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ABSTRACT
In this work, we present our system Memento 3.0 for participation
in the Lifelog Search Challenge 2023, which is a successor to the
previous 2 iterations of our system called Memento 1.0 [1] and
Memento 2.0 [2]. Memento 3.0 employs image-text embeddings de-
rived from OpenAI CLIP models as well as larger OpenCLIP models
trained on ∼5x more data. Our system also significantly reduces
the query processing time by almost 75% when compared to its
predecessor systems by employing a cluster-based search technique.
We additionally make important updates to the system’s user in-
terface to offer more flexibility to the user and at the same time be
better suited to efficiently handle new query types introduced in
the Lifelog Search Challenge.
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1 INTRODUCTION
Lifelogging is the process of digitally capturing and storing infor-
mation about one’s daily activities, experiences, and surroundings
using various types of sensors and devices. The collected dataset
called lifelogs is a rich in-the-wild multimodal dataset recorded
using wearable devices such as cameras and fitness bands. The goal
of lifelogging is to create a comprehensive and detailed record of
one’s life which can be used to support use cases, such as memory
augmentation and retrieval, health analytics, activity detection, and
developing customized applications to support elderly people in
leading an independent life.

In recent times, lifelog data has been used to address several of
these use cases in research domains such as memory augmentation
and reminiscence [4, 7, 11], human activity recognition [6], health
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monitoring for elderly and people suffering from chronic diseases
[21, 22]. The research on information retrieval from lifelogs has also
significantly progressed in recent few years aided by benchmarking
challenges such as the Lifelog search challenge [12–14].

The Lifelog search challenge since its inception in 2018 has gar-
nered significant attention from across the globe and has become
an important event for researchers and the lifelogging commu-
nity. The challenge provides an opportunity to showcase the latest
advances in lifelog retrieval and facilitates collaboration and knowl-
edge sharing among researchers and practitioners. The Lifelog
Search Challenge 2022 [12] where 9 global teams competed against
each other, introduced 2 new query formats (Ad-hoc and QA task)
in addition to the original known item search task which makes
the competition even more exciting and challenging. The newer
format of LSC poses a very unique information retrieval challenge
where only a semantic understanding of an individual image would
not be beneficial to address all the 3 query types. For example, with
QA tasks a more fine-grained contextualized understanding of the
data would be required to answer questions such as what did I do
after doing X on a specific day? or how many times did I do activity
Y last month?.

In this paper, we present our system Memento 3.0 to participate
in the upcoming edition of Lifelog Search Challenge [14]. Our pro-
posed system builds on top of its predecessor to further improve
the search and ranking functionality in terms of a better semantic
understanding of the data by using enhanced image-text embed-
dings. The system is also significantly faster in terms of search
speed by using a cluster-based approximate search methodology
over the image embedding space. Memento 3.0 further offers more
flexibility to the user during the search process where the user can
dynamically toggle between the backend models from the primary
search interface as per requirements. The user interface of the sys-
tem has further been modified to accommodate the newer query
types in the challenge while borrowing the functionalities such as
visual faceted filtering and image starring functionality as is from
its predecessor systems.

2 RELATEDWORK
The Lifelog search challenge which is in its 6th year, has driven the
advancement in the state-of-the-art in lifelog information retrieval.
Over the years since 2018, dozens of systems have participated in
the competition proposing exciting and novel solutions to address
the problem.

Overall 9 teams participated in the lifelog search challenge 2022.
E-MySceal [31] won the last year’s challenge and used image-text
embeddings from the CLIP model [27] to perform the search as
opposed to the concept-based search methodology they employed
in the previous iterations of their system [32]. LifeSeeker 4.0 [25]
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proposed a novice-friendly system with an enhanced query parser
that splits queries into concepts, time, and location. They also used
CLIP embeddings to build their search backend besides the concept-
based approach. Memento 2.0 [2] used an ensemble approach to
rank images based on a query using image embeddings from two
CLIP models.

FIRST 3.0 [17] attempted to enhance the CLIP embeddings using
an attention-like approach where they encode the salient features
of the image along with the information in the overall image to
improve the semantic understanding of the image. Voxento 3.0 [3]
presented an improved version of their earlier system incorporating
functionalities such as text-based search, enhanced speech query,
and new filters based on metadata. This system like its previous
version also leverages image-text embeddings from the CLIP model.
vitrivr [16] which has also participated in several previous iterations
of LSC proposed a backend comprised of Cineast which is a feature
extraction and query processing engine along with CottontailDB
[10] as a database. They also extract textual embeddings from the
lifelog images using a similar approach to W2VV++ [24], as well
as the CLIP model. vitrivr-VR [29] is a virtual-reality based system
built on top of vitrivr’s [16] backend providing a fully-immersive
experience to the search process. The system also supports multiple
query types such as textual input, boolean queries, and geospatial
queries. LifeXplore [23] which has been participating in LSC since
2018 presented an enhanced system that utilizes deep features
such as YOLOv4 [5], The system also leverages embeddings from
InceptionNetv3 [30] model to retrieve visually similar images.

Overall a majority of the systems participating in LSC’22 used
the image-text embeddings from the CLIP model given its superior
zero-shot performance and robust generalization capabilities to
datasets such as lifelogs. Our proposed system Memento 3.0 like its
predecessor system uses better image-text representations derived
from larger CLIP [27] models and makes a significant improvement
in query processing time.

3 SYSTEM OVERVIEW
In this section, we present an overview of the LSC’23 Dataset and
discuss the improvements in our search and ranking functionality,
as well as the modifications in the user interface to better accommo-
date the new query types introduce in the lifelog search challenge.

3.1 LSC’23 Data
The Lifelog Search Challenge 2023 reuses the dataset from last
year’s challenge. The dataset consists of ∼724K first-person images
collected using a narrative clip device from a single lifelogger for
an 18-month period during 2019-2020. All the images in the dataset
are fully redacted and anonymized as per GDPR norms.

• Visual Concepts: For each image in the dataset, the visual
concepts consist of information such as detected objects
within the image, image caption along with caption confi-
dence score, and text detected from images using off-the-
shelf OCR models.

• Metadata: The metadata for LSC’23 is similar to last year’s
data consisting of data points like biometrics (calories burnt,
heart rate, step count, etc.), sleep information such as sleep
stages as well as sleep efficiency and music data. The GPS

location data, however, has been enhanced from last year
which includes missing values imputation by leveraging the
techniques discussed in [33].

3.2 CLIP Embeddings for Semantic Search
The backend of our system Memento 2.0 which participated in
Lifelog Search Challenge 2022 consisted of an ensemble of scores
from two CLIP models, one using a Vision Transformer [9] back-
bone (ViT-L/14) while the other one had a ResNet50 [15] architec-
ture (RN50x64). The ensemble model showed better performance
than the individual models when evaluated on queries from LSC
2019, however, the ViT-L/14 model seemed to work fairly well in
practice as well for most of the LSC queries. Given the success of
the CLIP model on out-of-domain datasets and on varied down-
stream tasks, a lot of effort recently has been carried out to train
language-vision models on internet scale data [19, 26]. Recently [8]
attempted to train a suite of open source CLIP [27] models (Open-
CLIP [18]) using a subset (2 billion images) of the LIAON-5B [28]
dataset which is a large-scale publicly available dataset consisting
of 5 billion image-text pairs.

We compared the performance of our ensemble approach (Me-
mento 2.0) and the CLIP models (ViT-L/14, ResNet50x64) from Ope-
nAI with recent larger models from [8] which are trained on ∼5x
more data and are ∼2-3x larger in terms of parameters to observe
if scaling the model with respect to model size and training data
translates into a tangible jump in zero-shot performance on a chal-
lenging dataset like lifelog. We evaluated all the models on queries
from LSC 2019 on the Hit@K metric. The evaluation benchmark
has been intentionally kept consistent with the last two iterations
of our system to allow easy comparison between models.

We observed that despite larger training data and model size,
the OpenCLIP models do not show a significant performance jump
when compared with the OpenAI ViT-L/14 model which is the
largest model in the OpenAI CLIP model suite.

The OpenCLIP ViT-L-14 model (same size as OpenAI ViT-L/14)
and OpenCLIP ViT-H/14 model (∼2x larger than OpenAI ViT-L/14)
were not able to improve upon the OpenAI ViT-L/14 model in our
evaluation results. However, we observed that the performance
of OpenCLIP ViT-G-14 (∼3x larger than OpenAI ViT-L/14) was
better than the OpenAI ViT-L/14 model when evaluated at t=60
seconds while the ViT-L/14 model performs better at lower t values
(0 seconds and 30 seconds). Our evaluation results (discussed in
section 4) show a mixed picture where it is not possible to single
out a concrete winner.

Our proposed system, Memento 3.0 hence adopts an approach
where the backend model powering the search can be switched
seamlessly by the user from the primary search UI as per the sit-
uation and requirements. As observed from LSC’22, the ViT-L/14
model works well in practice for a majority of the LSC tasks and is
capable of ranking the relevant images higher up the order given
adequate scene descriptions, however, for some scenarios where it
fails to locate the target image or locates it lower down the order,
the ViT-G/14 model or the ensemble models could be leveraged.
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Figure 1: Search flow for Memento 3.0. Initially, the raw lifelog images are encoded using the image encoder and stored as a
static file on the disk. Further, the indexing process creates clusters from the embeddings where each cluster has a centroid
which acts as a cluster identifier. At run-time, the search query is passed through the text encoder, and the text embedding is
first matched with the centroids of all the clusters. The cluster whose centroid matches best with the text embedding is chosen
and the search then confines to that particular cluster instead of the entire dataset.

3.3 Improved Vector Similarity Search
The search mechanism of our system relies on computing vector
similarity scores, where a vector representation of the search query
is matched with vector representations of all the images in our
dataset which are then sorted based on cosine similarity scores. A
brute-force approach of matching the query vector with all image
vectors is not scalable and significantly slows down the search
process given that the lifelog dataset has grown in size by a factor
of ∼3.5 when compared with the dataset used for LSC 2020.

We leverage FAISS (Facebook AI Similarity Search) [20] which is
an open-source library for efficient similarity search and clustering
of large datasets. The library offers several indexing methods which
basically partition the dataset into smaller subsets or clusters and
search only the relevant subsets instead of the entire dataset.

For our use case, we use the inverted file index from the FAISS
library which segregates the dataset into a set of clusters using
a clustering algorithm such as k-means. The number of clusters
is a hyperparameter and is empirically chosen to be 10. At run
time the query vector is initially matched with the centroids of all
10 clusters and a cluster is chosen based on the highest centroid
matching score. The search process is then confined to the chosen
cluster instead of going over the entire dataset thus reducing the
computations by a factor of 10 when compared with the previous 2
iterations of our system, Memento 1.0 [1] and Memento 2.0 [2]

3.4 Modifications to the User Interface
The user interface of Memento 3.0 is based on its previous versions
but with added functionalities to efficiently handle the new query
types introduced in the Lifelog Search Challenge.

• User controls for flexible search: In the current version of
our system, the user has more flexibility in terms of choosing
the backend model for search as well as choosing the num-
ber of images they want to display on the primary screen.
Enabling the users to dynamically change these settings will
result in increased efficiency given the new format of the
competition. For example, for the Known item search task
where one correct image is needed, the user can choose to
display the top 100 images while for the Ad-hoc task that
requires multiple correct submissions, it would be useful to
look at the top 1000 or 2000 images as some relevant images
may be found lower down the order. The functionality to
dynamically switch the backend model was added to allow
the user to opt for a backend model given the situation and
the current requirements.

• Multiple query modes Further to facilitate the varied re-
quirements of the 3 query types i.e Known item search, Ad-
hoc queries and QA type queries our system supports dif-
ferent UI layouts/widgets which can be toggled using the
drop-down menu from the search bar.
– Known Item Search: For this query type the search and
submission mechanism is similar to the previous system
Memento 2.0 [2] which has functionalities to zoom and
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Figure 2: Memento 3.0: Primary Search Interface for Ad-Hoc LSC tasks.

submit a particular image from the main screen or save it
and submit it later when more hints are revealed.

– Ad-hoc task: This query type requires the system to sub-
mit all correct images given a query within a limited time
frame. To handle this efficiently we have added a function-
ality to submit the top-K images displayed on the primary
search interface. Every image is assigned a number using
which the user can decide the number of images he/she
wants to submit. However, submitting a large bulk of im-
ages at once might not be a good idea in some scenarios
and might include a lot of incorrect images as well. To
handle this the system also supports individual manual
submission from the main screen by clicking on the check-
box corresponding to that particular image. Figure 2 shows
the user interface for Ad-hoc task types.

– QA task: For the QA query type, the system has a separate
input box displayed on top of the screen below the primary
search bar to submit the answer.

4 SYSTEM EVALUATION
Our evaluation approach for Memento 3.0 is consistent with the
last two iterations of our system, Memento 1.0 [1] and Memento
2.0 [2]. We evaluate the 9 models on the HiT@K metric which can
be defined as finding at least one target image among top-K images
in the result set using multiple K values (1, 3, 5, 10, 20, 50, and
100) over information (hints) available to us at time= 0, 30 and 60
seconds. We reuse the same manually created evaluation queries
used to evaluate our system’s previous iterations.

We evaluate the following 9 models on 24 evaluation queries
from LSC 2019:

(1) ViT-B/32: Baseline model which powered the backend of
Memento 1.0 in LSC 2020

(2) ViT-L/14: A larger Vision Transformer model released by
OpenAI as successor to (1). It generates 768-dimensional
image-text embeddings.

(3) ResNet50x64: OpenAI ResNet-50 model using 64x the com-
pute of a ResNet-50. It generates 1024-dimensional image-
text embeddings.

(4) ViT-L/14@336px: OpenAI ViT-L/14 model pre-trained at a
higher 336 pixel resolution for one additional epoch to boost
performance.

(5) ViT-L/14 (OpenCLIP): Trained on 5x more data and is sim-
ilar in size to the OpenAI ViT-L/14 model. It generates 768-
dimensional image-text embeddings.

(6) ViT-H/14 (OpenCLIP): Trained on 5x more data and has 2x
parameters as compared the OpenAI ViT-L/14 model. It gen-
erates 1024-dimensional image-text embeddings.

(7) ViT-g/14 (OpenCLIP): Trained on 5x more data and has 3x
parameters as compared with the OpenAI ViT-L/14 model.
It generates 1024-dimensional image-text embeddings.

(8) Ensemble 3:1 (OpenAIViT-L/14 andRN50x64):Weighted
sum of cosine scores fromOpenAI ViT-L/14 and ResNet50x64
in a 3:1 ratio.

(9) Ensemble 3:1 (OpenCLIPViT-g/14 andRN50x64):Weighted
sumof cosine scores fromOpenCLIPViT-G/14 and ResNet50x64
in a 3:1 ratio.

Table 1 shows the hit percentages calculated from all 9 mod-
els for 24 LSC 2019 evaluation topics at different values of K and
t. The OpenCLIP models ViT-L/14 and ViT-H-14 were unable to
beat the benchmark ViT-L/14 model from OpenAI despite their
larger training dataset and model size. The OpenCLIP ViT-G/14
model, however, performs better than the OpenAI ViT-L/14 model
at higher values of t (60 seconds) while ViT-L/14 seems to beat all
other models at lower t values (0 seconds and 30 seconds). Our
proposed system Memento 3.0 hence adopts an approach where the
backend model can be switched dynamically as per the situation
and requirements of the user.
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𝑡 @1 @3 @5 @10 @20 @50 @100

ViT-B/32 (Baseline) 0 sec 8.33 25.00 29.17 29.17 37.50 50.00 62.50
30 sec 8.33 25.00 25.00 33.33 33.33 54.17 58.33
60 sec 12.50 29.17 29.17 41.67 54.17 75.00 79.17

ViT-L/14 0 sec 20.83 33.33 41.67 50.00 54.17 62.50 83.33
30 sec 33.33 41.67 41.67 45.83 58.33 66.67 75.00
60 sec 37.50 45.83 45.83 54.17 62.50 79.17 83.33

ResNet50x64 0 sec 25.00 29.17 29.17 29.17 45.83 58.33 70.83
30 sec 25.00 33.33 41.67 50.00 58.33 62.50 70.83
60 sec 25.00 37.50 41.67 54.17 58.33 75.00 79.17

ViT-L/14@336px 0 sec 12.50 33.33 33.33 50.00 58.33 66.67 75.00
30 sec 29.17 41.67 45.83 45.83 50.00 66.67 66.67
60 sec 45.83 50.00 50.00 54.17 62.50 70.83 75.00

ViT-L-14 (Open CLIP) 0 sec 12.50 20.83 29.17 41.67 41.67 58.33 70.83
30 sec 20.83 37.50 41.67 45.83 54.17 58.33 66.67
60 sec 25.00 37.50 45.83 50.00 62.50 62.50 75.00

ViT-H-14 (Open CLIP) 0 sec 16.67 20.83 25.00 33.33 50.00 54.17 66.67
30 sec 37.50 41.67 45.83 45.83 50.00 58.33 66.67
60 sec 41.67 45.83 45.83 45.83 50.00 70.83 79.17

ViT-g-14 (Open CLIP) 0 sec 20.83 25.00 29.17 45.83 50.00 58.33 70.83
30 sec 25.00 41.67 45.83 54.17 58.33 62.50 66.67
60 sec 29.17 54.17 54.17 66.67 70.83 70.83 87.50

Ensemble 3:1 (OpenAI ViT-L-14 and RN50x64) 0 sec 29.17 29.17 33.33 54.17 58.33 70.83 79.17
30 sec 37.50 41.67 45.83 54.17 58.33 70.83 75.00
60 sec 41.67 45.83 45.83 62.50 70.83 83.33 83.33

Ensemble 3:1 (ViT-g-14 and RN50x64) 0 sec 16.67 33.33 33.33 37.50 50.00 62.50 75.00
30 sec 25.00 45.83 50.00 54.17 58.33 62.50 70.83
60 sec 29.17 45.83 50.00 62.50 75.00 83.33 87.50

Table 1: Hit@K calculated for all 9 models at different amounts of elapsed times, 𝑡 , and 𝐾 values across 24 evaluation topics for
LSC’19. The highest value in each column is highlighted in bold

5 CONCLUSION AND FUTUREWORK
In this work, we present Memento 3.0, an enhanced version of
our previous system Memento 2.0 [2]. We derive embeddings from
both OpenAI CLIP models and larger OpenCLIP models which
are trained on ∼5x more data and evaluated their performance
on the HiT@K metric using queries from LSC 2019. We further
made improvements in the query processing time by adopting an
approximate nearest neighbor search algorithm as opposed to the
brute-force approach. Additionally, we modified the user interface
of our system to accommodate the newer query types introduced
in the lifelog search challenge.

In the future, it would be interesting to experiment with en-
hanced image embeddings which are not just good at scene under-
standing but also encapsulate other non-visual information within
them.
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