we could focus
on, we balanced the value of different ADLs given
the characteristics and demographics of the ARC trial
participants against the feasibility of detecting ADLs given
the sensors which were deployed in their homes. After much
consideration and taking the requirements of the clinical
partners into consideration we focused on 4 ADLs and
grouped each with a set of in-home sensors which could be
used to detect them automatically. These ADLs are presented
in Table 1. Increasing the number of ADLs would not affect
the validity of our approach since each additional ADL
would be grouped with a set of sensors needed to detect it
and each additional ADL would have its own set of rules for
detection. Table 1 shows that the sets of in-home sensors used
for each ADL in this work do not overlap but even if they did,
that would not affect the performance of ADL detection.

To turn the training data for ADL occurrence into
automatic detection of ADLs we examined different machine
learning techniques that could be used to build classifiers
to recognise ADLs. Within the field of machine learning,
deep learning approaches are regarded as best in terms
of accuracy but their downside is that they need much
training data in order to be reliable22. In addition, once the
models have been created they cannot offer any explanation
for recommendations or outputs that they generate23. Our
application has limited amounts of training data because
there are only so many times we can ask participants to
indicate when they had eating, sleeping, bathing or other
ADL activities before user fatigue sets in and the quality
of the annotations deteriorates. Our participants and our
clinical partners are also wary of black box machine learning
precisely because they have no explanation capabilities.

Association rule mining (ARM) is a machine learning
technique which automatically develops conditional rules
based on input data such as sensor data readings and
annotated training data24. It is a technique which has been
around for many years and used successfully in a wide range
of applications25.

As the name implies, association rules are a series of
if/then statements that aid the discovery of relationships
between seemingly unrelated data collections. ARM seeks
to identify recurring patterns, correlations, or relationships
in datasets. A rule generated by the ARM process has two
parts, and antecedent and a consequent. An item found in a
data collection is called an antecedent, and an item found in
combination with an antecedent is called a consequent. For
instance consider the following:

“A participant is 90% more likely to watch television when
he/she is having breakfast.”

In this case, breakfast is the antecedent and watching TV
is the consequent in the association rule above.

The process of developing sets of association rules
involves carefully reviewing data and searching for recurring
if/then patterns. The most significant associations are then
determined according to the following two parameters:

• Support which describes how frequently the data col-
lection contains instances of the if/then relationship;

• Confidence which is the number of times these
associations have been verified to be accurate iin the
data collection.

When processing large datasets using association rule
mining, for every conceivable item combination of data
items, the Apriori algorithm26 is attractive to use as it scans
the data collection only once as it derives a set of association
rules. In an earlier phase of our work we validated that the
Apriori algorithm can be used successfully to detect ADLs
using the data from 7 participants in a friendly trial where we
detected kitchen events only27. The results from the earlier
trial indicated that for a given participant we could mine
rules for the occurrence of kitchen-based activities if we have
training data for occurrences of those activities from data-
informed briefings.

In practice the requirement for having to have training
data for ADL occurrence is not scalable to larger sets of
participants so our aim in generating ADLs in this work is to
use the annotations from briefings with ARC participants and
apply them unseen to new participants. This consideration
also influenced our choice of using association rule mining
for ADL detection in the ARC trial.

Processing with the Apriori algorithm for association rule
mining required setting minimum values for the support
and confidence variables. This should indicate that we are
only interested in discovering rules for things that have a
minimum value for co-occurrence with other items and have
a specific default existence. In this work these values have
been set as min support = 0.15 and min confidence =
0.5.

Detecting relatively short-duration activities of daily
living requiring a small number of activations of a dependent
set of sensors but not in a particular sequence, presented
challenges in the temporal domain. For example a participant
may take a longer or shorter time to complete any of the
ADLs and may activate sensors in a different order each time,
for example putting the kettle on first and then preparing
the crockery in the morning, and then doing these in the
reverse order the in the afternoon. To address this we used
sliding windows to aggregate sensor activations over a set
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Activity of Daily Living In-home sensors likely to detect the ADL

Eating or drinking Contact sensors on cupboard or drawer doors for crockery, cutlery, delph,
staples, pots, the fridge door and plug sensors on the kettle, microwave and
toaster;

Dressing Contact sensor on wardrobe door(s) and on drawer(s);

Bathing 6-in-1 sensor, including humidity, in the bathroom;

Leaving the house Contact sensor on front door, patio door or back door;
Table 1. Mapping between ADLs and the in-home sensors likely to be used to detect them.

time period of various durations, effectively grouping the
sensor data into an order-independent set and thus smoothing
out variations in the ordering.

It was crucial to choose a window size that was both small
enough to detect individual activities and large enough to
reduce noise associated with smaller window sizes. Analysis
of the data-informed briefings with participants provided
insights to establish a baseline for the size of the sliding
windows for various ADLs and combined with experiments
reported later, the window sizes chosen were as shown
below:

• For ‘Dressing’ and ‘Leaving House’ the window sizes
were 30 minutes;

• For ‘Eating/Drinking’ and ‘Bathing’, the window sizes
were 60 minutes.

The shift or stride for ADL detection was set to 5 minutes.
That means that the association rules test for the presence of
an ADL in a given time window (30 or 60 minutes) and if not
present then the window would shift forward by 5 minutes
and would re-test.

Our choice of 30 or 60 minutes for window sizes is in
line with the work in18 where those authors use window
sizes varying from 30 to 120 minutes for the same ADLs
as we detect here, though their windows begin and end
at fixed times and theirs do not slide and overlap as ours
do. Our method accommodates ADLs taking place close
to each other in time because each ADL detection runs
independently of others. Thus our approach will detect a
participant dressing directly after taking a bath, for example.
This can be seen later in Figure 8 where ADL co-occurrences
are shown to overlap for a participant.

With the window sizes for ADLs determined and using the
training data from participant briefings, association rules for
ADL detection from sensor data were generated, initially for
each ADL for each participant. To illustrate, the conditions
for some ADL detection rules for participant 11 are shown
in Figure 2. These show that for an Eating/Drinking event
the use of any of the kitchen appliances or opening of the
doors to the food staples, combined with presence detection,
is the trigger. For the Bathing ADL, detecting presence and
an increase in humidity within the time window is the trigger
while for the Dressing ADL, opening the wardrobe and the
underwear drawer is the trigger, for this participant. If these
sensor activation conditions are satisfied within a 60-minute
or within a 30-minute time window depending on the ADL,
the activity will be labelled as that ADL.

For creating groundtruth training data, the clinical partners
met with each of the participants on at least 1 occasion

after the sensors had been installed in their homes for a
briefing or a data-informed recall on how their deployment
was going. During these meetings held over Zoom because
of the pandemic, the clinicians gathered data on occurrences
of the 5 ADLs that had happened in the previous days, noting
the ADL and the timestamp and this recall was prompted
by the clinician sharing a visualising of the raw sensor data
with the participant on the SafeTRX platform. So seeing
sensors for, say, the kitchen being activated in mid-afternoon
would prompt the participant to remember that s/he had made
tea and had a biscuit during that afternoon which would be
recorded as an eating or drinking ADL.

The timings of the clinical partner’s data-informed
briefings, and their place in the overall data logging for the
ARC participants is shown in Figure 3 which shows sensor
data logging for 159 days from 23 participants. Here we
see that 23 participants, all except participants 5, 8, 13, and
23 had two briefings and that the briefings were rarely on
consecutive days and most were at least one, and closer to
two, weeks apart.

Results

We developed a number of versions of using association
rule mining to build sets of rules to detect ADLs. This
was so we could (1) incrementally determine the best time
window sizes to use for different ADLs and (2) include
more of participants’ validations of candidate ADLs and
their suggestions of additional ones from their data-informed
briefings. Different versions of the rule mining generated
different sets of ADLs for the same participants. It was
necessary for the rule generation and the subsequent ADL
detection to take place immediately prior to participants
having one of their briefings so that some of the candidate
ADLs could be presented to them during their interviews.

We started our use of association rule mining using
participants’ feedback from their first briefing with no
candidate ADLs offered to them as we had no training data,
and treating each participant independently of others. For
their second briefing we offered candidate ADLs generated
using training data from their first briefing and these were
validated and further training data was gathered during the
second briefing. As mentioned earlier, we experimented
with varying the sizes of time windows for different ADLs
choosing 30 and 60 minutes depending on the ADL and
generating ADLs for each participant based on their own set
of rules, independent of others. Finally we used association
rule mining to generate a single set of rules for ADL
detection which we applied across all participants. Note that
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# Eating/Drinking Event
((Dataframe[’Kitchen_sensor’] == 1) AND
(Dataframe[’Toaster’]== 1) OR
(Dataframe[’Fridge’]== 1) OR
(Dataframe[’Kettle’]== 1) OR
(Dataframe[’Kitchen’]== 1) OR
(Dataframe[’Microwave’]== 1) OR
(Dataframe[’Staple’]== 1) OR
(Dataframe[’Staple2’]== 1)

)

# Bathing
((Dataframe[’BathroomH’]== 1) AND
(Dataframe[’BathroomM’]== 1)

)

# Dressing
((Dataframe[’Underwear’]== 1) OR
(Dataframe[’Wardrobe’]== 1)

)

Figure 2. Example of conditions for some of the association rules generated to determine some ADLs for participant 11.

Figure 3. Logging period for ARC trial participants - the blue square shows the first data-informed briefing, the purple square
shows the second data-informed briefing.

not all participants were used for ADL detection at the all
stages of the investigation depending on the timing of their
briefings and the availability of their own sensor data as
shown in Figure 3.

As mentioned above, different deployments of association
rule mining generated different ADLs raising the question
of whether a new set of activities is better than a previous
one. Evaluating the effectiveness of a set of rules can only be
done by validating the ADLs it generates against manually

annotated training data, to which we have no further access,
and we cannot go back to participants to get this. This is
a consequence of our focus to have little annotation data
from participants from their data-informed briefings which
we could use as ground truth for training ADL detection
and/or for evaluation of different ADL detection rule sets.
Thus our evaluation is done in terms of how the distribution
of ADLs generated by a version, appears overall.
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An early version of our rule mining is where training data
has been generated from 2 data-informed briefings and where
each participant’s ADL generation is completed independent
of others but with no adjustment of window sizes for
resolution of clashing ADLs for the same participant.
Figure 4 shows the raw number of ADLs of each type where
eating ADLs dominate, and ADLs have not been generated
for all participants at that point because not all ARC
installations had been completed. The different numbers of
(absolute) ADLs for different participants reflects the fact
that participant data logging had been running for different
durations for different participants. Figure 5 shows the
proportion of ADLs types for participants for this ARM
version and that is a more useful indicator. From this we
can see that the leaving house and dressing ADLs was not
detected for some participants and the bathing ADL was not
detected for any because the humidity sensor in the 6-in-1
bathroom sensor was sampling once every 10 minutes which
was insufficient but subsequently corrected.

After several iterations of association rule mining
development, our final implementation generates ADL rules
from the training data from all participants, uses the optimal
window settings for different ADLs and resolves clashes and
overlaps between ADLs.

Figures 6 and 7 show ADLs generated for all ARC
participants. In Figure 6 the numbers of ADLs per participant
are normalised by the total number of days by ARC01 (171
days) taken as the longest duration of all participants for the
data capture in this study. The normalised view helps us draw
comparisons across participants for their relative amounts of
ADLs, given their numbers of ADLs are for the same logging
period. In Figure 7 we show the relative proportions of ADLs
per participant. The figures show some outliers and errors
like no “eating or drinking” ADL and a disproportionally
high number of “leaving house” ADLs for ARC18 and some
participants with no dressing ADL.

When results from all participants were completed we
analysed each participant’s ADLs individually with the
clinician who carried out their data-informed briefing. For
each of the outliers and errors in ADL detection were were
able to determine an explanation such as having no training
data to work with for a given ADL from the online participant
briefings such as a participant not leaving their home recently
or having no appropriate deployed sensors for an ADL for a
given participant.

The numbers of detected ADLs across participants in
Figure 6 does show a lot of variety. ARC24 shows largest
number because of the large number of eating events, similar
to ARC26 and is explained as follows. Figure 8 shows the
ADLs generated for participant ARC24 over the same time
period as the raw sensor data shown earlier in Figure 1.
This shows a regular bathing and dressing activity and a
leaving of the house on 5 of the 7 days. March 20 shows the
participant not leaving the house though the front door was
opened and March 15, 16, 17 and 18 show a lot of front door
activity not identified as leaving the house so the participant
must have had callers or deliveries. The eating activity is
well represented throughout each day because as shown in
Figure 1 this participant does seem to spend large parts of
the day in and out of the kitchen, opening and closing the
fridge, food presses and drawers. Some of these recognised

as the eating/drinking ADL may actually be food preparation
or returning from grocery shopping rather than food or drink
consumption.

Other observations from Figures 6 and 7 show a high
number of leaving the house ADLs for some participants,
especially ARC18. This can be traced back to the fact that
ARC18 had more callers to the front door than others.

As part of the analysis of each participant’s ADLs with
the clinician who carried out their data-informed briefing
as mentioned above, we analysed which of the in-home
sensors appeared most often in the rules and which were used
most in the triggering of those rules. From this analysis we
identified 11 core in-home sensors which should be included
for any new participants for whom automatic detection of
these ADLs is desired. This set of 11 is driven by their
common use across all our ARC participants, and their use
in the rule mining for ADL recognition and assumes that the
same ADLs are the target for detection. The 11 core sensors
are listed in Table 2.

Conclusions

This paper describes the data processing carried out on in-
home sensor data gathered from 23 participants over periods
varying from 6 weeks to 6 months. The sensor data was
processed into a set of activities of daily living (ADLs)
which were chosen as typical indicators of regular, routine
behaviour by the participants. A characteristic of our use
case of turning sensor data into ADLs is that there is a
limited amount of training data available. Our training data
was gathered directly from participants during two online
data-informed briefings and corresponds to participants
indicating, or validating, an instance of an ADL occurrence
as being true and valid. We then used this as input to
association rule mining to determine a set of rules for ADL
detection.

Our initial sets of ADLs were based on a different set of
association rules for each participant and then we fused the
training data to generate a set of rules for detecting ADLs
across all participants. This means that we can now add
additional participants without requiring additional training
data by re-using the training data from the pool of 23 ARC
trial participants. In this way our ADL detection is scalable
and can be made available to others.

One of the unresolved questions about the work in this
paper is the end-goal and what to do with detected ADLs.
In a clinical setting even the visualisation of ADLs over
time has limited capacity to support observations of subtle
behaviour changes and degradations. In our future work we
will apply the automatic detection of periodicity intensity,
namely how strongly or weakly the activities of a participant
fits into the regular 24-hour circadian rhythm or the weekly
cycle of behaviours, to detected ADLs. It is known that
strong rhythmicity in our lives is an indicator of wellness and
that degradations in our regular behaviour can be detected
automatically as weakening of the strengths of our circadian
and other regular rhythms. We have already done this work
using raw sensor data as input to periodicity detection28 but
believe that using higher level ADLs will give even better
detection of behaviour changes.
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Figure 4. ADLs detected from an early version of Association Rule Mining, showing the raw counting of all detected ADLs (x-axis)
stacked by different ADL types for each of the participants (y-axis)

Figure 5. Proportions (between 0 and 1) of ADLs detected from an early version of Association Rule Mining (proportional view of
Figure 4)

Sensor type Location

Plug-in electrical Microwave, kettle, toaster
Contact sensor Front door, fridge door, doors to delph, cutlery and staples, wardrobe doors
6-in-1 multi-sensor Bathroom and kitchen

Table 2. Core in-home sensors for detection of ADLs
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Figure 6. ADLs detected from final version of Association Rule Mining, normalised by the number of days of data logging per
participant which is taken from Figure 3, showing the counts of detected ADLs (x-axis) stacked by ADL type for each participant
(y-axis)

There are also limitations including the limited number
of ADLs (n=4) especially since there is work elsewhere
reporting detection and use of larger numbers of ADLs.
However our aim was to demonstrate that our technique
for ADL detection with limited training data and a limited
number of sensors per participant works and can be
applied to new participants without the need for additional
training data and with acceptable accuracy. This has
been demonstrated for 4 ADLs whose detections work
independently and in future work we will examine the
accuracy of ADL detection when using only the 11 core
sensors we identified for future deployments. We also
acknowledge that the approach could be improved with
further inputs from the caregivers or directly from the
participants in their homes as a form of human-in-the-loop
active (machine) learning29 where the rules would evolve
and improve as more annotations were provided.

In summary, the work reported here has been successful
in applying analytics techniques to raw sensor data from
participant homes to inform clinical partners about the long-
term behaviour and behaviour changes in the routine daily in-
home lifestyle and activities of participants. Insights gained
from visualising activities at an ADL level rather than at the
level of raw sensor data, is more insightful and ultimately
beneficial for the participant and the clinician.
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Figure 7. Proportions (between 0 and 1) of ADLs detected from final version 5 of Association Rule Mining (proportional view of
Figure 6)

Figure 8. ADLs automatically detected from raw sensor data shown in Figure 1 using association rules mined from training data
from all participants.

Supplemental material

The raw sensor data from 23 homes used in this work is publicly
available on the Figshare repository at 30.
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