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Metrics

The metrics in this thesis are typically computed over N observations. In the
follwing table y denotes the ground-truth classification label while ŷ is the
prediction made by the neural network.

Name Acronym Units Formula

Classification accuracy – %
∑N

1
1
N

1(ŷ=y)

Classification error – %
∑N

1
1
N

1(ŷ ̸=y)

Area Under the Curve AUC – Area under the
TPR vs FPR curve

Dry Herbage composition RMSE RMSE %
√∑N

1
1
N
(ŷ − y)2
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1
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(ŷ − y)2
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(ŷ − y)2

Herbage Relative Absolute Error HRAE %
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1
1
N

|y−ŷ|
ŷ

Dry Herbage Relative Error HRE –
∑N

1
1
N

ŷ
y
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Abstract

“Deep learning for computer vision constrained by limited supervision”
Paul Albert

This thesis presents the research work conducted on developing algo-
rithms capable of training neural networks for image classification and re-
gression in low supervision settings. The research was conducted on publicly
available benchmark image datasets as well as real world data with appli-
cations to herbage quality estimation in an agri-tech scope at the VistaMilk
SFI centre. Topics include label noise and web-crawled datasets where some
images have an incorrect classification label, semi-supervised learning where
only a small part of the available images have been annotated by humans
and unsupervised learning where the images are not annotated. The principal
contributions are summarized as follows. Label noise: a study highlighting
the dual in- and out-of-distribution nature of web-noise; a noise detection
metric than can independently retrieve each noise type; an observation of
the linear separability of in- and out-of-distribution images in unsupervised
contrastive feature spaces; two noise-robust algorithms DSOS and SNCF
that iteratively improve the state-of-the-art accuracy on the mini-Webvision
dataset. Semi-supervised learning: we use unsupervised features to propagate
labels from a few labeled examples to the entire dataset; ReLaB an algorithm
that allows to decrease the classification error up to 8% with one labeled
representative image on CIFAR-10. Biomass composition estimation from
images: two semi-supervised approaches that utilize unlabeled images either
through an approximate annotator or by adapting semi-supervised algorithms
from the image classification litterature. To scale the biomass to drone images,
we use super-resolution paired with semi-supervised learning. Early results
on grass biomass estimation show the feasibility of automating the process
with accuracies on par or better than human experts. The conclusion of the
thesis will summarize the research contributions and discuss thoughts on
future research that I believe should be tackled in the field of low supervision
computer vision.
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Chapter 1

Introduction

Section 1.1 introduces the motivations behind the research carried out in

this thesis, Section 1.2 proposes research hypothesis and research questions.

Section 1.3 presents the structure of the report.

1.1 Motivations and Research Hypothesis

Deep learning is the state-of-the-art approach to solve computer vision tasks

yet the high accuracy results reported in the literature are bound to the human

supervision required to curate and annotate datasets. Reducing the amount

of human supervision, particularly in terms of data annotation and curation

needed to produce accurate deep learning models is necessary to enable the

deployment of state-of-the-art deep learning models at a larger scale and

make them more accessible to a variety of real world applications. The three

following low supervision alternatives for learning deep learning models will

be studied in this research work: (1) semi-supervised learning where the

labeling task is limited to a small subset of the images but where a large pool
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of unlabeled samples is available; (2) unsupervised learning where visual

concepts are learnt from images only with no need for human annotated labels;

(3) automatic annotation utilizing search engines to gather and annotate data

using web queries given a set of classes to learn.

More specifically, the quality of the visual features learned by unsuper-

vised learning algorithms has drastically improved in the last 4 years, yet

other low supervision tasks only scratch the surface of the synergistic pos-

sibilities opened. In most existing cases, unsupervised representations are

used in the semi-supervised and label noise literature to either initialize the

weights of the CNN to be trained or to train a secondary (regularization) un-

supervised objective jointly with the supervised one. The research described

in this thesis, will propose to go further and use the visual similarities learned

by unsupervised learning algorithms to detect different types of label noise

(Chapter 4) or to improve semi-supervised learning using label propagation

(Chapter 5).

1.2 Research questions

From the reflections developed in Section 1.1, the following three hypothesis

and associated research questions (RQ) emerge.

Hypothesis: Out-of-distribution noise is the dominant noise type in

web-crawled datasets. Instead of discarding out-of-distribution samples, they

could be used to 1) learn generalizable low-level features to improve the

classification accuracy for the in-distribution data, or 2) be used to improve

network calibration by promoting under-confident (high-entropy) predictions
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on out-of-distribution samples at test time.

RQ1: What is the nature of web noise and can detected noisy images be

included in the training objective?

Hypothesis: Unsupervised learning has been demonstrated to be a

powerful initialisation or regularisation strategy for neural networks when

learning image classification tasks. In the case of web-noise, the features

learned by unsupervised algorithms contain visual similarity knowledge that

could allow the detection of in- and out-of-distribution samples.

RQ2: Can unsupervised learning be used to detect noise in web-crawled

datasets?

Hypothesis: Unsupervised learning is a strong strategy when used to

initialize weights or as an regularization trained jointly to a semi-supervised

classification objective. The similarities learned in an unsupervised manner

can be used to discover unlabeled images highly similar to the labeled base.

RQ3: Can unsupervised features be used as a medium to propagate

labels in a semi-supervised scenario when few labels are available?

The remaining hypotheses and research questions are related to appli-

cations of the above in a real world scenario. It is not evident that low

supervision improvements observed of curated benchmarks datasets where

labels are discarded will generalize to real world data. More experiments

should be conducted in real world situations where labels are very difficult

to acquire and where images will not be curated. The last two chapters of
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this thesis propose to design low supervision solutions to predict herbage

composition from RBG images as part of my work in the VistaMilk SFI

centre 1. The following hypotheses and research questions are proposed to

study the application of low supervision approaches to real world data.

Hypothesis: Unsupervised and semi-supervised learning have been

shown to greatly reduce the amount of supervision needed to perform image

classification on curated datasets. These improvements will translate to fine

grained real world datasets where ground-truth collection is expensive to

collect.

RQ4: Can semi-supervised and unsupervised strategies be devised on

specialist, fine-grained datasets such as grass density and composition

estimation?

Hypothesis: To be useful to farmers, grass composition prediction

needs to be performed on the large areas covered by farms. Drone images

offer a scalable solution but renders the collection of ground-truth very time

consuming. Semi-supervised strategies are necessary to be able to devise a

deep learning algorithm that can infer grass composition and weight from

drone images.

RQ5: Can super-resolution and semi-supervised learning be applied to

generalise a grass composition prediction model learned on ground-level

images to drone data?
1vistamilk.ie
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1.3 Structure of the thesis

This thesis will begin by presenting algorithmic solutions to train CNNs

on web-crawled datasets. Chapter 3 conducts an exploratory study on the

type of label noise to expect in web crawled datasets and suggests why label

correction approaches, which perform well on synthetically corrupted data,

struggle to generalize to web noise. A simple algorithm is then proposed

to detect and correct different types of label noise encountered in image

classification. Chapter 4 observes that unsupervised contrastive learning can

be used to linearly separate in-distribution and out-of-distribution label noise

in web crawled datasets and proposes a more complex label noise robust

algorithm, utilizing out-of-distribution images to learn low level features in

CNNs in a supervised contrastive objective. Continuing with the study of low

supervision alternatives for image classification, this thesis will then study

semi-supervised solutions for computer vision with Chapter 5 proposing

to use label propagation and unsupervised learning to automatically label

additional samples to improve semi-supervised learning for image classi-

fication. The last two chapters propose semi-supervised research applied

to real world applications. Chapter 6 studies how synthetically generated

images can be used to reduce the need for human annotations when predicting

herbage characteristics and Chapter 7 proposes to use super resolution and

semi-supervised learning to perform domain adaptation from herbage images

captured on the ground to drone data. Chapter 8 will answer the research

questions and conclude the report.
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Chapter 2

Literature review

This chapter gives an overview of the relevant literature and publicly available

datasets on limited supervision for image classification research. Section 2.1

introduces the curated and low supervision image classification datasets

studied in this thesis. Section 2.2 introduces deep learning architectures

for computer vision applications. Section 2.3 presents existing strategies to

perform unsupervised representation learning on images when no human

annotated labels are available. Section 2.4 introduces the state-of-the-art

strategies to perform semi-supervised learning for image classification and

regression tasks. Section 2.5 introduces the label noise problem and some of

the state-of-the-art approaches to train neural networks robustly on corrupted

image datasets. Section 2.6 introduces network calibration which will be

studied in the case of label noise training in Chapter 3. In the scope of

the applied part of this PhD, Section 2.7 will introduce domain adaptation

solutions for semantic segmentation algorithms, which will be applied to

herbage canopy segmentation using synthetic images in Chapter 6. Finally,

section 2.8 presents computer vision solutions for agriculture problems. Some
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limitations will additionally be given for current state-of-the-art research in

semi-supervised and label noise in image classification tasks. Each chapter

will include a motivations section that will place the research conducted in

the chapter with regards to these state-of-the-art limitations.

2.1 Image classification datasets

Image classification is a prediction task that aims at predicting the category

an image should belong to. The quality of an image classification algorithms

is often evaluated by its classification accuracy on images unseen during

training. An image dataset can be created with more or less amounts of

human intervention.

2.1.1 Human curated image classification datasets.

In order to train accurate image classification algorithms, training datasets are

usually curated by human annotators. Curated here means that each image in

the dataset is presented to multiple human annotators to ensure its relevance

to the category it has been assigned to. The most commonly used curated

image classification dataset is most probably ImageNet (ILSVRC2012) [100],

composed of a million images of mixed resolution (commonly trained on

patches of 224× 224 px) and divided into 1, 000 classes where each class is

composed of 1, 000 image examples. The dataset was created by gathering

images from the web and having multiple human annotators curate the data

to ensure quality. Since its release in 2012, ImageNet has been an extremely

important baseline to compare the classification accuracy of different neural

network architectures and training algorithms. Due to the large size of Ima-
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Image curation Image labelling

Training

Image curation Image labelling

Web crawled

Fully curated

Semi-supervised

Images from 
the web

Figure 2.1: Gathering and curating image datasets from the web. Once the
images have been retrieved, they can be used directly to train a CNN using
the web queries as labels (web crawled). Other options include completely
curating the dataset by ensuring that the assigned class correctly describes
the object in the image (fully curated) or performing the curation only for a
small part of the images (semi-supervised).

geNet, training neural networks on this dataset is computationally expensive.

To promote research from laboratories with more constrained resources, some

datasets of a reduced size and resolution are often used to reduce experiment

times and perform exploratory studies. The CIFAR datasets [99], composed

of 60, 000 images of resolution 32 × 32 divided in 10 or 100 classes are

some of the most used low resolution datasets. CIFAR10 and CIFAR100

were created using a similar process as ImageNet [100] using human annota-

tors to curate images gathered from the web. Subsets of the full ImageNet

dataset are also available such as miniImageNet [202] composed of 84× 84

images divided in 100 classes (600 images per class), tinyImageNet [103]

that contains 64× 64 images divided in 200 classes (600 images per class), or

ImageNet-32(64) [37], which proposes to train the complete but downscaled

ImageNet (32× 32 or 64× 64). Fine grained classification tasks also have

associated standardized datasets such as the StanfordCars [98] dataset, which

contains 16, 000 images belonging to 196 different car classes.
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2.1.2 Limited supervision classification.

Since curating large image datasets using human annotators is a long and

expensive task, datasets limiting human intervention have been proposed to

the research community. The datasets in the scope of the research presented

in this thesis include semi-supervised datasets where only a part of the dataset

is annotated by humans such as STL-10 [38] (96×96 images with 10 classes)

where in addition to the 100 human-labeled images per class, 100, 000 uncu-

rated unlabeled images are provided to perform semi-supervised learning on.

Another type of low supervision datasets are web-crawled datasets, where

the human curating and annotation process is omitted. These datasets are

directly created using search engines to recover example images for a given

category. Figure 2.1 illustrates the different curating options when gathering

image datasets from the web for image classification. Because no human

curation is involved, these datasets are simple and fast to create but will con-

tain incorrectly assigned images. WebVision [115] is a web-crawled dataset

that was constructed on the same classes as ImageNet [100]. The images

were gathered from images.google.com (1.1M images) and flickr.com (1.6M

images) using ImageNet synsets. To estimate the quality of the dataset, 3 hu-

man annotators were assigned the task of voting whether images in a random

subset of 200 images per class were inliners or outliers to the class they were

assigned to. The authors found that 34% of images were incorrectly assigned

(2 or more annotators found the image to be an outlier). The difficulty of

training a classification algorithm on WebVision lies in the imbalance of ex-

ample images per class and the disparity of the noise, as some classes contain

much more outliers than others. Clothing1M [213] is another dataset that was

crawled from clothes image databases (amazon.com, ebay.com, taobao.com).
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Clothing1M contains 1M images split into 14 clothing classes. Because Cloth-

ing1M was crawled exclusively from clothes databases, the noisy images are

not as diverse as WebVision (images from the whole web) yet the dataset still

contains large amounts of miss-assigned images. A similar study as the one

conducted on WebVision using human annotators showed that around 40%

of the images are assigned to the incorrect category with some classes being

much noisier than others. Finer grained web-crawled classification datasets

have also been recently proposed to extend label noise algorithms to more

complex challenges. Web-aircraft, Web-bird, and Web-cars [183] contain

100, 200, 196 classes and 13.500, 18.400, 21.450 images, respectively, and

WebiNat-5089 [183] contains 1.1M images in 5089 fine grained categories

(plants, insects, reptiles, . . . ). These datasets were gathered using the Bing

Image Search Engine (BISE). Datasets that are an order of magnitude larger

have also been proposed, such as YFCC100M [192], a collection of 100M

images crawled from flickr.com where the media (image or video) is asso-

ciated with the metadata of the user which posted the content (title, tags).

JFT-300M [182] contains 300M images paired with labels gathered and cu-

rated using a mixture of web signals from google.com. LAION-400M [168]

contains 400M image-text pairs crawled from the common crawl 1 database

between 2014 and 2021 and curated by a trained CLIP [155] model where

text-image pairs with a CLIP-predicted cosine similarity under 0.3 were

dropped. IG-1B consists of 940M images gathered from instagram.com us-

ing hashtags matching with the ImageNet classes. Although YFCC100M

and LAION-400M are publicly available, both JFT-300M and IG-1B are

proprietary.

1commoncrawl.org
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2.1.3 Synthetically corrupted datasets

Although the web-crawled datasets presented in the previous paragraph al-

low researchers to test noise robust algorithms in a real world setting, the

noisy nature of the samples in these datasets is unknown. Synthetically

corrupted datasets aim to provide a working tool to evaluate how a noise

robust algorithm performs on specific parts (clean or noisy) of the dataset

during the design phase. A synthetically corrupted dataset is a curated dataset

where some of the labels are artificially hidden to the learning algorithm

(semi-supervised learning and unsupervised learning) or where noise is me-

thodically injected (label noise). For semi-supervised learning, classification

algorithms are typically trained on CIFAR10/100 or ImageNet where only

few samples per class keep their original annotation and the rest of the data

is considered unlabeled [2, 9, 17]. The amount of remaining data can be as

high as 400 per class in earlier semi-supervised works [157, 131, 190] but

has been greatly reduced to as few as 4 examples per class in more recent

contributions [225]. Introducing synthetic label noise in curated datasets

can be performed in a variety of manners. The most basic approach is the

symmetric corruption that involves changing the label of a fixed subset of

the dataset to a random label from the class pool [8, 150, 159]. Asymetric

noise corruption proposes a more realistic setting where the random label

assignment of the symmetric corruption is replaced by a semantically close

class [145]. For example, the usual label corrupting strategy on CIFAR10 is

truck −→ automobile, bird −→ airplane, deer −→ horse, cat −→ dog. Another

corruption strategy involves introducing images from different datasets (out-

of-distribution samples) [4, 146, 165, 216]. Out-of-distribution in this scope

characterises the true label of the incorrectly labeled image. For example in
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No noise
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Sym noise
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Asym noise Out-of-dist noise

Brambling
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Goldfinch
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Figure 2.2: Different synthetic noise types encountered in label noise research.
Images from WebVision

Figure 2.2, the true label of the image at the bottom right is probably a type of

shoe which is outside of the {Brambling, Goldfinch, Alligator, White shark}

label distribution i.e. the object in the noisy image does not correspond to any

available label in the target classification task. Out-of-distribution images are

usually injected into CIFAR10/100 from ImageNet32 [37] or Places365 [230].

Finally, curated datasets can be corrupted using web noise. Jiang et al. [88]

tasked human annotators to identify the outliers in images gathered using

text-to-image and image-to-image search engines, which recovered examples

for classes of miniImageNet [202] and StanfordCars [98] on Google. The

identified noisy images recovered can then be used to corrupt a given part

of the datasets in a realistic but controlled fashion. Figure 2.2 illustrates

different synthetic noise corruption for image classification with 4 classes:

brambling, alligator, white shark, and goldfinch.

2.2 Deep learning for Computer Vision

Deep learning architectures for computer vision have become the standard

for image classification since the AlexNet [101] architecture was evaluated
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on the ImageNet dataset [100], outperforming other approaches based on

hand crafted features by more than 10 accuracy points. Since then many

neural network approaches have proposed. The most notable are: VGG [173],

which is an extension of AlexNet, Inception [184], which combines features

learned at multiple scales; ResNet [92], which uses skip connections to

reduce the vanishing gradients problem, and EfficientNet [187], a suite of

meta learned architectures of different sizes. All of these architectures are

based on convolutional filters. In 2017, the transformer architecture [200] was

proposed. Contrary to the previous networks, the transformer architecture is

not convolutional. The transformer was initially proposed for sequential data

such as text with Natural Language Processing (NLP) applications using the

concept of attention. To summarize the transformer architecture, attention

blocks are used to extract a larger amount of context from the input whole

sequence. A straightforward example is text translation where a word by

word solution would yield limited results. In transformers, attention vectors

are computed over the whole input sequence (sentence or paragraph) to

compute a contextual embedding that accounts for high attention words to

produce the prediction. In the case of language translation, having access to

other words in the input sentence will help translate gender or plural rules.

Transformers have also been generalized to images [48] by treating the input

image as a series of adjacent pixel patches. Although vision transformers

reach high accuracy numbers, they require large amounts of data to train

their large amount of parameters. The research community has been working

on addressing this issue [70, 121]. Although transformers demonstrated

accuracy performances superior to convolutional networks for classification

tasks, Liu et al. [122] showed that CNNs are still competitive with vision

13
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transfomers when the training improvements proposed in the last 10 years

by the CNN research community are properly combined (activation function,

optimizer, data augmentation).

MLP MLP MLP MLP

…

original image

augmented views

neural network

non-linear projection

repel

attractattract

Figure 2.3: Principles of contrastive learning. The features extracted from
augmented views of the same image are encouraged to be similar to each
other and different from other images. Example inspired by github.com/
google-research/simclr

2.3 Unsupervised Learning

Unsupervised learning aims to learn features from data alone, independently

from human labeling. Early unsupervised learning algorithms for computer

vision are mostly self-supervised where the algorithm’s goal is to gener-

ate its own labels to train on, independently of manual human labeling.

Self-supervised tasks include solving jigsaw puzzles [141] where image

patches have to be properly ordered, image coloring [229], rotation angle

prediction [61] or iterative k-means clustering [25]. In more recent works,
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contrastive learning has dominated the landscape [30, 72, 206]. The learning

paradigm of contrastive learning is to enforce a neural network to learn simi-

lar features for different data augmented views of a same image (positive).

To avoid the network collapsing to a trivial solution, features extracted from

different images in the dataset are encouraged to have low feature similarities

(negatives). Figure 2.3 displays a visualization of the principles of contrastive

learning. Initial contrastive learning works identified that large batch-sizes

were an important factor when training neural networks [30] but latter works

proposed that having good negative examples was more important [162]. The

most recent unsupervised learning algorithms are instance-based approaches

that do not require the negative samples of contrastive learning to compute the

loss and use dual networks architectures. In this case, the covariance matrix

of the features extracted from two different augmented views of an image

passed through two different neural networks is encouraged to be the identity.

Some earlier approaches instead minimize the cosine distance between the

two representations. In order to avoid collapsing to a trivial solution, different

strategies have been proposed. BYOL [65] uses a moving average of the

first network to extract the second image view. SimSiam [32] utilizes a stop-

gradient to only update one network at a time. Barlow Twins [222] enforces

features to be learnt in a non redundant manner by driving non diagonal terms

of the covariance matrix to zero. VICReg [14] additionally enforces high

variance with features extracted from other images in the mini-batch. Some

unsupervised algorithms also propose that similarities and dissimilarities

not only be learned between an augmented view and random images from

the dataset but that the nearest neighbors be also encouraged to be similar.

This includes treating the K nearest neighbors as positives [52] or dynamic
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confidence-based approaches [56]. Unsupervised learning has also been suc-

cessfully applied to transformer architectures. DINO [27], which is based on

the BYOL [65] algorithm for CNNs, uses a student-teacher transformer archi-

tecture where the teacher network is a exponential moving average (EMA) on

the weights of the student network. The student is encouraged to learn similar

feature embeddings as the teacher when presented with different augmented

views of the same image.

2.4 Semi-supervised learning

Semi-supervised learning is a branch of machine learning where only a part

of the dataset is annotated while the rest of the data remains annotation free

(unlabeled). The relevance of designing semi-supervised algorithms to train

neural networks comes from the high amount of human time dedicated to

annotating datasets. Semi-supervised learning algorithms devise learning

strategies to improve over the performance that could be obtained by training

on the few labeled examples by using large amounts of unlabeled samples.

2.4.1 Semi-supervised learning for classification

There exist two dominant strategies for semi-supervised learning: pseudo-

labelling and consistency regularization. Pseudo-labeling [9, 21, 45] directly

predicts a (pseudo) label for each unlabeled sample in the unlabeled set

using initial knowledge learned on the labeled set. The objective then is to

update the weights of the neural networks using the labels of the labeled

set and the pseudo-labels computed on the unlabeled set, often using strong

data augmentation to avoid overfitting. The pseudo labels are updated every
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epoch as the network learns better representations. Because of the absence of

regularization on the predicted pseudo-labels, the pseudo-labelling strategy is

prone to produce a network over-confident on its own incorrect prediction

as training progresses. This is because the network is encouraged to fit its

own direct predictions on unlabeled samples. This limitation is otherwise

known as confirmation bias [9, 116]. Consistency regularization [190, 18]

proposes to estimate labels by ensembling predictions made on multiple data

augmented views of the unlabeled images. Estimating the label for unlabeled

image from multiple data augmented views regularizes the pseudo-label

guessing process and makes it harder for the network to overfit to its own

prediction, effectively reducing confirmation bias. Later iterations of semi-

supervised algorithms proposed to combine both a consistency regularization

and pseudo-labelling training objective [178]. This combination showed that

pseudo-labeling can perform well in the case where only high confidence

pseudo-labels are used to train the neural network. The performance is even

higher when the pseudo-label confidence threshold is class dependent [225].

2.4.2 Coupling semi- and unsupervised learning

Research contributions have shown that coupling unsupervised and semi-

supervised learning can increase the classification accuracy when few labels

are available. Rebuffi et al. [158] use RotNet [61] to initialize the weights

of a network before starting the semi-supervised process, S4L [223] trains a

supervised loss on the few available samples concurently to an unsupervised

objective (RotNet or Examplar self-supervision [47]) on both labeled and

unlabeled images, ReMixMatch [19] exploits RotNet [61] together with a

semi-supervised algorithm to achieve stability when very few labeled ex-
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amples are available, and EnAET [207] uses transformation encoding from

AET [228] to improve the consistency of predictions on transformed images.

Finally, SimCLRv2 [31] proposes to first learn unsupervised features using all

samples, fine-tune on the few available labels then perform a self-distillation

task which is similar to pseudo-labelling.

2.4.3 Label propagation for semi-supervised learning

Label propagation stems from the image retrieval literature and has been

used in the semi-supervised literature to propagate labels from the labeled

to unlabeled set of the data [16]. Diffusion [46, 186, 231] constructs a

pairwise affinity matrix, relating images to each other using meaningful

features before diffusing the affinity values to the entirety of the graph. The

diffusion result can be directly used to estimate labels and finetune pre-

trained networks in few-shot learning [49] or to define pseudo-labels for

semi-supervised learning [81]. Other attempts at using label propagation

for semi-supervised learning include dynamically capturing the manifold’s

structure and regularizing it to form compact clusters that facilitate class

separation [93], or to encourage random walks ending in the same class they

started from, while penalizing different class endings [79].

2.4.4 Taxonomy

Figure 2.4 displays the proposed taxonomy of semi-supervised learning for

image classification presented in this literature review. A first distinction is

made between semi-supervised algorithms utilizing unsupervised learning

objectives or not. For algorithms that utilize unsupervised learning, a dif-

18



CHAPTER 2: LITERATURE REVIEW
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Figure 2.4: Non-exhaustive semi-supervised image classification taxonomy

ferentiation is made between the case where unsupervised learning is used

to initialize the network weights or when it is used as a regularization ob-

jective to the semi-supervised one. For all algorithms a final distinction is

made between pseudo-labelling, label propagation, consistency regulariza-

tion, supervised or hybrid (consistency regularization and pseudo-labelling)

approaches.

2.4.5 Semi-supervised learning for regression

Semi-supervised regression (SSR) solves a regression task on a dataset where

the labeled data is limited but the unlabeled data is plentiful. Although semi-

supervised classification received many important contributions in the last

years, the attention given to SSR has been limited. Timilisina et al. [195]

construct a fully connected graph from the feature representations of every

sample before performing a bounded heat diffusion process to annotate the

unlabeled data. Jean et al. [85] adopt a Bayesian approach by fitting the

labeled representations with Gaussian processes and training an auxiliary
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regularization objective to minimize the predictive variance with regards

to the unlabeled points. Bzdok et al. [24] apply an autoencoder on top

of medical images of brain voxels to solve a action regression task. The

autoencoder is used to compress the input vectors and to ensure that the

features extracted from labeled and unlabeled images will be compatible with

the final logistic regressor. Li et al. [110] propose a process to aggregate

the predictions from multiple regression predictions into a safe pseudo label

for the unlabeled samples by means of solving a convex linear combination

of each regressor output. Zhou et al. [232] co-train two KNN regressors

with different distance metrics that predict pseudo labels to be used by the

other regressor on the unlabeled data, effectively reducing confirmation

bias. Note that semi-supervised classification algorithms such as consistency

regularization approaches [18, 201] or pseudo-labeling [9] should translate

to the regression setting. Examples of regression tasks applied to images

include age prediction2 or grass-clover mixture prediction [176].

2.4.6 Limitations of semi-supervised learning for image
classification

While impressive improvements have been achieved in terms of classification

accuracy improvements together with reducing the number of labeled samples,

some problems are still left to be addressed. In all algorithms presented in this

literature review, unlabeled examples are considered part of the same curated

dataset as the labeled examples where labels have been artificially discarded.

This means that all unlabeled examples can be considered as being from the

same visual distribution as the labeled ones and that their true label belongs to
2https://medium.com/analytics-vidhya/fastai-image-regression-age-prediction-based-

on-image-68294d34f2ed
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the labeled distribution. In practice, since unlabeled examples should reduce

the annotation and data curation cost, they should be considered uncurrated

and not all of them will be relevant to the classification task. The STL-10

dataset [38] was proposed to address this real world scenario but too many

labeled samples are proposed for the current state-of-the-art standards. To

account for the real world scenario of semi-supervised learning, Ren et al.

[160] proposed to select only relevant unlabeled samples to be used in the

semi-supervised objective to avoid learning from underconfident pseudo-

labels to improve convergence and the final classification accuracy. Another

question raised by recent semi-supervised algorithms is the importance of data

augmentation in the semi-supervised strategies as more and more advanced

augmentation strategies such as AugMix [74], CTAugment [19] or the strong

SimCLR augmentations [30] are utilized. This begs the question of whether

recent improvements are principally due to these strong augmentations instead

of the proposed training strategies. Comparing semi-supervised approaches

independently of the data augmentation used is further complicated by the

use each algorithm makes of the augmentation e.g. to guess better pseudo-

labels [178] or to avoid overfitting [19] (confirmation bias). A common

code baseline (similar to solo-learn [40] for unsupervised learning) would be

desirable to render the comparison of semi-supervised algorithms unbiased

to the augmentation strategies. Finally, some efforts are made to couple

unsupervised and semi-supervised learning but these are often limited to

network pretraining [31, 158] or unsupervised regularization [19, 178], that

boost the baseline classification accuracy yet miss the opportunity to use

similarities learned in an unsupervised manner to transfer label knowledge

from the labeled to the unlabeled samples. Chapter 5 will propose to use
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the strong representation learning power of recent unsupervised learning

algorithms to extend the size of the labeled set using unsupervised affinities

between labeled and unlabeled samples.

2.5 Label noise

Label noise research is a rapidly developing area inspired by the use case

where the human curation of images and annotations is completely left out

when building datasets from the web. Datasets gathered using web queries

have the advantage of being easy to assemble and to be already labeled by

the query. The main problem in web datasets is that some of the retrieved

images will be mismatched with their associated query (outliers). In the

scope of label noise robust algorithms, the clean or noisy nature of samples

is unknown. Label noise robust algorithms aim at detecting and correcting

the incorrectly labeled images in order to improve the generalization of the

algorithm. The research conducted in this thesis will not rely on the possible

availability of a known clean or noisy set of images.

2.5.1 Robust losses to combat label noise

Loss correction algorithms aim to reduce the contribution of noisy labels

in the loss used to train the weights of the neural network. Some naturally

robust losses have been proposed where theoretical guaranties ensure that the

gradient of the incorrectly labeled images remains small [119, 125, 210, 218].

More specifically, Patrini et al. [150] propose, given that the transition matrix

between classes is known, to correct the gradient of the loss using a matrix

multiplication with the class noisiness prior to readjust the expected incorrect
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network predictions. Reed et al. [159] compute a linear interpolation between

the loss against the ground-truth label (possibly noisy) and the loss against the

network’s own pseudo-label (possibly correct) using a fixed hyper-parameter.

2.5.2 Individual detection of noisy samples

A more modern take on label noise robustness is to explicitly detect the noisy

samples. Arazo et al. [8] observe that because CNNs are naturally robust to

noise, correctly labeled samples that share similarities with other correctly

labeled examples from the same class will be learned more easily than their

noisy counterpart. The authors show that when observed at the right moment

(before overfitting to the noise) the histogram of the per-sample training loss

appears bi-modal. The low loss mode contains the clean samples and the high

loss mode contains the noisy ones. A Gaussian Mixture is fit to detect the

high and low loss modes in the historgram and a correction strategy is applied

to the noisy samples where the network current prediction (pseudo-label) is

used as the corrected label. MentorMix [88, 87] uses a mentor (or teacher)

network, which is an exponential moving average (EMA) of the weights a

student network. If the predicted loss of the mentor network is less than a

hyper-parameter threshold, a high importance is given to the sample in the

training loss. Detected noisy samples above the loss threshold are weighed

with values close to 0 to reduce their impact on the student loss and weight

updates. Sample representations in the neural network feature space has

also been used to detect noisy samples. In MOIT [145] noisy samples are

identified as having many neighbors from a different class than its assigned

ground-truth.
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2.5.3 Correcting detected noisy samples

Multiple alternatives have been proposed in the literature to correct the

detected noisy samples. Semi-supervised correction for label noise is a

successful approach that proposes to estimate the true label of detected

noisy samples using semi-supervised approaches. Ortego et al. [143, 145]

apply a pseudo-label based guessing strategy [9] while DivideMix [111] and

JoSRC [216] use consistency regularization [17]. In the case of RRL [113]

corrected labels for noisy samples are guessed using a weighed average of the

200 closest clean neighbors in the network feature space. Another alternative

is to simply discard the detected noisy samples and train the neural network

on the detected clean samples only [87, 88, 170, 220]. This approach appears

to be especially competitive on real-world web datsets where the noise is

mostly out-of-distribution.

2.5.4 Out-of-distribution noise

Recent label noise research has proposed to tackle out-of-distribution noise

in addition to in-distribution noise. The true label of out-of-distribution

noisy samples lies outside of the label distribution that the neural network is

trained to predict. In this case, label correction is impossible. Algorithms

trained for classification on datasets where both in-distribution and out-of-

distribution noise is present hypothesize that a neural network will behave

differently on the two noise types. The softmax predictions of the neural

network on out-of-distribution samples is expected to be under-confident

while predictions on in-distribution samples should be confident but in a

different class than the noisy assignment. JoSRC [216] evaluates the Jensen-
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Shannon divergence between the prediction of the CNN on two augmented

views of the same image. If the divergence metric is high, i.e. the network

outputs different predictions for the same image augmented differently, the

prediction is deemed under-confident and the sample is tagged as out-of-

distribution. EDM [165] evaluates a metric called the evidential loss on the

network predictions. When observing an histogram of the evidential loss

values over the whole dataset, three modes can be observed that indicate

(from low loss to high loss) the clean samples, out-of-distribution samples,

and in-distribution noisy samples. Each subset is recovered using a three

mode Gaussian mixture. Other contributions, such as RRL [113], propose

to tag a noisy sample as out-of-distribution if the confidence (highest bin in

the softmax class probabilities) of the corrected label (guessed using a vote

between the labels of the N closest clean samples in the feature space) is

inferior to a hyper-parameter threshold.

2.5.5 Regularization

Network regularization using data augmentation such as Mixup [227], a

strategy based on image and label interpolation, has been shown in Arazo et al.

[8] to be very robust to label noise and is almost systematically used in label

noise robust algorithms. Regularization loss terms are also used where the

predictions are encouraged to have a low entropy (very confident) or where

the predictions of the network are encouraged to be class balanced [111,

119, 188]. Unsupervised regularization is also used where an unsupervised

learning objective (insensitive to label noise) is minimized together with

the supervised. For example, Li et al. [113] minimize the unsupervised

SimCLR [30] objective together with a noise robust supervised objective.
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Figure 2.5: Non-exhaustive taxonomy for image classification in the presence
of label noise

2.5.6 Taxonomy

Figure 2.5 displays the proposed taxonomy of label noise for image classifi-

cation presented in this literature review. The principal distinction made be-

tween noise robust algorithms is whether they account for out-of-distribution

(OOD) noise during the noise detection phase (no OOD detection, implicit

OOD detection, explicit OOD detection). Implicit OOD detection refers to

approaches that remove all detected (ID and OOD) noisy samples, or that

avoid relabelling detected noisy samples in the case where the predicted

true label is estimated to be incorrect or insufficiently confident. Algorithms

are then differentiated between each other depending whether or not noisy

samples are explicitly detected, and if they are, on how noisy samples are

detected: using a loss-based approach or feature space representations.

2.5.7 Limitations of the label noise state-of-the-art

Most algorithms presented in section 2.5 are designed using a curated dataset

altered artificially to introduce in-distribution label noise where the labels of
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a fraction of the dataset are randomised. Knowing the nature of the noisy

samples is necessary at design time for producing a robust test time algorithm.

The direct real world application of label noise robust algorithms are uncu-

rated datasets directly crawled from the web [115, 183, 213]. In these real

world datasets, it is fair to estimate that a large portion of the noisy images

are out of the desired classification distribution and algorithms designed

on curated datasets, synthetically corrupted with in-distribution label noise

would not address this issue. Designing algorithms robust to a mixture of

in- and out-of-distribution noisy images is desirable. To make it possible to

design such algorithms, Jiang et al. [88] proposed a controlled web label

noise dataset based on MiniImageNet [202] where the web noisy samples

are known. Chapter 3 will propose to conduct a study to evidence the in- or

out-of-distribution nature of web noisy samples in the mini-WebVision [115]

dataset and a metric to independently retrieve both types of noise. Because un-

supervised learning learns representations independently of man-made labels,

these unbiased representations should be relevant as part of a noise-robust

algorithm to detect labeling errors. Some algorithms have proposed to use

unsupervised learning as an unsupervised regularization to a noise-robust su-

pervised objective [113] or as a weight pretraining for the neural network [39].

Similarly to the point made in the limitations of semi-supervised learning

for image classification, the visual similarities that can be learned between

images in an unsupervised manner have not yet been used in the literature and

could be very efficient at identifying out-of-distribution images. Chapter 4

will study how unsupervised contrastive learning can be used to accurately

identify both in- and out-of-distribution images in web-noisy datasets by

clustering their representations in the unsupervised feature space.
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2.6 Network calibration

Network calibration is an important aspect of DNN training that ensures that

the probability distribution of the prediction of a network matches the ob-

served ground-truth distribution. This especially implies that neural networks

should not be over or under confident so that the confidence of the network

in its own predictions can be properly interpreted by a end user. Training a

well-calibrated network is highly desirable for high-risk applications such as

medical diagnosis [51, 156]. Training on label noise datasets will degrade

the calibration performance of a neural network. Expected Calibration Error

(ECE) is a widely used metric to evaluate the calibration of a network [66]

that penalizes both over-confident and under-confident predictions. Other

notable calibration metrics include: Over-confidence Error (OE), which pe-

nalizes only over-confident predictions [193] and Maximum Calibration Error

(MCE) [66], which penalizes only the maximum difference between predic-

tion and ground-truth for a given class and not the average over all classes.

Mixup [227], a data augmentation strategy, has shown benefits for both robust

label noise training [8] and network calibration [193]. Chapter 3 will study

how out-of-distribution images can help imporve network calibration when

training on a label noise dataset.

2.7 Semantic segmentation on synthetic images
and domain adaptation

Semantic segmentation aims at predicting the object that each pixel in an

image belongs to [55]. The human annotation required for semantic segmen-

tation tasks is extensive, often requiring several hours per image [118]. This
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Figure 2.6: Example of synthetic image datasets. Images and semantic
segmentation ground-truth generated from the GTA V graphics engine (top)
and from the SYNTHIA dataset (bottom)

makes training strategies using fewer human annotated images attractive. Syn-

thetic images promise to solve part of the problem by providing an unlimited

amount of perfectly segmented training images. Popular synthetic datasets

for semantic segmentation include Grand Theft Auto V (GTA V) [161] or

SYNTHIA [163] that create synthetic images of cities using graphics engines.

Figure 2.6 displays synthetic image examples from both datasets.

Although the large quantity of labeled data allows a semantic segmenta-

tion neural network to converge on a synthetic dataset, the results need to

generalize to real world data. Domain adaptation aims at learning domain

agnostic features that can generalize from synthetic data to the real world.

Domain adaptation strategies can be applied at different stages in a network:

input adaptation, feature adaptation, or output adaptation.

Input adaptation strategies aim to transform synthetic images to look

more realistic by applying a visual style, often using a Generative Adversarial

Network [35, 167, 172, 233].
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Feature adaptation approaches aim to discover domain invariant (or

aligned) features between synthetic and real data. Chen et al. [29] pro-

pose to use a maximum square loss to enforce a linear gradient increase

between easier and harder classes. Luo et al. [124] use a significance aware

adversarial information bottleneck; Chen et al. [34] propose a knowledge

distillation approach by matching network activations to a network pretrained

on ImageNet.

Output adaptation techniques constrain the network prediction directly

to enforce better generalization. This can be achieved using adversarial

approaches where the predictions made on synthetic and real data should

be indistinguishable to a discriminator network [20], or by enforcing low

entropy (more confident) predictions [203]. Finally, batch normalization fine

tuning on real data, where the batch normalization parameters are tuned on

the real images before evaluation, has also been shown to be a simple but

effective domain transfer strategy [117] even when only a few hundred images

are available for the target domain. A further study of domain adaptation

for semantic segmentation can be found in the extensive domain review of

Toldo et al. [196]

2.8 Computer vision for agriculture

The last two chapters of this thesis propose solutions to perform plant pheno-

typing and dry matter predictions from RGB images. Agricultural problems

are excellent domains for the application of image analysis approaches since

computer vision can be used to be extract relevant information from the

environment at a large scale and in a non-destructive manner. Existing works
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explore a variety of computer vision applications for plant detection and

identification. This section will review some of the most relevant to this

thesis.

A common problem tackled by computer vision in agriculture is to mon-

itor the proper development of crops through weed, pest and disease de-

tection [151, 194]. Weed detection aims to localize unwanted weeds to

ultimately remove them, either by hand or using a robot. Existing approaches

include employing color filtering, edge detection, and area classification [147,

153, 189]; utilizing color features used to train random forest algorithms and

support vector machines [82, 83]; or using neural networks to semantically

segment images [102]. Disease detection aims to precisely identify areas of a

plant that are infected and deploy localized treatments. Toseef et al. [199]

utilize a fuzzy inference system to diagonize diseases in wheat and cotton

plans, Wang et al. [205] detect black rot in apples using a small convolutional

neural network and Zhai et al. [224] propose to optimize UAV flight paths

using genetic algorithms and particle swarms for automatic weed spraying.

Fruit or vegetable detection and counting is also of interest because it

has the potential to greatly reduce human labor by enabling automatic fruit

treatment or collection on the farm. Examples include tomato segmentation

and counting using a convolutional neural network [1], large scale fruit

detection in trees [164], or real-time fruit detection using a lightweight neural

network [22].

2.8.1 Drone (UAV) imaging

Drones hold important potential for automating farm tasks since drones can

easily cover large areas of uneven terrain [211]. Deep learning has been
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successfully applied to derive growth rate from nitrogen fertilization on drone

images [77], estimate the emergence rate of seeds in the field [120], wheat

density [90], weed detection [54], land classification [36], and wheat head

identification [42]. In addition to RGB imaging, additional sensors such as

radars or lidars [109] can be accumulated to improve performance [127].

The main drawback when applying deep learning on drone images for plant

phenotyping remains the difficulty of ground-truthing the images because of

the large areas covered [211].

2.8.2 Generative adversarial networks (GANs)

GANs are of special interest in the plant domain because their generative

properties can allow them to forecast growth [50] or perform domain adap-

tation [176]. We separate here GAN architectures between the conditional

architectures that are trained with corresponding pairs of input and outputs

represented in the two different visual domains [84], and unpaired architec-

tures, e.g. CycleGAN [233] or Contrastive Unpaired Translation [148] where

images from both visual domains contain different semantics. Conditional

GANs have been successfully applied to generate RGB images from semantic

segmentation masks [234], to predict cabbage growth [50], or plant super-

resolution to improve feature detection [41]. Unpaired GANs have been used

to estimate disease spreading on leaves [112, 136, 137], or to improve the

realism of synthetic images [15, 69]. Figure 2.7 displays examples of GANs

being successfully used to forecast cabbage growth [50] or generate examples

of plants affected by powdery mildew [137] .
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input generated reference

input generated

Figure 2.7: Example of GANs applied to agriculture problems. Cabbage
growth forecasting(top) and powdery mildew infection (bottom)

.

2.8.3 Biomass composition estimation from canopy view
images

Being able to estimate grass composition from canopy images opens up solu-

tions for autonomous targeted fertilization in fields. Automated fertilization

reduces costs for the farmer and water pollution due to over-fertilization [6,

177]. The heavy occlusions present in canopy images poses significant chal-

lenges as the biomass estimate should account for elements hidden from the

canopy view. Himstedt et al. [76] study the biomass of clover in a legume-

grass mixture and demonstrate a good capacity to detect clover from the

legumes using morphological filtering and color segmentation to detect the

clover. The authors were then able to accurately predict the clover biomass

in a controlled environment under the assumption that the total biomass is

known. Mortensen et al. [132] propose to segment the grass clover mixture

using color filtering and edge detection before employing a linear regressor

to learn the mapping between coverage area of each species and dry biomass
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content. The authors were then able to directly predict the dry biomass of

each element from the image alone. In the case where the herbage will be

stored for winter to feed cows, estimating the dry biomass from an image of

the fresh pasture directly becomes of interest. Skovesen et al. [175] propose

an improvement over previous work by using a neural network to segment

images, and then fit a linear regressor to the detected species percentages

to predict the biomass percentages. To train the neural network, a synthetic

dataset is generated where grass/clover/weed elements are manually cut from

the raw images and pasted in a random fashion on a soil background image to

create a synthetic but fully segmented image. This allows the authors to gener-

ate an infinite amount of ground-truthed training images from a similar visual

domain to train the segmentation algorithm. An updated version of the seg-

mentation algorithm from synthetic data was later published [176] using style

transfer GANs to simulate different weather conditions and multi-resolution

prediction. Based on this work, the GrassClover dataset challenge [174] asks

entrants to improve the author’s baseline using the synthetic images together

with a large collection of unlabeled real images and a small set of manually

labeled real images. The Irish grass clover dataset [75] proposes, additionally,

to the dry biomass percentages, to predict the herbage height pre-grazing (cm)

and the dry matter per hectare (kg DM/ha) from the canopy images. Although

both datasets provide an additional large amount of unlabeled images, the

respectively baseline are purely supervised and do not make use of the raw

images. Subsequent algorithms were published and tested on both datasets to

attempt to use the raw data to improve the biomass prediction. Narayannan et

al. [135] proposed to use mean imputation to infer labels for the partially

labeled samples before training a convolutional neural network (CNN) on
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the larger dataset. Albert et al. [5] instead uses an unsupervised learning

algorithm [107] on the unlabeled data to learn better initial representations

that allow for better accuracy numbers with limited amounts of labels.
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Chapter 3

Addressing out-of-distribution
label noise in webly-labelled data

This chapter presents a novel approach to deal with label noise inherent to

datasets created using web queries. Our approach is simpler than previous

works yet sets a new state-of-the-art for the Webvison1.0 dataset. Section 3.1

motivates automatic gathering of datasets using web queries; the limitations

of existing approaches for dealing with the specific kind of label noise caused

by the automatic annotation process; an introduction to the proposed method

and the contributions of the chapter. Section 3.2 presents an exploratory

study of the WebVision 1.0 dataset where we look at the type of label noise

present in the dataset. Section 3.3 formalizes our algorithm. Section 3.4

presents implementation details, an ablation study for the different elements

of our method, and a comparison with the state-of-the-art. Section 3.5

concludes on the findings and the results of the proposed method. The

research that emanated from this work was published at the 2022 IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV).
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3.1 Motivations

As discused in Chapter 2, deep Neural Networks (DNNs) are now the stan-

dard approach for accurately solving image classification tasks [187, 221].

However, their principal drawback is the large amount of labeled examples re-

quired for training. There exist numerous alternatives to deal with the limited

availability of labels, such as but not limited to, semi-supervised learning [2,

9, 18], unsupervised learning [61, 30] and robust training on automatically

annotated datasets [115, 88]. This chapter focuses on the latter.

Designing robust algorithms to train image classification DNNs in the

presence of label noise is an important focus for the community [181]; these

enable better adaptation of current DNN solutions to real-world problems

where extensive curated datasets are unavailable or too expensive to build. In

order to design and evaluate noise-robust algorithms it is common to create

controlled label noise datasets by synthetically introducing label corruptions

in traditional comparison benchmarks such as CIFAR10/100 [99]. Although

good noise robustness is shown on these artificial datasets, web label noise

has proven more challenging because these solutions generalize poorly to

this more realistic scenario and can, in specific cases, be outperformed by

a non noise-robust strategy trained with robust data augmentations such as

Mixup [144, 88].

We hypothesize that the main limitation for the correction of label noise

in web crawled datasets comes from a common assumption made by most

label noise robust algorithms [159, 150, 111, 204] where the true labels for

noisy samples lie inside the label set, i.e. the label noise is in-distribution

(ID). Conversely, we hypothesize that the label noise present in web crawled

datasets is predominantly out-of-distribution (OOD) meaning that the true
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label of the images lies outside the label pool and the real labels for OOD

noisy samples can not be corrected to another from the label distribution. To

confirm our hypothesis, we conduct a small but representative survey on the

WebVision 1.0 dataset [115] to identify the type of noise one can expect in

automatically annotated datasets crawled from the web. We then make use of

controlled open sourced web label noise datasets provided by [88] to build

and validate a simple method which separately detects and corrects ID and

OOD noise. We argue that training a well-calibrated network [66, 140] is

an essential aspect of label noise robustness, especially in the presence of

noisy OOD samples, as a well-calibrated network avoids over-fitting OOD

noisy samples by reliably predicting under-confidently on these outliers. To

this end, we choose to use the out-of-distribution noisy samples to improve

network calibration rather than simply discarding them.

3.2 Exploratory analysis of web datasets

Recent state-of-the-art for label noise detection and correction relies on strong

assumptions verified on synthetically generated noise. [144, 88] demonstrated

that many algorithms developed on synthetic datasets do not generalize well

to real-world label noise and that improvements are often inferior to using data

augmentation. We hypothesize that this limitation is a consequence of noisy

samples having their labels corrected by assigning another label from the

known label distribution, i.e. the noise is in-distribution. We conversely hy-

pothesise that most of the noise in web labeled datasets is out-of-distribution,

and hence the real unknown label lies outside of the known label set. To

verify this hypothesis we randomly sample images from the real-world la-
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Table 3.1: Analysis on the noise types and ratios found in mini-WebVision.
We randomly sample three subsets (S) of 2000 images and report correctly-
labeled samples and in-distribution (ID) and out-of-distribution (OOD) noisy
samples.

S1 S2 S3 Average (%)

Correct 1441 1440 1335 1405.33 (70.30)
OOD 460 429 573 487.33 (24.38)
ID 98 130 91 106.33 (5.32)

bel noise dataset mini-WebVision (first 50 classes subset of the WebVision

1.0 dataset [115]) and manually categorize their label in three categories:

clean, in-distribution noise, and out-of-distribution noise. Table 3.1 shows the

results of the study, demonstrating that there is a clear domination of out-of-

distribution noise over in-distribution noise. This observation sheds light on

the limited improvements of in-distribution label correction techniques when

applied to web crawled datasets, while explaining the benefits of algorithms

that sample noisy data less often to reduce their contribution [67, 88]. The

annotations used are available in our code repository.

3.3 DSOS

Taking into consideration the results observed in Section 3.2, we propose

Dynamic Softening of Out-of-distribution Samples (DSOS), a label correction

algorithm for robust learning on web label noise distributions. We aim to

solve an image classification task over C classes as learning a DNN model

h given a training set D = {(xi, yi)}Ni=1 of N samples where xi ∈ X . More

specifically, we tackle the case where the dataset consists of a correctly labeled

set Dc = {(xi, yi)}Nc

i=1 with corresponding one-hot encoded labels yi ∈

{0, 1}C , an incorrectly labeled in-distribution noisy set Din = {(xi, yi)}Nin

i=1
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and of an out-of-distribution noisy set Dout = {(xi, yi)}Nout

i=1 . We denote

N = Nc +Nin +Nout the total number of available samples. We consider

unknown the distribution of the samples between Dc, Din and Dout. We

note h : X → [0, 1]C the deep neural network (DNN) we train to classify the

images as belonging to a class c ∈ {1, . . . , C}.

3.3.1 Separate detection of ID and OOD noise

Motivation

We motivate here the need for a new metric for the dual detection of ID and

OOD noise in web crawled datasets by considering the ideal case where a

network has been trained on a web-crawled dataset and did not overfit the

noise. Samples would then be characterized by either a confident correct

prediction (clean samples), a confident incorrect prediction (ID noise), or an

un-confident prediction (OOD noise). Noise detection metrics from in the la-

bel noise literature propose to either quantify the accuracy of the prediction [8,

111, 68] (cross-entropy loss, accuracy, Kullback-Leibler divergence) or the

uncertainty of the prediction [198, 216] (forgetting events, entropy of the

prediction, contrastive predictions). Relying on one characterization of the

network prediction alone is problematic when presented with the duality of

the noise present in web-crawled datasets as ID and OOD noise cannot be in-

dependently retrieved. While accuracy approaches indistinguishably retrieve

incorrectly predicted OOD and ID noise (both having low agreement with

their noisy label), certainty-based approaches only retrieve under-confident

OOD noise. EvidentialMix [165] proposes an independent retrieval of ID and

OOD noise, where a mean square error + variance loss [169] (evidential loss,
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Figure 3.1: Stacked density histograms for multiple noisy sample retrieval
measures on CIFAR-100 with ρ = ψ = 0.2. All metrics are min-max
normalized. For the entropy of the interpolated label (IL) we also draw the
decision function (BMM) that we fit to the data. The pivot point in red
separates clean from noisy samples.

EDL) is shown to separate ID and OOD noise on artificial corrupted noisy

datasets (CIFAR-10 [99]. We argue that the limitation of the evidential loss

for web-crawled datasets lies in the absence of separation between OOD noise

and lower-confidence predictions in general, resulting in a sub-optimal OOD

retrieval, the dominant noise type for web-crawled datasets. This limitation is

evidenced in Figure 3.1 and in Table 3.2 where we compare retrieval scores

for Clean/ID/OOD samples (one versus all) for an accuracy (CE loss) or

confidence metric (entropy) against using the EDL loss fitted with a 3 com-

ponents Gaussian mixture model [165], and two variations of our proposed

metric. Table 3.2 highlights the trade-off we make for better OOD detection

at the cost of less accurate ID retrieval when compared with EDL and further

discussed in Section 3.3.1.
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Table 3.2: AUC retrieval score for different types of metrics after warm-up
on CIFAR-100 with ρ = ψ = 0.2. Higher is better.

Clean ID OOD

Small loss 95 87 81
EDL 93 90 75
IL entropy 91 81 94
IL collision 93 85 92

Dual noise detection metric

We propose a novel noise detection metric that allows the separate detection

of confident clean samples, confident ID noisy samples, and OOD noisy

samples. To do so, we propose to compute the interpolated label between

the current network prediction Ŷ and the target label Y : yint = yi+ŷi
2

and to

study its collision entropy:

ldetect = − log

(
C∑
c=1

y2int ,c

)
. (3.1)

We aim to detect three different events for yint : the clean event where predic-

tion and ground truth agree, resulting in a low entropy; the ID event where

prediction and ground truth are both confident but disagree (medium entropy);

and the OOD event where the prediction is under-confident (high entropy).

A visualization of these events is available in Section 3.4.6. Studying the

entropy of the interpolated label ldetect allows us to reverse the detection

hierarchy observed in the EDL from clean-OOD-ID to clean-ID-OOD since

confident incorrect predictions are now observed in yint as a bimodal dis-

tribution that has a lower entropy than an interpolation of the ground truth

with an un-confident uniform prediction. A fundamental property of ldetect is

that it differentiates between low confidence but correct predictions (clean

samples) and confident incorrect predictions (ID noise), which is evidenced
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by the pivot point. The pivot point is defined for yint being a perfect bi-modal

distribution, i.e. two high probability modes with values 0.5 with all other

bins to 0, resulting in ldetect = − log 0.5, the pivot point. Detecting these

events of high probability motivate our choice of using the collision entropy,

which is more sensitive to high probability events than the Shannon entropy.

Using the pivot point together with the observed bimodality of the noisy

samples, we classify the samples in three distinct categories where every

sample whose ldetect value is inferior to the pivot point is considered clean

and where we fit a two components Beta Mixture Model (BMM) to the noisy

samples. By computing the posterior probability of a sample to belong to

each component, we evaluate the ID and OOD nature of every noisy sample.

Figure 3.1 illustrates the clean/ID/OOD separation observed for accuracy

based and uncertainty based metrics on the CIFAR-100 dataset corrupted with

20% symetric ID noise and 20% OOD noise from ImageNet32 [37] at the

end of the warm-up phase (see Section 3.4.1 for training details). The figure

illustrates how the collision entropy improves the separation between clean

and ID noise over the Shannon entropy and how we trade off improved OOD

detection for a decreased ID detection over the evidential loss (EDL) [165]

(see Table 3.2). The pivot point is indicated in red. An additional illustration

explaining the behavior of ldetect for intermediate configurations of yint is

available in Section 3.4.6.

3.3.2 DSOS

We build DSOS as a single network based, single training cycle algorithm

which aims to first discover ID and OOD samples in a corrupted dataset before

separately addressing ID and OOD noise using dynamic label correction
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Figure 3.2: Visualization of the DSOS algorithm. DSOS identifies and
corrects the ID and OOD noise from the training distribution before applying
targeted label correction.

strategies. Figure 3.2 illustrates the DSOS algorithm. We aim to correct ID

samples using confident predicted label assignments and to encourage high

entropy prediction for OOD samples which cannot be corrected. DSOS aims

to minimize the following empirical risk over the noisy dataset:

Re =
1

N

N∑
i=1

−yti
T
log h(xi), (3.2)

where the logarithm is applied element-wise and yti denotes the, possibly

unknown, true label for sample xi. Although it is possible to directly minimize

Re for ID noisy samples by correcting the noisy label yi to the true label yti ,

this is not the case for OOD label noise. We propose then not to attempt to

approximate the true label of OOD samples using a label from the known

distribution but instead to promote better network calibration by encouraging

high-entropy predictions, i.e. a uniform prediction over ID classes. We then

rewrite empirical risk as:

Re =− 1

Nc +Nin

Nc+Nin∑
i=1

yti
T
log h(xi)

− 1

Nout

Nout∑
j=1

ys
T log h(xj),

(3.3)
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where ys is the softened label, i.e. a perfect uniform prediction over all the

classes C. To obtain a dynamic softening from yti to ys and given a OOD

classifier V = {vi}Ni=1, vi ∈ [0, 1] where vi = 0 means sample xi is OOD, we

minimize:

Re =− 1

N

N∑
i=1

f(yti , vi)
T log h(xi), (3.4)

with f(yti , vi) the smoothing function where f(yti , 0) = ys and f(yti , 1) = yti .

Label softening of out-of-distribution samples

We minimize the risk in Eq. 3.4 using a label correction approach where we

aim to first correct the labels for noisy ID samples to their true label using

a bootstrapping inspired approach [8, 159, 180]. For the OOD samples, we

propose a dynamic softening strategy by computing the cross-entropy loss

with regards to a dynamically smoothed label (the more likely a sample is de-

tected to be OOD, the more uniform the target) and avoid using an additional

regularization term (Kullback-Leibler divergence minimization between the

prediction and a uniform target would be a common solution [108]). To

correct ID label noise, we consider a first estimated metric Ũ = {ũi}Ni=0,

where ũi ∈ {0, 1}, evaluating whether a sample is noisy but in-distribution,

i.e. the label can be corrected to another from the distribution. ũi = 1 denotes

sample xi is noisy but ID. We denote ŷti the current true label guess for sample

xi an correct it with,

ybi = (1− ũi)yi + ũiŷ
t
i . (3.5)
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Regarding OOD label noise, we consider a second metric Ṽ = {ṽi}Ni=0

estimating V and evaluating whether a sample is noisy and OOD (ṽi ∈ (0, 1])

with ṽi = 0 meaning a sample is considered OOD. We re-normalize the

possibly bootstrapped label ybi for a sample xi assigned to an OOD noisiness

metric estimation ṽi as

ydi =
exp

(
ṽiy

b
i

α

)
∑C

c=1 exp
(

ṽiybi,c
α

) . (3.6)

with α ∈ [0, 1] a hyperparameter. ydi is a dynamically smoothed correction of

the corrected label ybi where ṽi
α

serves as a dynamic temperature depending on

the out-of-distribution noisiness of the sample. In Figure 3.1, Ũ corresponds

to the posterior probability given ldetect for the left-most beta mixture being

superior to 0.5 and Ṽ is the posterior probability of the right-most beta

mixture given ldetect (no threshold). We evaluate Ũ and Ṽ every epoch

starting at the end of the warm-up phase where the network is trained without

correction on the noisy dataset. We end the warm-up phase one epoch

after the first learning rate reduction. In summary, OOD noisy labels will

be dynamically replaced by a uniform distribution hence promoting their

rejection by the network and the clean and corrected ID noisy samples will be

assigned a moderately smoothed label, which has been proven to be beneficial

for robust DNN training in the presence of label noise [106, 123]. Both Ũ

and Ṽ are cut of from the computation graph and neither is backpropageted

in equation 3.4.
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Additional regularization

In order to be competitive with the state-of-the-art, we pair DSOS with two

different regularization strategies commonly used to combat label noise. The

first regularization we add to the loss promotes high-entropy predictions on

ID samples:

le = − 1

N

N∑
i=1

ṽi

N∑
i=1

h(xi) log(h(xi)). (3.7)

We find le to be especially important in the warm-up phase as it promotes

confident predictions for both the clean samples and the ID samples, which

enables better detection. During the label correction phase of DSOS, the

regularization is proportionally weighted according to the clean and noisy ID

samples detection Ṽ so as to not to go against the label softening strategy for

OOD samples. We additionally pair DSOS with mixup [227] data augmenta-

tion, which has shown to be robust to label noise and that is commonly used

in related state-of-the-art noise robust approaches. An ablation study for the

different components of DSOS including the effect of the regularizations is

given in Section 3.4.3. With γ = 0.4, the final loss DSOS minimizes is:

l = − 1

N

N∑
i=1

yd
T
log(h(xi)) + γle (3.8)
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3.4 Experiments

3.4.1 Experimental setup

We conduct controlled experiments on corrupted versions of the CIFAR-100

dataset [99] using ImageNet32 [37] images for the OOD noise. The CIFAR-

100 dataset is a 32×32 image dataset composed of 50.000 training images and

10, 000 test images, equally distributed over 100 classes. The ImageNet32

dataset is a 32× 32 downsized version of the ILSVRC12 [100] dataset (1.000

classes and 1.2M images). In order to corrupt CIFAR-100, we consider

the OOD noise ratio ρ and the ID noise ratio ψ. We first replace a random

fraction ρ of the CIFAR-100 images by randomly selected ImageNet32 [37]

images and randomly flip a ψ fraction of the clean samples to a random label

assignment. The total noise ratio is ψ + ρ. We train for 100 epochs, using a

PreActivation ResNet18 [92], SGD with momentum 0.9 and weight decay

5× 10−4, starting from a learning rate of 0.03 and reducing it by 10 at epochs

50 and 80, batch size 32 (64 for the warm-up).

For controlled web-crawled datasets, we consider different noise levels

(0%, 30%, 50%, 80%) for the web label noise corruption released for the

MiniImageNet (50k training images, 10, 000 test images) and StanfordCars

(8k training images, 8k test images) datasets [88], adopting the 299×299 im-

age resolution for training and the InceptionResNetV2 network architecture.

We train for 200 epochs, using SGD with momentum 0.9 and weight decay

5× 10−4, starting from a learning rate of 0.01 and reducing it by 10 at epochs

100 and 160, batch size 32. For real-world web-crawled datasets, we report

results training on the mini-Webvision [115] dataset (first 50 classes of Web-

Vision) (66k training images, 2.5k test images) at resolution 224× 224. We
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Table 3.3: DSOS for mitigating ID and OOD noise on CIFAR-100 corrupted
with ImageNet32 images. We run each algorithm with the exact same noise
corruption. The algorithms we compare with are naive cross-entropy (CE),
Mixup (D), Dynamic Bootstrapping (DB), Early Learning Regularization
(ELR), EvidentialMix (EDM), Joint Sample Selection and Model Regular-
ization based on Consistency (JoSRC). We report best and last accuracy
(best/last).

ρ ψ CE M DB ELR EDM JoSRC DSOS

ID OOD both

0.2 0.2 63.68/55.52 66.71/62.52 65.61/65.61 63.90/63.72 65.11/64.49 67.37/64.17 68.09/67.78 69.37/69.37 70.54/70.54
0.4 0.2 58.94/44.31 59.54/53.16 54.79/54.42 57.16/56.91 55.65/54.49 61.70/61.37 60.12/59.32 62.34/61.03 62.49/62.05
0.6 0.2 46.02/26.03 42.87/40.39 42.50/42.50 31.20/29.55 28.51/10.47 37.95/37.11 46.10/42.93 46.54/40.23 49.98/49.14
0.4 0.4 41.39/18.45 38.37/33.85 35.90/35.90 22.85/21.63 24.15/01.62 41.53/41.44 40.94/35.89 42.53/39.76 43.69/42.88

train for 100 epochs, using an InceptionResNetV2, SGD with momentum 0.9

and weight decay 5× 10−4, starting from a learning rate of 0.01 and reducing

it by 10 at epochs 50 and 80, batch size 32. We use the mini-WebVision

validation set for early stopping and the ILSVRC12 dataset [100] as a test

set. For Clothing1M [213] (1M training images, 15k test images) we sample

1000 random batches every epoch, resolution 227 × 227. We train for 100

epochs using a ResNet50 pretrained on ImageNet, SGD with momentum 0.9

and weight decay 1× 10−3, starting from a learning rate of 0.002 and reduc-

ing it by 10 at epochs 50 and 80, batch size 32. These datasets are common

benchmark datasets in the related state-of-the-art and the configurations and

networks used follows the state-of-the-art we compare with [88, 111, 119]. A

summary of the training details is available in Section 3.4.7.

3.4.2 Experiments on CIFAR-100

We test DSOS in a controlled noise scenario on the CIFAR-100 dataset cor-

rupted with ID symmetric label noise and OOD images from the ImageNet32

dataset in Table 3.3. Contrary to previous works [216], the focus here is

49
Research published in the Winter conference on Applications of Computer

Vision (WACV) 2022



CHAPTER 3: Out-of-distribution web noise

on OOD noise. We consider 4 different configurations for CIFAR-100 with

ρ ∈ [0.2, 0.4, 06] and ψ ∈ [0.2, 0.4]. We show the benefits of DSOS when

performing ID label bootstrapping or OOD label softening alone as well as

the combined benefits of the dual label correction (both in Table 3.3). We

compare our approach with two simple baselines: 1) CE, a simple cross-

entropy training without any noise correction and 2) mixup (M) [227] a data

augmentation strategy robust to label noise. We additionally report results

for state-of-the-art noise robust algorithms including Dynamic Bootstrap-

ping (DB) [8] and Early Learning Regularization (ELR) [119]. Finally, we

run algorithms focused on OOD and ID noise robustness: EvidentialMix

(EDM) [165] and JoSRC [216]. We use the same hyperparameters and net-

work as ours for training the algorithms we compare with except for JoSRC

which uses the Adam optimizer by default. A description of the algorithms

we compare against is available in Section 2.5. For DSOS, we perform a

warm-up training up until after the learning rate reduction. One epoch after

the learning rate reduction, we start performing ID and OOD noise detection

and apply our label correction strategy with α = 0.05. We find that perform-

ing warm-up with mixup (M) is better as long as the total noise is superior to

0.8 but use a simple CE warm-up for total noise levels of 0.8. We systemati-

cally use the entropy regularization term for the warm-up phase. We report

running DSOS with ID or OOD correction alone as well as with combined ID

and OOD correction (both). If we notice that the Beta Mixture Model does

not capture the ID mode (mode of the first beta distribution outside of the

[0, 1] interval) which we observe for total noise levels of 0.8, we fall back to

using ldetect directly for detecting the ID noisy samples (ldetect < 0.5 means a

samples is ID noisy). We draw the attention of the reader to the improvements
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Table 3.4: Ablation study for DSOS. We report best and last accuracy. The
baseline is a naive cross-entropy training (CE)

Best Last

CE 63.68 55.52
+ mixup 66.71 62.52
+ Entropy regularization 67.27 63.04
+ Batch normalization tuning 67.56 65.69
+ In-distribution bootstrapping 68.09 67.78
+ Out-of-distribution softening 70.54 70.54

DSOS brings when compared to other ID/OOD noise correction approaches

even though we use a single network.

3.4.3 Ablation study

We conduct an ablation study to highlight the important elements of DSOS

trained on CIFAR-100 with ρ = 0.2 and ψ = 0.2 (Table 3.4). We find entropy

regularization [188] to be necessary to promote confident predictions and

specifically study the case where the metrics tracking and the bootstrapped

label predictions necessary to applying ID noise correction are computed with

trainable batch normalization layers, i.e. the layers get tuned with unmixed

samples before evaluation on the validation set. The ablation study high-

lights how the introduction of the dynamic label softening strategy improves

accuracy results over applying ID label correction alone.

3.4.4 Comparison against the state-of-the-art

Table 3.5 reports results for DSOS when compared to state-of-the-art ap-

proaches on the web-corrupted versions of Stanford Cars and MiniIma-

geNet [88]. Table 3.6 compares DSOS against state-of-the-art algorithms
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Table 3.5: Comparison of DSOS with state-of-the-art algorithms on Mini-
ImageNet and Stanford Cars corrupted with web label noise gathered by
[88] (red noise). The algorithms we compare with are naive cross-entropy
(CE), dropout (D), S-Model (SM), Bootstrapping (B), Mixup (M), MentorNet
(MN), MentorMix (MM). We bold best and underline last accuracy for the
best performing algorithm.

Dataset Noise CE D SM B M MN MM DSOS

MiniImageNet 0 70.9/68.5 71.8/65.7 71.4/68.4 71.8/68.4 72.8/72.3 71.2/68.9 74.3/73.7 74.52/74.10
30 66.1/56.5 66.6/55.0 65.2/56.3 66.6/56.7 66.8/61.8 66.2/64.0 68.3/67.2 69.84/67.86
50 60.9/51.7 62.1/50.01 61.3/51.3 62.6/52..5 63.2/58.4 61.7/58.0 63.3/61.8 66.14/65.18
80 48.8/39.8 49.5/37.6 49.0/40.6 50.1/40.1 50.7/45.5 49.3/43.4 50.2/48.4 55.26/52.24

Stanford Cars 0 90.8/90.8 92.2/92.2 90.1/90.1 90.3/90.0 91.9/91.9 90.2/90.1 91.8/91.6 91.38/91.27
30 80.4/80.2 87.6/87.6 82.2/81.9 83.4/83.0 85.6/85.2 81.1/80.9 87.8/87.7 88.36/88.14
50 70.6/70.3 79.3/79.2 70.1/70.1 73.6/73.5 79.1/78.9 72.0/72.0 80.4/79.8 82.04/81.72
80 43.3/43.0 61.8/61.8 46.4/46.4 47.4/46.7 55.7/55.4 51.0/50.9 58.6/58.6 62.36/62.36

on the WebVision 1.0 dataset [115] reduced to the 50 first classes (mini-

WebVision, 66K images), a large scale dataset created using web queries.

Table 3.7 reports results for Clothing1M. When necessary, we differentiate

between methods using a unique network for inference and methods using an

ensemble of two networks. In this case, we ensemble two networks trained

using DSOS from different random initialization by averaging their prediction

at test time and show the direct benefits of using an ensemble in the web

label noise scenario. We also notice that DSOS outperforms other algorithms

even when no noise is present in Table 3.6. This is most likely due to the

our dynamic label softening strategy that has been shown to improve predic-

tion accuracy [133]. We compare with loss or label correction algorithms:

Forward correction (F) [150], Bootstrapping (B) [159], Probabilistic correc-

tion (P) [217], Joint Optimization (JO) [188], S-Model (SM) [63]; sample

selection algorithms: Co-Teaching (Co-T) [68], MentorMix (MM) [88],

MentorNet (MN) [87]; semi-supervised correction algorithm: DivideMix

(DM) [111], Early Learning Regularization (ELR and ELR+) [119]; reg-

ularization algorithms: Mixup (M) [227], Symmetric cross-entropy Loss
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Table 3.6: Classification accuracy for DSOS and state-of-the-art methods
against methods using a unique network vs an ensemble. We train the
network on the mini-Webvision dataset and test on the ImageNet 1k test
set (ILSVRC12). We compare with Forward (F), Co-Teaching (Co-T), Mixup
(M), MentorMix (MM), Early Learning Regularization (ELR) and DivideMix
(DM). All results except our own (DSOS) are from [119]. We bold the best
results.

Unique network Ensemble of two networks

F Co-T M MM ELR DSOS DM ELR+ DSOS

mini-WebVision top-1 61.12 63.58 75.44 76.0 76.26 77.76 77.32 77.78 78.76
top-5 82.68 85.20 90.12 90.2 91.26 92.04 91.64 91.68 92.32

ILSVRC12 top-1 57.36 61.48 71.44 72.9 68.71 74.36 75.20 70.29 75.88
top-5 82.36 84.70 89.40 91.10 87.84 90.80 90.84 89.76 92.36

Table 3.7: Comparison of DSOS against state-of-the-art algorithms on Cloth-
ing1M. Top-1 best accuracy on the test set. We compare with naive cross-
entropy training (CE), Forward (F), Symmetric cross-entropy loss (SL), Joint
Optimization (JO), Learning to learn (Me), Probabilistic correction (P), Early
Learning Regularization (ELR) and DivideMix (DM). We run ELR and DM
using the code provided by the authors. All other results are from the specified
works. We bold the best results.

Unique network Ensemble of two networks

CE F SL JO ELR Me P DSOS ELR+ DSOS DM

Clothing1M 69.10 69.84 71.02 72.16 72.87 73.47 73.49 73.63 74.05 74.13 74.76

(SL) [209]; meta-learning algorithms: Learning to learn (Me) [114]; standard

cross-entropy training (CE), standard cross-entropy plus dropout (D). All

the algorithms we compare against proposed state-of-the-art results on label

noise benchmark datasets at the time of their publication.

3.4.5 Training speed

Table 3.8 reports the wall-clock training time for state-of-the-art methods

on the mini-WebVision subset. The first line reports average epoch time,
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Table 3.8: Wall-clock training time comparison for state-of-the-art algorithms
on the mini-WebVision dataset. All algorithms were run on an RTX 2080 Ti
GPU using the PyTorch [149] framework.

M ELR DSOS ELR+ DM

Epoch 9.5min 10.5min 11.25min 28min 50min
Full training 15.75h 17.5h 18.75h 46.75h 83h

warm-up included, and the second line reports the full training duration (100

epochs). Both of these metrics exclude evaluation on a validation set. We

compare against state-of-the-art algorithms performing the best on mini-

WebVision DM [111], ELR and ELR+ [119], M [227]. DSOS improves

accuracy results on mini-WebVision and trains significantly faster then the

closest performing algorithms. Note that the training time for DM [111]

heavily depends on the training scenario as the algorithm oversamples the

unlabeled data every epoch, i.e. the epoch length depends on clean/noisy

detection.

3.4.6 Additional explanation of the behavior of the ID/OOD
measure

Figure 3.3 illustrates the behavior of our proposed metric ldetect . By studying

the collision entropy of the interpolated label yinter between the network

prediction and the ground truth label, we establish a hierarchy from clean

to ID noise to OOD noise. The pivot point − log(.5) = 0.693, computed

theoretically when the prediction of the network is absolutely confident but

different from the noisy ground-truth, marks the separation between low

confidence clean samples and high confidence noisy samples. Although some

clean samples will be detected as noisy at the pivot point, because we avoid

OOD sample during this transition, we can correct the detected confident
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Figure 3.3: Clean/ID/OOD hierarchy established by the collision entropy of
the interpolated label ldetect

ID samples without concerns of labeling OOD data or corrupting the clean

samples since we relabel correct but simply under-confident clean samples:

this will not harm the training procedure (their label stays the same). By

smoothing OOD samples, we also avoid correcting ID noisy samples with an

under-confident corrected prediction.

3.4.7 Hyperparameter table

Table 3.9 details the hyperparameters used in every experiment reported in

the state-of-the art comparison. The configuration remains the same across

different noise ratios for miniImageNet and Stanford Cars. The parameters

common to all experiments are: entropy regularization [188], SGD optimizer,

a learning rate decay factor of 10, random horizontal flips, mixup [227] data

augmentation. To match the baseline of [88], we add a dropout layer before

the fully connected layer in the case of the Stanford Cars experiments. We

do not use dropout for other datasets as we manage to match the baselines

without it.
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Table 3.9: Hyperparameter variations across experiments. We do not change
hyperparameters across noise levels for CIFAR-100, mini-ImageNet, and
Stanford Cars.

CIFAR-100 Stanford Cars miniImageNet WebVision Clothing1M

Network PreActResNet18 InceptionResNetV2 InceptionResNetV2 InceptionResNetV2 ResNet50
ImageNet pretraining No No No No Yes
Number of epoch 100 400 200 100 100
Batch size 32 32 32 32 32
Initial learning rate 0.03 0.05 0.01 0.01 0.002
Lr reduction [50, 80] [200, 300] [100, 160] [50, 80] [50, 80]
Weight decay 5e− 4 5e− 4 5e− 4 5e− 4 1e− 3
Resize 32 320 320 256 256
RandomResize Range − [0.75, 1.33] − − −
Crop 32 299 299 227 224
Dropout ratio 0.0 0.3 0.0 0.0 0.0
α 0.05 0.05 0.05 0.05 0.05
Epoch start correction 51 201 101 51 1

3.4.8 Examples of labeled images from the mini-WebVision
subset

Figures 3.4 and 3.5 display examples of images labeled from the mini-

WebVision subset. The annotations are available together with our code

at github.com/PaulAlbert31/DSOS. Not all classes present the

same quantity of noise for either ID and OOD categories. For example, the

Mud Trutle category in Figure 3.5 does not contain ID noise and little OOD

noise (only 5 images labeled as OOD over the 3 subsets). Some categories

also contain ambiguous OOD noise such as the loggerhead category in Fig-

ure 3.5, which contains skeletons of loggerheads annotated as OOD. Whether

these examples are relevant or not would depend on the test set. We observe

in general that some OOD images in web-crawled datasets are not strictly

OOD, meaning that they still share some distant semantics with the target

class. In general, it is easy to imagine how the text surrounding some of the

noisy images would mention the target category.
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Clean ID noise OOD noise
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Jay

Magpie

Figure 3.4: First example of samples annotated as clean, in-distribution noise,
out-of-distribution noise.

3.4.9 Pseudo-code

Alg. 1 displays pseudo-code for the DSOS algorithm.

3.4.10 Discussion

DSOS improves accuracy results on web crawled datasets such as mini-

WebVision (Table 3.6) or web corrupted datasets: miniImageNet (large

grained) and Stanford cars (fine grained) in Table 3.5. We explain the lower

performance on Clothing1M by the specificity of the gathering process for

the dataset, gathered from clothes databases exclusively and not over the

whole web and that, according to the authors [213], contains very high levels

of in-distribution noise. This goes against our hypothesis of the noise being

principally OOD in Section 3.2. Even then, our results are competitive and

convergence is reached faster for DSOS, see Table 3.8.
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Figure 3.5: More examples of samples annotated as clean, in-distribution
noise, out-of-distribution noise.

3.5 Conclusion

The research presented in this chapter aims to address the first research

question of this thesis: “What is the nature of web noise and can detected

noisy images be included in the training objective?”. The nature of noise

in web-crawled was shown to be a mixture between in-distribution noise

and pre-dominantly out-of-distribution noise. This goes against the com-

mon hypothesis of exclusive in-distribution noise that state-of-the-art label

noise robust algorithms rely on. To train a neural network on web crawled

datasets, we proposed DSOS, a simple algorithm using a novel noise detec-

tion metric capable of differentiating between clean, in-distribution noisy and

out-of-distribution samples. We propose to detect and treat in-distribution

and out-of-distribution noise differently to promote a dynamic rejection of un-

seen out-of-distribution samples during training, which in turn improves the

generalization capabilities of the network. This shows that out-of-distribution
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images can be used in the training objective to improve the classification

accuracy on in-distribution images. Additionally, DSOS is a much simpler ap-

proach to label noise than the top state-of-the-art algorithms that we compare

against as we use one network and online correction strategy with a single

training cycle. By properly identifying and correcting the two distinct label

noise distributions, DSOS improves on the most competitive state-of-the-art

algorithms. Other strategies could be used to improve network generalization

by using out-of-distribution samples such as unsupervised learning, which

can learn visual concepts without labels or data augmentation strategies using

out-of-distribution samples to efficiently augment in-distribution samples.

Because unsupervised learning learns image similarities without the need

for labels, it also shows promising perspectives to detect noisy samples in

an unsupervised feature space, especially out-of-distribution noise which is

visually different from the in-distribution samples. Chapter 4 will study both

possibilities.

59
Research published in the Winter conference on Applications of Computer

Vision (WACV) 2022



CHAPTER 3: Out-of-distribution web noise

Algorithm 1 DSOS

Input: D = {(xi, yi)}Ni=1 a web noise dataset. h at convolutional neural
network.
Parameters: α, ewarmup, emax

Output: Trained neural network hϕ
1: for e = 1, . . . ewarmup do ▷ Warmup
2: for t = 1, . . . numBatches do
3: Sample the next mini-batch (x, y) from D
4: L = CrossEntro(h(xmixed), ymixed)
5: UpdateNetworkWeights(L)
6: end for
7: end for
8: for e = ewarmup + 1, . . . emax do ▷ Label correction
9: Ũ , Ṽ , predictions = EvaluateMetrics(h,D) ▷ Evaluated with

regards to the original labels
10: for yi = y1, . . . yN do
11: if ũi > 0.9 then ▷ In-distribution bootstrapping, Ũ = {ũi}Ni=1

12: yi = pi ▷ predicitions = {pi}Ni=1

13: end if
14: yi = Softmax (yivi/α) ▷ Dynamic Softening, Ṽ = {ṽi}Ni=1

15: end for
16: for t = 1, . . . numBatches do
17: Sample the next mini-batch (x, y) from D ▷ Train on the

corrected labels
18: Ṽmini the values in Ṽ for the samples in the mini-batch
19: L = CrossEntro(h(x), y)
20: L = L+ 0.4× EntroPen(h(x), Ṽmini) ▷ Weighted entropy

penalization
21: UpdateNetworkWeights(L)
22: end for
23: end for
24: return h ▷ Robustly trained network
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Chapter 4

Clustering in- and
out-of-distribution noise using
unsupervised contrastive
representations

Chapter 4 continues the research conducted in Chapter 3 on designing algo-

rithms robust to web noise. This chapter proposes to study how unsupervised

learning can be used to learn visual features on web noise datasets to detect

out-of-distribution images. We show that contrastive learning algorithms

trained on web crawled datasets linearly separate in-distribution and out-of-

distribution samples on the hyper-sphere projection. Since nothing is known

about the noisy nature of images in the web datasets, we cannot estimate the

linear separation directly and propose instead to cluster the different type of

samples (clean, in-distribution noisy, out-of-distribution) in the contrastive

feature space. The proposed algorithm SNCF improves the state-of-the-art

classification accuracy on a variety of synthetic benchmarks and the real

world WebVision 1.0 web-crawled dataset. Section 4.1 motivates the need to
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automatically detect in- and out-of-distribution noise in web-crawled datasets,

the limitations existing noise-robust algorithms do not address and the re-

search contributions of the chapter. Section 4.2 presents the SNCF algorithm

and Section 4.2.3 specifically discuss why out-of-distribution images sepa-

rates from in-distribution ones in the contrastive feature space. Section 4.3

presents experimental applications of the SNCF algorithm on various noisy

image datasets, implementation details, an ablation study, a comparison with

the state-of-the-art. Section 4.4 concludes by summarizing the observations

made in the chapter and proposes research ideas to improve the SNCF algo-

rithm in the future. The research that emanated from this work was published

at the 2022 CVF European Conference on Computer Vision (ECCV).

4.1 Motivations

Designing algorithms capable of training highly accurate CNNs even when

trained on imperfect web-crawled data is an important step towards the

widespread deployment and take up of computer vision algorithms in practice.

CNNs have been shown to completely overfit noisy samples in a dataset

without proper regularization [226], which degrades performance. More

specifically, chapter 3 observed that the nature of noise in web-crawled

datasets can be categorized as both in-distribution and out-of-distribution,

the latter being the dominant type. While in-distribution (ID) noisy images

can be directly used to train the network after correcting their assigned label,

out-of-distribution (OOD) images cannot be assigned to any category. Since

a trusted in-distribution dataset is unavailable and the identity of clean and

noisy samples is unknown, out-of-distribution detection algorithms [219,
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Figure 4.1: Visualization of the linear separation between OOD and ID
unsupervised contrastive representations on the 2D hypershpere. CIFAR-10
corrupted with rin = rout = 0.2, OOD from ImageNet32. Linear separability
in 2D at the dataset level is 92.49% but increases to 98%+ for 128D

58, 73], which use a classifier trained on clean data to be able to detect

OOD samples post training, cannot be used. This further complicates the

noise detection process. Once noisy images have been identified, simply

ignoring out-of-distribution images has been shown to be sub-optimal as these

samples still contain meaningful information for learning low-level features

that can be leveraged to improve the representations learned [78, 216]. This

chapter proposes to tackle the in-distribution and out-of-distribution duality

of the noise present in web-crawled datasets specifically to improve the final

classification accuracy. To detect the noise, we observe that unsupervised

contrastive representations for OOD samples become linearly separated from

ID ones on the hypersphere (see Figure 4.1) and train a robust network that

will use current representations to correct ID noisy samples and use OOD

data to improve low-level representations using contrastive learning.
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4.2 Algorithm description

This chapter studies image classification in the presence of label noise, where

part of the available image dataset X = {xi}Ni=1 and its associated classifi-

cation labels Y = {yi}Ni=1, with the class distribution {c}Cc=1, is corrupted

by Nout out-of-distribution samples and Nin in-distribution noisy samples,

where Nc = N − Nout − Nin is the number of in-distribution clean exam-

ples. Nout, Nin as well as the identity of the ID noisy and OOD samples

are unknown. Examples of such datasets are web-crawled datasets: Web-

Vision [115], Clothing1M [213], and the Webly Supervised Fine-Grained

Recognition datasets [183]. We propose here an algorithm capable of training

a convolutional neural network (CNN) h on the corrupted dataset X with-

out over-fitting to the noise and capable of accurately classifing examples

belonging to the class distribution.

4.2.1 Unsupervised feature learning

First, our algorithm learns unsupervised representations from the images

themselves, independently of their label. We aim here to relate images to

each other in order to capture clusters of similar images. To do so, we train

the N -pairs unsupervised contrastive learning algorithm which has been

successfully used in metric learning [179] and unsupervised learning on

images and text [107]. Given two mini-batches of size B formed from two

strongly data augmented views x′i and x′′i of xi ∈ X , we enforce u′i and

u′′i , their associated contrastive representations through h, to be similar to

each other and dissimilar to every other image in the batch. We compute the
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unsupervised contrastive loss

lunsup = − 1

B

B∑
i=1

log

(
exp (ip(u′′i , u

′
i)/τ2)∑B

k=1 exp (ip(u
′′
k, u

′
i)/τ2)

)
, (4.1)

where ip(u1, u2) =
uT
1 .u2

∥u1∥2∥u2∥2 is the inner product operation, measuring the

similarity between contrastive representations, and τ2 a temperature hyper-

parameter, fixed to 0.2 for every experiment. Mixup [227] can be optionally

used to further augment x′i by linearly interpolating it with other augmented

samples from the mini-batch with a parameter µ drawn from a beta distribu-

tion with parameter 1 to produce x′mix = µx′i + (1− µ)x′j with x′j a random

sample from the mini-batch (different for every xi) and u′mix the associated

representation of x′mix. We then use

lmix = − 1

B

B∑
i=1

log

(
µ

exp (ip(u′′i , u
′
mix)/τ2)∑B

k=1 exp (ip(u
′′
k, u

′
mix)/τ2)

+ (1− µ)
exp

(
ip(u′′j , u

′
mix)/τ2

)∑B
k=1 exp (ip(u

′′
k, u

′
mix)/τ2)

)
,

(4.2)

theN -pairs loss paired with mixup as a data augmentation. This unsupervised

contrastive objective has been proposed as part of the iMix [107] algorithm.

4.2.2 Embedding of unsupervised features

We propose not to use the learned unsupervised features directly but instead to

perform a non-linear spectral dimensionality reduction on an affinity matrix

(embedding). The aim of the embedding is to capture the affinities between

samples and their neighbors where ID clean samples will be very similar

to other samples from the same class, ID noisy samples will be similar to
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other ID samples from a different class and OOD samples dissimilar to any

ID sample. This motivates computing the embedding at the dataset level to

ensure that the similarity of ID noise to other classes is captured. We first

compute the sparse similarity matrix S of size N ×N where for each sample

in the dataset, we compute the affinity to a fixed neighborhood size of 50

neighbors.

Sij = (uT
i uj/∥ui∥2∥uj∥2)

γ
, (4.3)

with ui the unsupervised representation for sample xi (not augmented) and

γ = 3 a hyper-parameter regulating the importance of distant neighbors. With

IN the identity matrix of size N and D the diagonal normalization matrix

where Dii =
∑N

j=1 Sij , we compute the normalized Laplacian

L = IN −D−1/2SD−1/2. (4.4)

We finally compute the first k eigenvectors of the normalized Laplacian L by

solving

(L− λ)V = 0 (4.5)

and concatenating the first k eigenvectors V of L (by increasing order of

the eigenvalues λ, omitting the smallest), providing us with k features per

sample to form the embedding E. In practice we use k = 20 for every dataset.

This embedding process is commonly referred to as spectral embedding [138,

171].
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4.2.3 Unsupervised clustering of noise

Using the embedding E, we cluster embedded unsupervised features to

identify three kinds of samples: clean ID, noisy ID, and OOD. In the generic

case where the three types of noise are expected in the dataset, we apply

the clustering at the class level and aim to discover three clusters for each

class: a high density cluster of ID clean samples, a low density cluster of

OOD samples and ID noisy outliers. In the case where no ID noise is present,

we observe the cluster separation at the dataset level and use a two mode

Gaussian mixture to retrieve each cluster.

Why does OOD noise cluster? Contrary to previous research where

OOD noise is considered an outlier to the distribution [208], we observe in

this chapter that unsupervised contrastive learning can be effectively used

to cluster noise in the feature space. We expand here on our intuition as to

why this works using the alignment and uniformity principles for contrastive

learning formalized by Wang et al. [206]. Unsupervised contrastive learning

pulls together augmented representations of a same image while pushing

apart representations of any other sample in the mini-batch. Since images

from a same class will be similar to each other’s augmentations, they will

cluster together in the feature space to create one (or more) mode for the

class (alignment principle). On the other hand, by considering OOD samples

as being uniformly sampled from the set of all images, meaning much more

varied in appearance than the ID set, we would expect that no compact mode

would appear and that these samples would remain uniformly distributed in

the feature space yet separated from the ID examples, pulled together into

their respective class modes (uniformity principle). Since the features are L2

normalized during training they exist on the surface of a unit hypersphere and
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one side of the sphere will contain well represented ID classes, clustered into

their respective modes, while OOD noise will remain uniformly distributed be

on the other side of the hypersphere and linearly separable from ID samples.

Section 4.3.2 proposes experiments to evidence the linear separability of

ID and OOD samples in the unsupervised contrastive feature space. The

spectral embedding we propose has a key role to play in the clustering of

the OOD noise which, although separable from the ID samples, is much

more spread-out than the compact class modes of ID images. We remedy this

problem by computing the affinities in S not over a fixed distance threshold

but using a fixed number of neighbors. Because the affinities in S are then

normalized over all neighbors, uniformly distributed OOD samples appear

artificially clustered.

It becomes clear that a possible limitation of our approach would be

when structure is present in the OOD images i.e. an underling class largely

represented in the OOD images, meaning a part of the OOD images are

very visually similar to each other and will satisfy the alignment principle

of contrastive learning. We do not study this scenario in this chapter since

we do not observe it on the web-datasets we train on but recommend further

research.

OPTICS [7] is an algorithm which allows us to detect clusters as well as

outliers: each feature point is ordered to create a chain where neighboring

points are ordered next to each other. Each feature point is then labeled with

a reachability cost to neighbors in a neighborhood of size V . The higher

the cost, the more likely a sample is to be an outlier. Finally, clusters are

identified in the ordering where “valleys” of low reachability cost evidence a

cluster, themselves separated with high cost outliers.
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Discovering clean and noisy clusters. Because the difficulty of learning

similar unsupervised features varies from class to class in an image dataset,

we propose to modify the OPTICS algorithm to become more flexible to our

problem. We aim here to be able to detect varying valley sizes in the ordered

reachability plot where different classes in the image dataset will have more

compact classes (fine grained classes) than others (classes with highly diverse

examples). In practice, we compute three different reachability orderings for

three different neighborhood sizes V (75, 50, 25 neighbors), which allows

us to account for cluster compactness variations across classes and noise

levels. The algorithm chooses the optimal cluster assignment at the class

level as being the cluster with the lower amount of outliers given at least two

clusters are identified (clean and OOD). This allows us to reduce the amount

of hyper-parameters to tune for the clustering to the ξ parameter of OPTICS

which controls the decision boundary between clusters and outliers. Higher

values for ξ imply a higher tolerance threshold meaning a lower amount of

outliers.

No ID noise. In the case where we expect no ID noisy samples in the

dataset, we only aim to discover a clean and an OOD cluster without outliers.

In this case, the OOD cluster can be retrieved at the dataset level and we

choose instead to fit a 2 component Gaussian mixture on the embedded

features to retrieve the clusters.

Clean or OOD. Once the clusters are evidenced in the ordering, the final

step for the detection is to classify the clusters into clean or OOD. Although

the average reachability score within the cluster could at first glance be

considered a good indication of the OOD nature of a cluster, by computing

the affinity matrix over a fixed neighborhood size, distances are not accurately
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preserved. We propose instead to compute the density of the cluster in the

original unsupervised feature space, where for each sample in the dataset we

compute the average distance to all other points in the cluster. We then select

the cluster with the lowest density as the OOD cluster.

4.2.4 Spectral Noise clustering from Contrastive Features
(SNCF)

Clustering the embedded unsupervised feature space provides three subsets

of X : Xc,Xn and Xo, respectively the clean, ID noisy and OOD subsets.

We aim to use all the available samples to train our CNN and do so by

correcting ID noisy samples to their true label and using OOD samples to

learn more robust low-level features. We train from scratch on each type

of noise separately without using the unsupervised features to initialize the

classification network.

Correcting in-distribution noise

Although the unsupervised features allow the detection of incorrectly assigned

samples, we find that this is not sufficient to accurately assign ID noise

to the right class, especially since they might be close to other ID noisy

samples themselves assigned to another incorrect class. We propose instead

to correct the ID noise during the supervised training phase, using knowledge

learned on clean ID samples during a warm-up pre-training. We then estimate

the true labels of the detected ID noise using a consistency regularization

approach. For every ID noisy sample in Xn two weakly augmented versions

are produced. The network then predicts on both samples (pi,1 and pi,2) and

returns an average prediction, which, after temperature sharpening τ1 and
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normalization, is used as the corrected class assignment: yi =
(pi,1+pi,2

2

)τ1
with τ1 = 2 in every experiment. We find temperature sharpening to be

necessary to reduce the entropy of the guessed label and to encourage the

network to produce more confident predictions.

Out-of-distribution samples

OOD samples cannot be corrected to any label in the distribution but we

propose to include them in an additional guided contrastive loss minimization

objective to learn low level features. Once the noise detection algorithm

has run, we re-embed the unsupervised features of detected OOD noise and

use OPTICS to discover clusters of the most similar samples in the OOD

data. At training time, we augment each sample in the dataset into one

weakly and one strongly augmented view, producing two mini-batches of the

same images augmented differently. We then enforce ID samples belonging

to the same class (corrected for the ID noise) as well as OOD samples

from the same unsupervised cluster to be similar while being dissimilar to

every other example in the mini-batch. OOD samples not assigned to any

unsupervised cluster are considered similar to their augmented view only.

This guided contrastive objective is described in equation 4.7. Note here

that the similarities are enforced between the two mini-batches of augmented

views alone. We attempted to enforce similarities inside the same augmented

batch but noticed no accuracy improvements.
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4.2.5 Loss objectives

We consider here that pi is the current softmax prediction of h on sample

xi ∈ X . Our algorithm aims to optimize over two objectives during training.

The first is the classification objective on the detected clean samples Xc and

the ID samples from Xn whose label has been corrected. We use the cross

entropy loss:

lce =
Nc+Nn∑
i=1

yTi log(pi). (4.6)

Secondly, we minimize the guided contrastive learning objective, group-

ing ID samples of the same class and OOD samples from the same OOD

cluster together using their respectively weakly and strongly augmented pro-

jected representations ri and r′i, projected from the classification space to the

contrastive space

lcont = − 1

N

N∑
i=1

1

B

B∑
b=1

ei,b log

(
exp (ip(rb, r′i)/τ2)∑B
k=1 exp (ip(rk, r

′
i)/τ2)

)
, (4.7)

with ei,b = 1 if sample i is considered similar to sample b, ei,b = 0 otherwise.

Note that this objective can be paired with mixup as in the unsupervised

objective in equation 4.2. The final loss minimized by our algorithm is:

l = lce + βlcont, (4.8)

where β is an hyper-parameter (typically 1). Figure 4.2 illustrates the algo-

rithm.
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Figure 4.2: Visualization of the algorithm. The unsupervised features are
embedded to create E and evaluated at the class level (E1, . . . EC) to cluster
clean and OOD samples. The detected OOD samples are re-embedded from
their unsupervised features to detect clusters of similar images. We correct
the ID noise using consistency regularization and the OOD sample’s cluster
assignments are used together with the classes of all in-distribution samples
in a guided contrastive objective

4.3 Experiments

4.3.1 Implementation details

We form each mini-batch by aggregating an equal number of clean ID, noisy

ID and OOD samples. Since the OOD is ignored in the ID objective (eq 4.6)

and in order to have the same batch size for the ID and the contrastive forward

pass, we form the ID mini-batch by aggregating two weakly augmented views

of the clean data with one weakly augmented view for the ID noisy data (ID

clean, ID noisy, OOD for the contrastive mini-batch). For the weak data

augmentations we use cropping with padding and random horizontal flip and

the strong SimCLR augmentations [30]. We warm-up the network on the

detected clean data from scratch for 15 epochs in every experiment (except

5 for WebVision) and start both the ID noise correction and the guided

73
Research published in the European Conference on Computer Vision (ECCV)

2022



CHAPTER 4: CONTRASTIVE LEARNING WEB NOISE

contrastive objective after this. For a fair comparison with other approaches,

the unsupervised features are not used to initialize the network in the robust

classification phase. Since our algorithm minimizes a contrastive loss, we

find that adding a non-linear projection head [30, 31] to project features from

the classification space to the contrastive space is beneficial in reconciling

the training objectives. The final number of projected contrastive features

is 128 and the projection head is not used at test time. We use stochastic

gradient descent (SGD) with a weight decay of 5 × 10−4 and mixup [227]

augmentation with α = 1 for all experiments.

Training the unsupervised algorithm. We train the unsupervised al-

gorithm using the same network as the robust classification phase. In cases

where the resolution is 227× 227 or above, we train and evaluate the unsu-

pervised features at resolution 84 × 84 as this helps to keep training time

and memory consumption reasonable yet still separates the OOD and ID

clusters. The algorithm is trained for 2000 epochs, with a batch size of

256, starting with a learning rate of 0.01 and reducing it by a factor of 10 at

epochs 1000, 1500. We use the mixup version on the unsupervised objective

(iMix [107]).

Synthetically corrupted datasets. We conduct a first series of exper-

iments on synthetically corrupted versions of CIFAR-100 [99] where we

control the ID noise and OOD noise. We use the same configuration as in

chapter 3 and note rin and rout the corruption ratios for ID noisy and OOD

noise respectively with rin + rout the total noise level. Our focus here is on

the OOD noise rate more than ID noise, which is less present in web-crawled

datasets. We introduce OOD noise by replacing original images with images

from another dataset, either ImageNet32 [37] or Places365 [230]. For the ID
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noise, we randomly flip the labels of a portion of the dataset to a random label

(uniform noise). The dataset size remains 50K images after noise injection.

We train on CIFAR-100 using a PreActResNet18 [92] trained with a batch

size of 256 for 100 epochs with a learning rate of 0.1, reducing it by a factor

of 10 at epochs 50 and 80.

Web noise corruption. We conduct experiments on miniImageNet [202]

corrupted by web noise from Jiang et al. [88] (Controlled Noisy Web Labels,

CNWL) where the severity of the web noise corruption is controlled. This

dataset is an example where ID noise is very limited and where we find that

using the 2 components Gaussian Mixture Model is sufficient to detect the

noise at the dataset level (see Section 4.2.3). We train on this dataset at

two different resolutions, first 299× 299, which is the original configuration

proposed by Jiang et al. [88] and second the 32 × 32 resolution adopted

in recent works [39, 215, 166]. For the 299 × 299 configuration, we train

an InceptionResNetV2 [185] with a batch size of 64 for 200 epochs with a

learning rate of 0.01, reducing it by a factor of 10 at epochs 100, 160. For the

32× 32 configuration, we use the same configuration as CIFAR-100.

Real-world dataset. We evaluate our model on the (mini)WebVision [115]

dataset reduced to the first 50 classes (65k images). We train an Inception-

ResNetV2 [185] at a 227 × 227 resolution with a batch size of 64 for 100

epochs with a learning rate of 0.01, reducing it by 10 at epochs 50, 80.

Baselines. We introduce here the state-of-the-art approaches we com-

pared with as well as the abbreviations used in the tables. Cross-entropy

(CE), dropout (D), and mixup (M) are simple baselines obtained by training

with no noise correction and dropout [10] or mixup [227] as regularization.

MentorNet [87] (MN) and MentorMix [88] (MM) use teacher networks to
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weight noisy samples. FaMUS [215] (FaMUS) uses meta learning to learn

to correct noisy samples. Bootstrapping [159] (B) corrects noisy samples

using a fixed interpolation with pseudo-labels; Dynamic Bootstrapping [8]

(DB) expands the idea by correcting only high loss noisy samples retrieved

using a beta mixture. The S-model [63] (SM) corrects noisy samples using a

noise adaptation layer optimized using an Expectation Maximization (EM)

algorithm. DivideMix [111] (DM) uses a Gaussian mixture to detect high

loss samples and correct them using a semi-supervised consistency regular-

ization algorithm; the idea is expanded upon in PropMix [39] (PM) where

unsupervised initialization is used and only the simplest of the noisy samples

are corrected while the hardest are discarded. ScanMix [166] (SM) also

improves on DM by correcting the label using a semi-supervised contrastive

algorithm together with a semantic clustering in an unsupervised feature

space, optimized using an EM algorithm. EvidentialMix [165] (EDM) refines

the noisy sample detection of DM to account for OOD samples and uses

the evidential loss [169] to evidence separate OOD and ID noisy modes.

JoSRC [216] (JoSRC) proposes to use the Jensen-Shannon divergence be-

tween a consistency regularization guessed label and the original label to

detect noisy samples and further select samples with low agreement between

views as OOD. Robust Representation Learning [113] (RRL) trains a weakly

supervised prototype objective to promote clean samples to be close to their

class prototypes. Finally, Dynamic Softening for Out-of-distribution Samples

(DSOS) is presented in chapter 3 and computes the collision entropy of the

interpolation between the original label and network prediction to separate

ID noisy and OOD samples.
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Figure 4.3: Feature embedding for class 1 of CIFAR-100 corrupted with
ri = ro = 0.2 (ImageNet32 OOD). The top row presents a 2D visualization
obtained using Isomap [191] of the raw contrastive features and the second
row presents an Isomap visualization of the embedding E. Embedding the
features allows us to evidence the OOD cluster

4.3.2 Clustering the unsupervised features

This section presents the experiments on the linear separability of ID and

OOD data in an unsupervised feature space, the importance of embedding

the unsupervised features when clustering the noise and the accuracy of

our noise retrieval algorithm. First, to validate our hypothesis over the

separability of ID and OOD samples in the unsupervised feature space,

we propose to train a linear classifier on the unsupervised features using

oracle clean and noisy labels to evaluate a linear separation score for the two

distributions. We observe that the classifier can linearly separate the two

distribution with error rates below 3% for synthetically corrupted CIFAR-100

with rin = rout = 0.2 and below 1% for miniImageNet corrupted with web

noise (CNWL). The linear separability is less accurate when using Places365
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Table 4.1: Mitigating ID noise and OOD noise on CIFAR-100 corrupted
with ImageNet32 or Places365 images. We run all the algorithms using
publicly available implementations by authors. We compare with naive
cross-entropy training (CE), Mixup (M), Dynamic Bootstrapping (DB), Joint
Sample Selection and Model Regularization based on Consistency (JoSRC),
Early Learning Regularization (ELR), EvidentialMix (EDM), Chapter 3
(DSOS), Robust Representation Learning (RRL). We report best and last
accuracy. We bold (underline) the highest best (final) accuracy

Corruption rout rin CE M DB JoSRC ELR EDM DSOS RRL Ours

INet32

0.2 0.2 63.68/55.52 66.71/62.52 65.61/65.61 67.37/64.17 68.71/68.51 71.03/70.42 70.54/70.54 72.64/72.33 72.95/72.70
0.4 0.2 58.94/44.31 59.54/53.16 54.79/54.42 61.70/61.37 63.21/63.07 61.89/61.83 62.49/62.05 66.04/65.44 67.62/67.14
0.6 0.2 46.02/26.03 42.87/40.39 42.50/42.50 37.95/37.11 44.79/44.60 21.88/14.59 49.98/49.14 26.76/24.51 53.26/51.26
0.4 0.4 41.39/18.45 38.37/33.85 35.90/35.90 41.53/41.44 34.82/34.21 24.15/01.62 43.69/42.88 31.29/30.64 54.04/52.66

Places365

0.2 0.2 59.88/53.61 66.31/59.69 65.86/65.83 67.06/66.73 68.58/68.45 70.46/70.25 69.72/69.12 72.62/72.49 71.25/71.14
0.4 0.2 53.46/42.46 59.75/48.55 55.81/55.61 60.83/60.64 62.66/62.34 61.80/61.55 59.47/59.47 65.82/65.79 64.03/63.48
0.6 0.2 39.55/21.42 39.17/33.69 40.75/40.61 39.83/39.63 37.10/36.51 23.67/14.66 35.48/35.41 49.27/49.27 49.83/49.83
0.4 0.4 32.06/13.85 34.36/27.63 35.05/34.86 33.23/32.58 34.71/33.86 20.33/11.88 29.54/29.48 26.67/24.34 50.95/47.61

as the OOD corruption dataset; we argue that this is because of lower image

variability in the dataset, justified by the lower number of classes and the

fine-grained nature of the classification task. Second, Figure 4.3 provides a

visualization of the importance of embedding the unsupervised features to

perform the noise clustering for a class of CIFAR-100 where we compare

applying the clustering algorithm on the raw unsupervised contrastive features

against the spectral embedding E. The left column is the ground-truth and

the right represent the detection made by the clustering algorithm. We use

Isomap [191] to reduce the dimentionality to 2 to be able to visualize the

features. The spectral embedding E is essential to evidence the OOD cluster,

not originally present in the raw features.

4.3.3 Synthetic noise corruption

We study the capacity of our algorithm to mitigate ID noise and OOD noise on

synthetically corrupted version of the CIFAR-100 dataset. Table 4.1 reports
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Table 4.2: Ablation study on CIFAR-100 corrupted with ImageNet32 with
rout = 0.4 and rin = 0.2. corr = correction and rm = remove

Embed Contrastive Best Last

No noise corr
CE ✗ ✗ 58.94 44.31
+ mixup ✗ ✗ 59.54 53.16
+ guided contrastive ✗ ✓ 62.83 56.29

Noise corr

ID corr only ✗ ✗ 57.02 55.43
rm OOD only ✗ ✗ 60.73 53.88
ID corr and rm OOD ✗ ✗ 54.81 54.20

ID corr only ✓ ✗ 61.40 58.90
rm OOD only ✓ ✗ 60.87 54.08
ID corr and rm OOD ✓ ✗ 61.83 61.45

ID corr only ✓ ✓ 63.91 62.94
ID corr and rm OOD ✓ ✓ 64.51 64.04
OOD corr only ✓ ✓ 63.41 58.39
ID + OOD corr ✓ ✓ 65.22 64.42

Other
+ equal sampling ✓ ✓ 67.62 67.14
- mixup ✓ ✓ 61.66 59.40
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Figure 4.4: Hyper-parameter tuning for OPTICS. We report accuracy results
obtained for ID/OOD clustering setting different ξ values in OPTICS

results when using ImageNet32 or Places365 as a OOD corruption. We notice

that the OOD corruption using the Places365 dataset is more harmful than

corrupting with ImageNet32, especially for high noise levels.

4.3.4 Ablation study

Table 4.2 illustrates the importance of each element of the proposed method on

CIFAR-100 corrupted with OOD noise from ImageNet32. We study multiple
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Table 4.3: Web-corrupted miniImageNet from the CNWL [88] (32× 32). We
run our algorithm; other results are from [39]. We denote with ⋆ algorithms
using an ensemble of networks to predict and with † algorithms using unsu-
pervised initialization. We compare with naive cross-entropy training (CE),
Mixup (M), DivideMix (DM), MentorMix (MM), Fast Meta Update Strategy
(FaMUS), ScanMix (SM), PropMix (PM). We report best accuracy and bold
the best results

Noise level CE M ⋆DM MM FaMUS ⋆†SM ⋆†PM Ours

20 47.36 49.10 50.96 51.02 51.42 59.06 61.24 61.56
40 42.70 46.40 46.72 47.14 48.03 54.54 56.22 59.94
60 37.30 40.58 43.14 43.80 45.10 52.36 52.84 54.92
80 29.76 33.58 34.50 33.46 35.50 40.00 43.42 45.62

cases including retrieving OOD and ID clusters on the un-embedded raw

unsupervised contrastive features (Noise corr without embedding); correcting

only the OOD or ID examples while considering the rest clean (ID/OOD corr

only); joint effect of the ID and OOD correction (ID + OOD corr); studying

the effect of removing the OOD samples from the training set instead of

using them in the guided contrastive objective in equation 4.7 (ID corr and

rm OOD); runing the algorithm without mixup (- mixup). We point out how

important mixup is (especially in the classification loss) to avoid overfitting to

the noise. Figure 4.4 reports the quality of our robust classification algorithm

on ID and OOD clustering for different values of ξ in OPTICS where values

inferior to 0.03 lead to the best results. We choose ξ = 0.01 for all datasets.

4.3.5 Results on web-noise

We consider here the controlled noisy web labels (CNWL) dataset, where

miniImageNet is corrupted with OOD images from web queries. Table 4.3

reports results when training at resolution 32× 32 and Table 4.4 at resolution

299 × 299. Finally, in Table 4.5 we train on the first 50 classes of the
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Table 4.4: Web noise on CNWL [88] trained at a high resolution (299× 299).
We run our algorithm, other results are from Chapter 3. We compare with
naive cross-entropy training (CE), Dropout (D), S-Model (SM), Boostrapping
(B), Mixup (M), MentorNet (MN), MentorMix (MM), Chapter 3 (DSOS).
We report best accuracy

Noise level CE D SM B M MN MM DSOS Ours

0 70.9/68.5 71.8/65.7 71.4/68.4 71.8/68.4 72.8/72.3 71.2/68.9 74.3/73.7 74.52/74.10 74.80/74.60
30 66.1/56.5 66.6/55.0 65.2/56.3 66.6/56.7 66.8/61.8 66.2/64.0 68.3/67.2 69.84/67.86 69.96/69.64
50 60.9/51.7 62.1/50.01 61.3/51.3 62.6/52..5 63.2/58.4 61.7/58.0 63.3/61.8 66.14/65.18 66.48/66.38
80 48.8/39.8 49.5/37.6 49.0/40.6 50.1/40.1 50.7/45.5 49.3/43.4 50.2/48.4 55.26/52.24 55.54/54.96

WebVision dataset (mini-WebVision) a real world web-crawled dataset and

report top-1 and top-5 accuracy results on the validation set on WebVision and

on the test set on the ImageNet1k (ILSVRC12) dataset. Since our algorithm

uses only one network and to compare against ensemble methods, we report

an additional result where we ensemble two networks trained from different

random initializations by averaging their prediction at test time. We also

report results when training for 150 epochs to compare fairly against FaMUS.

Our algorithm slightly outperforms the state-of-the-art for top-1 accuracy

but more convincingly so for top-5 accuracy on WebVision. Because of

the guided contrastive loss, the network learns more generalizable features

which reduce the risk of catastrophic classification errors (when the predicted

class is completely semantically different from the correct predictions). mini-

Webvision in particular proposes fine grained classification on species of

birds, amphibians and marine animals which reward generalizable features

for top-5 evaluation.
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Table 4.5: Classification accuracy for the proposed and other state-of-the-art
methods. We denote with ⋆ algorithms using an ensemble of networks to
predict and with † algorithms using unsupervised initialization. We train the
network on the mini-Webvision dataset and test on the ImageNet 1k test set
(ILSVRC12). We compare with Mixup (M), MentorMix (MM), DivideMix
(DM), Early Learning Regularization (ELR), Robust Representation Learning
(RRL), Chapter 3 (DSOS), PropMix (PM), ScanMix (SM), Fast Meta Update
Strategy (FaMUS). We bold the best results

100 epochs 150 epochs

M MM ⋆DM ⋆ELR+ RRL ⋆DSOS ⋆†PM ⋆†SM Ours ⋆Ours FaMUS ⋆Ours

mini-WebVision top-1 75.44 76.0 77.32 77.78 77.80 78.76 78.84 80.04 78.16 79.84 79.40 80.24
top-5 90.12 90.2 91.64 91.68 91.30 92.32 90.56 93.04 92.60 93.64 92.80 93.44

ILSVRC12 top-1 71.44 72.9 75.20 70.29 74.40 75.88 −− 75.76 74.20 76.64 77.00 77.12
top-5 89.40 91.10 90.84 89.76 90.90 92.36 −− 92.60 93.32 94.20 92.76 94.32

Table 4.6: Linear separation between ID and OOD noise in contrastive and
non-contrastive algorithms. CIFAR-100 with rout = 0.4 and rin = 0.2
ImageNet32 corruption.

N-pairs iMix lunif+lalign SimCLR Mocov3 BYOL SimSiam Barlow Twins VicReg DeepClusterV2 Swav

linear sep 94.77 95.61 94.14 95.47 98.15 98.69 94.50 98.59 98.57 87.40 85.74
kNN acc 55.29 53.98 55.09 55.36 53.13 60.54 56.52 59.30 58.61 53.50 52.21

4.3.6 Alternative contrastive algorithm

We study here how well the linear separation we observe with the N-pairs

algorithm translates to recent state-of-the-art contrastive and non-contrastive

algorithms. For the contrastive algorithms we study N-pairs, iMix [107], Sim-

CLR [31], the combination of alignment and uniformity losses from Wang et

al. [206] and Mocov3 [33]. For the a-priori non-contrastive approaches, we

study BYOL [65], SimSiam [32] and Barlow Twins [222]. We also add some

clustering-based algorithms: DeepClusterv2 [25] and Swav [26]. As stated

in section 4.2.3, we expect that non contrastive algorithms will exhibit a

degraded linear separation. We use the same code base for all algorithms [40]

and all approaches use a non-linear projection head and L2 normalization of
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features. Table 4.6 reports the linear separation results and kNN accuracy

(k=200). We observe that the linear separation between OOD and ID samples

is independent from the kNN accuracy as Mocov3 and BYOL have similar

linear separation scores but BYOL is much more accurate at kNN classifica-

tion. Both a-priori contrastive and non-contrastive approaches demonstrate

good separability and clustering approaches propose a much worse separa-

tion. A priori non-contrastive approaches (BYOL, SimSiam, Barlow Twins)

have been recently shown to be hidden, dimension contrastive algorithms by

Garrido et al. [60] as opposed to sample contrastive approaches (SimCLR,

N-pairs). We believe this might explained why the linear separation is ob-

served for the a-priori non-contrastive algorithms (see Section 4.2.3). It is

also interesting to note that unsupervised algorithms generalize differently

to real world data. From a kNN accuracy point of view, some approaches

maintain the accuracy improvement on noisy datasets (Barlow Twins, BYOL)

while others are affected by the noise present in the dataset (SimSiam, iMix,

Mocov3). Since large web datasets present a great opportunity for unsuper-

vised feature learning, we believe that robustness to label noise should be of

interest in future unsupervised representation learning research.

4.3.7 Discussion on SNCF compared to DSOS

Both DSOS in Chapter 3 and SNCF in this chapter aim to address the same

problem of learning an accurate classifier on noisy data. Comparisons con-

ducted in Tables 4.4 and 4.5 show that SNCF is capable of using unsupervised

features and contrastive learning to achieve a higher classification accuracy

than DSOS in web-noise benchmark datasets. The improvements over DSOS

are explained by the improved detection of the OOD images where the separa-
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tion between ID and OOD in SNCF is almost perfect in simpler datasets (see

Table 4.6) and also because training the guided contrastive objective together

with the classification one allows us to learn better features that boost the

classification accuracy. In Table 4.2, adding the guided contrastive objective

improves the classification accuracy by approximately 2 points.

4.4 Conclusion

This chapter aims to address research question two of this thesis: “Can

unsupervised learning be used to detect noise in web-crawled datasets?”.

We found that we can use the alignment and uniformity principles of un-

supervised contrastive learning to detect ID and OOD label noise clusters

in an embedded feature space. We show that the unsupervised contrastive

features for OOD and ID samples are, to a large extent, linearly separated on

the unit hypersphere and compute a fixed neighborhood spectral embedding

to reduce differences in cluster densities. We adapt the OPTICS algorithm,

ordering samples in a neighbor chain and computing the reachability cost to

neighbors. Clusters are evidenced by valleys in the reachability plot and a

voting system automatically selects the best cluster assignment at the class

level given multiple neighborhood sizes. Once the noise has been identified,

we train a robust classifier that corrects the labels of known ID noisy samples

using a consistency regularization estimation and uses ID and OOD samples

together in an auxiliary guided contrastive objective. This completes the

answer to the first research question given in Chapter 3 on the usability of

OOD images to improve ID classification. We report state-of-the-art results

on a variety of noisy datasets including synthetically corrupted versions of
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CIFAR-100, controlled web noise in miniImageNet, and mini-WebVision as

a real-world web-crawled dataset.

Chapters 4 studied how unsupervised learning could be used to detect

noisy samples in web crawled datasets which require little human supervision.

An alternative approach to reduce human supervision is semi-supervised

learning where only part of the images are labeled by humans. Because most

images are unlabeled in semi-supervised datasets, unsupervised learning

has a strong potential to improve classification accuracies in this scenario.

Chapter 5 will study how unsupervised learning can be used as a mean

to propagate labels from the labeled to unlabeled set of a semi-supervised

dataset.
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Chapter 5

Unsupervised learning to
bootstrap additional labels for
semi-supervised learning

This chapter presents an approach to semi-supervised learning that is designed

to improve the performance of semi-supervised algorithms when a small

amounts of labeled data is available. The approach makes use of unsupervised

features to learn useful features for the unlabeled data. These features are in

turn used for propagating the few known labels and a large trusted subset is

extracted to be used for semi-supervised learning. The proposed knowledge

bootstrapping pipeline does not require additional supervision outside of the

few initially labeled data. We substantially improve semi-supervised errors

in scenarios of less than 25 samples per class on CIFAR and miniImageNet.

Section 5.1 motivates the semi-supervised problem we tackle in this chapter

and the proposed solution. Section 5.2 formalizes ReLaB, the proposed

algorithm. Section 5.3 reports experiment results for different unsupervised

algorithms, shows the benefits of ReLaB over other noise-robust algorithms
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when dealing with the noisy dataset resulting from the label propagation, and

tests our approach for different amounts of labeled samples on CIFAR10,

CIFAR100, and miniImageNet. Section 5.4 concludes the chapter. The

research that emanated from this work was published in the 2021 International

Joint Conference on Neural Networks (IJCNN).

5.1 Motivations

Despite recent efforts in the semi-supervised learning literature aiming at

reducing human supervision further, extreme label scarcity is still challeng-

ing [19, 178]. In the absence of labels, the unsupervised paradigm for

unsupervised visual representation learning has recently gained traction [11,

44, 57, 61, 30]. Unsupervised learning constructs a supervisory signal using

a pretext task where pretext labels are generated from the data. By solving

pretext tasks such as colorization of greyscale images [229], prediction of

image rotations [61], or contrasting different views of the same image [30],

high quality features can be learned without human annotations. The suc-

cess of unsupervised learning has motivated its adoption for semi-supervised

learning, which improved performance in cases of very low label availabil-

ity [207, 19]. Berthelot et al. [19] and Wang et al. [207] use unsupervised

regularization which stabilizes network training, while Rebuffi et al. [158]

make use of unsupervised pre-training [61] as an initialization strategy for

semi-supervised training.

This chapter explores the idea of automatically annotating images using label

propagation. In particular, we use representations learned by unsupervised

tasks together with a low amount of labels to apply label propagation and
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spread the available labels to the entirety of the samples. This results in a fully

labeled dataset which contains numerous incorrect (noisy) annotations. We

then select a trusted, clean subset from this noisy dataset that reliably extends

the initially labeled data. The extended labeled dataset is then used to enhance

the performance of any semi-supervised image classification algorithm when

very few labeled samples are available. We name this label bootstrapping strat-

egy ReLaB. When ReLaB is used to bootstrap labels for ReMixMatch [19]

on CIFAR-10 with 10, 40, 100 labeled samples, we reduce the accuracy error

by more than 36, 22, 15 absolute percentage points respectively. ReLaB’s

unsupervised knowledge-bootstrapping pipeline makes use of unsupervised,

image retrieval and label noise solutions to provide an approach for scenar-

ios of extremely scare annotations in semi-supervised learning. This could

include visual domains where annotations are either time-consuming and

expensive to gather or when expert annotators are required.

5.2 Reliable label bootstrapping for semi-supervised
learning

We formulate a semi-supervised classification task for C classes as learning

a model h given a training set D of N samples. The dataset consists of the

labeled set Dl = {(xi, yi)}Nl

i=1 with corresponding one-hot encoded labels

yi ∈ {0, 1}C and the unlabeled set Du = {xi}Nu

i=1, N = Nl + Nu the total

number of samples. We consider a CNN for h : D → [0, 1]C . The network is

comprised of a feature extractor hf : D → F , mapping the input space to the

feature space F , and a classifier hc : F → [0, 1]C .

We address the case where Dl contains a low amount of samples. Con-
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Unsupervised learning Label propagation Reliable sample selection
Extended reliablelabeled set

Original labeled sampleUnlabeled sampleCorreclty labeled sampleIncorrectly labeled sample

Semi-supervised learning
Figure 5.1: Reliable Label Bootstrapping (ReLaB) overview on CIFAR-10
(best viewed in color). Unlike traditional SSL (bottom) that directly uses
the labeled examples provided (airplane), ReLaB (top) bootstraps additional
labels before applying SSL.

trary to usual semi-supervised algorithms, before starting to train the neural

network for classification, we propose to extend Dl to a larger dataset Dr

of size Nr > Nl by automatically labeling samples from Du. We do so, by

propagating labels from Dl to Du using the unsupervised features learned

on D. In order to avoid overfitting to incorrect class assignments computed

in the label propagation phase, we build Dr by selecting clean (reliable)

samples from the propagated labels. This is done using label noise method-

ologies. Training on Dr instead of Dl greatly improves the performance of

semi-supervised algorithms when very few labels are available. Figure 5.1

presents and overview of our proposed approach.

5.2.1 Label propagation on unsupervised features

Knowledge transfer from the labeled set Dl to the unlabeled set Du is implic-

itly done by semi-supervised learning approaches as the network predictions

for Du can be seen as estimated labels. With few labeled samples however, it

is difficult to learn useful initial representations from Dl and performance is

substantially degraded [19] (see Subsection 5.3.5).

Conversely, we propose to learn a set of descriptors in an unsupervised
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manner and subsequently propagate the labels on the data manifold, in order

to retrieve additional labels for the unlabeled data.

We adopt the established graph diffusion algorithm [81, 46, 186, 80,

197] for label propagation. We formulate the label propagation problem in a

similar fashion than [81] except that we study the estimation of ŷ as a label

propagation task using unsupervised visual representations learned from all

samples in D. In particular, we learn a feature extractor hφf
using unsuper-

vised learning to obtain class-discriminative image representations [97] and

subsequently propagate labels from the Nl labeled images to estimate labels

ŷ for the Nu unlabeled samples. We do so by solving a label propagation

problem based on graph diffusion [81]. First, the set of descriptors {vi}Ni=1

are used to define the affinity matrix:

S = D−1/2AD−1/2, (5.1)

where D = diag (A1N) is the degree matrix of the graph and the adjacency

matrix A is computed as Aij = (vTi vj/∥vi∥∥vj∥)
γ if i ̸= j and 0 otherwise. γ

weighs the affinity term to control the sensitivity to far neighbors and is set to

3 as in [81]. The diffusion process estimates the N × C matrix as:

F = (I − αS)−1 Y, (5.2)

where α denotes the probability of jumping to adjacent vertices in the graph

and Y is the N × C label matrix defined such that Yic = 1 if sample xi ∈ Dl

and yi = c (i.e. belongs to the c class), where i (c) indexes the rows (columns)
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Table 5.1: Class and noise imbalance after applying label propagation

CIFAR-10 CIFAR-100
Nl

C
#sample noise ratio #sample noise ratio

4 4249± 1726 24.14± 10.42 472± 161 50.52± 16.79
10 4888± 1367 24.28± 7.43 477± 180 39.92± 15.31
25 4990± 1036 9.50± 6.90 444± 233 33.39± 12.55

in Y. Finally, the estimated one-hot label ŷi is:

ŷic =


1, if c = argmax

c
Fic

0, otherwise

,

for each unlabeled sample xi ∈ Du. The estimated labels allow the creation

of the extended dataset with estimated noisy labels D̂ = {(xi, ŷi)}Ni=1, where

ŷi = yi, ∀ xi ∈ Dl.

5.2.2 Reliable sample selection: dealing with noisy labels

Propagating existing labels using unsupervised representations as described in

Section 5.2.1, results in estimated labels ŷi that might be incorrect, i.e. label

noise. Using noisy labels as a supervised objective on D̂ leads to performance

degradation due to label noise memorization [226, 81]. Since the label noise

in D̂ comes from features extracted from the data, noisy samples tend to

be visually similar to the seed samples which poses a challenging scenario

as noise-robust, state-of-the-art training strategies [8, 119, 227] experience

important limitations (see Table 5.4).

Moreover, we find that this label noise is unbalanced in terms of number of

samples and different levels of noise in each class. We report in Table 5.1 the

median and standard deviation for the number of sample per class (#samples)
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and noise ratio over the classes of CIFAR-10 and CIFAR-100 for different

amounts of labeled samples in Nl. Using the small loss trick to select a subset

of clean samples is commonly used in the label noise literature [43, 96, 144,

145], but the issues specific to label noise resulting from label propagation

are not addressed in the label noise literature and pose additional challenges,

see Section 5.3.3.

In particular, we identify clean samples using the cross-entropy loss:

ℓi = −ŷTi log h(xi), (5.3)

with softmax-normalized logits h(xi) and training with a high learning rate

(small loss) which helps prevent label noise memorization [8] on the extended

dataset D̂. The reliable set Dr = {(xi, ŷi)}Nr

i=1 , with Nr > Nl, is then created

by selecting for each class c the N c
l originally labeled samples for that class c

in Dl and the N c
r −N c

l samples in class c from Du with the lowest loss ℓi.

Differently from previous works tackling synthetic noise [144], we find

that the noise present in D̂ makes the clean sample retrieval using the loss ℓi

during any particular epoch unstable and that the noise is class-unbalanced

(see Table 5.1), making it more challenging. We therefore impose the se-

lection of a class-balanced clean subset and choose to average the network

losses over the last T training epochs. This results in a clean, trusted subset

which limits the label noise bias introduced to the semi-supervised algorithm.

Table 5.3 shows that the knowledge we bootstrap in Dr is not overly sensitive

to Nr.
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5.2.3 Semi-supervised learning

Unlike traditional learning from Dl and Du, ReLaB provides semi-supervised

algorithms with a (larger) reliable labeled set Dr extended from the original

(smaller) labeled set Dl. The extension from Dl to Dr is done in a completely

unsupervised manner and promotes a significant reduction of the error rates

of SSL algorithms when few labels are given.

5.3 Experiments

5.3.1 Datasets and implementation details

We experiment with three image classification datasets: CIFAR-10 [99],

CIFAR-100 [99], and mini-ImageNet [202]. We follow common practices

for image retrieval [13, 154] and perform PCA whitening as well as L2

normalization on the features v before applying diffusion. We construct

the reliable set Dr by training for 60 epochs with a high learning rate (0.1)

to prevent label noise memorization [8] and select the samples with the

lowest loss per class at the end of the training. We average the per-sample

loss over the last T = 30 epochs of training. For the semi-supervised

learning experiments, we always use a standard WideResNet-28-2 [221]

for fair comparison with related work. We combine our approach with

state-of-the-art pseudo-labeling [9] and consistency regularization-based [19]

semi-supervised methods to demonstrate the stability of ReLaB when applied

to different semi-supervised strategies. We use the default configuration for

pseudo-labeling1 except for the network initialization, where we make use

1https://github.com/EricArazo/PseudoLabeling
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of the Rotation unsupervised objective [61] and freeze all the layers up to

the last convolutional block in a similar fashion to Rebufi et al. [158]. We

find that this is necessary to preserve strong early features throughout the

training. The network is warmed up on the labeled set for 200 epochs and

then trained for 400 epochs on the whole dataset. For ReMixMatch2 we train

the network from scratch for 256 epochs. Experiments in Section 5.3.3 for

the supervised alternatives on dealing with label noise [8, 227] follow the

author’s configurations, while cross-entropy and Mixup training in Table 5.4

is done for 150 epochs with an initial learning rate of 0.1 that we divide

by 10 in epochs 80 and 130. The benchmark datasets and hyperparameters

are the same as the ones used in related state-of-the-art literature [17, 9].

The algorithms we compare with in this section all achieved state-of-the-art

results on the benchmark datasets at the time of their publication.

5.3.2 Importance of unsupervised representations quality
for label propagation

Label propagation relies upon unsupervised representations extracted form

the data, i.e. the quality of the propagation directly depends on these represen-

tations. We propose to explore different unsupervised learning alternatives to

obtain these representations. Table 5.2, presents the label noise percentage of

the extended labeled set D̂ in CIFAR-10 (100) formed after label propagation

of the specified unsupervised representations with 1, 4 and 10 (4, 10 and

25) labeled samples per-class in Dl. We select RotNet [61], NPID [212],

UEL [126], AND [86] and iMix [107] as five recent unsupervised methods.

We experiment training WideResNet-28-2 (WRN-28-2) [221], ResNet-18

2https://github.com/google-research/remixmatch
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Table 5.2: Label noise percentage in D̂ using different amounts of labeled
samples per class after label propagation using different unsupervised meth-
ods and network architectures. We train RotNet, Non Parametric Instance
Discrimination (NPID), Unsupervised Embedding Learning (UEL), Anchor
Neighboring Discovery (AND) and iMix. Lower is better.

CIFAR-10 CIFAR-100
1 4 10 4 10 25

RotNet [61]
WRN-28-2 67.90± 8.51 51.68± 3.03 50.09± 2.55 83.08± 0.52 76.31± 0.33 67.81± 0.15

RN-18 66.02± 5.98 53.58± 1.57 47.60± 3.51 80.83± 0.56 73.79± 0.42 65.58± 0.34
RN-50 80.52± 30.08 77.58± 3.45 71.07± 1.05 80.75± 0.23 72.33± 0.15 62.78± 0.12

NPID [212]
WRN-28-2 68.72± 1.51 56.3± 2.42 51.35± 1.55 84.02± 0.30 76.91± 0.40 67.97± 0.13

RN-18 59.34± 7.13 42.70± 2.32 37.14± 0.48 77.80± 0.55 69.54± 0.25 61.29± 0.67
RN-50 59.44± 3.10 44.54± 2.32 38.13± 0.63 76.67± 0.58 68.54± 0.10 60.46± 0.16

UEL [126]
WRN-28-2 60.81± 6.41 45.84± 2.09 41.30± 2.00 79.21± 0.09 71.29± 0.39 62.89± 0.19

RN-18 52.02± 7.24 34.51± 1.03 29.84± 0.78 71.90± 0.36 63.25± 0.41 56.51± 0.22
RN-50 49.48± 7.66 32.81± 1.50 28.78± 1.08 69.62± 0.13 60.81± 0.48 54.08± 0.22

AND [86]
WRN-28-2 61.35± 0.57 46.12± 4.07 40.78± 0.27 79.38± 0.37 71.65± 0.03 63.29± 0.38

RN-18 46.55± 5.64 28.82± 1.29 24.64± 1.44 67.48± 1.04 58.3± 0.26 51.47± 0.13
RN-50 41.96± 8.74 24.34± 0.94 21.28± 0.75 66.25± 0.33 56.6± 0.52 46.31± 0.15

iMix[107] WRN-28-2 53.75± 2.58 37.06± 2.40 31.27± 0.27 76.26± 0.60 64.92± 0.18 57.95± 0.45
+ RN-18 46.25± 6.11 18.55± 1.81 14.51± 2.35 49.74± 1.20 42.90± 0.39 39.17± 0.26
N-pairs RN-50 38.14 ± 8.34 16.93 ± 1.73 13.72 ± 1.70 45.49 ± 1.04 39.41 ± 0.08 35.75 ± 0.26

(RN-18) and ResNet-50 (RN-50) [92] architectures. All the unsupervised

methods are trained using the recommended configuration. We report average

noise percentage and standard deviation for 3 different labeled subset Dl. We

confirm that the architecture has a key impact on the label noise percentage,

which agrees with previous observations on the quality benefits of unsuper-

vised features from larger architectures [97, 107]. We find that using diffusion

on features learned using the iMix algorithm promotes the lowest amount of

noise and adopt it together with a ResNet-50 in the subsequent experiments.

5.3.3 How accurately must noisy labels be detected?

We analyze the importance of the selected number of samples Nr over the

label noise percentage in the extended reliable subset Dr and semi-supervised
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Table 5.3: Sensitivity of semi-supervised methods to different amounts of
bootstrapped samples per class (Nr

c
) considering an initial 4 labeled samples

per class (Nl

c
= 4). We report label noise percentage in Dr and final error

rates after semi-supervised training.

CIFAR-10 CIFAR-100
Nr

C
Noise
(%)

SSL
error

Noise
(%)

SSL
error

25 0.40 12.12 25.48 51.90
50 0.60 9.18 30.20 51.43
75 1.07 8.76 33.51 50.65
100 1.30 8.79 35.69 51.14

Table 5.4: Learning from D̂ constructed from 4 labeled samples per class
on CIFAR-10 (Nl = 40) and CIFAR-100 (Nl = 400). We train a naive cross-
entropy objective (CE), Mixup (M), Dynamic Bootstrapping (DB), Early
Learning Regualrization (ELR). Error rates

CIFAR-10 CIFAR-100

CE 22.64 59.88
M [227] 21.27 57.92
DB [8] 14.84 55.07
ELR [119] 17.39 47.95

Ret. score + PL [9] 17.55 54.19
ReLaB + PL [9] 12.38 53.58
ReLaB + RMM [19] 6.68 43.53

performance (using RMM [19]). Table 5.3 shows how a balance has to

be found between a sufficient amount of bootstrapped samples and a low

noise ratio. Increasing the number of samples in Dr is beneficial up to 100

samples per class, where adding more does not compensate the higher noise

percentage. Based on this experiment and the typical amounts of labeled

samples needed to perform successful SSL [9, 17, 81, 190], we choose a

conservative Nr = 500 (4000) for CIFAR-10 (100) for further experiments.

Since D̂ is corrupted with label noise, it is reasonable to expect that su-

pervised alternatives on dealing with label noise [8, 227] could help combat

this label noise. Table 5.4 compares our proposed approach against train-
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Table 5.5: ReLaB for semi-supervised learning on CIFAR-10 and CIFAR-100
with very limited amounts of labeled data. Error rates. We mark with † the
methods we run ourselves. Other results are from [178] or [207]. We compare
against the π-model, mean-teachers (MT), pseudo-labeling (PL), MixMatch
(MM), Unsupervised Data Augmentation (UDA), ReMixMatch (RMM) and
Ensemble of Auto- Encoding Transformations (EnAET) Bold denotes best.

CIFAR-10
Labeled samples 10 40 100 250
π-model [157] - - - 54.26± 3.97
MT [190] - - - 32.32± 2.30
PL [9]† 55.61± 5.28 29.65± 5.71 12.83± 0.68 12.00± 0.32
MM [17] - 47.54± 11.50 - 11.05± 0.86
UDA [214] - 29.05± 5.93 - 8.82± 1.08
RMM [19]† 58.80± 1.98 31.36± 4.37 22.56± 2.58 7.80± 0.83
EnAET [207] - - 9.35 7.60± 0.34

ReLaB + PL† 29.89± 3.64 12.38± 0.78 11.38± 0.64 10.68± 0.66
ReLaB + RMM† 22.34 ± 4.92 8.23 ± 1.38 6.89 ± 0.18 6.71 ± 0.20

CIFAR-100
Labeled samples 100 400 1000 2500
π-model [157] - - - 57.25± 0.48
MT [190] - - - 53.91± 0.57
PL [9]† 88.23± 0.32 67.57± 0.58 55.20± 0.69 45.42± 0.68
MM [17] - 67.61± 1.32 - 39.94± 0.37
RMM [19]† 81.18± 2.36 57.44± 2.53 44.11± 1.51 36.66± 0.33
EnAET [207] - - 58.73 -
ReLaB + PL† 68.04± 2.52 53.58± 1.20 48.79± 0.82 43.84± 0.72
ReLaB + RMM† 62.02 ± 2.77 44.09 ± 0.51 39.58 ± 0.70 35.19 ± 0.74

ing on D̂ with standard cross-entropy (CE) and label noise robust methods

such as Mixup (M) [227], the Dynamic Bootstrapping (DB) loss correction

method [8] and the Early Regularization (ELR) strategy [119]. We also report

using the retrieval score (Ret. score) from the label propagation (max
c

Fic in

eq. 5.2) instead of ReLaB for selecting the trusted subset. In both CIFAR-10

and CIFAR-100, ReLaB + RMM outperforms supervised alternatives.

5.3.4 Semi-supervised learning with ReLaB

Table 5.5 presents the benefits of ReLaB for semi-supervised learning, show-

ing great improvements for both PL [9] and ReMixMatch (RMM) [19] when
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Table 5.6: Effect of ReLaB on mini-ImageNet with very limited amounts of
labeled data and Nr = 4000. Error rates.

Labeled samples 100 400 1000 2500

PL [9] 90.89± 0.62 85.00± 0.94 75.47± 0.52 55.10± 1.52
ReLaB + PL 76.25 ± 0.80 66.66 ± 0.54 60.82 ± 1.04 52.39 ± 1.03

paired with ReLaB. Our focus is on very low levels of labeled samples as

semi-supervised methods [19] already achieve very good performance with

larger numbers. We further study the 1 sample per class scenario in Sec-

tion 5.3.5. Table 5.6 demonstrates the scalability of our approach to higher

resolution images by evaluating ReLaB + PL [9] on mini-ImageNet [202].

Due to GPU memory constrains, we use ResNet-18 instead of ResNet-50 to

train iMix with an acceptable batch size for the mini-ImageNet experiments.

5.3.5 Very low levels of labeled samples

The high standard deviation using 1 sample per class (Nl = 10) in CIFAR-10

(Table 5.5) motivates the proposal of a more reasonable method to compare

against other approaches. To this end, Sohn et al. [178] proposed 8 different

labeled subsets for 1 sample per class in CIFAR-10, ordered from more rep-

resentative to less representative, we reduce the experiments to 3 subsets: the

most representative, the least representative, and one in the middle. Figure 5.2

shows the selected subsets; the exact sample ids are available together with

our code for easy reproduction.

Table 5.7 reports the performance for each subset and compares against

FixMatch [178] and ReMixMatch [19]. Note that the results obtained for

the less representative samples reflect the results that can be expected on

average when drawing labeled samples randomly. In the case of the not
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Figure 5.2: Labeled samples used for the 1 sample per class study on CIFAR-
10 and taken from [178], ordered from top to bottom from most representative
to least representative.

Table 5.7: Error rates for 1 sample per class on CIFAR-10 with different
labeled sets. We run all the methods ourselves except for FixMatch [178].
Key: MR (Most Representative), LR (Less Representative), NR (Not Repre-
sentative).

MR LR NR

ReMixMatch [19] 50.62 62.57 90.00
FixMatch [178] 22.00 35.00 90.00

ReLaB + PL 19.86 32.38 79.9
ReLaB + RMM 8.46 21.75 78.25

representative subset, ReLaB enables the semi-supervised learning algorithms

to converge better than a random guess. We find that for CIFAR-100 and mini-

ImageNet, runs across different initial labeled samples are more consistent

and a comparison to other methods can be made even when drawing the

labeled samples at random.

5.3.6 Ablation study over the importance of data augmen-
tation for a clean subset selection

We perform an ablation study on the importance of data augmentation for

selecting a reliable subset. Table 5.8 reports the noise ratio for the bottom

20% of the samples with the lowest average loss over the last 30 epochs.
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Table 5.8: Influence of data augmentation (DA) on the noise ratio for the 20%
lower loss samples at the end of the training. We report results for CIFAR-10
and CIFAR-100 with 400 and 4000 labeled samples respectively. Lower is
better

Dataset CIFAR-10 CIFAR-100
# labeled samples 40 400

No DA 2.76 19.11
Weak DA 2.66 19.93
Weak DA + Color Jitter 2.07 20.26
Weak DA + Mixup [227] 2.66 20.13

We train with a WideResNet-28-2 from scratch for 60 epochs with a fixed

learning rate of 0.1 to avoid fitting the noise. Weak data augmentations (DA)

denotes vertical and horizontal random flipping as well as random cropping.

All experiments are run on the same noisy set D̂, obtained from propagating

4 samples per class for CIFAR-10 and CIFAR-100. We find that noise ratios

obtained are very stable independently of the augmentation strategy so we

choose to not augment the samples during the clean subset selection.

5.3.7 ReMixMatch training

We report in Table 5.9 the error rates for ReMixMatch, with and without

our proposed ReLaB method, when training for 256 epochs instead of the

original 1024 [19]. Although longer training is always beneficial, we observe

convergence to a reasonable performance in 256 epochs. We adopt the 256

configuration as it substantially reduces training time.

5.3.8 Ablation study for pseudo-labeling

We study the effect on the pseudo-labeling algorithm in [9] when using an

unsupervised initialization with RotNet [61] and freezing all the layers up
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Table 5.9: Error rate of short and long training of the RMM algorithm [19].
We report mean and standard deviation over 3 runs.

Dataset CIFAR-10 CIFAR-10 CIFAR-100
# labeled samples 250 40 400

ReLaB No Yes Yes
RMM - 256 7.8± 0.83 10.04± 4.58 48.59± 0.7
RMM - 1024 6.24± 0.34 9.04± 4.37 47.24± 0.68

Table 5.10: Ablation study on the error rate of pseudo-labeling (PL) algorithm
in [9] combined with ReLaB when using unsupervised initialization and layer
freezing (LF).

Dataset CIFAR-10 CIFAR-100
# labeled samples 40 400

ReLaB + PL [9] 22.12 58.17
ReLaB + PL (RotNet [61]) 15.72 59.04
ReLaB + PL (RotNet [61] + LF) 14.21 57.09

to the last convolutional block to avoid fitting label noise of the reliable

extended set Dr. Unsupervised initialization and early layers freezing is also

adopted in [158] to improve pseudo-labeling. We show in Table 5.10 that

both strategies contribute to better pseudo-labeling performance.

5.3.9 Visualization of the bootstrapped samples

Figure 5.3 displays the capacity of our reliable sample selection to select

an extended clean subset for the semi-supervised algorithm. The first row

displays the (initial) seed samples; the middle row display a random subset of

the samples labeled using label propagation on unsupervised features; the last

row displays the reliable samples we select to extend the label set. Images

with a red border have a noisy label. The label noise is reduced in the reliable

extended set. The figure is best viewed on a computer.
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Labeled set Dl Extended set D Reliable extended set Dr ~

Figure 5.3: Qualitative example of label propagation and reliable sample
selection in CIFAR-10 with four seed samples per class. Best viewed on a
computer.

5.4 Conclusion

This chapter aims to answer research question three: “Can unsupervised fea-

tures be used as a medium to propagate labels in a semi-supervised scenario

when few labels are available?”. The algorithm proposed in this chapter

leverages methods from different vision tasks (image retrieval, unsupervised

feature learning, label noise for image classification) to propose a bootstrap-

ping of additional labeled samples using unsupervised features, which can

in turn be used to enhance any semi-supervised learning algorithm. We

demonstrate the direct impact of better unsupervised features for the perfor-

mance of ReLaB and the relevance of our reliable sample selection. Using

the extended amount of supervision of ReLaB’s reliable set, we enable semi-

supervised algorithms to reach remarkable and stable accuracies with very

few labeled samples on standard datasets. The extremely low levels of labeled

samples we consider in this chapter (< 25 per class) addresses a gap in the

semi-supervised literature, which otherwise perform on par with supervised

learning for moderate levels of labeled samples (> 25 per class), see Table 5.5.

Direct applications of ReLaB would include scenarios where the annotation

of images is very time consuming or requiring expert annotators. In the case
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of this thesis, an application of interest for semi-supervised learning is to

estimate the biomass composition of herbage from images which is a regres-

sion task. Chapter 6 will introduce the grass biomass prediction problem and

propose a specially designed semi-supervised solution and Chapter 7 will

study if existing semi-supervised solutions for image classification can be

translated to this specialist regression task where ground-truth acquisition is

destructive.
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Chapter 6

Semi-supervised dry herbage mass
estimation from noisy automatic
labels and synthetic images

This chapter presents a semi-supervised approach to predict herbage charac-

teristics from images. The solution proposed is not directly inspired from the

semi-supervised literature for image classification but is very specific to the

problem of predicting grass composition from canopy views. The chapter

will detail how unlabeled images were used together with few labeled images

to train a semi-supervised solution that improves the prediction accuracy

over using the few labeled samples alone. Section 6.1 motivates the need for

biomass composition estimation in grasslands, why computer vision holds

great potential for a quick visual composition estimation and exposes the re-

search contributions of the chapter. Section 6.2 presents a detailed description

of the proposed algorithm. Section 6.3 contains implementation details, an ab-

lation study, andcomparison with the state-of-the-art. Section 6.4 concludes

the research carried out in the chapter. The research that emanated from
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Regression CNN

Dry herbage mass
650.4 kg DM/ha

Dry biomass 
percentage

75.65 % grass
18.83 % clover
5.52 % weeds

Figure 6.1: Overview of the dry herbage mass prediction task

this work was published at the 7th workshop on Computer Vision in Plant

Phenotyping and Agriculture (CVPPA) workshop at the 2021 IEEE/CVF

International Conference on Computer Vision (ICCV).

6.1 Motivations

Nitrogen fertilization has proven to be efficient in enhancing grass quantity

and quality, yet over-fertilization has detrimental effects on biodiversity and

on the environment in general [6, 91, 134]. In this context, clover proves to be

an important ally to the farmer for two reasons. First, clover naturally captures

widely available nitrogen from the atmosphere and renders it available in

the soil for the grass to use [177, 142]. Second, having proper amounts of

clover in the feed has been shown to increase cow appetite, which in turn

translates to higher milk production [132, 53]. Monitoring clover content in

the herbage then becomes an important aspect of milk production and regular

herbage biomass probing is performed by humans to ensure a proper grass to

clover balance. The herbage probing process involves cutting a sample from

the field, drying it in lab before manually separating each component of the

herbage by hand [53] making it a long and expensive process.
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Species phenotyping proposes a direct application of computer vision

where a canopy view of the objects is passed to an algorithm tasked with a

computer vision problem. Some examples of these tasks include semantic

segmentation [174, 71, 129], object counting [95, 12], classification [42, 62,

130], object detection [89, 164] and regression [132, 135]. The principal

limitation when applying deep learning approaches to species phenotyping

remains the large amount of annotated data required. Lower supervision

alternatives using semi-supervised or unsupervised approaches can lower

the annotation burden and enable a stronger convergence than using a small

number of annotated images alone. In the case of grass/clover biomass

estimation this is even more important, as the annotation process is destructive.

To accurately measure biomass the region of interest has to be cut, separated,

and weighed in a laboratory whereas the collection of un-annotated images is

fast and simple.

In this chapter, we use a large collection of unlabeled images together

with a small annotated subset to improve the accuracy of a dry herbage mass

predicting convolutional neural network (CNN, see Figure 6.1). We first learn

a weakly-supervised semantic segmentation network on synthetic images to

estimate the species density in the herbage. We then use the segmentation

masks to generate automatic biomass labels for the unlabeled images using a

simple regression algorithm. Finally, we train a convolutional neural network

on a mix of the automatically labeled data and a small number of manually la-

beled examples to improve the regression accuracy over training on the small

number of manually labeled examples alone. We construct our algorithm on

an Irish dry herbage mass dataset [75] and validate our results on a publicly

available dry biomass dataset [174] collected in Denmark.
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6.2 Biomass prediction in grass-clover pastures

This section introduces the semi-supervised learning problem of dry biomass

estimation of grass-clover pastures, the datasets used, the synthetic image

generation process, the automatic labelling pipeline, and our automatic label

robust biomass regression algorithm.

6.2.1 Semi-supervised biomass estimation in grass-clover
pastures

We consider here a semi-supervised regression problem with XL = {xi}Li=1

labeled canopy images of grass and clover, and their corresponding label

assignment Y = {yi}Li=1, Y ∈ RS where S is the number of species to

predict in the herbage. The small labeled set is complemented by a large

set of unlabeled images XU = {xi}Di=1 with no corresponding labels and

|XU | ≫ |XL|. We note the complete dataset used to train the network

X = XL ∪ XU . This chapter aims to solve the dry biomass prediction

problem from images using a convolutional neural network Φ : X → Y

using unlabeled images to the improve the regression accuracy.

6.2.2 Grass clover dry biomass datasets

We consider two different dry biomass prediction datasets, both centered

around grass and clover biomass prediction. The first one is the publicly avail-

able GrassClover dataset [175]. This dataset is composed of 157 annotated

images (to be divided between training set and validation set) and 31.600

unlabeled images. The image acquisition was carried out in Danish fields

between 2017 and 2018 using for the most part an ATV mounted camera. The
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ground-truth collected is composed of the dry biomass percentages for the

grass, white clover, red clover, total clover and weeds. The second dataset is

the Irish clover dataset [75], which is composed of 424 training images, 104

held out test images, and 594 unlabeled images. The images were captured

in the south of Ireland in the Summer of 2020 using a camera mounted on

a tripod. The ground-truth collected is composed of the dry biomass per-

centages for grass, total clover and weeds (%), the herbage height (cm), and

the herbage dry matter per ha (kg DM/ha). The Irish dataset additionally

proposes images captured using handheld phone devices where some quadrat

captured using the high resolution camera are also captured using a phone.

Each image in the validation set is available in either camera or phone format.

295 unlabeled phone images are also supplied.

6.2.3 Herbage height aware semantic segmentation on syn-
thetic images

The task we aim to solve in this section is to first predict a semantic seg-

mentation of the herbage into grass, clover (possibly red-white), and weeds;

and second, a herbage height map. Since human annotation of ground truth

for semantic segmentation can take up to several hours per image [118] and

since a pixel specific herbage height is difficult to estimate in practice, we

propose (similar to [174]) to train our semantic segmentation network Ψ

on a synthetically generated dataset X̃ . We generate the synthetic seman-

tic segmentation images together with their 100% pixel-accurate synthetic

segmentation ground truth using manually cropped out elements from the

unlabeled images. In accordance to the low supervision scope of this chapter,

we only crop out 78 samples (see Figure 6.2) and collect 8 bare soil images
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Clover flower
11 samples

Clover leaf 
21 samples

Grass
26 samples

Weeds
14 samples

Dry grass
6 samples

Figure 6.2: Cropped out samples for every species

to paste elements onto. The bare soil images are collected at the same site

and using the same equipment as Hennessey et al. [75] during the Summer of

2021.

To produce images similar to the real images we aim to make predictions

for, we respect the species ratio in images by enforcing the probability of a

species to be pasted according to the observed average dry biomass distribu-

tion in the training dataset: 90% grass, 7% clover, 3% weeds. We draw the

probability of each species to be pasted from a 3 component Dirichlet distri-

bution with parameters (9, 2, 1) for (grass, clover, weeds). Once the species

has been decided, we randomly draw a sample for this category and apply a

series of transformation to increase the diversity of the synthetic images. The

transformations include: (uniform) random rotation (±180◦), random Gaus-

sian blur (radius ∈ [0, 5]), random brightness change [0.6, 1], and random

resizing (50−150%). Finally, we select a random center location to paste the

sample on the background images as well as a mask of the sample’s label on

the ground truth map. We additionally approximate the herbage height in the

synthetic images as the sum of the total number of successive elements pasted

on a pixel. In the rest of the chapter, this approximation made on synthetic

images will be referred to as herbage height. For example, if three samples

109
Research published in the Computer Vision for Plant Phenotyping and

Agriculture Workshop (CVPPA) at ICCV 2021



CHAPTER 6: SEMI-SUPERVISED BIOMASS
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Figure 6.3: Automatic labeling from semantic segmentation

have been pasted at the same pixel (clover on top of grass on top of clover),

we define the un-normalized herbage height as 3 for the given pixel. Once the

synthetic dataset has been fully generated, we compute the 75th percentile

of the herbage height for every pixel in all generated images (allowing us to

filter outliers) and use this value to clip overly high herbage height numbers

and produce a normalized herbage height between 0 and 1 for every pixel in

every synthetic image. The normalized herbage height becomes the ground

truth target for the segmentation network. Additionally, we found that the

quality of the segmentation learnt by Ψ is best when the number of elements

to paste is in [400, 800] per image (randomly varied across images); beyond

this the synthetic images become overly cluttered. Images are generated at

a 2000× 2000 resolution. The RGB images are stored in the JPEG format,

the grayscale ground truth maps are stored as PNG images, and the herbage

height matrix is stored as a compressed numpy array. Figure 6.3 illustrates

the automatic labeling pipeline.
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Figure 6.4: Herbage height aware semantic segmentation on synthetic images

6.2.4 Generating synthetic images suitable for herbage mass
estimation

To concurrently solve the tasks of semantically segmenting the herbage im-

ages and estimating the herbage height for every pixel in the images, we

propose a herbage height aware semantic segmentation network Ψ consist-

ing of a single feature extractor coupled with two decoder branches (see

Figure 6.4). We concurrently train the species segmentation branch using a

pixel-level cross-entropy loss:

lspecies = −
C∑
i=1

ŷi log(si),

where S = {si}Cc=1 is the softmaxed prediction of the network and Ŷ =

{ŷ}Ci=1 are the synthetic segmentation labels. The herbage height branch is

trained using a root mean square error (RMSE) loss:

lheight =

√√√√ 1

P

P∑
p=1

(
ĥ− h

)2
,

where P is the total amount of pixels in the images, h is the ground truth

synthetic height label, and ĥ is the network prediction (sigmoid). The total
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training loss of the segmentation network Ψ is l = lspecices + lheight.

6.2.5 Automatic label prediction from species density esti-
mations

The herbage height aware semantic segmentation network Ψ allows us to

reduce the complexity of the biomass prediction problem by simplifying

the input domain from high resolution real RGB images to the surface area

occupied by each species in the canopy as well as an estimated herbage height

map. From there, we compute the relative area occupied by each species

in the canopy (in %) and the predicted herbage height over each image and

train a simple ridge regression algorithm using the small number of labels,

Y , to predict approximate labels for XU . This intermediate task allows us to

generate accurate automatic labels for XU even if the number of images in

XL is very limited.

6.2.6 Regression on automatic labels with a trusted subset

Although the biomass information can be directly predicted using the au-

tomatic annotation process (as done in Skovsen et al. [174]), we propose

to attempt to decrease the regression error further by solving the regression

problem directly from the RGB images using a convolutional neural network,

Φ, and both human-labeled and automatically labeled image datasets: XL

coupled with ground truth labels Y (the trusted set) and XU coupled with

approximate labels Ŷ (the automatically labeled set). Φ is trained to predict

the biomass composition (%) and the dry herbage mass (kg DM/ha) from

RGB images directly; the automatic images are only used in Ψ to help predict
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the automatic labels Ŷ for unlabeled images in XU . To ensure that Φ will not

over-fit to incorrect approximate labels, we use three mechanisms. First, we

over-sample the trusted data to ensure that a fixed percentage will always be

presented to the network in every mini-batch (3
4

approximate labels, 1
4

trusted

labels). Second, we use a label perturbation strategy where we randomly

perturb the automatic labels to avoid over-fitting incorrect targets, and to

avoid penalizing the network for making a prediction slightly different than

the incorrect prediction. In practice, we randomly perturb the label in the

interval of ± two times the observed RMSE of the automatic labels on the

validation set. Finally, we find that adding vertical flipping and randomly

grayscaling to the input images to be interesting augmentations that preserve

the full herbage information of the image and help further decrease validation

error.

6.3 Experiments

6.3.1 Training details

We use two different neural networks to solve two distinct tasks. For the

semantic segmentation network Ψ, we use a state-of-the-art architecture:

DeepLabV3+ [28] where we duplicate the decoder to create the herbage

height branch. Ψ is trained on 800 synthetic images and uses 200 synthetic

images for validation. We use a ResNet34 [92] as the feature extractor,

initialized on ImageNet [100], and with an output stride of 16 for both

training and testing. We use the “poly” lr schedule [28] starting at 0.007, a

batch size of 4, and train for 60 epochs. For the base data augmentation we
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resize images to 1024 on the short size, randomly crop a 1024× 1024 square,

randomly flip horizontally, and normalize the images.

For the regression network Φ, we use a ResNet18 network [221] pre-

trained on ImageNet to solve the regression problem from RGB images

directly. We train for 100 epochs, starting with a learning rate of 0.03 divid-

ing it by 2 at epochs 50 and 80. We use the same base data augmentation

as for Ψ but with a resolution lowered to 512 × 512. For the strong(er)

data augmentation, we add random vertical flipping and random grayscaling

(p = 0.2). We train with a batch size of 12.

We use the Irish dataset [75] in its low supervision configuration (52

images are used for training, 104 for validation and 372 for testing) for our

exploratory studies, and generate 1000 synthetic images to train Ψ according

to the process described in Section 6.2.4. We validate our results on the

GrassClover dataset [174] and use the full 152 fully annotated biomass

images, dividing them into 100 for training and 52 for validation; we use

the 174 images withheld for the CodaLab 1 for testing. We make use of 800

randomly selected synthetic images out of the 8000 generated by the authors

for Ψ, keeping 200 extra images for validation. We do not train the herbage

height branch on the GrassClover dataset.

To evaluate the performance of the algorithms, we report the RMSE when

predicting the dry biomass species percentage for both the Irish and Grass-

Clover datasets. For the Irish dataset, we additionally report the RMSE of

the global herbage mass prediction (HRMSE, kg DM/ha), the herbage rela-

tive absolute error lrelative =
1
N

∑N
i=1

|yi−ŷi|
yi

(HRAE, in %) and the HRMSE

specific to each species (kg DM/ha).

1https://competitions.codalab.org/competitions/21122
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Table 6.1: Importance of data augmentation and batch normalization tuning
when training on synthetic images.

HRMSE RMSE

Total Grass Clover Weeds Avg. HRAE Grass Clover Weeds Avg.

Simple DA 357.35 328.66 55.74 26.75 137.05 35.26 8.11 6.87 3.22 6.07
+ ColorJitter 319.92 289.32 60.81 31.40 127.18 35.46 8.63 7.68 3.55 6.62
+ BN tuning 284.60 258.34 51.92 27.05 112.44 31.79 6.49 4.94 3.24 4.89

6.3.2 Semantic segmentation on synthetic images

To encourage Ψ to learn robust features that will generalize to unseen real

images, we augment the synthetic images using color jittering and Gaussian

blur. Furthermore, once the network has converged on the synthetic dataset

and before predicting on the real images, we perform batch normalization

tuning which is a common domain adaptation strategy [117] on the real

images. An ablation study on the importance of the data augmentation and

batch normalization tuning is given in Table 6.1, where we use the best

performing regression algorithm from 6.3.3.

6.3.3 Regression from species coverage

We compare different sets of simple features to extract from the segmentation

masks as well as the importance of the herbage height prediction when

estimating the dry herbage mass. For features directly related to the dry

biomass percentages, we compare averaging the most confident prediction

for every pixel only (hard label, HL), averaging the full softmax prediction at

each pixel (soft label, SL), or using the two sets of features jointly (HL+SL).

In the regression model each feature is the average of the observations over

the whole image: 4 features (soil %, grass %, clover %, weeds %) for HL or

SL (8 for HL+SL), and 1 feature for the herbage height.
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Table 6.2: Ablation study for predicting approximate labels. We report the
biomass prediction errors on a heldout validation set. HL: hard labels, SL:
soft labels, H: herbage height

HRMSE RMSE

Total Grass Clover Weeds Avg. HRAE Grass Clover Weeds Avg.

HL 351.54 332.88 51.34 28.29 137.50 41.61 6.82 6.20 3.25 5.42
SL 310.68 279.98 57.48 28.15 121.87 34.18 7.61 5.20 3.24 5.35
HL + SL 315.20 288.52 53.37 28.11 123.33 34.33 6.49 4.91 3.23 4.88
HL + SL + H 284.60 258.34 51.92 27.05 112.44 31.79 6.49 4.94 3.24 4.89

We fit a least squares L2 regularized (ridge) regression algorithm to all

features with a regularization factor of 1, and train on the small subset of

annotated images before evaluating on the validation set (Table 6.2). First,

we report the RMSE error of the total herbage mass error (kg DM/ha), as

well as the detailed grass/clover/weed herbage mass estimation (kg DM/ha).

Second, we report the relative RMSE for the total herbage mass (%) and the

RMSE for the relative dry biomass estimation (%) for the grass/clover/weeds.

We notice that using SL is better than HL when predicting the herbage mass,

demonstrating the interest of capturing the full softmax information over

the max prediction only. We believe that the information contained in the

soft label carries predictive information as to what the network expect to be

present in the pixel hidden under the grass canopy where adjacent elements

that become hidden under the current pixel are recognised. The information

carried by SL is complementary to HL and we observe good improvements

in terms of dry biomass percentage RMSE when the two sets of features are

coupled. When adding the information about the herbage height, a decrease

in HRMSE error is observed, validating the importance of the herbage height

module in the segmentation architecture.
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6.3.4 Biomass prediction using automatic labels and a trusted
subset

We use the automatic labels to enhance the generalization of the regression

CNN Φ in order to improve over the linear regression from the predictions

of Ψ, especially in terms of herbage mass prediction. Table 6.3 reports the

ablation study showing how the additional mechanisms we introduce allow

us to be robust to the approximate automatic regression labels. The reported

metrics are described in Section 6.3.1. We also compare the performance of

the regression network against the linear regression from the prediction of Ψ.

6.3.5 Where are errors made?

We propose to study the type of compositions that are the hardest to predict

for our algorithm. To do so, we plot predicted error rates against ground-

truth values for herbage mass prediction and composition error in Figure 6.5.

We plot the average biomass composition RMSE and the HRAE against

the dry herbage mass ground-truth on the validation set and display image

examples where the biggest errors are made. We observe that the highest

errors are predicted on samples with low quantities of herbage in them (500kg

DM/ha and less). Future data collection should focus on adding more training

examples for this difficult category of images.

6.3.6 Transferability to phone images

We aim to test how well the knowledge learned by our algorithm transfers to

a handheld phone images whose means of capture are much less normalized

than high resolution camera images mounted on tripods. We study in Ta-
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Predicted herbage mass: 513.34 kg DM/ha

Figure 6.5: Error rates vs herbage quantity

ble 6.4 multiple scenario including: using the linear regression from semantic

segmentation (LR); training Φ on labeled camera images only (trusted, T);

training Φ on both trusted and automatically labeled camera images (T+A).

We training Φ, we use the camera validation set for early stopping and test on

the phone validation set. We observe that adding the automatically labeled

data is important to reduce the error rate on the phone images. Although the

error rates increase when moving from camera to phone images, Φ general-

izes well to the phone data when automatically labeled images are introduced.

We attempted to add unlabeled phone images when training Φ by automati-

cally labeling them using Ψ and the linear regression but observe bad results

because the automatic annotation regression fails to generalize well to phone
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Table 6.3: Ablation study on training with approximate labels. We report
results on the validation set using the linear regression baseline LR or training
on the trusted data only T, the automatic data only A, or combinations of
both T+A

HRMSE RMSE

Total Grass Clover Weeds HRAE Grass Clover Weeds Avg.

LR 284.60 258.34 51.92 27.05 31.79 6.49 4.94 3.24 4.89
T 249.48 253.63 45.62 32.67 21.67 6.28 5.07 3.94 5.10
A 258.00 239.81 46.51 27.74 23.48 5.72 5.20 3.29 4.74
T + A 245.04 233.34 34.94 26.32 21.60 4.70 4.45 3.17 4.11
+ random GS 234.25 217.55 37.57 27.72 21.55 4.66 4.47 3.27 4.13
+ trusted oversampling 232.08 220.09 35.93 26.34 21.36 4.33 4.17 3.15 3.88
+ random perturbation 229.93 216.23 35.79 26.05 19.96 4.22 4.21 3.10 3.84

data (first row in Table 6.4). This is mostly due to the segmentation algorithm

Ψ failing, possibly because the phone images are blurrier.

6.3.7 Comparison against other works on the GrassClover
dataset

We compare the improvements of our approach on the publicly released

GrassClover dataset [174]. The target metrics for this dataset are limited to

the dry biomass percentages, for which we report RMSE errors. Table 6.5

reports the performance of our algorithm with and without automatic labels

on the test set available on the CodaLab challenge 2 and compares against the

best available results. We report a lower RMSE on average than the methods

we compare against and show that our algorithm is capable of using unlabeled

images to reduce the biomass estimation error for every species over training

on the small trusted subset alone.
2https://competitions.codalab.org/competitions/21122
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Table 6.4: Generalization to phone images

HRMSE RMSE

Total Grass Clover Weeds HRAE Grass Clover Weeds Avg.

LR 370.50 348.71 93.04 36.39 0.31 12.01 10.21 4.31 8.84
T 368.76 366.75 59.42 33.45 0.41 10.75 8.80 4.15 8.37
T+A 280.51 268.66 45.22 34.51 0.32 6.59 5.75 3.45 5.26

Table 6.5: Results on the GrassClover test set (RMSE).

Clover

Grass Total White Red Weeds Avg.

Skovsen et al. [174] 9.05 9.91 9.51 6.68 6.50 8.33
Naranayan et al. [135] 8.64 8.73 8.16 10.11 6.95 8.52

Trusted data 10.28 10.32 9.24 9.54 7.37 9.35
+ Automatic data 8.78 8.35 7.72 7.35 7.17 7.87

6.4 Conclusion

This chapter aims to provide answers to research question four: “Can semi-

supervised and unsupervised strategies be devised on specialist, fine-grained

datasets such as grass density and composition estimation?. We specifically

proposed a low supervision baseline for dry grass clover biomass prediction

that makes use of unlabeled images. To do so, we first trained a herbage

height aware semantic segmentation network on synthetic images that we

then used to generate automatic labels for the unlabeled data using a small

set of labeled images. We then trained a regression CNN on RGB images

directly using the automatic labels to improve the accuracy over using the

trusted data alone. This means that although expensive semantic segmentation

has to be performed to generate labels for the unlabeled images, it is not

required at inference time. We demonstrated the importance of our herbage

height aware segmentation network when predicting dry herbage masses from

canopy view images as well as the noise robust mechanisms we use to train
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on automatically labeled data. We improved over our baseline on the Irish

dry herbage biomass dataset and set a new state-of-the-art performance level

on the publicly available GrassClover dataset.

In practice, the algorithm could be deployed on phones with farmers

taking pictures of the fields as they walk their farm. Deploying the grass com-

position prediction model on phone devices would provide a non destructive

tool to quickly estimate the clover composition of grass and take appropriate

fertilization steps if necessary. We found in this chapter that our proposed

grass composition prediction model manages to generate to phone images at

the cost of a slight increase in prediction error. Future solutions should look

into using the available unlabeled phone data to improve the generalization

capabilities.

For future work, unmanned image capture means such as drones could

be used to save farmers time by limiting the amount of time spent walking

the farm. Although drone images offer a definite advantage because of the

large areas covered in each image, large areas also mean that evaluating

ground-truth will become increasingly more complicated as large grass areas

will have to be cut down and manually separated to acquire the biomass

information. This paradigm means that low supervision approaches will

become mandatory to move to image acquisition using drones. Chapter 7

will explore this possibility.
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Semi-supervised domain
adaptation from camera to drone
images for dry herbage biomass
estimation

This chapter presents a semi-supervised approach to predict herbage char-

acteristics from drone images. The chapter will detail how an unpaired

GAN was used to substantially improve the resolution and quality of drone

images. The improved drone images are then used together with labeled

high-resolution images captured on the ground to train a semi-supervised

algorithm that generalizes to drone images without the need for additional

annotations. Section 7.1 motivates the benefits and challenges of using drones

to predict herbage characteristics. Section 7.2 presents a detailed description

of proposed super-resolution and semi-supervised regression approaches.

Section 7.3 contains an ablation study, comparisons against the state-of-the-

art and the work proposed in Chapter 6. Section 7.4 concludes the research

carried out in the chapter with a discussion on future work. The research that
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emanated from this work was published at the AgricultureVision workshop

at the 2022 IEEE/CVF Computer Vision and Pattern Recognition Conference

(CVPR).

7.1 Motivations

Knowing the herbage composition and dry mass is valuable for the farmer

but because existing probing processes are destructive and time consuming

it is never evaluated at the farm level. In this context, deep learning has

the capacity to provide a simpler, non-destructive alternative to dry herbage

phenotyping and mass estimation from images alone. The feasibility of

the method has been shown in Chapter 6 where the algorithm presented

proposed to apply deep learning algorithms to ground-level images using

handheld devices and tripods [75] or all terrain vehicles (ATV) [175]. In this

chapter, we propose to extend the dry biomass and herbage mass estimation

problem to drone images, which are more suitable for covering large herbage

fields. Because drones operate at higher altitudes, large land areas that can

span from tens to hundreds of square meters depending on the altitude are

captured in every drone image, rendering the fine ground-truthing of data

very challenging. To mitigate this issue, we propose to transfer knowledge

learned from few high-resolution ground-level images to drone images in

an unsupervised manner. To do so, we apply an unpaired domain transfer

algorithm [148] to the drone images to enhance their resolution to 2048×2048

and to reduce the visual domain gap with the ground-level images (see

Figure 7.1). We then train a semi-supervised neural network for regression

on a small number of labeled ground-level images together with unlabeled
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8 fold 
upsampling, 
deblurring 
and visual 
domain
transfer

Figure 7.1: Up-sampling drone images by a factor of 8. Images at the top are
64× 64 crops from drone images. Images at the bottom are up-sampled to
512 × 512, deblurred and transferred to the ground-level visual domain in
an unpaired fashion. We use the transformed images in a semi-supervised
regression objective.

drone images to effectively transfer knowledge between the two domains. To

evaluate the quality of our regression algorithm, we test it on a small data set

of ground-truthed drone images collected in Ireland and evaluate the benefit

the large quantities of unlabeled images drone imagery provides to improve

the ground-level predictions.

7.2 Unsupervised domain adaptation and super
resolution on drone images

We aim to solve the biomass prediction task jointly from a small set of ground-

level images Xl with biomass labels Yl (ground-level images) together with a

large set of unlabeled (raw) images Xu from a different visual domain (drone

images) in an unsupervised fashion. To do so, we use two neural networks: Ω
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performing super resolution and visual shift from the domain of Xu to Xl and

Φ, a regression network we use to learn jointly from Xl and Xu by optimizing

a semi-supervised objective. Contrary to the semi-supervised algorithm of

Chapter 6 the goal here is to devise a simpler approach were the automatic

labels are guessed using the same network as the one used to estimate the

biomass composition and mass Φ.

7.2.1 Drone images for the Irish dataset

We propose in this chapter an extension of the Irish dataset presented in

section 6.2.2. We collect drone images in the same 23 herbage paddocks

originally studied in Ireland in late Autumn of 2021. We collect between 36

and 7 drone images per paddock at an altitude between 6 and 12 meters. The

drone we use is the DJI Mavic 2 Pro 1 with its default camera, taking pictures

at a resolution of 5472×3648. Although our drone is not capable of capturing

its altitude relative to the land below, we subtract the above sea level GPS

altitude of the drone from the land altitude at the associated GPS coordinates

to obtain an approximate relative altitude using an open source API 2. We

obtain 328 drone images in total with their associated altitude. Because of the

huge areas covered by drone images, the ground-truth we collect is limited to

the dry herbage mass at the paddock level and we omit the grass height and

biomass percentage information. The resulting 80 labeled drone images are

only used as a means to test the knowledge transfer from the ground-level

to the drone images and not used for training. We propose two ground-truth

estimations for the drone images: the first is a visual estimation performed on

1https://www.dji.com/ie/mavic-2
2opentopodata.org
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site at the time of the image collection by two human experts, very familiar

with the site and that visually estimate the herbage on site every week. The

second is obtained following the protocol of Egan et al. [53]: we cut two

1.2× 8 meters strips in the paddocks 4 cm above ground level (typical cow

grazing height) using an Etesia lawn mower (Etesia UK. Ltd., Warwick, UK).

A 100 grams sample is collected from the cut material and dried at 95°C for

16 hours to obtain the dry herbage mass. We compare our algorithm against

the human estimation and the exact ground-truth.

7.2.2 Contrastive Unpaired Translation (CUT)

The first step of our algorithm is to increase the resolution of drone images

and to modify them to appear visually closer to the few ground-truthed

images captured using high resolution cameras on the ground. To do so,

we use Contrastive Unpaired Translation (CUT) [148] that we train from

scratch on ground-level and drone grass images. CUT trains an adversarial

network (GAN) to perform unpaired image style transfer using three principal

components. G is the generator part of the network, competing to fool D the

discriminator in an alternative adversarial optimization and F the projection

head is used to optimize the contrastive part of the algorithm, which promotes

semantic similarities between the same image before and after the visual

transformation. CUT minimizes a combination of three losses to learn the

parameters for G, D, and F . First the adversarial loss [64]

Ladv(G,D,Xl,Xu) = Exl∼Xl
logD(xl)

+ Exu∼Xu(1− logD(G(xu))),

(7.1)
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promotes the generator G to transform images from Xu (the drone images)

so that they become indistinguishable by the discriminator D from the high

resolution ground-level images in Xl. Second, once the image has been

transformed by the generator, a patch contrastive regularization objective

is applied where patches at the same location in the image before and after

the transformation are encouraged to have similar features after projection

through F while being dissimilar to any other random patch from the image.

This results in a constrastive patch objective

Lpatch(G,F,X) = − 1

P

P∑
i=1

log

(
exp (ip(pi, p′i)/τ)∑P
k=1 exp (ip(pk, p

′
i)/τ)

)
, (7.2)

where P = 64 random patches are cropped out from the input image, their

feature representations encoded through G (stopping half way), projected

through F and L2 normalized. The process is repeated for the transformed

version of the image to form P pairs of random patches {(pi, p′i)}Pi=1 for a

given image x ∈ Xu where pi is the representation before the domain shift and

p′i after. The dot product between the representations of corresponding pairs

is encouraged to be close to one and close to zero for different patches. Lpatch

can also be applied to images in Xl to enforce that G will perform the identity

operation, i.e. ∀x ∈ Xl, G(x) = x. τ = 0.07 is the contrastive temperature

parameter. The final objective minimized by CUT where λ1 = λ2 = 0.5 is

L = Ladv(G,D,Xl,Xu)

+ λ1Lpatch(G,F,Xu) + λ2Lpatch(G,F,Xl).

(7.3)
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7.2.3 CUT for super resolution and style transfer

Cropping the drone images. We propose to crop squared areas from

the drone images to obtain similar amounts of elements per image as ground

level images. Because the drone images were not all captured at the same

altitude, we adjust the area cropped out from the drone images depending on

the altitude at which the image was captured. We observe visually that at an

altitude of 8 meters, a 256× 256 pixel crop of the drone data yields similar

numbers of grass elements and of similar size to the ground-level images.

Given the altitude of the drone at the time the picture was taken, we multiply

the edge of the crop by the ratio between the altitude and the standard value of

6 meters, i.e. for an altitude of 12 meters, the edge of the square crop will be

6/12×256 = 128. Figure 7.2 illustrates the height adjusted cropping process.

This process allows us to capture the same area of land independently of the

height of the drone.

Deblurring the crops Although CUT is originally designed to transfer

styles between two unpaired visual domains, we propose here to task the

algorithm with improving the resolution of the drone images while at the

same time transferring their visual style to ground-level images. Note that the

super-resolution task is usually performed by conditional GANs (e.g. [139])

but we propose here to use an unpaired algorithm. For each image x ∈ Xu,

we upscale the image from the original resolution to 2048× 2048. Ω is then

trained to transfer the visual style of the ground-level high resolution images

to the up-sampled crops, effectively deblurring them to appear closer to the

higher resolution images (see Figure 7.1).
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Altitude: 12M Altitude: 8M

192 x 192128 x 128

Figure 7.2: Drone image cropping process at different altitudes. Given that
resolution of the image is fixed, we increase or reduce the cropped area. All
crops are then bicubicly upscaled to 2048× 2048 before deblurring.

7.2.4 Semi-supervised regression on drone data

By up-sampling and visually transforming drone images to appear closer to

the ground-level visual domain, we are now able to learn jointly from Xl and

Xu. Since it is only practical to obtain labels for ground-level camera images,

we propose to optimize a semi-supervised regression objective using Xl as the

labeled set and Xu as the unlabeled data. After an initial pretraining of Φ on

Xl, we start guessing biomass labels forXu using a consistency regularization

approach [18]. Using two data augmented views x′u and x′′u (vertical and

horizontal random flipping), we use an exponential moving average (EMA)

on the weights of Φ to guess two approximate biomass labels y′u and y′′u for xu.

Rather than averaging the two approximate labels with equal importance like

consistency regularization algorithms for image classification [18, 19], we

draw a random mixing parameter λ from a uniform distribution to improve the

regularization of the predictions and avoid confirmation bias [9]. We obtain
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CUT (Ψ)

2048x2048 drone crop

Semi-supervised 
regression (ɸ)

Original 5500 x 3600 drone image Labeled ground-truth (N=52)

Height adjusted random crop and 2048 x 2048 upscale

2048x2048 deblurred crop image (N=16400)

Figure 7.3: Overview of our up-sampling and knowledge transfer algorithm.
We use an up-sampling and visual domain transfer network Ω and a semi-
supervised network Φ that we use to learn jointly from few labeled ground-
level examples (N = 54) and unlabeled drone images.

an approximate label ŷ = λy′u + (1− λ)y′′u for every unlabeled images. We

enforce the distribution of the predictions on unlabeled samples to match the

observed ground-truth distribution on the labeled data (distribution alignment)

by multiplying the label prediction by the ratio between a sliding window

average (50 mini-batches in practice) of ŷ and the observed distribution on

the labeled data. EMAs and distribution alignment are common principles

of consistency regularization algorithms for semi-supervised learning [88,

19]. Finally, we normalize the biomass composition to sum to 1 in the

approximate label ŷ. Figure 7.3 presents an overview of the proposed semi-

supervised training algorithm. Section 7.3.5 will compare the accuracy of

this semi-supervised strategy against the algorithm proposed in Chapter 6.
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7.2.5 Regression from images

We predict biomass labels from images in Xl and Xu using Φ to extract

visual features. For the Irish dataset [75], we use three different linear heads,

separating the predictions of the herbage mass, herbage height, and biomass

composition. We normalize the herbage mass and herbage height values

between 0 and 1 using fixed normalization values (4000 kg DM/ha for the

herbage mass and 20cm for the height) and offset them by +0.2 to improve

the prediction for low values originally too close to 0. To obtain values

between zero and one for each target prediction and ensure that the sum of

the biomass percentages equals one, we apply a softmax function on the three

outputs from the biomass head and a sigmoid function for each of the other

two values. For the GrassClover dataset [174], we use a single linear head,

predicting the biomass percentages (grass, white clover, red clover, weeds)

and sum the predictions for white and red clover to obtain the total clover

content. These configurations follow the work of Albert et al. [3]. We use

the root mean squared error (RMSE) as the training objective.

7.3 Experiments

7.3.1 Experimental setup

We conduct experiments on two biomass prediction datasets from canopy

images. For the GrassClover dataset, we use 100 labeled and 1, 000 unlabeled

images for training and 57 images for validation. We report the test accuracy

results on the evaluation server for the GrassClover dataset. For the Irish

dataset, we use 52 labeled and 595 unlabeled images for training and 104
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Var: 4.66 Var: 1406.77

Ψ

Blurriness 
estimation 

Figure 7.4: Overview of the deblurring effect of Ω on drone data. A high
variance indicates a sharper image.

images for validation. For the drone images, we extract 50 random crops

from each of the 328 images to create a dataset of 16, 400 unlabeled images.

We train using stochastic gradient descend at a resolution of 512× 512 with

a batch size of 32 and a fixed learning rate of 0.03. We update the EMA with

a multiplication parameter of 0.99 at every mini-batch. The training aug-

mentations are resize, random crop, random horizontal and vertical flipping,

and normalization. When we perform semi-supervised learning, we create

each mini-batch by aggregating 4 labeled samples with unlabeled images as

in Chapter 6. For the neural networks, we use a ResNet18 [92] pretrained

on ImageNet [100] for the regression network Φ and the 9 ResNet blocks

version of the CUT model Ω.
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7.3.2 Drone image deblurring and style transfer

We evaluate the deblurring capacity of Ω by computing the variance of

the Laplacian on the grayscale view of an image. Computing the Lapla-

cian of the image allows us to extract edges in the image and the variance

of the resulting value quantifies the sharpness of the edges: sharpness =

var(∇2(grayscale(image))) [152] with ∇2 the Laplacian operator. A higher

variance indicates a better defined (sharper) image. The sharpness estimation

process is illustrated in Figure 7.4. We observe that the variance averaged

over all the crops changes from 5.32 when cropping directly from the drone

images to 1261.05 for the same images deblurred by Ω.

7.3.3 Semi-supervised biomass, herbage height and herbage
mass prediction

We evaluate the capacity of our algorithm to predict the biomass composition

of herbage (%) together with an estimation of the dry herbage mass (kg

DM/ha) and the grass height (cm) in a semi-supervised manner. We run

experiments on the Irish dataset with the original unlabeled images but also

study replacing them with an equal number (N = 596) of deblurred drone

images. This is to evaluate the capacity for drones to capture unlabeled

data that can be used to improve the prediction at the ground-level. For

evaluation purposes, we compute the Herbage Root Mean Square Error

(HRMSE) which is the RMSE between predicted and ground-truth herbage

mass for grass, clover, weeds and for the total mass and the Herbage Relative

Error (HRE) which is the ratio between the ground-truth value of the total

herbage mass and the prediction: HRE =
predherbage

gtherbage
. The HRE measure

is typically used to compare human visual estimation against the collected
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Table 7.1: Ablation study and comparison against state-of-the-art algorithms
on the Irish dataset. The last row denotes replacing the ground-level unlabeled
camera images with deblurred drone images. The best results are in bold.

HRMSE RMSE

Total Grass Clover Weeds Avg. HRE Grass Clover Weeds Avg. HE

Chapter 6 230.10 220.84 34.86 27.13 94.28 1.14 4.81 4.75 3.42 4.33 2.15
Albert et al. [5] 229.12 218.02 37.65 29.21 94.96 1.09 4.58 4.22 3.44 4.08 2.03

Labeled only 229.23 268.90 107.39 39.82 138.71 1.08 17.15 14.08 4.74 11.99 2.28
Semi-sup 234.50 224.10 43.03 26.74 97.96 1.04 5.85 5.51 3.19 4.85 2.24
+ distribution alignment 220.79 215.88 40.00 26.78 94.22 1.08 5.53 5.51 3.25 4.76 2.09
+ EMA 217.28 208.96 34.16 26.50 89.88 1.08 4.86 4.73 3.26 4.28 2.09
+ Unsup init [107] 211.57 202.18 28.93 26.80 85.97 1.09 4.54 4.50 3.21 4.08 2.09
drone unlabeled 209.69 199.61 33.59 27.13 86.78 1.02 4.74 4.65 3.33 4.24 2.18

ground-truth [53]. We additionally compute the RMSE over the predicted

percentages of grass, clover, weeds in the herbage and the Height Error (HE)

which is the RMSE between the predicted herbage height and ground-truth

height. We compare against state-of-the-art results on the Irish dataset where

the validation images are ground-level images in Table 7.1. We study the

importance of the different elements of the semi-supervised algorithm on

the validation error, including enforcing distribution alignment for the label

guesses and using an exponential moving average (EMA) on the weights

of the semi-supervised network. We also report results when initializing

the weights of the network using an unsupervised representation learning

algorithm [107] on the unlabeled data as in Albert et al. [5].

We finally point out that using an equal number of deblurred drone images

produces comparable results to using the original unlabeled images (last two

rows in Table 7.1). This result motivates the use of drone images to easily

capture large amounts of unlabeled images. Figure 7.5 shows a line plot of

the HRE compared against the ground-truth herbage mass where we observe
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Figure 7.5: Visualization of the HRE on the validation set of the Irish dataset
with 95% confidence intervals.

HRMSE HRE

Against harvested ground-truth

Labeled only 1094.18 0.43
Semi-sup. 566.68 0.81
Semi-sup. drone 219.15 0.97

Human expert 170.03 1.04

Table 7.2: Results on drone images. Errors are computed against the absolute
harvested ground-truth.

that the algorithm struggles the most on high or low herbage mass outliers

(< 500 to > 2000 kg DM/ha). This is most likely due to the low amount of

high or low herbage mass examples seen during training.

7.3.4 Prediction on drone images

Table 7.2 reports the Herbage Root Mean Square Error (HRMSE) when

predicting on drone data without the need to gather additional labels. First,

we evaluate the accuracy of a CNN model learned on ground-level data only

to predict on deblurred drone patches using Ω. We then evaluate the accuracy

benefits of training on deblurred drone patches in a semi-supervised manner
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0

3000

Figure 7.6: Prediction on ordered crops of the drone images. Paddock level
herbage mass ground-truth: 1735 kg DM/ha, average prediction: 1719.21 kg
DM/ha. Altitude 8.2 meters. The ground-level area covered by each crop is
approximately .5× .5 square meters. Note the dirt patch with no grass at the
top of the image where a very low expected dry herbage mass is predicted by
our algorithm.

for the herbage mass prediction and compare the error rate of our algorithm

against human experts. We observe a significant reduction in error rates when

the drone images are used in the semi-supervised objective (semi-sup. drone

row) over using only the ground-level data (labeled only or semi-sup. with

the unlabeled ground-level images). The performance proposed by our low

supervision algorithm is close to be on par with human experts at the paddock

level. Figure 7.6 illustrates the prediction process at the image crop level

for a given drone image where we predict the expected dry herbage mass

per ha. We also report the prediction histogram for each drone image crop
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Figure 7.7: Histograms of the prediction on drone image crops of a paddock.

of a paddock when predicting the herbage mass in Figure 7.7. The final

prediction is obtained by averaging the prediction over all enhanced crops

of drone images of a given paddock. We observe in Figure 7.7 that the grass

density can vary a lot across the same paddock and that multiple pictures are

necessary to cover the full paddock and to get an accurate estimation.

Table 7.3 reports on how augmenting the number of random crops im-

proves the prediction of the best performing model. We report the average

herbage mass error and standard deviation over 5 random sets of crops. “All”

denotes cropping the image in a checkerboard fashion and using all crops

(from 250 to 1, 000 crops per image depending on the altitude). Although

1 random crop per image yield interestingly good results, we validate our

choice of 50 crops per images for more stable predictions.
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Table 7.3: RMSE errors on drone image for varying amounts of random crops
per image for the best performing model. Averaged over 5 random sets of
crops.

1 5 20 50 100 all

HRMSE 252.71± 51.24 227.18± 20.15 222.97± 12.56 219.15± 6.93 220.09± 4.14 219.53

Clover

Grass Total White Red Weeds Avg.

Skovsen et al. [174] 9.05 9.91 9.51 6.68 6.50 8.33
Naranayan et al. [135] 8.64 8.73 8.16 10.11 6.95 8.52
Chapter 6 8.78 8.35 7.72 7.35 7.17 7.87

Labeled only 9.81 8.49 7.99 8.58 7.25 8.57
Semi-sup. 6.68 7.76 8.08 8.66 6.72 7.58

Table 7.4: Results on the GrassClover test set (RMSE). Lowest errors are in
bold.

7.3.5 Semi-supervised biomass prediction on the Grass-
Clover dataset

We compare our semi-supervised approach against state-of-the-art algorithms

on the publicly available GrassClover dataset in Table 7.4 where we report

RMSE errors for the biomass percentage prediction on the held out test set3

where we perform on par with existing approaches.

7.3.6 Comparison with Chapter 6

Both algorithms in Chapter 6 and in this chapter use unsupervised images

to improve the accuracy of grass composition estimation algorithms. The

algorithm in this chapter is inspired from semi-supervised image classification

algorithms used in Chapter 3 but where the image augmentations have to be

3https://competitions.codalab.org/competitions/21122
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adapted to avoid corrupting the ground-truth in the case of image regression.

The advantage of the semi-supervised algorithm in this chapter is that it

does not require any additional model to guess approximate labels for the

unlabeled images (segmentation model Ψ in Chapter 6). The approximate

label guesses for the unlabeled images are also refined every epoch by the

regression network Φ, which explains the small improvements over Chapter 6

in Tables 7.1 and 7.4.

7.4 Conclusion

This chapter aims to provide answers to research question five: “Can super-

resolution and semi-supervised learning be applied to generalise a grass

composition prediction model learned on ground-level images to drone data?”

We investigated how to extend the biomass estimation and herbage mass

prediction problem from ground-level studied in Chapter 6 to drone images.

By its nature, the herbage biomass information of drone images is hard

to annotate finely because of the huge areas covered. Ground-level data,

however, has the advantage of providing easier to acquire, finely annotated,

and high resolution images of the herbage but would be a limited solution

to generalize targeted fertilization on entire herbage fields. To successfully

transfer knowledge from the ground-truth images captured on the ground

to the drone data, we proposed to train an unpaired style transfer algorithm

to deblur height adjusted crops of drone images. To do so, resolution is

increased by a factor of 8 and the visual style of ground-level images captured

using different cameras is transferred to the drone images. The large set

of enhanced but unlabeled drone images is used together with the finely
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annotated ground-level images to learn unsupervised initialization weights

and to train a semi-supervised regression algorithm. The neural network

trained on the partially labeled set largely improved the regression accuracy

on the ground-level data and the herbage mass prediction on drone images.

When evaluating the trained neural network on a small set of ground-truthed

images at the paddock level, we significantly reduced the prediction gap with

human experts, achieving error rates close to experienced technicians familiar

with the land. This early results are encouraging for future research in the

field of low supervision computer vision for herbage biomass prediction from

drone images. The semi-supervised algorithm we propose can also be applied

to the publicly available GrassClover dataset where we further decrease the

biomass composition error when compared to the algorithm of Chapter 6,

consolidating the previous answer to research question four on the feasibility

of low supervision solutions to the grass composition estimation problem.

Currently, the main limitation of the research is the limited amounts of

data the algorithm is tested on. Further data collection should be carried out,

not so much for increasing the amount of training samples but to add variety

to the grass image test set. Collecting and ground-truthing drone images

over multiple physical locations in Ireland and across different seasons/years

seems mandatory to validate the findings of this chapter. Another limitation is

the sensitivity of the algorithm to the dynamic crop adjustments. In the scope

of this research, the height of the drone at the time of the image capture was

estimated using GPS coordinates yet an embarked sensor would be a more

accurate solution. Finally concerning pure deep learning algorithm design,

the approximate predictions for the dry herbage made by the human experts

could be used as an approximate but easy to acquire ground-truth that could
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be used to improve results. To avoid analysing the full drone image, this

chapter studied making a prediction using only a random subset of all crops

of an image and found that even with a limited amount of crops, accurate

predictions can be achieved and effectively decrease the computational needs

of the algorithm. In future research, a smart algorithm could be designed to

sample areas of interest in the drone images to reduce the variability due to

the random sampling.
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Conclusion and future work

8.1 Answers to the research questions

RQ1: What is the nature of web noise and can detected noisy images be

included in the training objective?

In chapter 3 and 4, strategies have been used to detect and utilize out-of-

distribution noise in web datasets. In both cases, using out-of-distribution

images in the training objective has been beneficial for the classification

accuracy on the held-out test set. In chapter 2, the DSOS algorithm assigns

a uniform label to out-of-distribution images. This strategy was shown to

reduce the calibration error of the neural network as well as promoting high

entropy prediction on seen and unseen out-of-distribution data, enhancing the

rejection of these noisy images by the neural network. In chapter 3, the SNCF

algorithm minimizes a contrastive loss term on the out-of-distribution images.

Similar out-of-distribution images are clustered together while pure outliers

are trained on in an unsupervised manner. Including the out-of-distribution
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data in the contrastive objective is shown empirically to improve the classifi-

cation accuracy over ignoring the noisy samples. Both chapters demonstrate

that on datasets of a relatively small size (<1M images), strategies can be

devised to improve the classification accuracy using out-of-distribution data

RQ2: Can unsupervised learning be used to detect noise in web-crawled

datasets?

Experiments conducted in chapter 4 have shown that unsupervised con-

trastive learning can separate out-of-distribution images from in-distribution

ones on the hypersphere projection used. In the case where no human su-

pervision is available to separate the out-of-distribution from in-distribution

images, clustering can be performed on unsupervised features transformed

using a spectral projection. The separation observed on artificially corrupted

datasets does not generalize as well to web data, where further research

should be conducted.

RQ3: Can unsupervised features be used as a medium to propagate

labels in a semi-supervised scenario when few labels are available?

Chapter 5 studied the propagation of labels from labeled to unlabeled

images using unsupervised features. Although using all propagated labels

directly was shown to be a limited solution, selecting a trusted subset of

the propagated labels using a label noise detection approach experimentally

proved to be a suitable manner to augment the size of the labeled subset. Once

the size of the labeled subset is augmented, state-of-the-art semi-supervised

learning algorithms can be applied and will reach higher classification accu-

racies because more labeled examples are available.

RQ4: Can semi-supervised and unsupervised strategies be devised on

143
Research published in the Agriculture-Vision Workshop at the Conference on

Computer Vision and Pattern Recognition (CVPR) 2022



CHAPTER 8: CONCLUSIONS

specialist, fine-grained datasets such as grass density and composition

estimation?

Chapter 6 and 7 applied semi-supervised and unsupervised algorithms

to reduce the data collection effort needed to train a regression model to

predict herbage composition. This is a real world problem where image

ground-truthing is time consuming and destructive. In the case of chapter 7,

semi-supervised learning was used to reduce the annotation effort 8 folds with

little degradation in composition prediction error where unlabeled images

were successfully used to divide the prediction error by three (8 absolute

points) on an Irish grass composition dataset and by 1 absolute point on

a publicly available Danish dataset proposing a challenging fine-grained

detection between red and white clover detection. Chapter 6 proposed a

semi-supervised strategy more specific to the grass composition estimation

from canopy images problem but observed an equally significant reduction in

prediction error when using unlabeled images. These two chapters studied

training deep learning models on specialist datasets where ground-truth is

difficult to collect and with real world applications. In both cases, low

supervision algorithms inspired by the state-of-the-art on curated datasets

successfully used unlabeled images to reduce the regression error on a held

out test set.

RQ5: Can super-resolution and semi-supervised learning be applied to

generalise a grass composition prediction model learned on ground-level

images to drone data?

Chapter 7 proposed to use an unpaired generative network to learn to

enhance images from blurry and saturated drone images to high resolution
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corrected images that were visually comparable to images captured using a

high resolution camera close to the ground. Although a regression model

trained on the high resolution camera images only was not able to generalize

directly to the enhanced drone data, a semi-supervised training was proposed

to include unlabeled drone images in the training stage. Even if no ground-

truth was used for the drone images, training in a semi-supervised way using

ground-truth for camera images only enabled reaching satisfactory accuracies

on a held-out drone image test set.

8.2 Research contributions

The per-chapter research contributions are as follows:

Chapter 3

1. A representative survey over the type of noise to be expected when

constructing a dataset using web queries.

2. A novel noise detection metric, entropy of the interpolation of the net-

work prediction and the ground-truth label, that is capable to accurately

differentiate between clean, ID and OOD noise.

3. DSOS, a simple algorithmic solution to combat ID and OOD noise

in web-crawled datasets validated using controlled experiments and

ablation studies on corrupted versions of the CIFAR-100 dataset.

4. A comparison of DSOS against state-of-the-art, noise-robust algorithms

on real-world web-crawled datasets, demonstrating the validity of our

findings for real-world applications.
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Chapter 4

• A dual noise detection approach utilizing the alignment and unifor-

mity principles of contrastive learning to detect noisy samples using a

spectral embedding of unsupervised representations.

• A noise robust algorithm capable of training a CNN on a dataset cor-

rupted with in-distribution and out-of-distribution noise, correcting the

label of in-distribution whilst using out-of-distribution noise to improve

low-level features.

• Experiments on controlled and real world noisy datasets demonstrating

the state-of-the-art performance of our algorithm.

Chapter 5

1. An unsupervised knowledge-bootstrapping pipeline that enhances the

performance of semi-supervised algorithms when very few labeled

samples are available.

2. A reliable sample selection method in the presence of label noise

induced by label propagation. The method is robust to class and noise

imbalance.

3. We evaluated the importance of good unsupervised features for label

propagation, and demonstrated the superiority of our approach when

dealing with feature-based label noise generated by label propagation.

Chapter 6

1. A herbage height aware, weakly supervised, semantic segmentation

algorithm trained on synthetic images that is used to automatically

label data.
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2. An algorithm leveraging automatically labeled images to improve

grass/clover/weed dry herbage mass estimation.

3. A detailed study of the importance of the low supervision elements

for the final accuracy of our algorithm, and a comparison with the

state-of-the-art on a publicly available dataset.

Chapter 7

1. 328 drone images of herbage fields in Ireland.

2. An unpaired image transfer pipeline, increasing the resolution of drone

images 8 fold and transferring them to the ground-level camera visual

domain.

3. A semi-supervised regression that learns to estimate dry herbage biomass

from a small set of annotated ground-level images and unlabeled drone

images.

8.3 Future research areas

Here are listed the future areas of interest on the topic of low supervision for

image classification research that I believe should be studied further.

• Noisy vs hard sample for deep learning in label noise scenarios.

Chapter 3 detects noisy samples relying on how hard they are to fit for

the network and Chapter 4 relies on the unique visual characteristics

of out-of-distribution samples. Both of these specificities are also

shared by hard (but clean) training samples. Being able to differentiate

between noisy and hard samples is important to avoid rejecting training

examples which could help generalize better, especially to edge cases.
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• Utilizing detected out-of-distribution samples in web-crawled datasets.

Chapters 3 and 4 showed that strategies could be devised to include

out-of-distribution images during training to improve the validation

accuracy of a neural network trained on web-crawled data. These

improvements might be limited due to the small size of the datasets

studied in this thesis, and in the case where large amounts of images are

available in each class, removing at least some of the out-of-distribution

noise might be preferable. Further research should evaluate where the

size limit is and if some out-of-distribution samples are more relevant

to keep in an unsupervised term than others to bridge knowledge gaps

in under-represented classes.

• Evaluation of low supervision algorithms on uncurated datasets.

A limitation of how new semi- or unsupervised algorithms are com-

pared to each other is the highly curated datasets upon which they are

compared. Even if image labels are artificially removed on datasets

such as ImageNet or CIFAR, the unlabeled images will still be high

visually relevant to the classification task. In real world applications,

the unlabeled images would tend to be gathered in bulk from the web,

for example, and some would be irrelevant to the classification task.

STL-10 used to be a more realistic dataset in this sense, but its adoption

has been reduced because the amount of labeled data is large compared

to the current semi-supervised performance. Evaluating unsupervised

algorithms on WebVision vs ImageNet would also be an interesting

comparison to include in future research.

• Further validation of the grass composition estimation algorithms.

A limitation of the work presented in chapters 6 and 7 is the limited
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amount of available validation samples. More data collection should be

conducted over multiple seasons and geographical locations in Ireland.

If the current algorithms fail to generalize, the domain gap should be

bridged using unlabeled images to limit the data collection effort.

8.4 Conclusion

The research conducted during this PhD focused on low supervision alterna-

tives for computer vision using deep learning. The first two chapters focused

on label noise and datasets directly crawled from the web with no human

curation.

Chapter 3 conducted a study on the WebVision dataset to identify the

type and quantity of label noise to be expected in web crawled datasets.

Out-of-distribution noise was identified as the dominant noise type with

in-distribution noise being also present in limited amounts. In order to

design an algorithm robust to both noise types, a novel metric was proposed

to independently retrieve in- and out-of-distribution noisy samples. Once

the noisy samples are identified, the true label of in-distribution samples is

guessed in a semi-supervised way, while the network is encouraged to predict

maximum entropy labels on out-of-distribution samples to promote rejection.

Chapter 4 also studied image classification on uncured web data, but

proposed to use unsupervised learning to detect the noisy samples. Out-

of-distribution samples were empirically observed to linearly separate from

in-distribution ones on the hypersphere projection used in unsupervised

contrastive learning algorithms. In order to keep noise retrieval unsupervised,

spectral projection and OPTICS, a clustering algorithm, was used to retrieve
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the out-of-distribution cluster and in-distribution noise was identified as

the outliers to the clean cluster. A guided contrastive algorithm was trained

together with the classification objective so that similarities can be encouraged

between in-distribution samples of the same class and between visually

similar out-of-distribution images. Pure out-of-distribution samples (visually

different from anything else in the dataset) are considered unlabeled (only

similar to an augmented version of themselves).

Chapter 5 studied the combination of unsupervised learning and semi-

supervised learning. The chapter focused on an alternative manner of using

unsupervised learning other than network initialization or regularization.

Unsupervised learning was used to learn similarities between labeled and

unlabeled samples on a semi-supervised dataset. Image similarities were then

used to propagate labels from the labeled to the unlabeled images using a

diffusion algorithm. Training directly on all propagated labels was shown

to be insufficient to improve the state-of-the-art classification accuracy, so

another approach was devised where label noise detection was performed to

select trusted samples to be added to the initially few labeled examples. By

increasing the size of labeled pool of samples, state-of-the-art algorithms were

empirically shown to benefit from a stronger supervised signal and converge

to higher classification accuracies with no further human supervision required.

The last two chapters of this thesis investigated the application of low

supervision techniques to real world agricultural problems. The proposed

application is a regression task where the goal is to predict grass composition

and dry weight from canopy images. One of the interesting aspects of this

application is the collection of images in Ireland where I had a direct input

into how the data gathering should happen in order to achieve an accurate
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deep learning model. To reduce the human effort required for data collection,

a semi-supervised approach was motivated and large amounts of unlabeled

images where collected.

In chapter 6, a first solution using unlabeled images was proposed. In

order to compress the quantity of information present in canopy view images,

a segmentation algorithm was used to segment pixels in the grass canopy

and to predict the pixel level height of the grass. The pixel percentage for

each species was then used to train a simple linear regression model to

predict dry biomass percentages from species pixel percentages. To train

the segmentation model with limited supervision, synthetic images were

generated and used. Finally, pseudo-labels were predicted for the unlabeled

grass images using the linear regression model and the final regression neural

network was trained on the few labeled images together with the pseudo-

labeled images using a label noise robust approach to avoid fitting incorrectly

labeled images. The semi-supervised approach successfully reduces the

prediction error by using the unlabeled images in a real world application.

Chapter 7 studied the same grass prediction problem as chapter 6 and

further extended the prediction from ground-level images using cameras

mounted on tripods to drones. In this case, a generic semi-supervised strategy

for image classification was successfully adapted: consistency regularization.

For the drone images, the few ground-truted images were kept for testing and

only unlabeled drone images were available for training. A super-resolution

and image deblurring approach was used to enhance the quality of the drone

images so that they would look similar to ground-truth images captured on

the ground. Consistency regularization was used to train in a semi-supervised

manner on the ground-truth ground-level camera images and the visually
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enhanced yet unlabeled drone image crops. The validation done on the few

labeled drone images demonstrated estimation accuracies on par with expert

human estimation by eye.

In conclusion, designing low supervision alternatives to fully supervised

approaches is highly desirable as it enables the distribution of deep learning

solutions for computer vision to a wider audience by easing the constraints

around dataset building. The research conducted so far has shown that in the

case of image classification, unsupervised learning, semi-supervised learning,

and label noise can be utilized in a synergistic fashion to maintain high

classification accuracies when the image datasets are uncurated by humans,

or when annotations are scarce. Semi-supervised algorithms proposed in the

literature can be adapted, when proper care is taken, to the real world problem

of grass composition estimation, and substantially reduce the amount of time

needed to gather a specialist vision dataset.

For future work on label noise datasets, possible improvements to explore

include: the investigation of different alternatives for the utilization of out-of-

distribution samples dependent on the size of the dataset as out-of-samples

might be useful to learn basic features on small datasets as shown in Chapter 4

but it might be better to ignore them in larger (1M+) image datasets. Further

studies on the importance of hard examples when training on a web label-

noise dataset as well as the separate detection of hard and noisy samples

in web label-noise datasets could also be and interesting venue to study

since most state-of-the-art label noise robust algorithms detect noisy samples

because they are hard to fit for a neural network which is a similar learning

parttern than clean but hard samples. For semi-supervised and unsupervised

learning, more comparisons should be conducted on uncurated datasets so
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that a more realistic comparison is available. This could include a comparison

when datasets are trained using few labeled samples from ImageNet together

with a large unlabeled image pool from Webvision. Regarding the grass

composition prediction problem, a limitation of the findings in this thesis

remain the low quantity of test available data. The observed results should be

validated further by collecting a large quantity of varied data over multiple

seasons and possibly multiple locations. This would enable further testing of

the unsupervised adaptability of the algorithms presented in chapter 6 and 7.

In the case where generalization to the newly collected validation samples is

insufficient, unsupervised images should be used to bridge the gap at a low

data collection cost.
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[152] José Luis Pech-Pacheco et al. “Diatom autofocusing in brightfield

microscopy: a comparative study”. In: International Conference on

Pattern Recognition (ICPR). 2000.

[153] Camilo Andra Pulido-Rojas, Manuel Alejandro Molina-Villa, and

Leonardo Enrique Solaque-GuzmÃ¡n. “Machine vision system for
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Chapter 9

Appendix

9.1 Deep learning

9.1.1 Deep neural networks

Deep learning for computer vision is a discipline of Machine Learning

whereby a computer learns visual features and consequently reduces the

need for humans to handcraft attributes for the classification, detection, or

segmentation of visual objects. Although the foundation theory for deep

learning was laid out in the middle of the twentieth century [59, 94, 104,

128], low computing capacities available at the time limited the application of

the algorithms. Before the standardization of neural networks for computer

vision, machine learning approaches relied on handcrafted features where

researchers would manually specify unique attributes for the classification

of images. The attributes could, for example, include the expected position

of the ears, eyes, or limbs for an animal classification task. The detection
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of the different features would then be used by a classification model such

as a Support Vector Machine to perform the final classification choice given

the activations of the handcrafted features. A first successful milestone that

laid the foundations for modern deep learning is the entry submitted by Alex

Krizhevsky and Geoffrey Hinton to the ILSVRC2012 challenge, where the

proposed neural network architecture AlexNet decreased the classification

error on the challenge by more than 10 points when compared with state-of-

the-art approaches at the time [101]. This entry cemented the relevance of

neural architectures for solving computer vision tasks.

The dominant advantage of training a neural network is that it removes

the need for human experts to define important attributes and instead allows

patterns to be learned directly from the training data. To do so, a deep neural

network learns a feature extractor composed of successive layers of neurons

that linearly combine the set of input pixels passed on to them. To drastically

improve the representation power of the neural network, the linear combi-

nation is followed by a non-linearity or activation function. A classic fully

connected neural network architecture (multi-layer perceptron) is composed

of: an input layer, which extracts the initial feature from the input image; a

set of hidden layers built on top of the input layer that combine the extracted

features in a non-linear fashion; a classification head that maps the feature

activations to class predictions. To learn the parameters in each layer of

the neural network, updates are computed using a gradient descent process,

derived from an error function between the target prediction and actual pre-

diction. Gradient descent is explained in more details in section 9.1.2. A

common justification for the neuron structure in neural network is a coarse

bio-inspiration from synapse connections in the brain [23]. Figure 9.1 illus-
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trates a simple comparison between a neuron and a simple fully connected

architecture.

Figure 9.1: Structure of a neuron (left) and of a fully connected neural network
with a hidden layer (right). Figure from http://cs231n.github.io/
neural-networks-1/.

9.1.2 Gradient descent

We develop here the gradient descent process used to iteratively update

parameters in neural networks. The gradient has to be derived from a cost

function. A commonly used loss function for image classification (the main

research field studied in this thesis) is the cross entropy loss. Considering

a dataset composed of N labeled samples D = {xi, yi}N , the cross entropy

loss is computed between the prediction of the network over a training sample

xi (image) that we denote ŷi and the ground truth label yi. C is the number

of classes in the dataset and the size of both vectors. The objective is to

learn parameters that minimize the cross-entropy loss over all images in the

training dataset:

lce =
1

N

N∑
i=1

−yTi log(ŷi), (9.1)
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where the log operation is applied element wise. Once the network’s error is

quantified by the cross-entropy loss function, the gradient descent algorithm is

then applied to update the parameters. Given θt the network’s parameters used

to compute ŷi at iteration t, an update is computed for θt+1 in the opposite

direction of the gradient of lce. The strength of the update is modulated by a

hyperparameter α (learning rate):

θt+1 = θt − α∇θtlce, (9.2)

where lce the cross-entropy loss is a function of the network’s parameters

θt and ∇θ represent the gradient operation with regards to the networks

parameters θ. To update the network parameters in every successive layer θi,

the chain rule is used:

∂lce
∂θ

=
∂lce
∂θi+1

∂θi+1

∂θi
∂θi

∂θi−1

∂θi−1

∂θ
. (9.3)

The chain rule allows iterative propagation of the gradient update through the

network, starting from the final layer ∂lce
∂θi+1 all the way to the first.

The dominant limitation of gradient descent is that each gradient update

step has to be averaged over the full dataset. This is impossible in practice

because large datasets coupled with the large amounts of parameters of neural

networks would lead to memory limitations. The commonly used alternative

is named Stochastic Gradient Descent, which approximates the gradient

descent step by performing it on a randomly selected subset of the dataset.

This practice is commonly named mini-batching and the size of the mini-

batch can be set accordingly with hardware limitations. Finally, regarding the

initial network parameters a random initialization is performed.
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An important hyper-parameter when computing the weight update is the

learning rate (α parameter of Equation 9.2). This learning rate parameter

can be thought of the step size taken in the opposite direction of the gradient.

Taking large steps at the beginning of training can be useful to accelerate

training and to avoid local minima but it is common to reduce the step size

later in training to help convergence. The common practice is to set the

learning rate to a high value initially and to reduce it in a step-wise fashion

during training.

9.1.3 Convolution operation for computer vision

Although multi-layer perceptron (MLP) architectures (see section 9.1.1) can

be applied on simple datasets composed of limited numbers of input variables,

the number of learnable parameters will quickly expand when applied on large

and complex objects such as images. When considering the application of a

simple MLP to a RGB image of 224×224×3 pixels in size (a common input

image size for neural networks in the ILSVRC2012 [100] challenge), the

fully connected nature of the architecture requires 224× 224× 3 = 150, 528

connections for each neuron in the input layer alone, resulting in very large

matrix multiplications and rendering the computation difficult in a reasonable

time. Other MLP limitations for image processing include: the absence of

spatial coherence as the order of the connections between successive layers

is unimportant (an image with shuffled pixels would not be a problem for a

fully connected architecture); the impossibility to adapt to images of different

resolutions; overfitting to the training data because of the large number of

parameters.

To address this issue, Convolutional Neural Networks [105] (CNNs)
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Figure 9.2: Visualization of the convolution operation in convolutional neural
networks with a kernel size of 3. Figure from http://jenslaufer.
com/.

were proposed to greatly reduce the high parameterization characteristic

of fully connected neural networks when applied to image processing. In

the case of a CNN, the hidden layers are replaced by convolution layers. A

convolution layer is a collection of learnable 2D filters of the same size that are

applied on every input pixel and their spacial neighbours in the image. This

computation strategy reduces the number of connections between successive

representations to the number of pixels covered by the convolution filter:

typically 7 × 7 or 3 × 3 multiplied by the depth (number of filters) of the

previous representation multiplied the depth of the output representations

(typically between 1 and 512). The convolution process is a classic filtering

operation where visual features activating the filters anywhere in the image

will be detected and passed on to the following layer in order to be refined.

The convolution operation for neural networks is represented in Figure 9.2.

Other advantages of the convolution architecture includes localized spatial

coherence and the adaptability to images of different sizes.

To understand the complexity of the visual features learned in deeper
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CNN layers, an interesting experiment is to generate an input image that

maximally activates a given filter in the trained neural network. This is

accomplished using an inverted gradient process where, given a weight-

frozen CNN trained on an image dataset, the input image is updated using

gradient ascent (as opposed to descent) to maximize the activation of a learned

filter. When observing the images obtained for filters in the first layer these

appear very simple such as color or direction detection. The deeper the layer

the more complex the patterns that are created. Figure 9.3 gives examples

of generated images from a VGG16 [173] architecture trained on ImageNet.

Other visualization processes have been developed where gradient ascent

is used to generate an image that activates a specific class (maximize the

activation of a given class in the last fully connected layer) or, where given

an input image and a target class, one can look at which part of the image

maximally activates the filters responsible for the target class prediction

(feature activation maps).
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Figure 9.3: Visualizing images that strongly activate a filter in a given layer
of a VGG16 trained on ImageNet. Source https://blog.keras.io/
how-convolutional-neural-networks-see-the-world.
html
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