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Abstract

Explaining Deep Neural Networks through Knowledge

Extraction and Graph Analysis

Vitor A. C. Horta

Explainable Artificial Intelligence (XAI) has recently become an active research

field due to the need for transparency and accountability when deploying AI mod-

els for high-stake decision making. Despite the success of Deep Neural Networks

(DNNs), understanding their decision processes is still a known challenge. The re-

search direction presented in this thesis stems from the idea that combining knowl-

edge with deep representations can be the key to more transparent decision making.

Specifically, we have focused on Computer Vision tasks and Convolutional Neural

Networks (CNNs) and we have proposed a graph representation, called co-activation

graph, that serves as an intermediate representation between knowledge encoded

within a CNN and the semantics contained in external knowledge bases. Given a

trained CNN, we first show how a co-activation graph can be created and exploited

to generate global insights for the model’s inner-workings. Then, we propose a

taxonomy extraction method that captures how symbolic class concepts and their

hypernyms in a given domain are hierarchically organised in the model’s subsymbolic

representation. We then illustrate how background knowledge can be connected to

the graph in order to generate textual local factual and counterfactual explanations.

Our results indicate that graph analysis approaches applied to co-activation graphs

can reveal important insights into how CNNs work and enable both global and local

semantic explanations. Despite focusing on CNN architectures, we believe that our

approach can be adapted to other architectures which would make it possible to ap-

ply the same methodology in other domains such as Natural Language Processing.
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At the end of the thesis we will discuss interesting research directions that are being

investigated in the area of using knowledge graphs and graph analysis for explain-

ability of deep learning models, and we outline opportunities for the development

of this research area.
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Chapter 1

Introduction

Explainable Artificial Intelligence (XAI) is the research field that focuses on bringing

more transparency to the decision making process of AI systems [41]. With the

success of Deep Neural Networks (DNNs), and the desire to deploy these models

for high-stake decision making, researchers in XAI are focusing on the need to be

able to explain the decisions made by DNNs [5]. Providing such explanations is

crucial to guarantee their reliability [94], and to ensure compliance with the EU’s

new AI regulation 1. This can be crucial in situations where the ability to explain

decisions and understand misjudgements is key, which include medical diagnosis, law

enforcement, financial analysis and more. However, given their black box nature,

deriving explanations for DNNs is not trivial, and understanding why a DNN makes

a particular decision is still a open challenge.

The desire to understand the black box inside which Artificial Neural Networks

(ANNs) work is not new. There were already attempts to explain ANNs even

when the quality and availability of learning data and the lack of computational

resources did not yet enable full exploitation of deep learning approaches [95, 4,

73]. More recently the number of papers that tackle this problem has increased

considerably [36] and strategies with different perspectives have been developed to

help understand the decision making process of DNNs. Although existing approaches

have made a considerable progress in explaining the high level behaviour of DNNs,

1https://ec.europa.eu/commission/presscorner/detail/en/IP 21 1682)
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most of them derive their explanations solely based on the information contained

in the same feature space in which the DNN was trained. In this sense, existing

methods do not leverage human domain knowledge when explaining DNNs, which

usually translates into explanations that are not self-explanatory in terms of human

expert knowledge, and therefore lack transparency.

In this thesis, we follow the idea that combining knowledge and deep represen-

tations can be the key to more transparent decision making [28][66]. We focus on

explaining models designed for tasks in Computer Vision, more specifically Convo-

lutional Neural Networks (CNNs) since they are the most used architecture in such

visual tasks. If we consider knowledge graphs, for example, the benefits of combining

the learning capabilities from CNNs and the explicit and structured representation

from knowledge graphs is extensively discussed by [66]. Unlike CNN representations,

knowledge graphs represent information explicitly so that each decision taken can

be explained in semantic terms. Also, the knowledge represented by such graphs can

be automatically analysed using a variety of well studied graph analysis methods.

Combining the two approaches, however, is not trivial due to the opaque nature of

neural networks and the difficulty in integrating semantics to their hidden neurons

[66].

To enable this combination, we propose a method that takes inspiration from re-

cent studies in Neuroscience [30, 72], where graph representations and network anal-

ysis are used to interpret brain structure. These studies have shown that analysing

brain networks using graph theory methods and concepts like communities in graphs

and node centrality, can give important insights on the architecture, development,

and evolution of brain networks. More specifically, researchers in neuroscience use

functional graphs to study the brain by representing and analysing statistical de-

pendencies among neuronal activities. Inspired by these approaches, we propose a

representation that is similar to a functional graph, called co-activation graph, that

explores statistical correlations among artificial neural activities in order to explain

the inner workings of CNNs. Our approach could also be extended to other types of

2
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deep neural networks, which is relevant given the recent success of transformers in

computer vision tasks [24, 58] and other application fields such as natural language

processing and audio processing [70]. We discuss in more detail in Chapter 3.

The co-activation graph is a knowledge graph representation that connects the

knowledge learned by a given CNN during the training phase with human knowledge

available in external knowledge bases. It can be used to generate different types of

explanations (local and global) as well as a means to compare the semantic quality

of different models.

In this introductory chapter, we will first present some background and concepts

from Explainable AI. Then, we will discuss the different areas that motivated our

work as well as the research questions associated to them.

1.1 Introduction to Explainable AI

With the latest advancements in Deep Learning, the field of Artificial Intelligence

(AI) has been relying on the use of Deep Neural Networks (DNNs) for a variety of

applications, such as computer vision, natural language processing, speech recogni-

tion, and others. Despite the considerable gain in performance acquired by DNNs in

these tasks, the lack of interpretability and traceability still hinder wider adoption

of AI systems based on such black box models in real-world applications, specifically

for high-risk decision making where the notion of trust is paramount. [107].

In order to overcome these limitations, research in the field of Explainable AI

(XAI) aiming to bring more transparency to DNNs gained lots of attention in recent

years. The development of techniques for interpreting and explaining DNNs is also

motivated by the Ethical Guidelines for Trustworth AI [46], which states that AI

models need to be lawful, ethical and robust, in order to be considered trustworthy.

This challenges the current paradigm of deep learning models, since their black box

nature makes it difficult to guarantee that these requirements are achievable.

According to existing systematic literature reviews [99, 51], methods in XAI can

be categorised based on their scope (local or global), stage (ante-hoc or post-hoc),

3
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and input and output format (tabular, visual, textual, etc). The characteristics

pertaining to each of these dimensions are described in what follows.

1.1.1 Scope

Regarding the scope, a local explanation focuses on a single data point. For example,

given a prediction in image classification, a visual local interpretation may highlight

parts that most influenced the prediction for that specific image [69]. On other

hand, global explanations aim to understand the overall behaviour of the model,

such as identifying concepts that impact the generalisation for an entire class.

1.1.2 Stage

Ante-hoc methods usually change the model architecture or the training process

in order to achieve a more interpretable model. In constrast, post-hoc methods are

generally aimed to explain trained models without intervening in the training phase.

1.1.3 Input Format

An explainable model is often designed for dealing with a specific input type. For

example, methods designed for explaining predictions around images may not be

applied to tabular data.

1.1.4 Output Format

The output format is how the explanation is communicated with the end user. It

may or may not be the same as the input format. For example, a prediction around

an image may be explained in a visual form but also in natural language or logical

rules.

In this thesis we propose a method for generating post-hoc explanations for mod-

els that receive images as the input format. Our method is capable of generating

both local and global explanations. The local explanations are exposed in a tex-

4
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tual format aiming to provide a self-explainable output to the end user. The global

explanations are provided using semantic structures (e.g. taxonomies and knowl-

edge graphs) to facilitate evaluating the knowledge contained within the model with

external domain knowledge.

1.2 Introduction to Convolutional Neural Networks

Since their inception in 1989 [67], Convolutional Neural Neworks (CNNs) are still

widely used and considered to be the state of the art in computer vision tasks.

Each year, more sophisticated and accurate CNN architectures are developed by

researchers in both academia and industry [57] and more real-world applications are

making use of them [3].

A CNN consists of a number of stacked convolutional layers and each convolu-

tional layer contains k convolutional filters. A convolutional filter has three dimen-

sions: height n, width n and depth q, such that the height is equal to the width.

When data is passed through a convolutional filter, it performs a convolutional op-

eration that consists of sliding the filter over the data horizontally and vertically

while calculating the dot product between the filter’s parameters (weight and bias)

and the respective region in the data. In computer vision, each region usually cor-

responds to pixels from an image. When this operation finishes (no further sliding

is possible), the results are passed through an activation function and finally to a

pooling layer that generates a feature map, which is the output of a single convolu-

tional filter. The output of a whole convolutional layer are k feature maps, which are

passed as input to the next layer in the chain. The output of the last convolutional

layer is usually flattened and passed through a fully connected layer which uses this

information to perform some task, such as a classification or regression.

One major benefit of using CNN is that this type of architecture is capable

of extracting features from data automatically. This is especially important for

computer vision given the challenging of performing feature engineering over image

data. In this regard, existing evidence shows that convolutional layers closer to the

5
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input are responsible for detecting low-level features, such as dots or lines, while

layers closer to the output detect high-level features, such as objects and more

complex shapes [42]. In addition to that, CNNs have a reduced number of trainable

parameters, which makes them more efficient and less prone to overfitting [3].

Despite the success of CNNs, their adoption in critical domains such as in health-

care [26, 22] is yet to reach its full potential, mainly due to limitations in terms of

transparency. In these cases, it is important to understand not only how good a

model is in terms of accuracy, but how reasonable is the decision making process

adopted by the model. The method proposed in this thesis will tackle this issue by

generating both global and local explanations for CNNs, considering state-of-the-art

deep architectures trained over large datasets.

1.3 Introduction to Graph theory

Graph theory is a research field that focuses on studying relationships between

objects as they emerge in nature or society. A graph is a representation G = {V,E},

where V is a set of nodes (or vertices) v and E is a set of edges e(i, j) (relationships)

between pairs of nodes vi and vj. It is called weighted graph if its edges contain

numerical weights associated to them, which can be used to represent distance or

similarity between objects. When no weights are defined, the graph is unweighted.

Graphs can also be directed or undirected. In undirected graphs, for each existing

edge e we can assume that ei,j = ej,i, while directed graphs allow for e(i, j) ̸= e(j, i).

The study of graphs has a wide range of applications, such as biological, chemical

and social networks [76, 96, 29], especially because of graphs’ flexibility in represent-

ing data from different domains. For example, in social networks, nodes represent

people and edges may represent any social interaction or relationship between them,

while in biological networks, graphs can be used to represent protein-protein inter-

actions. Another reason for the success of graphs is the presence of well defined

graph metrics and algorithms, which can be used to automatically extract patterns

from complex highly connected data. In this sense, one important concept is the
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notion of node centrality. Given a graph, there are different ways to compute the

centrality of each node in the graph. A node with high centrality can be seen as

“more important” while a less central node is “less important”. The definition of

important depends on the data domain but also on the type of centrality that is

being calculated. Common metrics for node centrality which are used in the thesis

are:

• Degree centrality: the degree of a node is equal to the number of edges con-

necting it to other nodes in the graph. A high degree centrality indicates

that the node is connected to many other nodes in the graph while low degree

centrality indicates that the node has only few connections.

• Betweenness centrality: the betweenness centrality of a node indicates the

number of paths in the graph that passes through that node. Nodes with high

betweenness centrality are usually perceived as being like bridges in the graph.

Such nodes are also known for keeping distinct groups or subgraphs connected

through them. Nodes with low betweenness centrality are usually peripheral

nodes and are less important for keeping the overall graph connectivity.

• PageRank centrality: a node with a high PageRank centrality is either a highly

connected node or a node that is linked to highly connected neighbours. This

type of centrality is calculated using the PageRank algorithm [79], which be-

came famous for its use in search engines but it can be applied to many other

application domains. The algorithm performs iterative random walks on the

graph in order to measure the centrality of each node and the intuition is that

a node becomes important if many different paths lead to it. The PageRank

centrality of a node ni can be mathematically expressed as shown in Equation

1.1 where N is the number of nodes in the graph, d is the dumping factor and

cnj
is the number of outbound links on node nj:

PRni
=

1− d

N
+ d

∑
j∈{1,...,N}

PRnj

cnj

(1.1)
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Another way to extract interesting patterns from graphs is by exploring the

communities that emerge as the graph evolves. Communities are groups of nodes

such that nodes within the same community are more connected than nodes from

different communities. Commonly used algorithms for detecting communities are:

• Louvain: the Louvain method [8] is a well known community detection al-

gorithm that finds communities by optimising their modularity index. The

modularity measures how dense the connections inside a community are with

respect to the density of the connections outside the community. Considering a

weighted graph, the modularity Q can be calculated using Equation 1.2, where

Aij is the edge weight between nodes i and j, m is the sum of all edge weights

in the graph, ki and kj are the sum of edge weights for nodes i and j, ci and

cj are their respective communities and δ(ci, cj) is the Kronecker delta which

indicates whether ci = cj. The louvain algorithm can then be understood as

an optimisation algorithm for Q.

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (1.2)

• Label Propagation: this algorithm [108] works by propagating labels through

the graph iteratively until the process converges or a predefined maximum

number of iterations is reached. In the first iteration, each node i receives its

own label i. Then, the node labels are updated to the most frequent label in

their neighbors. The final set of labels correspond to the communities in the

graph and nodes are assigned to these communities based on their final label.

Because community structure is so important in the study of graphs and net-

works, there is a vast amount of methods for detecting them. For a more detailed

overview of the existing methods please refer to [77, 53].

A third important concept when analysing a graph is the ability to predict miss-

ing relationships between objects. Link prediction algorithms are designed for this

purpose and there are many applications for them, such as recommendations systems
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in social networks or drug re-purposing in biology. Once again, there are different

existing strategies for predicting such missing links and they usually differ in how

much of the graph is considered when calculating the probabilities for new links.

For example, methods like Common Neighbours and Adamic Adar consider only

the local neighbourhood of a given node, while other methods such as Personalised

PageRank leverages more the global topology of the graph.

• Common Neighbours: one of the simplest approach to predict a link between

two nodes ni and nj is to count the number of common neighbours between

them, as shown in Equation 1.3. The main limitation of this method is that

it only leverages one-hop connections between the nodes and the rest of the

graph is not taken into account.

CN(ni, nj) = |ni ∩ nj| (1.3)

• Adamic Adar: the adamic adar measure Aij [1] computes the likelihood of a

link between nodes ni and nj using Equation 1.4, where N(x) is the neigh-

borhood of a node x. This method considers two-hop connections since it

leverages the neighborhood of the intersected node nu. The intuition for using

the inverse logarithm is that nodes that are connected through highly con-

nected intersected nodes are less significant when compared with intersected

nodes with a smaller neighborhood.

A(x, y) =
∑

u∈N(x)∩N(y)

1

log |N(u)|
(1.4)

• Personalised PageRank: in order to calculate the likelihood of a link existing

between nodes ni and nj, this algorithm calculates the PageRank centrality of

nj considering ni as a starting node. The algorithm follows a similar approach

as the original PageRank algorithm, but it uses a fixed starting point for the

random walk process. One advantage of this method is that it is not limited
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by a fixed number of hops from the source node, which makes it appealing for

recommendation systems or search engines, as discussed in [79].

1.4 Introduction to Functional Graphs

In order to apply graph analytics to address a given problem, the first step is to

define a graph model for the respective data domain. In some cases the relationship

between objects to be analysed are explicit, such as connections between users in a

social network online platform. In other cases, it may be more valuable to analyse

implicit relationships that are not necessarily structurally connected.

In network neuroscience, a branch of study in the neuroscience research field,

graph representations and graph methods are used to study the human brain. In

order to create a graph representation for the human brain, some neuroscience stud-

ies use a concept called functional graphs. Functional graphs are created to connect

objects based on the statistical interdependence of their activities over time. In the

case of brain networks, nodes are neurons or regions in the brain and the edges are

statistical correlations between their activity, which can be calculated based on data

coming from functional magnetic resonance imaging (fMRI) [10].

The use of functional graphs is motivated when the interaction between objects

are key to understand the underlying system, but there are no explicit connections

between such objects or the structural connections provide only limited understand-

ing of the data. This is the case for CNNs, considering that the neural connections

are responsible for the decision making process but their structural weights do not

facilitate understanding their thinking process.

In this thesis, we propose a method to extract functional graphs for CNNs, called

co-activation graphs, which is capable of representing and connecting neurons in

both convolutional and fully connected layers. We show how this representation can

be generated and analysed using graph metrics and algorithms in order to provide

global and local explanations for CNNs.
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1.5 Introduction to Knowledge Graphs

A knowledge graph (KG) is a knowledge base that uses a graph representation to

describe real world entities and their interrelations [18]. There is a wide range

of applications that can take benefit from the use of knowledge graphs especially

because of their flexibility in representing data from different domains.

Some known benefits of using knowledge graphs to describe a given domain are

their ability to integrate data from different sources and gain insights from data

through the use of graph metrics and algorithms. In addition to that, the decision

making process of methods designed for KGs are transparent and self-explanatory

due to their explicit semantic representation. For these reasons, researchers in XAI

suggest that a more transparent decision support for Deep Learning architectures

can be achieved by combining their deep representations with knowledge graphs [66,

93].

According to [66], the potential benefits of integrating knowledge graphs with

deep learning systems can be manifold and affect different types of applications at

different areas, like robotics, natural language processing and computer vision. The

authors point that, in computer vision, for example, the use of KGs to explain CNNs

could lead to more semantic based explanations, as opposed to existing explanations

based solely on visual artifacts.

However, the challenge of combining KGs with CNNs is not trivial, especially be-

cause a CNN is a computational graph, which is layered, cyclical and lacks semantic

information about both the neurons and their relationships. In this thesis, we aim

to overcome this challenge using co-activation graphs as an intermediate represen-

tation for CNNs. By using co-activation graphs, neurons in a CNN are connected to

each other based on statistical correlations between their activation values, instead

of relying on their opaque connectionist architecture. This not only enables the use

of graph metrics and algorithms, as discussed in the previous section, but it also

allows the knowledge acquired by the CNN to be integrated with external knowl-

edge bases designed by humans. We show how to extend co-activation graphs from
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purely functional graphs to knowledge graphs by connecting nodes in the graph with

external knowledge bases. This extended co-activation graph can be used to predict

semantic attributes of unseen images which allows our method to generate semantic

and textual local explanations for CNNs in image classification.

1.6 Hypotheses and Research Questions

The first phase in our research consists of studying whether it is feasible to build a

representation similar to functional graphs, but for deep learning models. Therefore,

a first hypothesis in our research is as follows:

Hypothesis 1 (H1) The knowledge contained in a Deep Neural Network can be

captured by extracting and representing statistical dependencies among neural activ-

ities.

To guide the evaluation and assessment of H1, we formulate two Research Ques-

tions:

• RQ1: How can we extract and represent statistical dependencies among neural

activities in DNNs?

• RQ2: How well can functional graphs based on statistical dependencies among

neural activities represent the knowledge acquired by DNNs and how can we

measure their suitability?

The second phase of our research focuses on studying how graph theory methods

applied to the aforementioned graphs can give interesting insights on the inner-

working of trained DNNs. This leads to our second hypothesis:

Hypothesis 2 (H2) Given a graph representing statistical dependencies among

neural activities, graph theory methods can be used to give insightful interpretation

on how the represented DNN works.

Two research questions were elaborated to help assessing H2:
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• RQ3: How can we use graph analysis to interpret the origin of common mis-

takes in deep models?

• RQ4: How can we use graph analysis to understand weaknesses or biases in

deep models?

A third hypothesis in this thesis focus on extracting taxonomies from co-activation

graphs in order to provide a quantitative assessment on how well semantic concepts

and their taxonomic relationships are captured by the model’s internal representa-

tion. The third hypothesis is formulated as follows:

Hypothesis 3 (H3) Given a deep model, it is possible to extract a taxonomy from

its respective co-activation graph in order to measure how well the model has captured

the hierarchical relationships between classes from a given domain.

Two research questions were elaborated to help assessing H3:

• RQ5: How can we extract a taxonomy for co-activation graphs representing

deep models?

• RQ6: How can taxonomies extracted from co-activation graphs help in as-

sessing the semantic adequacy of deep models?

A fourth hypothesis in this thesis focuses on exploring the use of co-activation

graphs as enablers for integrating the knowledge contained in deep representations

with external knowledge bases. The fourth hypothesis is formulated as follows:

Hypothesis 4 (H4) Given a co-activation graph which is representing statistical

dependencies among neural activities, if we can connect entities in such graph with

external knowledge bases, we can generate human understandable local explanations

based on semantic attribute values.

Three research questions were elaborated to help assessing H4:
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• RQ7: How can we use co-activation graphs as an intermediate representation

to connect deep models with external knowledge bases?

• RQ8: How can we use graph algorithms and external knowledge to automat-

ically discover semantic attributes from unseen data?

• RQ9: How can we leverage knowledge from external sources to generate se-

mantic explanations for deep models?

To test the four hypotheses and answer the respective research questions, we

propose a method based on a graph we introduced in [49], called co-activation graph.

The co-activation graph is a graph representation in which nodes represent neurons

in a CNN and weighted relationships indicate a statistical correlation between their

activation values. This representation enables the use of graph theory methods

to exploit the inner-workings of DNNs. This representation is general enough to

represent connections between pairs of neurons in any layer of the neural network,

including hidden (convolutional and dense) layers and the output layer. As a result,

and unlike previous approaches, this makes it possible to study relationships between

pairs of neurons in the hidden layers.

1.7 Thesis Structure

This thesis consists of the following six chapters:

(i) Introduction: the current chapter, which presents some of the context, mo-

tivation and background knowledge for this work.

(ii) Literature Review (Chapter 2): we review state-of-the-art research in Ex-

plainable AI considering the topics of (i) global explanations; (ii) local explana-

tions; (iii) graph-based explainability methods and; (iv) knowledge-informed

explanations.
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(iii) Global Explanations using Knowledge Graphs (Chapter 3): this chapter

introduces the core of our methodology, which is the co-activation graph rep-

resentation. We formalise the graph representation and perform experiments

to validate it as method for generating global explanations.

(iv) Extracting taxonomies from CNNs using Knowledge Graphs (Chap-

ter 4): building on the previous chapter we explore how co-activation graphs

can be used for extracting taxonomies from CNNs. The taxonomies are used to

measure the semantic adequacy of a given trained network and expose how well

the model captured the hierarchical semantic relationships between classes.

(v) Generating Local Textual Explanations for CNNs: A Semantic Ap-

proach based on Knowledge Graphs (Chapter 5): in this chapter we en-

rich the original co-activation graph with external knowledge and input data

points in order to generate semantic explanations in a textual form. We show

how the proposed graph representation along with a link prediction method

enable the prediction of semantic attributes for unseen images, which helps

generating factual and counterfactual explanations.

(vi) Conclusions (Chapter 6): this final chapter summarises the research pre-

sented in this thesis by revisiting the hypotheses and research questions. Fi-

nally, we discuss current limitations with the proposed methods and present

future directions for further research.
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Chapter 2

Literature Review

In this chapter we provide more details on relevant state-of-the-art literature regard-

ing Explainable AI (XAI) techniques for deep learning models, with a specific focus

on explaining Convolutional Neural Networks (CNNs). We first review the most

commonly used methods designed for global explanations, which include neuron

contribution, rule-extraction methods, visual methods, concept-based explanations

and class similarity. For local explanations we review approaches based on visual-

isation, case-based explanations, factual and counterfactual generators and expla-

nations based on the association between semantic concepts and specific neurons.

Then, we present explainability methods that leverage graph structures and thus are

more similar to ours. Finally, we discuss other works that integrate external domain

knowledge with deep representations in order to generate semantic explanations.

2.1 Global Explanations

The problem of understanding and explaining the decision making process of neural

networks has been explored by researchers since the 1990s when the models were still

shallow (models with only a few hidden layers) and consisted of only fully connected

layers. Even with these simplifications compared to Deep Neural Networks (DNNs),

providing meaningful explanations for such models proved to be a challenging task.

One of the first approaches proposed in [4] measured the contribution of input
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variables to the output layer to provide explanations for the model. This approach

can be extended for measuring the contribution of neurons in the hidden layer [73]

but, because it can only compute the contributions for neurons in fully connected

layers, it cannot be directly applied to modern architectures such as convolutional

or recurrent neural networks.

After the development of more modern deep architectures, different strategies for

explaining DNNs beyond neuron contribution were developed. One such strategy is

based on rule extraction and the goal is to extract sets of rules that are sufficient to

explain the decisions of complex black box models. A comprehensive review of these

methods can be found in [43]. There are three main types of rule extraction methods:

decompositional, pedagogical and hybrid or eclectic strategy. Methods based on a

decompositional strategy extract rules by examining activation and weights in the

neural networks [14, 60, 62] but they also target only fully connected layers and

cannot be applied to CNNs. The pedagogical strategy uses the decisions made by

DNNs to extract rules without exploring the model architecture [55]. Unlike methods

based on decompositional strategy, pure pedagogical methods can be applied to

any neural network because they do not rely on the architecture. As a drawback,

however, these methods are not able to explain the inner working of hidden layers

as they use the DNN as a black box. It is also possible to use a hybrid of these

two approaches, which is the eclectic strategy [75, 9], but current works apply the

technique only on top of fully-connected layers.

Another common approach to explain DNNs is to use visualisation techniques [25,

13]. Global visual explanations can help understanding, for example, the role of

convolutional filters or entire convolutional layers by looking at the visual repre-

sentations they provide. It is also possible to understand which visual patterns

are usually more relevant for each output class. Extensive surveys of visualisation

methods are provided in the literature [40, 80, 15]. Despite visualisation techniques

playing an important role in understanding the behaviour of DNNs, most visual

analyses require human interpretation, which limits their scalability.
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Global explanations can also be provided in terms of the semantic concepts that

impacts the prediction of each output class. One of such methods is TCAV [59],

which was developed to identify the most important concepts for predicting each

output class in a classification problem. TCAV was able to interpret classification

outcomes in terms of semantic concepts but it did not work well when such concepts

are correlated with each other, which often occurs in real-world image datasets. This

issue is addressed by the authors in [37], where they develop a method to detect

cause-effect between concepts and the models’ predictions. In [104] the authors

propose a way to discover concepts and measure the importance of each concept for

each prediction. Although useful, interpreting such cause-effect relations between

concepts and output classes does not allow for a direct quantitative comparison

between models, since each concept needs to be measured individually.

Using a different approach, [7] explores how classes are hierarchically organised

by CNNs. Authors first use a visual approach to discover hierarchical relationships

between classes and then propose a hierarchical-aware CNN architecture. This work

is the most related to ours in the sense that we also explore hierarchical structures.

However, while their method requires visual and interactive analysis, our approach

extracts the hierarchical relationships automatically from the model, which is im-

portant in order to provide a quantitative assessment of the quality of the semantic

structure learned by a CNN. In addition, our approach for taxonomy extraction

explores neural relations within the CNN internal representation, as opposed to the

work in [7] which relies only on the confusion matrix. This makes our approach

potentially suitable for interpreting different layers in the model and understand the

role of such layers in the overall decision making process.

2.2 Local Explanations

When it comes to supporting local explanations for the outcomes of a CNN, a com-

mon practice is to use visualisation techniques to highlight parts of the image that

contributed the most for that outcome. Differently from global visual approaches,
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the methods for local explanations focus on providing visual clues for explaining each

single image and not entire class representations. There is an extensive number of

works around visualisation techniques, as well as several surveys that summarise

the main approaches in this category [40, 80, 15]. Despite their popularity, visual

explanations, need to be interpreted by a human case by case, which limits the scal-

ability and can add human bias to the process. Saliency maps, for example, do not

reveal the model’s inference process, making them hard to interpret or misleading,

especially when they refer to a mistake such as a misclassified input [100].

A more flexible way to analyse locally the outcome of a Deep Neural Network is

by using case-based approaches, which have been widely used also to interpret the

network’s mistake. In this type of techniques, an explanation can be derived by com-

paring the mistaken input data with its closest neighbors. Case-based approaches

have been used to generate factual and counterfactual explanations on both tabu-

lar data [90] as well as for image classification [56], but their explanations is solely

based on the input feature space. In addition, case-based explanations also require

human interpretation especially when dealing with highly unstructured data such as

raw images, thus being time-consuming and prone to misinterpretation and human

bias. Surrogate models, such as LIME [83], suffer from the same issue when it comes

to explanations for computer vision. Although they can provide high-level feature

based explanations for tasks based on tabular data, their explanations in computer

vision are still provided in the pixel level, which leads to the same limitations as the

methods above.

By using a phrase-critic model, authors in [45] provide a method to extract fac-

tual and counterfactual explanations for image classification models. Their method

however makes use of auxiliary black box models, like LSTMs, adding an additional

level of opacity in the explainability process.

In [6], network dissection is introduced and used to identify neurons that are re-

sponsible for detecting semantic concepts for object detection tasks. After mapping

neurons to semantic concepts, they show that explanations around such concepts
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can be achieved by analysing the behaviour of the respective neurons for a new

image. In [27] this idea is extended, and instead of mapping individual neurons to

semantic concepts, the authors relate them with patterns of filter activities. The

main difference between these works and the one we proposed in this thesis is that

they rely on pixel-level segmented datasets, such as BRODEN, and their ability to

produce meaningful explanations is limited to the concepts existing in the dataset.

Although the BRODEN dataset contains a variety of concepts, it mainly contains

information about objects and it is not suitable for supporting explanations based

on semantic attributes of such objects.

We show that our method works even for fine-grained image classification tasks,

in which the amount of annotated data is limited and an auxiliary dataset such

as BRODEN is not available. In addition, although [6, 27] make use of semantic

annotations, none of the above methods is able to leverage external knowledge bases

to generate explanations, which is another desirable property of our approach.

2.3 XAI approaches using graph structures

The potential of using graphs for explaining the behaviour of a trained deep neural

network can be summarised by two key motivations. The first is the vast amount

of well-known graph methods that can help when analysing complex systems from

many different domains, as mentioned in Section 1.3. The second motivation is that

background domain knowledge is often described using graph structures, such as

knowledge graphs. Therefore, finding a suitable intermediate graph representation

may be a first step to integrate the hidden knowledge from deep learning systems

with background knowledge in order to provide knowledge-informed explanations.

A deep learning model can be seen as a graph structure, called computational

graph, where the nodes in this graph are artificial neurons linked by directed edges

that describe mathematical operations between them. Such a computational graph is

used merely to compute arithmetic operations and thus it is not commonly studied

by means of graph theory methods, especially because of its layered and acyclic
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topology which would prevent the discovery of meaningful insights.

Analysing deep architectures using graph theory methods therefore requires ex-

tracting a suitable intermediate graph representation in a way that the resulting

graph reflect somehow the knowledge contained within the deep representation and

at the same time can lead to interesting insights when used as input to graph algo-

rithms.

An existing approach that extracts a graph structure from CNNs is called ex-

planatory graphs [106]. The authors propose a method that disentangles object-part

patterns for each convolutional filter in a CNN. The patterns and their spatial re-

lationships are represented in a graph, which helps revealing patterns that activate

together as well as which filters are responsible for detecting them. The explana-

tory graph however is still a layered, acyclic and bipartite graph that serves as a

dictionary of object parts, and thus not suitable for graph algorithms and metrics.

In [33], authors propose a graph representation based on vector embeddings that

can represent both data instances and convolutional filters in the same structure. In

their preliminary experiments, they show how community detection algorithms over

the proposed graph can be used to find clusters of images based solely on the graph

topology. One issue that remains is that their representation is still layered, acyclic,

directed and bipartite when considering only the nodes and connections related to

neurons in the hidden layers, which limits the potential of graph methods.

A third representation, called relational graph, is proposed by the authors in

[105]. The relational graph is constructed based on a message passing strategy and

the resulting graph differs from a computational graph since it is not layered, acyclic,

directed nor bipartite. The objective of the relational graph however is to provide

insights on the predictive performance of different deep architectures, and not on

generating global or local post-hoc explanations.

The graph representation proposed in this thesis, called co-activation graph, dif-

fers from the existing alternatives in two ways. First, the co-activation graph enables

the use of any method from graph theory or network science, since it resembles the
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topology of complex systems, such as brain functional graphs, instead of computa-

tional graphs. The second is that a co-activation makes it possible to combine neural

knowledge with symbolic knowledge via input data and class labels, as reported in

[48] and detailed in Chapter 5.

2.4 XAI approaches using external domain knowl-

edge

Most of the methods presented so far are designed to provide explanations based

only on the information that is available for the deep model during the training phase

or at inference time. However, there is an increasing amount of domain knowledge

available in existing knowledge bases such as DBPedia or Wikidata, which could in

principle be leveraged when generating explanations, especially if we want them to

be self-explanatory and directly understandable in human terms. Not only that, but

there are also several annotated datasets, such as CoCo and CUB-200, that contain

relevant semantic information about each data instance, which could be leveraged

by explainability methods. Despite that, integrating external domain knowledge

with deep representations is still an open challenge, especially due to the opaque

and black box nature of deep learning models.

A first step towards this integration was proposed in [88], where the authors use

the Suggested Upper Merged Ontology (SUMO) along with a DL-learner to gener-

ate explanations for image classifiers. Authors in [2] also propose an ontology-based

reasoning approach to explain decisions made by a convolutional autoencoders for

satellite images. More recently, [26] proposed a method that generates counter-

factual explanations for image classifiers using external domain knowledge. The

authors show how their method can generate both local and global explanations

using semantic concepts. One issue shared by all the above methods is that they

only consider the information in the input and in the output layer of the deep ar-

chitecture, i.e, they do not leverage any information contained in the hidden layers.
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Two comprehensive surveys of works that use knowledge graphs and semantic

technologies for XAI are [93, 92]. In these surveys, the authors present several

challenges and opportunities for knowledge-informed explainability methods that

are tightly connected to the objectives of this thesis. The first opportunity is referred

as automated knowledge extraction from graphs and it emphasizes the importance

of providing novel graph-based methods and network analysis for the explainability

task, which is widely explored in this thesis. The second relates to understanding the

human role in the explainability process. This connects highly with our scope in this

work since most of all explanations are human-centered and designed to facilitate

how humans perceive such explanations. The third point refers to capturing meaning

in the form, for example, of causal relationships, which connects especially with the

methods developed in Chapter 5 where we generate local explanations based on the

impact of semantic attributes in misclassifications.

Our work differs from the existing ones especially because it creates a novel repre-

sentation that connects all parts of the deep models with existing domain knowledge.

Because of this, the explanations generated by our method are produced based on

the neural interactions, which may help, for example, in revealing what parts of the

model are responsible for specific behaviours.
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Chapter 3

Global Explanations using

Knowledge Graphs

3.1 Introduction

This chapter introduces a new method to extract and represent knowledge from

trained DNNs in order to better understand how the hidden part of the model

works. Inspired by the use of functional graphs in the field of Neuroscience, we

propose a graph representation, called co-activation graph, that connects every pair

of neurons in a DNN based on statistical correlations of their activities. This chapter

provides a formal definition of the co-activation graph and a step-by-step procedure

to clarify how it is constructed.

We can summarise the key contributions of this chapter as follows: (i) we provide

a formal definition of co-activation graphs so that we can identify properties and

graph analytics processes for extracting meaningful knowledge from the deep learn-

ing model (RQ1); (ii) we evaluate the proposed graph representation by analysing if

there is an association between the statistical relationships encoded by co-activation

graphs and the neural behaviour of their respective DNNs (RQ2); (iii) we apply

graph analysis beyond class similarity, for detecting groups of neurons that work

together to predict similar classes on models and datasets at different levels of com-
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plexity (RQ3); (iv) we explore and apply the notion of graph centrality to detect

central nodes that represent the most important neurons in hidden layers, which

may indicate possible biases (RQ4).

3.2 (RQ1): Co-activation Graph: Definition and

Construction

A co-activation graph is a graph representation that connects every pair of neurons

of any type (fully connected or convolutional) and located in any layer of the neural

network. This section provides a formal definition of the co-activation graph and

recalls the general idea on how it is constructed.

Nodes of the co-activation graph correspond to neurons in the DNN and weighted

edges represent a statistical correlation between them based on their activation

values. We refer to this graph as a co-activation graph, since the relationships

between its nodes represent how their activation values are correlated. The main

idea of the co-activation graph is to create a relation between pairs of neurons in

any depth of the hidden layers and neurons in the output classes, since the latter

are more comprehensible for humans.

Definition 1 A co-activation graph can be represented as an undirected graph G =

(V,E) where V = {v0, v1, ..., vn} is the set of n nodes that represent the neurons in

the DNN and E is the set of weighted relationships (edges) eij = (vi, vj, w) between

pairs of neurons vi and vj with weight wij, considering 0 ≤ i < n and 0 ≤ j < n.

The weight wij represents a statistical correlation between the activation values of vi

and vj.

Given a data sample S, the first step to calculate wij is to feed the DNN with S.

Then extract the sets of activation values A(vi, S) = {ai0, ai1, ..., ain} and A(vj, S) =

{aj0, aj1, ..., ajn}, where ai0 is a single activation value of neuron vi for a single data

input s0 ∈ S. The weight wij is then obtained by applying a statistical correlation

on A(vi, S) and A(vj, S), as shown in Equation 1:
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wij = Spearman corr(A(vi, S), A(vj, S)). (3.1)

We chose to use Spearman coefficient since we do not expect linear relationships

between neurons’ activation values. Therefore, edge weights vary in the range of

[-1,1]. To clarify this process we recall the three steps below on how to generate

a co-activation graph for a given trained DNN. For this, consider a DNN with n

neurons and a data sample S = {s0, s1, ..., sm}.

1. Extract activation values: The first step to build a co-activation graph is

to feed the given DNN with S. Then, for each neuron vi and each data input

sh ∈ S where 0 ≤ h < m , extract a single activation value aih. The result is

the set {A(v0, S),A(v1, S),...,A(vn, S)}, where A(vi, S) represent all activation

values of each neuron vi for the whole data sample S.

For dense layers this process is straightforward because each neuron outputs

a single activation value. Filters in convolutional layers will output multiple

values since they have different activation values for each region in the input.

To overcome this and make our approach work for convolutional layers, the

average pooling technique is applied to extract a single value for convolutional

filters. Although some spatial information is lost in this process, feature maps

tend to be sparse as most activations are zero after being passed through a

ReLU activation function [12]. Therefore, in this thesis we use the spatial

pooling strategy since it allows representing convolutional filters in the graph

while keeping the dimensionality low [31].

2. Define and calculate edge weights: After collecting the activation values

A(vi, S) for each neuron vi in the DNN, the next step is to define the relation-

ships between pairs of neurons. For each pair of neurons vi and vj, Equation 1

is applied using the activation values A(vi, S) and A(vj, S) to calculate a sta-

tistical correlation that will define the relationship weights wij between each

pair of neurons. The result of this step is a matrix containing weights wij for
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every neuron pair vi and vj that can be used to construct the set of edges E.

3. Build and analyse the co-activation graph: Given the set of edges E that

describes the relationship between every pair of neurons, the co-activation

graph can be built and analysed using any suitable computational tool for

graph structures. In this work, we chose to represent the co-activation graphs

in the graph database Neo4j1 to facilitate data persistence and enhance re-

producibility. The result of this final step is a graph where nodes represent

neurons of any layer in the DNN and weighted edges indicate the correlation

between their activation values. Our evaluation in Section 3.3 demonstrates

that this graph correctly encodes the knowledge contained in the hidden layers

of the DNN and we can then explore the graph structure and use graph anal-

ysis tools to understand relationships between neuron pairs in hidden layers

and output classes.

It is easy to imagine how the result of this process is a very dense graph where

each possible pair of nodes is connected. Analysing and visualising such a graph

would be both difficult and computationally expensive. However, it is possible to

define a threshold to remove relationships with small weights. Although we do not

provide a systematic way for determining the threshold, it is feasible to define it

empirically given that the relationship weights vary in a constrained range of [-

1,1] and can be interpreted as statistical correlations. By doing this, the resulting

process will be a less dense graph where only relationships with significant positive

correlations are kept.

The formal definition together with the step-by-step procedure on how to build

co-activation graphs help answering (RQ1), since it is a systematic approach to

build graph representations based on statistical dependencies between neural ac-

tivities. In next section, we validate the approach based on co-activation graphs

to interpret DNNs by conducting experiments on models and datasets of different

levels of complexity.

1https://neo4j.com
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3.3 Evaluation: Explaining DNNs through Co-

activation Graphs

To evaluate our approach, three experiments were conducted. This section first in-

troduces the model architectures, datasets and how the experiments were conducted.

Then, a two-part evaluation is performed. The first part aims to understand how

well co-activation graphs can represent the knowledge contained in DNNs, thus

tackling (RQ2).

In the second part, we begin to show how the use of graph theory methods over

co-activation graphs can help interpreting DNNs. For this, we first use a commu-

nity detection algorithm to detect groups of neurons that act together for predicting

similar classes in the DNN, which tackles (RQ3). Then, we study the presence of

central nodes in a co-activation graph and show that they can be used to automat-

ically detect important neurons in the DNN, thus addressing (RQ4).

3.3.1 Building the Co-activation Graph: Datasets and Neu-

ral Architectures

Three well known datasets were used for the experiments: MNIST handwritten

digits [68], MNIST fashion [103] and CIFAR-10 [63]. For the MNIST variants, two

shallow DNNs were trained from scratch. For CIFAR-10, a state-of-the-art model

was used, as detailed below.

MNIST-handwritten and MNIST-fashion

The classes in handwritten digits dataset refer to digits from 0 to 9 and classes in

fashion dataset are related to clothes. Both datasets contain ten classes, with 60000

training images and 10000 testing images. The DNN used for handwritten digits

contains two convolutional layers and three fully connected layers and the DNN

used for the fashion dataset has three convolutional layers and two fully connected

layers. The Adam optimiser was used with learning rate 0.002. After training for 10
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epochs, these models achieved an accuracy greater than 97%. Although it is possible

to obtain higher accuracy with different architectures, we chose to use these models

since we also want to analyse the reason behind mispredictions.

The co-activation graph was built for each DNN following the three steps dis-

cussed in Section 3.2. We first fed the DNNs with data samples from the testing

set to extract activation values for each neuron. Then, we calculated the Spearman

correlations between those neurons and built a co-activation graph for each DNN. In

order to keep only relevant relationships in our graph, we applied a threshold of 0.3

so that only neurons with some significant correlation are connected. This threshold

value was chosen empirically based on two observations. The first is many graph

methods are not designed for negative edge weights, such as the Louvain and PageR-

ank algorithm and there only connections with a significant positive correlation were

kept. In second, if was observed that a higher threshold would separate some output

classes into different graph components. Therefore, a threshold of 0.3 was chosen

in order to maintain only significant positive correlations without partitioning the

graph into multiple components.

CIFAR-10

The CIFAR-10 dataset contains ten classes: Dog; Cat; Horse; Frog; Bird; Deer;

Airplane; Ship; Truck; Automobile. There are 50,000 training images and 10,000

testing images. The DNN used for CIFAR-10 was the MobileNetV2 [87] that was

designed to achieve state-of-the-art results on the challenging ImageNet dataset.

The MobileNetV2 architecture contains an initial convolutional layer, 19 residual

bottleneck layers followed by another convolutional layer and a fully connected layer.

The model used in this experiment achieved 94.43% accuracy on the CIFAR-10

dataset.

To build a co-activation graph for this model the first step was to extract the

activation values from each neuron in every layer. For the convolutional and fully

connected layers we extracted the activation values using the same approach de-
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scribed in Section 3.2. For the bottleneck layers we had to adapt our strategy as

these layers are formed by depthwise and pointwise convolutions. In this case we

collected the RELU activation values from the last pointwise convolution, since this

is the last transformation that is performed on each bottleneck layer.

After collecting the activation values we calculated the Spearman correlation be-

tween each pair of neurons and connected them to generate the co-activation graph.

Finally, we applied the same threshold of 0.3 to keep only relevant relationships in

our graph. With these settings the MobileNetV2 co-activation graph for CIFAR-10

contains 4,012 nodes and 184,144 edges.

3.3.2 (RQ2): Evaluating the co-activation graph represen-

tation

After constructing a co-activation graph for each of the three models and datasets

described above, the first part of our evaluation was conducted to analyse how well

these graphs are being able to represent knowledge from their respective DNNs.

This first evaluation addresses (RQ2) and, for this, we began by analysing if is

there an association between the statistical relationships encoded by co-activation

graphs and the neural connections of their respective neurons in the DNN.

In a DNN, each neuron in the last hidden layer has a neural connection with

each output class. The respective co-activation graph also contains relationships

between these neurons and classes, but with a different meaning, which is a statistical

correlation between their activation values. Then, the first step in this analysis is to

check if the statistical correlations encoded by the co-activation graph are compatible

with the neural connections.

By querying the co-activation graph it is possible to collect, for each class, a set

of its most correlated neurons based on their relationship weights. Since strong re-

lationships indicate high positive correlations in the activation values, it is expected

that when these highly correlated neurons are activated in the DNN, they will have

a high contribution to increase the prediction value of their classes. For example, if
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we pick from the MNIST-fashion co-activation graph the neurons most correlated

to a class sandal and activate them, it is expected that the DNN will output sandal

as a prediction. However, it is important to note that, activating a single or just

few neurons might not result in the expected class, since the absence of the other

neurons can have a high influence in the final prediction.

Considering this, we extracted and manually activated the k most correlated

neurons for each class. These neurons were extracted from the first fully connected

hidden layer after the convolutional layers, which is not directly connected to the

output and thus more difficult to interpret. Since activating a single neuron (k = 1)

could not be enough to predict the expected class, we tested multiples values of k to

see what is the minimum number of neurons we need to activate in order to predict

the expected class. We expect that when activating the top k neurons (k most

correlated neurons), the model will output a prediction with the respective class.

Figure 3.1 shows the results for handwritten and fashion datasets. It is possible to

see that, for the fashion dataset, when we activate the top 7 neurons we get the

expected prediction for all the classes. For handwritten dataset, the model predicts

the expected class 80% of the time.

This result indicates that we can query the co-activation graph to find neurons

with a high impact over the prediction values for each class, which is a first evidence

towards (RQ2).

After this first evidence that the co-activation graph is being able to represent

DNNs knowledge, we performed a second step in the analysis to understand more

about the association between co-activation graphs and DNNs. We investigated the

similarity between classes in co-activation graphs to see if there is an association

between similar classes in co-activation graphs and pairwise mistakes in the DNN

predictions. For this, we first calculated the jaccard similarity coefficient for each

pair of classes in the co-activation graphs. The jaccard coefficient was calculated

based on the overlaps (shared nodes) between each pair of classes. Then, we collected

the number of mistakes between them by counting for every pair of classes A and B
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Figure 3.1: Result acquired after extracting top k most correlated neurons for each class
in the co-activation graph and activating then in the DNN. The accuracy indicates how
many times the expected class was predicted.

how many times the model predicted the wrong class A when the the correct answer

was B, or the other way around.

Figure 3.2 shows that there is a positive correlation between class similarity and

the number of mistakes involving them, showing that, pairs of classes with many

overlapping nodes in the co-activation graph tend to cause a high number of mistakes

in the DNN. It also suggests that overlapping nodes between two classes might be

the origin of mistakes in the DNN, which is an initial step towards (RQ3). We

follow this intuition in next subsection to study more about class similarity and

origin of mistakes.

The strong correlation between class similarity in co-activation graphs and pair-

wise mistakes in the DNN is a second evidence towards (RQ2), since it shows that

the co-activation graphs are in some way representing the knowledge acquired from

the DNNs. Next, the second part of the evaluation process is performed to show

how the use of graph theory methods over co-activation graphs can help interpreting

DNNs.
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Figure 3.2: Correlations of mistakes between two classes and their jaccard similarity.
The Spearman correlation is 0.5042 for handwritten digits (left) and 0.6625 for fashion
(right)

3.3.3 (RQ3): Interpreting DNNs’ mistakes using Commu-

nity Detection Analysis

The presence of community structure in graphs and networks is a key aspect worth

being investigated to understand interesting properties of the graph itself and the

knowledge it represents. When applied over co-activation graphs, communities rep-

resent groups containing neurons and classes that tend to activate together in the

DNN. We analysed the community structure of the three co-activation graphs (fash-

ion, handwritten and CIFAR-10 ) to see if it can help detecting classes that are

similar from the DNN point of view, which would help answering (RQ3).

The Louvain community detection algorithm [8] was chosen because, besides be-

ing a well established algorithm, it outputs a modularity coefficient that indicates

how the community structure differs from random graphs. The value of modularity

varies in range [-1,1] and higher values indicate that connections between nodes in

same community are stronger than nodes in different ones. The only required pa-

rameter for the Louvain algorithm is the resolution, which can be adjusted to detect

a higher number of smaller communities or a lower number of bigger communities.

For this experiment, the resolution was set to the default value 1.0.

Table 3.1 shows the detected communities and classes contained in each of them,

for fashion and handwritten co-activation graphs. For the fashion dataset it can
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be noted that classes in same communities have a similar semantic meaning. We

can notice this because classes like pullover and coat were put in same community

while sandals and sneakers are grouped in a different one, somehow reflecting the

semantic alignment among classes grouped in the same community structure for

that dataset. For the handwritten dataset it is not possible to conclude the same,

since semantics of digits are less clear. It is important to note that for both datasets

the modularity was higher than 0.4 which means that found communities are denser

regions although they are not totally distinguishable.

These results are reported in our preliminary investigation on [49] which demon-

strated to some extent that community analysis over the co-activation graphs can

help identifying classes that are similar from the point of view of the DNN.

Table 3.1: Communities on MNIST Fashion and MNIST Handwritten.

Community MNIST Fashion MNIST Handwritten

C1 T-shirt/Top; Pullover; Coat; Shirt 0; 2; 4; 6

C2 Trouser; Dress; 5; 7; 8; 9

C3 Sandal; Sneaker; Bag; Ankle Boot 1; 3

We then extended and elaborated on the validity of this result by analysing the

community structure of a deeper model (MobileNetV2 ) on a more complex dataset

(CIFAR-10 ). As described before, the CIFAR-10 dataset contains ten classes: Dog;

Cat; Horse; Frog; Bird; Deer; Airplane; Ship; Truck; Automobile. As humans, it

would be reasonable to separate these classes in two groups: Animals and Vehicles.

To understand if MobileNetV2 also organises these classes into different and seman-

tically aligned groups, the community detection algorithm was run on CIFAR-10 in

the same way as done in [49] for the MNIST datasets.

After following the same procedure and applying the Louvain algorithm with

default resolution, the detected communities for the co-activation graph on CIFAR-

10 can be seen from Table 3.2.

As expected, Animal and Vehicle classes were put in different communities show-

ing once more that classes in the same communities are semantically aligned, and
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Table 3.2: Communities on MobileNetV2 for CIFAR-10 with default resolution.

Community Classes

C1 Deer; Dog; Horse

C2 Frog; Bird; Cat

C3 Airplane; Ship; Truck; Automobile

Modularity 0.489

confirming previous experiments. However, this first result also shows that the

model separated Animal classes in two different groups, one containing {Deer; Dog;

Horse} and the other containing {Frog; Bird; Cat}.

To further study these communities we analysed the similarity between them.

In this case, it is reasonable to expect that C1 and C2 are more similar between

each other than they are with C3, since the former contains only animals and the

latter only vehicles. To verify this, we increased the resolution parameter to achieve

fewer communities (i.e. bigger ones). We observed that when we set the resolution

parameter to 1.2, C1 and C2 are merged by the Louvain algorithm into one single

community, indicating that not only classes in the same community have a semantic

similarity but also there is a semantic hierarchy reflected by the analysis as these

merged communities are semantically aligned, as shown in Table 3.3.

Table 3.3: Communities on MobileNetV2 for CIFAR-10 with increased resolution.

Community Classes

C1 Deer; Dog; Horse; Frog; Bird; Cat

C2 Airplane; Ship; Truck; Automobile

Modularity 0.489

Another important aspect to check in this analysis is how the communities’

quality depends on the knowledge encoded within the CNN. In order to test this,

we repeated the previous experiment but this time we built the co-activation graph

for an untrained model with randomly initialised parameters. The results shown

in Table 3.4 show that the communities detected for the untrained model do not
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Table 3.4: Communities on an untrained MobileNetV2 for CIFAR-10.

Community Classes

C1 Airplane, Cat, Dog, Ship

C2 Automobile, Bird

C3 Deer, Frog, Horse, Truck

Modularity 0.22

maintain the expected semantic alignment between their contained classes, which is

reflected by the presence of both vehicles and animals in all three communities. This

is an important evidence towards RQ2 since it shows that the knowledge contained

in the co-activation graph is only as good as the knowledge from its respective CNN.

Detecting these groups and having the evidence that they carry a semantic mean-

ing is important for different reasons. First, mistakes are more likely to occur be-

tween classes that are semantically similar and therefore belong to the same com-

munity. This is also intuitive, since from the human’s perspective misclassifications

between two animals or two vehicles should be more frequent than mistakes between

Frogs and Trucks, for example. Second, if we consider that neurons in convolutional

layers work as feature extractors, it is plausible to expect that neurons for extracting

animal parts are more likely to be found in C1, while vehicle parts are in C2. This

claim however would require a more rigorous evaluation which will be considered in

future work.

Although a more rigorous evaluation over the detected communities is required,

the detected communities seem to represent groups of similar classes from the point

of view of the DNN. This analysis gives a step towards answering (RQ3), since

analysing the neurons within these communities might reveal the origin of mistakes

for classes with high similarity.
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3.3.4 (RQ4): Interpreting DNNs bias using Node Central-

ity Analysis

In graph analysis, the centrality of a node provides valuable insights on how im-

portant this node is in a graph. The notion of importance depends on both the

graph domain and the chosen centrality measure. In our context, the graph domain

refers to neurons in a DNN, and the objective is to discover whether centrality mea-

sures can help revealing neurons that are more important for the DNN. If central

nodes in co-activation graphs are somehow associated with important neurons in the

DNN, this could serve as an automatic way to detect key steps in the DNN decision

process, thus revealing possible weaknesses or biases and addressing (RQ4). The

following analysis was conducted to see if there is a notion of node centrality in

co-activation graphs, and what is the association between central nodes and their

respective neurons in the DNN. For this, consider that a specific neuron is redundant

or less important if we can remove it from the DNN without having a significant

accuracy drop.

Two different centralities are used for this analysis: Degree centrality and PageR-

ank centrality. The Degree centrality of a node indicates the number of direct rela-

tionships this node has with other nodes. In the case of co-activation graphs, a node

with high degree corresponds to a neuron that correlates with many other neurons.

The PageRank centrality of a node indicates its importance by leveraging not only

its direct relationships but also the importance of its neighbors.

To check if there is an association between node centrality and neuron impor-

tance, the following steps were performed:

1. Calculate node centrality in the co-activation graph

2. Pick the node with the highest (or lowest) centrality

3. Remove the respective neuron from the DNN and from the co-activation graph

by zeroing its weights and bias parameters

37



Explaining Deep Neural Networks through Knowledge Extraction and Graph
Analysis

4. Check the accuracy loss

5. Repeat

Table 3.5 shows the result of the above procedure for both Degree and PageRank

centralities [79] for the three models: CIFAR-10, MNIST-handwritten and MNIST-

fashion. In the case of PageRank centrality, it is possible to see that there is an

interesting correlation between the PageRank centrality in the co-activation graph

and the neuron importance in the DNN. This can be observed from the third column

of Table 3.5, which shows that when we remove neurons ordered by higher PageR-

ank, there is a strong accuracy loss in the DNN. In contrast, if neurons with lower

PageRank are removed, the accuracy is stable for a longer period. This behaviour

is consistent through all three datasets, and it indicates that analyzing PageRank

centrality over co-activation graphs has the potential to reveal important neurons

in the respective DNN.

The same consistency cannot be observed for the Degree Centrality. The second

column of Table 3.5 shows that for CIFAR-10, nodes with high degree have a high

impact when removed from the DNN. However, for MNIST-fashion, the opposite

behaviour is observed. In addition, when analyzing the impact of Degree Centrality

for the MNIST-handwritten dataset, removing neurons for either lower or higher

degree shows a similar behaviour, indicating that Degree Centrality is not very

informative for this model.

It is important to note that a node with a low degree might still have a high

PageRank, and thus these results are not contradictory. Instead, this can be con-

sidered as initial evidence that a co-activation graph might be used as a strategy for

pruning algorithms on pre-trained models, since removing a considerable amount of

nodes with low PageRank caused only a minor accuracy drop in all three DNNs in

this experiment.

The centrality analysis shows that there is an association between node centrality

in the co-activation graph and neuron importance in the DNN, which is a step

towards answering (RQ4). This also represents further evidence that the knowledge
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Dataset Pruning by Degree Pruning by PageRank

CIFAR-10

Handwritten

Fashion

Table 3.5: Model accuracy after removing neurons based on their node centrality in the
co-activation graph.

contained in the co-activation graph is compatible with the knowledge encoded in the

DNN, improving our previous answers to (RQ2). However, one current challenge is

to understand the real meaning of each node centrality in co-activation graphs. In

the next section, we discuss possible strategies to investigate this issue, as well as

possible limitations of the proposed method.

3.3.5 Visualising Co-activation Graphs

Graph visualisations are useful to derive new insights from data and to formulate new

hypotheses based on how the graph is visually distributed. This section shows how

graph visualisations can help understand the results achieved by each of the graph

theory methods applied previously and provides a visual way to exploit co-activation

graphs to interpret the knowledge contained in the DNN. For this the MNIST-
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fashion dataset is used as an example and visual representations are presented for the

communities and node centralities that were obtained and analysed in Section 3.3.3

and Section 3.3.4, respectively.

When visualising a co-activation graph it is useful to distinguish nodes in the

hidden layers from nodes in the output layers (target classes), since the latter have

a clear interpretation for humans. In Figure 3.3 blue nodes represent neurons in

the hidden layers while yellow and labelled ones represent the output classes. After

distinguishing these nodes it is easier to visualise each step of the previous analyses.

From Figure 3.3, it is possible to see the impact of applying a specific threshold

to the co-activation graph. After applying a threshold of 0.3 to the MNIST-fashion

dataset, the density of the graph is visibly reduced if compared to a fully-connected

graph but the graph still consists of a single component. It can also be seen from this

figure that the visualisation algorithm, ForceAtlas 2 [52], has placed some classes

close to each other (e.g Sandal, Sneaker and Ankle Boot) intuitively indicating

that the graph has a community-like structure, which is shown in more detail in

Figure 3.4.

In Figure 3.4 the communities discovered in Section 3.3.3 are represented by

different colors. From this community structure a first observation is that the node

representing class Bag is quite close to the red community although it belongs to

the green one. This could be an indication that the Bag class is at the intersection

of these two communities and probably should not be considered as part of a single

community. This behaviour could be captured by community detection algorithms

that consider overlapping nodes, such as [22, 47], and we plan to investigate this

further. In addition, classes Dress and Trouser, although they belong to the pink

community were placed close to the red community by the ForceAtlas2 visualisation

algorithm. This means that they are probably more similar to classes Coat, Pullover,

Shirt and T-shirt than to Sneaker, Ankle Boot, Sandal and Bag. In fact this obser-

vation corroborates with the results presented in Section 3.3.3 which showed that

the community containing Dress and Trouser was merged with the red community
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Figure 3.3: Visualisation for MNIST-fashion co-activation graph made on Gephi. Blue
nodes represent neurons in hidden layers and yellow and labelled nodes represent neurons
in the last layer (output classes).

when we increased the resolution parameters for the Louvain algorithm.

As a third step in the visual analysis Figure 3.5 illustrates nodes according to

their PageRank centrality represented by the size of the nodes. We have already

seen from Section 3.3.4 that central nodes tend to be important neurons in the DNN.

Now, according to the visualisation, the nodes with high centrality seem to belong

to dense regions in the graph while less central nodes are either peripheral nodes or

nodes in less dense regions. This supports the intuition that, by removing the most

central nodes, the model will suffer a considerable accuracy loss since large number

of neurons (dense region) can be impacted.

The visualisations for the communities and central nodes also suggest that if we

combine the community structure with the centrality analysis we might be able to

automatically detect which neurons are more important for the prediction of classes

within each of the communities. For example, if we remove central nodes related

to the green community (big green nodes), this should result in higher impact on

accuracy for classes in the green community (e.g Sandal) than classes in the red
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Figure 3.4: Visualising the communities detected by the Louvain algorithm. Communi-
ties are represented by different colors.

community (e.g. Coat). This is an intuition that should be further investigated.

We can see that by using visualisation techniques we can improve our under-

standing of the results obtained by the different graph analyses, like the community

structure and the positioning of central nodes. This can be considered as another

advantage of extracting knowledge from DNNs and representing it in co-activation

graphs since each analysis performed in the latter can be evaluated and visualised

in a transparent manner. In the next section, we present the limitations we have

identified for the current approach and discuss possible strategies to overcome them.

3.4 Discussion

The evaluation conducted in Section 3.3 demonstrated that results obtained by

our approach are consistent across datasets and neural architectures of different

complexity. However, in this section we discuss some limitations of our approach

that should be taken into account and indicate possible ways to overcome them. We

will also discuss other interesting open issues worth considering in the next steps of
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Figure 3.5: Visualising nodes according to their PageRank centrality. Bigger nodes
represent the most central ones.

this research.

One limitation is that both the community and centrality analysis can be biased

by the chosen threshold. Choosing this threshold is not a trivial task. A possible

way around this would be to use a deeper understanding of the graph distribution

to help define it.

A second limitation is the strategy used to extract activation values from convo-

lutional layers. In our experiments we used spatial pooling. This makes it easier to

extract and represent convolutional filters but it causes some information loss. One

possible strategy to overcome this is to use multiple nodes to represent all possible

slices covered by each convolutional filter.

A third point is that although the method is designed for any deep architecture

we have evaluated it only on fully connected and convolutional layers. Extending

the construction of co-activation graphs for other feed-forward architectures, such as

transformers, would require a mechanism to extract activation values from neurons
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in layers such as the multihead attention layers. This could possibly be achieved

by applying a global pooling at the output of either the attention layer or the last

feedforward layer of the encoder, which is currently being investigated. Once this

mechanism is established, the method for computing correlations based on activation

values would remain the same. On the other hand, architectures that consider

long term dependencies such as recurrent neural networks may present a bigger

challenge, because the statistical correlations might not be sufficient to accurately

represent interactions between neurons. In this case, future work should consider

either representing the state of neurons without exploding the dimensionality of the

graph or the use of dynamic graphs to represent interactions over time.

When comparing with alternative approaches it is important to note that the

method proposed in this chapter aims to explain Deep Neural Networks (DNNs) from

a novel perspective and thus a direct and quantitative comparison is not possible

at the moment. However, we believe that both community and centrality analysis

could be combined with other explanation techniques to generate mutual benefits

for better understanding of DNNs. For example, visualisation techniques might use

information about communities and node centrality to decide which neurons are

more important and therefore should be analysed. Visualisation techniques might

also help in understanding why communities were formed in this particular way

as well as the role of central nodes. By combining the method proposed in this

work with existing approaches to enhancing explainability (such as visualisation

techniques) we expect to achieve richer and complementary explanations that may

improve understanding of how our approach compares to existing ones such as [13,

78].

The observation that the detected communities contain classes with a similar

semantic meaning is also first evidence that our approach might be used to inte-

grate the knowledge acquired by DNNs with external knowledge. In this regard an

interesting avenue for investigation is to use information from knowledge bases such

as ConceptNet or DBpedia to identify properties shared among classes in a com-
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munity. In our experiments, for example, even though our datasets contain a small

number of classes, it would be possible to formalise that C1 is related to dbo:Animal

while C2 is related to dbc:Transport. While this is a trivial example, Chapter 4 looks

into using richer datasets such as CIFAR-100 [64] and ImageNet [20] to explore this

knowledge linkage and how it leads to a more valuable community structure with

potential for a richer semantic interpretation.

Finally, to include more semantic information in our approach we are considering

the addition of connections between the input layer and the co-activation graph.

This is important particularly due to the existence of datasets with contextualised

images, such as CoCo [71] and ImageNet, and could potentially be done based on

recent work in feature extraction [31, 33].

3.5 Summary

In this chapter, we propose the notion of co-activation graph [49, 50] to extract

and represent statistical dependencies between neurons in DNNs, which addresses

(RQ1). In the co-activation graph, nodes represent neurons in a DNN and weighted

relationships indicate a statistical correlation between their activation values. This

representation connects neurons in any layer of the neural network, including hidden

(convolutional and dense) layers and the output layer.

From our experiments, we acquired evidence that statistical dependencies en-

coded in the proposed graph capture the knowledge contained in the DNNs, which

answers (RQ2) and supports verification of H1. In particular, we first demonstrated

how we can find neurons that have a high contribution for predicting some classes.

Then, we observed how classes that are highly overlapping in the co-activation graph

are responsible for most mistakes in the model. This is an interesting finding as it

indicates that overlapping nodes in the graph are the ones that should be operated

on in order to improve the model’s ability to better distinguish similar classes.

In addition, we started to verify H2 by evaluating how our approach can help

interpreting DNNs. For this, a community detection analysis was performed, show-
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ing that it is possible to identify groups of similar classes from the point of view

of the DNN. This is an important step to understand the origin of mistakes and

answer (RQ3), since mistakes tend to occur between classes with high similarity

and within the same community.

In addition, a node centrality analysis revealed that there is an association be-

tween central nodes in co-activation graphs and important neurons in DNNs. We

showed that removing nodes with high PageRank centrality from the DNN causes

a high accuracy drop in the model. This is an important step towards answering

(RQ4) as it is an initial evidence towards finding possible weaknesses or biases

within DNNs, although further investigation is required.

In the next chapter, we show how we can leverage knowledge from external

sources into our approach: considering that communities detected in co-activation

graphs already group together classes with high semantic similarity, we conduct

experiments over ImageNet to see if there is a relation between groups of similar

classes and the WordNet hierarchy.
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Chapter 4

Extracting taxonomies from CNNs

using Knowledge Graphs

4.1 Introduction

In the field of Explainable AI (XAI), the issue of evaluating and comparing deep

learning models beyond their accuracy over a test set has been tackled by methods

that provide global interpretations. Examples include detection of concept impor-

tance [59, 35] and class hierarchy visualisation [7]. While providing some form of

explanation, methods like these can not be sufficient for an objective comparison

between different models, since the resulting interpretations do not provide a metric

that compares CNN decision making with some external semantic ground truth.

In this chapter, we discuss an approach to semantic interpretability of CNNs,

based on how hierarchical relationships between semantic concepts are captured by

the model’s internal representation. To this aim, we propose a taxonomy extraction

method to derive a domain taxonomy from a trained CNN. For example, for a

model trained over the ImageNet dataset [21], our method is capable of extracting

taxonomic axioms such as (GermanShepherd ⊂ Dog ⊂ Mammal ⊂ V ertebrate ⊂

Organism ⊂ Entity).

By comparing such taxonomic axioms with a relevant ground truth class hi-
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erarchy (e.g., WordNet for ImageNet) we can evaluate quantitatively how faithful

the extracted taxonomy is to the selected groundtruth. In the current context this

metric is referred to as semantic adequacy and its purpose is to evaluate the entire

extracted taxonomy with respect to the groundtruth. Note that, independent of

model accuracy, a higher semantic adequacy score implies better transparency by

allowing interpretation of model behaviour in terms of user-accepted concepts and

their taxonomic relationships. Moreover, it makes objective semantic comparison

between models possible, provided that their training data is drawn from classes in

similar or related taxonomies.

In order to achieve these goals, we build upon the idea of co-activation graph in

Definition 1, a data structure based on correlation coefficients of neuron activation

values. Semantic notions are introduced by relating CNN output neurons to nodes

in the graph.

We combine co-activation graphs with a taxonomy extraction method originally

designed for knowledge graphs by [74]. An overview of the approach can be seen

in Figure 4.2. Given the co-activation graph of a trained CNN, and following [74],

we calculate node embeddings for the nodes in the co-activation graph using well

known methods such as Node2Vec [39] and FastRP [16]. We then run a hierarchical

clustering algorithm over the node embeddings and extract the CNN taxonomy.

Finally, the resulting taxonomy can be compared to a ground truth taxonomy to

measure the semantic adequacy of the CNN classifier. The main contributions of

the chapter are:

• A vector representation for semantic relationships of output classes, obtained

by co-activation analysis of a trained model. Such class embeddings are general

purpose representations. We use them for taxonomy extraction by means of

hierarchical clustering (RQ5).

• A method for taxonomy extraction from a trained model. The resulting

taxonomies provide symbolic explanations for sub-symbolic decision making

(RQ5).
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• An evaluation metric for comparison between extracted and ground truth tax-

onomies, measuring what we call the semantic adequacy of a model. In turn,

this metric allows us to compare different models in semantic terms, instead

of merely their performance metrics (RQ6).

The rest of this chapter is organised as follows. Section 2 presents background

knowledge that is key to the development of the proposed method. Section 3 elabo-

rates on the methodology for extracting taxonomies from co-activation graphs built

for CNNs. In Section 4 an experiment using CNNs trained for CIFAR-100 and

ImageNet is conducted. In Section 5 we present our conclusions and discuss the

obtained results.

4.2 Background Knowledge

4.2.1 Semantic Global Interpretation of CNNs

In XAI, global interpretations aim to provide insights into the behaviour of a model

as a whole, instead of explaining individual inference events. E.g., TCAV [59] iden-

tifies the most important concepts for predicting each output class in a classification

problem. TCAV is able to interpret classification outcomes in terms of semantic con-

cepts but fails to work well in treating correlations between concepts, often present

in real-world image datasets. This issue is addressed by [37], with a method to de-

tect cause-effect relations between concepts and the model predictions. Then, [104]

proposes a method to discover concepts and measure concept importance for predic-

tions. Interpreting cause-effect relationships between concepts and output classes in

this way is useful, but requires each concept to be measured individually. As a result

it does not easily allow for a direct and quantitative comparison between models.

Using a different approach, [7] explores how classes are hierarchically organised

by CNNs. A visual approach to discover hierarchical relationships between classes

is combined with an hierarchical-aware CNN architecture. This work is closely

related to ours in the way we both explore hierarchical structures. However, while
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their method requires visual and interactive analysis, our approach extracts the

hierarchical relationships automatically from the model.

This is an important prerequisite for the assessment of the semantic adequacy:

without automatic extraction of hierarchical information, the scale of modern CNNs

makes semantic global interpretation infeasible. In addition, while [7] relies only on

the confusion matrix, our taxonomy extraction explores the internal representations

of a model. This makes our approach suitable for interpreting separate layers in

the model and understanding the role of such layers in the overall decision making

process.

4.2.2 Taxonomy extraction from graph structures

In complex domains, constructing taxonomies by hand is an expensive task. To

address this, researchers have studied how to extract taxonomies automatically from

data [101]. The most common approaches focus on extracting hypernym (Is-A)

relationships directly from text [91, 19]. The goal is to organise a hierarchy of

concept terms such that subtype concept relationships are reflected by the hierarchy

tree structure while remaining faithful to observations from the corpus.

In recent years, some approaches have looked into taxonomy extraction from

non-textual, structured and semi-structured data, such as knowledge graphs. Au-

thors in [74, 84] propose an unsupervised method to find hypernym axioms. Vector

embeddings for each node in the knowledge graph are calculated, resulting in a

class centroid and radius in the latent space. Then, based on the distance between

the centroids, they form axioms and construct their transitive closures to build a

taxonomy.

While such methods are relevant to our work, we go further and focus on visual

data. The unstructured nature of raw visual data is a formidable challenge for

global XAI methods. We therefore intend to leverage knowledge captured by a

neural network’s co-activation graph as source data for our extraction method. Co-

activation graphs are a suitable intermediate representation from which to extract
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semantic structures that function as knowledge graphs, e.g., as described in Chapter

3. In addition, we argue here that this use of co-activation graphs enables extraction

of semantic taxonomies for understanding global model behaviour and XAI.

The main drawback of the approach in [84] is that concepts need to be directly

represented as nodes in the knowledge graph. This is not generally the case in co-

activation graphs, considering that the only explicit semantic information contained

in the CNN and present in co-activation graphs are the class labels.

The method proposed in [74] can help overcome this issue. Based on node

embeddings, their approach uses hierarchical clustering over the latent space to

find a hierarchical structure. By mapping concepts (or types) to cluster-nodes in

this structure, a typed tree is formed from which to construct a taxonomy. The

advantage is that the clustering phase does not use any information regarding the

types. This makes it more suitable in our setup, where these types are typically not

represented by nodes in the graph.

Our focus is therefore on the novel application of node embedding to co-activation

graphs and its combination with node embedding clusterings for semantic global XAI

by means of taxonomy extraction.

4.2.3 Hierarchy-aware architectures

Recent works have shown that CNNs can learn the underlying hierarchical structure

between classes during the training phase even though they were not explicitly

trained for this specific task. Motivated by this observation, authors in [7, 38] have

shown how a CNN architecture can be modified in order to help the model in the

learning of such hierarchical structure during the training phase.

In their work, [7] show how a modified Alex-Net architecture [65] can improve

accuracy and accelerate the process of learning class hierarchies. Their method

works by adding extra classification branches between some of the convolutional

layers from the original architecture.

On other hand, the method proposed by [38] adds extra classification layers after
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the final classification layer of the original architecture. We consider the method

from [7] more suitable for a benchmark on semantic adequacy because the hierar-

chical structure is learned directly from the convolutional layers and not from the

final classification layer.

Following [7] and by adapting their method for ResNets, a hierarchy-aware

ResNet can be constructed as follows: Given a hierarchy of depth n (root excluded),

we add n− 1 branches in the architecture that learn group level classifications and

optimise for error at each level of the class hierarchy. The branches are each com-

posed of two fully-connected layers, and are evenly spread along the residual blocks

(Figure 4.1). These additions are sufficient for our current experiments. We leave

further architectural optimisations (e.g., dimension of extra modules) to future work.

Figure 4.1: Hierarchy-aware ResNet for hierarchy of depth 4. H1, H2 and H3 are
hyperparameters

One hypothesis that can emerge from this is that hierarchy-aware CNNs may lead

to better taxonomies than their corresponding original architectures, since they were

explicitly trained for learning the hierarchical relationships between classes. To test

this hypothesis, we compare the semantic adequacy from hierarchy-aware CNNs

constructed following [7] against their corresponding original architecture.
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4.3 Methodology: Extracting taxonomies from CNNs

We assume class concepts are organised in a taxonomy, and that a neural network

was optimised only to discriminate between leaf node classes. Our goal is to re-

construct, into symbolic form, the full taxonomy from the internal sub-symbolic

structure of the model. To this end, we introduce a novel extraction method, de-

signed such that the extracted taxonomy reflects how the model organises output

classes and their hypernyms hierarchically in its internal representation.

We use co-activation graphs [50] as an intermediate representation to correlate

neuron activities with classes in a trained model. Embedding graph nodes as vec-

tors results in a latent representation of semantic relationships between classes as

learned by the model. We then build on the taxonomy extraction method of [74]

and hierarchical clustering to transform latent representations back into a semantic

structure. An overview of the procedure is shown in Figure 4.2. The remainder of

this section is devoted to describing each step in further detail.

4.3.1 From deep representations to co-activation graph

Remember that, given a trained neural network model, the nodes of its co-activation

graph stand in one-to-one correspondence with its neurons. As described in Defini-

tion 1, each pair of nodes in the graph is connected by a weighted edge determined

by the Spearman correlation coefficients between neuron activation values on a test

data set. For neurons in dense layers this process is straightforward: there is a sin-

gle activation value per data sample. For neurons in convolutional layers, a single

activation value is obtained by applying average pooling on the feature map.

Restriction to significantly large and positive correlations is sufficient for our pur-

poses. Hence, after observing activation values on the data and computing pairwise

correlations, a threshold is applied to obtain an edge sparse graph.

The resulting graph provides relevant information on how dependencies between

internal representations impact the global behaviour of a classifier. This makes co-

activation graphs a suitable intermediate representation to analyse how a model
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Figure 4.2: Taxonomy extraction. After optimizing for class discrimination without
hierarchical structure, we extract a taxonomy by means of co-activation analysis and hier-
archical clustering. This enables a comparison between extracted taxonomy and original
semantic class relationships.

transforms sub-symbolic information from pixels, via its internal representations,

into an assignment to a semantic class. Next, we will discuss how to transform the

statistical information in the co-activation graph into a semantic structure.

4.3.2 From co-activation graph to taxonomy

We modify the extraction method in [74] such that it applies to co-activation graphs

instead of knowledge graphs. Three phases can be distinguished: embedding of

graph nodes into vector representation, followed by agglomerative clustering, and

finally assignment of semantic types to clusters.

For the modification to co-activation graphs two important aspects need to be

highlighted: First, node embeddings for output classes require taking into consider-

ation their relationships with neurons in the hidden layers. However, for clustering

and type assignment, neurons from hidden layers no longer provide relevant semantic

54



Explaining Deep Neural Networks through Knowledge Extraction and Graph
Analysis

content, and can therefore be ignored.

Second, note that hyperclass types are not represented in co-activation graphs

but can nonetheless be assigned to clusters in the third phase. For example, although

there is no single node represented in the co-activation graph for the taxonomic

parent of an output class, it is possible to find the optimal cluster for this type

by means of the F-scores. This is crucial: it allows a taxonomy to be generated

that includes all hyperclass types without further modification of the co-activation

graph. We avoid the risk of adding external bias to our method, which can now

expose what a trained CNN has learned itself about taxonomic relationships.

We now discuss further details of the method. For the embedding of nodes from

the co-activation graph to vector representations we make use of existing embedding

functions [16, 39]. The results from the first phase is a data set D containing a vector

for each node in the co-activation graph.

Agglomerative clustering starts by creating a leaf cluster for every vector in D.

At each iteration, the two closest clusters are merged according to some chosen

distance metric. Clustering terminates when there is a single cluster containing

every vector in D, resulting in a tree structure over the vectors. Assigning semantic

types to the tree will turn it into a taxonomy.

In order to assign types to clusters, we first extract a list of types T = {t0, t1, ..., tn−1}

where n is the total number of types t. T can be created manually or retrieved from

an existing taxonomy such as the WordNet hierarchy. Then, we map each output

class to a flat list of types based on their known hierarchical relationships, which

allows computing the F-scores between clusters and types as explained next. It is

important to note that the list of types is not used neither during the training phase

nor during the clustering phase in order to avoid adding possible biases to the final

taxonomy. Finally, we calculate the F-score F (c, t) for each cluster c and type t,

which indicates how well c represents the entities in t.

The F-score can be calculated as shown in Equation 4.1, where Nc,t is the number

of entities with type t in cluster c, Nc is the number of entities in cluster c and Nt
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is the number of entities with type t. A high F-score(c,t) indicates that cluster c

contains mostly entities of type t and the highest number of entities of type t is

contained in c.

F (c, t) = 2 · Nc,t

Nc +Nt

(4.1)

Figure 4.3: Example on how to assign types to clusters. In this example a hypothetical
type car is best represented by cluster c1 (left) since F(c1, car) = 1 which receives type
car. On the other hand, cluster c2 (right) both cats and dogs but it is best represented by
type animal since it contains all the animals in the dataset.

The process of assigning types to clusters using the F-score is illustrated in Figure

4.3 using a hypothetical example. In this example, c1 is a cluster containing three

different classes of cars, which are hypothetically all the cars in the dataset. Because

c1 only contains cars and all the cars in the dataset are in c1, then F(c1, car) = 1,

which is the maximum possible F-score and the type car is assigned to c1. On the

other hand, c2 contains two classes of dogs and two classes of cats. Using Equation

4.1, F(c2, dog) = F(c2,cat) = 0.66. However, F(c2, animal) = 1 because this cluster

only contains animals and all the animal in the dataset are in c2 and thus the type

animal is assigned to c2.

Mapping each type to the cluster with maximum F-score may result into as-

signment of two types to the same cluster. The authors of [74] suggest using a
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Maximum Linear Sum Assignment to avoid this. Instead, we use a modified Jonker-

Volgenant algorithm [54] to solve this problem, with a randomized priority order for

assignment. This gives unique solutions while avoiding bias. This solution does not

ensure that every cluster has a type nor that every type is represented by a cluster.

In our experiment, we ensure having more clusters than types, ensuring then that

every type is mapped. We therefore remove clusters that are not associated to a

type, leading to a ground truth and an extracted hierarchy with the exact same

set of labels. Finally we evaluate the extracted taxonomy by precision, recall and

F-score over edges of the taxonomy (“direct” evaluation) and its transitive closure

(“transitive” evaluation).

The proposed method for extracting taxonomies from co-activation graphs rep-

resenting CNNs helps answering (RQ5), which evaluates the feasibility of such tax-

onomy extraction. In next section we perform experiments to evaluate the method

and to validate how the extracted taxonomies can be used to assess the semantic

quality of their respective CNNs.

4.4 Experimental Analysis

The experimental evaluation has three distinct goals. First, to measure correlations

of class similarity in the embedding space with confusion between classes by the

model. This indicates the soundness of node embeddings capturing sub-symbolic

representations of the model and its decision process. Second, to measure corre-

lations of class similarity in the embedding space with semantic similarity in the

ground truth taxonomy. This indicates the other side of the coin: the ability of

learned representations to separate symbolic concepts in the taxonomy. Third, to

evaluate the semantic adequacy of the extracted taxonomy with respect to its ground

truth. This indicates the degree of transparency allowed by the particular models

as expressed in semantic terms, and the suitability of our method for semantic in-

terpretation in general.
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4.4.1 Experiment Setup

Experiments were conducted using CIFAR-100 and ImageNet datasets. We ex-

tracted training hierarchies from those using the method from [38]: given a wanted

depth of taxonomy n, we extract the first n−1 nodes that link the root to the labels

in WordNet. For CIFAR-100 we trained VGG-16, ResNet-18 and hierarchy-aware

ResNet-18 (noted HA-ResNet-18). For ImageNet we trained VGG-16, ResNet-152

and hierarchy-aware ResNet-152 (noted HA-ResNet-152). A detailed description

on the datasets, the training hyperparameters and hierarchy used for training HA-

ResNet-18 and HA-ResNet-152 can be found in Appendix B.

For each dataset and model, a co-activation graph containing only those connec-

tions with correlation higher than 0.3 was built. We extracted the taxonomy using

the pipeline in Figure 4.2. However, due to computational limitations, some layers

were excluded from the graph for VGG16, ResNet-152 and HA-ResNet-152, the ex-

haustive list of layers used being in Appendix B. Node embeddings were generated

using two different embedding methods in order to check if the results are consistent

across different strategies: Node2Vec [39] and Fast Random Projection (FastRP)

[16]. For both Node2Vec and FastRP we used the algorithm implemented by Neo4j.

• Node2Vec [39]: A node embedding algorithm based on graph random walks.

The results generated from the random walks are then passed to a single hidden

layer neural network to predict the likelihood of stepping in to a node given

the occurrence of another node. For this experiment we have used the Neo4j

implementation.

• Fast Random Projection [16]: Also referred as FastRP, this method learns node

embeddings by applying dimensionality reduction over the graph adjacency

matrix. For this experiment we have also used the Neo4j implementation.

After calculating the node embeddings using the two methods above, the next

phase is to apply the agglomerative clustering algorithm. For this phase we have

tested different distance criteria and metrics, which influence the merging strategy of
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the agglomerative clustering. The metrics were euclidean and cosine (when applica-

ble) while the distance criteria used were: average (UPGMA), weighted (WPGMA),

complete, centroid and ward.

At this point, we end up with a hierarchical clustering tree, and the next phase

is to assign types to the clusters that best represent the entities from each type.

Because we want to compare the extracted taxonomy with the WordNet hierarchy,

we extracted the types directly from WordNet using the nltk python package. How-

ever, WordNet does not provide a tree but a Directed Acyclic Graph, and trying to

compare the extracted hierarchy to a DAG presents a number of drawbacks:

• If there are multiple path leading to a class, then it is not possible to decide

which one(s) have been learned by the network.

• If a class contains a single subclass, then these two cannot be differentiated

by the network. Also, as we are mainly looking for discriminating concepts to

explain the network’s decision making, such classes are of low interest in our

context.

To face these limitations, we first convert the DAG to a tree by removing duplicated

paths, then simplify nodes that have only one child. This method is illustrated

on Figure 4.4. This process keeps the leaves and thus ensures that all base types

are preserved. Also, the final number of classes and hyper-classes is lower than

the number of clusters returned by the agglomerative clustering, ensuring then that

every type is mapped during Linear Sum Assignment resolution.

Figure 4.4: Conversion from DAG to irreducible tree
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Then, for each type t and each cluster C, we have calculated the Fscore(C, t)

using Equation 4.1 and assigned types to clusters by solving the corresponding Linear

Sum Assignment problem. Finally, the clusters and types that are not associated

are removed, and the resulting tree hierarchy represents the extracted taxonomy.

4.4.2 Correlating class embedding with class confusion

In order to evaluate if node embeddings from co-activation graphs can be used to

represent output classes from a given CNN, we analysed if there is a connection

between the similarity between pairs of classes in the embedding space with the

number of mistakes between these classes in the model.

To perform this comparison, we calculated the correlation between the number of

mistakes between any two classes and the cosine similarity between the correspond-

ing classes in the vector embedding space. As shown in Table 1, there is a positive

correlation on the number of mistakes between classes and their cosine similarity in

the node embedding space using both FastRP and Node2Vec for models from both

CIFAR-100 and ImageNet.

It is important to point out that Node2Vec achieves higher values for correlation

than FastRP, whereas for ImageNet the results are comparable. The positive result

in this first analysis shows that the node embeddings calculated from co-activation

graphs can represent well the similarity between classes with respect to the CNN

representation.

4.4.3 Correlating class embedding with class similarity

The goal of this analysis is to check whether the produced node embeddings can

encode semantic similarity between classes represented in that space. If classes that

are semantically similar are also closer in the embedding space, we consider that

such embedding space is suitable for the taxonomy extraction process. For this

analysis, we have first calculated the semantic similarity for every pair of classes in
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Dataset Model

Correlation

using

Node2Vec

Correlation

using

FastRP

CIFAR100 VGG16 0.31 0.24

CIFAR100 ResNet18 0.41 0.38

CIFAR100 HAResNet18 0.48 0.41

ImageNet VGG16 0.14 0.16

ImageNet ResNet152 0.12 0.13

ImageNet HAResNet152 0.13 0.14

Table 4.1: Benchmark of node embeddings methods using the spearman correlation
between pairwise class mistakes and their cosine similarity in the vector embedding space.

the dataset. This process was done by running the Floyd-Warshall algorithm1 on

the undirected irreducible tree extracted from WordNet.

We have then calculated the correlation between semantic similarity among

classes and cosine similarity between the corresponding classes in the embedding

space.

Dataset Model Correlation (Node2Vec) Correlation (FastRP)

CIFAR100 VGG16 0.13 0.09

CIFAR100 ResNet18 0.36 0.27

CIFAR100 HAResNet18 0.32 0.30

ImageNet VGG16 0.44 0.45

ImageNet ResNet152 0.43 0.54

ImageNet HAResNet152 0.48 0.61

Table 4.2: Benchmark of each node embeddings method using the spearman correlation
between pairwise class semantic similarity and their cosine similarity in the embedding
space.

In Table 2 it is possible to observe that there is a positive correlation between

semantic similarity among classes and cosine similarity in the embedding space.

Once again, the results from Node2Vec are higher than FastRP for CIFAR-100

1https://networkx.org/documentation/stable/reference/algorithms/generated/

networkx.algorithms.shortest_paths.dense.floyd_warshall_numpy.html
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while FastRP performs better for ImageNet. The positive correlations achieved

in this analysis are encouraging evidences that the CNNs learned class semantic

similarities.

However, the correlation only is not a strong metric to compare the semantic

adequacy between each architecture, since they do not expose which semantic rela-

tionships were learned by the model. The semantic adequacy comparison between

models is done in a more detailed way in the third analysis.

4.4.4 Evaluating extracted taxonomies

In this third analysis we evaluate the semantic adequacy of the taxonomies ex-

tracted using our method by comparing them with the ground truth hierarchy from

WordNet. We evaluate the taxonomies extracted from all the models and the two

datasets, using Node2Vec and FastRP embedding methods and five different clus-

tering criterion with both euclidean and cosine distances. For this analysis, we also

evaluated the semantic adequacy of an untrained model using the VGG-16 archi-

tecture initialised using random parameters with the purpose of providing a lower

bound baseline.

This evaluation is conducted following the same principles used in [74], which

uses both a direct and a transitive evaluation. In the direct evaluation, we measure

how well the extracted taxonomy handles direct axioms. For example, an axiom

such as GermanShepherd ⊂ Dog is going to cause a negative effect in the direct

evaluation, because, according to WordNet, the direct hypernym for a German-

Shepherd is ShepherdDog. In the transitive evaluation, the goal is to evaluate

high level axioms. Using the previous example, GermanShepherd ⊂ Dog causes a

positive effect in the transitive evaluation because there is a transitive relationship

between types GermanShepherd and Dog, also according to WordNet.

The precision, recall and F-score are calculated using the edges of the graphs

representing the extracted taxonomies and the edges of the graph representing the

ground truth, as described in Equation 4.2. For the direct evaluation we calculate the
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Best F-scores for CIFAR100

FastRP Node2Vec

Model Transitive Direct Transitive Direct

UntrainedVGG16 0.03 0.23 0.04 0.23

VGG16 0.28 0.40 0.24 0.37

ResNet18 0.34 0.44 0.38 0.50

HAResNet18 0.36 0.44 0.40 0.55

Table 4.3: Direct and transitive accuracies using different embedding methods and clus-
tering criteria for CIFAR-100.

evaluation metrics based directly on the respective graphs whereas for the transitive

evaluation we consider the transitive closure.

Ground truth : Gt = (V,Et), Experimental : Ge = (V,Ee)

precision =
|Et ∩ Ee|
|Ee|

recall =
|Et ∩ Ee|
|Et|

f -score = 2 · |Et ∩ Ee|
|Et|+ |Ee|

(4.2)

Table 4.3 reports the semantic adequacy of each model by means of the best F-

scores achieved by their taxonomies for CIFAR-100 using both FastRP and Node2Vec.

The untrained VGG-16 had the lowest semantic adequacy for both direct and tran-

sitive evaluations, which was expected since this model was provided as a lower

bound baseline. It can be observed that HA-ResNet-18 achieves the highest scores

for FastRP and Node2Vec, although ResNet-18 also matches the best value for the

direct evaluation using FastRP. VGG-16 gets the lowest results from all the three

models. It is also possible to observe that Node2Vec achieves better results than

FastRP for all the three models in this dataset.

From Table 4.4 we can observe a similar behaviour when considering the setup
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Best F-scores for ImageNet

FastRP Node2Vec

Model Transitive Direct Transitive Direct

UntrainedVGG16 0.02 0.22 0.03 0.22

VGG16 0.41 0.47 0.34 0.44

ResNet152 0.41 0.48 0.40 0.50

HAResNet152 0.43 0.49 0.46 0.53

Table 4.4: Direct and transitive accuracies using different embedding methods and clus-
tering criteria for ImageNet.

for the ImageNet dataset. Again, the untrained VGG-16 achieved a much lower

semantic adequacy for both direct and transitive evaluations, when compared to the

trained models. The HA-ResNet variation had the best scores for both direct and

transitive evaluations with VGG-16 getting the lowest values.

The results obtained from Table 4.3 and Table 4.4 suggest that the ResNet varia-

tions tend to perform better than VGG-16 in terms of semantic adequacy. However,

these analyses consider only the best result achieved by each model, which can be

biased towards outlier performances. In order to analyse which architectures are the

most semantic adequate in a more systematic way, we have performed a statistical

test to compare all the F-scores from the taxonomies obtained from every architec-

ture using all the embedding methods, clustering criterion and distance metrics.

For this, we first obtained all the F-scores for each model. The F-scores were col-

lected by varying the embedding methods, clustering criterion and distance metrics.

The setups that produced F-score values lower than twice the standard deviation

from the median were considered as outliers and thus removed from this analysis.

Then, for each pair of models we tested if there were a difference in their F-score

distribution using the student t-test. The null-hypothesis is that there is no differ-

ence between two distributions and p-value ≤ 0.05 rejects the null hypothesis and

indicates there is a statistical difference between the two distributions. The results

from the statistical analysis are presented in Table 4.5.
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From Table 4.5 it is possible to observe that, for the transitive evaluation, the HA-

ResNet variations are statistically more semantically adequate than pure ResNets

and VGG-16. This is an encouraging evidence that the injection of external knowl-

edge during the training phase may help in achieving more interpretable models.

We can also see that VGG-16 does not perform better than any other model, which

may indicate that the architecture depth can have an effect on semantic adequacy.

Dataset Model one Model two
direct

pvalue

transitive

pvalue

CIFAR100 ResNet18 VGG16 <0.05 <0.05

CIFAR100 HAResNet18 VGG16 <0.05 <0.05

CIFAR100 HAResNet18 ResNet-18 >0.05 <0.05

ImageNet ResNet152 VGG16 >0.05 >0.05

ImageNet HAResNet152 VGG16 >0.05 <0.05

ImageNet HAResNet18 ResNet152 <0.05 <0.05

Table 4.5: Statistical comparison on the semantic adequacy between different architec-
tures. HA-ResNets achieved the best values for semantic adequacy.

One important consideration is that, because the semantic adequacy is calculated

for the entire taxonomy, it does not give fine-grained information about which parts

of the taxonomy contributed positively or negatively for the final score. For this

purpose, visualisation techniques can be used to analyse specific subtrees by checking

their correct and incorrect axioms.

As an example, Figure 4.5 shows how different architectures can capture very

different axioms for the same concept, which in this case is concept amphibian.

In the visualisation, green edges and red dashed edges indicate correct and wrong

axioms according to WordNet, respectively. It is visually clear that the amphibian

subtree for HA-ResNet152, shown in Figure 4.5a captured the amphibian concept

and its subclasses in a more appropriate way than VGG-16, which is shown in Figure

4.5b. The amphibian subtree for VGG-16 contains seven wrong axioms while HA-

ResNet52 has only one wrong axiom. Also, some axioms from the VGG-16 subtree
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(a) (b)

Figure 4.5: (a) Concept amphibian.n.03 and its subtree for HA-ResNet-152. (b) Concept
amphibian.n.03 and its subtree for VGG-16.

are hard to justify, such as plant being a subclass of amphibian.

Analysing the subtrees is relevant because it shows how well the CNN has learned

a specific set of concepts. However, relying purely on visualisation techniques can be

a cumbersome task, which motivates the search for a local semantic adequacy metric

that can capture the quality of each subtree in the taxonomy. The development of

such metric is included in the next steps for this research topic.

Overall, our evaluation shows that taxonomies extracted from CNNs using our

method can achieve reasonable direct and transitive F-scores, even when the models

were not trained explicitly for that. The best results in our analysis were generated

by the hierarchical-aware architectures, as proposed by [7] and adapted for ResNets

in this chapter. In contrast with that, the lower bound baseline provided using an

untrained model showed that the semantic adequacy can be very low when there

is no knowledge encoded within the deep model. Therefore, we obtained multiple

evidences to show that the proposed semantic adequacy metric reflects how com-

patible the knowledge contained within a deep representation is to a ground truth

taxonomy.

One possible drawback of our current approach is the need to project class node

representations into vector representations which could lead to some information

loss. An alternative would be to apply hierarchical community detection directly

to the co-activation graph, instead of relying on agglomerative clustering methods.

However, this would lead to a large number of clusters containing only neurons in

the hidden layer which could increase complexity both in terms of computational

time and interpretability of the final taxonomy.
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The conducted experiments indicate that, by comparing the extracted taxonomy

with a selected ground-truth, it is possible to measure the semantic adequacy by

means of the direct and transitive F-scores. This result answers (RQ6) and gives

evidences towards H3 by showing that the extracted taxonomies can measure how

well the model has captured the hierarchical relationships between classes from a

given domain.

4.5 Summary

We proposed a method for semantic interpretability of deep representations by ex-

tracting taxonomies from the internal structure of trained CNNs. Our approach

represents a CNN as a co-activation graph and adapts the taxonomy extraction

method in [74] to such graph.

As indicated in Figure 4.2, we do this by calculating node embeddings for classes,

performing hierarchical clustering, and assigning semantic types to the clusters that

best represent the entities belonging to the corresponding types. This generates

a typed tree that can then be transformed into a taxonomy, which then answers

(RQ5).

We introduce the concept of semantic adequacy to measure how well a model

captures the hierarchical relationship between classes from a given domain by com-

paring its extracted taxonomy to a ground truth such as WordNet. Our experimen-

tal evaluation shows that the node embeddings preserve both class similarity with

respect to the internal representations by the CNN and semantic similarity with

respect to a ground truth taxonomy. This is an important evidence that the CNN

has learned semantic relationship between classes and that these relationships are

reflected in the vector representation calculated by our approach.

We then extracted the taxonomies for each model and each dataset to evaluate

their semantic adequacy by comparing the taxonomies with the WordNet hierarchy.

Some models achieved an F-score of 0.50 for direct and for transitive evaluation,

which is a reasonable semantic adequacy considering that most models were not
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explicitly trained for recognising hierarchical relationships between classes.

A statistical comparison on the semantic adequacy between all the models indi-

cated that ResNet variations achieved higher scores than VGG-16, which is in line

with recent literature evidence that suggests that network depth may lead to more

interpretable models [6]. The hierarchy-aware models achieved the best semantic ad-

equacy scores when analysing individual results. Moreover, a statistical test showed

that such hierarchy-aware models are statistically better than their original archi-

tectures, which motivates the use of external knowledge during the training phase

of CNNs.

The results demonstrate the applicability of taxonomy extraction and the se-

mantic adequacy metric for CNNs, which answers (RQ6) by showing the feasibility

of our approach to semantically interpret some of the knowledge contained within a

trained CNN so that it can be more easily related to its decision making processes.
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Chapter 5

Generating Local Textual

Explanations for CNNs: a

Semantic Approach based on

Knowledge Graphs

5.1 Introduction

In local explanations, the objective is to understand the decision making process for

a specific data point. This type of explanation is useful because it helps discerning

case-specific algorithmic fairness, as observed by [23]. For tasks in Computer Vision,

such as image classification, the goal of a local explanation is to identify which

elements from a given image have contributed to the prediction of a given class.

Current methods commonly use visual approaches, such as saliency maps, to

highlight parts of the input image that has mostly influenced a given outcome [98].

Such visual clues can be misleading and make human interpretation particularly

difficult, especially when trying to explain unexpected outcomes [66, 86].

In this chapter, our goal is to provide easy-to-understand textual explanations

that do not need to be visually interpreted. We specifically focus on explaining
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mistakes as these can be particularly challenging to interpret, and we generate both

factual and counterfactual explanations as known concepts in cognitive science [97]

and widely used in the XAI community [11]. The factual explanations produced by

our approach indicate in human terms what made the model classify an instance i

as class cwrong instead of ccorrect. The counterfactuals indicate what could help the

model to correctly classify i as ccorrect instead of cwrong.

Building upon the idea of co-activation graphs described in Definition 1, we first

augment co-activation graphs to link it with input data and external knowledge.

We then use link prediction to predict attributes of unseen data and use such pre-

dictions to generate factual and counterfactual explanations of mistakes in image

classification.

The potential of our method is demonstrated in an experiment on CUB200 birds

dataset [102], used for fine-grained classification of birds images among very similar

classes. We fine tune a VGG-16 model [89], construct the proposed knowledge

graph form VGG-16 and use link prediction to derive explanations for classification

mistakes in terms of semantic properties and their values, such as “This bird was

misclassified as Blue Jay instead of Black Footed Albatross because the model has

identified blue as value for primary color instead of brown.”

The main contributions in this chapter are: i) the extension of the co-activation

graph to include input data and external knowledge bases ((RQ7)); ii) a graph-

based approach to identify semantic attributes that might be responsible for a

mistake using link prediction ((RQ8)); and iii) an algorithm for the automatic

generation of easy-to-understand factual and counterfactual textual explanation for

mistakes based on the results of link prediction ((RQ9)).

5.2 Methodology

Our approach focuses on providing textual post-hoc factual and counterfactual ex-

planations in image classification, and we specifically focus on explaining mistakes

as they are harder to explain.
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In classification models whenever a mistake happens it involves two classes, the

ground truth class ccorrect and the wrongly predicted class cwrong. A factual expla-

nation describes what influenced the model to classify a given input i as of class

cwrong, while a counterfactual explanation tells what changes to the input i could

invert a wrong prediction from cwrong to ccorrect.

Our approach to generate these textual explanations is to first define and con-

struct a knowledge graph that extends the co-activation graph described in Defi-

nition 1 by including input data and external knowledge bases, so that knowledge

about such input (in terms of its properties) can be added to the graph. On such

extended graph, we then apply link prediction to generate the explanations. In what

follows we are going to provide details of each step.

5.2.1 (RQ7): The Knowledge Graph Model

Since our Knowledge Graph Model extends the notion of co-activation graph, we

first provide some preliminaries on co-activation graphs and then indicate how we

extend their definition in this chapter to connect them with input data as well as

external knowledge bases.

Preliminaries on Co-activation graphs.

In a co-activation graph, nodes represent neurons from a given trained CNN and

edges connect pairs of nodes that tend to be activated together. The nodes are

instantiated by extracting the neurons from the model and the edges can be created

for each pair of nodes by calculating a statistical correlation on their respective

neurons’ activation values following the three-steps process detailed in Definition

1 from Chapter 3: first, the testing set is passed through the network and, for

each data point, the activation value of each neuron is stored; second, given that

each neuron is associated to a list of activation values, a statistical correlation is

calculated for every possible pair of neurons; third a threshold is used to discard the

non relevant statistical correlations. As a result of this process, in the co-activation
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graph nodes are neurons and edges represent statistical correlations between their

activation values. If a neuron belongs to the output layer, it is represented using a

node of type class, otherwise, we represent it using a node of type Neuron, as shown

in Fig. 5.1.

Figure 5.1: Co-activation graph diagram.

We have already demonstrated in Chapter 3 how co-activation graphs provide a

suitable representation for the knowledge embedded in a trained CNN, which can

be used to generate global insights about the inner workings of the network using

graph analysis. In this section, we extend this representation by integrating input

data and external knowledge to the graph in order to provide local explanations by

means of link prediction algorithms.

Connecting the Input Data.

In order to represent the input data in co-activation graphs, we create a new type of

node, called Input node. An Input node i can be connected to both Neuron nodes

and Class nodes. The connection between i and a Class node c can be created in

two ways:

• if the CNN predicted c when classifying i, an edge of type has prediction is

created between i and c;

• if c is the ground truth for i, an edge of type has ground truth is created

between i and c.

The resulting model can be seen in Fig 5.2. To create connections between

Input and Neuron nodes we measure the relevance of the activation caused by each

input to each neuron. When one input is passed through a CNN, neurons in dense

layers will output an activation value and filters in convolutional layers will output
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Figure 5.2: Diagram after connecting inputs to classes.

an activation map. As discussed in 3.2, it is possible to apply a global pooling

to reduce an activation map into a single activation value. Considering that an

activation value is accessible for each neuron, our goal is to be able to connect the

respective input data to the generated graph.

A naive approach would be to create a link between the Input node and every

Neuron node and to use the activation value as the edge weight. One issue with this

approach is that it would generate a huge number of connections, which increases

quadratically with respect to the number of neurons and data points. A second

issue is that neurons at different layers activate with different magnitude and the

different scales in the edge weight distribution could lead to biases when applying

graph algorithms.

To address these two issues, we normalise and discretise the neuron activations.

After extracting the activation values, we first calculate how relevant was the acti-

vation of each neuron for a given input data as proposed in [32]. To calculate the

activation relevance we first compute the zscore of each activation, which gives the

distance between each activation and the mean. We can then apply a threshold to

the zscores, as explained by the same authors in [34], so that the final relevance score

will assume the values of −1, 0 or 1. This eliminates the side-effects of variability of

the activation values. If the final score is 1 we consider that the neuron activation

was relevant to the input, otherwise we discard it. This way we do not have to deal

with a quadratic number of generated connections, since we only connect inputs to
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neurons that were activated in relation to that input. After calculating the scores,

we can extend the graph by creating a new edge of type Activated, denoted with

ein = (i, n) where i is the input data and n is a neuron. The resulting model is

illustrated in Fig 5.3.

Figure 5.3: Diagram after connecting inputs to neurons.

Connecting the graph with external knowledge bases.

In this phase of the approach, we consider external knowledge bases that contain

real world entities (e.g animals) and their semantic attributes (e.g body shape and

colors). We incorporate these entities and semantic attributes in our graph by

creating two new node types: External Entity and Semantic Attribute.

External Entity nodes are the semantic entities corresponding to the output

classes in the deep neural network. They can be easily connected to Class nodes

when classes which are neurons in the output layer represent entities in the real

world. In this case, we create unweighted edges of type Refers to between a Class

node in the co-activation graphs and their respective entities in the external knowl-

edge base. When External Entities are related to Semantic Attributes in the external

knowledge base, we can create an edge of type Has attribute between the External

Entity and each of its Semantic Attribute. Since modern datasets, like CUB200

birds, provide annotated data, we can create Has attribute edges between Input

nodes and Semantic Attribute nodes. This concludes the step of connecting co-

activation graphs with external knowledge bases and the final diagram is illustrated
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by Fig 5.4.

By integrating external knowledge with co-activation graphs we are answering

(RQ7), since any analysis conducted over the resulting graph will leverage both the

CNN deep representation and knowledge described in external knowledge bases. In

next subsection, we validate this approach based on how the resulting knowledge

graph based can be exploited to generate local explanations for CNNs.

Figure 5.4: Diagram after connecting inputs and classes to entities in external knowledge
bases.

5.2.2 Generation of textual factual and counterfactual ex-

planations for mistakes

We can now leverage the knowledge graph constructed in the previous section to

generate textual factual and counterfactual explanations for mistakes in image clas-

sification.

Our method is divided in three phases: first, we generate hypotheses around pos-

sible semantic attributes that could have caused the mistake; second, each hypothesis

is either accepted or rejected based on link prediction; third, textual explanations are

automatically generated based on the accepted hypotheses. After describing each

phase in details, we provide an example using real data from the CUB200 dataset

and the WhatBird external knowledge base containing semantic information about

the bird species found in the CUB200 dataset.
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Generating hypotheses for explaining mistakes.

The first phase in our method is to generate hypotheses for all the possible semantic

attributes that could have caused a mistake. Consider each image in the dataset as

annotated with a set of attributes A, and each attribute a ∈ A can assume different

values Va = {Va1 , Va2 , ..., Van}, where n is the number of possible values for a. Given

an output class c, the knowledge graph in Fig. 5.4 can be queried to find Va(c),

which is the value attribute a assumes for class c. Given a misclassified input i, the

ground truth class ccorrect, the wrongly predicted class cwrong and an attribute a, we

consider that a may have caused the mistake if a assumes different values for ccorrect

and cwrong, i.e. Va(ccorrect) ̸= Va(cwrong).

A hypothesis h(a, i) can now be defined as follows:

h(a, i): since attribute a assumes different values for classes ccorrect and cwrong,

a has influenced input i to be misclassified as belonging to class cwrong instead

of class ccorrect

For each mistake made by the CNN, a list of hypotheses can be generated by

querying the graph to obtain the semantic attributes that assume different values

between ccorrect and cwrong. Note that such a query is possible given the edges

linking Class, External Entity and Semantic Attribute nodes, which gives all the

information needed to compare Va(ccorrect) with Va(cwrong) for each attribute of each

entity. Each hypothesis generated is then either accepted or rejected as detailed in

the next phase.

From hypotheses to relevant features through link prediction.

In this second phase, we take as input a list of hypothesis on attributes that might

have caused the mistake, and accept or discard them based on the semantic at-

tributes of the misclassified input i.

A hypothesis h(a, i) is accepted if the attribute a assumes the same value for

input i and class cwrong, i.e. Va(i) = Va(cwrong). The intuition behind this is that
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(a) (b)

Figure 5.5: (a) Alternative graph used for link prediction. (b) Resulting graph after
applying link prediction.

when a has the same value for i and cwrong, the model may have classified i as cwrong

because of a. As discussed previously, Va(cwrong) can be obtained by querying the

graph. However, when i is an unseen input data, Va(i) is not directly available in

the graph as we do not have information about its attributes. Our method leverage

the connection between input i and the Neuron nodes in our knowledge graph and

uses link prediction to discover its attributes.

Given the proposed knowledge graph contains seen input data from the training

set, we can predict semantic attributes for unseen data using link prediction. The

rationale of using a link prediction algorithm is to predict the semantic attributes of

unseen input i based only on the behaviour of the neurons in the deep learning model.

To guarantee that the link prediction is not biased by the connections between

classes and external entities, an alternative graph is created which contains only the

connections between neurons, inputs and semantic attributes. This alternative graph

used only for the link prediction and illustrated in Fig. 5.5a, can be easily derived

from the original knowledge graph by removing Class nodes, External Entity nodes

and their respective relationships. Fig. 5.5b shows the resulting graph, in which the

dashed connection results from the link prediction method.

Consider that Va(ccorrect) and Va(cwrong) are the values that a assumes for ccorrect

and cwrong respectively. The procedure for accepting or discarding a hypothesis

h(a, i) around an attribute a and a misclassified input i is described in Algorithm

1, where h(a, i) is denoted as h for simplicity. In the algorithm, line 2 uses link
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prediction to calculate the probability Pcorrect of input i having the attribute value

Va(ccorrect). Line 3 predicts the probability Pwrong of input i having the attribute

value Va(cwrong). Line 4 compares these two probabilities: if the condition is true, it

means that Va(i) = Va(ccorrect), so we discard this hypothesis because Va(ccorrect) is

already the attribute of the ground truth class; if the condition is false it indicates

that Va(i) = Va(cwrong) and we accept this hypothesis in Line 8, because Va(cwrong)

is the attribute of the wrongly predicted class and thus it could be the cause of the

mistake. After applying Algorithm 1 to every hypothesis generated in the previous

phase, the output of this phase is a list of accepted or discarded hypotheses as well

as the predicted attributes values for input i.

Algorithm 1

1: procedure Evaluate hypothesis(h, graph, i, a, Va, ccorrect, cwrong)
2: Pcorrect ← LinkPrediction(graph, i, Va(ccorrect))
3: Pwrong ← LinkPrediction(graph, i, Va(cwrong))
4: if Pcorrect > Pwrong then
5: discard(h)
6: else
7: accept(h)
8: end if
9: end procedure

Generating factual and counterfactual explanations.

After evaluating the hypotheses, the third and final phase is used to generate the

explanations. Given an accepted hypothesis h(a, i), a factual statement can be

automatically generated as:

The input i was misclassified as cwrong instead of ccorrect because the

model has identified Va(cwrong) as value for a in i instead of Va(ccorrect).

It is important to note that, when multiple hypotheses are accepted, the final

factual explanation will consist of multiple factual statements. Following the same

logic, a counter factual statement can be automatically generated as:
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If the attribute a of input i assumed the value Va(ccorrect) instead of

Va(cwrong), input i would more likely be classified as ccorrect instead of

cwrong

Note that a final counterfactual explanation will consist of multiple counterfac-

tual statements in case of more than one hypothesis is accepted.

Example using real data

To illustrate the three phases of our method, consider an input data sample i =

img001 extracted from the CUB200 dataset and the attribute a = primary color.

For this data sample, ccorrect = Black Footed Albatross and cwrong = Blue Jay.

According to WhatBird, used as a knowledge base, we have that:

Vprimary color(Black Footed Albatross) = brown

Vprimary color(Blue Jay) = blue

Since the attribute primary color assumes different values for the two classes, a

hypothesis h(primary color, img001) can be created as follows:

h(primary color, img001): since primary color assumes different values for

Black Footed Albatross and Blue Jay, primary color has influenced img001

to be misclassified as Blue Jay instead of Black Footed Albatross.

In the second phase, we evaluate h(primary color, img001) using Algorithm 1.

If the algorithm finds that Pcorrect > Pwrong, our method would assumes that img001

has brown as primary color, which is the expected value for a Black Footed Albatross.

In this case we have that Va(i) = Va(ccorrect) and we reject h(primary color, img001).

If Pwrong > Pcorrect instead, we consider that img001 has blue as primary color and

we accept h(primary color, i), since Va(i) = Va(cwrong).

If the hypothesis is accepted, the third phase generates the factual and counter-

factual explanations that can be written as follows:
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• Factual explanation: “The input img001 was misclassified as Blue Jay in-

stead of Black Footed Albatross because the model has identified blue as value

for primary color in img001 instead of the expected value brown.

• Counterfactual explanation: “If the attribute primary color of input img001

assumed the value brown, input img001 would more likely be classified as a

Black Footed Albatross instead of Blue Jay”.

In this example, we illustrated the three phases using only a single attribute.

However, as it will be shown in the next section, our explanations may contain more

than one attribute if multiple hypotheses are accepted simultaneously.

In the next section we evaluate our method in two ways. First, we perform a

quantitative evaluation over the link prediction method to analyse whether it is pos-

sible to predict the semantic attribute for a given input with reasonable accuracy.

Then, we provide a visual qualitative evaluation to demonstrate how the automati-

cally generated explanations can help understand the model’s decisions.

5.3 Experimental evaluation

Our experiment is based on fine-grained image classification using the CUB200

dataset. The dataset contains 200 classes of bird species and 11,788 input images

in total. Each image is annotated with a set of attributes A. In our experiment,

specifically, we use five attributes such that A = {primary color, underparts color,

upperparts color, nape color, bill shape}. Each attribute a ∈ A can assume differ-

ent values Va. For example, for a = underparts color, we have Vunderparts color = {blue,

brown, iridescent, purple, rufous, grey, yellow, olive, green, pink, orange, black, white,

red, buff}. The experiment was conducted as follows:

• A VGG-16 network pretrained over ImageNet was fine-tuned to achieve 86%

accuracy in the classification task. Note that during the training the deep

model receives only raw images as input in order to predict the output classes.
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Therefore the model is not given any contextual information about neither the

semantic attributes nor external entities.

• The knowledge graph was created for the model, following the steps described

in Section 5.2.1.

• For each misclassified input, we have generated the hypotheses and performed

link prediction as described in Section 5.2.2.

• Factual and counterfactual explanations were generated for the accepted hy-

pothesis as described in Section 5.2.2.

Our knowledge graph was implemented in Neo4j1, which facilitates reproducibil-

ity and provides access to many graph analysis algorithms. To predict links between

Input and Semantic Attribute nodes we used the Personalised PageRank algorithm

[79] implemented on Neo4j.

One issue that could affect the outcome of our link prediction algorithm is that

the CUB200 dataset is not well balanced in terms of the semantic attributes. For

example, there are 1443 birds with brown primary color but only 27 with pink pri-

mary color. To avoid link prediction to always output the most frequent attribute in

the dataset, we normalised the Personalised PageRank score by the Global PageR-

ank score.

The PageRank algorithm, also called Global PageRank, calculates a score that

can be interpreted as the importance of each node in a graph by performing ran-

dom walks in such a graph. Its variant, the Personalised PageRank, calculates the

probability of a link between a source and a target node in the graph. In our experi-

ments, the probability of a link between a source Input node i and a target Semantic

Attribute node a, denoted Link(i, a), was calculated as shown in Equation 1.

Link(i, a) =
PersonalisedPageRank(i, a)

GlobalPageRank(a)
(5.1)

1https://neo4j.com
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Since our method relies heavily on link prediction, in our experimental evaluation

we first perform a quantitative analysis of the accuracy of the link prediction algo-

rithm used to discover the attributes of unseen inputs from the testing set. Then,

we visually evaluate the quality of the factual and counterfactual explanations for

some of these inputs.

5.3.1 (RQ8): Evaluating link prediction for semantic at-

tributes

The first part of our evaluation focuses on verifying (RQ8) and how accurately

we can predict semantic attributes for unseen inputs using link prediction over our

knowledge graph. For this, we used the alternative graph described in Section

5.2.1 containing only Input, Neuron and Semantic Attribute nodes. As already

mentioned, this approach guarantees that the prediction of attributes relies only on

the interactions between a given input and the neurons in the hidden layer of a deep

learning model and is not biased by any external information.

In our approach we focus on classification mistakes between two classes. For each

attribute a ∈ A we evaluate the link prediction between pairs of attribute values in

Va. For this, we first remove the ground truth connections between inputs in testing

set and Semantic Attribute nodes. Then, we calculate the link prediction using

Equation 5.1 to obtain a score for each link between an input data and a semantic

attribute. Finally, the link with the higher score is taken as the predicted one, which

can be checked against the ground truth since the CUB200 dataset provides such

annotations.

On average, the link prediction accuracies over all possible pairs of values for the

attributes primary color, underparts color, upperparts color, nape color and bill shape

are: 81.4%, 83.4%, 82.5%, 81.5% and 77.4% respectively. There was however some

variability in that the method is much more accurate for some pairs of attribute

values than some others. For example, as shown in Table 5.1, the method obtained

99% accuracy when distinguishing between the values pink and white for the at-
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Top Predictions

Underparts color Upperparts color Bill shape

Value one Value two Acc Value one Value two Acc Value one Value two Acc

pink white 99% purple black 99% hooked all-purpose 95%

grey green 94% pink white 98% needle all-purpose 93%

iriscident black 94% orange black 96% hooked cone 93%

orange white 92% iriscident black 96% curved cone 90%

blue white 92% grey orange 94% cone specialized 89%

Table 5.1: Examples of pairs of attributes that can be well distinguishable by the pro-
posed method.

Lowest Predictions

Underparts color Upperparts color Bill shape

Value one Value two Acc Value one Value two Acc Value one Value two Acc

purple pink 45% purple pink 55% curved hooked 58%

orange red 64% orange red 60% all-purpose cone 62%

olive green 64% green orange 64% hooked needle 64%

grey buff 66% iriscident orange 65% hooked specialised 64%

grey black 66% grey black 66% dagger all-purpose 65%

Table 5.2: Examples of pairs of attributes that are not well distinguishable by the
proposed method.

tribute underparts color, which means that the model is almost perfect in detecting

the underparts color of a bird if it considers in advance that the bird is either pink

or white. Other very high accuracy values can be seen for the attribute upper-

parts color between black and purple, as well as between hooked and all-purpose for

the attribute bill shape.

We can also observe that for some pairs of very similar attribute values our

method does not perform so well, which is the case for purple and pink in at-

tribute underparts color and other pairs as shown in Table 5.2. But considering

that classes in fine-grained image classification are already similar, it is expected

that the method would produce lower accuracy for similar attributes. Looking into

using more sophisticated link prediction strategies is something worth exploring in

future work.
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The obtained results answer (RQ8) because it shows that by using link predic-

tion over the proposed knowledge graph model it is possible to predict the semantic

attributes of unseen images.

5.3.2 (RQ9): A visual analysis for factual and counterfac-

tual explanations

Now that we have provided a quantitative analysis of the performance of our link

prediction approach, we proceed by visually analysing some of the factual and coun-

terfactual explanations generated by our method. The explanations within this

section were generated by considering only the pairs of attribute values in which our

link prediction performs with accuracy higher than 80%.

Since there is no ground truth for such textual explanations, we provide visual

analyses based on randomly selected examples. Visual analyses are used to check

if the attributes used in our textual explanations are in fact present in the images.

Note that in order to generate an explanation we first identify all attributes that

could have caused a given mistake as hypothesis, and then we use link prediction to

accept or deny each individual hypothesis, as explained in Section 5.2.

The first example of explanation presented below refers to the data sample used

in the previous section and the hypotheses are shown in Table 5.3. Fig 5.6 shows

the image for this data and the respective factual and counterfactual explanations.

Black Footed Albatross Blue Jay Predicted for i

Bill shape Hooked-seabird All-purpose Hooked-seabird

Primary Color Brown Blue Blue

Underparts Color Brown White White

Upperparts Color Brown Blue Blue

Nape Color Brown Blue Brown

Table 5.3: Predicted attributes for the data sample img001. Bold rows indicate accepted
hypotheses.
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Figure 5.6:
Misclassification involving
Black Footed Albatross
(ground truth class) and
Blue Jay (wrong predicted
class).

• Factual explanation: “The input img001 was mis-

classified as Blue Jay instead of Black Footed Albatross

because the model has identified blue as value for pri-

mary color in img001 instead of brown and blue as

value for upperparts color instead of brown and white

as value for underparts color instead of brown.

• Counterfactual explanation: “If the attribute pri-

mary color of input img001 assumed the value brown

and underparts color assumed the value brown and up-

perparts color assumed the value brown, input img001

would more likely be classified as a Black Footed Alba-

tross instead of Blue Jay”.

According to our method, this first mistake was caused by the presence of blue

and white colors, which are characteristic of the Blue Jay species. It is worth noting

that, if the bird in the image had the value brown for its underparts color, up-

perparts color and primary color, it would likely be classified as the correct class.

In addition, our method discarded hypotheses around attributes bill shape and

nape color. This happened because, according to our link predictions, this bird

image has hooked-seabird as a value for attribute bill shape and brown as a value for

attribute nape color, which are already the values for the correct class and thus are

not likely to have caused the mistake.

In the second mistake, shown in Fig 5.7, our factual explanation tells that the

detection of white colors are the causes of the misclassification. The counterfactual

explanation indicates that if the bird was more black, it would likely be classified cor-

rectly. In this case we discard any hypotheses around the bill shape, the nape color

and the upperparts color.

It can be seen that in both cases the factual explanations are visually compatible

with the real images. In the first case, the blue primary color, blue upperparts color
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and the white underparts color are in fact visible. In the second, except for a small

part in its wings, the bird is visibly more white than black. Although the known lim-

itation of such visual analysis in terms of scaling, these examples give an indication

that our method generates reasonable factual explanations.

Figure 5.7:
Misclassification involving
Black Tern (ground truth
class) and Elegant Tern
(wrong predicted class)

• Factual explanation: “The input img002 was mis-

classified as Elegant Tern instead of Black Tern be-

cause the model has identified white as value for un-

derparts color in img002 instead of black and white as

value for primary color instead of black.

• Counterfactual explanation: “If the attribute un-

derparts color of input img002 assumed the value black

and primary color assumed the value black, input

img002 would more likely be classified as a Black Tern

instead of Elegant Tern”.

The counterfactuals generated by our approach also provide interesting insights

about why the mistakes happened and what could invert the classifications. If we

look back into Fig 5.6, it is intuitive that if the bird had brown colors instead of

blue and white, this would probably change the classification to the correct class.

A similar intuition is present in the second case, in Fig 5.7, in the sense that if the

bird were black it would probably be correctly classified. In Appendix B.5, Figure

B.1 presents eight additional factual and counterfactual explanations, providing a

demonstration of our method’s outcomes across various pairs of classes and attribute

values.

The visual analysis on the generated factual and counterfactual explanations

helps answering (RQ9) by showing that our approach can generate local expla-

nations based on semantic attributes described in external knowledge bases. As

discussed in the first part of our evaluation, currently the quality of our explana-
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tions is mainly associated with the accuracy of the link prediction algorithm used.

More experiments are required to explore under which conditions we can guarantee

sufficiently high accuracy and what adjustments can be made for cases in which the

link prediction does not work as expected. Another point worth noting is that when

generating counterfactuals with the current approach we cannot quantify the exact

contribution of each attribute. This is another area of current investigation.

5.3.3 Towards a more systematic evaluation for counterfac-

tual explanations

We have started investigating alternative ways to validate the counterfactuals in a

more systematic manner. One challenge is that, being textual and not visual, our

counterfactuals cannot be tested by passing them through the CNN and checking if

they in fact invert the outcome to the correct class.

To tackle this problem, we experimented on the use of Generative Adversarial

Networks (GANs) to modify a misclassified image based on a textual counterfactual.

For this, we have experimented with different existing GAN architectures, namely

DCGAN [81], StarGAN [17], AttGAN [44]. These models receive as input an image

and an attribute to be changed in the image. This allow us to modify the mis-

classified images by changing the semantic attributes reflected in our counterfactual

explanations.

Our preliminary results, reported in [61], indicated that the resulting counter-

factual images generated affected the original misclassifications outcome but not as

strongly as we expected. We believe this could be due to the known problem of poor

resolution in GAN-generated images, and the challenge of multiple attribute modi-

fications. In order to overcome these issues we are planning new experiments using

more modern text-to-image generators such as DALL-E 2 [82] and Stable Diffusion

[85].
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5.4 Summary

In this chapter, we propose an approach for generating factual and counterfactual

explanations of mistakes made by deep learning models in classification tasks.

In our method, we first construct a knowledge graph that connects the com-

ponents of deep learning models (the neurons) with input data as well as external

knowledge. Once created, the knowledge graph can be queried to generate hypothe-

ses around semantic attributes that have potentially caused a given mistake. In

order to accept or discard each hypothesis, a link prediction algorithm is used to

predict the semantic attributes of unseen data based on the behaviour of the neu-

rons in the deep learning model, as represented in the knowledge graph. Accepted

hypotheses based on the results of link prediction are used to generate factual and

counterfactual explanations.

Our evaluation on fine-grained image classification was conducted over the CUB200

dataset and using a VGG-16 pretrained on ImageNet and fine-tuned on CUB200.

The results obtained show that, by applying the link prediction algorithm over our

knowledge graph it is possible to identify semantic attributes of unseen data for dif-

ferent pairs of attribute values. This result is valuable especially if we consider the

case of fine-grained image classification, where subtle differences among the classes

contribute to make disambiguation a challenging task.

After evaluating the suitability of the approach for discovering attributes through

link prediction, we present a visual inspection over selected mistakes in the dataset.

The investigation showed that the factual explanations generated by our approach

which are automatically generated can help understanding why a mistake happened

in an easy-to-understand way and with no need for interpretation. The visual inspec-

tion also gave a first indication that the counterfactuals can indicate what semantic

attribute would need to be learned differently to possibly correct the mistake.

The proposed approach assumes we have a dataset annotated with semantic

attributes and an external knowledge base describing the relations between those

attributes and real world entities. Given both, the approach is flexible in that it can
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be applied to any CNN.
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Chapter 6

Conclusions

6.1 Introduction

This chapter concludes the thesis by revisiting each of the four studied hypotheses.

It provides a summary of the key outcome of this thesis and its impact in the

area of Explainable AI for computer vision and beyond. We first highlight the key

properties of the co-activation graph representation, which is a main contribution

of this thesis. Then we re-state its role in global explanations, taxonomy extraction

and local explanations for deep learning models, as well as the limitations and open

challenges in each of these contributions. Finally, in the last section we discuss

the potential of this research in opening up new lines of investigation. We present

multiple opportunities for building upon and learning from our results, we report

on what we have learned from our experiments and discuss how this work could

influence the direction in the field of Explainable AI.

6.2 The Co-activation Graph Representation

In Chapter 3 we formalised and experimented with a novel approach to analyse and

explain the inner workings of deep learning models. The proposed methodology

extracts and represents knowledge from a trained Deep Neural Network (DNN) in

a graph representation called co-activation graph. In this graph, nodes represent
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neurons from a DNN and weighted relationships indicate a statistical correlation

between their activation values. Neurons from both fully connected layers and con-

volutional layers can be represented in such graphs.

This representation can also be extended to include the input data and en-

tities from external knowledge bases, as described in Chapter 5. By doing this,

the co-activation graph acts as an intermediate representation between the knowl-

edge encoded in the deep representation and human knowledge described in existing

databases. It is a novel way to combine symbolic and sub-symbolic representations

for Explainable AI that enables the generation of human-comprehensive global and

local explanations for trained DNNs.

The extensive evaluation conducted across models and datasets at different lev-

els of complexity corroborates initial results showing that the co-activation graph

representation is compatible with the knowledge encoded in its corresponding DNN.

We started the evaluation process by showing that co-activation graphs can help de-

tecting nodes that contribute significantly to the prediction of specific classes. We

also observed a positive correlation between the number of nodes shared by a pair

of classes with the number of mistakes that occur between these classes. These were

the first indications that co-activation graphs can play a role in providing explana-

tions for deep learning models, which motivated further investigation on how graph

algorithms and network science methods applied over these graphs can give insights

about the inner workings of DNNs, which is reported in the subsequent sections.

The potential of co-activation graphs is yet to be explored in many ways that

go beyond the scope of this thesis. One example is the need to adapt our represen-

tation to different architectures, such as transformers, which is crucial for applying

the methods discussed in this thesis for other input data and different application

domains like Natural Language Processing and Speech Recognition.

Another factor that can impact the analysis obtained using our approach is

the choice of a threshold when building the graph. In this case, we consider that

negative correlations can bring relevant knowledge to the graph since they indicate
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the absence of certain features which can be important for the task at hand [34].

However, integrating negative correlations to the graph is not trivial because many

graph algorithms are not designed for edges with negative weights. One alternative

is to represent negative edges by using a different edge type, which is something

worth exploring in future work.

6.3 Generating Global Explanations using Knowl-

edge Graphs

In Chapter 3 we studied the potential of using graph algorithms and metrics over

co-activation graphs in order to provide global explanations for CNNs. Commu-

nity detection and centrality analysis were used to explore the relationship between

different output classes and the role of neurons in the hidden layers. For this, a

state-of-the-art model MobileNet-V2 was trained on the CIFAR-10 dataset.

After building a co-activation graph for the trained model, a community analysis

revealed that that the DNN not only has a good accuracy for the dataset but it also

seems to be distinguishing groups of classes in an intelligent manner. In this case,

for the CIFAR-10 dataset, the community analysis showed that the model learned

how to separate classes into two groups: one group containing all the animals and

a second group containing all the vehicle classes.

A step further in our analysis focused on exploring the notion of centrality.

Our evaluation showed that there is an association between central nodes in a co-

activation graph and their respective neurons in the DNN. It was demonstrated

that the DNN drastically loses accuracy if neurons with high PageRank centrality

are removed from the model, while the accuracy remains stable if neurons with

low PageRank centrality are removed. This indicates that central nodes in the

co-activation graph may represent important neurons in the DNN and that our

approach might be considered for pruning the DNN. This is of interest, for example,

in applications where dimensionality reduction is crucial.
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It was also shown that graph visualisation techniques can be used to clarify the

result of each analysis performed over co-activation graphs adding a level of trans-

parency. Unlike black box models we showed that by visualising co-activation graphs

it is possible to better understand why a certain algorithm produced the resulting

community structure and what is expected when changing certain parameters in

the algorithm. Graph visualisations can also help interpret why central nodes in

co-activation graphs tend to be important nodes in DNNs since they are visually

connected to dense regions and thus can impact many other neurons.

An interesting result from the experiments in this chapter was that a CNN tend

to learn hierarchical relationships between classes even though it was not trained

specifically for this purpose. This observation motivated the study of a more sys-

tematic way to capture the learned relationships between classes, which was done

in Chapter 4 and is summarised in next section.

However, some of the findings in this chapter require a more detailed investiga-

tion. For example, nodes with high centrality may be useful in revealing possible

biases within the model, given that they have impact over the decision making pro-

cess. Identifying the role of such nodes could enable fixing undesired behaviours

from a CNN either by improving the model itself or by a more careful selection and

curation of training data.

On the other hand, less central nodes may be good candidates for model pruning,

since they cause only a small decrease in accuracy when removed from the model.

Model pruning is desirable not only for improving computational performance but

also for achieving more interpretable models, since analysing smaller models tends to

be easier than looking into bigger ones. However, providing a competitive pruning

algorithm is beyond the scope of this thesis and should be investigated in future

work.
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6.4 Taxonomy Extraction

In Chapter 4 we studied the semantic relationships between classes from trained

CNNs in a more systematic way using taxonomy extraction. In this chapter, we

first developed a method for extracting taxonomies from CNNs based on class vector

embeddings that can be calculated from their corresponding nodes in a co-activation

graph. Then we introduced a concept called semantic adequacy that measures how

well semantic concepts and their taxonomic relationships are captured by the model’s

internal representation when compared to a ground truth taxonomy.

We tested our approach using state-of-the-art CNNs, namely ResNet-152, ResNet-

18 and VGG-16, trained on CIFAR-100 and ImageNet datasets. We also performed

two additional experiments in which we modify the ResNet variations by introducing

class hierarchy information during the training phase, as proposed by [7].

The experiments have proven that our method is capable of extracting tax-

onomies and that the produced taxonomies captured a relevant number of correct

axioms. The extracted taxonomies achieved a good level of semantic adequacy, es-

pecially considering that most models were not explicitly trained for recognising

hierarchical relationships. Our results indicate that architecture depth is a relevant

factor for the semantic adequacy, which was also observed by [6]. An encouraging

finding was that models trained with class hierarchy information were the ones with

higher semantic adequacy for both datasets. This motivates the search for more

innovative ways to leverage external knowledge when designing more effective ar-

chitectures instead of relying on the addition of more layers and consequently more

parameters.

The proposed taxonomy extraction method and semantic adequacy together can

help in comparing and choosing among different CNNs by exposing how well each

model learned the semantic relationships from a given dataset instead of relying

purely on performance metrics. The next steps for this part of our research include

adapting the semantic adequacy in order to provide more fine-grained information,

since the value is currently associated to the extracted taxonomy as a whole. In
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this case we expect the metric to inform which specific parts of the taxonomy are

more or less adequate according to the ground truth. For example, the extracted

taxonomy may be more adequate for a specific subtree (e.g. dogs) but less adequate

for another (e.g. primates). This information can be useful not only for deciding

when to trust a given model but also for transfer learning, where a model may not

be suitable for a given task even though it may provide high accuracy.

6.5 Generating Semantic Local Textual Explana-

tions

In Chapter 5 we extended the co-activation graph representation by connecting

it with the input layer and external knowledge bases. The extended co-activation

graph can be seen as an intermediate representation between the knowledge acquired

by the CNN during the training phase and human knowledge described in external

sources.

After describing how to extend the graph representation, we focused on providing

local explanations that are human comprehensible and, for this, we developed a

method that generates factual and counterfactual explanations in a textual form.

A central piece in the proposed method is the use of a link prediction algorithm

to discover the semantic attributes from unseen images, which was tested in an

experiment using VGG-16 trained for the CUB-200 dataset.

Our results indicated that, for different types of semantic attributes and pairs

of attribute values, our method is capable of predicting such attributes in a very

accurate way. This is especially encouraging if we consider that the CNN was

trained using only visual features and was not aware about any annotation during

the training phase.

After predicting the semantic attributes, our method generates textual explana-

tions that are easy to understand. Our evaluation considered both the accuracy of

the link prediction algorithm and a visual inspection on the factual and counterfac-

95



Explaining Deep Neural Networks through Knowledge Extraction and Graph
Analysis

tual explanations. One limitation however is that, due to the textual nature of our

explanations, it is not possible to automatically verify whether the produced coun-

terfactual can actually invert the classification from the wrong class to the correct

one. Because of this, we have considered exploring effective ways to transform our

textual explanations into visual images that can be injected back into the CNN for a

systematic validation of the generated counterfactuals [61]. It is important to point

out that, although visual counterfactuals are important for having a more robust

automatic validation, the textual explanations produced by our approach are more

human friendly and less dependant on human interpretation. A related but much

broader area worth investigating is the role human-in-the-loop approaches can have

in validating our explanations and improve their quality, but we will better discuss

this in the next section.

6.6 Challenges and Opportunities ahead

In this thesis we have developed a novel approach to explain deep neural networks

through the use of knowledge graphs and graph analysis algorithms. Our main

contribution is the development of the co-activation graph, which serves as an inter-

mediate representation between the knowledge contained within deep representation

and human knowledge represented in external sources.

We have systematically evaluated the role of co-activation graphs in the explain-

ability process through a set of research questions from different facets: (i) global

explanations; (ii) taxonomy extraction and semantic adequacy and; (iii) local expla-

nations. Our research paves the way for several interesting lines of investigation we

believe are worth exploring which are listed below.

Bias detection: A known challenge in Machine Learning is that models trained

over unbalanced datasets tend to inherit certain biases and identifying such biases

within the deep representation is not easy. We have already shown that our ap-

proaches for taxonomy extraction and link prediction can reveal existing biases on a

class level and instance level, respectively. However, we believe that much is yet to
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be done in terms of bias detection using co-activation graphs. One possible way to

characterise such bias would be to study information flow and frequent paths in the

graph, which may indicate how undesired decision paths are formed in the graph. In

this sense, analysing paths from co-activation graphs is more feasible than doing so

in the model itself, since co-activation graphs are much less dense than DNN archi-

tectures. Another interesting direction is to analyse vector representations computed

using node embeddings for nodes representing biased input data. This is especially

interesting when considering annotated datasets, since semantic attributes can also

be represented as nodes in the graph and thus analysed in the form of vectors, which

may reveal biases from a semantic perspective.

Human-in-the-loop: Considering the local explanations provided by our method,

one possibility for improving the validation process would be to apply human-in-the-

loop approaches. Human-in-the-loop techniques have been widely used in Machine

Learning to improve model training, validation and testing, for example by design-

ing adaptive approaches to annotation and labelling. The use of such approaches in

Explainable AI through validation and adaptive generation of explanations has yet

to be fully explored and a more general view of human-centered AI is seen as critical

in the European roadmap for trustworthy AI1. In this context, one idea would be

to validate not only that our explanations are trustworthy but that they can also

be helpful and actionable for the end-user. For this we first intend to count on

human expertise to help in measuring the quality of our explanations. In addition,

uncertainty sampling methods should be considered for when our approach is un-

certain about possible causes for a given mistake, which could be supported by the

output of the link prediction algorithm. Besides that, human feedback could also be

leveraged and integrated with our approach in order to improve the generated expla-

nations. As an example, human input can be helpful to distinguish what semantic

features are more critical in the explainability process and this type of information

combined with our hypothesis selection phase could lead to more fine-grained and

1https://www.humane-ai.eu
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user-centered explanations. We also expect that the link prediction outcome can

be considerably improved as we gain access to better data annotations around fea-

tures that are known to be important for the user in making an explanation more

trustworthy.

Enhanced knowledge extraction: Chapter 5 showed how co-activation graphs

combined with external knowledge enabled the generation of textual factual and

counterfactual explanations. The proposed representation can be reconciled with

other knowledge extraction approaches in order to improve the outcome of the algo-

rithms and graph methods used in this thesis. For example, integrating our current

representation with information about the role of specific neurons, as discussed in

[6], can lead to better vector representations or more accurate link prediction which

would improve taxonomy extraction and local explanations respectively. Another

possibility is to integrate rules extracted from CNNs that could help exposing pos-

sible biases or wrong taxonomic axioms.

Knowledge injection: In this thesis we discussed the use of co-activation

graphs mainly in the context of Explainable AI. However, one interesting line of

investigation would be to explore how to distill information from the graph with the

purpose of injecting knowledge back into the model (to learn better representations).

In Chapter 4, we observed that architectures that leverage class hierarchy informa-

tion during the training phase tend to learn better taxonomic relationships. This

encourages the search for other ways to inject knowledge during the training phase in

order to achieve better knoweldge-informed models. Graph analysis may assist this

process in two different ways. The first is to help to decide what type of information

is misrepresented in the training data, which may be achieved by analysing the ex-

tracted taxonomies or by looking at how different semantic attributes are affecting

the decisions. The second way is to help in deciding where to add such information

and it can be supported either by analysing the community structure in the graph

or important neurons revealed by centrality analysis.

We believe the research in this thesis brings a novel perspective to the field of
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Explainable AI, by providing a mechanism to integrate knowledge graphs with deep

representations and by enabling the use of network science and graph methods to

this field.
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Experimental details

B.1 Datasets

B.1.1 CIFAR-100

The dataset contains colour 32 × 32 images categorized in 100 classes, with 600

images per class : 500 for training and 100 for test. We split randomly split the

training set in 90% for the training and 10% for validation. The randomness was

seeded (seed : 123456789) for reproducibility purposes. In order to be able to evalu-

ate the semantic adequacy of taxonomies extracted from this dataset, we manually

linked the class labels from CIFAR-100 to WordNet synsets.

The training hierarchy was computed with depth 4, leading to hierarchy levels

of size 2, 6, 8 and 100. Labels of each level can be found in Table 1.
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Level of hierarchy Number of labels Contained labels

Level 3 2
abstraction

physical entity

Level 2 6

causal agent

group

matter

object

process

thing

Level 1 8

body of water

community

geological formation

land

person

phenomenon

solid

whole

Level 0 100 Base labels of CIFAR-100

Table B.1: Training hierarchy extracted from CIFAR-100

B.1.2 ImageNet (ILSVRC-2012)

The dataset contains colour images of varying size categorized in 1000 classes, 1

million images for the training set and 150000 images for the testing set. We split

randomly split the training set in 90% for the training and 10% for validation. The

randomness was seeded (seed : 123456789) for reproducibility purposes. The labels

are naturally linked to WordNet.

We used the same import parameters as torchvision for testing set : we resized

imported pictures to 256× 256, center-cropped them to 224× 224, then normalized

with RGB mean set to [0.485, 0.456, 0.406] and RGB standard deviation set to

[0.229, 0.224, 0.225].

Training pictures were resized to 256×256, random-cropped to 224×224, randomly

flipped horizontally then normalized with RGB mean set to [0.485, 0.456, 0.406] and

RGB standard deviation set to [0.229, 0.224, 0.225]. Here again, the random process

was seeded, with seed 123456789.

The training hierarchy was computed with depth 5, leading to hierarchy levels

of size 2, 5, 8, 16, 1000. Labels of each level can be found in Table 2.
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Level of hierarchy Number of labels Contained labels

Level 4 2
abstraction

physical entity

Level 3 5

attribute

causal agent

communication

matter

object

Level 2 8

geological formation

person

shape

sign

signal

solid

substance

whole

Level 1 16

artifact

cliff

contestant

explorer

food

living thing

material

natural depression

natural elevation

natural object

peer

roundshape

shore

spring

street sign

visual signal

Level 0 1000 Base labels of ImageNet

Table B.2: Training hierarchy extracted from ImageNet

B.2 Networks hyper-parameters and training

B.2.1 VGG16 (CIFAR-100)

For CIFAR-100, we trained VGG-16 from scratch for 180 epochs. We used a Stochas-

tic Gradient Descent (SGD) with learning rate at 0.1, momentum at 0.9 and weight

decay at 10−4. Learning rate was divided by 10 every 60 epochs. We used a cross-

entropy loss. The batch size was set to 128.
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B.2.2 ResNet-18 (CIFAR-100)

We trained ResNet-18 from scratch for 180 epochs. We used a SGD with learning

rate at 0.1, momentum at 0.9 and weight decay at 10−4. Learning rate was divided

by 10 every 60 epochs. We used a cross-entropy loss. The batch size was set to 128.

B.2.3 HA-ResNet-18 (CIFAR-100)

HA-ResNet-18 was constructed following the method proposed by [7]. The hidden

dimensions were set to 200, 300 and 400. It was trained from scratch on the hierarchy

mentioned above for 180 epochs, with SGD, learning rate at 0.01, momentum at 0.9

and weight decay at 10−4. Learning rate was divided by 10 every 60 epochs. We

used cross-entropy losses on every output level, all equally weighted by a factor 1.

The batch size was set to 128.

B.2.4 VGG16 (ImageNet)

We used default pretrained weights provided with torchvision python package with-

out performing any further fine-tuning.

B.2.5 ResNet-152 (ImageNet)

We used default pretrained weights provided with torchvision python package with-

out performing any further fine-tuning.

B.2.6 HA-ResNet-152 (ImageNet)

HA-ResNet-152 was constructed following the method proposed by [7]. The base

weights for the layers in common with ResNet-152 were the one provided by the

pretrained version of ResNet-152. The hidden dimensions were set to 200, 200, 300

and 400. It was trained on the hierarchy mentioned above for 1 epochs, with SGD,

learning rate at 0.01, momentum at 0.9 and weight decay at 10−4. We used cross-

entropy losses on every output level, all equally weighted by a factor 1. The batch
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size was set to 64.

B.3 Embedding parameters

B.3.1 VGG16 (CIFAR-100)

For VGG16 on CIFAR-100, we ran FastRP with 128 embedding dimensions, for 3

iterations and with iteration weights set to 0, 1 and 1. The random seed was set to

42.

We also ran Node2vec with 128 embedding dimensions, for 1 iteration. Again,

the random seed was set to 42.

B.3.2 ResNet-18 (CIFAR-100)

For ResNet-18 on CIFAR-100, we ran FastRP with 128 embedding dimensions, for

3 iterations and with iteration weights set to 0, 1 and 1. The random seed was set

to 42.

We also ran Node2vec with 128 embedding dimensions, for 1 iteration. Again,

the random seed was set to 42.

All the convolutionnal and linear layers were used to construct the co-activation

graph.

B.3.3 HA-ResNet-18 (CIFAR-100)

For HA-ResNet-18 on CIFAR-100, we ran FastRP with 128 embedding dimensions,

for 3 iterations and with iteration weights set to 0, 1 and 1. The random seed was

set to 42.

We also ran Node2vec with 128 embedding dimensions, for 1 iteration. Again,

the random seed was set to 42.

All the convolutionnal and linear layers were used to construct the co-activation

graph.
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B.3.4 VGG16 (ImageNet)

For VGG16 on ImageNet, we ran FastRP with 128 embedding dimensions, for 3

iterations and with iteration weights set to 0, 1 and 1. The random seed was set to

42.

We also ran Node2vec with 128 embedding dimensions, for 1 iteration. Again,

the random seed was set to 42.

B.3.5 ResNet-152 (ImageNet)

For ResNet-152 on ImageNet, we ran FastRP with 256 embedding dimensions, for

10 iterations. Iteration weights were set to [0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1].

The random seed was set to 42.

We also ran Node2vec with 256 embedding dimensions, for 10 iteration. Again,

the random seed was set to 42.

B.3.6 HA-ResNet-152 (ImageNet)

For HA-ResNet-152 on ImageNet, we ran FastRP with 256 embedding dimensions,

for 10 iterations. Iteration weights were set to [0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8,

1]. The random seed was set to 42.

We also ran Node2vec with 256 embedding dimensions, for 10 iteration. Again,

the random seed was set to 42.
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B.4 Layer used for each model

In order to enhance reproducibility, Table B.3 lists all the layer names that were

used in the process of building the co-activation graph for each model in Chapter 4.

VGG16 ResNet18 HAResNet18 ResNet152 HAResNet152

features 0 conv1 conv1 layer3 31 conv3 layer3 31 conv3

features 3 layer1 0 conv1 layer1 0 conv1 layer3 32 conv3 layer3 32 conv3

features 7 layer1 0 conv2 layer1 0 conv2 layer3 33 conv3 layer3 33 conv3

features 10 layer1 1 conv1 layer1 1 conv1 layer3 34 conv3 layer3 34 conv3

features 14 layer1 1 conv2 layer1 1 conv2 layer3 35 conv3 layer3 35 conv3

features 17 layer2 0 conv1 layer2 0 conv1 layer4 0 conv3 layer4 0 conv3

features 20 layer2 0 conv2 layer2 0 conv2 layer4 1 conv3 layer4 1 conv3

features 24 layer2 0 downsample 0 layer2 0 downsample 0 layer4 2 conv3 layer4 2 conv3

features 27 layer2 1 conv1 layer2 1 conv1 fc fc

features 30 layer2 1 conv2 layer2 1 conv2 - -

classifier 6 layer3 0 conv1 layer3 0 conv1 - -

- layer3 0 conv2 layer3 0 conv2 - -

- layer3 0 downsample 0 layer3 0 downsample 0 - -

- layer3 1 conv1 layer3 1 conv1 - -

- layer3 1 conv2 layer3 1 conv2 - -

- layer4 0 conv1 layer4 0 conv1 - -

- layer4 0 conv2 layer4 0 conv2 - -

- layer4 0 downsample 0 layer4 0 downsample 0 - -

- layer4 1 conv1 layer4 1 conv1 - -

- layer4 1 conv2 layer4 1 conv2 - -

- fc fc - -

Table B.3: The layers that were used when constructing the co-activation for each model.

B.5 Mistakes

Chapter 5 proposed a method for generating local explanations based on the pre-

diction of semantic attributes through the use of a link prediction algorithm over
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Figure B.1: Factual and counterfactual explanations.
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co-activation graphs. In order to make the visual analysis more robust, Figure B.1

shows eight additional factual and counterfactual explanations that help in assessing

the capabilities of the method proposed in Chapter 5.

In Figure B.1, some of the explanations are easier to analyse than others because

they are based around attributes that are visually easier to distinct. For instance, a

hooked seabird and an allpurpose bill shape are visually very distinct, which makes

it easier to analyse the first, fourth, fifth and sixth explanations, given that the

misclassified images seem to have a hooked seabird bill shape instead of allpurpose.

A similar behaviour can be observed in the third explanation, where our model

identified the presence of white colors instead of grey and black, and the seventh

and eigth explanations, where our model identified identified the presence of a blue

color instead of buff and brown. These cases are also easy to distinguish considering

that the involved colors are very distinct and they can also be visually inspected

from the misclassified image.

However, not all explanations can be easily analysed, especially when the at-

tribute values are hard to be visually distinguished. For instance, in the second

mistake our method has identified an allpurpose bill shape instead of dagger, but it

is not easy to distinguish between these two values of bill shape. This may be the

case where, even though the explanation may be accurate with respect to the deep

model, it may not be useful for the end user. Therefore, future work should consider

adapting the proposed method to prioritise semantic attributes that are relevant for

the end user, which could be achieved by considering human feedback during the

process of generating the explanations.
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Presentations on Work from this

Thesis
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Awards

• Best Presentation at the Intern Awards at Nokia Bell Labs Ireland (2019)
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