
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023 4213

Decomposition of Monolith Applications
Into Microservices Architectures:

A Systematic Review
Yalemisew Abgaz , Andrew McCarren , Peter Elger, David Solan , Neil Lapuz , Marin Bivol,

Glenn Jackson , Murat Yilmaz , Jim Buckley , and Paul Clarke

(Survey Paper)

Abstract—Microservices architecture has gained significant
traction, in part owing to its potential to deliver scalable, robust,
agile, and failure-resilient software products. Consequently, many
companies that use large and complex software systems are actively
looking for automated solutions to decompose their monolith ap-
plications into microservices. This paper rigorously examines 35
research papers selected from well-known databases using a Sys-
tematic Literature Review (SLR) protocol and snowballing method,
extracting data to answer the research questions, and presents the
following four contributions. First, the Monolith to Microservices
Decomposition Framework (M2MDF) which identifies the major
phases and key elements of decomposition. Second, a detailed
analysis of existing decomposition approaches, tools and methods.
Third, we identify the metrics and datasets used to evaluate and
validate monolith to microservice decomposition processes. Fourth,
we propose areas for future research. Overall, the findings sug-
gest that monolith decomposition into microservices remains at
an early stage and there is an absence of methods for combining
static, dynamic, and evolutionary data. Insufficient tool support
is also in evidence. Furthermore, standardised metrics, datasets,
and baselines have yet to be established. These findings can as-
sist practitioners seeking to understand the various dimensions of
monolith decomposition and the community’s current capabilities

Manuscript received 15 February 2023; revised 5 May 2023; accepted 11
June 2023. Date of publication 23 June 2023; date of current version 15
August 2023. This work was supported in part by the Department of Enter-
prise, Trade and Employment, Ireland (https://enterprise.gov.ie/en/) under the
Disruptive Technologies Innovation Fund under Grant DTIF DT20180116, and
in part by SFI, Science Foundation Ireland (https://www.sfi.ie/) under Grant SFI
13/RC/2094_P2 to Lero - the Science Foundation Ireland Research Centre for
Software. Recommended for acceptance by F. Ferrucci. (Corresponding author:
Yalemisew Abgaz.)

Yalemisew Abgaz, Neil Lapuz, Glenn Jackson, and Paul Clarke are with the
School of Computing, SFI Research Centre for Software, Dublin City Univer-
sity and Lero, D09 N920 Dublin, Ireland (e-mail: yalemisewm.abgaz@dcu.ie;
Neil.lapuz2@mail.dcu.ie; gjackson@live.ie; paul.m.clarke@dcu.ie).

Andrew McCarren is with Dublin City University and Insight, the SFI Re-
search Centre for Data Analytics, School of Computing, Dublin City University,
D09 N920 Dublin, Ireland (e-mail: andrew.mccarren@dcu.ie).

Peter Elger and Marin Bivol are with fourTheorem Limited, The Rubi-
con, Cork Institute of Technology, T12 Y275 Cork, Ireland (e-mail: peter.
elger@fourtheorem.com; marin.bivol@fourtheorem.com).

David Solan is with FINEOS Corporation Limited, D03 FT97 Dublin, Ireland
(e-mail: david.solan@fineos.com).

Murat Yilmaz is with the Faculty of Engineering, Department of Computer
Engineering, Gazi University, 06560 Ankara, Turkey (e-mail: my@gazi.edu.tr).

Jim Buckley is with the Lero/Department of CSIS, University of Limerick,
V94 T9PX Limerick, Ireland (e-mail: Jim.Buckley@lero.ie).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSE.2023.3287297, provided by the authors.

Digital Object Identifier 10.1109/TSE.2023.3287297

in that endeavour. The findings are also of value to researchers
looking to identify areas to further extend research in the monolith
decomposition space.

Index Terms—Monolith application decomposition, monolith to
microservices migration, microservices architecture, microservices
identification, static analysis, dynamic analysis.

I. INTRODUCTION

W ITH the passage of time, successful software systems
grow large and become complex, due to the addition

of a plethora of functionalities resulting in highly coupled but
less cohesive components [1], [2]. In these large and complex
systems, monolith architectures [3] embody the centralisation
of functionality in large individual components, giving rise to
inherent limitations in terms of scalability, maintenance and
deployment performance [1], [4], [5], [6], [7], [8]. In contrast,
microservice architectures are distributed, favouring the decom-
position of systems into various relatively small and independent
components that may be invoked as required [9], [10], delivering
benefits in areas such as increased scalability and improved
deployment frequency [2], [4], [11], [12].

Prior to the introduction of microservice architectures, mono-
lith architectures were commonly adopted. However, as software
systems continued to grow in size and with demand growing
for ever-faster release cycles, the need for partitioning systems
into separately compilable services came to the fore. Also,
with the advent of cloud-based infrastructure innovations such
as Software-as-a-Service [13] and Function-as-a-Service [14],
the relative benefits of monolith architectures have been re-
duced [15]. As a result, there is growing interest in microservice
architectures [16], [17].

For companies with existing monolith-based systems, a par-
ticular challenge is the decomposition of these systems into
coherent microservice-based implementations. This decompo-
sition is sometimes focused on supporting migration engineers
in the identification of microservice candidates by analysing
the application’s domain [18], [19], [20]. Other techniques in-
volve analysing the source code [21], [22], [23], [24], execution
traces [25], and version related information [26], [27].

While a great deal of important work has been conducted in
the decomposition space to date, the existing published material
tends to focus on addressing a specific scenario, domain, or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3887-5342
https://orcid.org/0000-0002-7297-0984
https://orcid.org/0009-0005-1067-7319
https://orcid.org/0000-0001-8258-190X
https://orcid.org/0009-0005-7389-4409
https://orcid.org/0000-0002-2446-3224
https://orcid.org/0000-0001-6928-6746
https://orcid.org/0000-0002-4487-627X
https://enterprise.gov.ie/en/
https://www.sfi.ie/
mailto:yalemisewm.abgaz@dcu.ie
mailto:Neil.lapuz2@mail.dcu.ie
mailto:gjackson@live.ie
mailto:paul.m.clarke@dcu.ie
mailto:andrew.mccarren@dcu.ie
mailto:peter.elger@fourtheorem.com
mailto:peter.elger@fourtheorem.com
mailto:marin.bivol@fourtheorem.com
mailto:david.solan@fineos.com
mailto:my@gazi.edu.tr
mailto:Jim.Buckley@lero.ie
https://doi.org/10.1109/TSE.2023.3287297

4214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

programming language. We present a consolidation of the inno-
vations to date, and we introduce a framework as a means to or-
ganise and classify the key methods and approaches that may be
adopted when undertaking decomposition projects. To do so, this
research adopts a Systematic Literature Review (SLR) [28], [29],
[30] and snowballing to address the following research objective:
to systematically identify and organise existing research on the
decomposition of monolith applications into microservices. To
this end, this research initially identifies 5022 search results from
major computer science literature databases and applies four
rigorous refinement steps to identify 33 research papers. After
applying a snowballing method, this research finally examines
35 research articles.

Various existing perspectives are incorporated into this re-
search, including, at an overview level, contributions seeking
to define migration road maps [11], [31], works reporting on
migration problems and challenges [2], [32], [33], [34], [35],
and works outlining differing migration processes [36], [37].
Examples of more specifically targeted work include works
directed at the containerisation of existing monoliths [38], at
different migration patterns [4], [39], and at differing migration
approaches [40], [41], [42], [43].

Central to our findings is the observation that monolith de-
composition into microservices is a complicated and expensive
task. Many different approaches have been proposed, each of
which may be used in isolation or combined for greater effect,
and as demanded by the context. This suggests that automated
or semi-automated tool support is advantageous and therefore,
various existing tooling is also identified and analysed in this
review. More importantly, it suggests the need for an organising
framework for the area and consequently, the Monolith To Mi-
croservices Decomposition Framework (M2MDF) introduced
in this research provides a comprehensive map for researchers
and practitioners to navigate this complicated landscape.

This research concludes that although monolith decomposi-
tion has gained more attention in recent years, it remains at
a preliminary stage for the following reasons: (i) the lack of
integrated, comprehensive data collection and analysis methods
with regard to crucial aspects of the monolith application, (ii)
the lack of comparison between various decomposition methods
and algorithms, (iii) the lack of validated and widely accepted
metrics and benchmarks to measure the quality of resulting
microservice candidates, and (iv) the shortage of integrated
tools to support the various stages of microservices extraction
pipelines.

The remaining sections of this paper are organised as follows.
The background and related work section (Section II) introduces
monolith to microservices decomposition, its challenges, and
related literature. Section III presents the Systematic Literature
Review (SLR) methodology employed along with a descrip-
tion of the analyses performed. In Section IV, the M2MDF
is presented along with the detailed results of the SLR. Sec-
tion V identifies existing gaps in the field, with Section VI dis-
cussing acknowledged threats to validity. Section VII presents a
summary of the work in the context of specific implications
for practitioners and researchers, and includes a post-review
reflection that evaluates the utility of the proposed M2MDF
by examining literature published following the primary review

timeframe. Section VIII presents concluding remarks and pro-
posed future research directions.

II. BACKGROUND AND RELATED WORK

A. Monolith versus Microservices Architectures

An application based on a monolith architecture is recognised
as one which combines all (or many of) its modules into large
components that are self-contained and independent from other
applications [1]. Monolith architecture brings the benefit of
localising significant portions of application functionality in a
single manageable space but, as it becomes overly large and
complex, it can inhibit maintenance and deployment flexibil-
ity [44]. Whenever a module in a monolith changes, an entire
application may need to be reintegrated, rebuilt, retested, and
restarted upon deployment [1]. Moreover, the scalability of
monolith applications may introduce significant challenge as
application usage grows due to size and load distribution [45].

Microservices architectures are presented as an alternative
to monolith architectures. They are organised around business
functions that perform a single task and maintain their data in a
decentralised manner. They are built on the principles of single
responsibility, high cohesion, low coupling, scalability, deploy-
ability, and low perturbation (meaning, minimal disturbance to
other microservices that comprise the software system) [46],
[47], [48], based on components that can be evolved and de-
ployed independently [12], [49].

B. Monolith to Microservices Decomposition

Many companies have chosen to continue with monolith
implementations, as they have large existing monolith invest-
ments and limited knowledge of the complex process required
to decompose their monoliths into microservices [50].

But, even for the the large proportion of organisations em-
bracing microservices, manual decomposition of the monolith
application is a challenging task [2] and may require existing
application experts to devote a considerable volume of time to
the tedious task of profiling and fully understanding the intrica-
cies of the monolith code. As a complementary or alternative
approach, automated code analysis tools have been used to
identify service boundaries within a monolith. But, as we shall
outline in Section IV, research dealing with automated system
analysis and microservices identification is still somewhat in its
infancy (although growing steadily).

C. Existing Literature Reviews on the Decomposition of
Monolith Applications to Microservices

Very recently, the amount of secondary research on the de-
composition of monolith applications to microservices has been
growing. The studies investigate a wide range of research ques-
tions related to the rationale of the migration [11], the problems
and challenges of the migration process [32], microservices anal-
ysis [40], [41], and strategies for supporting microservices ex-
traction. Other secondary studies investigate the broader aspects
of microservices architecture including the use of microservices
architecture in DevOps [51], tools and techniques to support

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4215

microservices development [52], microservices granularity [53],
and cloud migration processes [35].

Abdellatif et al. [40] conducted a review of 41 studies (2004–
2019) to identify the inputs, processes, outputs and usability
of service identification approaches used for the modernisa-
tion of legacy software systems. The aim of this work was
to assist practitioners in the selection of a suitable approach
for identifying services. The authors presented a multi-layer
taxonomy of existing approaches used in the broader context
of service identification and web services whereas, we focus
on the approaches used to decompose monolith applications,
particularly into microservice architectures. Another distinction
is that Abdellatif’s study focuses on service identification with-
out a particular focus on microservices, resulting in only three
overlapping studies.

Velepucha and Flores [32] conducted an SLR to identify the
problems and challenges associated with microservices migra-
tions. To answer their research question, the authors reviewed 37
studies and identified major problems concerning suitable tool
selection, team reorganisation, the complete or partial migration
decision, microservices identification, and multiple database
consistency. The identified problems cover technical, functional,
and behavioural aspects of the migration process. Although this
study provides practitioners with crucial information as to what
problems and challenges they should expect in the migration
process, it does not provide a detailed overview of the availability
and usability of decomposition approaches and tools that are in
use.

The question of why and how monolith legacy systems are mi-
grated to microservices is investigated by Wolfart et al. [11]. The
authors identified 11 migration driving forces: optimised scal-
ability, independent and automated deployment, easier main-
tenance and evolution, independence of teams, loosely coupled
services, cohesive services, technology flexibility, infrastructure
facilities, agility enabling, easier reuse, and reduced time. The
authors furthermore categorised the modernisation process into
eight activities organised into four phases: initiation, planning,
execution, and monitoring. Bushong et al. [41] also investigated
the practice of analysing microservices architecture focusing
on analysis and debugging methods used for microservice sys-
tems. The most relevant aspect of this research is the inves-
tigation of the practice of migration of monolith applications
into microservices, but with less emphasis on the decomposition
techniques.

A rapid review has been conducted on the migration from
a monolith architecture to microservices by Ponce et al. [33]
with the aim of gathering, organising, and analysing migration
techniques. The review, which comprised of 20 research articles,
investigated available migration techniques, the types of systems
the techniques are applied to, the validation methods used, and
the challenges faced. Three migration techniques were identi-
fied: Model-Driven (MD), Static Analysis (SA), and Dynamic
Analysis (DA), with 70% of the applications being web-based
and more than 90% of the applications being Java-based. As part
of the review, the paper also discovered that case studies are the
most widely used validation method, followed by experiments
and examples. This review is informative and related to the focus
of our research, however, the paper acknowledges that while

rapid reviewing provides a lightweight methodology to analyse
the migration process [54], it can result in reduced coverage.

Complementary to the above rapid review [33], a system-
atic review was conducted to identify and classify existing
refactoring approaches in the context of monolith application
decomposition, by comparing 10 existing studies [44]. The
paper classifies the studies using static code analysis aided
(SCA), meta-data aided (MDA), workload-data aided (WDA),
and dynamic microservices composition (DMC) approaches.
The authors of the review evaluated the selected methods using
parameters including granularity, input and output types, result
evaluation, tool support, and validation. The review outlines
existing approaches using a decision guide but does not cover the
microservices decomposition methods. In addition, the review
has a broad scope since it includes greenfield microservices
development as well as monolith application decomposition. A
re-examination of the findings of this review is crucial because
of its scale and because a considerable number of new studies
on the topic have been published recently: significant growing
interest has been observed over the past three years with an
influx of research studies examining the use of novel tools and
techniques to assist with the migration problem.

A systematic mapping study of microservices construction
was conducted in [55], where 103 primary studies were ex-
amined to identify, classify, and evaluate the state-of-the-art
microservices architecture solutions. Although related to our
research, this particular mapping study does not focus directly
on decomposition projects. Kazanavičius and Mažeika [56] also
conducted a literature review on the migration of legacy software
to microservices architecture to understand the techniques em-
ployed and the challenges faced. The paper studied the benefits
and drawbacks of certain earlier studies and presented some
interesting comparisons between refactoring and rebuilding de-
cisions. However, it is not directed at decomposition specifically,
is limited to only six earlier studies and the SLR methodology
used to select the studies is not discussed in detail.

An overview of the lessons learned and the associated difficul-
ties/challenges of the migration process is investigated in [42].
The review focuses on papers discussing migration difficulties.
However, only five papers emerge from the SLR, with a further
seven papers based on the suggestion of the authors. Although
this study reports the challenges, it does not cover aspects of the
migration process such as data collection, analysis, decomposi-
tion, and evaluation.

Additional studies covered related aspects of the migration
process. An earlier study investigated the importance of vari-
ability (the adaptability of a system for a particular context)
for supporting the extraction of microservices from monolith
legacy systems in industry [37]. Cojocaru et al. [57] further
studied the attributes used to assess the quality of microservices
that are derived from monolith applications, proposing minimal
indicators for use in evaluating the quality of microservices and
Service-Oriented Architecture (SOA).

As a summary, we extracted the research questions and the
broader topics of the existing review papers (in reverse chrono-
logical order) in Table I. This is helpful, as it reifies the focus of
these related earlier works. It also helps to focus our research. Ex-
tending earlier works, this paper conducts a detailed review that

4216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

TABLE I
RESEARCH QUESTIONS OF EXISTING LITERATURE REVIEWS

includes the different phases of the decomposition of monolith
applications into microservices. It extends the findings of the
existing reviews and draws a comprehensive and interrelated
picture of the various decomposition techniques, benchmarks,
and metrics, identifying gaps and outlining future directions. Al-
though several SLRs are presented on the migration of monolith
applications in general and the decomposition to microservices
in particular, there is no single SLR that fully address our
research objective (and consequently our research questions).

III. METHODOLOGY

This paper follows the three-phase literature survey process
(planning, reviewing & reporting) proposed in [28], [29], [30].
The planning phase includes identifying the need for a review
and the development of a review protocol. It is described in
Section III-A The review phase includes selection of the primary
studies, assessment of the studies, data extraction, and data
synthesis. It is detailed in Sections III-B and III-C. Finally,
the reporting phase focuses on documenting the review, which
includes document observation, and the reporting of results. It
is described in Sections IV and V.

A. Planning the Survey

The planning phase examined the research motivation, ulti-
mately leading to the development of research questions.

1) Identifying the Need for an SLR: Of itself, the absence
of comprehensive and up-to-date secondary research examining
monolith-to-microservices decomposition highlights the need
for a comprehensive SLR. Although there are rapid and partial
reviews of the area, their focus is limited to specific aspects of the
migration and they lack an in-depth analysis and organisation of
the methods and algorithms. The majority tend not to address
benchmarking or report on the benchmarking employed. The
searches used in this study have not discovered any comprehen-
sive secondary research that addresses all these aspects and, con-
sequently the research questions in Section III-A2 were derived.
We believe that answering these questions will significantly
contribute towards consolidating and supplementing existing
research with rich analysis.

Furthermore, evidence from earlier research studies indicates
a demand for research of this type, that the topic is of interest
to academic and industrial practitioners, and that the body of
related literature is growing [55]. Our own initial searches

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4217

confirmed this to be the case and established that despite growth
in the volume of publications year-on-year, there was no sys-
tematic, comprehensive, and robust evaluation of the state of the
art focusing on a holistic view of monolith to microservices de-
composition in recent years. It is this position that fundamentally
motivates the SLR presented in this paper.

2) Specifying the Research Questions: When conducting an
SLR, it is crucial to identify relevant research questions with the
capacity to deliver unambiguous answers [28]. We identified
four such research questions in this area:

RQ1 What are the primary phases of monolith-to-
microservices decomposition and the major constituent
elements of those phases?

RQ2 What are the existing approaches, tools and methods
observed in the decomposition of monolith applications
into microservices?

RQ3 What are the metrics, datasets, and benchmarks used
for evaluating and validating monolith decomposition
into microservices?

RQ4 What research gaps can be identified in the current
literature?

3) Defining and Evaluating the Review Protocol: This work
has been conducted in the context of the Future Software
Systems Architecture (FSSA) project based at Dublin City
University and Lero, the Science Foundation Ireland Research
Centre for Software. Formal industrial collaborators include
the FINEOS Corporation and fourTheorem Limited. The re-
view process was led by the first author who prepared the
SLR protocol by selecting the topics and the search strings.
The protocol, as presented below, was internally evaluated by
a team of seven researchers who are members of the FSSA
project working in the area of monolith code migration as well
as two expert practitioners in the microservices industry. The
protocol was applied iteratively and, at each iteration, the scope,
inclusion/exclusion criteria, and the search terms were revised
as appropriate to address the research questions.

B. Selection of Primary Studies

Guided by the research questions, initial terms representing
the research topic were extracted. We identified three main
topics and built the search terms around these topics: Monolith,
Microservices, and Decomposition. To formulate the search
keywords under each topic, we further considered the previ-
ous literature reviews in the area. Using synonyms and related
terms, each of the topics was expanded to include additional
search terms as follows: (i) monolith, existing, and legacy, (ii)
microservice and micro-service, and (iii) decomposition, mi-
gration, identification, extraction, refactoring, modularisation,
transformation, transition, and conversion. The keywords under
the three main topics were combined using the Boolean ’OR’
and ’AND’ operators along with a wildcard(*) representation of
the keywords to ensure a higher recall. The topics and search
strings were reviewed by the third and last authors.

The final search string is represented as: (monolith* OR
exist* OR legacy) AND (microservice* OR micro-service*) AND
(decompos* OR migrat* OR identif* OR extract* OR refactor*
OR modular* OR transform* OR transit* OR conver*). Major

platforms such as IEEE Xplore and ACM Digital Library only
support a fixed number of Boolean operators and wildcards,
effectively forcing splitting the search string into three queries:
(i) (monolith* OR existing OR legacy) AND (microservice* OR
micro-service*) AND (decompos* OR migrat* OR identif*), (ii)
(monolith* OR existing OR legacy) AND (microservice* OR
micro-service*) AND (extract* OR refactor* OR modular*),
and (iii) (monolith* OR existing OR legacy) AND (microservice*
OR micro-service*) AND (transform* OR transit* OR conver*).
After removing duplicate studies, the results from the three
queries were combined.

1) Initial Search: We searched on the established platforms
for the publication of robust peer-reviewed computer software
engineering research, including IEEE Xplore, ACM Digital
Library, Science Direct, SpringerLink, Wiley Online, and Sco-
pus. Where possible, we conducted an advanced search on all
metadata available on these platforms. Google Scholar has been
used to promote the retrieval of recent papers that may not yet be
indexed on the established publication platforms. The search was
conducted on all platforms by the first author in collaboration
with the fifth and sixth authors.

We also adopted Publish or Perish1 to harvest and organise
the metadata, which is also used as an additional sanity check
to ensure the discovery of relevant papers. The last search on
the platforms was conducted on the 28th of October, 2021.
We restricted the search to peer-reviewed scientific publications
found in journals, conferences, and workshops between 2015
and 2021 inclusive, as microservices literature only started to
gain significant momentum from 2015 on [52], [59]. A total of
5022 studies were initially retrieved.

2) Refinement: The screening of the studies was conducted
by applying general criteria for the exclusion of studies on the
search results. To refine the studies, we applied filtering based
on: (i) the title, (ii) the title, abstract and conclusion, and (iii)
full-text analysis, by applying the inclusion and exclusion crite-
ria. Studies were screened by applying the following exclusion
criteria (EC): (EC1) Duplicate Study, (EC2) Books and Patents,
(EC3) Non-peer-reviewed Study, (EC4) Secondary Study, (EC5)
Study written in languages other than English, and (EC6) Study
published before 2015. Note that there is an additional step at
the end of the process to protect against oversight of significant
pre-2015 published material (details of which are provided at the
end of this subsection). Further studies that did not satisfy the
inclusion criteria were removed. The three inclusion criteria (IC)
are: (IC1) the primary objective of the study should be the de-
composition of monolith applications into microservices, (IC2)
the study should include structured and preferably automatic
or semi-automatic decomposition approaches, and (IC3) the
study should sufficiently describe the decomposition method,
code, algorithm, and its evaluation (i.e., abstracts and extended
abstracts are not included).

Refinement Step 1: By merging the results obtained from the
search platforms, we automatically removed duplicate studies,
incomplete data, books, websites, and reports which resulted in
968 studies. Refinement Step 2: Refinement step 2 was conducted
by inspecting the title of the studies. The main focus in this

1https://harzing.com/resources/publish-or-perish/

https://harzing.com/resources/publish-or-perish/

4218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

step is to further refine studies that do not satisfy the inclusion
and exclusion criteria. This step resulted in 126 studies. In
circumstances where it was not possible to decide based only
on the title, the studies are promoted to the next refinement
step. Refinement Step 3: The studies that passed refinement step
2 are further refined by carefully inspecting the abstract and
the conclusion sections. After the application of the criteria, 92
studies passed to the full-text review. Refinement step 2 and
Refinement step 3 were conducted by the first author as they
involve applying objective exclusion criteria using the collected
metadata and because this was an initial filtering only, to be
refined by further group-wise filtering later on.

Refinement Step 4: Next, a full-text review of the studies
was conducted against the inclusion criteria, resulting in 33
selected papers. Refinement step 4 which is based on the full-text
analysis, was conducted by the wider team strictly applying
the inclusion and exclusion criteria by organising a series of
weekly literature review presentations with the third, fifth, sixth,
and seventh author. Specifically, the first and the fifth authors
jointly participated in the full-text screening by focusing par-
ticularly on the methodology, experiment and evaluation sec-
tions. Their deliberations were presented at a series of literature
review meetings conducted jointly with the first, third, sixth
and seventh authors to decide the final selection, based on
the full consensus reached after these review meetings. These
review presentations were venues for critically reflecting on the
reviewed studies, filtering studies, identifying gaps, assessing
the validity of proposed methods fostering theoretical debates
and even triggering replication of selected proposed methods.
Additional high-level review meetings were conducted to further
scrutinise the M2MDF framework and the associated analysis
results, which have been conducted by the first, second, third,
fourth, and last authors. The details of the studies following each
refinement step are included in the replication package [87].

Snowballing: One forward and backward snowballing itera-
tion [88] was then conducted by the first author, on the 33 papers.
Using backward snowballing, we extracted 941 references from
the reference section of the studies. Using forward snowballing,
we extracted 594 studies citing the 33 selected studies. After
extracting the references and citations from the 33 studies, we
conducted two major refinement steps each containing addi-
tional minor refinement steps discussed as follows. Refinement
Step 5: We combined the forward and backward snowballing
results and filtered out duplicate and incomplete records, along
with books, patents, non-peer reviewed studies and publications
before 2015 resulting in 212 studies. Refinement Step 6: Again,
we compared the 212 studies with the 968 studies obtained
from the literature search to further refine the studies. Further
inclusion and exclusion criteria are applied on the full-text of
the studies. As a result, an additional two studies from Springer-
Link and the Association for the Advancement of Artificial
Intelligence (AAAI) were included in the study. The details of
the snowballing process and its results are also included in the
replication package [87].

Quality Assessment Criteria. Based on the quality assessment
of primary studies proposed in [89], [90], the following quality
assessment questions that correspond to the inclusion criteria
are adopted to determine the quality of the studies concerning

TABLE II
SUMMARY OF THE SEARCH RESULTS

the objective, method, and coverage of the studies, respectively.
Q1) Does the study’s primary objective explicitly focus on the
decomposition of monolith applications into microservices? Q2)
Does the study include structured and preferably automatic
or semi-automatic decomposition approaches? Q3) Does the
study sufficiently describe the decomposition method, code,
algorithm, and evaluation? These questions are implicitly used
in the refinement stages. For each candidate study during a
particular refinement stage, each question is answered (in the
order of its appearance) using a numeric value 0 or 1, where
the value 0 indicates that the study does not answer the specific
question, and the value 1 indicates that the study answers the
question. Studies that answer all three questions are included in
the review.

Munir et al. [91] defines quality assessment for SLRs in terms
of ‘rigor and relevance’. Note that two of our quality assessment
guidelines address relevance. But, in this case, ‘rigor’, referring
to the quality of the empirical work performed in the primary
studies, is not appropriate as it leads to an assessment of the
quality of empirical results that are then synthesized with the
‘whole’ to address the RQ. Instead our third criteria refers to
the primary studies explicitly addressing the component phases,
approaches, tools, methods, and (evaluation) metrics, datasets
and benchmarks in monolithic application decomposition. This
is in line with the stated research questions in this work, but does
give a Systematic-Mapping-study feel to this SLR.

An additional, critical review of the overall methodology
and research findings has been conducted by the eighth and
ninth authors, who are FSSA project Advisory Board Members
and have therefore been generally advising on FSSA technical
implementations. This final critical review process was iterative
in nature and required a number of review cycles and feedback.

Ultimately, 35 relevant studies (see Table II) are considered in
this research. The search and snowballing process is summarised
in Fig. 1. Note that from this section onward, we refer to the
selected studies using their chronological study number as P1,
P2,..., P35 to explicitly highlight and distinguish included studies
from other references (refer to Table III).

As all the works included in this study are from leading
academic dissemination fora (publishers/conferences/journals),
where they have already been peer-reviewed for quality by expert
reviewers, we did not see the need to re-iterate with ranking
based on quality review for these papers, beyond the quality as-
sessment criteria already performed. It is nevertheless important
to emphasise that different sources, even among those subject to
peer review, will not present with the same quality level. Indeed,

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4219

Fig. 1. SLR search and snowballing steps.

it has been observed that there exists no standard definition of
quality for software engineering research studies [92].

As a confirmative step, we examined works in the 2011–2014
time frame as a means to reduce the risk that any significant
earlier work was not incorporated into this systematic review.
The original search string was explored using Google Scholar.
A total of 19 additional papers were discovered in this step. Nine
studies do not relate to monolith to microservices decomposition
at all and were excluded. Five studies are thesis reports, where
two reports are written in languages other than English. The five
studies are excluded because of EC3. The other three results
are book publications excluded due to EC2. Only two studies
discuss monolith and microservices in the software engineering
context: the first covers microservices development with a brief
mention of monolith partitioning [93] and did not satisfy IC2.
The second study presents the experiences and lessons learned
in incremental migration and refactoring [94]. A revision of this
second paper is published in 2016 and it is therefore covered in
the 2015–2021 timeline.

C. Analysis of the Data

The analysis of data and the steps (Refer Fig. 2) that are em-
ployed to extract the data are discussed in the following sections.

1) RQ1: Grounded Theory Components: The M2MDF anal-
ysis was primarily based on memoing, coding, constant compar-
ison and theoretical sorting on the selected literature, proposed
in [95], [96] as part of a grounded theory (GT). Given the
diverse, informal, and diffuse nature of the initial memos and
codes, it would be impractical to list those memos and codes
in the replication package, and ultimately of limited utility
to the reader due to their overwhelming number. In addition,
readers interested in replicating the approach in a truly GT
fashion should not be guided/constrained by our codes. Hence,
instead we present a snippet of a selected paper [P24] with the
associated memos and codes, to give the reader a feel for our
approach.We wish to highlight that given the nature of the study,
it would not have been appropriate to apply a full grounded
theory process: GT activities such as theoretical sampling and
theoretical saturation, for example, would have little meaning
when applied to a pre-defined dataset (the 35 papers).

Obvious and Inviolable Element Identification: It should be
noted that certain migration elements were obvious and invi-
olable (even if they had not been assembled in an end-to-end
framework up to this point). For example, it is clear that monolith
data collection is required. Analysis of that data, and iden-
tification of the resultant microservices are also fundamental
migration steps.

4220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

TABLE III
SELECTED STUDIES

Beneath these (and other) migration phases, further sub-
classification was required. In some cases, these sub-
classifications were already explicitly provided in previous
studies. For example, two of the four categories for data col-
lection were previously identified in [97], while a further data
collection category was identified in [P28]. A further example
of the often-explicit presentation of sub-categories can be seen
in [33], which explicitly identifies both Static Analysis (SA)
and Dynamic Analysis (DA). [33] also identifies Model-Driven
(MD) analysis which is also presented in our results, but where
it is ultimately classified as Domain Analysis. In [33], we also
note that Examples, Experiments and Case Studies are reported
as the major categories for evaluation. These are noted elsewhere
in the literature and directly feed into the derivation of these
sub-categories.

Element Aggregation: Thus, the research is concerned with
knitting existing, explicitly-identified and established categories
into an end-to-end decomposition framework. Hence the ele-
ments of GT were combined with a light form of quantitative
content analysis [98] in a mixed method. In studies where
the information is not explicitly presented, we synthesised the
appropriate phases and sub-categories based on GT, employing
an analysts’ lens of phases and approaches-within-phases, in
the organisational spirit of [99]’s approach to GT. In studies

where phases and sub-categories were explicitly identified, a
light form of content analysis was performed where those phases
and sub-categories were noted and quantified.

Iterative Refinement: At the end of each full-text review, this
information was analysed, compared and assigned categories. A
new category was assigned in cases where no existing category
was deemed suitable. The framework was revised incrementally
to accommodate the new categories and to refine existing cate-
gories.

2) RQ2–RQ4: To answer RQ2, RQ3, and RQ4 a data-
extraction template was generated based, in part, on the emerg-
ing M2MDF, but also on the specific RQs. After application
of this template to individual sets of papers, review meetings
presented the results of the data extraction process to the wider
group for discussion and review. While the data analysis activity
was undertaken by the first author, the analysis outputs were
reviewed by all authors. Full-text versions of all the studies were
shared among all authors enabling them to assess the accuracy
of the process.

Using the data collected from the data extraction stage, the
data synthesis stage focused on comparing, organising and
re-organising the extracted data in a format that answers the
research questions. It is important to note that this process was
also revisited by the group, every time a paper was reviewed.

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4221

Fig. 2. Data analysis steps. The data analysis step begins with reviewing
the full text of each selected paper step-by-step by applying GT components,
identifying and aggregating elements. The process involves several iterations of
reviews and presentation meetings resulting in a continuous refinement of the
M2MDF and extraction of the data required to answer the research questions. A
simplified excerpt of the memoing, coding and aggregation process is included
at the bottom of the diagram.

After several revisions conducted during the literature review
presentation meetings, we reached the final analysis result.

IV. LITERATURE REVIEW

Initially, Section IV-A presents an overview of the literature
reviewed in this work. Thereafter, Section IV-B discusses the
organisation of existing monolith-to-microservices decomposi-
tion research, as per RQ1. Then Section IV-C addresses RQ2
by focusing on the collection and analysis of monolith data, and
on the resulting microservices identification and optimisation.
Section IV-D reports on the evaluation of approaches and thus
addresses RQ3, with Section IV-E briefly reporting on deploy-
ment of identified microservices to complete the description of
the organisational framework.

A. Overview of the Selected Literature

In this subsection, the profile of the research included in
this review is presented in terms of date of publication and
publication venue.

1) Temporal Distribution of the Studies: On the evidence
of our analyses, research in the decomposition of monoliths
to microservices is gaining significant traction in recent years.
Consistent with [47], since the time the term “microservice”
was discussed in 2011, the number of studies has shown a steady
increase from just a single paper in 2016, to three papers in 2017,

Fig. 3. Temporal distribution of the studies.

four in 2018, seven in 2019, 11 in 2020 and nine to October in
2021 (refer to Fig. 3).

Semi-automatic migration was first identified in 2016 [24]
and since then, both semi-automatic and automatic decomposi-
tion approaches have been suggested. The early works propose
solutions to decompose monolith applications to microservices
using static, dynamic, and evolutionary approaches. Certain
recent papers introduce genetic algorithms [21], [25] and Neural
Network methods [62]. These recent contributions examine the
use of feature evolution to extract microservices.

2) Publication Venue: The studies were distributed across
several conferences. The Asia-Pacific Software Engineering
Conference (ASPEC) and the European Conference on Service-
Oriented and Cloud Computing (ESOCC) contributed three
studies each. The Service-Oriented System Engineering confer-
ence (SOSE), IEEE International Conference on Web Services
(ICWS), the European Conference on Software Architecture
(ECSA), International Conference on Advanced Information
Systems Engineering (CAiSE), International Conference on
Service-Oriented Computing (ICSOC), and the International
Conference on Software Architecture (ICSA) have contributed
two studies each (refer to Table III). The rest of the studies
were distributed across major software engineering conferences.
The five journal papers are published in IEEE Transactions
on Software Engineering, the Journal of Systems Architecture,
the Journal of Systems and Software, Software Practice and
Experience, and Scalable Computing: Practice and Experience.

Of the 35 papers included in this review, 12 were published by
IEEE, 12 by Springer, five by ACM, three by Science Direct, and
one each in Web of Science, Wiley Inter Science, and the Asso-
ciation for the Advancement of Artificial Intelligence (AAAI).
This analysis demonstrates that the publication of microservices
migration research is fragmented across conferences ranging
from generic software engineering to more niche web services
events. This is perhaps not surprising as the core architectural
migration challenge is fundamentally a software engineering
one, but one that may be implemented in the context of taking
greater advantage of web/cloud-based computing innovations.

4222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

Fig. 4. Monolith to microservices decomposition framework (M2MDF) The maturity spectrum (x-axis) plots newer research areas further to the right, while the
sequence of phases (y-axis) positions earlier phases closer to the bottom. For example, Model-based (MIC) data has been used for data input for some time and
is utilised at the start of the monolith decomposition process (Phase I). In contrast, Version Analysis (VA) is a relatively recent research focus for decomposition
studies, and it is part of Phase II, Monolith Analysis. This framework emerged from the literature following our approach discussed under Section III-C Analysis
of Data particularly focusing on RQ1.

B. A Framework for Classification and Comparison of
Monolith Application Decomposition

Existing decomposition frameworks focus on specific aspects
such as monolith structure analysis [100], microservices valida-
tion [101], and microservices assessment [100], [102], but no
single study captures all phases and techniques available for
robust decomposition. In order to address RQ1, this research
has systematically produced the Monolith to Microservices De-
composition Framework (M2MDF).2

Given the methodology employed, it can be argued that the
proposed framework significantly reflects the phases and ap-
proaches proposed across the incorporated studies. It also serves
as a taxonomy for the classification of the proposed approaches.
The conceptual phases of the framework are as follows:
� Phase I–Input Collection.
� Phase II–Monolith Analysis.
� Phase III–Microservices Identification.

2The M2MDF and the detailed analysis of the literature essentially co-evolved
in this research. Therefore, the M2MDF could be presented either prior to or
following the detailed literature findings. The authors have elected to present
the M2MDF prior to the detailed literature review findings as it will aid readers
in visualising the broader landscape prior to progressing to the details.

� Phase IV–Microservices Optimisation.
� Phase V–Microservices Evaluation.
� Phase VI–Microservices Deployment.
On the left side of Fig. 4, the major phases of a monolith

to microservices decomposition are presented. Although indi-
cated as a sequential process, some studies entirely skip certain
steps. For example, Phase IV Microservices Optimisation is not
observed in all works. By explicitly identifying these phases,
the M2MDF framework, facilitates a scoped analysis of the
individual works by logically partitioning the major activities
associated with the end-to-end migration task. Along with the
framework, we present a mapping of the studies when applicable
(subsequently, in Fig. 5).

Fig. 4 further depicts the relative maturity of individual tech-
niques, where maturity relates to the relative newness of the
technique in the context of monolith to microservice decompo-
sition. Maturity in this context is viewed in light of software
process maturity where a matured process is repeatable, de-
fined, managed, and optimised [103]. Capturing this maturity
perspective is not easily given to quantitative representation,
especially as the adoption of certain techniques will inevitably
overlap. Therefore, the maturity dimension presented in Fig. 4
should be viewed as indicative and not as entirely discrete.

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4223

However, in more-general terms, we can say that techniques
closer to the left-hand side, such as domain analysis and static
analysis have been under consideration for a longer time frame.
Whereas techniques further to the right, such as the incorporation
of version control data, are relatively newer.

1) Phase I–Input Collection: The decomposition efforts
commence by acquiring data that describes the essential char-
acteristics of the monolith application, for example, its domain
model, codebases, log files, or code versions. Practically, many
of these characteristics of the monolith, particularly domain
models, are identified by prior reviewing of design documents,
architecture diagrams, or by interviewing the custodians of the
systems. However, input collection from monolith codebases,
log files and versions are often supported by sophisticated tools
and methods.

One or more of these inputs are used in practice, however, no
single work has been identified that combines all these inputs.
This observation is likely related to the large effort required
to implement any one of these collection techniques and the
significant differences of knowledge and skillsets required to
successfully apply them. Theoretically, all the inputs could be
used in combination by collecting data from domain-driven
artefacts, the source/executable codebase, log files, and the
different revisions of the monolith collected from version control
systems such as Git. The combined use of these various data
sources could be of significant importance, given that greater
volumes of pertinent data hold the potential for improved un-
derstanding of the wider behaviour of a monolith ecosystem
and could contribute to improved decisions concerning monolith
decomposition.

2) Phase II–Monolith Analysis: The monolith analysis phase
focuses on filtering and transforming the collected data into a
representation that is suitable for the subsequent phases. This
phase may adopt multiple stages of analysis including domain
analysis and static analysis to extract the structural relationships
between the artefacts of the monolith, while dynamic analysis
and version analysis focus on enriching the relationship with
frequencies and associations observed on the execution and the
evolution of the codebase over time respectively.

3) Phase III–Microservices Identification: The microser-
vices identification phase uses heuristics to guide the microser-
vices identification process by partitioning the monolith appli-
cation into suitable microservice candidates [104]. Clustering
algorithms are widely used to extract microservices by repre-
senting the monolith data as a graph/matrix and treating the
problem as a clustering problem that tries to identify artefacts
that can be grouped as microservices without any prior aware-
ness of the number or size of the resulting microservices.

4) Phase IV–Microservices Optimisation: Some emerging
studies adopted a two-phased approach to microservice iden-
tification that first generates a large pool of microservice candi-
dates in order to subsequently select the optimal microservice
partitions. Attempts to optimise microservice configurations
in this way have employed genetic algorithms in addition to
cluster-based microservices identification methods. Genetic al-
gorithms assist in the identification of optimal combinations of
packages, classes or methods within the monolith application
using objective functions based on constructs such as cohesion,

coupling, and semantic similarity. Evolutionary algorithms also
employ heuristics to guide the optimal selection of microser-
vices. This microservices optimisation phase is often valuable
when transforming large parts of an existing monolith applica-
tion into microservices, where the efficiency of microservices
interaction and execution in the target system is conceivably
of significant concern. Where just a single microservice is to
be extracted for a specific purpose, this optimisation phase may
not be implemented as no significant microservices orchestration
may be required in the target implementation.

5) Phase V–Microservices Evaluation: Evaluation of the
success of monolith decomposition into microservices has
received limited attention in the literature to date. Most often
the assessment of the resulting microservices is informally
reported by experts evaluating the proposed candidate
microservices. In recent years, more structured evaluation
approaches have been proposed including examples, case
studies, and experiments. Example-based evaluation uses
illustrative examples to show how the identification process is
applied. In case studies, a target monolith is used to evaluate
the migration process in detail by looking at relevant cases,
whereas in experiments, selected codebases are migrated to
microservices and experimentally evaluated, using a range of
quality metrics such as coupling, cohesion, modularity, and
evolvability.

6) Phase VI–Microservices Deployment: The deployment
phase focuses on the implementation of the proposed microser-
vices candidate(s) to evaluate if the proposed technique is suc-
cessful or the extracted microservices candidate(s) exhibit(s)
the desired properties. Many of the existing works have not
reported how the proposed candidate services are built from
the monolith code and delivered as a microservice. While the
previous phases can propose effective microservices, it still
requires a huge effort by the programmers to compose, build,
and repackage the candidate microservice, in order to provide a
complete microservice offering.

C. Existing Approaches, Tools and Methods

This section explores RQ2 by examining the approaches, tools
and methods reported in decomposition studies. This includes
the data gathered, the analyses employed, and the microservice
identification and optimisation methods used in the literature.

1) Phase I. Input Collection: The collection phase involves
the acquisition of monolith application data that can later be
used to identify candidate microservices from within the mono-
lith. The related works are first categorised based on the data
collection methods, and thereafter on the type of data collected.

a) Data Collection Methods: The data collection methods
used in the selected studies are extracted into four categories:
Model-based Input Collection (MIC) [97], Code-based Input
Collection (CIC) [97], Version-based Input Collection (VIC)
(also known as evolutionary coupling [P28]), and Log-based
Input Collection (LIC).

MIC uses domain-driven design artefacts (e.g., data flow
diagrams, entity relationship diagrams, and process models) to
extract the features of the monolith application. CIC focuses
on the collection of the structure and behaviour of the monolith

4224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

TABLE IV
DATA COLLECTION METHODS USED IN THE STUDIES

using the source code or executable code of the application. VIC
uses simultaneous or consecutive versions of the source code
or domain-driven artefacts to extract features that are useful
to characterise the monolith application (essentially because
versioning data can be indicative of significant feature level
contributions over time). Finally, LIC uses log files that are
generated during the run time of the application.

One example of log files are performance logs, which contain
information indicating method-level CPU and memory con-
sumption (and perhaps additional data also) [70]. Alternatively,
web access logs contain information such as client IP, requested
resource URI, timestamp, HTTP status code, and document
size [75]. In some cases, web access logs may, however, include
just a subset of this data, for example the URI, document size
and response time [82].

Additionally, there are studies that combine one or more of
the methods, particularly a combination of CIC either with MIC
(CIC+MIC) or with VIC (CIC+VIC). From the analysis, it is
clear that CIC is the dominant approach. This research did not
identify any study where VIC has been used independently. A
summary of the distribution of the studies based on the type of
collected data is presented in Table IV.

b) Type of Collected Data: Two types of data are promi-
nent in the literature: Static Data (SD) and Dynamic Data (DD).
SD focuses on the source code of the application reflecting the
structure, whereas DD deals with the data generated during
the execution of the monolith application. Data may also be
obtained using MIC and VIC. Model-based Data (MD) focuses
on domain-driven design artefacts, and Version-based Data (VD)
focuses on the change history of the source code. While SD is
the most widely used type of data (42.9%), it is also used in
combination with DD, VD, and MD (refer to Table V).

A frequent combination is the use of SD and DD (SD+DD) to
increase the understanding of the monolith application and raise
the efficiency of the microservices identification process. In [P2,
P6, P10, P13], static data is used to represent the system with a
call graph where the nodes represent components and the edges
represent dependencies between them. Then, operational data is
collected at runtime to identify dependencies and compute the
weight of the edges. In [P16], source code packages are mapped
to bounded contexts using static analysis, while dynamic data is
employed to refine these contexts by computing their associated
runtime frequency. These runtime frequencies can then be used

TABLE V
TYPE OF ANALYSIS AND TYPE OF COLLECTED DATA

in a postmortem analysis to further discover new candidate
microservices.

In a broadly similar fashion to [P13], [P31] uses static code
analysis to represent a call graph of the monolith application,
subsequently overlaying dynamic information to indicate the
frequency of edge execution. This tendency to combine different
types of data is confirmed in earlier research [33], but in our
analyses, we note an increase in combining not only static and
dynamic data but also static and version-based data [P28, P32].
Some correspondence between the data collection methods and
the type of data collected is observable. For example, although
all the methods that use MIC collected MD data, CIC methods
are used to collect either SD or DD. Furthermore, DD collection
is not restricted to CIC, but it is also collected using LIC as in
[P17, P27] where log files are used.

2) Phase II. Monolith Analysis: Monolith analysis strategies
are essentially comprised of three distinct perspectives. The first
perspective concerns the type of analysis employed, the second
perspective is the desired unit of analysis (for example, class-
level or package-level), and the third perspective, depending
on the type of data and unit of analysis, concerns the various
forms of data representation that may be employed. This section
outlines the findings with respect to all three perspectives.

a) Type of Analysis: The studies included in this SLR
suggest that four major analysis types may be used in isolation
or in combination: Domain Analysis (DomA), Static Analysis
(SA), Dynamic Analysis (DA), and Version Analysis (VA).
These analysis types correspond to the type of the collected
data. Although log analysis appears in some of the studies [P12,
P17, P27], the analysis employed is similar to dynamic analysis.
Thus we treat it as a subset of the dynamic analysis.

DomA focuses on the analysis of various models of the mono-
lith application that have been employed during the requirement
analysis and modelling stage of software development [105],
[106], [107], [108] (or those extracted using reverse engineering
methods). DomA includes data flow diagrams, activity dia-
grams, use case descriptions, entity relationship diagrams, and
other UML artefacts that describe the process and intent of the
program. Specific examples of DomA include the business pro-
cess model [P3]; use case specification, business logic analysis,
and data analysis [P21]; dataflow diagrams [P33]; and nanoen-
tities [P35]. DomA is essentially concerned with identifying
domains of interest within the existing monolith. These domains
of interest are key themes or logical functional elements that can

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4225

be observed in the system. DomA is sometimes referred to as
model-driven or domain-driven.

SA is sometimes referred to as static code analysis and is
performed by studying the (non-executing) source code of an
application [109], [110]. Typically, supporting software-based
tooling is employed. Fifteen of the studies relied entirely on
SA, with an additional nine studies using SA in combination
with DA, VA, or DomA. This indicates that SA is a prevalent
and important choice for microservices identification. SA is
fundamentally aligned with static data (SD).

The essential difference between SA and DomA concerns the
fact that DomA analyses the monolith using models employed to
structure/build the source code rather than directly analysing the
actual source code or associated executing programs. In areas
outside of monolith decomposition [111], DomA has been used
to refer to a SA technique that involves analysis of the flow of
data in a program source file.3

DA is sometimes referred to as dynamic code analysis and
involves the examination of the properties of a program while
it is executing [112]. DA aids the understanding of the runtime
behaviour of an application. DA of monolith applications can
be online (where the program is examined as it executes) us-
ing code instrumentation features provided by IDEs (such as
AspectJ Runtime, AspectJ Tools, and AspectJ Weaver) [113].
DA may also be conducted offline, where the runtime data is
collected and stored for later analysis (for example, in log files).

DA collects rich information about executing programs, in-
cluding the thread id, calling class, called class, calling methods,
called methods, method parameters, timestamp, and database
queries. Where DA is performed on non-object-oriented pro-
grams, collected data may refer to functions in place of methods
and classes. Although DA is getting more attention recently, the
published literature suggests that it remains less utilised. Only
20% of the studies used DA exclusively, with a further 20%
using it in combination with SA or DomA. This could be due to
the difficulty of collecting the dynamic data during the execution
of the monolith and/or the overhead it introduces to the running
monolith [113].

VA examines monolith versions to learn how the monolith was
extended or changed over time. Although no study applied VA
exclusively, VA has been applied in combination with SA. For
instance, SA can produce a call graph that is supplemented with
evolutionary coupling data (the code that was co-committed)
[P28]. An alternative to this approach involves injecting VA into
early-stage SA while the monolith’s graph is still under construc-
tion [P32]. This alternative approach shares some conceptual
underpinning with [P13] in that, artefacts of the monolith are
analysed using source code repository information to identify
items that appear to co-evolve or evolve according to a similar
timeline. Using this approach, increased co-evolution can raise
the edge weighting between the affected items.

[P16] combines SA, DA and DomA. Process documentation
and interviews, along with context diagrams, use cases, domain
context and context maps are first used to identify context
boundaries. Static analysis and dynamic analysis are then ap-
plied in order to further refine the bounded contexts. Although

3https://glossary.istqb.org/en/term/data-flow-analysis

TABLE VI
UNIT OF ANALYSIS (GRANULARITY)

this approach combines three of the four identified analyses,
the effort required to conduct such detailed domain analysis
may render it a less attractive solution (this may be particularly
relevant for larger monolith applications).

b) Unit of Analysis: Existing research on microservices
decomposition uses a wide spectrum of granularity when ex-
tracting microservices. Unit of analysis in this review refers to
the smallest unit of the system a study uses when seeking to iden-
tify microservices. Units can be as small as individual methods
or functions, ranging up to classes and packages. An additional
unit of analysis could involve, in the case of domain analysis,
software artefact-based units. These could, for example, include
use cases and data stores. Table VI presents an overview of
the unit of analysis adopted by the studies identified in this
review, with the following paragraphs providing a summary of
the different approaches.

Method-level analysis explores the use of methods as the base
unit of analysis, thereafter extracting microservices by recom-
bining highly-related methods [P2, P6, P14, P31, P34]. In this
approach, one method from a given class could be merged with
methods from other classes to make a new microservice. How-
ever, method-level analysis, due to its fine granularity, requires
relatively large hardware computing resource support. The im-
plementation of method-level microservices may also require
additional validation and testing, particularly when methods are
extracted from different classes and merged into a new service.

This validation process includes, initially, ensuring the be-
haviour of the method when it is run outside of its class and,
subsequently, ensuring how the composed methods function
when they are used in combination with methods from other
classes. Existing research has not yet addressed these challenges,
however, method-level analysis can potentially produce highly-
optimised microservices as it can cross class boundaries, thus
identifying chains of related methods. Applying method-level
analysis, it is possible to extract individual methods as microser-
vices, which may be particularly well-aligned with Function-
as-a-Service (FaaS) based cloud computing [14]. Certain utility
methods, for example a method that provides a payment capabil-
ity across a monolith, could also be identified using method-level
granularity.

Class-level analysis elevates the base unit of granularity up
to the level of a class. Given that classes perform a vital role
in established monolith programming languages, for example,
Java and C++, and that the computational analysis cost at a class-
level is likely to be considerably less than at a method-level,
it is perhaps unsurprising to discover that class-level analysis

https://glossary.istqb.org/en/term/data-flow-analysis

4226 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

granularity is widely adopted in the literature [P1, P4, P5, P8-13,
P15, P18, P20, P22, P24, P26, P28, P29, P30, P32].

Using class-level analysis, classes within a monolith are clus-
tered based on several criteria including coupling and cohesion
[P10, P21, P26], topic modelling [P1, P5], and business object
modelling [P9, P30], leading to the identification of candidate
microservices. They may be represented as nodes in a call graph,
with edges in this case representing various object-oriented con-
structs, including object references, inheritance relationships,
and evolutionary couplings. Later, this information is used to
cluster closely related classes into candidate microservices.

Package-level analysis, as implemented in [P7, P16, P19,
P25], adopts a higher level granularity than class-level or
method-level analysis. Source code packages (SCPs), which
may be comprised of large numbers of classes and associated
methods, are used as the base unit of analysis. The general
approach with package-level analysis involves identifying pack-
ages that can be grouped together as microservices. Package-
level analysis does not seek to split packages when projecting
candidate microservices. This may be advantageous where pack-
ages are highly decoupled and exhibit high internal cohesion.
However, if packages are very large or externally dependent
for end-to-end service completion, the microservices resulting
from this approach could be prohibitively large in size. For
well-managed codebases where larger services are preferred,
package-level analysis could offer a fast-track to miniservice or
macroservice [114] identification. In such a scenario, product-
level decomposition risks may be reduced as there is less frag-
mentation of the existing monolith.

Software artefact-based analysis [P3, P21, P33, P35] involves
the use of artefacts for candidate microservices identification.
Although the term software artefact refers to various by-products
of a software development process [115], [116], in the decom-
position context, it mainly refers to documents such as data flow
diagrams, use cases, process models, and ER diagrams [P21,
P33]. Source code and executable files are not included in this
type of analysis. This is the least clear of all the proposed analysis
approaches, perhaps because the mapping between actual source
code classes and meta-level artefacts is not always obvious.
Indeed, meta-level artefacts may not be produced in all settings,
or they may become inconsistent with the codebase over time.

Analysis based on Uniform Resource Identifiers (URIs) [P17,
P27] occurs in the context of web-based monoliths. URIs repre-
sent different resources available to a system. With URI-based
analysis, a monolith is decomposed based on its association
with, and the frequency of its association with, URIs at runtime.
Finally, one paper [P23] has not explicitly reported the unit of
analysis except indicating that it used software components.

c) Input Data Representation: The input data is repre-
sented using a variety of data structures. For example, several
studies (51.4%) [P2, P3, P4, P5, P9, P11, P13, P19, P22, P25,
P26, P28, P29, P30, P31, P32, P33, P35] have used graphs for
input data representation. Graph nodes are used to represent
granular elements such as methods, classes, packages, and pro-
cesses, while edges represent the call relationship between the
nodes. Both directed edges (that indicate the flow of information
or the direction of the call) and undirected edges are employed
to represent rich data. The edges may carry further information

including static and dynamic call frequencies or weights, process
flows, and similarity and distance metrics. Graphs can also be
used in combination with topic modelling that uses bag of words
[P25].

Execution traces in tuple form have been used to represent
input data (14.3%) [P8, P10, P17, P24, P27]. This involves
tracking various items potentially relevant to the decomposi-
tion task, including the thread Id, calling/called class names,
calling/called method names, parameters and timestamps. Fur-
thermore, indicators for entry and exit methods can be retained
for the tuples. Although there is no clear distinction between
data representation using graphs and matrices, there are papers
that explicitly use matrix or vector representations (14.3%) [P1,
P6, P12, P18, P20], set (5.7%) [P21, P34], and word embedding
[P14] as sets. Extended Backus-Naur Form (EBNF) is used in
[P23] to formally represent software components. The remain-
der of the studies do not explicitly report their data representation
methods (8.6%) [P7, P15, P16].

3) Phase III. Microservices Identification: This section
presents the microservice identification tools reported in the lit-
erature. Thereafter, the microservice identification methods are
presented. These generally fall into two categories: rule-based
approaches and cluster-based approaches.

a) Microservices Identification Tools: Some preliminary
work has been carried out to build tools for microservices
decomposition. One such tool is Service Cutter [P35] which
has been used not just for microservices identification but also
for initial attempts to benchmark effectiveness in [P13, P21,
P33, P34]. Various other tools have been developed explicitly
towards a microservice extraction agenda using static and dy-
namic data. Kieker [P12, P24] extracts dynamic data from Java
applications [117], Dbeaver [P16] is used to extract database
tables accessed by a monolith at runtime, ExploreViz [P16] is a
tool for 3-D visualisation of candidate microservices based on
static and dynamic data, and OpenAPI (formerly Swagger) is
a language-agnostic interface that is used to define and extract
web service interfaces.

Tools such as Arcan [P25], DISCO [P10], Microservice Miner
[P11, P13], MSExtracter [P26], Decomposer [P34] and Scipy
Python Library [P22] are also used to assist in the extraction of
microservices. Each of these tools supports specific extraction
algorithms which are identified in the respective papers. These
data collection tools are typically built to support specific pro-
gramming languages (usually Java) and are therefore not imme-
diately applicable to codebases in other languages. Additionally,
various in-house algorithms have been developed as part of the
studies [P9, P18, P24, P30] and have been utilised in the related
literature. This demonstrates that software-based tools are an
important dimension when decomposing monolith applications
into microservices.

b) Rule-Based Microservice Identification Methods:
Rule-based identification methods involve varying degrees of
direct human involvement and engagement in the process by
providing some guidelines or rules about how to partition the
monolith source code. Although it covers only 11.5% of the
studies, rule-based methods [P11, P19, P21, P33] are observed
in model-driven approaches, with the rules being defined
based upon prior knowledge of the application domain and the

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4227

experience of the decomposition engineers, such as in [P19,
P21, P33]. Rules make extensive use of dataflows, use cases,
and data stores as input, which could produce high-quality
results. In [P33], the authors formulate four rules to apply on
purified data flow diagrams. These include, for example, rules
related to the number of inputs, and operations included in a
single business process.

Although capable of producing microservices with fine-
grained service boundaries [P21], rule-based approaches require
significant manual human effort owing to their high dependency
on expert knowledge. This limitation may render rule-based
approaches less attractive for the decomposition of larger and
more complex codebases. Rule-based methods have also been
used in combination with SA and DA, for example in [P11, P16],
where abstract syntax trees are analysed, followed by manual
inspection of the resulting candidate microservices.

c) Cluster-Based Microservice Identification Methods:
We use the term cluster-based microservice identification meth-
ods to refer to various unsupervised machine learning algo-
rithms. These algorithms are widely observed in the literature,
and they tend to favour different forms of statistical clustering.
Many clustering techniques have been proposed, including hier-
archical, K-means, affinity propagation, Girvan-Newman, fast
community, SArF, Minimal Spanning Tree (MST), Epidemic
Label Propagation, collaborative clustering, and the Hungarian
method as in [118]. While variants of hierarchical clustering
algorithms are used to generate dendrograms that identify the
cutting points for the desired number of microservices, some
require prior selection of the cluster size, but others determine
the cluster size automatically.

Heuristics-based clustering, as used in [P30], defines two
rules related to subtype and common subgraph (a step which
enables the grouping of call graphs). The CO-GCN3 (Clustering
and Outlier-Aware Graph Convolution Network) approach has
also been applied to cluster classes [P4]. This demonstrates that
neural network (NN) based approaches are considered to have
some value in microservice identification. Indeed, it is claimed
that NN-based approaches can present improved results when
compared with the widely used clustering variants [62]. Other
contributions use genetic algorithms [P2, P12] to partition the
classes into cohesive but loosely coupled clusters. This involves
rearranging the groupings over a number of generations and
mutations. Topic modelling, using Latent Dirichlet Allocation
(LDA) and Seeded LDA (SLDA) algorithms, have also been
applied in dependency graph analysis and topic detection for
microservices identification [P25].

An overview of the reported unsupervised identification al-
gorithms is presented in Table VII, which demonstrates that
a wide variety of algorithms have been applied to identify
microservices from monolith applications. However, it should be
noted that the use of clustering algorithms for the identification
of microservices from large-scale monolith applications has not
yet been explored in-depth in the literature. This may be due to
the lack of resources and access to large-scale (millions of lines
of code) enterprise systems. Thus, further research is warranted
to determine the efficacy of clustering based analysis for larger
systems, especially when method-level granularity is selected.

TABLE VII
UNSUPERVISED MICROSERVICES IDENTIFICATION ALGORITHMS

4) Phase IV. Microservices Optimisation: Although mi-
croservices optimisation can be integrated into the identification
phase, recent studies have treated the optimisation method as a
distinct phase [119]. Unsupervised clustering renders multiple
microservices candidates which can be used as input to an
optimising algorithm, for example, a genetic algorithm. Further-
more, fitness functions have been proposed as way to evaluate
proposed microservices.

a) Optimisation Algorithms: Distinct from the clustering
algorithms applied to identify candidate microservices, genetic
algorithms have been utilised to refine optimal combinations
of software units (for example, classes) in pursuit of higher
optimisation in the target microservices system [P12, P24]. Opti-
misation algorithms are less popular in the studies: 29/35 (82%)
studies have not used them. However, they are gaining popu-
larity in recent studies (in the past 3 years) where three studies
[P12, P24, P26] used NSGA II (Non-dominated Sorting Genetic
Algorithm II) [120], one study [P4] used NSGA III, and another
study [P23] used a combination of NSGA II and SPEA II (a
Strength Pareto Evolutionary Algorithm) [121]. The Study that
used CO-GCN3 [P4] has employed the ADAM optimiser [122].

Genetic algorithms have shown improvement in identify-
ing microservices when used in combination with clustering
algorithms [P24, P26]. However, a recent (and still ongoing)
study suggests that the use of NSGA-III in multi-objective op-
timisation could contribute to efficient microservices candidate
identification without going through the clustering step [119].

b) Connectivity Fitness Functions: Structural and Con-
ceptual Intra-Connectivity and Structural and Conceptual Inter-
Connectivity fitness functions are used to assess the optimisation
process in [P24]. Structural Connectivity is calculated based on
the number of edges between classes in the so-called functional
atom groups, whereas Conceptual Connectivity is calculated
based on shared terms in the class identifiers. Fitness has also
been evaluated on the basis of CPU and memory consumption

4228 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

where candidate microservices are extracted at a class-level
granularity using NSGA-II [P12].

D. Phase V: Microservices Evaluation

In this section, we investigate the metrics, datasets, and bench-
marks that are used for evaluating and validating the extraction
process and its results. For the purpose of this work, we classify
evaluation efforts into two categories for discussion: the metrics
employed for evaluation and the benchmarking systems used as
the basis for the evaluation of datasets.

Evaluation metrics allow us to estimate candidate microser-
vice qualities, by characterizing and quantifying their relevant
features. These metrics enable architects to understand, com-
pare, and improve candidate microservices and decomposition
methods. In contrast benchmarks and datasets refer to the sys-
tems and system artefacts chosen as the subject matter for the
decomposition.

The majority of the studies (88%) have reported the evalu-
ation of their resulting microservices. 71% of the studies have
used some evaluation metrics, whereas 17% reported the use
of manual evaluation. All identified papers from 2021 [P1-P9]
have used metrics to evaluate their results. But this was not the
prevailing case in earlier research which incorporated higher
levels of manual evaluation [P29, P33, P34, P35]. Only four
studies did not report the evaluation or do not evaluate the
resulting microservice candidates at all.

1) Evaluation Metrics: Analysis of the literature suggests
that evaluation metrics are comprised of coupling metrics, co-
hesion metrics, non-functional metrics, and cluster size metrics.

a) Coupling Metrics: The most prevalent and stable met-
rics with long-lasting literature support in the software develop-
ment domain are coupling and cohesion [57], [123], [124]. While
coupling measures the degree of dependence between different
microservices [57], cohesion measures the single responsibility
of a microservice. Apart from the generic coupling measure used
in [P2, P10, P15, P20, P32], many variants of coupling metrics
are used in the reviewed studies. Afferent coupling and efferent
coupling [P3, P21], structural coupling [P18, P30], instability
[P3, P21], and Interface Number (IFN) [P4, P5, P8, P24] are used
across the studies. Whereas some of these coupling variants are
well understood in the software engineering domain, the param-
eters used to compute the metrics vary, and it is this observable
variation that makes the comparison of different studies difficult,
even when seemingly identical coupling metrics are assessed.

b) Cohesion Metrics: Typical cohesion metrics reported
in the literature, include Lack of Cohesion (LOC) [P2, P9,
P14, P15, P18, P30] [125], Cohesion at Message level (CHM)
[P1, P5, P24, P26], Cohesion at Domain level (CHD) [P1, P5,
P24, P26], and relational cohesion [P3, P21] as in [126]. Other
related metrics in this category are modularity [P2, P9] and
structural modularity (SMQ) [P4, P5, P8, P24] which are used to
measure the strength of the resulting microservices. Conceptual
similarity using the number of shared terms among services and
structural similarity using the number of calls between selected
artefacts are used in computing SMQ in [P24]. These metrics
are used to measure the strength of the dependency between
artefacts that make up the microservice, thus indicating the

cohesion of a microservice. Methods that employ graph-based
representations tend to also use coupling and cohesion metrics
along with the number of imports, number of calls between arte-
facts, and structural and semantic similarities. This association
demonstrates that effective automated microservices extractions
are largely dependent on variants of cohesion and coupling
criteria.

c) Non-Functional Metrics: Other non-functional metrics
are also utilised to evaluate microservices. Execution time [P7,
P12, P18, P27, P30], CPU usage [P7, P12, P18], memory
usage [P7, P12, P18, P27, P30], and network overhead [P2,
P18] are the widely used performance measures. Efficiency is
also employed as a metric. It is measured by comparing the
execution time of a monolith versus a microservice [P6, P30].
By comparing memory and disk usage over time [89] [P6, P30],
scalability can be evaluated. There is also evidence of availabil-
ity measurement. This is achieved by comparing the total up-
time and down-time when performing tasks (per 100 requests)
[P6, P30].

d) Cluster Size Metrics: Various clustering size metrics
have also been employed. These include the number of classes
per cluster [P10, P22] and the number of generated microser-
vices (number of clusters) [P9, P28]. Non-Extreme Distribution
(NED) has been used to evaluate the even distribution of the
classes in the clusters [P4, P8, P9]. These measures are usually
based on the count of entities of interest to architects and provide
useful input when comparing the results of different config-
urations of the same microservices decomposition approach.
Manual evaluation, mainly using questionnaires and interviews,
is also used frequently [P2, P11, P13, P15, P29, P33, P34, P35],
particularly in the older studies [P33, P34, P35] (as already
noted).

Coupling and cohesion metrics in combination have become
the most widely used metrics in recent publications [P2, P3,
P4, P5, P15, P18, P21, P24, and P30]. Performance related
metrics are also gaining popularity [P6, P7, P12, P18, P23, P27,
P30], particularly in evaluating the performance of the candidate
microservices in cloud environments. Although there is a rising
interest in using these metrics, there are subtle differences in
their calculation particularly when they are used along with data
collected from static, dynamic, and version-based datasets. A list
of the metrics that are used by two or more studies is provided in
Table VIII. The asterisk (*) in the “Studies” rows indicates that
the study has used additional metrics that are not used in other
studies.

2) Evaluation Benchmarks: Various codebases are available
for the purpose of evaluation, and different validation methods
have been utilised in different studies. It is also the case that
differences in programming languages presents as a distinct
feature of evaluation efforts.

a) Evaluation Codebases: For consistent evaluation of
proposed decomposition methods, the availability of datasets
and benchmarking data is crucial but this is potentially the least
explored area [127], [128]. The selection of monolith applica-
tions for experimental purposes is driven by the availability of
monolith source code (often Open Source Software), the equiv-
alent microservices, and access to the monolith programming
environment. Due to the absence of published and agreed-upon

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4229

TABLE VIII
MICROSERVICES CANDIDATE IDENTIFICATION AND EVALUATION METRICS

evaluation benchmarks, individual studies have generally ap-
plied bespoke evaluations. However, in a positive development,
there is a trend towards increasing the availability of artefacts
and data from experimental decomposition for external analysis.

Recently, certain monolith applications along with their as-
sociated microservices implementations have emerged. These
include JPetStore [P5, P8, P12, P24, P26, P31], DayTrader
[P4, P8, P9, P31], Acme Air [P4, P8, P9, P27], Petclinic [P7,
P9, P29, P32], and Cargo Tracking System [P21, P34, P35].
The other studies comprising this review use unique codebases
to demonstrate and validate their proposed methods. JPetStore
would appear to be emerging as a popular Java monolith for
decomposition experimentation, perhaps because it is relatively
lightweight and makes various versions available. Other op-
portunities for general evaluation also exist in the form of
ChurchCRM, SugarCRM and the Fujitsu Purchasing COBOL-
based application.

The number and purpose of applications that are used in each
study varies significantly. One study has used 200 open-source
codebases to conduct its experiment [P5], whereas another study

has used 21 different codebases [P32]. A further two studies use
seven codebases [P8, P24]. But overall, only 10% of the studies
have used more than four applications as part of their evaluation.
The remainder of studies have used four or less, as follows: four
[P4, P9, P31], three [P15, P34], two [P7, P12, P14, P18, P22,
P26, P28, P29, P30], one [P2, P3, P11, P16, P17, P19, P21, P25,
P27, P33, P35], and zero [P23]. Petclinic and Fujitsu Purchasing
are used for manual evaluation in [P29].

b) Evaluation Methods: Previous reviews [33], [126] clas-
sify validation methods into one or more of the following: case
studies, experiments, and examples. Experiment-based valida-
tion [P1, P3, P4, P5, P6, P8, P9, P12, P14, P15, P20, P23, P24,
P26, P27, P28, P30, P31, P32, P33, P34] is utilised by 60%
of the studies and is the dominant method. One of these works
[P8] uses a survey along with its experiment. Case study [P2, P7,
P17, P19, P21, P25, P29, P35] is the next most dominant method
where 22.8% of the papers applied the approach to evaluate their
methods. A combination of experiment and case study [P18,
P22] contributes 5.71%, and example-based methods [P11, P13]
are also adopted by 5.71% of the studies.

4230 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

Fig. 5. Monolith to microservices decomposition framework (M2MDF) with mapping to individual studies.

Whilst at an earlier point, case studies were reported to
be the primary validation techniques [126], it is clear that
experiment-based validation is both of growing interest and now
the prevailing method. This could be attributed to the progress
made in the last few years towards the availability of widely
applicable metrics and benchmarks, enabling comparison of
different decomposition efforts.

c) Evaluated Programming Languages: A final difference
across studies relates to programming languages. Here we see
that the significant majority (68.6%) examine Java-based appli-
cations [P2, P3, P4, P5, P7, P8, P9, P10, P11, P12, P13, P14, P15,
P16, P20, P21, P22, P24, P25, P26, P28, P31, P34, P35]. PHP
[P18, P30] accounts for 5.6%. Java and COBOL in combination
[P29], Java, Python and Ruby in combination [P32], ASP.Net
[P19], and Python [P17] each account for 2.8%. With 74.2%
of studies using one or more Java-based applications, there is
clearly a strong tendency for decomposition studies to incorpo-
rate Java codebases. This may be because many of the existing
decomposition tools (i.e., for dynamic and static data collection
and analysis) are designed for use with Java [113]. Whilst this
is somewhat appropriate given the prevalence of Java-based
systems, it is also an example of the “researching under the
lamppost” problem [129]. As a result, legacy technologies with
possibly the greatest need for translation into microservices are
studied less.

E. Phase VI: Microservices Deployment

Deployment focuses on the implementation of the extracted
microservices and studying whether the identification process
achieves its objectives. We found just a single study [P27]
that addresses this deployment phase but it does not discuss
the deployment process in detail. In the examined studies, the
lack of technical coverage on the deployment of the extracted
microservices leaves a major gap regarding the suitability for
production environments. This could be addressed, in future re-
search, with industrial case studies where monolith applications
are transformed into microservices and their quality evaluated in
a production environment. Finally, Fig. 5 presents the mapping
of the studies relative to the M2MDF diagram.

V. GAPS AND FUTURE RESEARCH

This section answers RQ4 by presenting the research and
practice gaps in the area of monolith decomposition into mi-
croservices. We categorise these gaps according to the phases of
the M2MDF.

A. Phase I: Collection Gaps

Existing research exploits MIC, CIC, LIC, VIC, or a combina-
tion of these data collection methods. These collection methods

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4231

TABLE IX
SUMMARY OF RESEARCH GAPS AND FUTURE RESEARCH DIRECTIONS

extract SD, DD, MD, or VD to represent the structure and
behaviour of the monolith application. The data provides crucial
information regarding monolith implementation and organisa-
tion, however, this research suggests the following gaps.

i) MIC approaches require significant manual input and ex-
perts with a detailed understanding of the monolith. For large
enterprise applications, this may prove prohibitively slow or
expensive. There would appear therefore to be significant op-
portunity for automation of domain-driven artefact collection.
This process could benefit from studying the decision-making
process of experts to understand the tasks they conduct and the
artefacts they focus on when they try to identify microservices.
It is important to note that such artefacts may not accurately (or
even approximately) reflect the actual system.

ii) Although some studies address the issue to an extent [P13,
P31], data collection methods that efficiently combine static,
dynamic, and evolutionary data are not yet fully employed.

This is further related to the absence of a common formal
representation of the input data and its core content. Up to
this point, call graphs extracted from static data have been
somewhat enriched with dynamic data using the frequency of
the artefacts involved in the call graph. Some papers compute
the static and dynamic data separately, while others combine
the two into one measure (usually in the form of a weighting).
Combining collection techniques can improve the quality of
the microservices identification process since additional per-
spectives bestow increased monolith knowledge (as identified
in other domains [130]).

B. Phase II: Analysis Gaps

This research has identified the following gaps in relation to
analysis phase.

i) When employed in isolation, dynamic data collection
cannot guarantee full code coverage or that all operational use

4232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

case scenarios have been catered for, with the result that the sole
use of dynamic analysis carries increased risk of unintended
operational issues in target microservices systems. To address
this problem, one study [P24] proposes the use of compre-
hensive functional tests that ensure full functional coverage of
the monolith code. However, this has not been systematically
tried and tested. Furthermore, the design and implementation
of tests conveying complete functional coverage can be very
expensive [131] and error-prone. Furthermore, it is foreseeable
that unimagined operational use case scenarios might be acci-
dentally overlooked. Techniques to remedy this problem should
be examined in future research.

ii) Criteria for determining the appropriate unit of analysis
are not presently available. Researchers and practitioners would
benefit from guidance in this area. For example, method level
analysis may be preferred over package level analysis if the
resulting microservices are to be relatively small in size but the
trade-off in complexity and monolith size need to be considered.

iii) The analysis approaches identified in this work do not
examine the efficiency of existing business processes. Rather
the research focus is on a technical evaluation of the monolith
to identify candidate microservices. A monolith-based system
that is in use for many years may not be optimised in respect
of the business processes that the monolith supports. For some
firms, the process of pivoting to a distributed architecture from a
monolith system may require additional business-level concerns.
One of these additional concerns may be the redesign of business
processes delivered in the monolith system. This however is
outside the scope of the current research.

C. Phase III: Identification Gaps

Existing approaches tend to focus on unsupervised methods
[P1, P2, P3, P4, P6, P12, P14, P15, P17, P18, P22, P24, P25,
P27, P28, P29, P30, P31, P32, P34, P35] to extract microservice
candidates, followed by rule-based methods [P11, P16, P19,
P21, P33] that employ domain-driven analysis. However, oppor-
tunities exist for increased use of supervised methods as well as
extended examination of current unsupervised algorithms.

We found no evidence of the application of supervised ma-
chine learning approaches and reinforcement learning methods.
The absence of sufficient training data to support supervised
learning methods is a major constraining factor. A further in-
hibitor to supervised learning techniques stems from the absence
of a generalised conceptual representation of the decomposition
model and process. Input data and expected output data formats
and structures would need to be developed in order to support
future supervised learning techniques.

However, it should not be inferred that these techniques
have no potential value in this space. For example, supervised
techniques might increase the opportunity for human involve-
ment in the decomposition loop. This human agent could be
an established expert for the monolith under examination, and
as such, could raise the quality of decisions reached. Owing
to their potential as complementary or independent techniques,
supervised methods and reinforcement learning techniques have
been identified as future research directions.

D. Phase IV: Optimisation Gaps

The optimisation phase has to-date received only modest
attention. NSGA-II [P12, P23, P24, P26] and NSGA-III
[P4] [119] have both been employed. Defining optimisation
functions that represent the desired characteristics of the final
output requires further research, along with supporting metrics.
A neural network-based approach has also been proposed
[P4], perhaps indicating that deep learning algorithms hold
some promise in terms of microservice candidate optimisation.
Research on the use of such approaches in the decomposition
process, either in combination with clustering or in isolation,
can be considered to be in its very early stage. Nevertheless,
advanced evolutionary approaches may become more prevalent
in decomposition projects as the associated monoliths become
larger and more complex.

E. Phase V: Evaluation Gaps

Having identified candidate microservices, evaluating their
suitability is a vital task. Various supporting metrics have been
proposed, including coupling and cohesion measures. A variety
of evaluation methods have also been utilised, including exper-
imental validation, case studies, and manual evaluations. How-
ever, current evaluations of candidate microservices generated
during monolith decomposition exhibit a number of gaps.

i) There is an absence of datasets. Studies have mostly used
small or medium scale (typically less than 200,000 lines of
code) open-source applications, mainly developed using Java.
Although Java is among the top programming languages used to
build enterprise applications, C/C++ and Python are also widely
used in this space [132]. COBOL, which accounts for billions of
code lines in large monolith systems [133] has not received the
attention it warrants. Furthermore, although recent papers show
diverse test cases in their experiment [P5, P8, P24, P32], the
limited overlap of test cases across the studies undermines robust
evaluation. JPetstore is used in six studies, with DayTrader,
Acme Air and PetClinic each used in four studies.

ii) There remains a requirement to determine appropriate de-
composition evaluation metrics. Coupling, cohesion, and many
other metrics are used frequently for the identification and evalu-
ation of microservices [134]. But there is considerable variation
in specific metric definitions. Standardised evaluation metrics
together with benchmarking datasets are essential for candi-
date microservice evaluation. The availability of such resources
would also enable supervised machine learning approaches by
providing essential training data.

iii) Several unsupervised learning algorithms have been pro-
posed, including variants of hierarchical clustering [P8, P15,
P22, P24], kmeans [P6, P18, P27, P31], and Girvan-newman
[P13, P35]. However, a comparative study of these algorithms
when applied to monolith to microservices decomposition is not
available. This frustrates the work of researchers and practition-
ers, especially in terms of algorithm selection. This gap needs to
be addressed by making experimental data and the source code
openly available (as in P24) to encourage comparison.

iv) The use of semantic similarity (sometimes referred to as
conceptual similarity) is increasing in recent years [P6, P18, P24,

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4233

P32, P34]. Thus, there appears to be opportunity for further use
of these techniques as an enabler of program understanding, for
example by integrating semantic similarity measures such as Wu
& Palmer [135], Lin [136], and Resink [137].

F. Phase VI: Deployment Gaps

To date, just a single study considers the deployment of ex-
tracted microservices [p27]. This is undesirable because the ul-
timate test of microservice fitness will only arise once deployed.
Through examination of deployments, errors and inefficiencies
in microservice extraction methods can be identified.

Though not strictly a deployment concern, there is also an
absence of end-to-end tooling to automate (or partly automate)
the identification, extraction and deployment of microservices.
Such tooling might support the selection of collection meth-
ods with different granularity levels (method, fragment, class,
package). It might also support the selection of various other
key considerations, including the clustering approach and the
optimisation methods. A further capability of an end-to-end
tool might permit the visualisation of resulting microservices
candidates, along with quality metrics to compare the candidate
microservices. Initial tooling implementations such as Service
Cutter [24] and Kieker demonstrate the potential in this space,
but much work is yet required.

VI. THREATS TO VALIDITY

A. External Validity

The primary threat to external validity is related to the se-
lection and inclusion of primary studies, and to the search time
frame which covers the period 2015–2021. As a result, selected
studies may not be fully representative of the state of the art
in the decomposition of monolith applications to microservices.
Furthermore, and although the authors involved in the activity
were engaged full time on the associated research programme
and therefore well versed in the topic, the selection of studies
for inclusion was based solely on consensus. Had the selection
process incorporated inter-rating to record and formally process
the individual author evaluations, the process as a whole would
be both more robust and more transparent. To mitigate the
potential impact of threats surrounding study selection, search
keywords were carefully developed, evolved, and the major
computer software databases were included in the scope of the
searches.

Three search strings were used and the results were systemat-
ically combined. Alternative search platforms such as (Publish
or Perish,4 google scholar and semantic scholar) were used
to identify potentially omitted articles. In addition, the SLR
methodology was faithfully applied and later stages subject to
group review. Likewise the analysis was subject to group review
and snowballing was used to expand the paper collection. In
combination, these methodological steps significantly reduce
the possibility that papers were missed or that some significant
earlier contributions were overlooked. As a subsequent mitiga-
tion following completion of the SLR, we performed a targeted

4https://harzing.com/resources/publish-or-perish

literature search in the period 2011-2014. No additional works
of relevance were identified in this subsequent search.

Supplementary materials, available online, are likely to exist,
especially in the non-academic sphere and future work could
look to integrate any industry-led innovations in this important
research area. Industrial applications have been proposed to
address monolith decomposition into microservices, for exam-
ple IBM’s Mono2Micro tool5 and Amazon’s AWS Microservice
Extractor for. NET.6 However, the technical implementation
details for these industrial applications are not publicly available.

Patents and grey literature are also not within the scope of this
work and if examined, they might contain additional relevant
material. Although the inclusion and exclusion criteria were
strictly applied, their application in Refinement Steps 1 and 2
was conducted solely by the first author, as was the snowballing
element of Refinement Step 6. Had additional authors been
engaged in these steps, it would have reduced the effect of author
selection bias.

In terms of the quality of the selected works, only studies
that underwent rigorous peer-review were included, where lead-
ing academic publishers were the central focus of the search.
These included IEEE, ACM, Springer, and Science Direct. And
the review protocol should largely assuage the affect of subjec-
tive paper selection decisions, as studies relevant to the topic
were selected by the consensus of the majority. Furthermore,
identified works were included in the research where they fell
within the search timeline, providing a focus on more up-to-date
and state-of-the-art work. To the knowledge of the researchers,
all works of central relevance to the research objective and within
the search window have been included.

Finally, and although appropriate techniques from Grounded
Theory were employed to systematically identify the major
phases and their application sequence in a monolith to mi-
croservices decomposition, it is inevitably the case that universal
agreement on phase boundaries, naming and sequencing, will
not be possible given the broad nature of the problem and the fact
that individual firms and research efforts might design alternative
and specific decomposition pipelines. Nevertheless, this work
is the first published study that the authors are aware of that
has attempted to systematically identify and classify the general
problem space as presently reported in the prominent peer review
literature to date.

B. Internal Validity

It is important to highlight that technology solutions - such as
is the focus of this work - may ultimately only present a partial
solution to a difficult challenge. At various points in our work,
we have noted the important role of human experts as part of
the decomposition process. We do not envisage an immediate
future devoid of this important human contribution. Rather, as
codebases to be migrated inevitably present as larger and more
complex, the role of supporting technology may grow to support
humans charged with this important strategic activity.

5https://www.ibm.com/cloud/blog/announcements/ibm-mono2micro
6https://aws.amazon.com/about-aws/whats-new/2021/11/aws-

microservice-extractor-net/

https://harzing.com/resources/publish-or-perish
https://www.ibm.com/cloud/blog/announcements/ibm-mono2micro
https://aws.amazon.com/about-aws/whats-new/2021/11/aws-microservice-extractor-net/
https://aws.amazon.com/about-aws/whats-new/2021/11/aws-microservice-extractor-net/

4234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

The transition from a monolith architecture to a microservices
architecture can enable certain key strategic objectives, includ-
ing increased frequency in the delivery of new features with less
impact on an operational system (sometimes referred to as low
perturbation). The realisation of such objectives is constrained
by the cost of decomposition projects and the quality of the
resulting microservices-based system. And while microservices
architectures deliver certain desirable benefits for certain market
offerings, they are not the only approach that may be adopted:
more generalised and larger granularity service-oriented offer-
ings, such as so-called modular monoliths may be a more prag-
matic alternative in certain settings. However, even for modular
monolith transitions, the technologies and phases identified in
this work are likely to be largely relevant.

This research has created and applied the M2MDF as a
means to compare existing techniques adopted in up-to-now
largely disparate migration studies. The framework itself is
built based on steps derived by inspecting all the implicit and
explicit decomposition steps used in the selected papers, using
aspects of grounded theory. Although the framework has been
systematically derived, it is possible that other research efforts
might have reached different classification decisions.

VII. DISCUSSION

This systematic review has produced various important contri-
butions for practitioners. While microservices architectures have
been in use for some time, the task of decomposing a monolith
application into microservices can vary significantly from con-
text to context. Furthermore, with the passage of time, improved
tooling has enabled the part-automation of aspects of the process.
No previous work has been identified that consolidates all these
concerns into a single work and mapped the various existing
contributions into a decomposition framework. This is one of the
substantial contributions of this research, and it may be adopted
by both practitioners and researchers to effectively explore the
decomposition challenge in the context of the end-to-end process
and the existing literature.

One of the greatest challenges of any monolith to microser-
vices decomposition effort can be identified in the fact that
there is uncertainty regarding the many aspects of the task.
For practitioners more accustomed to designing, building and
maintaining monolith-based systems, learning is required to
understand the nature of microservices architectures. However,
this is just the start of the decomposition activity, and a great
deal of technical innovation may be required to effectively
execute a decomposition project. The material presented in
Section IV-C provides clear and categorised approaches to the
various elements of the decomposition. In Table IV, the different
methods for monolith data collection are presented, with Table V
presenting the different types of analysis that may be employed.
In both sections, there is a rich variety of techniques available
and no single study has employed all of them. Indeed, economics
may prevail in practice, and practitioners may need to choose
which techniques they can deploy in line with budgets and
timelines. The key point here is that all the known techniques
are presented in the M2MDF, and therefore, practitioners can

quickly evaluate their options without the need for an extensive
literature review.

A further challenge for practitioners arises from the decision
regarding the unit of analysis to be employed. In the context
of a Java system, this could be at a package level, or it could
be more granular, including down to the individual method
level. This is an important consideration for practitioners as the
unit of analysis will affect the size of the projected microser-
vices. Packages may initially present as intuitively appealing
fragmentation points (assuming low coupling across package
boundaries), but in practice this might result in relatively large
microservices that may not be suited to all manners of hardware
deployment. For example, large microservices may not be suited
to a Function-as-a-Service paradigm [14]. Table VI presents a
summary of the identified units of analysis and maps them to
individual studies.

Many different techniques can be employed when attempt-
ing to identify microservices in data collected from monolith
systems, and a variety of tools exist to support this activity.
Section IV-C3 addresses these dimensions, identifying the tools
reported in the literature and systematically elaborating the
various different algorithms that can be utilised (refer to Ta-
ble VII). The provision of this information in one single source
consolidates the field to date and will assist practitioners in
quickly navigating the available tools and algorithms to support
monolith decomposition into microservices.

Evaluating the effectiveness of a proposed decomposition is
perhaps the most elusive problem in the migration agenda. As
presented in Table VIII, there are a various evaluation metrics in
use across many different studies. While these metrics will be of
use to practitioners, the broader challenge of devising a means
to examine decomposition effectiveness is a task perhaps best
suited to the research community. The materials presented in
Section IV-D summarise the accumulated work to date which is
very much fragmented. But it is nevertheless a starting point for
future research seeking to work towards standardised techniques
for evaluating the effectiveness of proposed microservices.

Some promising work on benchmarking has been conducted
and it is presented in Section IV-C3. However, this work has
some significant limitations, especially in the context of the
programming languages examined. Furthermore, the absence
of clear guidance on what constitutes an effective monolith
decomposition contributes to challenges in this space. It is in
these areas that future research can make important contribu-
tions. Without a clearer understanding of these concerns, it will
not be possible to have robust and consistent examination of
proposed decomposition techniques and their effectiveness in
comparison to existing reported decompositions. Although this
is a particularly challenging aspect of the problem domain, in the
fullness of time more elements of the decomposition task may
become automated and therefore, it will be essential to have
consistent methods of evaluation (because the role of manual
human input may be reduced).

Beyond evaluation and benchmarking, to date only mod-
est attention (a single study) has examined the microservice
deployment dimension. Future studies, especially in practice,
should actively examine the deployment phase. Microservices

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4235

should be both deployable and effective once deployed, other-
wise the substantial effort to identify microservices might be
undermined.

While this research demonstrates that static analysis is
the most commonly used analysis technique (refer to Sec-
tion IV-C1), this does not necessarily imply that it is the most
effective approach. Rather, it may be the case that static analysis
is more accessible. Various tools exist to support static code
analysis, it is a long-established field. Furthermore, there is no
requirement to install a monolith system and generate traffic
through it in order to obtain static data. In contrast, to obtain
dynamic data, a monolith system must be executing and pro-
cessing requests. This may require the isolation of test bed
infrastructure and the execution of test cases. Although there
is a greater set up time and cost associated with the collection of
dynamic data, the fact that the dynamic data (e.g., stack trace)
identifies the actual internal runtime behaviour of a monolith is
potentially very valuable. Whereas static analysis can present
the various theoretical considerations (e.g., all possible paths
and dependencies), a robust set of test cases can identify the
actual considerations (e.g., the actual paths navigated at runtime
under expected traffic). It is perhaps the case therefore that the
concurrent use of static and dynamic data may facilitate greater
pragmatism and effectiveness in monolith decomposition.

A key consideration for any decomposition project is the
scope and type of data storage employed in an existing mono-
lith. Where a monolith employs a large, centralised data store
(for example, a relational database), the decomposition into
microservices can be particularly complicated. If constructs such
as database stored procedures are utilised, then some of the
monolith program logic may in effect be implemented inside
the database. This raises various issues, including the impact
on static code analysis which may not automatically examine
internal database logic. Related research has partially addressed
this challenge, for example through the use of Dbeaver in [P16]
(refer to Section IV-C3) but various other studies largely ignore
the data layer which might present as a fundamental limitation.
This research suggests that an examination of the data layer
should be one of the first considerations for any decomposition
project.

On a point of terminology, this research has identified that
there is some terminological inconsistency across the research
domain. Most notably, this arises in the case of the core focus:
monolith decomposition into microservices. It is not uncommon
for related research to refer to this as a migration, for example in
the case of [4], [31], [32], as opposed to a decomposition. Clearly,
either term could be utilised, but perhaps the term decomposition
is more appropriate given that any firm seeking to rearchitect
a monolith into microservices will also have various other
migration-oriented tasks. For example, the firm may require
organisational adjustments, and to do so business processes may
need to be adapted in order to pivot to a more continuous form
of software engineering [138]. In this work, therefore, we prefer
the term decomposition over migration and it is for this reason
that the framework produced in this study has adopted the title:
Monolith to Microservices Decomposition Framework.

A. Post-Review Reflection

To evaluate if the literature review was representative of the
up-to-date material in the field, a further post-review reflection
was undertaken. In this step, we applied the SLR protocol and
conducted the literature search for the time period of October
2021 to April 2023. A total of 2712 additional studies were
discovered, and following application of the original refinement
steps, 21 new studies were identified. The temporal distribution
shows a growth of publications with one additional study in 2021
and 18 studies in 2022. Two studies were identified in the period
January 2023 to April 2023. All additional studies in the 2021
calendar year [134] and the 2023 year to April [139], [140] were
included. Since the volume of literature in 2022 is large, eight
studies were randomly selected for consideration [141], [142],
[143], [144], [145], [146], [147], [148]. The first author extracted
the information from the studies to be used in evaluating the
proposed M2MDF and possibly to also highlight new findings.

The majority of the studies [139], [144], [145], [147], [148]
used CIC for data collection and collected SD to perform static
analysis. Three studies [141], [142], [143] collected SD+DD and
performed SA+DA on the data, and one study [140] collected
DD and performed DA. One study [134] used CIC+VIC for
data collection and performed SA+VA, and another study [146]
used CIC+MIC to collect the data and applied SA+DomA
to extract microservices. These findings are consistent with
the data-collection and data analysis findings reported on in
Section IV-C.

While classes remain the most dominant unit of analy-
sis [134], [139], [140], [141], [143], [144], [145], [148], other
units of analysis are also employed, such as methods [142]
and the combination of software artefacts and methods [146].
A new development here is that one study [147] presented its
unit of analysis purely based on APIs that are extracted from
the codebases using the OpenAPI (Swagger) tool. Concerning
input representation, a graph is the most common input data
representation method [139], [140], [142], [143], [144], [145],
[147], [148] followed by matrix or vector [134], [141], and in
one case the representation was unspecified [146]. In many of
these studies, the graph representations are later converted into
a matrix to serve as an input for clustering algorithms. Regard-
ing microservices identification tools, Kicker [142], Java Call
Graph [134], Service Cutter [146] and MoDISCO/DISCO [145],
[146] are used. Several hierarchical clustering algorithms are
used with new variants of the existing hierarchical algorithms.
Neural network-based hierarchical clustering [146] and graph
deep clustering [140] are new additions. One study [140] used
Loss Function for the optimisation of their graph deep clustering
algorithm.

In terms of the use of metrics, variations of cohesion, coupling
and non-functional metrics are widely used. An increase in the
number of studies using more than one metric and comparing
previous microservices extraction methods over legacy code-
bases as benchmarks are widely observed [140], [141], [142],
[143], [144], [145], [148]. Precision, recall, and accuracy are
further reported in recent studies, that could be considered as
a piece of evidence towards a growing interest in supervised

4236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

machine learning approaches [139], [145], [146], [147]. The
majority of the studies [140], [141], [142], [143], [144], [145],
[146], [148] use one or more of the evaluation codebases
such as JPetStore, DayTrader, Acme Air, Petclinic and Cargo
Tracking System. However, new evaluation codebases, such as
Plants [140], [141], [143], [148] and MyITS [139], are also
observed. Java is the dominant evaluated programming language
that is used throughout these selected studies [134], [140], [141],
[142], [143], [144], [145], [146], [147], [148]. One study [139]
developed an extraction tool for codebases that are written in the
PHP programming language.

These results from this post-review reflection indicate that the
proposed M2MDF framework captures the major methods for
input collection, monolith analysis, microservices identification,
and evaluation metrics.

VIII. CONCLUSION

This research has identified 35 studies using a SLR protocol
and snowballing method, and systematically reviewed studies
examining the decomposition of monolithic applications into
microservices. Various existing literature addresses aspects of
the decomposition task, but up to this point, there is no single
published study that organises and addresses the end-to-end
decomposition task. We find that monolith decomposition into
microservices is a complicated, large, varied and relatively new
task. However, with the demand for more frequent software
delivery and innovations in cloud computing that support dis-
tributed software systems, it is the view of the authors that mono-
lith decomposition into microservices is a domain of importance
for software engineering. The evidence in the literature suggests
growing interest in this domain.

This research observed an absence of a description of the end-
to-end decomposition process. We therefore applied elements
of Grounded Theory to systematically develop the M2MDF
as a means to outline the key tasks that comprise monolith
decomposition. This enabled the research to address RQ1 (What
are the primary phases of monolith-to-microservices decompo-
sition and the major constituent elements of those phases?).
The primary phases of the M2MDF are: I. Input Collection,
II. Monolith Analysis, III. Microservices Identification, IV. Mi-
croservices Optimisation, V. Microservices Evaluation, and VI.
Microservices Deployment.

Within Input Collection, we identify four major methods for
collection: Model-based (concerned with Specification/Design
artefacts), Code-based (concerned with the source code), Log-
based (concerned with logs produced by a system), and Version-
based (concerned with changes to systems over time). Using the
data obtained from these collection methods, we find that there
are four major Monolith Analysis methods: Domain Analysis
(concerned with discovering domains/themes in a system), Static
Analysis (analysis conducted without executing a system), Dy-
namic Analysis (analysis of systems at run time), and Version
Analysis (analysis of changes to systems over time).

The Microservices Identification phase employs two ma-
jor methods: Rule-based methods (human input, defining
partitioning rules) and Clustering methods (applying unsu-
pervised machine learning algorithms). In the Microservices

Optimisation phase, candidate microservices are optimised us-
ing two identified techniques: Genetic Algorithms (to refine
optimal combinations of software units within microservices)
and Neural Networks (as a means to cluster classes into microser-
vices). Through systematic examination of M2MDF phases
I-IV, this research has answered RQ2 (What are the existing
approaches, tools and methods observed in the decomposition
of monolith applications into microservices?)

In Microservice Evaluation, we find three distinct evaluation
approaches: Case Studies (in-depth evaluation of individual
decomposition), Examples (manual evaluation of individual
decomposition), and Experiments (experimenting with differ-
ent decomposition approaches). By systematically investigating
this M2MDF phase, this research has answered RQ3 (What
are the metrics, datasets, and benchmarks used for evaluating
and validating monolith decomposition into microservices?).
Finally, the Microservices Deployment phase is concerned with
observing extracted microservices in production systems. Just a
single study reports attempting microservices deployment at this
time.

Given the relative newness of this area and the potential
for growing interest in this space, we identify key areas for
future research. A summary of the gaps identified is presented
in Table IX, which answers RQ4 (What research gaps can be
identified in the current literature?). The review suggests that
major gaps exist in several areas. Much of the reported work
to date is focused on just a small number of programming lan-
guages and is heavily biased towards Java. Many large enterprise
monolith systems have been built using technologies other than
Java (e.g., COBOL and C/C++) and we suggest that this is an
area that requires more attention.

Gaps also arise from the inconsistent use of metrics at the
present time. Coupling and cohesion are regularly utilised, but
they are not consistently measured across the studies. As a result,
it is not possible to reliably compare the effectiveness of methods
proposed in different studies. Future work could seek to establish
a standard set of metrics for use in monolith analysis and
microservices identification. And it is not just in the analysis and
identification phases that metrics are required. There is a clear
absence of consistent evaluation of resulting microservices, for
which the publication of datasets is warranted. A dataset should
comprise various elements: including the monolith source code,
the extracted microservices, and should identify the metrics
utilised at the various stages. In addition to the analysis and eval-
uation metrics identified above, non-functional metrics should
also be employed. For example, metrics to report on performance
and hardware utilisation.

It is the view of the authors that the material produced by
this research can have an important impact on a complicated
pursuit in contemporary software engineering. The relentless
drive towards better, faster, cheaper software has entered a
disruptive and challenging new phase. Because they are large
in size, legacy systems based on monolith architectures are
slow to deploy and, when making small changes, large com-
ponents might need to be rebuilt, retested and redeployed.
Monoliths may be too large to be deployed to certain serverless
infrastructure, for example Function-as-a-Service [14]. As a
result, the potential economic benefits of services such as AWS

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4237

Lambda, Google Cloud Functions and Microsoft Azure Func-
tions (where hardware is available on demand and is charged in
a pay-per-use model) are not realisable.

A word of caution is warranted. Although monolith architec-
tures may inhibit faster and cheaper software objectives, they
have proven resilient and useful over a lengthy time period. The
structure and organisation permitted in monolith architectures
can be amenable to developer understanding of systems. Further-
more, the development of monolith systems can be considered
to be substantially refined at this point; many large operational
systems are based on the monolith architecture and they are
effective in delivering their functionality. While the march of
technological innovation continues and economic arguments
advocate emerging constructs such as serverless computing,
monolith to microservice decompositions are large and expen-
sive, and they are not risk free. It is also the case that to be
successful, the broader migration activity may require adap-
tation to various other processes. For example, the hardware
provisioning model may change and other work practices may
need to be reengineered. Microservices may not be warranted in
some contexts.

The work presented in this research can assist researchers
and practitioners tasked with monolith decomposition into mi-
croservices. It can help firms understand decomposition tasks
more completely, thereby assisting decisions surrounding pro-
posed decompositions. Where decompositions are sanctioned,
the M2MDF identifies the major options available to prac-
titioners. For researchers, the present literature on monolith
decomposition into microservices is fragmented. This research
consolidates the available literature and organises the decom-
position landscape. In addition to this important contribution,
various significant gaps are identified. The research community
can address these gaps in areas such as extending programming
language support, introducing robust and standardised met-
rics, and in producing datasets for the consistent evaluation of
migrations.

REFERENCES

[1] N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,” in
Present and Ulterior Software Engineering, M. Mazzara and B. Meyer,
Eds., Cham, Switzerland: Springer, 2017, pp. 195–216. [Online]. Avail-
able: https://doi.org/10.1007/978--3-319-67425-4_12

[2] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in Proc. Int. Conf. Web
Eng., I. Garrigós and M. Wimmer, Eds., Cham, Switzerland: Springer,
2018, pp. 32–47. [Online]. Available: https://doi.org/10.1007/978--3-
319-74433-9_3

[3] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The monolith
strikes back: Why Istio migrated from microservices to a monolithic
architecture,” IEEE Softw., vol. 38, no. 5, pp. 17–22, Sep./Oct. 2021.
[Online]. Available: https://doi.org/10.1109/MS.2021.3080335

[4] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
“Microservices migration patterns,” Softw.: Pract. Experience, vol. 48,
no. 11, pp. 2019–2042, 2018. [Online]. Available: https://doi.org/10.
1002/spe.2608

[5] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, Sep./Oct. 2017. [Online].
Available: https://doi.org/10.1109/MCC.2017.4250931

[6] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for scal-
able and secure microservice (de)composition,” in Proc. IEEE 24th Int.
Requirements Eng. Conf. Workshops, Los Alamitos, CA, USA, 2016,
pp. 68–73. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/REW.2016.026

[7] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic sys-
tems to microservices: An assessment framework,” Inf. Softw. Technol.,
vol. 137, 2021, Art. no. 106600. [Online]. Available: https://doi.org/10.
1016/j.infsof.2021.106600

[8] P. Clarke, R. V. O’Connor, and B. Leavy, “A complexity theory viewpoint
on the software development process and situational context,” in Proc.
Int. Conf. Softw. Syst. Process, New York, NY, USA, 2016, pp. 86–90.
[Online]. Available: https://doi.org/10.1145/2904354.2904369

[9] O. Zimmermann, “Microservices tenets,” Comput. Sci. Res. Develop.,
vol. 32, no. 3, pp. 301–310, Jul. 2017. [Online]. Available: https://doi.
org/10.1007/s00450--016-0337-0

[10] S. Newman, Building Microservices, 1st ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2015.

[11] D. Wolfart et al., “Modernizing legacy systems with microservices: A
roadmap,” in Proc. Int. Conf. Eval. Assessment Softw. Eng., New York,
NY, USA, 2021, pp. 149–159. [Online]. Available: https://doi.org/10.
1145/3463274.3463334

[12] T. Smith, “New research shows 63% of enterprises are adopting mi-
croservices architectures,” Sep. 2018. Accessed: Feb. 01, 2021. [Online].
Available: https://dzone.com/articles/new-research-shows-63-percent-
of-enterprises-are-a

[13] S. W. Schütz, T. Kude, and K. M. Popp, “The impact of software-as-
a-service on software ecosystems,” in Proc. Int. Conf. Softw. Bus., G.
Herzwurm and T. Margaria, Eds., Berlin, Germany: Springer, 2013,
pp. 130–140.

[14] J. Grogan et al., “A multivocal literature review of function-as-a-service
(FaaS) infrastructures and implications for software developers,” in
Systems, Software and Services Process Improvement, M. Yilmaz, J.
Niemann, P. Clarke, and R. Messnarz, Eds., Cham, Switzerland: Springer,
2020, pp. 58–75. [Online]. Available: https://doi.org/10.1007/978--3-
030-56441-4_5

[15] M. Villamizar et al., “Cost comparison of running web applications in the
cloud using monolithic, microservice, and AWS Lambda architectures,”
Serv. Oriented Comput. Appl., vol. 11, no. 2, pp. 233–247, Jun. 2017.
[Online]. Available: https://doi.org/10.1007/s11761--017-0208-y

[16] M. Loukides and S. Swoyer, “Microservices adoption in 2020,” Jul. 2020.
Accessed: Sep. 10, 2021. [Online]. Available: https://www.oreilly.com/
radar/microservices-adoption-in-2020/

[17] IBM Corporation, “Microservices in the enterprise, 2021: Real benefits,
worth the challenges,” Mar. 2021. Accessed: Sep. 10, 2021. [Online].
Available: https://www.ibm.com/downloads/cas/OQG4AJAM

[18] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. El
Fazziki, “A multi-model based microservices identification approach,”
J. Syst. Architecture, vol. 118, 2021, Art. no. 102200. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S138376212100
1442

[19] S. Li et al., “A dataflow-driven approach to identifying microser-
vices from monolithic applications,” J. Syst. Softw., vol. 157, 2019,
Art. no. 110380. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121219301475

[20] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-
driven approach,” in Proc. IEEE 24th Asia-Pacific Softw. Eng. Conf., Nan-
jing, 2017, pp. 466–475. [Online]. Available: https://doi.org/10.1109/
APSEC.2017.53

[21] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards automated
microservices extraction using multi-objective evolutionary search,” in
Proc. 17th Int. Conf. Serv.-Oriented Comput., S. Yangui, I. Bouassida
Rodriguez, K. Drira, and Z. Tari, Eds., Cham, Switzerland: Springer,
2019, pp. 58–63. [Online]. Available: https://doi.org/10.1007/978--3-
030-33702-5_5

[22] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrating
enterprise legacy source code to microservices: On multitenancy, state-
fulness, and data consistency,” IEEE Softw., vol. 35, no. 3, pp. 63–72,
May/Jun. 2018. [Online]. Available: https://doi.org/10.1109/MS.2017.
440134612

[23] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O. Mahamane,
“Re-architecting OO software into microservices,” in Proc. Eur. Conf.
Serv.-Oriented Cloud Comput., K. Kritikos, P. Plebani, and F. de Paoli
Eds., Cham, Switzerland: Springer, 2018, pp. 65–73. [Online]. Available:
https://doi.org/10.1007/978--3-319-99819-0_5

[24] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition,” in Proc. Eur.
Conf. Serv.-Oriented Cloud Comput., M. Aiello, E. B. Johnsen, S.
Dustdar, and I. Georgievski, Eds., Cham, Switzerland: Springer, 2016,
pp. 185–200. [Online]. Available: https://doi.org/10.1007/978--3-319-
44482-6_12

https://doi.org/10.1007/978--3-319-67425-4_12
https://doi.org/10.1007/978--3-319-74433-9_3
https://doi.org/10.1007/978--3-319-74433-9_3
https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1002/spe.2608
https://doi.org/10.1002/spe.2608
https://doi.org/10.1109/MCC.2017.4250931
https://doi.ieeecomputersociety.org/10.1109/REW.2016.026
https://doi.ieeecomputersociety.org/10.1109/REW.2016.026
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1145/2904354.2904369
https://doi.org/10.1007/s00450--016-0337-0
https://doi.org/10.1007/s00450--016-0337-0
https://doi.org/10.1145/3463274.3463334
https://doi.org/10.1145/3463274.3463334
https://dzone.com/articles/new-research-shows-63-percent-of-enterprises-are-a
https://dzone.com/articles/new-research-shows-63-percent-of-enterprises-are-a
https://doi.org/10.1007/978--3-030-56441-4_5
https://doi.org/10.1007/978--3-030-56441-4_5
https://doi.org/10.1007/s11761--017-0208-y
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.ibm.com/downloads/cas/OQG4AJAM
https://www.sciencedirect.com/science/article/pii/S1383762121001442
https://www.sciencedirect.com/science/article/pii/S1383762121001442
http://www.sciencedirect.com/science/article/pii/S0164121219301475
http://www.sciencedirect.com/science/article/pii/S0164121219301475
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1007/978--3-030-33702-5_5
https://doi.org/10.1007/978--3-030-33702-5_5
https://doi.org/10.1109/MS.2017.440134612
https://doi.org/10.1109/MS.2017.440134612
https://doi.org/10.1007/978--3-319-99819-0_5
https://doi.org/10.1007/978--3-319-penalty -@M ignorespaces 44482-6_12
https://doi.org/10.1007/978--3-319-penalty -@M ignorespaces 44482-6_12

4238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

[25] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Trans. Softw. Eng., vol. 47, no. 5, pp. 987–1007, May 2021.
[Online]. Available: https://doi.org/10.1109/TSE.2019.2910531

[26] S. Eski and F. Buzluca, “An automatic extraction approach: Transition to
microservices architecture from monolithic application,” in Proc. 19th
Int. Conf. Agile Softw. Develop.: Companion, New York, NY, USA,
2018, Art. no. 25. [Online]. Available: https://doi.org/10.1145/3234152.
3234195

[27] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, “Function-
splitting heuristics for discovery of microservices in enterprise systems,”
in Service-Oriented Computing, C. Pahl, M. Vukovic, J. Yin, and Q. Yu,
Eds., Cham, Switzerland: Springer, 2018, pp. 37–53. [Online]. Available:
https://doi.org/10.1007/978--3-030-03596-9_3

[28] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering – A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
2009. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584908001390

[29] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–
583, 2007. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S016412120600197X

[30] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele Univ., Keele, U.K., vol. 33, pp. 1–26, 2004. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
29890a936639862f45cb9a987dd599dce9759bf5

[31] H. S. da Silva, G. Carneiro, and M. Monteiro, “Towards a roadmap
for the migration of legacy software systems to a microservice
based architecture,” in Proc. 9th Int. Conf. Cloud Comput. Serv. Sci.,
SciTePress, 2019, pp. 37–47. [Online]. Available: https://doi.org/10.
5220/0007618400370047

[32] V. Velepucha and P. Flores, “Monoliths to microservices - migration
problems and challenges: A SMS,” in Proc. IEEE 2nd Int. Conf. Inf.
Syst. Softw. Technol., 2021, pp. 135–142. [Online]. Available: https:
//doi.org/10.1109/ICI2ST51859.2021.00027

[33] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from mono-
lithic architecture to microservices: A rapid review,” in Proc. IEEE
38th Int. Conf. Chilean Comput. Sci. Soc., Concepciǒn, Chile, 2019,
pp. 1–7. [Online]. Available: https://doi.org/10.1109/SCCC49216.2019.
8966423

[34] J. Ghofrani and D. Lübke, “Challenges of microservices architecture: A
survey on the state of the practice,” in Proc. 10th Central Eur. Workshop
Serv. Comp., N. Herzberg, C. Hochreiner, O. Kopp, and J. Lenhard, Eds.,
Dresden, Germany: CEUR-WS.org, 2018, pp. 1–8. [Online]. Available:
http://ceur-ws.org/Vol-2072/paper1.pdf

[35] M. F. Gholami, F. Daneshgar, G. Low, and G. Beydoun, “Cloud migration
process—A survey, evaluation framework, and open challenges,” J. Syst.
Softw., vol. 120, pp. 31–69, 2016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S016412121
6300966

[36] R. Lichtenthaeler, M. Prechtl, C. Schwille, T. Schwartz, P. Cezanne, and
G. Wirtz, “Requirements for a model-driven cloud-native migration of
monolithic web-based applications,” SICS Softw.-Intensive Cyber-Phys.
Syst., vol. 35, pp. 89–100, Aug. 2020. [Online]. Available: https://doi.
org/10.1007/s00450--019-00414-9

[37] L. Carvalho, A. Garcia, W. K. G. Assunção, R. Bonifácio, L. P. Tizzei,
and T. E. Colanzi, “Extraction of configurable and reusable microservices
from legacy systems: An exploratory study,” in Proc. 23rd Int. Syst. Softw.
Product Line Conf., New York, NY, USA, 2019, pp. 26–31. [Online].
Available: https://doi.org/10.1145/3336294.3336319

[38] P. Mahanta and S. Chouta, “Translating a legacy stack to microservices
using a modernization facade with performance optimization for con-
tainer deployments,” in Proc. OTM Confederated Int. Conf. “On Move
to Meaningful Internet Syst.”, C. Debruyne, H. Panetto, W. Guédria,
P. Bollen, I. Ciuciu, G. Karabatis, and R. Meersman, Eds., Cham,
Switzerland: Springer, 2020, pp. 143–154. [Online]. Available: https:
//doi.org/10.1007/978--3-030-40907-4_14

[39] P. Jamshidi, C. Pahl, and N. C. Mendonça, “Pattern-based multi-cloud ar-
chitecture migration,” Softw.: Pract. Experience, vol. 47, no. 9, pp. 1159–
1184, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.2442

[40] M. Abdellatif et al., “A taxonomy of service identification approaches
for legacy software systems modernization,” J. Syst. Softw., vol. 173,
2021, Art. no. 110868. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121220302582

[41] V. Bushong et al., “On microservice analysis and architecture evolution: A
systematic mapping study,” Appl. Sci., vol. 11, no. 17, 2021, Art. no. 7856.
[Online]. Available: https://www.mdpi.com/2076--3417/11/17/7856

[42] H. C. D. S. Filho and G. D. F. Carneiro, “Strategies reported in the
literature to migrate to microservices based architecture,” in Proc. 16th
Int. Conf. Inf. Technol.-New Gener., S. Latifi, Ed., Cham, Switzerland:
Springer, 2019, pp. 575–580. [Online]. Available: https://doi.org/10.
1007/978--3-030-14070-0_81

[43] M. Garriga, “Towards a taxonomy of microservices architectures,” in
Software Engineering and Formal Methods, A. Cerone and M. Roveri,
Eds., Cham, Switzerland: Springer, 2018, pp. 203–218. [Online]. Avail-
able: https://doi.org/10.1007/978--3-319-74781-1_15

[44] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith
to microservices: A classification of refactoring approaches,” in Proc.
Workshop Softw. Eng. Aspects Continuous Develop. New Paradigms
Softw. Prod. Deployment, J.-M. Bruel, M. Mazzara, and B. Meyer, Eds.,
Cham, Switzerland: Springer, 2019, pp. 128–141. [Online]. Available:
https://doi.org/10.1007/978--3-030-06019-0_10

[45] Nortal, “Are monolithic software applications doomed for extinction?,”
2017. Accessed: Jan. 10, 2023. [Online]. Available: https://nortal.com/
blog/are-monolithic-software-applications-doomed-for-extinction

[46] F. Despoudis, “Understanding solid principles: Single responsibility,”
2017. Accessed: Oct. 10, 2020. [Online]. Available: https://codeburst.io/
understanding-solid-principles-single-responsibility-b7c7ec0bf80

[47] M. Fowler and J. Lewis, “Microservices,” 2014. Accessed: Oct. 10, 2020.
[Online]. Available: http://martinfowler.com/articles/microservices.html

[48] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Englewood Cliffs, NJ, USA: Prentice Hall, 2002.

[49] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in Proc. IEEE Int. Conf. Softw.
Architecture, Seattle, WA, USA, 2018, pp. 29–2909. [Online]. Available:
https://doi.org/10.1109/ICSA.2018.00012

[50] C. Tozzi, “6 reasons not to adopt microservices,” Jan. 2018.
Accessed: Feb. 17, 2021. [Online]. Available: https://containerjournal.
com/features/microservices-use-not-use-question/

[51] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on
microservices architecture in devops,” J. Syst. Softw., vol. 170, 2020,
Art. no. 110798. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121220302053

[52] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review
on microservices,” in Proc. Int. Conf. Comput. Sci. Appl., O. Gervasi,
B. Murgante, S. Misra, G. Borruso, C. M. Torre, A. M. A. Rocha, D.
Taniar, B. O. Apduhan, E. Stankova, and A. Cuzzocrea, Eds., Cham,
Switzerland: Springer, 2017, pp. 203–217. [Online]. Available: https:
//doi.org/10.1007/978--3-319-62407-5_14

[53] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and
its granularity problem: A systematic mapping study,” Softw.: Pract.
Experience, vol. 50, no. 9, pp. 1651–1681, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2869

[54] B. Cartaxo, G. Pinto, and S. Soares, “The role of rapid reviews in support-
ing decision-making in software engineering practice,” in Proc. 22nd Int.
Conf. Eval. Assessment Softw. Eng., New York, NY, USA, 2018, pp. 24–
34. [Online]. Available: https://doi.org/10.1145/3210459.3210462

[55] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” J. Syst. Softw., vol. 150, pp. 77–
97, 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121219300019

[56] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in Proc. IEEE Open Conf. Elect. Electron.
Inf. Sci., Vilnius, Lithuania, 2019, pp. 1–5. [Online]. Available: https:
//doi.org/10.1109/eStream.2019.8732170

[57] M. Cojocaru, A. Uta, and A. Oprescu, “Attributes assessing the quality of
microservices automatically decomposed from monolithic applications,”
in Proc. IEEE 18th Int. Symp. Parallel Distrib. Comput., Amsterdam,
The Netherlands, 2019, pp. 84–93. [Online]. Available: https://doi.org/
10.1109/ISPDC.2019.00021

[58] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proc. 6th Int. Conf. Cloud Comput. Serv. Sci., 2016, pp. 137–146.
[Online]. Available: https://doi.org/10.5220/0005785501370146

[59] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
“Microservices in practice, part 1: Reality check and service design,”
IEEE Softw., vol. 34, no. 1, pp. 91–98, Jan./Feb. 2017. [Online]. Available:
https://doi.org/10.1109/MS.2017.24

[60] O. Al-Debagy and P. Martinek, “A microservice decomposition method
through using distributed representation of source code,” Scalable Com-
put., vol. 22, pp. 39–52, Feb. 2021. [Online]. Available: https://doi.org/
10.12694/scpe.v22i1.1836

https://doi.org/10.1109/TSE.2019.2910531
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.1007/978--3-030-03596-9_3
https://www.sciencedirect.com/science/article/pii/S0950584908001390
https://www.sciencedirect.com/science/article/pii/S0950584908001390
http://www.sciencedirect.com/science/article/pii/S016412120600197X
http://www.sciencedirect.com/science/article/pii/S016412120600197X
https://citeseerx.ist.psu.edu/document{?}repid$=$rep1&type$=$pdf&doi$=$29890a936639862f45cb9a987dd599dce9759bf5
https://citeseerx.ist.psu.edu/document{?}repid$=$rep1&type$=$pdf&doi$=$29890a936639862f45cb9a987dd599dce9759bf5
https://doi.org/10.5220/0007618400370047
https://doi.org/10.5220/0007618400370047
https://doi.org/10.1109/ICI2ST51859.2021.00027
https://doi.org/10.1109/ICI2ST51859.2021.00027
https://doi.org/10.1109/SCCC49216.2019.penalty -@M ignorespaces 8966423
https://doi.org/10.1109/SCCC49216.2019.penalty -@M ignorespaces 8966423
http://ceur-ws.org/Vol-2072/paper1.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216300966
https://www.sciencedirect.com/science/article/pii/S0164121216300966
https://www.sciencedirect.com/science/article/pii/S0164121216300966
https://doi.org/10.1007/s00450--019-00414-9
https://doi.org/10.1007/s00450--019-00414-9
https://doi.org/10.1145/3336294.3336319
https://doi.org/10.1007/978--3-030-40907-4_14
https://doi.org/10.1007/978--3-030-40907-4_14
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2442
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2442
https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://www.mdpi.com/2076--3417/11/17/7856
https://doi.org/10.1007/978--3-030-14070-0_81
https://doi.org/10.1007/978--3-030-14070-0_81
https://doi.org/10.1007/978--3-319-74781-1_15
https://doi.org/10.1007/978--3-030-06019-0_10
https://nortal.com/blog/are-monolithic-software-applications-doomed-for-extinction
https://nortal.com/blog/are-monolithic-software-applications-doomed-for-extinction
https://codeburst.io/understanding-solid-principles-single-responsibility-b7c7ec0bf80
https://codeburst.io/understanding-solid-principles-single-responsibility-b7c7ec0bf80
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/ICSA.2018.00012
https://containerjournal.com/features/microservices-use-not-use-question/
https://containerjournal.com/features/microservices-use-not-use-question/
https://www.sciencedirect.com/science/article/pii/S0164121220302053
https://www.sciencedirect.com/science/article/pii/S0164121220302053
https://doi.org/10.1007/978--3-319-62407-5_14
https://doi.org/10.1007/978--3-319-62407-5_14
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2869
https://doi.org/10.1145/3210459.3210462
http://www.sciencedirect.com/science/article/pii/S0164121219300019
http://www.sciencedirect.com/science/article/pii/S0164121219300019
https://doi.org/10.1109/eStream.2019.8732170
https://doi.org/10.1109/eStream.2019.8732170
https://doi.org/10.1109/ISPDC.2019.00021
https://doi.org/10.1109/ISPDC.2019.00021
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.12694/scpe.v22i1.1836
https://doi.org/10.12694/scpe.v22i1.1836

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4239

[61] W. K. G. Assunção et al., “A multi-criteria strategy for redesigning legacy
features as microservices: An industrial case study,” in Proc. IEEE Int.
Conf. Softw. Anal. Evol. Reengineering, 2021, pp. 377–387. [Online].
Available: https://doi.org/10.1109/SANER50967.2021.00042

[62] U. Desai, S. Bandyopadhyay, and S. G. Tamilselvam, “Graph neural
network to dilute outliers for refactoring monolith application,” in Proc.
35th AAAI Conf. Artif. Intell. 33rd Conf. Innov. Appl. Artif. Intell. 11th
Symp. Educ. Adv. Artif. Intell., 2021, pp. 72–80.

[63] M. Brito, J. Cunha, and J. A. Saraiva, “Identification of microservices
from monolithic applications through topic modelling,” in Proc. 36th
Annu. ACM Symp. Appl. Comput., New York, NY, USA, 2021, pp. 1409–
1418. [Online]. Available: https://doi.org/10.1145/3412841.3442016

[64] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, “Microser-
vice remodularisation of monolithic enterprise systems for embedding
in industrial IoT networks,” in Proc. Int. Conf. Adv. Inf. Syst. Eng., M.
La Rosa, S. Sadiq, and E. Teniente, Eds., Cham, Switzerland: Springer,
2021, pp. 432–448. [Online]. Available: https://doi.org/10.1007/978--3-
030-79382-1_26

[65] A. F. A. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros,
and N. C. Mendonça, “Migrating production monolithic systems to
microservices using aspect oriented programming,” Softw.: Pract. Ex-
perience, vol. 51, no. 6, pp. 1280–1307, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2956

[66] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
“Mono2Micro: A practical and effective tool for decomposing monolithic
Java applications to microservices,” in Proc. 29th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., New York, NY, USA, 2021,
pp. 1214–1224. [Online]. Available: https://doi.org/10.1145/3468264.
3473915

[67] S. Agarwal et al., “Monolith to microservice candidates using business
functionality inference,” in Proc. IEEE Int. Conf. Web Serv., 2021,
pp. 758–763. [Online]. Available: https://doi.org/10.1109/ICWS53863.
2021.00104

[68] D. Taibi and K. Systä, “A decomposition and metric-based evaluation
framework for microservices,” in Proc. Int. Conf. Cloud Comput. Serv.
Sci., D. Ferguson, V. Méndez Muñoz, C. Pahl, and M. Helfert, Eds.,
Cham, Switzerland: Springer, 2020, pp. 133–149. [Online]. Available:
https://doi.org/10.48550/arXiv.1908.08513

[69] A. Bucchiarone, K. Soysal, and C. Guidi, “A model-driven approach
towards automatic migration to microservices,” in Proc. Int. Workshop
Softw. Eng. Aspects Continuous Develop. New Paradigms Softw. Prod.
Deployment, J.-M. Bruel, M. Mazzara, and B. Meyer, Eds., Cham,
Switzerland: Springer, 2020, pp. 15–36. [Online]. Available: https://doi.
org/10.1007/978--3-030-39306-9_2

[70] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated microservice
identification in legacy systems with functional and non-functional met-
rics,” in Proc. IEEE Int. Conf. Softw. Architecture, Salvador, Brazil, 2020,
pp. 135–145. [Online]. Available: https://doi.org/10.1109/ICSA47634.
2020.00021

[71] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira,
and A. Restivo, “Determining microservice boundaries: A case study
using static and dynamic software analysis,” in Proc. Eur. Conf.
Softw. Architecture, A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya,
and O. Zimmermann, Eds., Cham, Switzerland: Springer, 2020,
pp. 315–332.

[72] O. Al-Debagy and P. Martinek, “Extracting microservices’ candidates
from monolithic applications: Interface analysis and evaluation metrics
approach,” in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng., Budapest,
Hungary, 2020, pp. 289–294. [Online]. Available: https://doi.org/10.
1109/SoSE50414.2020.9130466

[73] A. Selmadji, A. Seriai, H. L. Bouziane, R. Oumarou Mahamane,
P. Zaragoza, and C. Dony, “From monolithic architecture style to
microservice one based on a semi-automatic approach,” in Proc.
IEEE Int. Conf. Softw. Architecture, Salvador, Brazil, 2020, pp. 157–
168. [Online]. Available: https://doi.org/10.1109/ICSA47634.2020.
00023

[74] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kröger,
“Microservice decomposition via static and dynamic analysis of the
monolith,” in Proc. IEEE Int. Conf. Softw. Architecture Companion,
Salvador, Brazil, 2020, pp. 9–16. [Online]. Available: https://doi.org/10.
1109/ICSA-C50368.2020.00011

[75] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, “Partial migration for
re-architecting a cloud native monolithic application into microservices
and FaaS,” in Proc. Int. Conf. Inf. Commun. Comput. Technol., C. Badica,
P. Liatsis, L. Kharb, and D. Chahal, Eds., Singapore: Springer, 2020,
pp. 111–124. [Online]. Available: https://doi.org/10.1007/978--981-15-
9671-1_9

[76] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, “Remodular-
ization analysis for microservice discovery using syntactic and semantic
clustering,” in Proc. Int. Conf. Adv. Inf. Syst. Eng., S. Dustdar, E. Yu,
C. Salinesi, D. Rieu, and V. Pant, Eds., Cham, Switzerland: Springer,
2020, pp. 3–19. [Online]. Available: https://doi.org/10.1007/978--3-
030-49435-3_1

[77] F. D. Eyitemi and S. Reiff-Marganiec, “System decomposition to op-
timize functionality distribution in microservices with rule based ap-
proach,” in Proc. IEEE Int. Conf. Serv. Oriented Syst. Eng., Oxford,
U.K., 2020, pp. 65–71. [Online]. Available: https://doi.org/10.1109/
SOSE49046.2020.00015

[78] C. Bandara and I. Perera, “Transforming monolithic systems to microser-
vices - An analysis toolkit for legacy code evaluation,” in Proc. IEEE
20th Int. Conf. Adv. ICT Emerg. Regions, 2020, pp. 95–100. [Online].
Available: https://doi.org/10.1109/ICTer51097.2020.9325443

[79] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a microser-
vices architecture: An approach based on transactional contexts,” in Proc.
Eur. Conf. Softw. Architecture, T. Bures, L. Duchien, and P. Inverardi,
Eds., Cham, Switzerland: Springer, 2019, pp. 37–52. [Online]. Available:
https://doi.org/10.1007/978--3-030-29983-5_3

[80] A. Christoforou, L. Odysseos, and A. Andreou, “Migration of software
components to microservices: Matching and synthesis,” in Proc. 14th Int.
Conf. Eval. Novel Approaches Softw. Eng., 2019, pp. 134–146. [Online].
Available: https://doi.org/10.5220/0007732101340146

[81] I. Pigazzini, F. A. Fontana, and A. Maggioni, “Tool support for the migra-
tion to microservice architecture: An industrial case study,” in Proc. Eur.
Conf. Softw. Architecture, T. Bures, L. Duchien, and P. Inverardi, Eds.,
Cham, Switzerland: Springer, 2019, pp. 247–263. [Online]. Available:
https://doi.org/10.1007/978--3-030-29983-5_17

[82] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning approach
for web application auto-decomposition into microservices,” J. Syst.
Softw., vol. 151, pp. 243–257, 2019. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121219300408

[83] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting candi-
dates of microservices from monolithic application code,” in Proc. IEEE
25th Asia-Pacific Softw. Eng. Conf., Nara, Japan, 2018, pp. 571–580.
[Online]. Available: https://doi.org/10.1109/APSEC.2018.00072

[84] Z. Ren et al., “Migrating web applications from monolithic structure
to microservices architecture,” in Proc. 10th Asia-Pacific Symp. Inter-
netware, New York, NY, USA, 2018, Art. no. 7. [Online]. Available:
https://doi.org/10.1145/3275219.3275230

[85] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” in Proc. IEEE Int. Conf. Web Serv.,
Honolulu, HI, USA, 2017, pp. 524–531. [Online]. Available: https://doi.
org/10.1109/ICWS.2017.61

[86] L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification
through interface analysis,” in Proc. Eur. Conf. Serv.-Oriented Cloud
Comput., F. De Paoli, S. Schulte, and E. Broch Johnsen, Eds., Cham,
Switzerland: Springer, 2017, pp. 19–33. [Online]. Available: https://doi.
org/10.1007/978--3-319-67262-5_2

[87] Y. Abgaz et al., “Replication package for Decomposition of mono-
lithic applications into microservices architectures: A systematic review,”
Feb. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7899996

[88] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng., New York, NY, USA, 2014, Art. no. 38. [Online].
Available: https://doi.org/10.1145/2601248.2601268

[89] S. Li et al., “Understanding and addressing quality attributes of mi-
croservices architecture: A systematic literature review,” Inf. Softw.
Technol., vol. 131, 2021, Art. no. 106449. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584920301993

[90] T. Dybå and T. Dingsøyr, “Empirical studies of agile software de-
velopment: A systematic review,” Inf. Softw. Technol., vol. 50, no. 9,
pp. 833–859, 2008. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584908000256

[91] H. Munir, M. Moayyed, and K. Petersen, “Considering rigor and rele-
vance when evaluating test driven development: A systematic review,”
Inf. Softw. Technol., vol. 56, no. 4, pp. 375–394, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584914000135

[92] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

[93] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Int.
J. Open Inf. Technol., vol. 2, pp. 24–27, 2014.

[94] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture
enables DevOps: Migration to a cloud-native architecture,” IEEE Softw.,
vol. 33, no. 3, pp. 42–52, May/Jun. 2016.

https://doi.org/10.1109/SANER50967.2021.00042
https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1007/978--3-030-79382-1_26
https://doi.org/10.1007/978--3-030-79382-1_26
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2956
https://doi.org/10.1145/3468264.3473915
https://doi.org/10.1145/3468264.3473915
https://doi.org/10.1109/ICWS53863.2021.00104
https://doi.org/10.1109/ICWS53863.2021.00104
https://doi.org/10.48550/arXiv.1908.08513
https://doi.org/10.1007/978--3-030-39306-9_2
https://doi.org/10.1007/978--3-030-39306-9_2
https://doi.org/10.1109/ICSA47634.2020.00021
https://doi.org/10.1109/ICSA47634.2020.00021
https://doi.org/10.1109/SoSE50414.2020.9130466
https://doi.org/10.1109/SoSE50414.2020.9130466
https://doi.org/10.1109/ICSA47634.2020.00023
https://doi.org/10.1109/ICSA47634.2020.00023
https://doi.org/10.1109/ICSA-C50368.2020.00011
https://doi.org/10.1109/ICSA-C50368.2020.00011
https://doi.org/10.1007/978--981-15-9671-1_9
https://doi.org/10.1007/978--981-15-9671-1_9
https://doi.org/10.1007/978--3-030-49435-3_1
https://doi.org/10.1007/978--3-030-49435-3_1
https://doi.org/10.1109/SOSE49046.2020.00015
https://doi.org/10.1109/SOSE49046.2020.00015
https://doi.org/10.1109/ICTer51097.2020.9325443
https://doi.org/10.1007/978--3-030-29983-5_3
https://doi.org/10.5220/0007732101340146
https://doi.org/10.1007/978--3-030-29983-5_17
http://www.sciencedirect.com/science/article/pii/S0164121219300408
http://www.sciencedirect.com/science/article/pii/S0164121219300408
https://doi.org/10.1109/APSEC.2018.00072
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1007/978--3-319-67262-5_2
https://doi.org/10.1007/978--3-319-67262-5_2
https://doi.org/10.5281/zenodo.7899996
https://doi.org/10.1145/2601248.2601268
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://www.sciencedirect.com/science/article/pii/S0950584908000256
https://www.sciencedirect.com/science/article/pii/S0950584908000256
https://www.sciencedirect.com/science/article/pii/S0950584914000135

4240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

[95] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guidelines,” in Proc. 38th Int.
Conf. Softw. Eng., New York, NY, USA, 2016, pp. 120–131. [Online].
Available: https://doi.org/10.1145/2884781.2884833

[96] S. Jantunen and D. C. Gause, “Using a grounded theory approach for
exploring software product management challenges,” J. Syst. Softw.,
vol. 95, pp. 32–51, 2014. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121214000776

[97] J. Kazanavičius and D. Mazeika, “Analysis of legacy monolithic soft-
ware decomposition into microservices,” in Proc. Doctoral Consor-
tium/ForumDB&IS, Tallinn, Estonia, 2020, pp. 25–32. [Online]. Avail-
able: https://ceur-ws.org/Vol-2620/paper4.pdf

[98] T. Harwood and T. Garry, “An overview of content analysis,” Marketing
Rev., vol. 3, pp. 479–498, 2003.

[99] A. Strauss and J. Corbin, Basics of Qualitative Research. Newbury Park,
CA, USA: Sage, 1990.

[100] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” in Proc. 9th Int.
Conf. Cloud Comput. Serv. Sci., D. Ferguson, V. Munoz, M. Helfert, and
C. Pahl, Eds., Heraklion, Crete, Greece: Scitepress, 2019, pp. 153–164.
[Online]. Available: https://doi.org/10.5220/0007755901530164

[101] M. Cojocaru, A. Uta, and A. Oprescu, “MicroValid: A validation
framework for automatically decomposed microservices,” in Proc.
IEEE Int. Conf. Cloud Comput. Technol. Sci., Sydney, Australia, 2019,
pp. 78–86. [Online]. Available: https://doi.org/10.1109/CloudCom.2019.
00023

[102] F. Auer, M. Felderer, and V. Lenarduzzi, “Towards defining a microser-
vice migration framework,” in Proc. 19th Int. Conf. Agile Softw. Develop.:
Companion, New York, NY, USA, 2018, Art. no. 27. [Online]. Available:
https://doi.org/10.1145/3234152.3234197

[103] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability
maturity model, version 1.1,” IEEE Softw., vol. 10, no. 4, pp. 18–27,
Jul. 1993.

[104] B. Arasteh, A. Fatolahzadeh, and F. Kiani, “Savalan: Multi objective and
homogeneous method for software modules clustering,” J. Softw. Evol.
Process, vol. 34, no. 1, Jan. 2022, Art. no. e2408. [Online]. Available:
https://doi.org/10.1002/smr.2408

[105] H. J. Rosenblatt, Systems Analysis and Design. Boston, MA, USA:
Cengage Learning, 2013. [Online]. Available: https://books.google.ie/
books?id=h_PUASRnDDYC

[106] M. Chinosi and A. Trombetta, “BPMN,” Comput. Standards Interfaces,
vol. 34, no. 1, pp. 124–134, Jan. 2012. [Online]. Available: https://doi.
org/10.1016/j.csi.2011.06.002

[107] B. P. Model, “Notation (BPMN) version 2.0,” OMG Specification, Object
Management Group, 2011, pp. 22–31. [Online]. Available: http://www.
omg.org/spec/BPMN/2.0

[108] A. Dennis, Systems Analysis and Design, 5th ed. Hoboken, NJ, USA:
Wiley, 2012.

[109] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE Softw., vol. 25, no. 5, pp. 22–29,
Sep./Oct. 2008. [Online]. Available: https://doi.org/10.1109/MS.2008.
130

[110] A. Møller and M. I. Schwartzbach, “Static program analysis,” Dept. Com-
put. Sci., Aarhus Univ., Oct. 2018. Accessed: Sep. 10, 2021. [Online].
Available: http://cs.au.dk/amoeller/spa/

[111] F. Nielson, H. R. Nielson, and C. Hankin, Data Flow Analysis. Berlin,
Germany: Springer, 1999, pp. 35–139. [Online]. Available: https://doi.
org/10.1007/978--3-662-03811-6_2

[112] T. Ball, “The concept of dynamic analysis,” SIGSOFT Softw. Eng. Notes,
vol. 24, no. 6, pp. 216–234, Oct. 1999. [Online]. Available: https://doi.
org/10.1145/318774.318944

[113] N. Lapuz, P. Clarke, and Y. Abgaz, “Digital transformation and the
role of dynamic tooling in extracting microservices from existing soft-
ware systems,” in Systems, Software and Services Process Improvement,
M. Yilmaz, P. Clarke, R. Messnarz, and M. Reiner, Eds., Cham, Switzer-
land: Springer, 2021, pp. 301–315. [Online]. Available: https://doi.org/
10.1007/978--3-030-85521-5_20

[114] N. Gupta, “Microservice, miniservice, and macroservice,” Aug. 2020.
Accessed: Mar. 14, 2021. [Online]. Available: https://dzone.com/articles/
micro-service-mini-service-and-macro-service

[115] D. M. Fernández et al., “Artefacts in software engineering: A fun-
damental positioning,” Softw. Syst. Model., vol. 18, no. 5, pp. 2777–
2786, 2019. [Online]. Available: https://doi.org/10.1007/s10270--019-
00714-3

[116] M. Silva and T. Oliveira, “Towards detailed software artifact specification
with SPEMArti,” in Proc. Int. Conf. Softw. Syst. Process, New York, NY,
USA, 2011, pp. 213–217. [Online]. Available: https://doi.org/10.1145/
1987875.1987912

[117] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework
for application performance monitoring and dynamic software analysis,”
in Proc. 3rd ACM/SPEC Int. Conf. Perform. Eng., New York, NY,
USA, 2012, pp. 247–248. [Online]. Available: https://doi.org/10.1145/
2188286.2188326

[118] H. W. Kuhn and B. Yaw, “The Hungarian method for the assign-
ment problem,” Nav. Res. Logistics Quart., vol. 2, no. 1/2, pp. 83–97,
1955.

[119] L. Carvalho et al., “Search-based many-criteria identification of mi-
croservices from legacy systems,” in Proc. Genet. Evol. Computation
Conf. Companion, New York, NY, USA, 2020, pp. 305–306. [Online].
Available: https://doi.org/10.1145/3377929.3390030

[120] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002. [Online]. Available: https://doi.org/
10.1109/4235.996017

[121] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm,” TIK-Rep., 2001. [Online]. Available:
http://hdl.handle.net/20.500.11850/145755

[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[123] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design, 1st ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1979.

[124] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-
oriented systems,” in Proc. Int. Symp. Appl. Corporate Comput., 1995,
pp. 25–27.

[125] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and P. Vassiliadis,
“Cohesion-driven decomposition of service interfaces without access to
source code,” IEEE Trans. Serv. Comput., vol. 8, no. 4, pp. 550–562,
Jul./Aug. 2015. [Online]. Available: https://doi.org/10.1109/TSC.2014.
2310195

[126] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., Cleveland, OH, USA, 2019,
pp. 481–490. [Online]. Available: https://doi.org/10.1109/ICSME.2019.
00081

[127] A. Brogi, A. Canciani, D. Neri, L. Rinaldi, and J. Soldani, “Towards a
reference dataset of microservice-based applications,” in Proc. Int. Conf.
Softw. Eng. Formal Methods, A. Cerone and M. Roveri, Eds., Cham,
Switzerland: Springer, 2018, pp. 219–229. [Online]. Available: https:
//doi.org/10.1007/978--3-319-74781-1_16

[128] M. I. Rahman, S. Panichella, and D. Taibi, “A curated dataset of
microservices-based systems,” Joint Proc. Inforte Summer Sch. Softw.
Maintenance Evol., vol. 2520, pp. 1–9, 2019. [Online]. Available: https:
//ceur-ws.org/Vol-2520/paper1a.pdf

[129] C. Wohlin, “Software engineering research under the lamppost,” in
Proc. 8th Int. Joint Conf. Softw. Technol., J. Cordeiro, D. A. Marca,
and M. van Sinderen, Eds., Reykjavík, Iceland: SciTePress, 2013,
pp. IS–11.

[130] A. Razzaq, A. Wasala, C. Exton, and J. Buckley, “The state of empirical
evaluation in static feature location,” ACM Trans. Softw. Eng. Methodol.,
vol. 28, no. 1, Dec. 2018, Art. no. 2. [Online]. Available: https://doi.org/
10.1145/3280988

[131] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification
in service-oriented architecture: A survey,” Softw. Testing Verification
Rel., vol. 23, no. 4, pp. 261–313, 2013. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1470

[132] T. S. C. Tiobe, “Tiobe index for January 2021,” Jan. 2021. Accessed:
Feb. 02, 2021. [Online]. Available: https://www.tiobe.com/tiobe-index/

[133] D. Cassel, “COBOL is everywhere. Who will maintain it?,” 2017. Ac-
cessed: Feb. 24, 2022. [Online]. Available: https://thenewstack.io/cobol-
everywhere-will-maintain/

[134] A. Santos and H. Paula, “Microservice decomposition and evalua-
tion using dependency graph and silhouette coefficient,” in Proc. 15th
Braz. Symp. Softw. Compon. Architectures Reuse, New York, NY, USA,
2021, pp. 51–60. [Online]. Available: https://doi.org/10.1145/3483899.
3483908

[135] Z. Wu and M. Palmer, “Verb semantics and lexical selection,” in Proc.
32nd Annu. Meeting Assoc. Comput. Linguistics, Las Cruces, NM,
USA, 1994, pp. 133–138. [Online]. Available: https://www.aclweb.org/
anthology/P94--1019

[136] D. Lin, “An information-theoretic definition of similarity,” in Proc. 15th
Int. Conf. Mach. Learn., San Francisco, CA, USA: Morgan Kaufmann,
1998, pp. 296–304.

[137] P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” in Proc. 14th Int. Joint Conf. Artif. Intell., San Francisco,
CA, USA: Morgan Kaufmann, 1995, pp. 448–453.

https://doi.org/10.1145/2884781.2884833
https://www.sciencedirect.com/science/article/pii/S0164121214000776
https://www.sciencedirect.com/science/article/pii/S0164121214000776
https://ceur-ws.org/Vol-2620/paper4.pdf
https://doi.org/10.5220/0007755901530164
https://doi.org/10.1109/CloudCom.2019.penalty -@M ignorespaces 00023
https://doi.org/10.1109/CloudCom.2019.penalty -@M ignorespaces 00023
https://doi.org/10.1145/3234152.3234197
https://doi.org/10.1002/smr.2408
https://books.google.ie/books{?}id=h_PUASRnDDYC
https://books.google.ie/books{?}id=h_PUASRnDDYC
https://doi.org/10.1016/j.csi.2011.06.002
https://doi.org/10.1016/j.csi.2011.06.002
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130
http://cs.au.dk/amoeller/spa/
https://doi.org/10.1007/978--3-662-03811-6_2
https://doi.org/10.1007/978--3-662-03811-6_2
https://doi.org/10.1145/318774.318944
https://doi.org/10.1145/318774.318944
https://doi.org/10.1007/978--3-030-85521-5_20
https://doi.org/10.1007/978--3-030-85521-5_20
https://dzone.com/articles/micro-service-mini-service-and-macro-service
https://dzone.com/articles/micro-service-mini-service-and-macro-service
https://doi.org/10.1007/s10270--019-00714-3
https://doi.org/10.1007/s10270--019-00714-3
https://doi.org/10.1145/1987875.1987912
https://doi.org/10.1145/1987875.1987912
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1145/3377929.3390030
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
http://hdl.handle.net/20.500.11850/145755
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1007/978--3-319-74781-1_16
https://doi.org/10.1007/978--3-319-74781-1_16
https://ceur-ws.org/Vol-2520/paper1a.pdf
https://ceur-ws.org/Vol-2520/paper1a.pdf
https://doi.org/10.1145/3280988
https://doi.org/10.1145/3280988
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1470
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1470
https://www.tiobe.com/tiobe-index/
https://thenewstack.io/cobol-everywhere-will-maintain/
https://thenewstack.io/cobol-everywhere-will-maintain/
https://doi.org/10.1145/3483899.3483908
https://doi.org/10.1145/3483899.3483908
https://www.aclweb.org/anthology/P94--1019
https://www.aclweb.org/anthology/P94--1019

ABGAZ et al.: DECOMPOSITION OF MONOLITH APPLICATIONS INTO MICROSERVICES ARCHITECTURES: A SYSTEMATIC REVIEW 4241

[138] R. V. O’Connor, P. Elger, and P. M. Clarke, “Continuous software
engineering—A microservices architecture perspective,” J. Softw.: Evol.
Process, vol. 29, no. 11, 2017, Art. no. e1866.

[139] S. Rochimah and B. Nuralamsyah, “Decomposing monolithic to mi-
croservices: Keyword extraction and BFS combination method to cluster
monolithic’s classes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi
Informasi), vol. 7, no. 2, pp. 263–270, Mar. 2023. [Online]. Available:
http://jurnal.iaii.or.id/index.php/RESTI/article/view/4866

[140] L. Qian, J. Li, X. He, R. Gu, J. Shao, and Y. Lu, “Microservice ex-
traction using graph deep clustering based on dual view fusion,” Inf.
Softw. Technol., vol. 158, 2023, Art. no. 107171. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584923000253

[141] K. Sellami, M. A. Saied, A. Ouni, and R. Abdalkareem, “Combining
static and dynamic analysis to decompose monolithic application into
microservices,” in Proc. Int. Conf. Serv.-Oriented Comput., J. Troya, B.
Medjahed, M. Piattini, L. Yao, P. Fernández, and A. Ruiz-Cortés, Eds.,
Cham, Switzerland: Springer, 2022, pp. 203–218.

[142] L. Cao and C. Zhang, “Implementation of domain-oriented microservices
decomposition based on node-attributed network,” in Proc. 11th Int. Conf.
Softw. Comput. Appl., New York, NY, USA, 2022, pp. 136–142. [Online].
Available: https://doi.org/10.1145/3524304.3524325

[143] V. Nitin, S. Asthana, B. Ray, and R. Krishna, “CARGO: AI-guided
dependency analysis for migrating monolithic applications to microser-
vices architecture,” in Proc. IEEE/ACM 37th Int. Conf. Automated Softw.
Eng., New York, NY, USA, 2023, Art. no. 20. [Online]. Available:
https://doi.org/10.1145/3551349.3556960

[144] K. Sellami, M. A. Saied, and A. Ouni, “A hierarchical DBSCAN method
for extracting microservices from monolithic applications,” in Proc. Int.
Conf. Eval. Assessment Softw. Eng., New York, NY, USA, 2022, pp. 201–
210. [Online]. Available: https://doi.org/10.1145/3530019.3530040

[145] I. Trabelsi et al., “From legacy to microservices: A type-based approach
for microservices identification using machine learning and semantic
analysis,” J. Softw.: Evol. Process, 2022, Art. no. e2503. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2503

[146] M. Dehghani, S. Kolahdouz-Rahimi, M. Tisi, and D. Tamzalit, “Facili-
tating the migration to the microservice architecture via model-driven
reverse engineering and reinforcement learning,” Softw. Syst. Model.,
vol. 21, no. 3, pp. 1115–1133, Jun. 2022. [Online]. Available: https:
//doi.org/10.1007/s10270--022-00977-3

[147] X. Sun, S. Boranbaev, S. Han, H. Wang, and D. Yu, “Expert system for au-
tomatic microservices identification using API similarity graph,” Expert
Syst., 2022, Art. no. e13158. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/exsy.13158

[148] A. Mathai, S. Bandyopadhyay, U. Desai, and S. Tamilselvam, “Mono-
lith to microservices: Representing application software through het-
erogeneous graph neural network,” in Proc. 31st Int. Joint Conf. Artif.
Intell., L. D. Raedt, Ed., 2022, pp. 3905–3911. [Online]. Available:
https://doi.org/10.24963/ijcai.2022/542

Yalemisew Abgaz received the BSc and MSc de-
grees from Addis Ababa University, and the PhD
degree from Dublin City University, in 2013. He is
an assistant professor with the School of Computing,
Dublin City University. He has been a senior research
fellow with the Future Software Systems Architec-
ture (FSSA) Project, Lero Research Centre, a prin-
cipal investigator on ChIA Project, research fellow
and postdoctoral researcher with the ADAPT Centre,
Dublin City University affiliated with the Austrian
Centre for Digital Humanities, Austrian Academy

of Sciences, and a postdoctoral researcher with Maynooth University. He is
mainly interested in topics at the intersection between software engineering,
data analytics, Semantic Web technologies, knowledge representation, and nat-
ural language processing including ontology development, ontology evolution,
semantic search, semantic publishing, information retrieval, and computational
creativity.

Andrew McCarren received the BSc and PhD de-
grees from Dublin City University. He is an associate
professor with the School of Computing, Faculty of
Engineering and Computing, Dublin City University.
He is also a funded SFI investigator with the Insight
Centre of Data Analytics and his primary research
interests include the application of data analytics and
data mining techniques in Fintech, agriculture, food,
health and human performance.

Peter Elger received the degrees in physics and
computer science. He is a co-founder and CEO of
fourTheorem, an AWS Advanced consulting partner
specialising in next generation cloud architecture, and
high performance Serverless. He started his career
with the Joint-Jet Undertaking in the U.K. building
acquisition, control and data analytics systems for
nuclear fusion research. He has held technical lead-
ership roles across a broad base of the industry in
both the research and commercial sectors including,
software disaster recovery, telecommunications, and

social media. Prior to founding fourTheorem, he was co-founder and CTO of
two companies; Stitcher Ads, a social advertising platform and nearForm, a
Node.js consultancy specialising in digital transformation initiatives. An author
and contributor to several books and academic papers, his most recent book ‘AI
as a Service’ is available from Manning Publications.

David Solan is head of product engineering with
FINEOS. FINEOS is a global market leader in core
insurance technology for disability, life, accident, and
health with more than 50 Insurance Carriers and
Government Accident Compensation organisations.
He has more than 25 years of industry experience in
all aspects of software delivery from requirements,
architecture, SDLC governance, and post-production
support. He has led the transition from traditional
development practices to Agile at scale and is re-
sponsible for delivering a high-quality end-to-end

SAAS-based platform for some of the largest insurance carriers in the world.

Neil Lapuz received the bachelor’s degree in com-
puter applications and software engineering from
Dublin City University, in 2019, and the master’s
degree. He is a software engineer with Oviva, Zurich.
With his interest in monolithic to microservice migra-
tion, he joined the Future Software Systems Architec-
tures (FSSA) project with the aim of contributing to
the project, and conducting his research.

Marin Bivol received the BSc degree from the School
of Computing, Dublin City University, in 2019. He is
a senior software developer and a professional AWS
cloud architect with fourTheorem. He has worked
as a software developer with the Future Software
Systems Architecture (FSSA) Project and continues
to contribute to it. His research interests include
monolith to microservices automated transformation,
IoT, container, and database edge technologies.

http://jurnal.iaii.or.id/index.php/RESTI/article/view/4866
https://www.sciencedirect.com/science/article/pii/S0950584923000253
https://doi.org/10.1145/3524304.3524325
https://doi.org/10.1145/3551349.3556960
https://doi.org/10.1145/3530019.3530040
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2503
https://doi.org/10.1007/s10270--022-00977-3
https://doi.org/10.1007/s10270--022-00977-3
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13158
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13158
https://doi.org/10.24963/ijcai.2022/542

4242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

Glenn Jackson received the BA degree from the
School of Computer Science, Trinity College Dublin,
in 2015. He is a software developer working for Vectra
AI, a company specialised in AI-driven threat detec-
tion and response. He has worked on the Future Soft-
ware Systems Architecture (FSSA) Project that was
aligned with Lero, the Science Foundation Ireland
Research Centre for Software, School of Computing,
Dublin City University.

Murat Yilmaz received the master’s degree in soft-
ware engineering from the University of Minnesota,
with a particular focus on game theory in software
engineering, and the PhD degree from Dublin City
University. He is an associate professor with the
Computer Engineering Department, Gazi University,
where he also serves as the deputy director of the
Informatics Institute. His professional journey spans
more than thirteen years in the software development
industry, complemented by a decade of academic ex-
perience, equipping him with a profound knowledge

base and diverse expertise. He is actively engaged in numerous projects and has
an extensive portfolio of academic works published in internationally recognized
conferences and journals, with a primary focus on the software process, software
management, empirical software engineering, algorithmic game theory, virtual
reality, serious games, and gamification.

Jim Buckley received the PhD degree in computer
science from the University of Limerick, in 2002. He
is a professor with the Computer Science and Infor-
mation Systems Department, University of Limerick,
Ireland and is a co principle investigator with Lero, the
Irish Research Centre for Software. He was awarded
the (Lero) Director’s prize for Research Excellence
in 2020 and his main research interests focus on
supporting software developers who are tasked with
maintaining and evolving software systems. Thus,
specific areas of interests include feature location,

software comprehension, and architectural analysis of such systems.

Paul Clarke is an associate professor with Dublin
City University (DCU) and is a member of Lero, the
Science Foundation Ireland Research Centre for Soft-
ware. His research interests include software prac-
tices, software architecture, and artificial intelligence.
He is principal investigator on the Future Software
Systems Architectures Project, an initiative which
brings together industrial practitioners and academia
to collaborate on machine learning techniques for
architectural remodelling. He is presently DCU BSc
in computer science programme chair, and National

Head of Delegation for Ireland to ISO/IEC Joint Technical Committee 1, Sub
Committee 7, Systems and Software Engineering. He is currently serving as
Steering Committee chair for the International Conference on Software and
Systems Processes (ICSSP) and as an editor for the European System, Software
and Service Process Improvement (euroSPI) Conference.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

