The structure was solved by direct phase determination. The parameters of the complete structure could be refined by fullmatrix anisotropic least squares. All phenyl rings were refined without any constraints. Values of distances and angles in the rings show no significant differences from those of an ideal benzene ring. All H -atom positions were calculated using a riding model, except for that involved in the molecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which was found from the difference Fourier maps calculated at the end of the refinement process as a small positive electron density.

Data collection: SDP (Frenz, 1985). Cell refinement: SDP. Data reduction: REDU4 (Stoe \& Cie, 1988). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLATON96 (Spek, 1996). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1241). Services for accessing these data are described at the back of the journal.

References

Barbara, P. F., Rentzepis, P. M. \& Brus, L. E. (1980). J. Am. Chem. Soc. 102, 2786-2791.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bregman, J., Leiserowitz, L. \& Osaki, K. (1964). J. Chem. Soc. pp. 2086-2100.
Bregman, J., Leiserowitz, L. \& Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2068-2073.
Calligaris, M., Nardin, G. \& Randaccio, C. (1972). Coord. Chem. 7, 385-389.
Cohen, M. D., Schmidt, G. M. J. \& Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.
Dürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413-431.
Dürr, H. \& Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.
Elerman, Y., Elmali, A., Atakol, O. \& Svoboda, I. (1995). Acta Cryst. C51, 2344-2346.
Elerman, Y., Elmali, A., Kabak, M., Aydin, M. \& Peder, M. (1994). J. Chem. Cryst. 24, 603-606.

Elerman, Y., Elmali, A., Kendi, E., Özbey, S. \& Ertüzün, V. (1997). Acta Cryst. C53, 1158-1160.
Elerman, Y., Paulus, H., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 198, 135-136.
Elerman, Y., Svoboda, I. \& Fuess, H. (1991). Z. Kristallogr. 196, 309-311.
Elmali, A. \& Elerman, Y. (1997). Acta Cryst. C53, 791-793.
Elmali, A., Özbey, S., Kendi, E., Kabak, M. \& Elerman, Y. (1995). Acta Cryst. C51, 1878-1880.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Garnovski, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-65.
Hadjoudis, E. (1981). J. Photochem. 17, 355-367.
Hadjoudis, E., Vitterakis, M., Moustakali, I. \& Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
Higelin, D. \& Sixl, H. (1983). Chem. Phys. 77, 391-395.
Kaitner, B. \& Pavlović, G. (1996). Acta Cryst. C52, 2573-2575.
Kevran, S., Elmali, A. \& Elerman, Y. (1996). Acta Cryst. C52, 32563258.

Maggio, F., Pizzino, T. \& Romano, V. (1974). Inorg. Nucl. Chem. Lett. 10, 1005-1008.
Morassi, R., Bertini, I. \& Sacconi, L. (1973). Coord. Chem. Rev. 11, 343-369.

Moustakali, I., Mavridis, I. \& Hadjoudis, E. (1978). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1996). PLATON. Program for the Automated Analysis of Molecular Geometry: Version of February 1996. University of Utrecht, The Netherlands.
Stoe \& Cie (1988). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1998). C54, 130-132

$\mathrm{N}-\mathbf{H} \cdots \pi$ (pyrrole) Intermolecular Interactions in 1,4-Bis(di-2-pyrrolylmethyl)benzene

Vanessa Bennis and John F. Gallagher
School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. E-mail: gallagherjfg@dcu.ie

(Received 17 July 1997; accepted 17 September 1997)

Abstract

The title compound, $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4}$, lies about an inversion centre which is at the centre of the 1,4 -disubstituted benzene ring. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ (pyrrole) interactions form a two-dimensional hydrogen-bonded network with shortest $\mathrm{N} \cdots$ (pyrrole centroid) distances of 3.219 (3) and 3.324 (3) \AA.

Comment

Dipyrromethane derivatives are useful building blocks in the synthesis of porphyrin model systems with direct approaches to trans-substituted porphyrins available by condensation of dipyrromethanes with aldehydes (Lee \& Lindsey, 1994). The structural chemistry of these precursors has been underdeveloped, especially in relation to hydrogen-bonding studies. Interactions involving an aromatic π system as a donor or acceptor are well established (Hanton, Hunter \& Purvis, 1992). We report herein the structure of 1,4 -bis(di-2-pyrrolylmethyl)benzene, (I), where intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ (pyrrole) interactions arise in a system with pyrrole $\mathrm{N}-\mathrm{H}$ donors and only heteroaromatic pyrrole systems as acceptors.

(I)

Acta Crystallographica Section C ISSN 0108-2701 © 1998

Molecule (I) lies about an inversion centre which is at the centre of the disubstituted benzene ring; a view of the molecule with our numbering scheme is presented in Fig. 1 and selected geometric dimensions are in Table 1. Bond lengths and angles are in accord with anticipated values (Orpen et al., 1994). The two independent pyrrole rings are at angles of 79.4 (2) (N15 ring) and $67.6(2)^{\circ}$ (N 25 ring) to the 1,4-benzene ring and are almost normal to one another [86.43 (9) ${ }^{\circ}$].

The pyrrole groups take part in intermolecular N H $\cdots \pi$ (pyrrole) interactions, with each pyrrole acting as both an $\mathrm{N}-\mathrm{H}$ donor and a π (pyrrole) acceptor.

Fig. 1. View of (I) showing the atom-numbering scheme; suffix ' a ' refers to the equivalent position ($1-x, 1-y, 1-z$). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the $\mathrm{N}-\mathrm{H} \cdots \pi$ (pyrrole) interactions in the crystal structure. H atoms bonded to carbon have been omitted.

A view of the $\mathrm{N}-\mathrm{H} \cdots \pi$ (pyrrole) hydrogen-bonding process is given in Fig. 2. Molecule (I) associates about inversion centres, forming a one-dimensional chain along the c axis, with $\mathrm{N} 25-\mathrm{H} 25 \cdots \mathrm{Cg} 1^{\mathrm{i}}[\mathrm{Cg} 1$ is the centroid of the N15 ring; symmetry code: (i) $1-x, 1-y,-z]$ interactions (details in Table 2). N15$\mathrm{H} 15 \cdots \mathrm{Cg} 2^{\mathrm{ii}}$ [Cg 2 is the centroid of the N 25 ring; symmetry code: (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$] interactions link the chains together along the b direction, to generate a two-dimensional network of (pyrrole)N$\mathrm{H} \cdots \pi$ (pyrrole) hydrogen bonds. Examination of the structure with PLATON (Spek, 1997a) showed that there were no solvent-accessible voids in the crystal lattice.

We have previously reported $\mathrm{O}-\mathrm{H} \cdots \pi$ (arene) interactions in 1,1,2-triphenylethanol (Ferguson et al., 1994) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions in a calix[5]arene derivative (Gallagher et al., 1994), where interesting crystal-packing effects are influenced largely by these interactions. Further studies are in progress on the hydrogen-bonding interactions of related porphyrin precursors.

Experimental

The title compound was prepared according to the literature method of Lee \& Lindsey (1994), and recrystallized from cyclohexane.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4}$
$M_{r}=366.46$
Monoclinic
$P 2_{1} / c$
$a=6.4806(12) \AA$
$b=13.8928(15) \AA$
$c=10.9886(9) \AA$
$\beta=92.738(10)^{\circ}$
$V=988.2(2) \AA^{3}$
$Z=2$
$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: none
2464 measured reflections
2256 independent reflections
789 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.016$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.104$
$S=0.829$
2256 reflections
128 parameters

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=7.74-18.78^{\circ}$
$\mu=0.075 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Needle
$0.28 \times 0.14 \times 0.10 \mathrm{~mm}$ Yellow
$\theta_{\text {max }}=27.4^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 18$
$l=0 \rightarrow 14$
3 standard reflections frequency: 120 min intensity variation: 1.0%
$\Delta \rho_{\text {max }}=0.185 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.153 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0073 (13)

H atoms constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0348 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001
\end{aligned}
$$

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{N} 15-\mathrm{C} 11$	$1.361(3)$	$\mathrm{N} 25-\mathrm{C} 21$	$1.361(3)$
$\mathrm{N} 15-\mathrm{C} 14$	$1.358(3)$	$\mathrm{N} 25-\mathrm{C} 24$	$1.363(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.363(3)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.351(3)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.417(4)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.417(3)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.344(3)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.345(4)$
$\mathrm{N} 15-\mathrm{C} 11-\mathrm{Cl}$	$122.1(2)$	$\mathrm{N} 25-\mathrm{C} 21-\mathrm{C} 1$	$121.3(2)$
$\mathrm{N} 15-\mathrm{Cl1}-\mathrm{C} 12$	$106.6(2)$	$\mathrm{N} 25-\mathrm{C} 21-\mathrm{C} 22$	$106.9(2)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	$131.3(3)$	$\mathrm{C} 1-\mathrm{C} 21-\mathrm{C} 22$	$131.5(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$107.7(3)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$108.5(2)$
$\mathrm{C} 11-\mathrm{N} 15-\mathrm{Cl} 4$	$110.4(2)$	$\mathrm{C} 21-\mathrm{N} 25-\mathrm{C} 24$	$109.7(2)$

Table 2. Hydrogen-bonding geometry $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 25 — \mathrm{H} 25 \cdots C g 1^{i} \dagger$	0.86	2.42	$3.219(3)$	154
$\mathrm{~N} 15 — \mathrm{H} 15 \cdots C g 2^{2}$	0.86	2.52	$3.324(3)$	156
Symmetry codes: (i)	$1-x, 1-y,-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.			

$\dagger C g 1$ and $C g 2$ are the centroids of the N15 and N25 rings, respectively.
Molecule (I) crystallized in the monoclinic system: space group $P 2_{1} / c$ from the systematic absences. H atoms were allowed for as riding atoms with $\mathrm{N}-\mathrm{H} 0.86$, and $\mathrm{C}-\mathrm{H} 0.93$ and $0.98 \AA$. At an intermediate stage in the analysis, the site occupancies of the atom pairs N15/C12 and N25/C22 were allowed to vary in order to check for possible N/C disorder; the occupancy factors obtained did not differ significantly from unity and accordingly in the final refinement cycles, no N/C disorder was allowed for. Difference Fourier maps in the plane of the pyrrole rings clearly supported the present atom designation.
Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997b). Molecular graphics: NRCVAX96, ORTEPII (Johnson, 1976), PLATON (Spek, 1997a) and PLUTON (Spek, 1997b). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

JFG thanks the Research and Postgraduate Committee of Dublin City University, the Royal Irish Academy and Forbairt for generous funding of a research visit to the University of Guelph (June-August, 1997), and Professor George Ferguson for the use of his diffractometer and computer system.

[^0]
References

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX96 and SHELXL97 Programs. University of Guelph, Canada.

Ferguson, G., Gallagher, J. F., Glidewell, C. \& Zakaria, C. M. (1994). Acta Cryst. C50, 70-73.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gallagher, J. F., Ferguson, G., Böhmer, V. \& Kraft, D. (1994). Acta Cryst. C50, 73-77.
Hanton, L. R., Hunter, C. A. \& Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134-1136.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lee, C.-H. \& Lindsey, J. S. (1994). Tetrahedron, 50, 11427-11440.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.B. Bürgi \& J. D. Dunitz, Appendix A. Weinheim, Germany: VCH Publishers.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1997a). PLATON. Molecular Geometry Program. Version of July 1997. University of Utrecht, The Netherlands.
Spek, A. L. (1997b). PLUTON. Molecular Graphics Program. Version of July 1997. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 132-134
3-Methoxy-2,4,6-triphenylpyridine at $\mathbf{1 7 3} \mathrm{K}$

Michael Bolte

Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Straße I1, 60439 Frankfurt/Main, Germany.
E-mail: bolte@chemie.uni-frankfurt.de
(Received 5 August 1997; accepted 29 September 1997)

Abstract

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}$, the methoxy group attached at C 3 avoids steric hindrance with the neighbouring phenyl rings by emerging almost orthogonally from the pyridine ring $\left[\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 31-\mathrm{C} 31-95.3(2)^{\circ}\right]$. The phenyl rings show a disrotatory arrangement and the angles between them and the pyridyl ring range from 22.66 (6) to $47.91(5)^{\circ}$, whereas these angles differ by only approximately 6° in 2,4,6-triphenylpyridine.

Comment

3-Methoxy-2,4,6-triphenylpyridine serves as a precursor for oxyl radicals of heterocycles. The synthesis proceeds from the title compound, (I), via the corresponding phenol to the triphenylpyridyloxyl (Teuber, Schütz \& Bader, 1977). The crystal structure determination was performed to establish unambiguously the pattern of substitution of the heterocycle.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1144). Services for accessing these data are described at the back of the journal.

