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Abstract. Many models have been proposed for vision and language
tasks, especially the image-text retrieval task. State-of-the-art (SOTA)
models in this challenge contain hundreds of millions of parameters. They
also were pretrained on large external datasets that have been proven
to significantly improve overall performance. However, it is not easy to
propose a new model with a novel architecture and intensively train it
on a massive dataset with many GPUs to surpass many SOTA mod-
els already available to use on the Internet. In this paper, we propose
a compact graph-based framework named HADA, which can combine
pretrained models to produce a better result rather than starting from
scratch. Firstly, we created a graph structure in which the nodes were
the features extracted from the pretrained models and the edges con-
necting them. The graph structure was employed to capture and fuse
the information from every pretrained model. Then a graph neural net-
work was applied to update the connection between the nodes to get
the representative embedding vector for an image and text. Finally, we
employed cosine similarity to match images with their relevant texts
and vice versa to ensure a low inference time. Our experiments show
that, although HADA contained a tiny number of trainable parameters,
it could increase baseline performance by more than 3.6% in terms of
evaluation metrics on the Flickr30k dataset. Additionally, the proposed
model did not train on any external dataset and only required a sin-
gle GPU to train due to the small number of parameters required. The
source code is available at https://github.com/m2man/HADA.

Keywords: Image-text retrieval · Graph neural network · Fusion
model

1 Introduction

Image-text retrieval is one of the most popular challenges in vision and lan-
guage tasks, with many state-of-the-art (SOTA) models recently introduced
[3,10,17–19,25,28]. This challenge includes two subtasks, which are image-to-
text retrieval and text-to-image retrieval. The former subtask utilises an image
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query to retrieve relevant texts in a multimodal dataset, while the latter is con-
cerned with text queries for ranked videos.

Most of the SOTA models in this research field share two things in com-
mon: (1) they were built on transformer-based cross-modality attention archi-
tectures [3,19] and (2) they were pretrained on the large-scale multimodal data
crawled from the Internet [13,17–19,28]. However, these things have their own
disadvantages. The attention structure between two modalities could achieve an
accurate result, but it costs a large amount of inference time due to the massive
computation required. For instance, UNITER [3] contained roughly 303 mil-
lion parameters, and it took a decent amount of time (more than 12 s for each
query on a dataset with 30000 images [31]) to perform the retrieval in real-time.
Many recent works have resolved this model-related problem by introducing
joint-encoding learning methods. They can learn visual and semantic informa-
tion from both modalities without using any cross-attention modules, which can
be applied later to rerank the initial result [18,25,31]. Figure 1 illustrates the
architecture of these pipelines. Regarding the data perspective, the large col-
lected data usually comes with noisy annotations, which could impact on to the
models trained on it. Several techniques have been proposed to mitigate this
issue [17–19]. However, training on a massive dataset still burdens computa-
tion, such as the number of GPUs required to train the model successfully and
efficiently [28].

Fig. 1. Two most popular pipelines of the SOTA for image-text retrieval challenge. (a)
A cross-modality transformer network is applied to measure the similarity between an
image and a text based on their features. (b) Each modality used their own transformer
network to get its global embedding.

It has motivated us to answer the question: Can we combine many SOTA
models, which are currently available to use, to get a better-unified model without
intensive training using many GPUs? In this paper, we introduce a graph-based
amalgamation framework, called HADA, which utilises a graph-based structure
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to fuse the features produced by other pretrained models. We did not use any
time-consuming cross-modality attention network to ensure fast retrieval speed.
A graph neural network was employed to extract visual and textual embedded
vectors from fused graph-based structures of images and texts, where we can
measure their cosine similarity. To the best of our knowledge, the graph structure
has been widely applied in the image-text retrieval challenge [7,21,26,27,35].
Nevertheless, it was utilized to capture the interaction between objects or align
local and global information within images. HADA is the first approach that
applies this data structure to combine SOTA pretrained models by fusing their
features in each modality. We trained HADA on the Flickr30k dataset without
using any large-scale datasets. Then, we applied the Momentum Distillation
technique [18], which has been shown to mitigate not only the harmful effect of
noise annotation, but also improve accuracy on a clean dataset. Our experiments
showed that HADA, with the tiny extra number of training parameters, could
improve total recall by 3.64% compared to the input SOTA, without training
with millions of additional image-text pairs as other models require. This is the
most crucial contribution since it is expensive to utilise multiple GPU, especially
for small and medium businesses or start-up companies. Therefore, we believe
that HADA can be applied in both academic and industrial domains.

Our main contribution can be summarised as follows: (1) We introduced
HADA, a compact pipeline that can combine two or many SOTA pretrained
models to address the image-text retrieval challenge. (2) We proposed a way to
fuse the information between input pretrained models by using graph structures.
(3) We evaluated the performance of HADA on the well-known Flickr30k dataset
[37] and MSCOCO dataset [20] without using any other large-scale dataset but
still improved the accuracy compared to the baseline input models.

2 Related Work

A typical vision-and-language model, including an image-text retrieval task, was
built using transformer-based encoders. In specific, OSCAR [19], UNITER [3],
and VILLA [10] firstly employed Faster-RCNN [29], and BERT [6] to extract
visual and text features from images and texts. These features were then fed into
a cross-modality transformer block to learn the contextualized embedding that
captured the relations between regional features from images and word pieces
from texts. An additional fully connected layer was used to classify whether the
images and texts were relevant to each other or not based on the embedding
vectors. Although achieving superior results, these approaches had a drawback
in applying them to real-time use cases. It required a huge amount of time to
perform the online retrieval, since models had to process the intensive cross-
attention transformer architecture many times for each query [31].

Recently, some works have proposed an approach to resolve that problem by
utilizing two distinct encoders for images and text. Data from each modality can
now be embedded offline and hence improve retrieval speed [13,17,18,25,28,31].
In terms of architecture, all approaches used the similar BERT-based encoder for
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semantic data but different image encoders. While LightningDOT [31] encoded
images with detected objects extracted by the Faster-RCNN model, FastnSlow
[25] applied the conventional Resnet network to embed images. On the other
side, ALBEF [18] and BLIP [17] employed the Vision Transformer backbone [8]
to get the visual features corresponding to their patches. Because these SOTA did
not use the cross-attention structure, which was a critical point to achieve high
accuracy, they applied different strategies to increase performance. Specifically,
pretraining a model on a large dataset can significantly improve the result [13,
18,19]. For instance, CLIP [28] and ALIGN [13] were pretrained on 400 million
and 1.8 billion image-text pairs, respectively. Another way was that they ran
another cross-modality image-text retrieval model to rerank the initial output
and get a more accurate result [18,31].

Regarding graph structures, SGM [35] introduced a visual graph encoder
and a textual graph encoder to capture the interaction between objects appear-
ing in images and between the entities in text. LGSGM [26] proposed a graph
embedding network on top of SGM to learn both local and global information
about the graphs. Similarly, GSMN [21] presented a novel technique to assess the
correspondence of nodes and edges of graphs extracted from images and texts
separately. SGRAF [7] built a reasoning and filtration graph network to refine
and remove irrelevant interactions between objects in both modalities.

Although there are many SOTAs with different approaches for image-text
retrieval problems, there is no work that tries combining these models, rather
they introduce a new architecture and pretrain on massive datasets instead.
Training an entirely new model from scratch on the dataset is a challenging
task since it will create a burden on the computation facilities such as GPUs. In
this paper, we introduced a simple method that combined the features extracted
from the pretrained SOTA by applying graph structures. Unlike other methods
that also used this data structure, we employed graphs to fuse the information
between the input features, which was then fed into a conventional graph neural
network to obtain the embedding for each modality. Our HADA consisted of a
small number of trainable parameters, hence can be easily trained on a small
dataset but still obtained higher results than the input models.

3 Methodology

This section will describe how our HADA addressed the retrieval challenge by
combining any available pretrained models. Figure 2 depicted the workflow of
HADA. We started with only two models (Nmodels = 2) as illustrated in Fig. 2 for
simplicity. Nevertheless, HADA can be extended with a larger Nmodels. HADA
began using some pretrained models to extract the features from each modality.
We then built a graph structure to connect the extracted features together, which
were fed into a graph neural network (GNN) later to update them. The outputs
of the GNN were concatenated with the original global features produced by the
pretrained models. Finally, simple linear layers were employed to get the final



HADA in Image-Text Retrieval 721

representation embedding features for images and texts, which can be used to
measure similarity to perform the retrieval. For evaluation, we could extract our
representation features offline to guarantee high-speed inference time.

Fig. 2. The pipeline of the proposed HADA. The red borders indicated trainable com-
ponents. The ITM and ITC infered the training tasks which will be discussed later.
(Color figure online)

3.1 Revisit State-of-the-Art Models

We only used the pretrained models without using the cross-modality trans-
former structure to extract features as depicted in Fig. 1 in order to reduce the
number of computations and ensure the high-speed inference time. Basically,
they used a unimodal encoder to get the features of an image or a text followed
by a transformer network to embed them and obtain the [CLS] embedding. This
[CLS] token was updated by one or many fully connected layers to become a
representative global feature that can be compared with that of the remaining
modality to get the similarity score.

HADA began with the output of the transformer layer from the pretrained
models. In detail, for an input image I, we obtained the sequence of patch tokens
from each model i denoted as v(i) = {v

(i)
cls, v

(i)
1 , v

(i)
2 , ..., v

(i)
Ni

}, where v
(i)
j ∈ R

d(i)
v

and Ni was the length of the sequence. This length depended on the architecture
of the image encoder network employed in the pretrained model. For example, it
could be the number of patches if the image encoder was a Vision Transformer
(ViT) network [8], or the number of detected objects or regions of interest if
the encoder was a Faster-RCNN model [29]. Additionally, we also extracted
the global visual representation feature h

(i)
v ∈ R

d
(i)
h from v

(i)
cls as illustrated in

Fig. 1. Regarding the semantic modality, we used the same process as that of the
visual modality. Specifically, we extracted the sequence of patch tokens w(i) =
{w

(i)
cls, w

(i)
1 , w

(i)
2 , ..., w

(i)
L } where w

(i)
j ∈ R

d(i)
w and L was the length of the text,
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and the global textual representation embedding h
(i)
w ∈ R

d
(i)
h for an input text T

using the pretrained model i. The input model i matched a pair of an image I

and a text T by calculating the dot product 〈h(i)
v , h

(i)
w 〉 of their global features.

However, HADA used not only the global embedding but also the intermediate
transformer tokens to make the prediction. We used our learned [CLS] tokens
to improve the global features. In contrast, using the original global features
could ensure high performance of the pretrained models and mitigate the effect
of unhelpful tokens.

3.2 Create Graph Structure

Each pretrained model i produced different [CLS] features v
(i)
cls and w

(i)
cls for an

image and text, respectively. Since our purpose was to combine the models, we
needed to fuse these [CLS] tokens to obtain the unified ones for each modality
separately. In each modality, for example, the visual modality, HADA not only
updated v

(i)
cls based on v(i) solely but also on those of the remaining pretrained

models {v(j) | j �= i}. Because these v came from different models, their dimen-
sions would not be similar to each other. Therefore, we applied a list of linear
layers f

(i)
v : Rd(i)

v → R
dp to map them in the same dimensional space:

p(i) = {f (i)
v (x)|x ∈ v(i)} = {p

(i)
cls, p

(i)
1 , p

(i)
2 , ..., p

(i)
Ni

}

We performed a similar process for the textual modality to obtain:

s(i) = {f (i)
w (x)|x ∈ w(i)} = {s

(i)
cls, s

(i)
1 , s

(i)
2 , ..., s

(i)
L },where f (i)

w : Rd(i)
w → R

ds

We then used graph structures Gp = {Vp, Ep} and Gs = {Vs, Es} to connect
these mapped features together, where V and E denoted the list of nodes and
edges in the graph G accordingly. In our HADA, nodes indicated the mapped
features. Specifically, Vp = {p(i)} and Vs = {s(i)} for all i ∈ [1, Nmodels]. Regard-
ing edges, we symbolized ea→b as a directed edge from node a to node b in the
graph, thus the set of edges of the visual graph Ep and the textual graph Es were:

Ep = {e
x→p

(j)
cls

| x ∈ p(i) and i, j ∈ [1, Nmodels]}

Es = {e
x→s

(j)
cls

| x ∈ s(i) and i, j ∈ [1, Nmodels]}
To be more detailed, we created directed edges that went from every patch
feature to the [CLS] feature, including from the [CLS] itself, for all pretrained
models but not in the reverse direction, as shown in Fig. 2. The reason was that
[CLS] was originally introduced as a representation of all input data, so it would
summarize all patch tokens [2,6,8]. Therefore, it would be the node that received
information from other nodes in the graph. This connection structure ensured
that HADA could update the [CLS] tokens based on the patch tokens from all
pretrained models in a fine-grained manner.
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3.3 Graph Neural Network

Graph neural networks (GNN) have witnessed an increase in popularity over the
past few years, with many GNN structures having been introduced recently [1,5,
11,15,30,34]. HADA applied the modified Graph Attention Network (GATv2),
which was recommended to be used as a baseline whenever employing a GNN
[1], to fuse the patch features from different pretrained models together to get
the unified [CLS] features. Let Nk = {x ∈ V | ex→k ∈ E} be the set of neighbor
nodes from which there was an edge connecting to node k in the graph G. GATv2
used a scoring function se to weight every edge indicating the importance of the
neighbor nodes x in Nk before updating the node k ∈ R

d:

se(ex→k) = A�LeakyRELU(W1x + W2k])

where A ∈ R
d′

, W1 ∈ R
d′×d, and W2 ∈ R

d′×d were learnable parameters. These
weights were then normalized across all neighbor nodes in Nk by using a softmax
function to get the attention scores:

αex→k
=

exp(se(ex→k))∑
y∈Nk

exp(se(ey→k))

The updated node k′ ∈ R
d′

was then calculated based on its neighbors in Nk,
including k if we add an edge connect it to itself:

k′ = σ(
∑

x∈Nk

αex→k
· W1x),

where σ was a nonlinear activate function. Furthermore, this GATv2 network
could be enlarged by applying a multi-head attention structure, and improved
performance [34]. The output now was a concatenation of each head output,
which was similar to Transformer architecture [33]. An extra linear layer was
used at the end to convert these concatenated nodes to the desired dimensions.

We used distinct GATv2 structures with H attention heads for each modality
in this stage, as illustrated in Fig. 2. HADA took the input graphs Gp and Gs

with nodes Vp and Vs in the vector space of dp and ds dimensions and updated
them to V ′

p = {p′(i)} and V ′
s = {s′(i)} with dimensions of d′

p and d′
s. We

then concatenated the updated [CLS] nodes p′
cls and s′

cls from all pretrained
models with their corresponding original global embedding hv and hw. Finally,
we fed them into a list of linear layers to get our normalized global representation
hp ∈ R

dh and hs ∈ R
dh .

3.4 Training Tasks

Image-Text Contrastive Learning. HADA encoded the input image I and
text T to hp and hs, accordingly. We used a similarity function that was a dot
product S(I ,T ) = 〈hp, hs〉 = h�

p hs to ensure that a pair of relevant image-text
(positive pair) would have a higher similar representation compared to irrelevant
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pairs (negative pairs). The contrastive loss for image-to-text (i2t) retrieval and
text-to-image (t2i) retrieval for the mini-batch of M relevant pairs (Im,Tm)
were:

Li2t(Im) = −log
exp(S(Im,Tm)/τ)

∑M
i=1 exp(S(Im,T i)/τ)

Lt2i(Tm) = −log
exp(S(Tm, Im)/τ)

∑M
i=1 exp(S(Tm, I i)/τ)

where τ was a temperature parameter that could be learned during training.
Such contrastive learning has been used in many vision-and-language models
and has been proven to be effective [17,18,28,31]. In our experiment, we trained
HADA with the loss that optimized both subtasks:

LITC =
1
M

M∑

m=1

(Li2t(Im) + Lt2i(Tm))

Inspired by ALBEF [18], we also applied momentum contrast (MoCo) [12] and
their momentum distillation strategy for this unsupervised representation learn-
ing to cope with the problem of noisy information in the dataset and improve
accuracy.

Image-Text Matching. This objective was a binary classification task to dis-
tinguish irrelevant image-text pairs that had similar representations. This task
would ensure that they were different in fine-grained details. We implemented
an additional disciminator layer dc : R4dh → R on top of the final embedding
features hp and hs to classify whether the image I and the text T is a positive
pair or not:

dc(hp, hs) = sigmoid(W�[hp‖hs‖abs(hp − hs)‖hp � hs])

where W ∈ R
4dh was trainable parameters, ‖ indicated the concatenation, abs(.)

was the absolute value, and � denoted elementwise multiplication. We used
binary cross-entropy loss for this ordinary classification task:

Litm(I ,T ) = ylog(dc(hp, ds)) + (1 − y)log(1 − dc(hp, ds))

where y was the one-hot vector representing the ground truth label of the pair.
For each positive pair in the minibatch of M positive pairs, we sampled 1

hard negative text for the image and 1 hard negative image for the text. These
negative samples were chosen from the current mini-batch in which they were
not relevant based on the ground-truth labels, but have the highest similarity
dot product score. Therefore, the objective for this task was:

LITM =
1

3M

M∑

m=1

(Litm(Im,Tm) + Litm(Im,T ′
m) + Litm(I ′

m,Tm))
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where T ′
m and I ′

m were the hard negative text and image samples in the mini-
batch that were corresponding with the Im and Tm, respectively. The final loss
function in HADA was:

L = LITC + LITM

4 Experiment

4.1 Dataset and Evaluation Metrics

We trained and evaluated HADA on two different common datasets in the image-
text retrieval task, which are Flickr30k [37] and MSCOCO [20]. The Flickr30k
dataset consists of 31K images collected on the Flickr website, while MSCOCO
comprises 123K images. Each image contains five relevant texts or captions
that describe the image. We used Karpathy’s split [14], which has been widely
applied by all models in the image-text retrieval task, to split each dataset into
train/evaluate/test on 29K/1K/1K and 113K/5K/5K images on Flickr30k and
MSCOCO, respectively.

The common evaluation metric in this task was the Recall at K (R@K)
because many SOTA works used this metric [3,10,13,17–19,28,31]. This metric
scores the proportion of the number of queries that we found the correct relevant
output in the top K of the retrieved ranked list:

R@K =
1

Nq

Nq∑

q=1

1(q,K)

where Nq is the number of queries and 1(q,K) is a binary function returning 1
if the model finds the correct answer of the query q in the top K of the retrieved
output. In particular, for the image-to-text subtask, R@K is the percentage of
the number of images where we found relevant texts in the top K of the output
result. In our experiment, we used R@1, R@5, R@10, and RSum, which was the
sum of them.

4.2 Implementation Details

In our experiment, we combined two SOTA models that had available pretrained
weights fine-tuned on the Flickr30k dataset: ALBEF1 and LightningDOT2. None
of them used the cross-modality transformer structure when retrieved to ensure
the fast inference speed3. Although they used the same BERT architecture to
encode a text, the former model employed the ViT network to encode an image,
while the latter model applied the Faster-RCNN model. We chose these two

1 https://github.com/salesforce/ALBEF.
2 https://github.com/intersun/LightningDOT.
3 Indeed, these two models applied the cross-modality transformer network to rerank

the initial result in the subsequent step. However, we did not focus on this stage.

https://github.com/salesforce/ALBEF
https://github.com/intersun/LightningDOT
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models because we wanted to combine different models with distinct embedding
backbones to utilize the advantages of each of them.

Regarding ALBEF, their ViT network encoded an image to 577 patch tokens
including the [CLS] one (NALB = 576 and d

(ALB)
v = 768). This [CLS] was

projected to the lower dimension to obtain the global feature (d(ALB)
h = 256).

Because LightningDOT encoded an image based on the detected objects pro-
duced by the Faster-RCNN model, its NDOT varied depending on the number of
objects in the image. The graph neural network, unlike other conventional CNNs,
can address this inconsistent number of inputs due to the flexible graph struc-
ture with nodes and edges. Unlike ALBEF, the dimensions of image features and
global features from LightningDOT were the same with d

(DOT )
v = d

(DOT )
h = 768.

In terms of text encoder, the output of both models was similar since they used
the same BERT network: d

(ALB)
w = d

(DOT )
w = 768. We projected these features

to a latent space where dp = ds = 512, which was the average of their original
dimensions. We used a 1-layer GATv2 network with H = 4 multi-head atten-
tion to update the graph features while still keeping the input dimensions of
d′
p = d′

s = 512. We also applied Dropout with p = 0.7 in linear layers and
graph neural networks. In total, our HADA contained roughly 10M trainable
parameters.

The input pretrained models were pretrained on several large external
datasets. For example, ALBEF was pretrained on 14M images compared to only
29K images on Flickr30k that we used to train HADA. We used this advantage
in our prediction instead of training HADA in millions of samples. We modi-
fied the similarity score to a weighted sum of our predictions and the original
prediction of the input models. Therefore, the weighted similarity score that we
used was:

S(I ,T ) = (1 − α)〈hp, hs〉 + α〈h(ALB)
v , h(ALB)

w 〉
where α was a trainable parameter. We did not include the original result of the
LightningDOT model since its result was lower than ALBEF by a large margin
and, therefore, could have a negative impact on overall performance4.

We trained HADA for 50 epochs (early stopping5 was implemented) using
the batch size of 20 on one NVIDIA RTX3080Ti GPU. We used the AdamW
[23] optimizer with a weight decay of 0.02. The learning rate was set at 1e−4

and decayed to 5e−6 following cosine annealing [22]. Similarly to ALBEF, we
also applied RandAugment [4] for data augmentation. The initial temperature
parameter was 0.07 [36], and we kept it in the range of [0.001, 0.5] during train-
ing. To mitigate the dominant effect of ALBEF global features on our weighted
similarity score, we first trained HADA with α = 0. After the model had con-
verged, we continued to train but initially set α = 0.5 and kept it in the range
of [0.1, 0.9].

4 We tried including the LightningDOT in the weighted similarity score, but the result
was lower than using only ALBEF.

5 In our experiment, it converged after roughly 20 epochs.



HADA in Image-Text Retrieval 727

4.3 Baselines

We built two baselines that also integrated ALBEF and LightningDOT as input
to show the advantages of using graph structures to fuse these input models.

Baseline B1. We calculated the average of the original ranking results obtained
from ALBEF and LightningDOT and considered them as the distance between
images and text. This meant that the relevant pairs should be ranked at the top,
whilst irrelevant pairs would rank lower.

Baseline B2. Instead of using a graph structure to fuse the features extracted
from the pretrained models, we only concatenated their global embedding and
fed them into the last linear layers to obtain the unified features. We trained
this baseline B2 following the same strategy as described in Sect. 4.2 using the
weighted similarity score.

4.4 Comparison to Baseline

Table 1 illustrated the evaluation metrics of the different models in the Flickr30k
dataset. Similarly to LightningDOT, our main target was to introduce an image-
text retrieval model that did not implement a cross-modality transformer mod-
ule to ensure that it can perform in real time without any delay. Thus, we
only reported the result from LightningDOT and ALBEF that did not use the
time-consuming compartment to rerank in the subsequent step. If the model
has a better initial result, it can have a better-reranked result by using the
cross-modality transformer later. We also added UNITER [3], and VILLA [10]
to our comparison. These approaches both applied cross-modality transformer
architecture.

Table 1. Performance of models on Flickr30k Dataset. The symbol ✝ indicated the
results were originally reported in their research, while others were from our re-
implementation using their public pretrained checkpoints. The column �R showed
the difference compared to ALBEF.

Methods Image-to-Text Text-to-Image Total �R

R@1 R@5 R@10 RSum R@1 R@5 R@10 RSum RSum

UNITER✝ 87.3 98 99.2 284.5 75.56 94.08 96.76 266.4 550.9 �13.68

VILLA✝ 87.9 97.2 98.8 283.9 76.26 94.24 96.84 267.34 551.24 �13.34

LightningDOT 83.6 96 98.2 277.8 69.2 90.72 94.54 254.46 532.26 �32.32

LightningDOT✝ 83.9 97.2 98.6 279.7 69.9 91.1 95.2 256.2 535.9 �28.68

ALBEF 92.6 99.3 99.9 291.8 79.76 95.3 97.72 272.78 564.58 0

B1 90.7 99 99.6 289.3 79.08 94.5 96.94 270.52 559.82 �4.76

B2 91.4 99.5 99.7 290.6 79.64 95.34 97.46 272.44 563.04 �1.54

HADA 93.3 99.6 100 292.9 81.36 95.94 98.02 275.32 568.22 �3.64
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It was clear that our HADA obtained the highest metrics at all recall values
compared to others. HADA achieved a slightly better R@5 and R@10 in Image-
to-Text (I2T) and Text-to-Image (T2I) subtasks than ALBEF. However, the
gap became more significant at R@1. We improved the R@1 of I2T by 0.7%
(92.96 → 93.3) and the R@1 of T2I by 1.6% (79.76 → 81.36). In total, our
RSum was 3.64% higher than that of ALBEF (564.58 → 568.22).

The experiment also showed that LightningDOT, which encoded images
using Faster-RCNN, performed worse than ALBEF when its total RSum was
lower than that of ALBEF by approximately 30%. The reason might be that
the object detector was not as powerful as the ViT network, and LightningDOT
was pretrained on 4M images compared to 14M images used to train ALBEF.
Although also using object detectors as the backbone but applying a cross-
modality network, UNITER and VILLA surpassed LightningDOT by a large
margin at 15%. It proved that this intensive architecture made a large impact
on multimodal retrieval.

Regarding our two baselines, B1 and B2, both of them failed to get bet-
ter results than the input model ALBEF. Model B1, using the simple strategy
of taking the average ranking results and having no learnable parameters, per-
formed worse than model B2, which used a trainable linear layer to fuse the
pretrained features. Nevertheless, the RSum of B2 was lower than HADA by
5.18%. It showed the advantages of using a graph structure to fuse the informa-
tion between models to obtain a better result.

4.5 HADA with Other Input Models

To show the stable performance of HADA, we used it to combine two other
different pretrained models, including BLIP [17] and CLIP [28]. While CLIP is
well-known for its application in many retrieval challenges [9,24,31,32], BLIP is
the enhanced version of ALBEF with the bootstrapping technique in the training
process. We used the same configuration as described in 4.2 to train and evaluate
HADA in Flickr30k and MSCOCO datasets. We used the pretrained BLIP and
CLIP from the LAVIS library [16]. It was noted that the CLIP we used in this
experiment was the zero-shot model since the fine-tuned CLIP for these datasets
is not available yet.

Table 2. Performance of models on the test set in Flickr30k and MSCOCO datasets.
The column �R showed the difference compared to BLIP in that dataset.

Dataset Methods Image-to-Text Text-to-Image Total �R

R@1 R@5 R@10 RSum R@1 R@5 R@10 RSum RSum

Flickr30k BLIP 94.3 99.5 99.9 293.7 83.54 96.66 98.32 278.52 572.22 0

CLIP 88 98.7 99.4 286.1 68.7 90.6 95.2 254.5 540.6 �31.62

HADA 95.2 99.7 100 294.9 85.3 97.24 98.72 281.26 576.16 �3.94

MSCOCO BLIP 75.76 93.8 96.62 266.18 57.32 81.84 88.92 228.08 494.26 0

CLIP 57.84 81.22 87.78 226.84 37.02 61.66 71.5 170.18 397.02 �97.24

HADA 75.36 92.98 96.44 264.78 58.46 82.85 89.66 230.97 495.75 �1.49
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Table 2 showed the comparison between HADA and the input models. CLIP
performed worst on both Flickr30k and MSCOCO with huge differences com-
pared to BLIP and HADA because CLIP was not fine-tuned for these datasets.
Regarding the Flickr30k dataset, HADA managed to improve the RSum by more
than 3.9% compared to that of BLIP. Additionally, HADA obtained the highest
scores in all metrics for both subtasks. Our proposed framework also increased
the RSum of BLIP by 1.49% in the MSCOCO dataset. However, BLIP per-
formed slightly better HADA in the I2T subtask, while HADA achieved higher
performance in the T2I subtask.

5 Conclusion

In this research, we proposed a simple graph-based framework, called HADA, to
combine two pretrained models to address the image-text retrieval problem. We
created a graph structure to fuse the extracted features obtained from the pre-
trained models, followed by the GATv2 network to update them. Our proposed
HADA only contained roughly 10M learnable parameters, helping it become easy
to train using only one GPU. Our experiments showed the promise of the pro-
posed method. Compared to input models, we managed to increase total recall
by more than 3.6%. Additionally, we implemented two other simple baselines
to show the advantage of using the graph structures. This result helped us to
make two contributions: (1) to increase the performance of SOTA models in
image-text retrieval tasks and (2), to not require many GPUs to train on any
large-scale external dataset. It has opened the possibility of applying HADA in
the industry where large-scale GPU utilisaiton may be considered too costly in
financial or environmental terms.

Although we achieved a better result compared to the baselines, there are still
rooms to improve the performance of HADA. Firstly, it can be extended not only
by two pretrained models as proposed in this research but can be used with more
than that number. Secondly, the use of different graph neural networks, such as
the graph transformer [30], can be investigated in future work. Third, the edge
feature in the graph is also considered. Currently, HADA did not implement the
edge feature in our experiment, but they can be learnable parameters in graph
neural networks. Last but not least, pretraining HADA on a large-scale external
dataset as other SOTA have done might enhance its performance.
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