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More than Meets the Eye: The Conceptual

Essence of Intrinsic Memorability

Lorin Sweeney

Abstract

In a world where sensory threads weave an endless tapestry of multi-modal data,

the human brain stands as the masterful weaver of meaning. As we wade through

this tempest of input, our brain spins these threads into an intelligible internal

representation and holds on tight to what it deems important. But what, exactly,

makes certain threads more important than others? And how can we predict their

significance?

Memorability is the tensile strength of the threads that tie us to the world. It is a

proxy for human importance, indicating which threads the human brain will curate

and retain with exceptional fidelity. This research investigates these multisensory

threads by exploring the influence of audio, visual, and textual modalities on pre-

dicting video memorability, and how the interplay between them can influence the

overall memorability of a given piece of content. The findings suggest that, while

visual data may dominate our sensory experience, it is the underlying conceptual

essence that truly holds the key to memorability. This thesis leverages state-of-the-

art image synthesis techniques to distill and examine this essence, creating surrogate

dreams of video scenes to facilitate the disentanglement of conceptual and percep-

tual elements of memorability. The work also leverages human EEG data to explore

the possibility of a moment of memorability—a moment of encoding that corre-

sponds to a remembering moment—which we expect to exist due to the temporal

nature of the world and the natural encoding limits of our brains. The previously

murky relationship between the two core means of remembrance—recognition and

recall—are reconciled by conducting a novel video memorability drawing task.
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The research sheds new light on the nature of multi-modal memorability, provid-

ing a deeper understanding of how our brain processes and retains information in a

complex sensory world. By uncovering the conceptual essence that lies at the heart

of memorability, it opens up new avenues for predicting and curating more mean-

ingful media content, and ultimately deepen our connection to the world around

us.
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Chapter 1

Introduction

“Memory is the treasury and guardian of all things.”

— Cicero

Memories are the warp and weft of the rich tapestry we call life. They provide

continuity to our existence, knitting together the disparate threads of sensory ex-

periences into a cohesive narrative of self. They are the keepers of our continuity

of self—without them, the very fabric of our being would fray. Each memory—a

burst of laughter, a moment of sorrow, an encounter with wonder—acts as a unique

thread, contributing to the intricate design of our personal and collective histories.

Yet, we scarcely have any influence on what we will ultimately remember or forget.

The brain presides over the mechanisms of our memory from an opaque glass office,

exercising sole editorial influence over its edifice. In fact, our odds of guessing what

we will remember are not much better than chance [1]. This lack of meta-cognitive

insight, which prevents us from diving into our unconscious undercurrent, is what

motivates and brings meaning to our investigation into the concept of memorability.

Memorability is akin to the tensile strength of our sensory threads—it speaks to

their endurance. It serves as a gauge of human importance, marking the data our

brain elects to retain with utmost fidelity. As such, the study of memorability—

generally known as the likelihood that something will be remembered or forgotten—

offers us a novel lens through which to examine our cognitive processes, and to po-
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tentially predict the enduring impact of experiences. In an age where information

is abundant, it is not the acquisition but the preservation of knowledge that chal-

lenges us. We are constantly immersed in a deluge of multi-modal data, vying for

our attention and retention. Despite this sensory onslaught, our brains demonstrate

a remarkable ability to select, store, and recall information. But what makes some

experiences indelible and others ephemeral? What, if any, are the guiding principles

of this cognitive curation? What factors determine the memorability of an experi-

ence? These are some of the crucial questions that my thesis endeavours to shed

light on.

I explore the influence of audio, visual, and textual modalities on video memo-

rability, and the interplay between them. I further probe into the temporal nature

of our lived experiences and the inherent limitations of our cognitive architecture. I

investigate the notion of a “moment of memorability”—a precise instant of encoding

that maps onto a subsequent moment of recollection. Such moments, I posit, are

integral to our understanding of how memories are formed, stored, and recalled.

Additionally, I take a closer look at the interplay between recognition and recall,

the two primary modes of memory retrieval. This is accomplished by undertaking

a novel video memorability drawing task, which ultimately seeks to reconcile these

two constructs’ previously nebulous relationship. Through this exploration, I hope

to illuminate the complex dynamics of memory formation and retrieval, providing

new insights into what makes our experiences memorable. In the final phase of my

exploration, I seek to understand whether it is the underlying conceptual essence of

stimuli that holds the key to memorability, rather than the stimuli’s visual charac-

teristics. To this end, I employ advanced image synthesis techniques to distil this

essence, creating, what I term, “surrogate dreams of video scenes”. This allows me

to tease apart the intertwined threads of conceptual and perceptual elements and

examine their distinct influences on memorability. My study on memorability, there-

fore, extends beyond a mere exploration of cognitive processes. It also encompasses

a broader perspective of our being—of how we experience, interpret, remember, and
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ultimately, make sense of our surroundings.

1.1 Research Objectives and Questions

The term memorability can cause confusion since its meaning changes depending

on the context of its usage. There are many different modalities and measurement

paradigms for measuring remembrance, however, none of them properly capture the

functional essence of real-world memory and the diversity of its contexts.

My research hypothesis addresses this issue as follows:

The intrinsic memorability of a given stimulus in a real-world context is a multi-

faceted construct, influenced significantly by a dynamic and synergistic interplay

of various sensory modalities. Among these modalities, the visual component,

owing to our inherent cortical bias, holds a paramount position in communicat-

ing the degree of memorability. Remembrance is polymorphic process—it can

take the form of flashing familiarity, detailed recollection, or a chimeric mixture,

where the former sets the stage for the latter—suggesting a discernible relation-

ship between recognition memorability and recall memorability. This process

unfolds within the constraints of biological storage limitations, suggesting that

specific moments of representational compression should exist, and give rise to

parallel specific moments of remembering. Lastly, if the ultimate function of

perception is to facilitate conceptual understanding/representation, and mem-

orability is a measure of human information utility, then memorability is thus

not merely a perceptual property, but a conceptual one, and can accordingly be

distilled down to the underlying conceptual essence of a stimulus.

The overall research hypothesis can be broken down into narrower sub-hypotheses:

1. Hypothesis 1 (H1): Real-world memory—as we experience it navigating through

our daily environment—is highly dynamic in nature due to the complex multi-

sensory data we parse as a means to functioning in the world. Memorability
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should be equally multi-modal, so a measurable interaction of influence be-

tween the modalities in multi-modal data should exist.

2. Hypothesis 2 (H2): We are visual cortex dominant creatures, so visual sensory

data should exert the greatest influence on memorability.

3. Hypothesis 3 (H3): Given that a feeling of familiarity (recognition) typically

precedes the recollection of details (recall), there should be a measurable rela-

tionship between recognition memorability and recall memorability.

4. Hypothesis 4 (H4): Due to the temporal nature of the world, and the natural

encoding limits of our brains, a moment at which a compressed representation

is assigned memorability—a “moment of memorability”—should exist.

5. Hypothesis 5 (H5): In light of the considerable cognitive psychological evi-

dence highlighting the role of perception in creating mental representations of

our environment, which subsequently direct our interactions and decisions in

response to that environment, it follows that if memorability serves as an index

of information utility, the memorability of a stimulus ought to be traceable to

its foundational conceptual representation.

1.1.1 Research Questions

To evaluate the aforementioned hypotheses, my research will focus on addressing

the following questions:

1. RQ1: Do each of the constituent modalities in a multi-modal medium, such as

video, contribute equally to overall memorability, and how do they interact?

2. RQ2: Is recognition memorability a precursor to recall memorability, and are

they correlated?

3. RQ3: Is there a moment of memorability—that is, is there an encoding mo-

ment which corresponds to a remembering moment—and can we predict it?
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4. RQ4: Is perception merely a means to conceptual understanding, and can the

intrinsic memorability of visual content accordingly be distilled to its under-

lying concept/meaning?

1.2 Thesis Structure

The thesis is organised into the following chapters:

• Chapter 2 is organised into three broad sections: Fundamentals of Neuro-

science, Memory, and Remembrance: The Act of Remembering. The first sec-

tion, “Fundamentals of Neuroscience”, provides a comprehensive foundation

for understanding the neural mechanisms underlying memory. It includes an

overview of the brain, neurons, their structures and functions, and a brief ex-

planation of Electroencephalography (EEG), a critical tool for studying brain

activity. The second section, “Memory”, delves deeper into the subject, pre-

senting a broad view of what constitutes memory, followed by an in-depth

analysis of short-term memory, its neural mechanisms, associated brain sys-

tems, and the role of the medial temporal lobe and hippocampus in explicit

memory. This section also addresses the complexities of episodic memory,

investigating the processes involved in reinstating memories, the oscillations

during encoding, the significance of context, and the subjectivity of time in

memory formation. The final section, “Remembrance: The Act of Remember-

ing”, focuses on the concept of remembrance, differentiating between the two

main forms of memory retrieval: recognition and recall, highlighting the dif-

ferent neural and cognitive processes involved, and outlining common method-

ologies used for measuring recognition and recall. The intent of the chapter

is to provide a thorough understanding of memory, what it means to remem-

ber, and how memorability, the likelihood of something being subsequently

remembered, can be measured and understood.

• Chapter 3 focuses on memorability, defined generally, within the context of
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this thesis, and exploring its origins. It then explores the concept of memora-

bility as an inherent attribute of images, investigating the specific properties

that influence it and how these might translate into other cognitive contexts.

This chapter also delves into the neurological underpinnings of visual memo-

rability, discussing spatial representations and the mechanisms that drive this

process in the brain. Furthermore, it extends the discussion of memorability

beyond the visual, considering how textual and auditory stimuli also contribute

to the formation of multi-sensory memories.

• Chapter 4 presents an examination of how various sensory modalities, in-

cluding visual, textual, and auditory, influence video memorability. Using the

TRECVid 2019 and Memento10k datasets, the chapter discusses the construc-

tion and performance of modality-specific models. The chapter introduces the

concept of “Audio Gestalt” and presents an audio gestalt regulated multi-

modal video memorability prediction framework, which is used to reveal the

complex interplay of sensory inputs in memorability prediction.

• Chapter 5 introduces a novel integration of machine learning with electroen-

cephalography (EEG) in the study of memory mechanisms and memorability.

The chapter starts by detailing the EEG data acquisition process, and pro-

ceeds by outlining a novel pilot study on video memorability using EEG data.

This concept is later expanded upon in the chapter, with an exploration into

how encoding phase EEG signals during video presentation can be used to

predict individual recognition upon subsequent viewing. It is hypothesised

that these neural signals recorded at specific moments can differ depending

on whether an event is remembered or forgotten. The chapter also com-

pares different methodological approaches, such as subject-independent and

subject-dependent training, and single electrode versus composite electrode

data, with a specific focus on theta band activity over the right temporal lobe.

This chapter, therefore, expands the research horizons by investigating the

interplay between EEG features and video memorability, fostering a vibrant
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cross-pollination of ideas and methods between the fields of neurophysiology

and computational research.

• Chapter 6 delves into the dichotomy between the two main means of remembrance—

recognition and recall—setting the stage for their reconciliation. It introduces

a unique drawing-based video recall experiment, detailing the experimental de-

sign and discussing the various methods of quantifying recall. These methods

include semantic similarity, drawing-based measures, textual measures, and

other diverse measures, offering a more complete picture of the relationship

between recall and recognition memorability.

• Chapter 7 questions the very nature of video memorability by exploring a rad-

ically new perspective—that memorability is a conceptual, rather than percep-

tual feature. It details how cutting-edge image synthesis models can be lever-

aged to perform visual abstraction and conceptual distillation. The chapter

introduces “ConceptualDream,” a video memorability prediction framework,

which combines synthetic image generation with state-of-the-art memorability

prediction techniques.

• Chapter 8 concludes this thesis, succinctly encapsulating the key findings of

the investigation and the implications thereof. It provides an overview of the

interplay between synthetic data, conceptual representation, and memorability

prediction, thereby delivering a nuanced perspective on video memorability.

Additionally, this chapter contains a section dedicated to potential future re-

search directions, highlighting areas that could be explored to build upon the

findings of this thesis and contribute to a more comprehensive understanding

of the subject matter.
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Chapter 2

Background

This chapter aims to provide a knowledge basis from which to understand the overall

thesis. It is divided into three core topics, starting with a basic overview of the brain,

neurons, their functions, and an introduction to electroencephalography (EEG). The

next section delves into memory, examining short-term memory, its neural bases, the

role of the medial temporal lobe (MTL) and hippocampus in explicit memory, and

the intricacies of episodic memory including context and time subjectivity. The final

section delves into remembrance—the act of remembering—distinguishing between

recognition and recall, discussing their neural and cognitive processes, and outlining

methods for measuring them.
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2.1. THE BRAIN: AN OVERVIEW

Fundamentals of Neuroscience

“The Brain—is wider than the Sky—

For—put them side by side—

The one the other will contain

With ease—and You—beside—

The Brain is deeper than the sea—

For—hold them—Blue to Blue—

The one the other will absorb—

As Sponges—Buckets—do—”

— Emily Dickinson

2.1 The Brain: An Overview

Standing centre stage, serving as the epicenter of human experience, the brain or-

chestrates a symphony of thoughts, emotions, and actions. This intricate and mul-

tifaceted organ, composed of approximately 86 billion neurons, weaves a tapestry

of interconnected networks and circuits, enabling the seamless integration of sen-

sory input, decision-making, and motor output [2]. As the conductor of the central

nervous system (CNS), the brain not only governs the most basic of survival func-

tions but also the most complex and intricate cognitive processes, making it the

crown jewel of biological evolution. Its exquisite architecture, like a great cathedral

of thought, is comprised of seven major structures: the spinal cord, medulla oblon-

gata, cerebellum, pons, midbrain, diencephalon, and cerebrum (Figure 2.1, A). Each

component, though individual, harmonises in a concert of functions that underpin

our very essence.
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Figure 2.1: The central nervous system (CNS). A. Seven regions of CNS. B. Four
lobes of the cerebral cortex. [3]

Spinal Cord

The spinal cord, a faithful courier, is the highway of neural information, ferrying

messages between the brain and the body. It is the silent string player in the or-

chestra, continuously playing, seldom in the spotlight, but integral to the overall

performance. It is the custodian of our reflexes, and in some cases our survival, as

those rapid responses to environmental stimuli are crucial in make or break situa-

tions.

Medulla Oblongata

The medulla oblongata is the steady drummer who keeps time. It orchestrates the

rhythm of life, regulating vital functions that flow beneath our river of consciousness,

such as breathing, heart rate, and blood pressure [4]. It is the stalwart anchor of

our existence. Nestled adjacent to the medulla oblongata lies the cerebellum, a

diminutive yet essential player, the graceful ballet dancer of the ensemble. It is

the master of motor control, fine-tuning movements while maintaining posture and

balance, and orchestrating procedural learning with adept precision [3]. Above the
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medulla oblongata, rests the pons, the liaison officer of the brain. It serves as a

bridge, transmitting information between the cerebellum and the cerebrum. The

pons is the cellist in our neural orchestra, providing depth and resonance to the

symphony of our cognition.

Midbrain

The midbrain, or mesencephalon, is a central structure that serves as a sentinel, vig-

ilantly coordinating arousal, sleep, and sensory responses. It is a critical component

in the orchestration of our responses to sensory stimuli, encompassing visual and

auditory processing centers. Specifically, the superior colliculi are involved in the

processing of visual stimuli, while the inferior colliculi are involved in the processing

of auditory stimuli. Furthermore, the midbrain contains the reticular formation, a

network of nuclei that play a key role in arousal and consciousness. The role of

the midbrain can be analogised to the brass section of an orchestra; it is bold and

commanding, signaling the presence of stimuli with a surge of neural activity. Ulti-

mately, the midbrain is indispensable for the integration and coordination of sensory

and motor pathways.

Diencephalon

The diencephalon comprises two primary structures: the thalamus and the hypotha-

lamus. Both play pivotal roles in maintaining homeostasis, the state of internal

physiological equilibrium. The thalamus functions as a central relay station, pro-

cessing and directing a vast array of sensory information to the appropriate regions

of the cerebrum, the part of the brain responsible for higher-order functions such as

perception, motor functions, and cognition. This encompasses the transmission of

information related to visual, auditory, somatosensory, and gustatory stimuli. Con-

currently, the hypothalamus orchestrates a multitude of physiological functions. It

controls thermoregulation by initiating sweating or shivering, controls hunger and

satiety through interactions with hormones like ghrelin and leptin, and manages

06/09/2023



2.1. THE BRAIN: AN OVERVIEW

thirst and fluid balance by regulating the secretion of vasopressin. Additionally, the

hypothalamus plays a vital role in regulating the circadian rhythm. Collectively,

the thalamus and hypothalamus are essential for the coordination and regulation of

numerous fundamental physiological processes.

Cerebrum

Finally, the cerebrum, occupying most of the cranial cavity, is the largest and most

complex region of the human brain, responsible for a multitude of essential cogni-

tive functions. It receives and interprets sensory information, converting a diverse

array of inputs—visual, auditory, somatosensory—into coherent and integrated per-

ceptions. It coordinates the intricate dance of motor control, shapes the sonnets of

language, and weaves the tapestry of memory. It is within the cerebrum that we

experience the world, make sense of our surroundings, and construct the narrative of

our existence. It spans across two cerebral hemispheres—left and right—connected

by the corpus callosum, a dense fiber network resembling a neural bridge, facilitating

seamless communication between the two sides [5]. This region’s outer layer, the

cerebral cortex, is the canvas upon which the four primary territories—frontal, pari-

etal, temporal, and occipital lobes (Figure 2.1, B)—paint their respective functions

[6]. The cerebral cortex unveils itself as an undulating ocean, where gyri (ridges)

crest like mighty waves, and sulci (grooves) plunge into the depths, creating an intri-

cate origami-like structure that amplifies the surface area for neuronal connections

(an evolutionary strategy to maximise the number of nerve cells in limited space)

[3], [7].

Each lobe has a specialised set of functions. The frontal lobe—the cerebral

architect—excels in executive functions and is largely concerned with short-term

memory, laying the groundwork for reasoning, planning future actions, problem-

solving, and decision-making, while simultaneously governing voluntary movement

through the primary motor cortex [8]; the parietal lobe serve as the brain’s cartogra-

pher, dedicated to processing somatosensory information, integrating sensory input

06/09/2023



2.2. NEURONAL STRUCTURES AND FUNCTIONS

from a myriad of sources, and constructing a cognitive map for spatial awareness

and coordination [9]; the occipital lobe embodies the role of visual artist, painting

vivid images by interpreting and making sense of the visual information stream-

ing in from the eyes [10]; and the temporal lobe emerges as the brain’s polymath,

resonating with the melodies of the world’s sounds, while orchestrating language

comprehension, emotion, and memory formation [11], [12];

2.2 Neuronal Structures and Functions

The remarkable diversity of human behaviour is underpinned by an elaborate array

of sensory receptors linked to an adaptive neural organ—the brain—that selectively

processes sensory signals, identifying environmental events of interest. In essence,

the brain dynamically filters and organises perception, either storing significant por-

tions in memory for future reference, converting it into immediate behavioural re-

sponses, or ignoring it. Perhaps even more remarkable are the cells that underlie

this complex operation—brain cells. A dualistic cellular composition lies at the

heart of every species’ brain: neurons and glia. Glia, aptly named after the Greek

word for “glue”, with their many forms, are tasked with vital responsibilities such

as structural reinforcement, metabolic bolstering, insulation, and steering develop-

ment. Nonetheless, neurons generally take center stage as the brain’s most vital

cells [3], and our focus will likewise be exclusively neuronal.

2.2.1 Neurons: The Building Bricks of the Nervous System

Amidst the intricate matrix of the brain, neurons—the trees of the nervous system’s

forest—orchestrate a vibrant cascade of electrical and chemical interactions, har-

monising the cacophony of signals that mold our thoughts, emotions, and actions

[3]. A typical neuron has four morphologically defined regions: (1) the cell body,

(2) dendrites, (3) axon, and (4) presynaptic terminals (Figure 2.2).
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Figure 2.2: Structure of a neuron [3]

Picture the cell body (or soma) as the neuron’s control centre, within which the

nucleus resides, a secure vault safeguarding the cell’s unique genetic blueprint, and

alongside the nucleus rests the endoplasmic reticulum, the cellular assembly line that

synthesises proteins—the sturdy bricks and mortar of the cell. From this central hub

sprout multiple dendrites, short branches that function as receivers for signals from

fellow neurons, and one long axon, a messenger carrying signals away from the cell

body. Dendrites can be visualised as an intricate network of tiny fishing nets, each
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delicately cast into the cellular sea to snare incoming signals from other neurons.

These dendritic nets capture and channel the information towards the cell body,

playing an integral role in the neuron’s receptive capabilities. The axon, on the

other hand, can be thought of as a road between two fixed locations, stretching from

a mere fraction of a millimeter to an impressive two meters. On this thoroughfare,

electric impulses, known as action potentials, race along at speeds of up to 100

meters per second. These pulses, originating from a specialized ignition point near

the axon’s origin, consistently maintain a magnitude of 100 millivolts, thanks to a

self-sustaining regeneration process. These action potentials, despite being uniform,

convey a myriad of information from our environment—light, touch, smell, sound—

yet the nature of the message is not dictated by the action potential itself, but by

the path it travels within our neural network. To enhance the speed of these neural

signals, larger axons are insulated by a lipid sheath, myelin, which is punctuated

by nodes of Ranvier, uninsulated spots on the axon where the action potential is

regenerated. Finally, at the axon’s end, it branches into presynaptic terminals.

These points of division resemble a river delta, where the primary flow branches out

into smaller tributaries. Each terminal connects with other neurons at junctions

known as synapses, creating a complex, interconnected network. At each synapse,

the presynaptic cell dispatches signals from its terminal, delivering them across a

minuscule chasm, the synaptic cleft, to the receiving postsynaptic cell. The recipient

of these messages could be another dendrite, a cell body, or even another axon. Each

incoming message stimulates a cascading dance of signals and pathways, a ballet that

gives rise to our sensory experiences and interpretations of the world around us.

These brain-rooted “trees” are classified into various types based on their mor-

phology, function, and neurotransmitter activity, each playing a unique role in the

grand orchestra of cognition [13]. Sensory neurons serve as the harbingers of percep-

tion, transducing the whispers of the external world into a rich tapestry of neural

signals. These neurons detect stimuli from our environment, such as light, sound,

and touch, and relay this information to the central nervous system for further pro-

06/09/2023



2.2. NEURONAL STRUCTURES AND FUNCTIONS

cessing and interpretation [7]. Interneurons, the mediators of the neural ensemble,

weave intricate connections within the central nervous system, integrating and mod-

ulating the flow of information between sensory and motor neurons. These neuronal

maestros sculpt the emergent patterns of activity that underlie complex cognitive

processes, such as learning, memory, and decision-making [3]. Motor neurons, the

orchestrators of movement, transduce the directives of the central nervous system

into a symphony of muscular contractions, coordinating the graceful dance of our

every action. These neurons innervate our muscles, enabling us to navigate the

world with precision and dexterity [14].

In the realm of memory, neurons engage in an elaborate pas de deux of synaptic

plasticity, strengthening or weakening their connections in response to experience

[15]. This delicate interplay of activity-dependent modulation forms the foundation

of our memories, shaping the neural pathways that define our cognitive landscape

and giving rise to the rich tapestry of our inner lives.

2.2.2 Electrical Potentials: The Language of Neurons

Imagine our brain as an expansive, densely intertwined forest, teeming with bil-

lions of trees, each representing a neuron. Within this intricate neuronal wilderness,

messages—the lifeblood of cognition—traverse an unseen path, rushing from one tree

to another. This silent dialogue, a complex language of electrical potentials, from the

evanescent whispers of graded postsynaptic potentials, to the thunderous crescendo

action potentials [3]. This dynamic interplay underpins our very existence—every

thought, sensation, and action—and the processes of memory encoding, consoli-

dation, and retrieval, weaving together the tapestry of our past experiences and

shaping our cognitive landscape [16].
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Figure 2.3: Schematic diagram of electrical potentials. Constructed via [17], [18]

Action Potentials

Action potentials act as the tireless messengers in our neuronal forest. They are dis-

crete voltage spikes that travel from the cell body, along the axon to the presynaptic

terminal, where neurotransmitters are released. They originate from a delicate inter-

play of ions, primarily sodium and potassium, in a precise choreography regulated by

the neuron’s ion channels [3]. The opening and closing of these channels precipitate

an influx of sodium ions followed by an efflux of potassium ions, sparking a rapid

electrical spike—the action potential. Unlike the whispering wind in our forest,

this electrical spike is not gradual; rather, it is all-or-nothing, a definitive decision

reached when the electrical charge inside the neuron surpasses a critical threshold.

Once initiated, this “spark” races down the neuron, a potent, unchanging message,

echoing through the depths of our forest. Even as the electrical storm subsides, its

message remains, prompting a cascade of events at the synaptic terminal. Here, we

transition from action potentials to their counterparts, the postsynaptic potentials.
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Postsynaptic Potentials

Postsynaptic potentials are the voltages that arise when neurotransmitters bind to

receptors on the membrane of the postsynaptic cell. The action potential, upon

reaching the neuron’s terminal, triggers the release of neurotransmitters into the

synaptic cleft, which once across the synaptic cleft bind with receptors on the next

neuron. This union elicits an electrical response that can be either excitatory or

inhibitory—a call to action or a gentle shushing—influencing the likelihood of the

receiving neuron firing its own action potential [19]. The varying intensity of these

postsynaptic potentials creates a nuanced language, rich in depth and complexity.

Unlike the resolute action potential, these potentials are graded and summate [20].

Multiple whispers can combine to create a roar, or conversely, several hushes can

quiet the loudest shout. This finely tuned balance enables neurons to integrate

diverse inputs and respond appropriately, the crux of neuronal computation.

The intricate interplay of action potentials and postsynaptic potentials forms

the essence of the brain’s electrical narrative, weaving an intricate tale within the

silent forest of neurons—a tale that narrates the enigma of thought and the marvel

of consciousness.

2.3 Electroencephalography

Electroencephalography (EEG) is one of many tools that help us bridge the gap

between the enigmatic language of neurons and our understanding. It amplifies and

translates the vibrant electric dialect into a language we can decipher. Central to

the operation of EEG is the concept of volume conduction. The neural dialogue

originates in the choreographed flux of ions (Na+, K+, Ca++, and Cl-) across neu-

ronal membranes, which generate an electrical field. However, between the neurons

and the EEG electrodes lie various layers of tissues—brain matter, cerebrospinal

fluid, skull, and scalp—each imposing their resistance and modulating the signal.

Volume conduction refers to the spread of current through a conductive medium,
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such as the brain, and how it changes as it passes through that medium [20]. Like

light refracting through many prisms, each layer adding its signature to the electrical

narrative.

Crucially, EEG primarily measures the slower, graded potentials resulting from

synaptic inputs—the postsynaptic potentials—which can combine, like tributaries

forming a mighty river, generating a sizeable electrical field which can be detected

through the skull. The neurons whose activities are primarily responsible for these

potentials are called pyramidal cells. Oriented perpendicular to the cortical surface,

their alignment and the synchrony of their activity make them perfect broadcasters

of the electric currents that EEG picks up. These cells, stacked like rows of miniature

radio towers, send their signals skyward, ready to be captured by the awaiting EEG

electrodes [20]. Each pyramidal neuron, during transmission of an action potential or

upon receiving a barrage of synaptic inputs, generates a current that flows through

its body, creating a dipole—an entity with a positive and a negative end. The sum of

these dipoles, from countless neurons, generates a fluctuating electric field. However,

only those dipoles that align parallel to the scalp contribute significantly to the EEG

signal. This architectural detail of pyramidal cells makes them key contributors to

the signals we interpret [20].

The strength of EEG is, however, not in its spatial resolution; other techniques

like functional Magnetic Resonance Imaging (fMRI) or Positron Emission Tomogra-

phy (PET) offer finer spatial detail. Instead, EEG’s forte is its remarkable temporal

resolution. It captures the ebb and flow of neural dynamics in real time, offering

a vibrant tableau of the brain’s electrical landscape [20]. This oscillatory activity,

classified into distinct frequency bands—alpha, beta, gamma, delta, and theta—

offers us a picture of the brain’s multifaceted processes and states of consciousness.

Thus, EEG serves as a vital tool facilitating our exploration of the neural landscape.

Combined with machine-learning in Chapter 5, EEG is used to study memory mech-

anisms and memorability. The chapter outlines two studies that explore the use of

EEG data to predict individual recognition of videos upon re-watching, hypothe-
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sizing that neural signals at specific moments can indicate whether an event will

be remembered or forgotten. It also compares various methodological approaches,

focusing on theta band activity over the right temporal lobe, thereby fostering a

cross-pollination of ideas between neurophysiology and computational research.

Memory

“We are what we remember. If we lose our memory, we lose our

identity and our identity is the accumulation of our experiences. When

we walk down the memory lane, it can be unconsciously, willingly,

selectively, impetuously or sometimes grudgingly. By following our

stream of consciousness we look for lost time and things past. Some

reminiscences become anchor points that can take another scope with

the wisdom of hindsight.”

— Erik Pevernagie

2.4 The Weight of Memory

Memory lies at the very heart of the human experience. Its full weight is master-

fully captured in the diametrically opposed stories of two South American authors—

Gabriel Garcia Marquez with his tale of pestilence, “One Hundred Years of Solitude”

[21], and Jorge Luis Borges with his story of blessing, “Funes the Memorious”[22].

Marquez’s story describes a plague that robs the residence of the very essence of hu-

man identity—memory. Starting with intimate recollections, the plague progresses

to eradicate the names and functions of common objects. One man, in a desperate

attempt to hold onto his thinning strings of reality, labels each object in his home, a

strategy which reveals itself to be tragically futile as the plague eventually consumes

even his knowledge of words and letters. This poignant story serves as a cutting

reminder of the pivotal role that learning and memory play in the daily ebb and
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flow of our existence. Learning, the intricate dance of mental evolution that results

in a behavioural shift, hinges upon absorbing knowledge from the world around us.

Memory, the elegant partner in this dance, encodes, stores, and later retrieves this

acquired knowledge. Marquez, invites us to step into a world devoid of the ability

to learn and remember. A world where familiar faces and cherished friends become

alien, language loses its meaning and significance, and motor skills once taken for

granted vanish like smoke in the wind. Without memory, we would be marooned in

the present moment, devoid of past experiences or foresight, the stark spectrum of

emotions, once vividly imprinted on the heart, would fade away, eroding our sense

of self. Learning and memory emerge, not merely as intellectual faculties, but as

integral pillars upholding the structure of human autonomy and survival.

Borges’ story, on the other hand, draws us into the world of Ireneo Funes, a

young man gifted and cursed with an infallible memory. The story is not merely

about Funes’ prodigious recall, but about the overwhelming and even paralysing

abundance of detail and relentless presentness that comes with it. Funes finds himself

perpetually adrift in a sea of intricate detail, each instant blooming into a myriad of

perceptions, each as vibrant and as demanding as the other. This may at first sound

like a desirable gift, perhaps even a superpower of sorts, but as we delve deeper into

Funes’ world, we witness the torture inflicted by this unending stream of memory.

Borges, through the character of Funes, vividly demonstrates the critical role that

forgetting plays in our lives. The ability to forget, to filter out irrelevant details,

to compress experiences into manageable chunks, to discard the minutiae, is a vital

cognitive process that allows us to navigate our lives effectively. We generalise, we

abstract, we categorise. Without these capacities, the richness of every moment

becomes an unbearable burden.

Historically, the hypothesis of localising cognitive functions was widely accepted

[23]. However, memory, with its intricate interconnectedness to perception, lan-

guage, and movement, posed a unique challenge to this theory [24]. A significant

number of researchers, well into the mid-20th century, doubted the existence of mem-

06/09/2023



2.5. THE MAKINGS OF MEMORY

ory as an autonomous function. Their scepticism stemmed from the observation that

memory storage is not confined to a single area but rather sprawls across diverse

parts of the brain [25]. Nonetheless, contemporary neuroscience has illuminated that

while various brain regions partake in the act of memory storage, their importance

is not equal [26]. In recent decades, researchers have made considerable progress

charting the mechanisms of learning and memory [3]. In this chapter we focus on

three key insights. Firstly, the multi-dimensional concept of learning and memory

is not a monolith but a constellation of diverse forms, each bearing unique cogni-

tive characteristics, mediated by an array of neural systems [27]. Secondly, memory

is not a static entity, but rather a dynamic process that can be broken down into

stages of encoding, storage, consolidation, and retrieval [26]. Finally, the occasional

slip-ups and distortions of memory, far from being mere defects, serve as invaluable

guides illuminating the nature and function of the learning and memory system itself

[28].

2.5 The Makings of Memory

Memory

Long-termShort-term

Explicit Implicit

Episodic Semantic Priming Procedural

Working

Events
Experiences
“Episodes”

Facts
Knowledge

Stimulus-
conditioning

Motor skills

Conscious Unconscious

Figure 2.4: Types of memory.
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Memories come in many forms [29], from the apathetic and fleeting, to the emo-

tive and everlasting. Theories of memory have long emphasised the range of time

scales over which memory operates. A common distinction is between short-term—

facilitating the persistence of mental representations across brief temporal gaps—and

long-term—enabling acquired knowledge, even from the distant past, to influence

current cognition. Long-term memories are those that you can recall days, months,

even years after they were originally stored. The information that makes it into

long-term memory naturally only represents a fraction of the quotidian experience.

Most information held in the brain is only temporary, lasting on the order of hours.

The transience of these short-term memories makes them uniquely vulnerable to

disruption. For example, short-term memories, but not long-term memories, can be

erased by head trauma or electroconvulsive therapy use to treat psychiatric illness

[30]. These observations lead to the notion that facts and events are stored in short-

term memory, and a subset a subsequently converted into long-term memory via a

process called memory consolidation. A second, entirely distinct form of temporary

storage, lasting mere seconds, is working memory. Unlike short-term memory, it

requires continuous conscious effort (explicit rehearsal, either in the form of mental

or verbal repetition), is said to be where we hold information pertinent to a cogni-

tive process we are engaging in (e.g., remembering a phone number before you write

it down), and the set of memory procedures that directs associated attention and

processing [31]. Working memory’s relationship to processing means that it relies

most heavily on the prefrontal cortex.

The term “memory”, as used in everyday language, typically refers to a form

of long-term memory, explicit (or, declarative) memory, which can be consciously

recalled. Explicit memories can be episodic—relating to experiences or “episodes” in

your life—or semantic—relating to facts or general knowledge [32]. The counterpart

of explicit memory is implicit (or, non-declarative) memory, which is a collection

of non-conscious abilities. Implicit memories can be procedural—involving learned

motor skills—or a product of priming—occurring when exposure to one stimulus
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influences the brain’s response to another [32]. Both explicit and implicit memory

are types of long-term memory, but the distinction between them is fundamental

as they are supported by different brain systems. Explicit memories rely on the

medial temporal lobe: the hippocampus; neocortex; and amygdala, whereas implicit

memories rely on the basal ganglia and cerebellum.

2.6 Short-Term Memory

The demarcation between short-term memory, our mind’s ephemeral sketchpad,

and long-term memory, the grand library of our past, has been a long-standing, yet

contentious concept in cognitive neuroscience. This contention stems from attempts

to integrate findings from studies of short-term memory painted with broad scientific

strokes, originating from different depths of analysis, varying experimental designs,

and investigation across an array of species. A review of this rich body of literature

reveals that there is no single neural mechanism, system, or process that supports

performance on short-term memory tasks. Further complicating our understanding

is the notion short-term and long-term memory may be intricately linked [33].

2.6.1 Neural Mechanisms

Imagine short-term memory as a choreographed dance of intricate neural activity.

At the center stage, the prefrontal cortex (PFC) and dorsolateral prefrontal cortex

(DLPFC) twirl and pirouette, vital to the maintenance and manipulation of this

ephemeral memory [34]. It is as though the PFC juggles various bits of information,

while the DLPFC, a dexterous performer, can tweak and transform this data mid-

act [35]. Accompanying this dance is the subtle hum of theta (4-8 Hz) and gamma

(30-100 Hz) band oscillations. These neural rhythms, primarily found in the PFC,

serve as the background music, linking the ephemeral dance of short-term memory

to the grand ballet of long-term memory [36]. This harmonic connection implies

that short-term and long-term memory might not be separate dances, but rather
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different sequences in the same performance. The synaptic plasticity of our brain

forms the very dance floor on which this performance unfolds. Short-term synaptic

plasticity flexes and molds to accommodate the quick shifts and twists of short-

term memory, while long-term synaptic plasticity provides a lasting foundation for

the footprints of long-term memory [3], [37]. This convergence of short-term and

long-term adaptation again echoes the intricate interplay between these two memory

forms. Lending more depth to this dance is the role of neurotransmitter systems.

Dopamine, for instance, conducts the performance, influencing the maintenance of

short-term memory in the PFC [38], and simultaneously modulating the formation of

reward-related long-term memory [39]. The evidence pointing to the dual influence

of neurotransmitter systems underscores the potential interconnectedness of short-

term and long-term memory processes [40].

2.6.2 Brain systems

Research using amnesic patients and neuroimaging techniques has found significant

involvement of the medial temporal lobe (MTL), particularly the hippocampus, in

short-term memory (STM) processes. Several studies have shown that patients with

hippocampal damage show immediate memory impairments, especially for spatial

relations and arbitrary associations such as the locations of objects within a complex

scene or the associations between faces and scenes [41]–[43]. Notably, these effects

were not confined to spatial memory. Patients also showed deficits in retaining the

associations between objects and their locations after an 8-second delay, further

implicating the MTL in short-term memory retention [43], [44]. The same regions

implicated in long-term memory retention also appear to play a role in short-term

retention, specifically for relational information.

Further research provides additional evidence for MTL involvement in STM tasks

that require retention of multiple items, or “memory load” [45], [46]. Both gamma

and theta activity in the MTL were found to increase with higher STM loads,

which was confirmed by fMRI studies demonstrating similar hippocampal activity
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increases [46]–[48]. Moreover, studies showed that there is a correlation in activity

between the inferior frontal gyrus (IFG) and the hippocampus when the STM load

increases during a delay period, pointing to a functional connectivity between these

regions in STM tasks [49]. Hence, the encoding and retention of higher loads across

a delay seem to involve the MTL, entailing roles for the hippocampus, entorhinal,

and perirhinal cortices. Interestingly, while verbalisable items like digit sequences

can be maintained independently of the hippocampus, recent evidence suggests that

the hippocampus may be especially important for maintaining temporal sequence

information. Data shows that neurons in the hippocampus may code different tem-

poral intervals within behavioral tasks, which could mediate the hippocampus’ role

in memory for temporal order [50]–[52]. Computational modeling supports the idea

that these responses could arise from persistent spiking activity of neurons in the

entorhinal cortex [53]. This selective firing response to temporal intervals may fa-

cilitate the learning of items or events that occur at specific time points.

2.7 Explicit Memory and the Medial Temporal

Lobe

The type of memory that is of particular interest in this thesis is explicit memory,

which includes the two most pertinent types of memory to everyday individuals—

episodic (events) and semantic memory (facts). The three areas of the brain most

involved in explicit memory are the hippocampus; neocortex; and amygdala. The

neocortex acts as a store of consolidated memories, while the amygdala attaches

emotional significance to them. More emotive memories are less easily forgotten,

which means that the amygdala can modulate the “permanence” or “stability” of

a memory—how effectively it is retained over time [54]. The hippocampus plays

a pivotal role in the memory formation and consolidation process [55], and is thus

arguably the most important of the three brain regions.
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2.7.1 Hippocampal Contributions: Seahorse in the Shell

The hippocampus was first discovered in 1564 by Julius Caesar Arantus, but it

was not until the beginning of the 20th century that researchers began to discover

the extent of its functions [56]. After the hippocampal formation (hippocampus

proper, dentate gyrus, the subicular complex, and entorhinal cortex) was discovered

to be a part of the limbic system (formerly limbic lobe) [57], the hippocampus

was found to be a regulator of emotional behavior [58], [59]. In 1953, a patient

named Henry Molaison had both of his hippocampi removed during an experimental

operation to treat his epilepsy [60]. While his epilepsy was cured, Henry was no

longer able to retain anything beyond what was in his short-term memory; he lost

the ability to permanently store new information, and his retained memories were

limited to rudimentary semantic and episodic memories from long before his surgery.

He did, however, retain his procedural memories, and the ability to improve on motor

memory tasks despite not being able to remember practicing [61].

The tragic case of Henry Molaison and its ensuing experiments generated five

main findings: (1) that memory is a distinct cerebral function, dissociable from

other perceptual cognitive abilities; (2) that amnesia spares short-term and working

memory; (3) that amnesia is an impairment of explicit memory; (4) that the hip-

pocampus is a core brain structure supporting explicit—but not implicit—memory;

and (5) that the hippocampus plays a crucial role in the formation of memories,

but that is not the site of permanent memory storage [62], [63]. Current research

supports the notion that the hippocampus holds onto memories while they mature,

before they are properly stored elsewhere—in the cerebral cortex, the outer layer

enveloping the rest of the cerebrum [63]. Additionally, there is evidence to sug-

gest a separation of roles within the hippocampal complex, with the hippocampus

proper handling episodic memory and spatial learning, and the parahippocampal

and entorhinal cortices handling semantic memory [55].
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2.8 Episodic Memory

To be alive is to be subject to a never-ending stream of sensory information. Our

memories, however, do not adhere to the time and tide of our experience. Instead, we

remember the past as a series of episodes that are discrete and meaningful in nature.

Episodic memory refers to this ability to cut up the continuous flow of experience into

recollectable packets, and it has three core concerns: what, the narrative context;

where, the spatial context; and when, the temporal context [64]. While explicit

memory (episodic + semantic) is the common conception of the word memory—

as used in everyday language—episodic memory in isolation is arguably the most

anthropocentrically germane type of memory as our awareness of the tapestry woven

from all our episodes is what gives rise to our sense of having a self. The question

is, how are episodic memories formed?

2.8.1 Memory as Reinstatement

The memory as reinstatement (MAR) model [3]—when we remember, the brain

returns to a prior brain state. Imagine our brains as intrepid explorers navigating

the immense ocean of memory. The voyage begins with a confluence of sensory

experiences, emotions, and internal thoughts, represented as a dynamic, bustling

seaport of neural activations spanning cortical and subcortical shores. The hip-

pocampus stands as a mighty lighthouse, receiving this bustling activity, construct-

ing a unique sea chart for the current experience—the Hippocampal Neural Pattern

(HNP), echoed in the coastline of the cortex, the Cortical Neural Pattern (CNP).

A core navigation tool in our oceanic journey is the hippocampal pattern comple-

tion, where our hippocampal lighthouse replays the HNP when a memory is called

upon. This is sparked by the lighthouse’s detection of familiar landmarks or cues,

which prompts the recall of the seafaring path, bringing the CNP back into view

[65]. Navigational tools such as neuroimaging allow us to chart these exploratory

voyages in the brain. A notable tool, the Difference due to memory (Dm) paradigm,
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compares the navigational charts of remembered versus forgotten voyages. Studies

using this approach have found that the Medial Temporal Lobe (MTL) often paints

a more vibrant, detailed chart when the memory journey is successfully remembered

[66], [67]. Within the MTL archipelago, different islands contribute uniquely to the

grand voyage. The hippocampus, like an expert cartographer, captures the intri-

cate topography of our experiences, while the perirhinal cortex (PRC) serves as a

more straightforward compass, aligning more closely with the recognition of distinct

landmarks or items [68], [69].

2.8.2 Formation: the What, the Where, and the When

At a very high level, sensory information flows through one of many sensory pathways—

for vision, touch, hearing, etc.—from its respective sensing apparatus (i.e., eyes,

skin, ears) where information about the identity of perceptual objects and events

are initially processed, and then projected onto multimodal cortical association ar-

eas, where the information is integrated into a cohesive representation, consisting

of perceptual and conceptual information about “what” occurred is formed. As for

the “where”, an analogous yet distinct set of pathways in the cerebral cortex enable

the formation of a spatial representation.

Information processed through these distinct streams converge in the medial tem-

poral lobe (MTL) where clusters of neurons represent and contextualise both the

“what” and “where”. Within the MTL, the perirhinal cortex (PRC) and the lateral

entorhinal cortex (LEC) organise populations of neurons in relation to specific ob-

ject stimuli, whereas the parahippocampal cortex (PHC) and the medial entorhinal

cortex (MEC) organise neurons in relation to the spatial context in which an event

occurs [70]–[72].

While there is a considerable record of research in relation to how the “what”

and “where” are formed and encoded, it is only very recently that the same can

be said for the “when”. An indispensable feature of episodic memory is our ability

to temporally piece together different elements of an experience into a coherent
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memory. But how is the continuous stream of sensory information broken down

into discrete events, and how is their temporal order preserved? The answer is

“time cells”, which are neurons in the hippocampus and entorhinal cortex that fire

at consecutive moments during an empty interval between two events [51], [52], [73]–

[76]. Much as a population of “place cells” provides a map of a spatial context, a

population of time cells map the progression of time through a situational context.

Time cells keep track of the contextual stability over time in order to group sequential

information into events. Similar to how place cells remap when an subject is moved

to a new spatial context, time cells “retime” when the temporal structure of the

current behavioural context is changed [52], [77], [78]. Remaining in the same spatial

context for an extended period of time, such as cooking dinner in the kitchen, may

help to organise a sequence of actions, such as preparing the food and then cooking

it, into a unified event representation of eating dinner at home [79], [80]. However,

when the context changes, such as entering a new room or being interrupted by

the doorbell, people tend to perceive an event boundary that defines the end of the

current event and the beginning of a new one [80], [81]. Importantly, crossing a single

event boundary—including fluctuations in an individual’s surroundings or mental

state—can impact a person’s prospective perceptions of the temporal nature of their

experience, and suggests that the episodic memory updating that occurs during an

event boundary both captures attentional resources, and plays a role in the temporal

binding of information [82]. While time cells keep track of the temporal progression

within an event, hippocampal ensembles (neurons firing in a synchronous manner)

also keep track of time at longer timescales by a slow drift of their population

activity over time [83]–[86]. Within the MTL, this representation of the “when”

converges with the “what”, and the “where” at the level of the hippocampus. In the

hippocampus, these three representations are bound together into a cohesive event

and stored as memory engram (an orchestrated ensemble of neurons) which is freely

available to be recalled at a later time [87], [88].
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2.8.3 Encoding Oscillations

Oscillatory brain activity patterns have started to receive increasing recognition for

their contributions to memory encoding, supplementing our understanding derived

from event-related potential (ERP) studies—which involve measuring the electrical

activity in the brain in response to a specific stimulus or event, providing insights

into the cognitive processes involved in tasks such as perception, attention, and

memory. This includes activity in theta, alpha, and gamma frequency bands [89].

A key player among these is the theta rhythm, which has been suggested to be

instrumental in memory encoding processes, potentially via its link with long-term

potentiation (LTP), a cellular-molecular mechanism crucial to memory formation

[90].

Gamma frequency bands offer another intriguing facet of the encoding-related

activity landscape. Specifically, studies have observed an early surge in gamma

power to positively correlate with successful memory encoding, bolstering its role in

the encoding process [91].

Contrary to the actively facilitating roles of theta and gamma rhythms, alpha

rhythms have been proposed to act as functional inhibitors within the brain. The

enhancement of alpha power has been hypothesised to facilitate encoding by ac-

tively suppressing task-irrelevant areas, thereby mitigating potential interference

[92]. However, the dynamics of this relationship and its impact on memory perfor-

mance could vary based on factors like the specific task at hand and the brain region

involved.

Beyond examining individual oscillatory patterns, a holistic interpretation of

EEG data necessitates an understanding of the interactions between different brain

regions during memory encoding. Two regions of particular interest in this regard

are the medial temporal lobe (MTL) and the prefrontal cortex (PFC), which are

both implicated in memory encoding but appear to fulfil distinct roles [93]. MTL

regions, with the hippocampus at the forefront, are believed to weave together dif-

ferent aspects of an episodic memory into a unified representation. In contrast,
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PFC regions are thought to contribute to the optimization of memory formation by

curating and structuring the semantic and contextual elements of the episode [94].

2.8.4 The Role of Context

The theory of context-dependent memory, a key component of episodic memory,

postulates that the more the encoding context of information matches its retrieval

context, the better the memory performance [95]. This model paints a picture

where our memories are like fish swimming in the sea of context. When we recall

a memory, we’re fishing in the vast ocean of our minds, and the more familiar the

fishing spot (the context), the more likely we are to catch that fish (the memory).

This “contextual sea” could contain everything from the physical surroundings to

the mental state at the time of encoding, much like diverse marine life inhabiting

different water layers.

The Temporal Context Model (TCM) [96], proposes that an ever-drifting state

of context can assist the organization and search of episodic memories. This state,

they argue, moves more slowly compared to the rapidly changing items (e.g., a list

of words) in memory. Picture a tortoise and a hare in a perpetual race in the brain;

the tortoise, the slowly drifting context, helps provide a time-stamped backdrop

against which the fast-paced hare, the transient representations, are juxtaposed.

Furthermore, TCM posits that memory search is a two-step process: “retrieval”

and “reinstatement.” During retrieval, the context serves as a cue to remember,

while during reinstatement, the context associated with a particular memory is re-

instated to aid further recall. It’s much like finding an old photograph in a box—the

photo (retrieval cue) leads you to recall the event, and the recall, in turn, brings

back the associated feelings, thoughts, and more, essentially reinstating the context

[97]. But how does our brain keep the “tortoise” of context steadily moving in the

race of memory retrieval? Part of the answer lies in the hippocampus’ role. Studies

suggest that the hippocampus, known for its involvement in episodic memory, binds

co-active representations together, including those that drift at different rates [98].
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This binding allows words to cue the retrieval of co-active contextual threads, akin

to the concept of pattern completion in neuroscience, where partial cues lead to

the retrieval of a complete memory trace [99]. Another fascinating aspect of the

hippocampus’ role in context-dependent memory is the replay of neuronal firing

patterns during rest or sleep, which is believed to play a significant role in memory

consolidation [100]. It’s like the hippocampus is a conductor of an orchestra, replay-

ing the day’s music (memories) to its sections (neurons), helping them to remember

their parts better. Slow drift can result from the brain representing slow changes

in environmental features, such as location changes, or through intrinsic mainte-

nance, where the brain continues to fire patterns of neural activation corresponding

to world features and thoughts, even when they no longer exist [101]. This process

is like leaving footprints in the sand; even when the person is long gone, the imprints

persist, marking their presence.

2.8.5 The Subjectivity of Time

The field of psychology of time has long distinguished between prospective time—

time estimation based on perception—and retrospective time—time estimation based

on memory—to highlight the difference between our sense of duration during an ex-

perience, and our sense of duration in hindsight [102].

Temporal information is integral to our memories, allowing us to remember when

an event took place (temporal context), how recently an event occurred (temporal

recency), the order in which events unfolded (temporal order), and how much time

elapsed between (temporal distance) and during (temporal duration) two events.

Temporal information in the LEC does not arise in an explicit clock-like manner,

but from the underlying dynamics of the representation of ongoing experience in

the LEC [76], [103], suggesting that our temporal representations, like our spa-

tial representations, are allocentric. Additionally, despite clock duration remaining

constant, more distinct and numerous sub-events leads to longer recognition mem-

ory responses, retrospective duration estimations, and mental event replaying [104].
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Strikingly, prospective duration estimation has also been found to be modulated

by episodic event structure. When event content and duration are both attended

to, more distinct and numerous sub-events also lead to longer duration estimates,

but when duration is exclusively attended to, only the number of sub-events leads

to longer estimated durations [105]. These findings indicate that incidentally or

intentionally encoded episodic event structure modulates prospective duration.

While existing functional magnetic resonance imaging (fMRI) work [106]–[108]

certainly supports the notion that human cortical representations reflect subjective—

rather than objective—retrospective temporal memory, methodological limitations

associated with fMRI make it challenging to provide definitive insight into the na-

ture of neural activity associated with temporal memory. Such limitations make it

unclear whether observed changes in neural activity reflect an egocentric passage of

time, or simply reflect changes in the quality and/or quantity of externally experi-

enced events. However, given that changes in contextual information, transitioning

from one episode to another, and fluctuations in the number and structure of expe-

rienced events all have an impact on an individual’s memory of the amount of time

that has passed between two time points [82], [104]–[107], it is far more likely that

temporal memory is indeed subjective.

Remembrance: The Act of Remembering

“We do not remember days, we remember moments. The richness of

life lies in memories we have forgotten.”

— Cesare Pavese

2.9 Recognition vs Recall

The quantification of memorability is dependent on how we measure remembrance—

which is in turn dependent on the modality and measurement paradigm. Broadly
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speaking, there are two ways to measure remembrance: as recognition, where amidst

content presentation, participants indicate which items they feel they have previ-

ously perceived; or as recall, where participants recount as much information as they

can concerning previously presented content. These two measures respectively align

with the two memory processes posited by the psychological dual process model of

memory called process dissociation [109]. The first memory process is rapid, un-

conscious, and typically driven by a feeling of familiarity while the other is slower,

conscious, and driven by a detail retrieving intention.

Recognition and recall represent the twin pillars that uphold the vast edifice of

memory. While intertwined and symbiotic, they serve distinctly different roles in our

quest to retrieve our past. Recognition, the acknowledgment of the familiar, often

serves as our first instinctive response to stimuli. In contrast, recall, the recreation

of past experiences, is an active and sometimes challenging quest into the depths

of our stored knowledge. Understanding the nuanced differences between these two

modes of memory retrieval is paramount to the exploration of the web of memory.

Each plays its part, an essential gear in the intricate mechanism of remembering,

contributing uniquely to the song of cognition. A comprehensive understanding of

the subtle interplay between recognition and recall is foundational; it is essential

for deciphering the complex mechanisms by which we remember, interpret, and

construct our past, ultimately shaping our responses to the present and future.

2.9.1 Recognition: Echoes of Familiarity

Recognition fulfills a crucial role in our cognitive landscape—a search of brain bound

impressionist paintings of previously encountered experiences. Imagine walking

down a bustling street. You are bombarded by a sea of faces, then, amidst this

maelstrom, you spot a familiar face. Instantly, a flash of recognition illuminates

your mind—that face, you know it. This is the effortless act of recognition, you

did not need to rummage through your memory, trawling for associated details; in-

stead, you experienced an immediate sense of familiarity. The friend’s face acted

06/09/2023



2.9. RECOGNITION VS RECALL

as an intrinsic trigger, which either culminates as is, or unspools into a thread of

remembered experiences [110].

The role of recognition, however, extends far beyond mere familiarity with faces.

It is an integral layer of our cognitive landscape, incessantly sifting through the sen-

sory deluge, distinguishing the familiar from the novel. Be it identifying a favourite

song from its initial notes, recognising your house from afar, understanding the

words you read, or successfully employing a well-known strategy in a chess game,

recognition is a critical cog in our cognitive machinery [47]. The profound utility of

recognition in survival and adaptation cannot be understated. Recognising poten-

tially dangerous entities or situations—whether they be poisonous berries, preda-

cious animals, or the urgency signaled by a car’s brake lights—guides our decisions

and behaviors, nudging us towards familiar and often safer options [111]. Further-

more, recognition underpins our social existence. Recognising a friend’s face, a

loved one’s voice, or a colleague’s unique handwriting fosters our social interactions.

These acts of recognition evoke associated memories and emotions, fortifying our so-

cial bonds [112]. Perhaps most intriguingly, recognition shapes our identities. Each

time we gaze into the mirror, we recognise ourselves, affirming our identity. This

self-recognition fosters a continuous sense of self, bridging temporal gaps and pro-

viding us with a consistent narrative of our existence [113]. Recognition is a silent

guardian constantly checking our present against our past, offering familiarity as

a compass in a world of ever-shifting tides. It underpins our understanding, aids

learning, fosters social bonding, and shapes our identity [114].

2.9.2 Recall: Threads of the Past

Recall, unlike its sibling recognition, is not a mere moment of familiarity; it is a voy-

age. It is the act of reaching into the vast sea of memory, casting the net of conscious

cognition, and retrieving specific pieces of information [64]. Imagine you’re asked

to recount the plot of a novel you read in school. It’s not just about acknowledging

that you’ve read the book—that’s recognition’s domain. Instead, it’s about diving
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into the corridors of memory to retrieve the book’s storyline. With a bit of initial

effort, pulling at the narrative thread, you suddenly recall the eccentric protagonist,

the peculiar turn of events in chapter three, or the surprising revelation that came

in the book’s final pages. You might even re-experience the emotions that initially

gripped you as the plot unfolded for the first time. This vivid mental resurrection

of the novel’s narrative, constructed from fragmented memories, epitomises recall in

action.

Recall is more than merely pulling past events into our consciousness; it shapes

the way we interact with the world. For instance, recall is key when acquiring a

new skill, like cooking an elaborate recipe. You do not just recognise the ingredi-

ents or utensils. Instead, you recall the sequence of actions, the subtle nuances of

technique—how much force to use when kneading the dough, how long you should

knead it for, how many layers of lamination are necessary for the perfect crois-

sant. You draw upon memories—both consciously and nonconsciously—of previous

attempts, perhaps even mishaps and lessons, to guide your current actions. This

is not just retrieving information; it is the application of experience to navigate a

complex task [115].

A key attribute of recall is its constructive nature. We do not possess a perfect

recording of our experiences. Instead, we store bits and pieces, which we actively

reconstruct during recall. This cognitive reconstruction can be influenced by our

current mood, biases, or subsequent experiences, often leading to distortions or false

memories [116]. The function of recall extends beyond the mere reconstruction of

our past. It allows us to project our experiences into the future, to imagine or plan

events that have not occurred, a cognitive ability known as episodic foresight. This

capability is central to strategic planning, problem-solving, and decision making,

lending us flexibility and adaptability [117]. Recall plays a significant role in shaping

our understanding of the world and ourselves. Our personal narrative, our sense of

self, is a tapestry woven from recollected experiences. As we recall and narrate our

experiences, we construct and reinforce our identities [118].
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2.10 The Quantification of Remembering

Measuring memory is much akin to attempting to gauge the hues of a rainbow; we

grapple with a complex, multifaceted phenomenon that resists simplistic compart-

mentalisation. Nonetheless, finding ways to quantify this intricate and core facet of

our existence, is key to enhancing our comprehension of its nature. This process of

quantification must navigate the dichotomy of rendering an abstract, deeply individ-

ualised experience into a tangible, analysable datum. We stand at the threshold of

a challenging endeavor as we seek to decode the numerical representation of human

memory, a task that is as much a valuable scientific pursuit as it is an embodiment

of our Freudian urge to understand ourselves.

2.10.1 Measuring Recognition

A seminal method employed in the study of recognition is the “old/new” recognition

task. This paradigm focuses on a fundamental aspect of recognition–—identifying

something as previously encountered. Participants are initially presented with a list

of items—be it words, images, sounds, or video—in the study phase. The test phase

introduces a mix of old (previously seen) and new (previously unseen) items, and

the participants’ task is to distinguish which items they have encountered during the

study phase [119]. There are two main variants of this recognition task, free choice or

yes/no, and forced choice. In the free choice variant, participants go through a long

list of test items, stating ‘yes’ if they recognise an item from the study phase, and ‘no’

if they do not. The two essential measures of recognition performance obtained from

this test are the ‘hit rate’—the probability of correctly identifying old items—and

the ‘false alarm rate’—the likelihood of incorrectly recognising new items as old. The

difference between the hit rate and the false alarm rate provides a corrected measure

of performance that accounts for guessing. To add nuance, researchers may ask for

confidence ratings, thereby turning the dichotomous yes/no into a multi-point scale

[120]. The forced choice variant differs only in the test phase, where participants
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are presented with an array of item options—one previously studied item among

several distractors—and they are required to select the studied item. The guessing

level in such tasks can be calculated based on the number of alternatives—50% for

two alternatives, 33% for three, and so on [121].

While the old/new recognition task is a potent frequently used tool, a desire for

further granularity lead to the “remember/know” paradigm, which aims at separat-

ing recollection from mere familiarity. In essence, participants still categorise items

as old or new, but also state whether they “remember”—can recall specifics about

the item’s presentation—or just “know”—find the item familiar but cannot recall

specifics [122]. To study associative recognition memory, “associative recognition”

tasks are employed, wherein participants must remember the relationship between

two items. For example, recollecting pairings of words or associations between a

face and a name [123]. This paradigm explores a different facet of recognition—our

ability to link and remember related pieces of information. Lastly, “source memory”

tasks delve into the context or source of a particular memory. Participants must

not only recognise an item but also remember specific details about its presentation

context, such as the location on the screen where it appeared, the voice that pro-

nounced it, or even the list in which it was included [124]. This task uncovers how

recognition memory intertwines with contextual recall.

2.10.2 Measuring Recall

A triad of methodological pillars: ‘free recall’, ‘cued recall’, and ‘serial recall’, under-

pin the measurement of recall in the experimental realm, they provide the foundation

for a plethora of nuanced methods that capture the versatility and complexity of

our recall abilities. ‘Free recall’ is the most elemental, a basic yet richly reveal-

ing paradigm. Participants are presented with an array of items—words, pictures,

sounds, or videos—during a study phase. After a delay, their task is to retrieve as

many of these items as possible, with no mandated respect for their original order.

Like a miner let loose in a gem-filled cavern, the goal is to emerge with as many
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precious stones, regardless of where they were originally unearthed. Key measures

in free recall include the proportion of items correctly remembered, or hits, to the

total items presented [125], as well as the serial position effect—a phenomenon where

items at the beginning (primacy effect) and end (recency effect) of the list are often

remembered better [126].

‘Cued recall’ tasks venture a step beyond, imbuing the free recall paradigm with

a guiding thread. Participants receive cues or prompts during the retrieval process,

hints that illuminate a path in the wilderness of their memory. An especially in-

sightful variant is the paired-association task, where participants learn pairs of items,

such as ‘pineapple-avalanche’, during the study phase. In the test phase, they are

prompted with one word (e.g., ‘pineapple’) and must retrieve its pair (‘avalanche’).

The cued recall task offers insights into the structure of associative memory—our

ability to form and retrieve connections between pieces of information [127].

In the context of ‘serial recall’ tasks, the order of a sequence holds the highest

importance. Unlike free recall, where the recall order is inconsequential, serial recall

requires participants to reproduce items in their original sequence. This exacting

nature illuminates the mechanics of temporal context memory and exposes the order-

dependent character of recall [128].

Diverse variations of these central paradigms continue to enrich our understand-

ing of recall memory. For instance, within cued recall tasks, we encounter ‘contingent

recall’ paradigms, where the cue for recalling an item is often the previous item in a

list, probing how recalling one item influences subsequent recall. Similarly, ‘source

recall’ tasks, another variant of cued recall, require not only the recall of an item but

also its contextual origin—where, when, or how it was encoded [124]. The ‘prospec-

tive memory’ paradigm introduces a time-based cue into the recall task. Participants

must remember to perform a future task upon the appearance of a specific cue or

after a certain time has passed. This turns the lens on our ability to ‘remember to

remember’, a vital skill in everyday activities [129].

The chapter was divided into three primary sections, each focusing on different
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aspects essential for understanding the broader context of the thesis. The “Funda-

mentals of Neuroscience” section provided a basic understanding of the neural mech-

anisms of the brain, including an overview of neurons, their structures and functions,

and the role of EEG in studying brain activity. The “Memory” section presented

a comprehensive overview of biological memory, covering the neural mechanisms of

short-term memory, the associated brain systems, and the roles of the MTL and hip-

pocampus in explicit memory. Additionally, this section explored the complexities

of episodic memory, including the processes involved in reinstating memories, oscil-

lations during encoding, the significance of context, and the subjectivity of time in

memory formation. Lastly, the “Remembrance: The Act of Remembering” section

differentiated between the two primary forms of memory retrieval—recognition and

recall—highlighting the distinct neural and cognitive processes involved, and out-

lined common methodologies used for measuring recognition and recall. Ultimately,

this chapter aimed to provide a high-level understanding of memory, the act of re-

membering, and the methods to measure remembering, serving as a fundamental

knowledge base for the thesis.
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Chapter 3

Memorability and the Measures of

Memory

“Memory represents to us not what we choose but what it pleases.”

— Michel de Montaigne, Les Essais

In the theatre of our existence, the natural world takes center stage, unfolding

in a ceaseless stream of sensory threads—from frenzied photons painting our vi-

sual landscape to the odious odorants that punctuate our olfactory experiences.

Each of us wades through this storm of complex multi-sensory data, our brain serv-

ing as both court master and king. It deftly weaves threads into an intelligible

tapestry of internal representation, carefully selecting which threads to incorporate

and which to cast aside, relegating them to the abyss of the forgotten. Amid this

whirlwind of sensory input, a question of profound consequence reverberates: what

should be remembered, and what should not? The answer, elusive and enigmatic,

is written in the whims of the king—the brain’s assessment mechanism for stimuli

relevance/importance. This question underpins my exploration into the realm of

memorability, acting as the keystone that bridges our sensory experiences with the

cognitive retention in the castle of memory.

Memorability—the likelihood that a given piece of content will be subsequently
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remembered—provides us with the Rosetta Stone necessary to decipher the remem-

bering whims of the brain. It illuminates the fundamental principles that guide

the cognitive processes distinguishing the memorable from the mundane. Funda-

mentally, memorability—in its most exact form—represents an index of experience,

gauging the divergence between sensory perceptions and memory manifestations.

Its proximity to the bedrock of human experience is what ultimately motivates and

brings meaning to its exploration.

The examination of memorability holds substantial theoretical significance. It

serves as a powerful lens through which we can comprehend the mechanisms that

guide our cognitive system in distinguishing the memorable from the mundane. For

instance, consider the remembrance of faces. What is it that makes us remember

a face we’ve only seen once at a crowded party? Why do some faces, even without

distinctive features, lodge themselves in our memories, while others are quickly

forgotten? Memorability, as a concept, stands as a compass in the misty landscapes

of such questions, pointing the way towards understanding the relationship between

the nature of sensory stimuli and their potential for recall or recognition. From a

practical standpoint, memorability transcends the realm of theory and seeps into

a multitude of disciplines, carving a niche for itself in areas as diverse as machine

learning, cognitive neuroscience, and media design.

Consider the realm of advertising, where creating memorable content is the holy

grail. Understanding the dimensions of memorability would allow the creation of

advertisements that linger in the minds of viewers, thereby increasing brand recall

and influence. In the field of artificial intelligence, incorporating a model of mem-

orability into machine learning systems could lead to more intelligent information

retrieval and recommendation systems, tailoring content to individual users based

on its likelihood to be remembered. Nonetheless, this capability raises ethical con-

siderations. Tailoring content to maximise memorability implies a greater capacity

to influence human behaviour, which prompts questions about manipulation and

the preservation of decision-making autonomy. Conversely, as memorability serves
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as proxy indicator of human significance, optimising for memorability could be inter-

preted as optimising for human importance, a goal that arguably possesses intrinsic

merit. This represents a nuanced and ambiguous area, necessitating a careful and

responsible examination of the implications. In the field of cognitive neuroscience,

a more nuanced understanding of memorability could pave the way for innovative

interventions and therapeutic strategies for memory-associated disorders. Compre-

hending the attributes that render a stimulus memorable enables us to potentially

augment memory recall in patients afflicted with Alzheimer’s disease or other forms

of dementia, thereby enhancing their overall quality of life. For instance, exposing

patients to highly memorable stimuli may prompt the activation of specific neu-

ral pathways associated with memory, akin to a form of “exercise” for the brain.

The underlying principle is grounded in Hebbian theory, which posits that neurons

that fire together wire together. Consequently, regular activation of these pathways

through exposure to memorable stimuli may help in strengthening synaptic con-

nections, thereby promoting the maintenance of memory circuits and potentially

mitigating the progression of memory-related impairments. In the following sec-

tions, we will embark on a journey to dissect memorability, tracing its manifestation

across various sensory modalities and examining its interactions with other cogni-

tive phenomena. From identifying the distinctive attributes of memorable images

to understanding the dynamics of memory formation, we aim to construct a com-

prehensive understanding of the factors that make a stimulus memorable.

3.1 Visual Memorability: The Eye’s Imprint on

the Mind

As early as the 1960s, researchers sought to operationalise and quantify memora-

bility as a metric in cognitive psychology. Specifically, in 1966, the Dow Chemical

Company used the concept of memorability in an applied study seeking an effective

symbol to communicate biohazard risks [130]. This study aimed to create a symbol
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that lacked intrinsic meaning but was highly memorable—capable of instantly and

enduringly etching itself in the minds of viewers. The resulting symbol, still glob-

ally recognised today, stands as an early example of memorability’s importance in

visual cognition. In academic psychology, the formal study of memorability came

into prominence from the late 1970s through to the early 1990s. During this time,

a particular focus was the investigation of factors that influence facial memory. A

crucial development during this period was the conceptualisation of face memory

representations in multidimensional face space [131]. In this model, an individual’s

face is thought to exist as a point in a multidimensional space, where the dimen-

sions represent various attributes of a face. These attributes can range from physical

traits such as age, race, and face shape, to more socially-driven features like dom-

inance and valence [132]. Researchers found that distinctiveness—how far a face

is from the center or prototype of this representational space—strongly influences

memorability. A slew of studies demonstrated that faces with higher distinctiveness

tend to be more memorable [133]–[138]. This concept of distinctiveness became so

interwoven with memorability that the terms were sometimes used interchangeably

[137]. Despite the clear influence of distinctiveness, it could not fully account for

the variance in memory performance, hinting at the existence of other factors that

affect memorability [137]. This observation sparked questions about what makes an

image more memorable and whether memorability, independent of distinctiveness,

was a noteworthy attribute to explore further.

3.1.1 Memorability as an Intrinsic Image Attribute

The digital revolution of the 2010s fueled a data-driven approach to deciphering

the enigmatic workings of human memory. This era brought forth a novel propo-

sition: the recognition memorability of an image might be an intrinsic attribute of

the image independent of an observer’s mental constitution at the moment the im-

age is observed, i.e., irrespective of the observer’s emotional or personal connection

to the image. This hypothesis stemmed from observations made in the pioneer-
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ing research of Standing (1973) [139] and Brady et al. (2008) [140], where it was

found that individuals could correctly recognise an astonishingly large number of

images. More importantly, these studies also highlighted variability in the success

rates of recognising different items, leading researchers to explore what characteris-

tics might govern an image’s memorability. Pioneering this exploration, Isola et al.

[141] deployed a massive online experiment, engaging participants on Amazon Me-

chanical Turk (AMT) in a simple ye t revealing subsequent memory task. Using the

Scene Understanding Database [142],a collection of 2,222 images depicting various

scenes such as indoor (e.g., bank, pharmacy, bathroom), outdoor natural (e.g., lake,

glacier, mountain), and outdoor man-made (e.g., chemical plant, oil rig, campsite),

they collected recognition memory annotations from approximately 80 participants

for each image, with their combined recognition rates providing a measure of each

image’s memorability. However, the crux of their research was the consistency anal-

ysis, an innovative approach to validating memorability as an intrinsic attribute of

an image. In this analysis, they partitioned participants into two randomly selected

halves and calculated the memorability for each image separately based on these

halves. These separate memorability performance scores were then correlated with

each other to assess the consistency in performance between the halves. The process

was repeated over 25 iterations and averaged, ensuring that findings were not acci-

dentally attributed to the specific halves chosen. The outcome was compelling—a

high correlation (Spearman’s rank correlation p=0.73, referred to later as “Human

Consistency”) signified that images remembered by one half of the participants were

likely remembered by the other half as well. In essence, recognition memorability

scores proved highly consistent across people, even in a highly heterogeneous on-

line sample. This study convincingly demonstrated that recognition memorability

could be conceptualised as an intrinsic, measurable, and a potentially manipulable

property of a stimulus. Further bolstering this concept, subsequent investigations

conducted by Bainbridge et al. [143] on face images yielded similar patterns of mem-

orability consistency. This was followed by research extending the theory to diverse
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stimulus types, such as abstract visualisations [144], simple words [145], objects

within scene images [146], and even dynamic stimuli like videos [147]. Collectively,

these findings paint a compelling portrait of memorability as an intrinsic attribute

of images, laying the foundation for a deeper understanding of how images imprint

themselves onto our memory. The remaining mystery to unravel is the underlying

mechanism of this phenomenon: What intrinsic properties of an image determine its

memorability? Unraveling these intricacies will shed new light on our understanding

of human memory and cognition.

3.1.2 Image Attributes and Their Influence on

Memorability

Despite initial assumptions, the relationship between memorability and other image

attributes is far from simple. It seems intuitive to associate memorability with famil-

iar image characteristics such as visual distinctiveness, aesthetics, or visual saliency.

However, research to date has failed to pinpoint any combination of attributes that

wholly determine an image’s memorability. Research has consistently found that

basic image features like hue, saturation, or spatial frequency have weak to no cor-

relation with memorability [1], [146], [148]. Interestingly, even scrabbled images

devoid of most semantic content (but with preserved low-level visual features such

as colour and edges), still held some degree of memorability [149]. However, the

effects were transient (existing only within a short period of seconds), suggesting

that higher-order perceptual attributes or deeper semantic and conceptual elements

in the image might significantly contribute to memorability. Some factors commonly

thought to capture attention or trigger emotion were found to have negligible cor-

relations with memorability [1]. For example, the number of objects in a scene or

the extent of image coverage by these objects did not influence the overall mem-

orability of the scene. Moreover, factors like aesthetics, visual interestingness (a

measure for captured attention), or perceived memorability (subjective estimation

of memorability) were not directly linked to actual memorability. However, scene
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images containing faces or text tend to be highly memorable, and a combination

of semantically-based object and scene attributes, such as object/scene category,

emotion, actions, and dynamics, are predictive of memorability. This suggests that

memorability may have stronger ties with the semantic properties of an image rather

than its mere visual attributes.

When examining novel faces, an area with reduced variability in perceptual or

semantic features, memorability becomes even more complex. Bainbridge et al.

[143] found that attributes such as atypicality (or distinctiveness), attractiveness,

emotion, and subjective memorability ratings correlated with actual memorability.

Interestingly, memorable faces were often rated as more emotional, irresponsible,

unattractive, and unintelligent, but also kinder and more trustworthy. Yet, even this

comprehensive set of attributes could only account for 46.6% of the memorability

variance, implying that face memorability is not merely a compound of other well-

known semantic face attributes. More surprisingly, perceived distinctiveness of faces,

even when captured by several terms (atypical, unfamiliar, uncommon), does not

fully explain face memorability. Metrics such as Euclidean distances between facial

points on an individual face and those on an average face showed no correlation with

memorability. This information stands in stark contrast to prior work, which often

equated visual distinctiveness with memorability. If visual distinctiveness does not

define memorability, what does? One hypothesis is that distinctiveness may manifest

in a variety of ways: perceptual distinctiveness, semantic distinctiveness, emotional

distinctiveness, and so forth. However, the exact determinants of memorability

remain an open question, necessitating future experimentation.

3.1.3 Beyond Recognition: Memorability in Other

Cognitive Contexts

It is essential to understand that the concept of memorability transcends its role

in continuous recognition tasks, the power and effects of memorability extend into

various other memory paradigms. This diversification serves a critical purpose,
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establishing that the observed memorability effects are indeed attributable to the

images themselves, as opposed to the experimental tasks they are presented within

[150], [151]. For example, when image memorability is evaluated using memory

tasks with distinct study and test phases, intriguing results emerge. Even when

the test phase is delayed by a day or a week, the essence of image memorability

prevails, demonstrating its long-term effects [151]. This robustness is also evident

when the influence of context on image memorability is assessed. While memory

performance can be subtly swayed by the similarity of images presented in the

same context, an image retains its intrinsic level of memorability, irrespective of the

variation in image contexts [150]. While these findings emphasise the durability of

image memorability across different paradigms, they also highlight an interesting

conundrum that has yet to be fully resolved. Specifically, recent research posits that

an image’s recognition memorability may not correlate with recall memorability

[152]. This suggested absence of interaction is perplexing given that recognition

is often considered a precursor to recall, suggesting that a more comprehensive

assessment of recall memorability is needed.

Bainbridge [153] conducted a series of online psychophysical experiments to un-

derstand how certain cognitive processes such as bottom-up attention, top-down

attention, depth of processing, and priming relate to image memorability. Different

paradigms were used to test bottom-up attention, including a spatial cueing task

and a visual search task, both of which explored the influence of memorable images

on performance. The findings showed that while memorable images were easier to

hold in memory, they did not significantly alter spatial attention or automatically

capture attention in the visual search tasks. As for top-down attention, it was

found that even though participants could intentionally modify their memories to

some degree, the power of memorability was more potent; participants could not

consciously forget a memorable image or remember a forgettable one. Encoding

tasks with varying levels of semantic depth also influenced memory performance.

However, the impact of image memorability was stronger, implying that regard-
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less of the depth at which images were encoded, memorable ones always had the

upper hand in later recognition. Finally, memorability effects were distinct from

priming effects, suggesting that memorability has unique implicit effects on mem-

ory behavior. Collectively, these findings underscore that memorability is a robust

phenomenon, largely unaffected by attention, cognitive control, and priming. This

robustness has substantial implications for potential memorability applications. For

instance, a memorable image does not need to be visually striking or salient to auto-

matically capture attention. Moreover, the power of memorability is such that it can

override other cognitive processes, even when presented alongside unrelated, mun-

dane tasks. These findings leave us with the question of what is happening in the

brain when viewing memorable images. While evidence implies that the processing

of memorability is automatic and implicit, it does not involve an automatic capture

of attention or correlate with the implicit memory effect of priming. Further explo-

ration into our understanding of memorability processing in the brain could shed

light on its relationship with the underlying neural substrates for vision and memory.

Finally, memorability effects were found to be separable from priming effects. In

other words, memorable images did not necessarily lead to quicker processing during

repeated presentations, compared to forgettable images. This suggests that there

are distinct implicit effects on memory behavior, further confirming the unique and

robust nature of image memorability.

3.2 The Neurological Underpinnings of Visual

Memorability

3.2.1 Mapping Memorability: Spatial Representations in

the Brain

Memorability treads the line between vision and memory. It is defined as a quan-

tifiable attribute of an image, akin to aspects such as color, aesthetics, or emotion.
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Yet, at its core, memorability is defined by the behavioral outcome of memory.

Given these unique characteristics, how does the brain process memorable images

compared to established patterns of visual or memory processing?

To shed light on this, Bainbridge et al. embarked on a comprehensive investiga-

tion using rapid event-related functional magnetic resonance imaging (fMRI) [154].

Their experiment involved participants categorising the sex of 360 face images and

determining whether 360 scene images were indoor or outdoor. Unbeknownst to the

participants, images were composed of an equal mix of highly memorable and highly

forgettable images, controlled for various low-level visual features (e.g., color, edges,

etc.) and mid-level attributes (e.g., emotion, aesthetics, number and size of ob-

jects). A subsequent surprise recognition test allowed for a fascinating comparison:

how do classical markers of successful memory encoding compare to the processing

of memorable images? This unique approach resulted in a significant activation

pattern that spread from higher-order visual areas to memory-related regions when

processing memorable images. These visual areas included regions like the fusiform

face area (FFA), known for being selective for faces, the lateral occipital complex

(LOC) recognised for object and shape selection, and the parahippocampal place

area (PPA) which is selective for scenes [155]–[157].

Interestingly, the early visual cortex (EVC), which typically responds to low-

level visual properties such as edge information, demonstrated no difference in its

response to memorable and forgettable images. This intriguing observation points

to the fact that the effects of memorability are not dictated by merely low-level vi-

sual differences. Memory-related regions, including the perirhinal cortex (PRC) and

parahippocampal cortex (PHC)—regions within the medial temporal lobe (MTL)

that have been implicated in memory processing—exhibited marked sensitivity to

memorability [158]. Connections to the hippocampus, specifically the anterior hip-

pocampus, were found to be highly sensitive to memorability as well. A striking

difference emerged when comparing the neural effects observed for memorability to

those found for subsequent memory. The subsequent memory paradigm, used in
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several prior studies, contrasted remembered and forgotten images based on each

participant’s individual memory. The resulting signal, in theory, approximates suc-

cessful memory encoding. However, Bainbridge et al.’s research demonstrated that

this signal differs significantly from the neural response to memorability [154]. This

divergence was most pronounced when instances occurred where stimulus memora-

bility and individual memory differed, suggesting that these two phenomena might

be processed and represented separately in the brain. Whereas memorability-based

sensitivity seemed more apparent in ventral visual and memory-related regions, in-

dividual memory-based sensitivity manifested more in parietal and frontal regions,

in alignment with previously reported literature [154]. Aiming to answer a question

of deeper interest, namely how the brain organises memorable or forgettable im-

ages, the researchers employed a method called representational similarity analysis

(RSA). RSA compares the neural similarity across all pairs of stimuli in the brain

and contrasts this with a hypothesised model. The expectation was that forgettable

images would cluster closely, showing high similarity, while memorable images would

be widely spread, showing high dissimilarity. Surprisingly, the results contradicted

this hypothesis. Memorable images were highly similar to each other, while forget-

table images were highly dissimilar. This pattern was found in the ventral visual

and memory-related brain regions linked to memorability, while individual memory

showed a similar geometry in frontal and parietal regions.

3.2.2 Mechanisms of Memorability

At the intersection of perception and memory, a compelling narrative emerges, illus-

trating the close interaction between the brain and the images it encounters. This

narrative, rich in conceptual significance, poses and intriguing notion: memorabil-

ity is not simply an intrinsic characteristic of an image; instead, it is a dynamic

quality, arising from the our brains interpretation of visual stimuli. This intriguing

proposition implies that memorability embodies the cerebral sieve, delineating what

information will be transposed into long-term memory from the overabundance of
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visual stimuli bombarding our senses. Investigations within the anterior temporal

lobes (ATL) of epileptic patients, courtesy of Xie et al. [159], reveal fascinating

insights into this phenomenon. The memorability of a word seems to hinge on

its semantic interconnectedness within the vast neural network of word represen-

tations. Imagine this network as a sprawling tree; words deeply embedded with

numerous connections– the roots of this linguistic landscape—are more likely to be

remembered. Conversely, words with sparse connections—the peripheral leaves—

tend to be overlooked, implying that the mnemonic weight assigned to a word is

independent of its language frequency or concreteness. In a memory retrieval sce-

nario, the brain’s quest for the sought word commences from these deeply rooted,

highly memorable words, leading to a quicker reinstatement of these entities during

a cued recall task [159]. This phenomenon extends beyond the linguistic domain

and is mirrored in our visual perception, notably for face and scene images. By

examining neuronal pattern similarity in the inferotemporal cortex (IT) and medial

temporal lobe (MTL), memorable elements occupy the core of this representational

space, with forgettable ones relegated to the periphery [154], [160]. A counter-

intuitive yet compelling divergence, however, arises from other research where the

neural encoding of memorable images appears more distributed across the entire

brain during Magnetoencephalography (MEG) recordings and in rhesus macaque

IT [161], [162]. Consequently, this leaves the field with the challenge of reconciling

these conflicting observations—whether IT neurons encode memorability via magni-

tude variation [163], or if a spatiotemporal transformation occurs where visual areas

initially capture a stimulus’s distinctiveness, which is subsequently consolidated and

homogenised in the MTL and ATL.

Further complicating this cognitive landscape, memorability does not always

correspond to a stimulus’s distinctiveness or atypicality. Indeed, a study involving

nearly 14,000 participants and the extensive THINGS database [164] found memo-

rability to vary by object category [165]. Some categories, such as weapons, exhib-

ited higher memorability for typical items, while others, such as kitchen appliances,
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showed an opposite trend. This dichotomy suggests memorability might be predi-

cated on more than sheer stimulus distinctiveness. Subsequent analysis did uncover

stronger associations between memorability and conceptual dimensions over percep-

tual ones [165]. However, the contributions of perceptual versus conceptual dimen-

sions to memorability remain a nebulous territory. Memorability is observed for

semantically-devoid stimuli [149], and in monkeys lacking conceptual understanding

for novel object photographs [161]. Ultimately, the neuro-computational underpin-

nings of this incredibly consistent (Human Consistency Spearman’s rank correlation

of p=0.73) yet enigmatic attribute known as memorability still remain a tantalising

mystery, ripe for further exploration.

3.3 More than Meets the Eye: Memorability

Beyond Visual Stimuli

3.3.1 The Persistence of Prose: Textual Memorability

In exploring the space of textual memory, several parallels can be drawn with the

realm of visual memorability [166]. However, a distinctive dichotomy emerges with

the observation that repeated recall, which incrementally enhances subsequent recog-

nition performance for images, does not yield the same effect for words [167].

Numerous attributes, as varied as concreteness, imagery, emotionality, and lex-

ical associations, contribute significantly to word recall. Words that evoke robust

emotions and can be easily visualised, as well as concrete words—those referring to

tangible experiences—are often more memorable [168]. Adding to this complexity is

the observation that words with smaller sets of associated words have an advantage

over those with larger sets [169]. Minimally counter-intuitive concepts have been

found to lead to better recall, suggesting that recall memorability is not an inherent

property of a concept, but a property of the concept in the context it is presented

[170]. At a fundamental level, our cognitive architecture displays a predilection for
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certain types of words. Concrete words like “pineapple” or “avalanche”, associated

with tangible objects or discernible actions, tend to be more memorable than ab-

stract words like “justice” or “love” [171]. This preference could be attributed to

the rich sensory and semantic associations invoked by concrete words. Similarly,

words that induce vivid mental imagery or evoke strong emotional responses are

more likely to be remembered [172]. However, the memorability of words is not

just a function of their individual attributes; the semantic relationships they share

with other words in a network also play a crucial role. Words that serve as asso-

ciative nodes in a semantic network tend to be more memorable than those with

fewer connections [159]. This association-rich feature enables the brain to prioritise

these words during recall, effectively enhancing their memorability. On the neural

front, differential activation in the anterior temporal lobes (ATL) associates with the

memorability of words. Words with high memorability elicit faster reinstatement in

the ATL during recall tasks, indicating a neural prioritisation of these words during

encoding and retrieval [159].

Similar to images, the recognition memorability of simple words is highly consis-

tent across individuals, suggesting that it is an intrinsic property of words [145]. Less

familiar, lower-frequency words [173]; imageable and concrete words [174], emotion-

ally salient words [175] and the semantic context [176] in which they are presented,

all enhance recognition memorability. Consistent with the idea that episodic mem-

ory encodes the word and its set of associated attributes, meanings of words are

retained in favour of their lexical properties [177]. Diving deeper into the relation-

ship between words and meanings, the seminal study in [145] reveals a fascinating

perspective. Underpinning their study is the hypothesis that words are encoded

more so by their meanings rather than their surface forms. With this lens, word

recognition memorability becomes a factor of how much information the word com-

municates about its intended meaning and how few alternatives exist—that is, words

with less ambiguity and fewer synonyms tend to be more memorable. Their findings

present an intriguing twist: the most memorable words appear to be those that
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maintain a one-to-one relationship with their meanings. In other words, words that

encapsulate unique cognitive fidelity—those with fewer meanings and synonyms—

seem to leave a lasting impression on memory. This perspective adds a nuanced layer

to our understanding of textual memorability, highlighting the interplay between in-

dividual lexical attributes (i.e., semantic uniqueness and number of synonyms) in

determining the likelihood of a word being recognised.

3.3.2 Sounds that Resound: Auditory Memorability

In the grand concert of our everyday life, each sound is a distinct note contributing

to an intricate symphony. A symphony not just heard, but remembered, creating

echoes that shape our understanding of the world. Our exploration, thus, turns

toward an often understated player in the orchestra of memory - sound. In partic-

ular, we delve into the concept of auditory memorability, the dynamic interplay of

elements that enables certain sounds to linger in the chambers of our memory. Our

quest begins with the fundamental question: what makes a sound memorable? A se-

ries of fascinating discoveries offers intriguing insights. Unsurprisingly, our capacity

to name or verbalise a sound is strongly tied to its memorability. This phonological-

articulation link bolsters the recall of sounds, with verbal sounds, in particular,

being recalled more easily than their non-verbal counterparts [171], [178]. This ver-

bal edge underscores the symbiotic relationship between our linguistic and auditory

systems, painting a picture of interconnected cognitive landscapes. Yet, the portrait

of auditory memorability is not solely etched in linguistic shades. The emotional

brushstrokes that colour a sound significantly influence its potential to endure in

memory. The emotional impact of a sound and the clarity of its perceived source

converge to amplify its memorability [179]. Sounds that echo human activity (e.g.,

laughter, conversation, applause, music), typically associated with positive valence,

are particularly memorable [180]. This positive association not only deepens the

imprint of the sound on memory but also enhances its recall [181].

When pitched against its visual counterpart, auditory memorability seems to
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have a quieter resonance. The prevailing consensus points to the superiority of vi-

sual recall over auditory, with the latter decaying at a faster rate [182]. However,

adopting such a singular perspective risks striking a discordant note in our under-

standing of memory. The reality is that our experiences are not confined to single

modalities; they are multi-sensory amalgamations that blend sight, sound, touch,

taste, and smell into a rich, resonating harmony. In this light, the role of sound

in shaping multi-modal media memorability gains profound significance. Research

shows that multi-sensory experiences, compared to uni-sensory ones, have a superior

recall accuracy [183]. This underscores the vital role that sounds play in contextually

priming our memory, providing key information that aids recall [184].

While little research has hitherto been conducted on auditory recognition mem-

orability, interest has started to grow. A recent study suggests that similar to

visual and linguistic counterparts, recognition memorability is an intrinsic property

of sounds [185]. In a comprehensive crowd-sourced experiment involving 20,000 au-

ral memory games, this research analysed the memorability consistency of various

sounds across a wide cross-section of subjects. Key findings elucidated that beyond

mere acoustics and cognitive salience, the familiarity of the sound source, its emo-

tional valence, arousal, causal certainty, and the ability to verbalise it, considerably

impact the memorability. Strikingly, causal uncertainty (the degree of ambiguity

or confusion experienced regarding the cause or origin of a specific sound), visual-

isability (how easy a mental image can be formed of the source of the sound), and

emotional valence (positive or negative) surfaced as the most effective predictors of

memorability.

In this chapter, the concept of memorability was defined and contextualised

within the framework of this thesis, followed by an exploration of its origins. The

chapter investigated the proposition that memorability is an inherent attribute of

images, and examined the specific properties that influence it, and how these might

be applicable in other cognitive contexts. Additionally, the neurological foundations

of visual memorability were discussed, focusing on spatial representations and the
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mechanisms that facilitate this process in the brain. Moreover, the chapter extended

the discussion of memorability beyond visual stimuli, considering the role of textual

and auditory stimuli in the formation of multi-sensory memories.
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Chapter 4

The Influence of Modality on

Memorability Prediction

“Our senses are our windows to the world, and sometimes the wind

blows through them and disturbs everything within us.”

— Thich Nhat Hanh, Peace Is Every Step

Memories are the tethering threads that tie us to the world, testaments to our

experiences and interactions, shaping our identities and guiding our responses to the

environment. The tensile strength of these threads—memorability—is not a single

filament but a complex weave of fibres, each corresponding to a different sensory

modality. In this intricate weave, the fibres are inseparable, their interplay obscuring

the contribution of each to the overall strength and character of the thread. To gain

a comprehensive understanding of memorability, it is necessary to carefully unfurl

these fibres and examine their individual and combined contributions.

Sensory modalities, as we understand them, reflect the complex architecture

of the brain’s sensory processing mechanisms. Each sensory modality relies on a

unique network of neurons, each intricately wired to function in harmony with oth-

ers. While these networks are distinct, they are not isolated; they interlink and

share information. This collaboration across modalities generates a unified percep-

tion of the world around us [186]. It is through this unified sensory experience that
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we interact with the world, and it is through this interaction that we create our

memories. Hence, it stands to reason that memory, a product of these integrated

systems, would also embody this complex multimodal nature.

This perspective underpins the first hypothesis in this thesis (H1): Given the

multimodal nature of our sensory experience, it is postulated that memory, and ac-

cordingly memorability, should be equally multimodal. Consequently, there should

be a measurable interaction of influence between the modalities in multi-modal data.

These interactions, a possible reflection of our brain’s interconnected sensory sys-

tems, could potentially contribute significantly to the tensile strength of our memory

threads.

Further, we turn our attention to the well-documented phenomenon of visual

dominance among human sensory modalities [187]. This is a fundamental aspect

of the sensory system—across numerous species—as vision tends to be the primary

conduit for navigating and understanding the world. For humans, this is mirrored

in the significant cortical real estate dedicated to visual processing in our brains. In

the context of this study, this dominance raises an intriguing question: could the

visual data exert the greatest influence on memorability?

This query forms the basis for the second hypothesis (H2): In accordance with

the visual cortex’s established prominence, I theorise that visual sensory data may

play a more potent role in shaping memorability. It is possible that the visual

fibres contribute more significantly to a memory thread’s tensile strength, essentially

influencing its memorability to a greater extent. This chapter investigates these

conjectures, aiming to disentangle the modalities’ intricate weave by elucidating

their individual and combined influences on memorability prediction. It involves

an exploration of the interplay between visual, auditory, and textual modalities

in the context of multimodal video memorability prediction and concludes with

insightful reflections on how these insights can enhance our understanding and guide

the creation of more memorable media content.

06/09/2023



4.1. THE LANDSCAPE OF MODALITIES

4.1 The Landscape of Modalities

In the realm of media, the amalgamation of distinct modalities gives birth to im-

mersive experiences that transform raw data into consumable content. Of particular

interest is video content, a rich fusion of visual, auditory, and semantic (narrative)

elements that engage consumers in multidimensional ways and with a temporal as-

pect that extends its delivery beyond the instant at which it is first viewed. It is

within this framework that we embark on an exploration of these primary modal-

ities, looking to understand how each contributes uniquely to the memorability of

the content.

The Visual Modality

The visual modality, a core aspect of video content, plays a significant role in our per-

ception and comprehension of the vast majority of media. It embodies the dynamic

and static aspects of the visual elements in a video—movement, colour, contrast,

composition, etc. Numerous studies suggest that visual characteristics directly influ-

ence viewers’ attention, emotion, and consequently, memorability [150], [188]. The

hypothesis under investigation in this chapter suggests that the visual modality, in

alignment with our natural proclivity towards vision as a primary sensory input,

exerts a commanding influence on memorability, and accordingly its prediction.

Auditory Signals

The auditory aspect of videos, although not as direct or explicit as the visual com-

ponent, has a nuanced and pervasive impact on viewer experience and memory.

The distinct contributions of audio within a video—speech, music, or environmental

sounds—each interact differently with the viewer’s cognition. Speech provides an

important semantic context [189] while music and sound effects or background noise

can dramatically influence the mood, and thus, the recall of the video content [190].
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Textual Information

In the context of videos, the textual modality, often represented as captions or

subtitles, plays a subtle yet essential role. Beyond their utility for accessibility,

textual elements provide an additional layer of semantic understanding, potentially

enhancing the memorability of the content. Studies reveal that reading subtitles can

impact the recall of video content [191], suggesting that textual data is a noteworthy

player in the memory game.

The Confluence of Modalities

When these modalities intertwine within the structure of a video, they create an

environment of complex intermodal dependencies. Not only do they individually

contribute to memorability, but their interplay forms a multifaceted, dynamic sys-

tem that shapes our memory. Importantly, this intermodal interaction is not static,

but unfolds over the temporal dimension of the video content. There could be

moments in the video where one modality, such as auditory information, provides

context to another, like visual data, thereby affecting the memorability of that in-

stance. It is also plausible that specific temporal characteristics or distinctive points

in the video where conceptual understanding peaks, might significantly influence its

memorability. While these temporal interactions are not a given, their potential

existence and role align with our sequential and evolving interaction with the world.

Therefore, the investigation of modalities’ contributions to memorability should not

only consider their individual impacts and synergistic interactions but also the pos-

sibility of crucial temporal dynamics within their interplay over the course of the

video content.

4.2 Video Memorability Datasets

In the endeavour to decipher the effects of modalities on video memorability, two

comprehensive and distinctive datasets are relied upon. The first is the Memento10k
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dataset, a broad collection of real-world short video clips [192]. The second is a

subset of the TRECVid 2019 Video-to-Text dataset [193], with added annotations

as part of the 2021 MediaEval Predicting Media Memorability task.

4.2.1 TRECVid 2019 Video-to-Text Dataset

The TRECVid 2019 Video-to-Text dataset [193] contains 6,000, ∼ 6 second, videos

and was used as part of the TRECvid evaluations in 2019. As part of the 2021

MediaEval Predicting Media Memorability task [194], three subsets of this larger

dataset were annotated with memorability scores and distributed to participants in

the MediaEval task. The training set encompassed 588 videos, providing a founda-

tion for initial modeling. The development set, composed of 1,116 videos, served to

iteratively refine models. Finally, the test set, including 500 videos, was employed

to evaluate the participant models’ performance and accuracy in predicting memo-

rability. A unique feature of this dataset is that each video is associated with two

memorability scores. These scores reflect the likelihood of a video being remem-

bered after two distinct periods of memory retention: short-term, a few minutes

after viewing, and long-term, 24 to 72 hours after the initial viewing. These scores

were obtained through a unique variant of the subsequent memory paradigm (dis-

cussed further in section 5.1), dubbed the “video memorability game”, proposed by

Cohendet et al. [147].

Two versions of the memorability game were carried out, one was made available

on Amazon Mechanical Turk (AMT), and the other hosted on a private server and

made available by direct recruitment—an audience essentially made up of students.

The game consisted of two phases, a short-term memorisation and recognition phase,

and a long-term recognition phase. In the short-term phase, participants were ex-

pected to watch 180 videos. The game starts with 20 vigilance fillers which are

repeated after a few seconds to ensure that participants are paying attention to the

task, then 40 target videos are mixed in with 60 non-target fillers and repeated over

the course of a few minutes. The goal was for them to press the space bar whenever
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they recognised a previously seen video generating binary “recognised/not recog-

nised” short-term memorability annotations. After a period of 24 to 72 hours, the

same individuals returned for the long-term recognition phase. This time, they were

shown a selection of 120 videos. Among these were 40 target videos chosen at ran-

dom from the non-target fillers used in the first phase, as well as 80 fillers chosen

from new videos. The goal was the same, and binary long-term memorability “recog-

nised/not recognised” long-term memorability annotations were collected. The final

short-term and long-term memorability scores were calculated as the percentage of

correct recognition for each video.

4.2.2 Memento10k

Memento10k memorability scores were collected through “Memento: The Video

Memory Game”, a memorability experiment predicated on the old-new subsequent

memory recognition paradigm, where crowdworkers from Amazon’s Mechanical Turk

(AMT) watch a continuous stream of three-second video clips, and are asked to press

the space bar when they see a repeated video. To maximise the pace and keep the

experiment engaging, videos are shown as a continuous stream. When participants

press their spacebar, they receive either a red (incorrect) or green (correct) flash as

feedback. If a repeat is correctly identified, known as a “hit”, the stream skips ahead

to the next video; there is no feedback for missed repeats. Each level of the memory

game contains on average 204 videos (with repeats) and lasts ∼ 9 minutes. The

number of intervening videos between the first and second occurrence of a repeated

video is known as the “lag”. The game consists of “vigilance” repeats that occur at

short lags of 2-3 videos and are used to filter out inattentive workers and “target”

repeats at lags of 9-200 videos that provide memorability annotations. The Me-

mento10k dataset [192] consists of 10,000 three-second videos depicting in-the-wild

(filmed by non-professionals for social media/home videos) scenes, each with asso-

ciated short-term memorability scores, memorability decay values (indicating the

rate at which memorability scores decrease over time), action labels (e.g., running,
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jumping, singing, etc.), and five human generated captions (descriptions of what is

depicted in the video). The memorability scores were computed with an average

of 90 annotations per video, and the videos were silenced before being shown to

participants. 7,000 videos were released as part of the training set, and 1,500 were

provided for validation. The remaining 1,500 videos were kept for the official test

set.

4.3 Training Modality Specific Models

4.3.1 Visual Training

For the visual approach, two methods and several training procedures were im-

plemented depending on the dataset. For the first method a Bayesian Ridge Re-

gressor (BRR) was fit with default sklearn [195] parameters using DenseNet121

[196] features, which were extracted from the first frame of either the TRECVid

or Memento10k dataset. For the second method we used an ImageNet-pretrained

xResNet50 [197] that was either fine-tuned (for 50 epochs, with a maximum learn-

ing rate of 1e-3, and weight decay of 1e-2) on the Memento10k training data and

then further fine-tuned (for 10 epochs, with a maximum learning rate of 3e-2, and

weight decay of 1e-1) on the TRECVid development set videos, fine-tuned on the

Memento10k development data, or fine-tuned on the LaMem [198] dataset (the very

first large scale image recognition memorability dataset consisting of 60,000 images

from a diverse array of sources) depending on chosen test dataset. The videos in

the Memento10k dataset are each three seconds in duration and predominantly de-

pict a single scene, leading to minimal narrative changes between the initial and

final frames. However, the quality and resolution of the videos are relatively low,

often resulting in intermediate frames that are shaky, blurry, or otherwise distorted.

To mitigate the risk of using a distorted frame as a representative example of high

memorability during the training phase. This approach ensures that the model is

trained with the most clear and representative frame available. Nevertheless, at the
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testing stage, it is crucial to consider the potential impact of low-quality frames on

the overall assessment of video memorability. As a result, the recognition memora-

bility score of a video is determined by averaging the predictions made for the first,

middle, and last frames.

4.3.2 Textual Training

For the textual approach, a caption model was implemented, the AWD-LSTM

(ASGD Weight-Dropped LSTM) architecture [199], which is a highly regularised

and competitive language model. Transfer learning was used in order to fully avail

of the high-level representations that a language model offers. The specific transfer

learning method employed was UMLFiT [200], which uses discriminative fine-tuning,

slanted triangular learning rates, and gradual unfreezing. The language model was

pre-trained on the Wiki-103 dataset, and fine-tuned (for 10 epochs, with a maximum

learning rate of 2e-3, a weight decay of 1e-2, and a dropout multiplier of 0.5) on

the first 300,000 captions from Google’s Conceptual Captions dataset [201]. The

encoder from that fine-tuned language model was then used in each of the caption

models, which were either trained (for 15 epochs, with a maximum learning rate

of 1e-3, a weight decay of 1e-2, and a dropout multiplier of 0.8) on a paragraph of

all five Memento10k training captions, a paragraph of all five Memento10k training

captions that were augmented with audio tags extracted using the PANNs [202]

network, or additionally fine-tuned on the first TRECVid development set captions

to predict memorability scores rather than the next word in a sentence.

4.3.3 Auditory Training

For auditory features, one of two methods, and several training procedures de-

pending on the dataset, were implemented. For the first method Mel-frequency

cepstral coefficients (n fft:2048, hop length:256, n mels:128) were extracted from

training videos, and stacked with their delta coefficients in order to create three

channel spectrogram images. These spectrogram images were then used to train an
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ImageNet-pretrained xResNet34 model for 15 epochs with a max learning rate of

1e-2 and weight decay of 1e-3 to predict audio recognition memorability. For the

second method, a Bayesian Ridge Regressor with VGGish [203] audio features was

fitted. 128-dimensional embeddings for each second of video audio were extracted,

resulting in a 384-dimensional feature set per video.

4.4 Modality Specific Model Performance

Since its inception in 2018, the MediaEval Predicting Media Memorability bench-

marking task [204]–[208] has driven much of the state-of-the-art work video memora-

bility prediction. Each year organisers of the task share a collection of videos among

participants who are asked to compute and submit runs which predict the memora-

bility score of each video in the collection. Once runs are submitted, the organisers

compare the participants’ submitted runs against human annotated, ground-truth

memorability scores, and announce performance evaluation metrics for each partici-

pant’s runs. The task has run for five years and has led to significant incremental im-

provements in the performance of automatic memorability prediction for short form

videos. The integration of deep visual features with semantically rich attributes,

such as captions, emotions, and actions, has been identified as a particularly effi-

cacious strategy for predicting video memorability [209]–[211]. This confluence of

modalities not only amplifies prediction precision but also furnishes a comprehen-

sive perspective on the myriad factors that collectively shape video memorability.

Results discussed in this section are from the 2021 task, where a Spearman’s rank

correlation score of p=0.658 [212] on the Memento10k dataset was state-of-the art

for short-term video memorability prediction. Current state-of-the-art on the Me-

mento10k dataset is a Spearman’s rank correlation score of p=0.724, achieved by

my ConceptualDream framework, and discussed in further detail in chapter 7.
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Table 4.1: Results for models tested on the MediaEval2021 Predicting Video Mem-
orability TRECVid test set (other participant runs included for reference).

Short-Term Long-Term
Approach Spearman Pearson Spearman Pearson

Visual

BayesianRidge Dense121 0.053 0.071 - 0.007 -0.18
xResNet50 Frames 0.105 0.13 -.021 -.036

Textual

AWD-LSTM Captions 0.043 0.037 0.071 0.059
AWD-LSTM AUG Captions 0.02 0.026 0.065 0.058

Auditory

xRestNet50 Audio Spectrograms 0.054 0.044 0.113 0.121
BayesianRidge VGGish 0.056 0.039 0.108 0.088

MediaEval2021 Participants

GTHUPM [213] 0.291 0.305 0.125 0.124
Erika [214] 0.132 0.139 0.11 0.116

HCMUS [215] 0.101 0.11 0.059 0.067
AIMMLAB [216] 0.297 0.312 0.097 0.114
MeMAD [212] 0.222 0.214 0.063 0.098

Examining Table 4.1, which shows the results of the models on the MediaE-

val2021 TRECVid test set measured using Spearman rank correlation score, we see

a rather mixed picture. For visual modality models, the xResNet50 Frames (Spear-

man p=0.105) slightly outperforms the BayesianRidge Dense121 model (Spear-

man p=0.053). In the textual category, the AWD-LSTM Captions model (Spear-

man p=0.043) performs marginally better than its augmented version (Spearman

p=0.02). Intriguingly, for long-term memorability, the best performing model is

within the auditory category, the xRestNet50 Audio Spectrograms model (Spear-

man p=0.113), albeit with relatively low scores. This table’s results, coupled with

unusually low Spearman scores, hint at potential data quality issues within the

TRECVid dataset. Table 4.2 presents the results for the Memento10k validation set

where we observe a marked improvement in results. In the visual modality, Bayesian-

Ridge Dense121 (Spearman 0.524) leads, closely followed by the xResNet50 Frames

model (Spearman 0.446). Although the textual modality shows an improvement
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Table 4.2: Results for models tested on the Memento10k test set.

Approach Short-Term (Spearman)

Visual

BayesianRidge Dense121 0.524
xResNet50 Frames 0.446

Textual

AWD-LSTM Captions 0.423
AWD-LSTM AUG Captions 0.410

Auditory

xRestNet50 Audio Spectrograms 0.2030
BayesianRidge VGGish 0.2913

MediaEval2021 Participants

GTHUPM [213] 0.656
Erika [214] 0.628

HCMUS [215] 0.516
AIMMLAB [216] 0.648
MeMAD [212] 0.658

from TRECVid results with AWD-LSTM Captions (Spearman 0.423), it still lags

behind the visual models. Interestingly, the auditory modality, with xRestNet50 Au-

dio Spectrograms (Spearman 0.203) and BayesianRidge VGGish (Spearman 0.291),

lands at the bottom of this set, suggesting that audio might not be as influential on

this dataset.

Table 4.3 provides insight into model generalisability, containing the results of the

models trained on Memento10k and then tested on the TRECVid test set. Across

all modalities, we observe a significant drop in performance when models trained on

one dataset are tested on the other, indicative of the models’ limited generalisability.

For instance, the BayesianRidge Dense121 model in the visual modality falls from

Spearman 0.524 (Memento10k test set) to 0.256 (TRECVid test set).

Drawing from these results, we can discern certain patterns that emerge. The vi-

sual modality consistently outperforms other modalities in both datasets, evidenced

by the higher Spearman scores in Table 4.2 (Memento10k test set) and the relative

performance in Table 4.3 (TRECVid test set). This trend is observed even when the

06/09/2023



4.5. MULTIMODAL VIDEO MEMORABILITY PREDICTION

Table 4.3: Results for models trained on Memento10k and tested on the MediaE-
val2021 TRECVid test set.

Approach Short-Term (Spearman)

Visual

BayesianRidge Dense121 0.256
xResNet50 Frames 0.132

Textual

AWD-LSTM Captions 0.114
AWD-LSTM AUG Captions 0.106

Auditory

xRestNet50 Audio Spectrograms 0.018
BayesianRidge VGGish 0.021

MediaEval2021 Participants

AIMMLAB [216] 0.091

models are transitioned from the Memento10k to the TRECVid dataset, indicating

a consistent pattern of the visual modality’s dominance in memorability prediction.

Interestingly, despite the significant drop in absolute performance when moving

from the Memento10k validation set to the TRECVid test set, the relative perfor-

mance across different modalities remains consistent. This consistency suggests that

the underlying factors affecting the predictability of memorability across modalities

hold stable, irrespective of the dataset. Therefore, while data quality issues1 with

the TRECVid dataset may have affected the absolute scores, they do not appear to

disrupt the relative pattern of modality performance. Taken together, these findings

underscore the power of the visual modality in memorability prediction while also

revealing enduring challenges in developing models that perform consistently well

across different datasets.

4.5 Multimodal Video Memorability Prediction

We evaluate the utility of including the audio modality in short-term video “recog-

nition memorability” prediction, and assess a proposed gestalt based video memo-

1See Appendix 1 for detailed discussion of data quality issues with the TRECVid dataset
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rability prediction system2 by benchmarking it on the Memento10k dataset [192],

comparing it to state-of-the-art solutions3. The contributions are two-fold: A) we

assess the influence of the audio modality on video memorability, and B) we pro-

pose a multimodal deep learning-based late fusion system that uses audio gestalt

to estimate the influence of the audio modality on overall video memorability, and

selectively leverage audio features accordingly.

Figure 4.1: Multimodal deep-learning based late fusion framework, using a condi-
tional audio gestalt based threshold.

The system is a multimodal deep-learning based late fusion framework that

uses an audio gestalt conditional mechanism to predict short-term video recogni-

2https://github.com/lorinsweeney/audio gestalt video memorability
3This work was conducted in 2020 before the aforementioned MediaEval2021 task, and the only

Spearman’s rank score published was p=0.663, by the authors of the Memento10k dataset
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tion memorability (Figure 4.1). Depending on an audio gestalt threshold (0.8), one

of two pathways—without audio, using textual and visual features; and with audio,

using textual, visual, and auditory features—is used to predict a video’s recogni-

tion memorability score. The without audio stream’s predictions are the weighted

sum of the Frame model (0.38), and Caption model (0.62), while the with audio

stream’s predictions are the weighted sum of the Frame model (0.4), Augmented

Caption model (0.47), and Spectrogram model (0.13). Both the weightings of the

models’ predictions and the gestalt threshold are determined using Randomised

Search Cross-Validation (RSCV) from 0 to 1, in increments of 0.01.

4.5.1 Audio Gestalt

The Gestalt principles (Figure 4.2) were first introduced by German Psychologists

Max Wertheimer, Kurt Koffka and Wolfgang Kohler in 1928 [217], and continue to

be relevant in modern psychology. Traditionally thought of as rules that characterise

the organisation of visual scenes—helping us understand them better—the Gestalt

principles of similarity ; connectedness ; common region; spatial proximity [218], and

goodness [219] have been shown to benefit visual recognition memorability.

Figure 4.2: Gestalt principles of visual organisation
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The very first usage of the term Gestalt was in 1890 in [220], which observed that

humans can recognise two identical melodies even when no two corresponding notes

have the same frequency. It was suggested that this property indicated the presence

of a “Gestalt quality”—a conceptual characteristic that assists our “big picture”

understanding of complex sensory data composed of many different parts. Unfortu-

nately, since then, few insights intersecting audio gestalt and other well established

audio properties have been discovered. The concept of gestalt in the context of audio

was recently reintroduced by [185], using the term gestalt to encapsulate high-level

conceptual audio features. They found the following gestalt features: imageability

(the ease with which a mental image of the audio source can be evoked); human

causal uncertainty (Hcu, the degree of ambiguity or confusion experienced regard-

ing the cause or origin of a specific sound); arousal (the emotional intensity of the

audio); and familiarity (how frequently the audio is heard, e.g., your doorbell), to

be strongly correlated with audio memorability. I aim to practically apply these

findings with the goal of elucidating the role of audio in overall video recognition

memorability.

An audio gestalt predictor was built using a weighted sum of the proxy measures

for these four features. RSCV between 0 and 1 in increments of 0.05 were used

to determine each of the weights. Due to the strong negative correlation between

sound imageability and musicality [221], imageability was predicated on whether the

audio is classified as music or not. The PANNs [202] network was used to generate

audio-tags, labelling the audio as music (giving it a score of 1.0) if a musical tag

is present in the top 75% confidence. Hcu and arousal scores were independently

predicted with ImageNet-pretrained xResNet34 models fine-tuned on spectrograms

from the HCU400 dataset [179]. Due to limited available options, for familiarity, the

top audio-tag confidence score of the PANNs [202] network (a large-scale pre-trained

audio classification neural network) was used as a proxy (Spearman = 0.305, pval =

4.749e-10 between the two scores in the HCU400 dataset). These four scores were

then normalised (scaled into a 0-1 range), and a weighted score (with weights of 0.2,
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0.2, 0.2, and 0.4 respectively) was calculated to produce an audio gestalt score.

Figure 4.3: Distribution of gestalt related audio features from 1,468 validation
videos.

4.5.2 Auditory Features

For auditory features, a network was trained to predict a video’s recognition mem-

orability from audio spectrograms—the Spectrogram model. Mel-frequency cepstral

coefficients (n fft:2048, hop length:256, n mels:128) were extracted from the 6,890

Memento10k [192] training videos with audio, and stacked with their delta coef-

ficients in order to create three channel spectrogram images. These spectrogram

images were then used to train an ImageNet-pretrained xResNet34 model for 15

epochs with a max learning rate of 1e-2 and weight decay of 1e-3 to predict audio

recognition memorability. Additionally, a Bayesian Ridge Regressor was fitted with

VGGish [203] audio features—the Bayesian Ridge model. 128-dimensional embed-

dings for each second of video audio were extracted, resulting in a 384-dimensional
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feature set per video.

4.5.3 Visual Features

We evaluated the extent to which static visual features contribute to video recogni-

tion memorability by training a network to predict a video’s recognition memora-

bility from the first frame—the Frame model. We trained an ImageNet-pretrained

xResNet50 to predict image recognition memorability by first training on the LaMem

dataset [198] for 50 epochs with a maximum learning rate of 3e-2 and weight de-

cay of 1e-2, and then fine-tuning on those 6,890 Memento10k [192] training videos

which have audio with the same hyperparameters. At test time, a video’s recogni-

tion memorability score was calculated by averaging predictions of the first, middle,

and last frames.

4.5.4 Textual Features

For textual features, we trained a network to predict a video’s recognition memo-

rability from a paragraph of text composed of five captions generated by five inde-

pendent humans—the Caption model. Given that overfitting is a primary concern

(due to limited variability inherent in short captions), we used the AWD-LSTM

(ASGD Weight-Dropped LSTM) architecture [199], as it is highly regularised and

is comparable to other state-of-the-art4 language models. In order to take full ad-

vantage of the high level representations that a language model offers, the model

was transfer trained using UMLFiT [200], a method that uses discriminative fine-

tuning (applying varying learning rates for different layers of a neural network),

slanted triangular learning rates (a learning rate scheduling technique that employs

a short initial increase followed by a longer gradual decrease in the learning rate),

and gradual unfreezing (layers are sequentially “unfrozen” and fine-tuned) to avoid

catastrophic forgetting.

4At the time of these experiments, circa October 2020, the chosen architecture was SOTA, but
that is no longer the case, and there are much more capable models available

06/09/2023



4.5. MULTIMODAL VIDEO MEMORABILITY PREDICTION

A Wiki-103-pretrained language model was fine-tuned on the first 300,000 cap-

tions from Google’s Conceptual Captions dataset [201] for a total of 10 epochs with a

dropout multiplier of 0.5 and max learning rate of 2e-3, resulting in a final language

model accuracy of 37% (on the task of predicting the next word in a caption). The

encoder from that model was re-used in another model of the same architecture, but

trained on captions from the 6,890 Memento10k [192] training videos with audio, for

a total of 15 epochs with a dropout multiplier of 0.8 and a max learning rate of 1e-3,

to predict recognition memorability scores, rather than the next word in a sentence.

An additional network was trained the same way, but fine-tuned on captions that

were augmented with audio tags extracted using the PANNs [202] network—the

Augmented Caption model.

In all cases, models were independently trained on those 6,890 Memento10k train-

ing set videos with audio, and independently validated on those 1,484 Memento10k

validation videos with audio. All parameter tuning (e.g. RSCV) was performed

using the Memento10K training set.

4.5.5 Results

Table 4.4 shows the Spearman rank correlation scores of the individual components

of the audio gestalt system, and many of their combinations, and the final imple-

mentation of the audio gestalt system on those 1,484 Memento10k validation videos

with audio. The best performing individual component was the Caption model,

achieving a Spearman score of 0.5710. Each of the component combinations are

the result of a randomised search weighted summation of their predictions, with

the best straightforward combination being Captions + Frames (p=0.6175). The

audio gestalt based system was the best overall performing approach, achieving a

Spearman score of 0.6181.

To evaluate the effectiveness of the approach, it was compared against the Me-

mento10k benchmark scores3 [192]. From Table 4.5 we can see that the audio

gestalt based approach outperforms all other approaches except SemanticMemNet
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Table 4.4: Results on 1,484 Memento10k validation videos with audio.

Memorability

Approach Spearman

Spectrogram 0.2030
Bayesian Ridge 0.2913
Frames 0.4808
Frames + Spectrogram 0.4876
Frames + Bayesian Ridge 0.4992
Captions 0.5710
Captions + Spectrogram 0.5715
Captions + Bayesian Ridge 0.5741
Augmented Captions 0.5555
Augmented Captions + Spectrogram 0.5562
Augmented Captions + Bayesian Ridge 0.5576
Augmented Captions + Frames 0.6068
Captions + Frames 0.6175
Everything Ridge 0.6066
Everything Spectrogram 0.6061
Audio Gestalt Ridge Normal Captions 0.6175
Audio Gestalt Spectrogram Normal Captions 0.6176
Audio Gestalt Ridge 0.6181
Audio Gestalt Spectrogram 0.6181

[192]—the framework introduced alongside the Memento10k dataset, which employs

a three-stream encoder, processing distinct input modalities: raw frames, the video

considered as a cohesive 3D unit, and the 3D optical flow derived from the video.

Human Consistency, as mentioned previously in chapter 3, is the Spearman’s rank

correlation between two random halves of the ground-truth human memorability

annotations. MemNet is typically used as a baseline by averaging its predictions

across a frame sampling of 1 frame per second [192], and serves as a good point of

initial comparison.

With respect to the results in Table 4.4, the general trend for predicting video

recognition memorability seems to be that the more modalities used, the better

the predictions. Even the addition of a poorly-performing individual audio model

(0.2913) with a better-performing individual visual model (0.4808), produces an in-

crease in performance (0.4992). There are however, some very important exceptions

to this trend. Indiscriminately tri-modal approaches (those which simply employ the
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Table 4.5: Comparison of state-of-the-art on Memento10k. *Trained and validated
on fewer videos due to audio constraint, 7,000 vs. 6,890 and 1,500 vs. 1484 respec-
tively.

Memorability

Approach Spearman

Human Consistency 0.730
MemNet Baseline [198] 0.485
Cohendet et al. (Semantic) [222] 0.552
Cohendet et al. (ResNet3D) [222] 0.574
Feature Extraction + Regression (as in [223]) 0.615
SemanticMemNet [192] 0.663
Audio Gestalt 0.618*

with audio stream of the framework irrespective of audio gestalt scores), Everything

Ridge (0.6066) and Everything Spectrogram (0.6061), achieve lower Spearman scores

than the bi-modal combination of visual and textual predictions (0.6175), and their

selectively tri-modal counterparts (0.6181).

At first glance, it appears that augmenting captions with audio-tags performs worse

than vanilla captions, Augmented Captions (0.5555) vs. Captions (0.5710); Aug-

mented Captions + Spectrogram (0.5562) vs. Captions + Spectrogram (0.5715);

Augmented Captions + Bayesian Ridge (0.5576) vs. Captions + Bayesian Ridge

(0.5741); Augmented Captions + Frames (0.6068) vs. Captions + Frames (0.6175),

however, when selectively used in the audio gestalt system (0.6181), they outperform

vanilla captions (0.6175).

4.6 Discussion

Aside from SemanticMemNet, the audio gestalt based system outperforms all of

the other tested approaches. Even though the advantage incurred is only marginal,

selectively including audio features (0.6181) is ultimately better than both always

including them (0.6066), and not including them (0.6175). I believe that this can

in part be explained by the fact that sounds have the potential to provide valu-

able contextual priming information [184], but that some sounds simply add noise,
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having a deleterious effect on overall understanding of a context. Thinking of au-

dio gestalt as an ontological property that encapsulates high-level auditory features

that positively contribute towards the understanding of a context, helps explain the

benefit of using it as a measure to discriminate between useful and distracting audio

in multimodal content. The effect of different gestalt thresholds is shown in Figure

4.4.

Figure 4.4: Effect of gestalt thresholds on Spearman scores of 1,468 Memento10k
validation videos.

It is interesting to note that there is no difference in Spearman score between

Audio Gestalt Spectrogram (0.6181) and Audio Gestalt Ridge (0.6181), even though

the Bayesian Ridge achieves a noticeably higher Spearman score (0.2913) than the

Spectrogram model (0.2030). This indicates that the inclusion of auditory features

is not strictly additive, and further suggests that they may act as a contextual signal

of some sort.

In [185], the authors found that the strongest predictors of sound recognition

memorability were imageability, and causal uncertainty (Hcu). Naturally, we would

expect the audio gestalt weightings to reflect this to some degree, but we found that
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the highest weighted audio gestalt feature is familiarity (top audio-tag confidence

score). The gestalt weightings for imageability; Hcu; familiarity; and arousal, are

0.2; 0.2; 0.4; 0.2 respectively. As shown in Figure 4.3, familiarity is the only audio

gestalt feature with a bi-modal distribution. Both arousal and Hcu are heavily left

skewed, leading us to believe that the models used to predict their scores have been

overfit, and accordingly, there is considerable room for refinement and improvement.

4.7 Conclusion

As the exploration of the complex threads of multimodal memorability concludes,

they unspool to reveal valuable insights. There is some empirical support for the

first hypothesis (H1), suggesting that memory and memorability are inherently mul-

timodal. The interaction of sensory modalities is evident in the performance of the

audio gestalt regulated deep learning-based late fusion system, with its selective use

of audio features fortifying the prediction of short-term video memorability, even

when originating from an independently less successful audio model. The audio

modality’s influence on video recognition memorability positions it as a contextual

element with potential as a recognition aid, depending on the extent of its high-level

features. These findings strengthen the proposition that recognition memorability

is closely linked with high-level perceptual properties of content, rather than with

low-level properties, and that this relationship extends beyond the visual domain.

Nonetheless, understanding of the full extent of the audio modality’s role in

short-term video recognition memorability remains incomplete. The interplay be-

tween a video’s auditory and visual content might significantly impact its overall

memorability. To fully comprehend this interaction, further experimental investiga-

tion is necessary, including refining the measure of audio gestalt. Future research

should focus on generating independent memorability scores for each modality—

audio, visual, and textual. These metrics could elucidate the roles each modality

plays within a multimodal medium like video.

The second hypothesis (H2) examined the role of visual sensory data in mul-
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timodal memorability prediction. This hypothesis was inspired by the established

prominence of the visual cortex in how humans interact with the world. The inves-

tigation tentatively confirmed the substantial influence of the visual domain, while

simultaneously highlighting the powerful roll of textual features. However, it is con-

ceivable that the difference between domains can be accounted for by the quality

of their encoding method. The textual results suggest that when semantics are iso-

lated, such as in textual descriptions or captions, they can account for a significant

portion of a video’s memorability without direct sensory perception of the video

content itself. Thus, while the findings give weight to the influence of the visual

domain, they simultaneously hint at the potentially amodal nature of memorabil-

ity, suggesting its less of a direct product of single modality, but a fine interplay of

sensory inputs, and possibly pointing to an abstraction that sits beyond the grasp

of senses.
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Chapter 5

Neurally Informed Measures of

Memory

“The moments of the past do not remain still; they retain in our

memory the motion which drew them towards the future, towards a

future which has itself become the past, and draw us on in their train.”

— Marcel Proust, In Search of Lost Time

Although the nature and constitution of people’s memories remains elusive, and our

understanding of what makes one thing more or less memorable than another is still

nascent, combining computational (e.g., machine learning) and neurophysiological

(e.g., electroencephalography; EEG) tools to investigate the mechanisms of memory

has the potential to offer insights that would be otherwise unobtainable. While

EEG is not a tool that can directly explain the factors that make an experience

more or less memorable, it can help us trim the umbral undergrowth surrounding

the subject, and offer a potential leap forward in our understanding of the interplay

between the mechanisms of memory and memorability.

The use of EEG has proven to be an effective tool in the investigation of the

neural mechanisms that underpin memory formation and recall. Its ability to non-

invasively capture real-time neural activity provides insight into the timing and

general location of these cognitive processes [224]–[227]. Even though the application
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of machine learning to EEG is an active area of interest—enabling the classification

of various cognitive states and processes, such as emotion [228], and mental tasks

[229], and sleep stages [230], and the automation or augmentation of neurological

diagnostics [231]–[234]—the use of EEG to predict visual memorability has been

limited to static stimuli such as images [235], leaving video entirely unexplored.

5.1 The Subsequent Memory Paradigm

The subsequent memory paradigm, a more direct measure of memory performance,

heralds a natural evolution of the traditional behavioural and introspective recall

experimental paradigms outlined in chapter 4. It rests on the principle of identifying

neural activity associated with successful memory formation at the time of experi-

ence, thereby providing unique insights into the encoding processes that determine

whether an event will be remembered or forgotten. Here, we delve into the intrica-

cies of this paradigm, reflecting on its benefits, limitations, and key findings, while

situating it within the broader narrative of memory research.

The subsequent memory paradigm has its roots in Event-Related Potential (ERP)

studies. The method involved recording electrical brain activity via EEG while par-

ticipants were presented with a series of stimuli. Later, the stimuli were sorted into

those that would be remembered versus those that would be forgotten, based on

participants’ performances on a subsequent memory test—any recognition or recall

task [225], [226]. A shift was seen with the advent of functional Magnetic Reso-

nance Imaging (fMRI), where higher spatial resolution allowed for the identification

of specific regions associated with successful memory encoding, notably the Medial

Temporal Lobe (MTL) and the Prefrontal Cortex (PFC) [66], [67]. The use of the

subsequent memory paradigm offers several benefits. Firstly, it provides a more

direct measure of memory performance than other techniques. Instead of relying

on participants’ ability to recall or recognise stimuli, it looks at the neural activity

associated with successful memory formation. This allows for an examination of

the encoding processes that lead to successful memory formation, offering a more
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complete picture of how memory works. Moreover, this paradigm allows for the

examination of individual differences in memory performance. By comparing neu-

ral activity during successful and unsuccessful memory encoding, it is possible to

identify the neural correlates of these individual differences, which has far-reaching

implications for understanding memory disorders and cognitive decline.

However, the subsequent memory paradigm is not without its limitations. One

key challenge is the need for large amounts of data. Due to the inherent variabil-

ity in neural responses and memory performance, many trials with participants are

needed to obtain reliable results. Moreover, identifying the precise temporal dynam-

ics of memory encoding processes can be difficult with techniques like fMRI, which

have excellent spatial resolution but relatively poor temporal resolution. Several

key findings have emerged from studies using the subsequent memory paradigm.

For instance, it has been found that neural activity in the PFC and MTL is higher

for stimuli that are later remembered than for those that are later forgotten [66],

[67]. This suggests that these regions play a critical role in memory encoding. In ad-

dition, recent studies have shown that memorability and subsequent memory show

dissociable neural substrates, with memorability effects consistently emerging in the

MTL, and individual subsequent memory effects in the PFC [236]. The subsequent

memory paradigm represents an evolution from traditional recall experiments, offer-

ing a unique window into the neural underpinnings of memory formation. Despite

the challenges that it presents, this paradigm holds great promise for the future of

memory research, providing unprecedented insights into the complex mechanisms

that transform our experiences into lasting memories.

5.1.1 EEG Data Acquisition

In a typical subsequent memory experiment, participants are exposed to a series of

stimuli during an initial encoding phase while their brain activity is recorded using

EEG. Data acquisition is commonly carried out using two computers, one to run the

experiment code and present the stimuli, and the other for recording and monitoring
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participant EEG data. A typical setup is shown in Figure 5.1. The stimuli are gen-

erally simple words or images, selected according to the research question at hand.

When displaying stimuli sequences to participants, a timestamp for each stimulus

must be recorded and aligned with the multi-channel time-series EEG recording

captured on the acquisition computer. These timestamps are commonly referred to

as markers. The EEG recording process begins with the placement of electrodes

on the scalp, a setup often guided by the International 10-20 system that ensures

standardised electrode placement across subjects and studies. During the encoding

phase, EEG data is continuously recorded and later divided into epochs correspond-

ing to individual stimuli presentations. An epoch typically includes a pre-stimulus

baseline period and extends to several hundred milliseconds or even seconds post-

stimulus, covering the full duration of the brain’s response to the presented stimulus

[20].

EEG AmplifierParticipant

Presenting
Images

Inputing
Responses

EEG Data
Aquisition

Sending Triggers

Presentation Machine Acquisition Machine

EEG Data Recording

Figure 5.1: Typical EEG data acquisition setup.
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5.1.2 ERP Component Analysis in Subsequent Memory

Experiments

Following initial EEG data acquisition, researchers turn their attention to identifying

and analysing distinct ERP components. ERPs are examined through the averaged

time-locked EEG responses to the onset of stimuli and provide an invaluable means

of probing the temporal dynamics of cognitive processes. The ERP components

of primary interest in subsequent memory experiments include the P300, the Late

Positive Component (LPC), and the FN400, all of which have been consistently

associated with memory encoding and retrieval processes. The P300 component

is a positive deflection in voltage that occurs approximately 300 milliseconds after

the presentation of a stimulus, particularly when that stimulus is unexpected or

infrequent [237]. The P300 is thought to reflect cognitive processes such as attention

and memory, with larger P300 amplitudes generally associated with more cognitive

resources being devoted to processing the triggering stimulus [238].

The P300 component is comprised of sub-components, namely, P3a and P3b.

The P3a component is often associated with the processing of novel or unexpected

stimuli and is thought to reflect the orienting of attention towards these stimuli

[237]. It is typically observed as a fronto-central positivity occurring approximately

250-280 milliseconds after stimulus onset. The P3a is thought to be generated by the

frontal cortex, especially the prefrontal and anterior cingulate cortices, suggesting a

role in the evaluation of stimulus saliency and decision-making [239]. On the other

hand, the P3b sub-component is more related to the process of stimulus evaluation

and categorisation. It emerges as a parietal positivity between 300-500 milliseconds

post-stimulus [240]. The P3b is thought to reflect the updating of working memory

representations and the allocation of attentional resources, as larger P3b ampli-

tudes have been correlated with improved performance on memory tasks [237]. The

other noteworthy ERP component in the context of memory and the subsequent

memory paradigm is the Late Positive Component (LPC). This component, which
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peaks 500-800 milliseconds post-stimulus, has been found to be associated with the

recognition of previously presented items, thus suggesting a role in the depth of

memory processing [241]. Studies have also demonstrated that larger LPC ampli-

tudes correspond to better recognition memory performance, reinforcing the link

between the LPC and episodic memory [242]. The FN400, a distinct ERP com-

ponent, is also particularly intriguing due to its clear association with recognition

memory processes. This component, named for its characteristic frontal negativ-

ity peaking around 400 milliseconds after stimulus onset, has been directly linked

with familiarity-based recognition processes. Familiarity-based recognition, a key

aspect of our memory system, allows us to identify an item or stimulus as having

been encountered before, even in the absence of any specific recall of the details sur-

rounding the original encounter [243]. In ERP terms, the FN400 manifests as a less

negative-going waveform for items previously experienced, compared to new items.

This effect, typically observed over fronto-central electrode sites, is often taken as

an index of the engagement of familiarity processes during recognition [244]. In-

triguingly, FN400 effects are often observed irrespective of whether recognition is

accompanied by recollection, the ability to retrieve specific contextual information

about an earlier episode, suggesting that the component indexes processes relatively

independent of recollection [245]. Furthermore, a wealth of studies employing dif-

ferent methodological approaches, including manipulations of memory strength and

tests of associative recognition, have provided converging evidence that the FN400

reflects a relatively automatic process sensitive to the perceptual and conceptual

overlap between a test cue and memory representations formed during study [246].

5.1.3 Data Pre-processing

Pre-processing of some nature is generally a required precursor to any meaning-

ful interpretation or use of EEG data. It not only prepares the data for sub-

sequent analysis, but also plays a significant role in enhancing the reliability of

the findings. The pre-processing pipeline typically involves re-referencing, filtering,
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epoching, trial/channel rejection, and artifact removal. Initially, we re-reference

EEG data, which involves redefining the EEG signal with respect to a new reference

electrode or calculated average. The aim is to minimise the influence of the reference

on the acquired signal and to provide a more accurate estimation of the neural activ-

ity at each electrode [247]. The choice of reference (e.g., common average reference,

mastoid electrodes, or nose tip electrode) largely depends on the research question

at hand, and the topology of the neural activity being studied. Filtering the sig-

nal is the next step. EEG data is generally filtered to retain the frequency band

of interest and to exclude other signals and noise. For instance, a band-pass filter

could be used to exclude slow drifts (low-frequency noise) and high-frequency noise

like muscle activity. Notably, muscle-related artifacts are substantial, owing to the

uncontrolled contraction of facial, neck, and scalp muscles by a subject. These are

mainly present in higher frequencies (above 20 Hz) and can be effectively minimized

with an appropriate high-frequency cut-off [248]. Following filtering, the continuous

EEG data is divided into epochs, which are smaller time windows corresponding to

specific events or stimuli. Epoching facilitates the examination of the EEG data

time-locked to these events, a crucial step for subsequent memory studies, which al-

lows the study of ERPs and oscillatory dynamics around the event [20]. The process

of trial/channel rejection is an integral part of EEG data pre-processing. It involves

the identification and exclusion of corrupted epochs or channels from further analy-

sis. These could arise due to various reasons such as equipment malfunction, subject

movement, or excessive physiological noise. Automated algorithms, as well as man-

ual inspection, are typically employed for this task [249]. Finally, artifact removal

is another critical step. One common type of artifact in EEG data arises from eye

movements and blinks. Given that these eye-related artifacts have a distinct spatial

and temporal pattern, techniques such as Independent Component Analysis (ICA)

have been developed to identify and remove these artifacts. By decomposing the

EEG signal into spatially fixed, temporally independent components, ICA can effec-

tively separate neural signals from artefactual signals, which can then be excluded
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from the data [250].

Before delving into feature extraction from EEG data, it is vital to address some

intrinsic characteristics of EEG signals that could influence the design of an effective

predictive system:

• High-dimensionality: EEG data is high-dimensional because it encompasses

multiple channels (spatial dimension) and numerous time points (temporal

dimension). This vast space introduces a major challenge for model training

as it can lead to overfitting, where the model learns the noise along with the

signal in the training data;

• Limited training sets: EEG subsequent memory paradigms typically involve a

restricted number of participants due to the demanding nature of the setup.

This limitation constrains the volume of available training data, and, in the

high-dimensional space of EEG, it is a major hurdle;

• Overlapping epochs: If a brief inter-stimulus interval (ISI) is used in a sub-

sequent memory paradigm, there can be overlap between adjacent epochs.

This overlap can obscure the distinctiveness of memory-related ERPs, thereby

confounding the feature extraction process;

• Low Signal-to-Noise Ratio (SNR): EEG data is characterised by a low SNR

where the subtle memory-related ERP-effects are often overwhelmed by ongo-

ing EEG background brain activity. This characteristic makes it challenging

to extract reliable, meaningful signals on a single-trial basis [251];

• Imbalanced datasets: In subsequent memory paradigms, the instances of re-

membered and forgotten stimuli are often imbalanced. This disparity intro-

duces bias in the training of predictive models, which could lead to overesti-

mating the performance on the majority class while overlooking the minority

class [252].

Understanding and tackling these inherent properties are pivotal for building an

effective subsequent memory predictive system using EEG data. Possible solutions
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could involve dimensionality reduction techniques, adequate data collection strate-

gies, suitable noise reduction methods, and strategies to handle imbalanced data.

An essential distinction between the subsequent memory EEG paradigm and other

ERP paradigms lies in the necessity for single-trial detection. Conventionally, ERP

analysis computes grand average ERPs by averaging phase-locked activity across tri-

als. This process leads to the attenuation of non-phase-locked or background EEG

activity, thus improving the signal-to-noise ratio (SNR) of the EEG system [20]. In

paradigms like the P300 speller, a desired symbol is represented several times, and

epochs corresponding to each row or column are averaged across trials, further re-

ducing the influence of random background EEG oscillations. However, in the subse-

quent memory paradigm such an approach is not feasible as each presented stimulus

should be unique if it is not a target, and only repeated once otherwise. Conse-

quently, subsequent memory paradigms rely on the detection of memory-specific

ERPs on a single-trial basis. This methodology introduces an added challenge, as

the inherently low SNR of EEG data hampers the reliable detection of discrimi-

native ERP activity [243]. Therefore, the subsequent memory paradigm’s need for

single-trial detection underlines the unique difficulties and requirements associated

with utilising EEG for memory prediction.

5.1.4 Performance Evaluation Metrics

In assessing the predictive power of EEG-based machine learning models, especially

within the confines of subsequent memory experiments, a bouquet of performance

metrics have been cultivated, each offering unique perspectives on model efficacy.

Of these, two in particular emerge as the most popular and robust to target ratio

imbalances.

Area Under the Receiver Operating Characteristic curve (AUC-ROC)

is the most widely used evaluation metric for a wide array of EEG based ma-

chine learning research [228], [233], [253]. It provides a visual representation of a

model’s ability to distinguish between classes—typically “remembered”/“forgotten”
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for subsequent memory paradigms. This curve plots the True Positive Rate (TPR)

against the False Positive Rate (FPR) at various thresholds, allowing us to appraise

a model’s discriminative capacity across these thresholds. A model with perfect

discriminatory power would have an AUC of 1. Conversely, an AUC of 0.5 suggests

the model performs no better than a random classifier [254]. Its utility extends to

the inherent imbalance present in subsequent memory experiments, as AUC-ROC

remains immune to changes in class label distributions. Nevertheless, while the

AUC-ROC provides an excellent overview of a model’s performance, it can obscure

nuances in model behaviour at different thresholds, which may be crucial in certain

applications [255].

Balanced Accuracy (BA), another noteworthy metric, emerges as an anti-

dote to the limitations of traditional accuracy in the presence of imbalanced classes.

The traditional accuracy measure, the ratio of correct predictions to total predic-

tions, tends to exaggerate the performance on the majority class. The BA metric,

however, takes the arithmetic mean of sensitivity and specificity, where sensitiv-

ity ( true positives
true positives+false negatives

) is the proportion of actual positives correctly identified,

and specificity ( true negatives
true negatives+false positives

) is the proportion of actual negatives cor-

rectly identified. This offers a more representative measure of performance across

classes, an attribute crucial in the context of EEG subsequent memory paradigms

[256]. Notably, BA reduces to traditional accuracy for balanced classes. Yet, BA

may mask the distinction between different types of errors; a model with high False

Negatives may have the same BA as a model with high False Positives, making

the choice of the appropriate metric a function of the specific cost associated with

different types of misclassifications in the application at hand.

5.1.5 Feature Extraction Methods

A core challenge inherent in EEG feature extraction methods is finding charac-

teristics of the EEG signal that relate to cognitive responses of interest. Feature

extraction plays a significant role in EEG research as it can drastically alter the
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SNR and classification strategies employed, and ultimately determines the overall

performance of a system.

Spatial Features

Spatial features, derived from the relative positioning and activity of EEG electrodes

on the subject’s head, allow us to probe into the distribution and interaction of neural

signals across the brain’s cortical regions [257]. While these features can provide

glimpses into the spatial organization of brain activity, their utility in predicting

cognitive states such as memory encoding often pales in comparison to their temporal

counterparts [258]. The reason lies in the limitations of EEG’s spatial resolution,

which can often obscure finer spatial patterns. Consequently, spatial features in

EEG are often employed as preliminary steps in data pre-processing, primarily for

dimensionality reduction through techniques such as Principal Component Analysis

(PCA) and Independent Component Analysis (ICA) [259].

Principal Component Analysis (PCA) is a stalwart tool in multivariate

data analysis, employed not only in EEG but across diverse scientific disciplines

[260]. PCA operates by calculating an orthogonal transformation of the data to

identify the ‘principal components’, the directions of maximal variance in the data.

The result is a series of uncorrelated components, each successively accounting for

the highest remaining variance in the dataset. This reduction in dimensionality

while retaining maximal variance facilitates pattern detection and noise reduction

in EEG data [260]. The downside, however, is that the resulting components may

not be interpretable in physiological terms, rendering the extracted features less

meaningful in the context of neuroscientific research.

Independent Component Analysis (ICA), another widely employed tech-

nique, alleviates some limitations of PCA. This method identifies statistically inde-

pendent sources within EEG signals [261]. The assumption at the heart of ICA is

that the EEG signals are linear mixtures of independent non-Gaussian sources. By

separating these sources, ICA provides a powerful tool for isolating artifacts and
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components of interest within the complex EEG signals. While the interpretabil-

ity of the components is still not guaranteed, ICA offers a higher probability of

mapping components to underlying neuronal sources, rendering it more suitable for

neuroscientific applications [261].

Time-frequency Representations

Temporal features, on the other hand, lie at the heart of EEG-based predictions.

They capture the oscillatory dynamics and event-related fluctuations in EEG signals

over time, providing insights into the temporal evolution of neural processes [262].

Techniques for extracting these features—such as event-related potentials (ERPs),

event-related spectral perturbations (ERSPs), Fourier transforms, and wavelet transforms—

enable us to examine the intricate temporal structure of EEG data [257], [263].

These techniques find their strength in their ability to delineate the complex tem-

poral patterns of brain activity, offering a richer and more predictive set of features

for modeling cognitive states [264].

Event-Related Potentials (ERPs) encapsulate the brain’s time-locked re-

sponse to a specific event, such as a sensory stimulus or a motor action. ERP

waveforms, averaged across multiple trials, offer an enhanced signal-to-noise ratio,

revealing a reliable picture of the brain’s prototypical response to the task at hand

[20]. Alterations in the characteristics of these waveforms, whether they occur in

amplitude, latency, or shape, can shed light on the neural processes underlying cog-

nitive functions, including memory encoding and retrieval [265]. However, ERPs

require assumptions of linearity and stationarity, and the averaging process, while

enhancing signal-to-noise ratio, could obscure subtle but significant variations in

individual trials.

Event Related Spectral Perturbations (ERSPs) allow us to examine how

spectral power within distinct frequency bands (e.g., theta, alpha, beta, gamma)

change in response to a task or event [266]. Unlike ERPs, which focus on average

time-domain signals, ERSPs investigate how the spectral characteristics—the event-
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related synchronization (ERS) or desynchronisation (ERD) in the power of specific

frequency bands—evolve over time [267]. This detailed view of the modulations

in oscillatory activity offers critical insights into how these oscillations and their

synchrony contribute to various cognitive operations [268].

Fourier Transforms deconstruct complex signals into simpler sine waves of

varying frequencies, unveiling spectral components ranging from delta (1-4 Hz) to

gamma (30+ Hz) bands [257]. While powerful, Fourier Transforms overlook the

non-stationary nature of EEG signals, which harbor time-dependent spectral char-

acteristics. To address this, the Short-Time Fourier Transform (STFT) incorporates

a temporal aspect to the Fourier Transform by employing a sliding window approach.

This added dimension offers a local spectral view within the moving window, allow-

ing the tracking of spectral changes over time—a critical element when considering

the rapidly evolving spectral characteristics of EEG [269]. The STFT introduces

an inherent trade-off between temporal and frequency resolutions, a balance deter-

mined by the window length, which calls for careful thought based on the question

at hand [257].

Wavelet transformations bring an elegant solution to the resolution trade-off

challenge. Unlike the STFT, which uses a fixed-sized window, the Wavelet Trans-

form employs a window that expands and contracts, thereby enabling variable res-

olution at different frequency levels. The transformative power of this method lies

in its adaptability: it offers high-frequency resolution at low frequencies and high

temporal resolution at high frequencies, mimicking the logarithmic frequency per-

ception of the human auditory system [270]. A myriad of wavelets—each with a

distinct shape, or ‘mother wavelet’—can be chosen to match the characteristics of

the EEG signal, thereby enhancing the signal-noise separation [270]. Among these,

the Morlet wavelet has found widespread acceptance in EEG analysis due to its

balance between time and frequency localisation. However, the choice of wavelet

largely depends on the nature of the EEG signal and the particular research ques-

tion. Other wavelets, such as the Daubechies, Haar, or Mexican hat, might be more
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suitable in different contexts.

Another fundamental approach in EEG analysis is the selection of an appropriate

reference. While often overlooked, the choice of reference can dramatically affect the

perceived topographical distribution of scalp potentials, thereby influencing down-

stream analyses [20]. The standard method of referencing, the average reference,

uses the mean of all channels as the reference. This method is often used when

the goal is to represent activity at each location relative to the overall average of

activity. It works well when the number of electrodes is large enough to provide a

good estimate of the average, but it can be influenced by a few noisy channels [20].

5.2 Video Memorability EEG Pilot

In the pursuit of expanding the boundaries of memorability research, we set out

to explore uncharted territories by conducting the first of its kind pilot study—an

exploration into the utility of EEG data within the context of video memorability

prediction. This endeavor embarked with an underlying twofold motivation. Firstly,

we sought to examine the potential applicability of EEG features to video memora-

bility prediction. The human brain offers rich, dynamic data that can be captured

via EEG, potentially holding subtle, yet crucial, markers of memorability. The pilot

study was conceived as a stepping stone, an initial foray into investigating whether

these neural signatures could be harnessed to predict video memorability or an ad-

jacent phenomenon. The investigation, thus, not only enhances our understanding

of the neurophysiological underpinnings of memorability but also uncovers novel av-

enues for potentially predicting the same. Secondly, the aim was to broaden the

research horizons of the memorability community. By exploring EEG features in

relation to video memorability, we hoped to provide an impetus for researchers from

various disciplines to delve into this rich data without necessitating prior domain

expertise in EEG. The endeavour was to furnish a bridge between the neurophysio-

logical and computing research realms, fostering a vibrant cross-pollination of ideas

and methods. Further supplementing these objectives, the dataset collected and
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processed during the study was made publicly available 1. In doing so, we sought

to foster a culture of open science, democratising access to this novel data, thereby

facilitating future explorations in this burgeoning area of research.

5.2.1 Dataset

The stimuli used in the study were a subset of the subtask 1 data (i.e., the TRECVid2019

short-term video memorability prediction task) in MediaEval’2021 [271], and con-

sists of 395 unique videos, 100 of which were designated as targets and selected to

reflect the bottom and top 50 memorable videos from the dataset, 200 were desig-

nated fillers and selected to reflect the next top and bottom 100, and another 95 were

designated as fillers, and selected to reflect the middle 100 memorable videos from

the original set of 1500 videos (Figure 5.2). This selection framework was chosen to

offer a balanced representation of the distribution of the original set.

EEG data was collected from a total of 20 subjects (resulting in a final 11 af-

ter data quality filtering) while they completed an adapted subsequent memory

experiment—a short-term recognition memory game—which was used to annotate

the videos for memorability. EEG data acquisition2 was carried out in two separate

locations using a common experimental procedure, and each location annotated the

same set of videos. Despite the use of disparate equipment, the likelihood of ex-

perimental compromise was minimised by the consistency of all other experimental

factors. The memory game began with a preparation phase, a pseudo phase carried

out right before the main experiment which afforded the opportunity to explain and

test equipment and settings. In this preparation phase participants were given a

verbal description of the experiment procedure, then presented with a set of written

instructions, and finally taken through a practice run of 3 test videos to familiarise

1Dataset and examples of use, as well as the code to replicate the results in this paper, are
available at https://osf.io/zt6n9/

2Data collection for participants 1–5 was carried out at Dublin City University (DCU) with
approval from the University’s Research Ethics Committee (DCUREC / 2021 / 171), and for
participants 6–11 at the University of Essex (UoE) with approval from the Ethics Committee
there (ETH2122-0001). Data at DCU was collected using a 32-channel ANT Neuro eego system
with a sampling rate of 1000 Hz. Data at UoE was collected using a 64-channel BioSemi ActiveTwo
system at a sampling rate of 2048 Hz.
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Figure 5.2: EEG video selection procedure.

them with the experiment. Rather than being split into separate encoding and

recognition phases like the traditional subsequent memory paradigm, the memory

game was continuous in nature—involving the presentation of a video followed by

an interstimulus delay, then followed by recognition response input. This was done

in an attempt to keep the data collection paradigm as close to the original “Video

Memorability Game” proposed by [222]. The experiment used a total of 450 videos,

192 of which were the target videos (96 targets, shown twice), and the remaining 258

videos were the fillers. The experiment was broken into 9 blocks of 50 videos, where

a fixation cross was displayed for 3–4.5s, followed by the video presentation for its

∼ 6 second duration, followed by a “get ready to answer” prompt of 1–3 seconds,
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followed by a 3s period for recognition response (Figure 5.3). The time per block

was approximately 700 seconds (∼ 12 minutes) without accounting for 30-second

closed/open eye baselines and breaks, which occurred between blocks. In order to

account for recency effects, the first 50 videos presented did not include targets, but

had 5 filler repeats, and the presentation positions of targets between each of the

participants was pseudo-randomised, with the distances between target and repeat

videos designed to fit a uniform distribution, and the position of each block aside

from block 1 being shifted by 1 for each participant.

Figure 5.3: EEG video presentation procedure.

5.2.2 Methodology

A standardised processing procedure was implemented for the EEG data collected

from the two distinct locations by selectively including the 28 channels common

across both setups. The initial phase of pre-processing involved re-referencing the

data using a common average reference, a technique that computes the average

across all EEG channels and subtracts this average from each individual channel

[20]. This strategy nullifies the potential influence of non-cerebral signals and re-

duces the likelihood of extraneous signal distortions across channels. Subsequently,

the EEG data were subjected to band-pass filtering, a technique designed to allow

only signals within a specific frequency range (in this case, 0.1-30 Hz) to pass through

[272]. The application of a symmetric linear-phase Finite Impulse Response (FIR)

filter enabled a uniform phase delay for all frequencies, mitigating signal distortion

and preserving the original temporal characteristics of the EEG signals [272]. Ad-

dressing the omnipresent issue of artifacts in EEG data, Independent Component

Analysis (ICA, see section 5.1.5) was employed—a statistical technique that sepa-
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rates multivariate signals into independent non-Gaussian components [261]. ICA is

extensively used in EEG analysis for its effectiveness in isolating and removing arti-

fact components such as eye blinks or muscle activity, thereby enhancing the overall

quality of the EEG data. The implementation of trial rejection, employing subject-

specific thresholds, further ensured the exclusion of trials that might compromise

the data quality [20].

Once the pre-processing was complete, the focus was on the extraction of mean-

ingful features from the EEG data. The choice of features for this pilot study

was informed by two principal considerations. First, recognising the novelty of the

undertaking—the exploration of EEG features for video memorability, an area hith-

erto uncharted—we sought to harness features well-established within the broader

EEG research community. ERPs and ERSPs (see section 5.1.5), extensively utilised

in numerous cognitive studies [89], [243], [266], thus, presented themselves as a sen-

sible starting point. Second, amidst the plethora of potential EEG features at our

disposal, we intended to ensure coverage of both the time and frequency domains,

fostering a comprehensive insight into the temporal dynamics and oscillatory be-

havior of the EEG data. This strategic choice, we hoped, would facilitate the initial

exploration of the utility of EEG for video memorability prediction while also pro-

viding a robust foundation for further, more specialised, investigations. First, we

centered our attention on the time-domain, specifically, the extraction of ERP fea-

tures. To obtain these features, the EEG data were low-pass filtered with a cutoff

frequency of 15 Hz and subsequently downsampled to 30 Hz, reducing the data size

and ensuring the retention of frequencies most relevant to cognitive processes [20].

Baseline correction was then applied using the 250-ms pre-stimulus interval, ensuring

the minimization of non-stimulus-related EEG variance. Following this, data corre-

sponding to the first second of each repeated video clip from each of the 28 channels

were extracted and concatenated into a feature vector, yielding the ERP features.

For the frequency domain, the ERSP features, we segmented the EEG data into

4-second epochs and computed a trial-by-trial time-frequency representation using
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Morlet wavelets for frequencies ranging from 2-30 Hz [257]. This method provided

a nuanced view of the EEG, capturing temporal dynamics and oscillatory activity

within specific frequency bands. In contrast to the comprehensive channel coverage

in ERP feature extraction, the ERSP analysis was restricted to four specific EEG

channels (Fz, Cz, Pz, and O1). This decision was primarily informed by a strategic

approach to this initial exploration of the rich, high-dimensional EEG data in the

context of video memorability. The four selected channels provide comprehensive

coverage of frontal, central, parietal, and occipital areas, which are broadly impli-

cated in visual processing and memory tasks [224]. By focusing on these locations,

we aimed to reduce the dimensionality of the data and concentrate on regions of

interest where specific cognitive processes are anticipated to be manifested. This

approach allows for a more targeted exploration, especially crucial in establishing a

foundational understanding of how these complex features may correlate with the

task. It is also worth noting that ERSPs, due to their encapsulation of more com-

plex and varied spectral changes, are not as straightforward to interpret across all

channels compared to ERPs [224]. Hence, limiting the analysis to these key channels

also aids in enhancing the interpretability of the ERSP features.

5.2.3 Results

The results section of a study typically serves to highlight key findings, underscore

significant trends and discrepancies, and facilitate understanding of the study’s po-

tential implications. However, in the case of this pilot EEG video memorability

study, an unexpected but critical shift in our research question mandates a slight

departure from the norm.

Due to unforeseen circumstance during the data collection process—participants

remembered on average 93% of the videos—the final dataset had an very large

class imbalance, which impeded our initial investigation into whether EEG data

could be used to predict subsequent remembering of the videos. Class imbalance

is a significant issue in machine learning, where one class heavily outweighs the

06/09/2023



5.2. VIDEO MEMORABILITY EEG PILOT

A

B

Figure 5.4: Grand-averaged butterfly plot showing differences in EEG activity for
the second minus first presentation for videos for the first second (top-A). Averaged
time-frequency differences in power for the second presentation minus that for the
first presentation of videos for the first 3 seconds for channels Fz and Pz (bottom-B
left and right, resp.).

other in terms of samples. It poses a significant challenge as most algorithms are

designed to maximise accuracy and reduce error, thus they tend to be biased towards

the majority class. In our case, the vast majority of videos were remembered,

resulting in a dearth of examples of forgotten clips. To address this issue and

make the most meaningful use of the collected data, we chose to pivot our research

question. Rather than focusing on prediction of subsequent memory, we re-framed

the investigation to ask, “Can we distinguish between the first and second viewing

of clips that were successfully remembered, based solely on EEG data?” This shift

in focus opened a new avenue of exploration within the framework of the study,

focusing on the task of predicting whether an EEG sample was from a participants

first viewing, labeled “unseen”, and second viewing, labeled “seen”. By comparing
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the EEG data from the first and second viewings of remembered clips, we aimed

to uncover neurophysiological patterns that might correlate with the repetition of

memorable videos. This unique focus allowed us to continue our investigation despite

the unexpected class imbalance in our data, providing an innovative perspective

within the field of video memorability research.

We began by standardising the data to have a mean of zero and unit standard

deviation, an essential pre-processing step in machine learning to ensure that dif-

ferent features are on the same scale. Standardisation eliminates the influence of

disparate scales between features, thereby enhancing the stability and convergence

of the model [273]. To discern any significant patterns between the first and sec-

ond viewings of the remembered clips, we employed a Bayesian Ridge Regressor

(we turned our “seen”/“unseen”” labels into 1 and -1 respectively). This method

was chosen due to its robustness and ability to handle multicollinearity, a common

issue with EEG data. The regressor was implemented with the scikit-learn Python

library, using its default parameters [195]. We applied this model independently

to the two feature sets derived from the EEG data (ERPs and ERSPs) to deter-

mine their individual classification power. We adopted a 20-fold cross-validation

approach, splitting the data into a 80% training and 20% testing set. This helped

to ensure a robust estimation of the model’s performance, and its generalisability to

unseen data. The results of this cross-validation are reported in Table 5.1 for each

participant, along with the average performance across all participants. Performance

varied across participants, reflecting the inter-individual differences in EEG patterns,

possibly the different levels of attention or cognitive strategies employed during the

experiment, and the different numbers of training/testing data were used per subject

(following trial rejection), with some participants having very little data to support

the machine-learning analysis. The mean AUC-ROC values obtained are 0.591 ±

0.06 for ERP-based classification and 0.575 ± 0.06 for ERSP-based classification.

Both of these values are above the 0.5 baseline, which represents a random classifier.

This demonstrates the potential utility of EEG features for the task of differentiat-
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Table 5.1: Mean AUC-ROC values obtained for each participant across all folds,
separately for ERP and ERSP features.

Participant ERP-based classification ERSP-based classification

1 0.564 ± 0.09 0.522 ± 0.09
2 0.585 ± 0.11 0.558 ± 0.07
3 0.520 ± 0.07 0.532 ± 0.07
4 0.666 ± 0.07 0.626 ± 0.09
5 0.714 ± 0.06 0.649 ± 0.08
6 0.555 ± 0.11 0.522 ± 0.10
7 0.601 ± 0.10 0.525 ± 0.08
8 0.590 ± 0.08 0.674 ± 0.08
9 0.609 ± 0.09 0.489 ± 0.06
10 0.628 ± 0.06 0.618 ± 0.09
11 0.477 ± 0.08 0.611 ± 0.12

Mean 0.591 ± 0.06 0.575 ± 0.06

ing between the first and second viewings of remembered videos. The higher mean

AUC-ROC value for ERP-based classification indicates that time-domain EEG fea-

tures may provide more discriminative power in this context. However, the variance

across participants suggests there might be value in exploring individualised models

or adaptive algorithms that could take into account the individual characteristics of

the EEG signals.

5.2.4 Conclusion

This pilot study represents an initial venture into the unexplored territory of EEG-

based video memorability research. Despite the significant challenges posed by the

experimental context and the complexity of EEG data, this endeavor has opened up

an entirely new perspective for understanding and predicting video memorability.

The investigation was prompted to redefine its primary question due to the

skewed class distribution in the memorability scores of the selected video clips.

Instead of predicting whether a clip would be remembered or forgotten based on

EEG data, the question became whether the first and second viewing of clips that

were successfully remembered could be differentiated. This re-framed question led

down an interesting, albeit unintentional path, revealing interesting patterns and
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adding a new dimension to the understanding of video memorability.

The key insights from this study emanate from the comparison between ERP and

ERSP features in their ability to differentiate between the first and second viewings

of the remembered clips. Although the performance of the models was only slightly

above chance, the variance across participants hinted at the potential individual-

specific characteristics that may influence the memorability of videos, an intriguing

area for future research.

Moreover, the public release of the processed EEG features alongside the dataset

1 extends an invitation to the broader research community to dive into this dataset.

Although no additional research has been conducted using the released data from

this pilot study, the EEGMem [274] dataset, which was developed and publicly

released (detailed below in section 5.3.1) with knowledge acquired from conduct-

ing the pilot study, has been used in two independent studies. In the study by

Hamelink [275], Event-Related Potentials (ERPs) released with the dataset were

analysed across 1,000 trials to explore the neurophysiological differences between

videos that were later remembered versus those that were not. The posterior brain

region was examined across three channels (Oz,O1, O2), and the right temporal

cortex was considered through one channel (P8). Amplitude differences were noted

in the 340 – 408 ms post-onset window and around the 476 ms mark in the visual

cortex between remembered and non-remembered videos. Additionally, in the right

temporal cortex, a distinct amplitude difference was observed within the 306 – 816

ms window. These findings suggest a pronounced P300 component (see [276] for

more detail) for remembered videos in the right temporal lobe. Conversely, in the

visual cortex, a greater positivity was associated with videos that were not remem-

bered. In contrast, Kleinlein et al. [277] presented two processing pipelines aimed at

predicting whether a video would be subsequently remembered. Motivated by the

variability in how different subjects respond to the same video, the first approach

involved the aggregation of statistical vectors for each trial (i.e., subject and video

pair), followed by the application of a random forest model. The second approach
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centered on ERP channel coherency (a measure of the strength of the coupling

between the signal recorded by two sensors at specific frequency bands). For each

subject and video, the coherency between each ERP channel was computed pairwise

across various power bands, resulting in a 28x28x4 matrix that described channel

interactions within these spectral bands. This matrix was then transformed into a

vector embedding, which was used as input for a shallow neural network with 256

neurons, a ReLU activation function, and used the Adam optimiser. While their

results were consistent with random chance, exhibiting an average AUC-ROC score

of 0.506, it is positive to see the dataset promoting interdisciplinary research, adding

to the overall field of video memorability. While acknowledging that the findings

from this study and my own are cursory and adjacent to the subject of video recog-

nition memorability prediction, they represent a significant stride forward, and lay

a solid foundation for future research in this intriguing space. Further work (outline

in the next section) could consider larger sample sizes, more nuanced EEG features,

and more diverse sets of videos, allowing for the understanding of the relationship

between EEG signals and video memorability to be deepened.

5.3 Memories in the Making: Predicting Video

Memorability with Encoding Phase EEG

In a world awash with fleeting moments, the river of time relentlessly splashes us

with the experience of being. Amidst this mercurial torrent of sensory droplets—

each vying for a place in the precious annals of our memory—our brain stands as the

vigilant gatekeeper, painstakingly managing the flow of water and deciding which

droplets will reach the reservoir of our memory. However, our reservoir—like any

storage system—is subject to constraints of capacity and encoding efficiency. We

accordingly posit that a critical moment of memorability should exist, an ephemeral

yet potent point in time which captures the essence of an experience, and assigns it

a “remembering priority”, which will ultimately determine its fate within the annals
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of our memory when consolidation comes around.

This section outlines a second exploration into the use of EEG in the context

of video memorability prediction, building on the aforementioned pilot study with

a refined experiment procedure, and completely new data collected from different

participants. More specifically, we investigate the utility of encoding phase elec-

troencephalography (EEG) signals, recorded from subjects during video stimulus

presentation, to predict subject specific recognition upon subsequent (24–72 hours

later) re-viewing. EEG signals were transformed into the visual domain by turn-

ing them into scaleograms with a continuous wavelet function, which allowed us

to avail of state-of-the-art visual deep learning techniques. By leveraging temporal

and spatial information contained within the EEG data, we position ourselves to

capture the moment of memorability—a moment of encoding that corresponds to

a remembering moment. We hypothesised that the neural signals recorded during

this moment of memorability will differ from those recorded during forgettable mo-

ments, and that these differences can be used to predict whether a given subject

will remember a given video. We employed a two factor study design—comparing

subject-independent (SI) and subject-dependent (SD) training approaches, and com-

pared single electrode and composite 28 electrode scaleogram images—in order to

evaluate the generalisability of our approach and whether theta band (4–8Hz) activ-

ity over the right temporal lobe (channel P8), which has been implicated in memory

formation [90], [278], leads to more accurate predictions.

5.3.1 Dataset: EEGMem

EEGMem [274] represents an extension and enhancement of the Memento10k [192]

video memorability dataset. As opposed to the prior pilot study described earlier

in this thesis, this enriched dataset boasts a significantly wider variety of videos,

offering a broader, more diverse range of stimuli to enhance the robustness of our

findings. It comprises encoding phase EEG recordings gathered from 12 participants

as they engaged with a subset of the Memento10k videos. In total, 45 participants
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were recruited (16 recorded at DCU and 29 recorded at UoE3), but strict inclusion

criteria—including EEG trial data quality and a false positive recognition rate of less

than 30%—led to the final dataset comprising data from only 12 participants. The

recordings were captured as part of the 2022 MediaEval Predicting Video Memorabil-

ity task [274]. The data collection process of EEGMem was designed to address the

class imbalance that surfaced in the preliminary study. Distinct from the immediate

recognition memory examined in the pilot study, this investigation shifted focus to

long-term recognition memory, assessed 24 to 72 hours following the initial viewing.

This amendment was grounded in well-established memory decay research, implying

that memories naturally fade with time. Hence, we hypothesised that fewer videos

would be recalled after this extended interval, ensuring a better balance between

remembered and forgotten classes.

Specifically, the EEGMem data collection process encompassed two distinct

phases. The encoding phase recorded participants’ EEG data as they watched a

continuous stream of 1,000 videos. Subsequently, the online recognition phase took

place between 24 to 72 hours post the encoding phase. In this phase, participants

re-watched the original 1,000 videos, interspersed with an additional 1,000 unseen

videos from the Memento10k dataset. Participants were then prompted to indi-

cate, via a keyboard press, whether they recognised a video from the initial en-

coding phase. This method enabled the collection of binary annotations signalling

recognition, thereby facilitating a more balanced and meaningful exploration of the

potential of EEG data in predicting video memorability.

The allocation of the video stimuli during the encoding phase was undertaken

with careful consideration to ensure full coverage of the original 10,000 videos from

the Memento10k dataset over the course of data collection. The allocation process

also ensured that each participant viewed a unique subset of videos while also expe-

3Data collection for participants carried out DCU was done with approval from the University’s
Research Ethics Committee (DCUREC/2022/100), and for participants at UoE with approval from
the Ethics Committee there (ETH2122-0001). Data at DCU was collected using a 32-channel ANT
Neuro eego system with a sampling rate of 1000 Hz. Data at UoE was collected using a 64-channel
BioSemi ActiveTwo system at a sampling rate of 1000 Hz.
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riencing the most and least memorable videos from the set. The 1,000 videos viewed

by each participant during the encoding phase were composed of the 75 most mem-

orable videos, the 75 least memorable videos, and an additional 850 unique videos.

A minimum of 12 participants were required to fully cover the Memento10k dataset.

The most and least memorable videos were selected to be viewed by all partici-

pants, facilitating direct comparisons of EEG responses across participants to these

particularly memorable and non-memorable stimuli. The additional 850 videos were

selected pseudo randomly, with each participant viewing a unique set of these videos.

In order to guarantee reproducibility, the randomisation process utilised a fixed seed.

If at any point the remaining pool of videos (excluding the top and bottom 75) fell

below 850, the selection pool was replenished by reshuffling the original list, exclud-

ing the videos that had already been viewed. The 1,000 videos were presented to the

participants in 8 blocks, with each block consisting of 125 videos. Between blocks,

participants were shown a 2-minute break video. The allocation procedure can be

represented in pseudo code as follows:

Algorithm 1 Video Allocation for EEG Participants

1: procedure Video Allocation(files, nsubjects, nvideos, top75, bottom75)
2: shuffle(files) with a fixed seed
3: for subject in 1 to nsubjects do
4: unique850 ← select850(files)
5: files← files− unique850
6: if length(files) < 850 then
7: shuffle(files) with a fixed seed
8: files← files ∪ unique850
9: end if

10: videoset ← top75 ∪ unique850 ∪ bottom75

11: Save videoset in a block-structured file for subject
12: end for
13: end procedure

Through this process, we ensured the collection of diverse data across the Me-

mento10k video dataset, while eliminating participant-specific bias and enabling

the comparative study of responses to specifically memorable and non-memorable

videos.
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5.3.2 Pre-processing

A standardised pre-processing procedure, which aims at enhancing signal quality

and reliability, was implemented for the raw EEG. The goal of this process was to

eliminate non-neural sources of variability, reduce noise, and label the data for sub-

sequent analyses. First, the data was referenced using a common average reference,

a technique which subtracts the mean voltage of all electrodes from each individual

electrode at every time point. This method minimizes the effects of volume conduc-

tion and common noise. Next, the data was band-pass filtered between 0.1–30Hz.

This effectively removed slow drifts and high-frequency noise from the EEG signal,

leaving the relevant neural oscillations (delta, theta, alpha, and beta waves) that

are typically associated with cognitive processing. The filtered data was then sub-

jected to ICA (see section 5.1.5), a statistical method used to separate mixed signals

into their independent components. ICA effectively identified and removed artifacts,

such as eye movements, muscle activity, and heartbeats from the EEG data. Lastly,

binary annotations from the recognition phase were used to label each participant’s

specific encoding phase EEG trials and their associated Memento10k videos. Videos

correctly remembered, our “remembered” class, were labeled as “True” (true posi-

tive), and all other outcomes were labeled as “False”, our “forgotten” class. Through

these pre-processing steps, the EEG data was effectively cleaned, standardised, and

labeled, paving the way for accurate and reliable subsequent analyses.

5.3.3 Feature-extraction

With the goal of leveraging the state-of-the-art Vision Transformer (ViT) ar-

chitecture, which provides significant advantages over traditional CNNs due to its

ability to model long-range dependencies across the input space [279], we turned

the filtered EEG data into scaleograms with a Morlet wavelet function. Two types

of scaleograms were generated: a single-channel variant and a variant incorporating

all 28 electrode channels (Figure 5.5). The decision to use Morlet wavelet scale-
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(a) 28-channel composite (b) single channel

Figure 5.5: Examples of each of the two types of scaleogram images

ograms was primarily due to their high time-frequency resolution, which effectively

captures the temporal evolution of spectral features in the EEG data. This choice

also aligned with the goal of assessing the predictive potential of the theta band

frequencies (4–8Hz), particularly over the right temporal lobe (electrode P8 in this

case). For the single-channel scaleograms, 20 frequencies were linearly spaced from 4

to 8Hz, focusing on the theta band. In contrast, the 28-channel scaleograms used 8

linearly spaced frequencies ranging from 3 to 17Hz, thereby encompassing a broader

spectrum that includes delta, theta, alpha, and low beta frequencies. The number

of cycles employed in the wavelet function for both frequency sets was dictated by a

logarithmic function that efficiently balanced the time-frequency resolution trade-off

inherent in wavelet transformations [257]. We incorporated a baseline period from

-0.25 to 0 seconds for both scaleogram types. Z-score normalisation was applied, ef-

fectively standardising each frequency’s amplitude to a common scale. Scaleograms

were then averaged across trials for visualisation within the time window of -0.5 to 3

seconds, corresponding to the full duration of the Memento10k videos. The final 28-

channel scaleogram image consists of a 4 by 7 grid, each cell displaying an individual

scaleogram corresponding to one of the 28 electrode channels. This comprehensive

representation encapsulates a wide array of spectral features across different scalp
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regions, providing a rich dataset for the subsequent application of the ViT model.

5.4 Methodology

The ViT architecture was selected for all experiments primarily because of its mini-

mal inductive bias towards image-specific features, which allows it to generalize well

across diverse visual tasks. Given its success in various image recognition challenges,

the ViT architecture has emerged as the current state-of-the-art solution, provid-

ing the potential for effective, high-performance processing in the EEG scaleogram

image analysis.

5.4.1 Vision Transformer (ViT) Architecture

Figure 5.6: Vision Transformer architecture (image from [279])

Introduced to the world in 2020 by Dosovitskiy et al. [279], the Vision Trans-

former (ViT) has since captivated the field of computer vision-—-a refreshing de-

parture from the ubiquity of convolutional neural networks (CNNs). Jettisoning

the convolutional approach, the ViT architecture instead relies on the transformer

architecture—originally a tour de force in natural language processing tasks [280]—

to sequences of image patches [279]. A ViT model takes an input image and dissects

06/09/2023



5.4. METHODOLOGY

it into fixed-size, non-overlapping patches—these small cut-outs then undergo linear

embedding, thereby transforming them into a sequence of vectors. This technique

mirrors the way words are embedded into sentences in transformer-based language

models. To this sequence, a learnable classification token is appended—an essential

ingredient for the ultimate task of image classification [279]. Following the cre-

ation of this sequence, the model channels it through multiple layers of transformer

encoders. Each encoder is a multifaceted unit, featuring multi-head self-attention

and feed-forward neural network layers—all interleaved with layer normalisation

and residual connections [281]. Leveraging the self-attention mechanism, the model

assimilates the global context of the image, enabling it to consider all patches si-

multaneously and coherently [279]. Subsequently, the transformer layers churn out

a sequence of vectors, with the premier one representing the classification token.

This vector navigates through a final linear layer, producing the output classifica-

tion probabilities. The ViT’s architectural elegance enables it to not only rival, but

at times outperform, CNNs in large-scale image classification tasks—an impressive

feat considering the considerably different (CNNs relying on local convolutions and

hierarchical structures, whereas ViTs leverage self-attention mechanisms over flat-

tened image patches) methodologies [279]. Despite being resource-intensive, requir-

ing large-scale training datasets and computational power, ViT presents a paradigm

shift in computer vision. By illustrating the successful application of the transformer

architecture to image data, it spotlights the architecture’s versatile potential, inspir-

ing novel research directions.

5.4.2 Fine-tuning ViT Models

Fine-tuning is a commonly adopted technique in deep learning that leverages a pre-

trained model, originally trained on a large-scale dataset, and retrains it on a target

task-specific dataset. The idea is to harness the knowledge captured by the pre-

trained model and transfer it to the target task, an approach known as transfer

learning [282]. When fine-tuning a pre-trained Vision Transformer (ViT) model, no
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layers are typically removed. The ViT model consists of several Transformer encoder

layers that capture a rich understanding of the image representations in their weights

[279]. The pre-existing architecture and its weights serve as a robust initial state for

training. The primary update to the model during fine-tuning is in the output layer.

The output layer of a pre-trained ViT model is task-specific, typically designed for

a multi-class classification task (e.g., 1000 classes for ImageNet). When fine-tuning

for a specific task, this output layer is often replaced with a new one appropriate for

the target problem (e.g., binary classification would need only two output nodes).

This output layer is randomly initialised and updated during the training process.

The rest of the model is then fine-tuned on the target dataset. All the weights in the

layers are updated during the training phase. Although one could freeze some layers

during this process to preserve the pre-trained weights, it is generally beneficial to

update all weights, particularly for the Transformer model. This is because the self-

attention mechanisms in the Transformer layers are data-dependent and updating

these weights can help the model better adapt to the target task [281].

In order to optimise the predictive power of the models, we fine-tuned (i.e.,

no layers were frozen, a new task specific head was created, and the model is re-

trained) a total of 42 distinct ViT-large models pre-trained on the ImageNet-21k

dataset. Each model was fine-tuned on one of four types of data: 28 Channel,

Fp1, P8, and Frames. The fine-tuning procedure was executed under two distinct

training categories: Subject-Independent (SI) and Subject-Dependent (SD), with 12

SI models (one per subject), and 4 SD models trained for each data type. In the

case of SI models, a leave-one-out cross-validation approach was implemented. This

method involved training the models on the data from all subjects excluding one, and

subsequently testing the model on a test set of the data from the excluded subject.

This approach is widely used to obtain an unbiased estimate of model generalisation

on independent data, and has been shown to provide robust performance measures

in studies with limited subjects. In contrast, the SD models were fine-tuned on

data from all subjects, excluding a combined test set. This combined test set was
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created by pooling together a stratified test set comprised of 15% of each subject’s

data. The rationale behind this approach was to provide the model with a greater

diversity of data during training, while still providing a robust test set for model

evaluation. For both SI and SD training categories, all models were trained using the

AdamW optimiser, a popular and efficient gradient-based optimization algorithm

that computes individual adaptive learning rates for different parameters [283]. The

learning rate was set to 2e-5, and a cosine learning rate scheduler was employed.

This scheduler adjusts the learning rate based on the progress of training, effectively

reducing the rate towards the end of the training process. A weight decay of 0.1 was

applied to avoid overfitting by adding a penalty to the loss function, thereby reducing

the complexity of the model. The implementation of both early stopping and a

dropout rate of 0.65 further served to minimise overfitting. Early stopping is a form

of regularization technique where the training process is halted once the performance

on a validation set stops improving, thereby preventing the model from learning

the noise in the training data. The dropout method randomly drops units and

their connections during training, which helps to prevent co-adaptation of feature

detectors and improve model generalization.

5.4.3 Results and Analysis

Model performance was evaluated using the Area Under the Receiver Operating

Characteristic Curve (AUC-ROC) as there were only two prediction classes—remembered

and forgotten. Individual classification results for each subject (column headed SID)

are displayed in Table 5.2, for both the SI and SD models. This shows that the ViT

models trained on channel P8 scaleograms are the best performing, with a mean

AUC-ROC of 0.567 for SD trained models, and a mean AUC-ROC of 0.563 for SI

trained models. A set of ViT models were trained on a random channel’s (Fp1)

scaleograms in order to account for the possibility that data resolution was the fac-

tor driving the 28 channel and P8 single channel performance difference, which the

results suggest was not the case. An additional set of ViT models (Frames) were
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Table 5.2: AUC-ROC scores for all models. (Subject Mean excludes Frames column
data)

28 Channel Fp1 P8 Frames
SID SI SD SI SD SI SD SI SD Sub Mean

S-2 0.445 0.540 0.488 0.509 0.558 0.572 0.487 0.477 0.518
S-4 0.482 0.466 0.483 0.470 0.634 0.577 0.472 0.496 0.518
S-9 0.437 0.530 0.459 0.478 0.569 0.613 0.498 0.501 0.514
S-10 0.462 0.457 0.489 0.502 0.568 0.578 0.515 0.483 0.509
S-13 0.430 0.474 0.464 0.508 0.574 0.596 0.492 0.500 0.508
S-16 0.383 0.523 0.497 0.528 0.534 0.564 0.489 0.482 0.503
S-19 0.393 0.405 0.509 0.516 0.578 0.636 0.514 0.488 0.506
S-30 0.388 0.441 0.331 0.349 0.340 0.436 0.502 0.492 0.381
S-31 0.626 0.655 0.521 0.556 0.510 0.520 0.479 0.506 0.565
S-36 0.696 0.540 0.599 0.532 0.707 0.564 0.511 0.481 0.606
S-37 0.562 0.323 0.531 0.401 0.614 0.632 0.503 0.486 0.510
S-41 0.566 0.386 0.501 0.343 0.567 0.538 0.500 0.506 0.484

Mean 0.489 0.478 0.489 0.474 0.563 0.567 0.497 0.492

trained on video frame data—three frames were extracted, 1 per second and the

majority prediction was chosen—rather than EEG data, the results of which were

random, with no discernible difference between SI and SD training, nor notable dif-

ference in subject performance, which is logically coherent with the fact that video

frame data is not influenced by the subject viewing it.

The repeated-measures design (each participant is in both subject-dependent and

subject-independent conditions, and their data contribute to both scaleogram types),

allowed us to perform a paired t-test, finding that the AUC-ROC scores for models

trained with P8 channel scaleogram images are significantly (t= 3.243, p = 0.0036)

greater than those trained with 28 channel scaleogram images, adding weight to the

hypothesis that theta band (4–8Hz) oscillations over the right temporal lobe (channel

P8), predict encoding of declarative memory [278]. Figure 5.7 and Figure 5.9 provide

visual illustrations of the difference between P8 and 28 channel trained scaleogram

images. Although we did not find a significant interaction between SD and SI

training, we can see that more points in Figure 5.7 lie below the line of best fit,

indicating that more models trained on SD performed better than their SI trained

counterparts, which makes sense from a training perspective, as EEG data can be

highly subject specific, and not having any subject training examples can hinder
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Figure 5.7: Raincloud plot comparing 28 channel and P8 channel scaleogram trained
models.

prediction performance. Figure 5.7 additionally highlights the impact of 28 channel

vs channel P8 scalograms on a per subject basis, with a green line indicating that

either SD or SI AUC-ROC scores improved and red lines indicating that they both

worsened.

Subjects S-30 and S-36 sit on two ends of the performance spectrum, with S-30

producing the worst performances across the board (an average AUC-ROC of 0.381),

and S-36 producing the highest average AUC-ROC of 0.606 and the highest absolute

AUC-ROC of 0.707. While both subjects boast an inordinately high imbalance

(<90%) in their ground truth responses—subject S30 responding “forgotten” for

1,828 videos out of 2,000, and subject S36 doing so for 1,871 videos—subject S30’s

results are likely a reflection of the quality of their response data as a large portion of

their response reaction times consistently rested within the 1 - 1.5 second mark. This

suggests a more rhythmic rather than innate and earnest nature to their responses,

whereas subject S36’s average response reaction times were more varied and typically

given <1 second after stimulus onset.
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Reaction Times

Figure 5.8 shows the per-subject distributional differences in video ground-truth

memorability (population level) scores for remembered (tp) and forgotten (fn) videos.

A series of statistical tests were carried out in order to assess the relationship be-

tween response reaction times and memorability scores.

A Pearson correlation analysis between response times and ground-truth memo-

rability scores for each video was conducted across all subjects. The findings revealed

no statistically significant correlations between these variables for any subject, sug-

gesting that no clear linear relationship exists between response times and memora-

bility scores. Then, two per subject independent t-tests with Bonferroni correction

were performed, testing the differences between mean response reaction times and

mean video memorability scores for remembered and forgotten videos. For mean

response reaction times, significant differences for subjects 10, 13, 16, 19, 30, 36, 37,

9, and 2 were found, where the mean response reaction times for remembered videos

were consistently higher. For subjects 41 and 4, the inverse was found. Subject 31

was the only subject with no statistically significant difference in their mean response

reaction times. For ground-truth memorability scores, only subjects 2 and 4’s results

showed significant differences in mean memorability scores. For subject 2, the mean

memorability score was higher for remembered videos (M=0.842) compared to not

remembered videos (M=0.771), t=6.801, p=3.33e-11. Likewise, for subject 4, the

mean memorability score was higher for remembered videos (M=0.809) compared to

not remembered videos (M=0.780), t=2.891, p=0.00395. Given that only subjects 2

and 4 demonstrated a significant difference, it highlights the fact that the influence

of memorability on long-term video recognition might be inconsistent across indi-

viduals, or potentially affected by individual differences or data quality variations.

Further investigation is required to determine if there is a causal relationship or if

other factors might be influencing the observed differences.
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Figure 5.8: Raincloud plots for each of 28 subjects plotting the difference in ground-
truth memorability scores (x-axis) for remembered (tp) and forgotten (tn) videos.
The colour and size of each dot is proportional to the subjects response reaction
time when viewing the video for the second time.
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Figure 5.9: AUC-ROC scatter plot for scaleogram comparison. Subject specific P8
vs 28 Channel model performance difference is illustrated with coloured lines—green
indicating P8 improvement, and red indicating 28 Channel improvement.

5.4.4 Moment of Memorability

The concept of a ’moment of memorability’ refers to a specific point during video

viewing at which the viewer comprehends the underlying concept of the video. At

this pivotal moment, the brain assigns an encoding priority: high for highly mem-

orable content and low for less memorable things, which is likely to be tied to the

content’s human information utility [284]. Interestingly, the analysis of reaction

times in relation to memorability scores shows that while there is no direct cor-

relation between reaction times and the memorability of a given video, there is a

significant relationship between the mean reaction times and whether a video was re-

membered or forgotten. This observation can be elegantly explained by the concept

of the ‘moment of memorability’. When a viewer starts to feel a sense of familiarity

with a video, they might wait until this moment of memorability to respond. Here,

the feeling of familiarity culminates, leading them to confirm that they remember

the video. This could account for the longer reaction times for remembered videos.

Conversely, in the absence of this feeling of familiarity, viewers might automatically

respond that they do not remember the video, leading to quicker response times for

forgotten videos.

Having established the implications of mean reaction times and identified sub-
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Table 5.3: AUC-ROC scores for models trained on scaleograms generated with video
mean reaction time slice

Fp1 P8
SID SI SD SI SD

S-36 0.615 0.636 0.715 0.742

ject S-36 as the “cleanest participant” (characterised by their lowest false positive

rate, indicating that they responded to the experiment in earnest, and the atten-

tive nature of their EEG, evident through low alpha frequency), we embarked on a

supplementary investigation to test the ‘moment of memorability’ hypothesis. This

hypothesis posits the existence of a critical time window within the viewing period

that significantly influences memory encoding. To investigate this phenomenon, we

chose to exclusively use subject S-36’s data. While one might argue that focusing on

subject S-36’s performance could seem like zeroing in on an outlier, we have good

rationale. Many other participants demonstrated markedly higher false positive

rates, diminishing the reliability and utility of their samples for our research goals.

Given our limited sample size—a comprehensive, in-depth analysis requires data

from a minimum of 30 high-quality subjects—rather than incorporating a few more

subjects of debatable quality, we reasoned that leveraging data from our “cleanest

participant” would provide a more clear-cut preliminary exploration. This strategy

is to gauge the viability and value of a future larger-scale experiment. We generated

scaleograms for the Fp1 and P8 channels, but with a key distinction: we limited

the Morlet wavelet generation to a time window of 0.25 seconds before and after

the videos’ mean recognition response. This timeframe was chosen based on the

previous mean reaction times findings. The results of this exploration are shown in

Table 5.3 below, listing the AUC-ROC scores for these models:

The supplementary examination of the ‘moment of memorability’ hypothesis

offers intriguing, though preliminary, insights that deepen the grasp of memory en-

coding dynamics. The augmented AUC-ROC scores, particularly evident in the P8

channel models, emerged when centering scaleogram training around the mean re-
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action time. This enhancement indicates that a pivotal viewing juncture—termed

here as the ‘moment of memorability’—where the content is conceptually encapsu-

lated by the viewer, exerts a degree of influence on memory encoding and retrieval.

This revelation is in harmony with the cognitive perspective that memories are not

merely static impressions, but are intrinsically linked with the comprehension and

significance derived from experiences.

5.4.5 Conclusion

The results of this research support both the hypothesis that theta band (4–8Hz)

oscillations over the right temporal lobe (channel P8) are involved in the encod-

ing of declarative memory, and the potential existence of a distinct “moment of

memorability” (H4) that can be leveraged to predict subsequent subject-specific

recognition. Although a significant interaction between subject-dependent (SD) and

subject-independent (SI) training approaches was not found, the higher performance

of several SD trained models suggests the potential importance of subject-specific

EEG data for prediction. This highlights the need for further investigation into the

adaptability and generalisability of models across different individuals.

The current study, of course, is not without its limitations. The binary nature of

ground truth responses may oversimplify the complex processes of memory encod-

ing and recognition. Additionally, the issue of volume conduction in EEG measures

requires further attention to ascertain its impact on the predictive power of the mod-

els. Nevertheless, the study has unveiled promising avenues for further exploration

and has demonstrated the feasibility of using EEG signals in conjunction with deep

learning techniques to predict video memorability. Notably, the ‘moment of memo-

rability’ hypothesis (H4) offers a valuable new perspective on how we consider video

content and its memorability. Rather than viewing memorability as a static prop-

erty inherent to the video, this concept proposes that memorability may be tied to

the point in the video where comprehension or mental representation of its content

culminates. This suggests that the underlying concept being conveyed in the video,
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and the timing of when that concept is fully comprehended, may play a critical role

in the video’s memorability. This opens up the exciting prospect of exploring not

only what is remembered, but when and why certain content is remembered, paving

the way for a deeper understanding of the intricacies of memory encoding and recall.

This fresh approach has the potential to greatly enrich future investigations into the

predictability of video memorability.
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Chapter 6

Reconciling the Rift Between

Recognition and Recall

“Every act of perception, is to some degree an act of creation, and

every act of memory is to some degree an act of imagination.”

— Oliver Sacks, Man’s Search for Himself

The tapestry of human memory is intricate, woven with multiple threads of cogni-

tion, each one vital in the creation of the final picture. Two such threads, recognition

and recall, form the basic fabric of remembrance [285]. These mechanisms, though

conceptually distinct, are nonetheless entangled on a neural level, performing an

intricate dance of interconnectedness in the cerebrum’s amphitheater [286]. The

nuances of this performance, however, are not yet entirely understood. Existing

computational models of memorability stand as impressive monuments to our un-

derstanding of recognition memory. These models, however, gaze singularly upon

recognition tasks, fixed solely upon the binary response of “yes” or “no” to indicate

whether an individual believes they have encountered a particular stimulus before

[1], [147], [192], [198].

Yet this approach harbours a silent presumption, one that overlooks the vast

complexity within the recognition process itself. Consider a key distinction: an

item might be recognised based on a mere sensation of familiarity or on the basis
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of “recollection”—where distinct, contextual details about the item can be recalled

from the caverns of memory. Though seemingly subtle, this distinction is profound,

causing ripples of implications through our understanding of recognition. It is a

caveat that current models, with their monolithic focus on simple recognition tasks,

often neglect. Recognition, as it turns out, is a delicate game of reliance. If the

mechanisms of recollection stumble and falter, recognition’s footing is expected to

find its balance in the underpinning feeling of familiarity [285]. The intertwined

nature of these two mechanisms presents a conundrum: to what extent do they

influence each other? Can one truly be isolated from the other?

Further complicating the matter is the work of Bainbridge et al. [152], which sug-

gests an absence of correlation between recognition and recall. Their study found no

significant connection between the number of participants who recognised an image

and the number who were able to recall the same image. Additionally, the correla-

tion between the quantity of objects recalled for an image and its recognition rate

was found to be equally unremarkable. Yet, this conclusion challenges the aforemen-

tioned intimate connection between recognition and recall, setting the stage for an

academic rift that demands resolution. While Bainbridge et al.’s contributions to the

field are undeniable, their chosen means of analysis raises concerns. Their approach,

while elegant in its simplicity, arguably oversimplifies the complexity of recognition

and recall, relying on measures of comparison that, when examined closely, appear to

be unrefined and unequal (straightforwardly comparing simple recognition and recall

metrics without accounting for innate processing capacity differences, e.g., individ-

uals can correctly recognise upwards of 10,000 images[139], [140], which is orders

of magnitude greater than recall limits [287]). A more nuanced approach, one that

acknowledges the multifaceted nature of these processes, seems imperative in order

to enrich our understanding. Providing a strong counterpoint to Bainbridge et al.’s

conclusions, Broers and Busch [288] employed the more refined “remember/know”

procedure—participants indicate directly, after an old/new statement, whether they

remember specific episodic details about the item (recollection) or whether they only
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know that the item is old (familiarity) [32], [289]—finding evidence to suggest that

an image’s memorability scales with a greater likelihood of episodic recollection but

not familiarity. They also noted considerable variability in the judgements across in-

dividual images: some memorable images were recognised almost exclusively based

on recollection, others mostly on familiarity. In essence, images with high recall

memorability also tend to have high “yes/no” recognition memorability. This vari-

ation provides both clarity to the relationship between recognition and recall, and

raises further substantial questions, such as: why are certain images highly mem-

orable, but are consistently more strongly associated with pure familiarity rather

than recall?

The existing body of literature, while rich and thought-provoking, paints a com-

plex and multi-dimensional landscape, where contradictions, oversights, and ques-

tions blend into a blurry picture. As fascinating as this panorama is, it leaves us

with a yearning for clarity and a quest for comprehension. In light of this, the forth-

coming sections of this chapter aim to provide clarity on the subject of visual recall

and seek to resolve inconsistencies in the literature pertaining to the relationship

between recognition and recall by detailing an innovative video recall experiment

that leveraged drawings as a measure of recall.

6.1 Setting the Stage

Research into visual recall memorability has been primarily foundational, focusing

on basic effects to support memory system theories, and resulting in few concrete

insights into the visual attributes influencing recall performance. Probability of re-

call is generally regarded as a function of serial presentation position, with two basic

effects emerging in serial-position curves—a primacy effect, increased recall proba-

bility of items near the start of a presentation list; and a recency effect, increased

recall probability for items near the end of a presentation list [125], [290], [291]. This

primacy effect can be attributed to the increased rehearsal of the first few items of

a list, resulting in better long-term storage for these items and can be eliminated by
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ensuring all items receive equal amounts of rehearsal [292]. The recency effect can

be eliminated with a short mental task, following presentation and preceding recall,

indicating that the effect can be attributed to items still being held in short-term

memory [293]. The degree of vividness with which a person reports being able to

visualise imagery is predictive of their recall performance [294], [295]. The strongest

determinants of recall are list length and the complexity of items, with short lists

of low complexity items exhibiting the greatest recall [125], [290], [291], [293], [295].

Given that more complex stimuli also eliminate the primacy and recency effects

[291], many past studies’ use of simple stimuli—line drawings [167], [294], [296],

or images with simple depictions of objects [297], [298]—and low resolution verbal

metrics—a single word [167], [296], [297], or a brief verbal description [290], [291],

[294], has resulted in very little insight into the content and contributing factors

of memory formation. A recent study explicitly set out to address many of these

past limitations, providing deeper insight into recalled memories and assessing the

relationship between “recall memorability” and “recognition memorability” [152].

They found that drawings from Delayed Recall (with an 11-minute digit span task

following presentation and preceding recall) accurately reflect aspects of their orig-

inal images, containing visual information beyond a simple construction from the

scene category label. Drawings made while viewing an image or immediately after

encoding it, display a greater degree of diagnosticity, indicating time modulated

memory decay. Memory drawings were found to preserve an accurate spatial map

of the original image, and contain very few incorrect objects. It was also suggested

that recall could be driven by semantic meaning captured in an image—with visual

saliency and meaning maps explaining aspects of memory performance. Ultimately,

they purported to have found no relationship between the “recall memorability” and

“recognition memorability” of individual images.
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6.1.1 Myopia in the Mind’s Eye

The ability to conjure up colourful images and examine them in the mind’s eye has

long been thought of as fundamental to a thinking mind. This assumption was first

articulated by Aristotle in De Anima—“the psyche never thinks without an image

. . . the reasoning mind thinks its ideas in the form of images”—and has since estab-

lished a long history in philosophical psychology. The belief that the character of

one’s mind is like any other is likely to be at the heart of this intuition. Given the

impossibility of inspecting the qualia of a mind other than one’s own, what reason

would one have to assume otherwise? In 1880 this widespread intuition was formally

assessed for the first time by Sir Francis Galton, who was interested in the natural

varieties in mental disposition. Aiming to define the different degrees of vividness

with which individuals can recall familiar scenes, Galton pioneered the quantita-

tive study of mental imagery with his “breakfast-table survey”, reporting a wide

variation in subject reported mental vividness, and some participants describing

“no power of visualising” [299]. Even though mental imagery abilities surveys [294]

have consistently suggested that 2-5% of people are non-imaging/imaging impaired,

contemporary mental imaging literature still largely views non-imaging/imaging im-

paired individuals as ‘repressive’/‘neurotic’, or outright denies their existence [300].

However, with the phenomenon’s recent acquisition of a name—aphantasia: a con-

dition of reduced or absent voluntary mental imagery [301]—the subject of inter-

individual variability in internal mental representations has garnered more serious

attention. Research into the neural correlates of individual differences in imagery

vividness suggest that the early visual cortex plays an important role [302], how-

ever, there is also evidence to suggest that inter-individual variation in the vividness

of mental imagery depends on an interaction between frontal, parietal, and visual

regions, underscoring a more intricate interplay than previously thought [303].

The intricate relationship between vivid mental imagery and memory recall is

eloquently expressed in several notable theories and research endeavours. Paivio’s

dual coding theory [304], for instance, articulates that encoding of information is
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significantly enhanced when both verbal and visual channels are engaged, resulting

in more vivid mental representations and consequently, improved recall. Empirical

evidence of this dynamic is observed in studies employing the method of loci, an an-

cient mnemonic strategy based on the creation of detailed, spatially structured men-

tal images to facilitate information retrieval [305]. Echoing this, [306] reinforces the

robust correlation between vivid mental imagery and recall, asserting that memories

associated with detailed mental images are more likely to be successfully recalled.

Moreover, research into the unique phenomenology of episodic memory further il-

luminates the central role of vivid mental imagery in recall. Such memories, often

experienced as rich mental images [27], are generally characterised by higher detail,

thus aiding recall [307]. Taken together, these studies strongly suggest a deep-seated

nexus between vividness of mental imagery and the complex landscape of memory

recall. However, with the introduction of aphantasia—a condition marked by an

individual’s reduced or absent ability to generate mental imagery—an intriguing

paradox presents itself: despite the lack of vivid (or any) mental imagery, individ-

uals with aphantasia often exhibit recall abilities akin to those with typical mental

imaging capacities [308]. Although this may seem counterintuitive and somewhat

contradictory to previous research touting the importance of vividness to recall, it

simply implies that the mechanisms of recall are resilient to the absence of vivid

mental imagery, albeit with a different experiential quality. This complex interplay

highlights that accounting for inter-individual variation in mental imagery vivid-

ness is crucial when attempting to create a more faithful and individual-agnostic

conceptualisation of memorability.

6.2 A Picture Paints a Thousand Words:

Drawing Video Recall Experiment

The nature and content of mental visual imagery has historically been difficult to

quantify. As we attempt to revisit past experiences lodged in our memory banks,
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what do we truly remember? Is our recall a high-resolution, lifelike reproduction of

the event, a vague and diluted version, or perhaps merely a verbal account of the

visual phenomena we once witnessed? Dissecting these facets is a pivotal step in

unravelling the complexities of memory. It involves understanding what information

is encoded and retained, how these memory traces deteriorate over time, and what

aspects are resurrected when we summon these memories.

A recent study attempting to address these questions demonstrated that object

and spatial details can be captured with a drawing-based visual memory experiment

[152]. Representations of recollection, captured in the form of drawings, provide a

window into the contours of one’s mental terrain in ways that other methodologies

may not permit. In this context, a drawing task becomes a potent tool in our ana-

lytical arsenal, equipping us to assess the nuances of mental imagery with a degree of

precision hitherto unattainable. It offers a tangible, visual output that embodies the

idiosyncrasies of individual cognition, revealing subtleties that may remain veiled

within conventional measures of memory. With this in mind, a novel drawing based

video recall experiment was devised and carried out in order to address the third

hypothesis in this thesis (H3), which seeks to clarify the nature of the relationship

between recognition memorability and recall memorability.

6.2.1 Experimental Design

In order to facilitate a more direct comparison between recognition and recall, videos

from extreme ends of the recognition memorability spectrum were selected as the

stimuli to be used in the video recall memorability experiment where drawing was

leveraged as a recall tool. A total of 32 videos were selected from the Memento10k

dataset. Half of these videos were chosen from the top 100 most memorable videos

(Figure 6.2), and the other half were picked from the least memorable ones (Figure

6.3). Videos were picked with “drawability” in mind, and representing as broad an

array of depiction categories as possible. In this context, drawability refers to the

inherent qualities of a visual scene or event within a video that make it amenable
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to being accurately represented or reconstructed through simple sketches or line

art. Several factors influenced our choice of videos based on this principle. Unique-

ness was a primary factor; scenes chosen had distinct visual elements that set them

apart from typical visuals, ensuring that drawings can be specifically attributed to

a particular video. Simplicity was another essential criterion; videos with straight-

forward yet striking visuals were prioritised, avoiding overly intricate scenes that

might hinder recall accuracy. Additionally, the cultural and cognitive accessibility

of content was assessed, giving preference to scenes that have universal resonance,

as opposed to those tied to specific cultural or sub-cultural contexts. The experi-

ment was structured into eight rounds, where each round consisted of an encoding

phase, in which participants watched four unique videos; a recall drawing phase, in

which participants were tasked with drawing a scene from a “target” video—one

of the four videos—from memory; and a perceptual baseline, in which participants

were presented with a frame from the target video, and were tasked with drawing

it. This perceptual baseline serves as an essential point of reference for each partic-

ipant’s innate drawing ability. By incorporating this baseline, we can account for

individual variations in drawing proficiency, ensuring that the assessment of recall

is not confounded by the participants’ ability to draw.

Encoding Phase

A video selection algorithm was implemented in order to create a dataframe of video

ordering and target selection unique to each participant. The algorithm ensured a

balanced representation in each round, where two videos were highly memorable,

and two were highly unmemorable. To introduce an element of randomness and

mitigate the risk of pattern recognition by the participants, the order of these videos

was randomised for each round. The algorithm also assigned a target video for each

round. This target assignment was pseudo-random, meaning that it was randomly

chosen, but in an increasingly constrained manner that ensured every video was

assigned as a target at least once across all participants. This strategy ensured that
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all video used in the experiment would produce data that could be used to analyse

its recall memorability, and that we could account for serial position and recency

effects. The video selection algorithm can be represented in pseudocode as follows:

Algorithm 2 Select Videos for Experiment

1: procedure SelectVideos(num participants, list1, list2)
2: Randomly shuffle list1 and list2
3: Initialize an empty list data
4: Initialize targets to be list1 + list2
5: for p in range of num participants do
6: Initialize i, j to 0
7: while i < length(list1) or j < length(list2) do
8: if targets is empty then
9: targets = list1 + list2

10: Randomly shuffle targets
11: end if
12: Create blocks of 4 videos
13: Select a target video from targets and remove it from targets
14: While target is not in block, repeat the target selection
15: Find the index of target in block, which is target index
16: Append the row [p, block, target labels] to data
17: Increment i and j by 2 accordingly
18: end while
19: end for
20: Create a DataFrame df from data with columns ’Participant’, ’Video1’,

’Video2’, ’Video3’, ’Video4’, ’Target1’, ’Target2’, ’Target3’, ’Target4’
21: return df
22: end procedure

The algorithm commences by shuffling both lists of selected videos (high and low

memorability). It then iterates through each participant, forming blocks of four

videos for each round. If both video lists still contain elements, a block is formed

with two videos from each list, and the order within the block is randomised. A

target video is then selected. If the initially chosen target video is not part of the

current block, the algorithm continues to randomly select a target until it finds

one that is in the block. Once a valid target is found, its index within the block is

recorded, and the participant’s id, the four videos, and the target index are stored as

a row of data. If one of the lists is exhausted before the other, the remaining videos

from the non-exhausted list form the remaining blocks, again with randomized order

and target selection following the same methodology. After cycling through all par-
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ticipants and rounds, the resulting data is used to create a dataframe that contains

the participant IDs, the videos presented to each participant in each round, and

the target for each round. This controlled pseudo-randomised structure of video

presentation is designed to ensure a balanced and unbiased experiment, while the

random elements keep the experiment challenging and engaging for the participants.

A total of 52 participants took part in the experiment, with a final 35 fully com-

pleting the experiment. Aside from exclusion following inclusion criteria: age 18-65,

no cognitive impairment, no personal or immediate family history of epilepsy, no

personal history of neurological illness or brain injury, no demographic information

was collected. This decision was grounded in our aim to prioritise the central cog-

nitive variables of the study and minimise potential biases in the interpretation of

results. Collecting demographic data can inadvertently introduce an array of con-

founding variables, such as socio-cultural or educational influences on drawing styles

and memory, which could detract from the primary focus of understanding recall

mechanisms in the context of our experiment. Moreover, in line with the principles

of equitable research and to prevent unintentional biases, it was deemed essential to

approach the data without preconceptions linked to demographic factors. This en-

sures that any findings derived from this experiment pertain directly to the human

cognitive processing of memory recall in the context of video-based stimuli, rather

than being influenced by socio-demographic characteristics.
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Figure 6.1: Encoding phase in online drawing experiment.

During the encoding phase, videos were displayed at their native resolution, ranging

anywhere from 200px by 600px to 600px by 200px. Each video was 3s in duration,

and they were presented following an anchoring 5s, consistently coloured, count-

down, interstimulus interval as depicted in Figure 6.1.
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Figure 6.2: High memorability videos used in experiment (resized to fit into the grid
with a 1:1 ratio).

Figure 6.3: Low memorability videos used in experiment (resized to fit into the grid
with a 1:1 ratio).

Recall Drawing Phase

Figure 6.4: Drawing page for video recall in online drawing experiment.

After all four videos in a round were displayed, participants were redirected to a

drawing recall page, where they were instructed to draw a scene from the target
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video for that round, and then caption their drawing before submitting. As shown

in Figure 6.4, the drawing recall page consisted of a heading which indicated the

current round and the target video; a drawing canvas which was the same dimensions

as the target video; a drawing toolbar enabled participants to change the colour of

their brush, resize it, undo or redo an action, and clear the canvas; a caption bar for

the participants to describe their drawing; and a submit button to move onto the

next phase.

Perceptual Baseline

After submitting their recall drawing and caption, participants were redirected to a

perceptual drawing page where they were instructed to copy a scene depicted from

the target video, and then caption their drawing before submitting. As shown in

Figure 6.5, the interface was the same as the previous phase, but this time a video

scene was depicted adjacent to the drawing canvas.

Figure 6.5: Drawing page for perceptual drawing in online drawing experiment.

Vividness of Mental Imagery

Upon the successful completion of the eight rounds of the experiment, the partic-

ipants are navigated to the concluding section of the study. This section features
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the Vividness of Visual Imagery Questionnaire (VVIQ), a psychological tool that

was developed by David Marks in 1973, to assess the vividness of an individual’s

visual imagery [294]. The VVIQ is a self-report measure used to probe the subjec-

tive vividness of mental imagery in different individuals. It is predicated on the idea

that the capacity to visualise varies widely among individuals and this variance can

be systematically measured. The VVIQ is widely recognised in both psychology and

neuroscience as an effective method of gauging this variable trait. The questionnaire

consists of 16 items in which participants are asked to visualise four scenarios and

rate the clarity and vividness of their mental imagery on a five-point scale. The

scenarios involve familiar everyday experiences, such as the appearance of a friend,

a rising sun, a shop they frequent, or a countryside landscape. Each scenario is rated

on vividness in four different aspects, creating a total of 16 separate ratings. The

five-point scale ranges from no image at all, which scores 1, to perfectly clear and

as vivid as normal vision, which scores 5. Therefore, the total possible score ranges

from 16 (poorest imagery) to 80 (most vivid imagery), with a score below 40 typi-

cally being an indication of some degree of visual mental imagery impairment, such

as aphantasia. The inclusion of the VVIQ in this experiment offers valuable sup-

plementary data on a participant’s ability to mentally visualise. While it is not the

main focus of the study, understanding a participant’s ability to mentally visualise

provides context to their drawing ability and potential drawing recall memorability.

6.3 Quantifying Recall

An essential aspect of assessing the efficacy of the drawing recall experiment lies in

effectively quantifying recall. Common measures in recall experiments often include

recall accuracy (the proportion of items correctly recalled), recall frequency (the

number of times an item is recalled), and recall latency (the time taken to recall

an item). While these metrics have proven valuable in providing insight into the

efficiency and capacity of memory, they fail to capture the complexity and nuance

inherent in the process of remembering, providing a relatively sterile and artificial
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view of memory processes, particularly when dealing with rich and dynamic stimuli

such as videos. Traditional measures of recall focus on granular, often binary aspects,

of remembering, reducing what it means to recall to the point where it can be

quantified in a straightforward manner. When interacting with the world around

us, our cognition is not meticulously cataloging the number of objects encountered

or the precise order of events. Such an approach would not only be incredibly taxing

but also provide limited utility. Instead, our cognition is inherently geared towards

understanding the world in a holistic and meaningful way. What we recall is not

merely a dry, objective list of details, but a fluid, interconnected web of information

imbued with personal meaning, contextual associations, and emotional resonance.

Additionally, the traditional metrics of recall often overlook the temporal narrative

that unfolds in our memories. When we remember, we are not just recalling a

static snapshot of an event but a dynamic, unfolding narrative that evolves over

time. This narrative aspect is integral to our experience and understanding of the

world, shaping not only what we remember but also how we remember it. Recall,

especially of complex stimuli like videos, should therefore encapsulate the “what,

where, and when”—the essence, meaning, or narrative of the perceived stimuli. This

more comprehensive perspective, focusing on the holistic and semantic richness of

recall, can offer a more ecologically valid measure of memory that is more in tune

with our natural cognitive processes. A focus on the “what, where, and when”

emphasises the importance of understanding the underlying content and context of

our memories, moving beyond the simple and reductionist measures of recall, to a

deeper understanding of the richness and complexity of our memory processes.

6.3.1 Semantic Similarity

In assessing recall within the framework of complex stimuli, such as videos, it is

crucial to move beyond the narrow and overly simplistic scope of traditional recall

measures. Traditionally, the primary dimensions of recall assessment have included

the sheer quantity of accurately recalled items, the correctness of the sequence in
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which these items were originally presented, the spatial precision of the recalled

items in relation to their original contexts, and the temporal accuracy of event recall

within a designated timeline. These measures, while providing and easy-too-quantify

metric, strip memories of the narrative and contextual associations that imbue them

with value. To circumvent these limitations, a paradigm shift is necessary towards

embracing a more encompassing approach: the measurement of semantic similarity.

Semantic similarity transcends the reductionist perspective, taking into account the

“what, where, and when” of memory. It provides a more ecologically valid, and

holistic comparison between the perception of a stimulus and its reconstruction

from memory. While the notion of quantifying a stimulus’ semantics might initially

appear daunting, recent advancements in machine learning and language processing

present robust tools to tackle this challenge.

One such tool is the Contrastive Language–Image Pretraining (CLIP) model

[309], which is a versatile and robust model that has been trained on a vast corpus

of image and text paired data. Its unique training methodology allows it to under-

stand and translate between visual and textual modalities, making it suitable for

extract semantic information from both images (e.g., video frames, and drawings)

and text (e.g., captions). The primary technique that facilitates this comparison

is the generation and comparison of vector representations, or embeddings, of the

input data. CLIP generates these embeddings by mapping input data—be it text or

image—into a high-dimensional space where the semantic similarity between data

points is represented as spatial proximity. That is, embeddings from similar pieces

of data—regardless of whether they are text or image—are closer together, while

those from dissimilar data are farther apart. The measure of semantic similarity is

then computed using cosine similarity, a metric that quantifies the cosine of the an-

gle between two vectors. With embeddings, the cosine similarity effectively captures

the angle between the two vectors in the high-dimensional space. As vectors closer

together in this space indicate greater semantic similarity, a smaller angle (and thus

higher cosine similarity) means the two pieces of data are semantically more similar.
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Within this study there are two main axes of recall from which we can measure

semantic similarity: drawings and text.

6.3.2 Drawing Based Measures

As previously emphasised earlier in the chapter, drawings provide a window into the

contours of a subject’s mental terrain in ways that other methodologies may not per-

mit, offering a tangible, visual output that embodies the idiosyncrasies of individual

cognition. In the context of the drawing experiment, there are two distinct types

of drawings: the drawings created by participants as a result of their recall—“recall

drawings”—and the drawings produced while viewing a frame from the original

video stimulus—“perceptual drawings”. CLIP image embeddings for both of these

types of drawings can be generated, enabling a straightforward semantic similarity

between them to be calculated.

However, a key challenge arises when attempting to calculate the semantic sim-

ilarity between a drawing and the ground-truth video frames. This comparison is

anything but straightforward because the video frames are not drawings; they don’t

have the same properties and structural peculiarities inherent in human drawings.

Hence, a direct comparison between a drawing and an image may not yield a useful

measure of semantic similarity. To bridge this gap, we turn to a ControlNet [310]

conditioned Stable Diffusion [311] model.

Stable Diffusion is a state-of-the-art open-source text-to-image model (covered in

more detail in the next chapter) that can generate high-quality synthetic images. In

combination with ControlNet, synthetic images that closely align with the underly-

ing semantics and structure of the recall and perceptual drawings. These synthesised

images serve as a “semantic bridge”, allowing for a more valid calculation of semantic

similarity between the drawings and the ground-truth video frames.
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Figure 6.6: ControlNet in Stable Diffusion. Reproduced from [310].

ControlNet

ControlNet [310] is a neural network structure that imparts greater flexibility and

control to large diffusion models used in text-to-image generation. The architecture

is uniquely designed to support additional input conditions, significantly expanding

the application potential of these models. At its core, ControlNet, shown in Fig-

ure 6.6, employs an end-to-end learning approach that involves the creation of a

“trainable copy” and a “locked copy” of the pre-existing weights from a large diffu-

sion model like Stable Diffusion [311]. The locked copy remains static, preserving

the extensive knowledge previously learned from billions of images. In contrast, the

trainable copy is dynamically adapted to learn from task-specific datasets, thereby

facilitating conditional control. This strategy leverages the power of existing models
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while still allowing for customisation and adaptation to specific tasks. The trainable

and locked copies of the network parameters are interconnected using a unique type

of convolution layer termed “zero convolution.” This layer is initialised with zero

weights and biases, ensuring that the initial application of ControlNet does not al-

ter the deep features of the model. The layer’s parameters are progressively updated

during training, which helps to maintain the speed and efficiency of fine-tuning a

diffusion model. A ControlNet trained with human scribbles was used to generate

images from the participants’ drawings.

Recall Drawings vs Perceptual Drawings

While this comparison offers potential valuable insights into the overall correspon-

dence between recalled and perceived content, and at face value seems sensible and

straightforward, it is not without its limitations. While the CLIP model typically

excels at mapping visual data to a high-dimensional space, it can struggle with the

inherent ambiguity and idiosyncrasies of hand-drawn images. For instance, it is vul-

nerable to producing high similarity scores between drawings with minimal semantic

content.

Consider two drawing samples produced by a participant (Figure 6.8). Both

consist of black scribbles. Despite a lack of discernible semantic features in these

drawings, the CLIP similarity score between them is 1.0. However, this actually

makes a lot of sense if we consider what the model is doing, and the fact that the

sole semantic quality of both drawings—which they equally share—is being a black

scribble. In the absence of more complex semantic features, this will be the case for

any two images that share colour characteristics. This highlights the importance of

participant drawing ability for this specific vector of analysis.

If a participant produces drawings with a high level of detail, CLIP can extract a

more meaningful higher-dimensional representation, and accordingly more nuanced

and accurate semantic similarity scores can be calculated. The use of colour can

also play an impactful (albeit less crucial) role, providing an additional layer of
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Recall Drawing Video FramePerceptual Drawing

(A)

(B)

(C)

“man putting toothpaste on brush
to brush teeth”

“a man with long hair brushing
 teeth in mirror”

“cocolate cake on a wooden table
fairy lights and blue cup”

“fisher man’s boat out at sea” “passenger boat out at sea”

“chocolate sauce being poured on 
chocolate cake, wooden table
fairy lights, blue cup”

Figure 6.7: Example participant recall and perceptual drawings with their associated
captions, alongside ground-truth video frames.

information, potentially leading to more accurate similarity scores. Interestingly,

for participants who demonstrated a high degree of drawing ability, even without

consistent use of colour, this approach proved to be quite effective, as demonstrated

in Figure 6.9. An analysis of this subset of high-quality participant drawings re-

vealed a subtle difference in the semantic similarity scores based on the recognition

memorability of the videos. High recognition memorability videos yielded a slightly

higher average semantic similarity score (x̄ = 0.73, SD = 0.06) compared to low

recognition memorability videos (x̄ = 0.65, SD = 0.07). This difference, while

small, approached statistical significance (t = 2.09, p = 0.051). This weak correla-

tion could potentially be explained by a phenomenon reminiscent of the “Matthew

effect” in the field of cognitive psychology [312], a term borrowed from sociology

that refers to an accrued advantage phenomenon, where, for instance, early advan-

tages in reading ability lead to increased reading experiences, further enhancing the

skill and widening the gap between proficient and struggling readers. In the con-

text of memory recall, this suggests that videos with high recognition memorability,
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Figure 6.8: Example Similarity score between a participant’s recall (A) and percep-
tual (B) drawings.

due to their distinct and memorable content, may stimulate more comprehensive

and precise drawings. However, given the small effect size and marginal statistical

significance, this finding should be interpreted cautiously.

Recall Drawings vs Ground-Truth Video Frames

As previously mentioned, a direct comparison between drawings and video frames is

unlikely to be of much utility as they have drastically divergent visual and structural

properties. Accordingly, a ControlNet conditioned Stable Diffusion model was lever-

aged to create high-fidelity image representations of the participants’ recall drawing.

The intent was to transform the relatively low resolution and potentially abstract

recall drawings into more detailed images, which can be compared more effectively

with the actual video frames. The process of generating the surrogate images in-

volves feeding the caption into the Stable Diffusion model and feeding the recall

drawing into the ControlNet. The caption is used to convey the desired conceptual

properties of the synthesised image, and the drawing is used to guide its structural

composition.

Once the synthetic image has been generated, it is then compared against the
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(A) (B)

CLIP Score: 0.6924

Figure 6.9: Example of similarity score between recall (A) and perceptual (B) draw-
ings.

first, middle, and last frames of the ground-truth video to compute semantic sim-

ilarity scores. This was done to account for any temporal changes in the video’s

narrative content, thereby providing a more comprehensive and accurate represen-

tation of the video’s overall semantics. The final similarity score was chosen as the

highest score from these comparisons, representing the closest match between the

synthetic image and the video frames. While the synthesis of recall-drawing-based

surrogate images facilitated a comparative analysis with actual video frames, the re-

sults were somewhat mixed. A weak but statistically significant positive correlation

was observed between the semantic similarity scores and the recognition memora-

bility of the videos (r = 0.256, p = 0.018). In other words, videos that were more

memorable (high category) tended to have higher semantic similarity scores com-

pared to less memorable (low category) videos. More specifically, high recognition

memorability videos yielded an average similarity score of 0.66 (SD = 0.07), slightly

higher than the low memorability videos which averaged at 0.61 (SD = 0.06). A

t-test performed on these averages did not yield a statistically significant difference

(t = 1.56, p = 0.124).

A second method of comparison considered both recall-drawing-based synthetic
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“cool flaming metal octopus”

“barbie doll being washed
in the sink”

“grey bus with red stripe
 driving through city”

Frame Recall Drawing + Caption Synthetic

Figure 6.10: Examples of participant recall drawings and captions, and the resul-
tantly synthesised images.

images and synthetic images generated for the ground-truth videos. Three synthetic

images—using the first, middle, and last frames—were generated for the ground-

truth videos by passing the first ground-truth caption and a frame as inputs to

the ControlNet conditioned Stable Diffusion model. This process facilitated a more

direct comparison between the semantic interpretations of the recall and ground-

truth content, effectively quantifying the fidelity of the recalled information to the

original video’s semantics. The final similarity score between a recall drawing and

video was chosen from the highest comparison score between the synthetic recall

image and each of the synthetic video-frame-based images. Upon analysis, a more

pronounced, statistically significant positive correlation was found between the se-

mantic similarity scores and the memorability of the videos (r = 0.563, p < 0.003).

More memorable videos (high category) consistently had higher semantic similarity
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scores compared to less memorable videos (low category). In terms of mean seman-

tic similarity scores, a statistically significant difference was noted between the high

and low memorability videos. Specifically, high memorability videos demonstrated

an average similarity score of 0.76 (SD = 0.07), which was significantly higher than

that of low memorability videos, which had an average score of 0.68 (SD = 0.06),

t = 3.14, p < 0.011. This stronger correlation and distinct difference in means in

this method of comparison suggest a more evident relationship between video mem-

orability and semantic alignment. The inclusion of the synthetic images representing

the ground-truth videos potentially provides a more accurate gauge of the semantic

consistency between recall and original video content.

0.7321

CLIP
Score

Figure 6.11: Example of synthetic images generated from recall drawings, and their
CLIP scores to a ground-truth video frame.

6.3.3 Textual Measures

In the context of the drawing recall experiment, textual measures serve as an illumi-

nating counterpart to our visual measures, capturing nuanced details of remembered

stimuli that may not find expression in visual representations. The CLIP model,

with its ability to evaluate the semantic similarity between text and image data,

enables the additional assessment of textual representations of participant recall.
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Three axes of comparison are considered:

Recall Captions vs Perceptual Captions: This comparison reflects the fi-

delity of recall, gauging the degree of correspondence between the semantics per-

ceived and those recounted from memory. In the study, a marked distinction was

observed between high and low recognition memorability videos. High memora-

bility videos exhibited significantly greater semantic similarity between recall and

perceptual captions (x̄ = 0.833, SD = 0.064) compared to low memorability videos

(x̄ = 0.674, SD = 0.051; t = 7.81, p < 0.0002). These findings suggest that the

recognition memorability of a video bears a strong influence on the semantic align-

ment between perceived and recalled stimuli.

Recall Captions vs Ground-Truth Captions: This comparison provides

a more external assessment of recall accuracy, reflecting the degree of semantic

congruence between the recalled content and the original video narrative. Interest-

ingly, despite a difference in the mean similarity scores between high recognition

memorability videos (M = 0.67, SD = 0.05) and low recognition memorability

videos (M = 0.64, SD = 0.06), this difference did not reach statistical significance,

t = 1.90, p = 0.067. This indicates that, although there is a trend for recalled

captions of more memorable videos to align more with the ground-truth captions,

this trend is not strong enough to yield a significant correlation with video recogni-

tion memorability. This could be attributed to the inherent variability in individual

recall strategies and the natural transformation of information as it moves from per-

ception to recall. Moreover, the baseline level of specificity in participants’ caption

writing, or their general descriptive ability, could heavily influence this comparison.

This factor potentially muddies the waters and prevents any underlying effects from

surfacing.

Normalised Recall-to-Ground-Truth Similarity: Accounting for individ-

ual differences in perception and descriptive ability, an adjusted measure of recall

accuracy can be derived. This is achieved by normalising the recall-to-ground-truth

similarity by the perception-to-ground-truth similarity. This ratio highlights how

06/09/2023



6.3. QUANTIFYING RECALL

effectively a participant’s recall aligns with the original video content, after fac-

toring in their initial perceptual and descriptive ability. Examination of this nor-

malised measure revealed a robust correlation between the normalised similarity

score and video memorability (r = 0.723, p < .0027). High memorability videos

yielded an average normalised similarity score of 0.819 (SD = 0.038), significantly

higher than the average score of 0.667 (SD = 0.053) observed for low memorability

videos (p < .0154). The emergence of this correlation after normalisation suggests

that, while unadjusted recall may not consistently reflect the recognition memorabil-

ity of a video, the extent to which recall preserves original perception appears to be

strongly linked to the recognition memorability of the video content. The findings

underscore the importance of considering individual differences in perception and

descriptive abilities when evaluating recall performance.

Recall Caption Precision

A quantifiable measure of recall precision, the Caption Specificity Score (CSS), was

introduced to assess the level of detail and specificity inherent within the captions

produced during the recall phase of the experiment. The calculation of the CSS was

predicated on the integration of two key measures: Average Term Frequency-Inverse

Document Frequency (Avg TF-IDF) and Named Entity Count (NEC). The Avg TF-

IDF was computed using standard natural language processing (NLP) procedures.

This involved tokenization, case normalisation, and punctuation removal, applied to

a corpus composed of the entire Google Conceptual Captions dataset [201]. Each

unique term within a recall caption was subsequently assigned a score that was

indicative of its relative significance within the caption and its rarity within the

corpus, thereby facilitating the computation of Avg TF-IDF. The NEC complements

the Avg TF-IDF by focusing on the level of detail of the caption. Named entities

refer to definite nouns that correspond real-world objects, individuals, locations, etc.

To compute the NEC, the default implementation of the Named Entity Recognition

(NER) system in the Python spaCy library [313], was used. The final CSS assigned
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to each recall caption was computed by integrating the normalised Avg TF-IDF and

NEC. Both components were scaled to lie within the range of 0 to 1, with the CSS

for a given recall caption calculated as:

CSS = normalised(Avg TF-IDF) + normalised(NEC) (6.1)

The careful examination of CCSs revealed more nuanced relationships with the vari-

ables of interest. This deeper dive uncovered the interactions between recall caption

specificity, ground-truth caption specificity, and the video recognition memorability

categories. To capture these complexities, a relative comparison measure was de-

vised, based on the difference between the recall CSS and the ground-truth CSS,

normalised by the difference between the perception CSS and the ground-truth CSS.

This created a score that encapsulated the change in specificity from perception to

recall, relative to the ground-truth. Analysing the normalised CSS yielded sev-

eral notable outcomes. A moderate and statistically significant positive correlation

was observed between the normalised CSS and high video recognition memorabil-

ity, with r = 0.36, p = 0.009. This finding indicates a link between recall caption

precision and the recognition memorability of the videos. Specifically, it suggests

that for videos categorised as highly memorable, the recall caption specificity more

closely matched the ground-truth caption specificity relative to the initial perception.

Furthermore, an interesting trend emerged when comparing the recall and percep-

tual caption specificity within the recognition memorability categories. The average

difference between recall caption specificity and perceptual caption specificity was

smaller for high recognition memorability videos compared to low recognition mem-

orability videos, t = 2.18, p = 0.037. These observations suggest that recognition

memorability might be linked to the quality and detail of recall. However, it should

be acknowledged that high recognition memorability videos might inherently con-

tain more unique, detailed, or rich concepts, which could potentially influence the

observed differences in caption recall precision.
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6.3.4 Other Measures

Alongside the primary analysis measures, the recall drawing experiment incorpo-

rated two additional measures to enrich the understanding of video recall memora-

bility and its influencing factors, the first of which addressed instances of forgotten

or misremembered videos. During the experiment, participants who could not re-

member a particular video left the drawing canvas blank, and typically wrote a

statement like “I don’t remember” in the caption. Videos that were misremembered

were identified by comparing the recall drawing and captions with the correspond-

ing perceptual drawing and captions. Interestingly, none of the videos in the high

memorability category were forgotten or misremembered. For the low memorabil-

ity category, there were nine instances of videos being forgotten or misremembered.

Of these, one video was forgotten/misremembered by three participants, two were

forgotten/misremebered by two participants. Notably, all misremembered instances

involved a video from the encoding phase positions 2 or 3 being confused for a high

memorability video in the corresponding 2nd or 3rd position. A subsequent Z-test for

the difference in proportions of correctly recalled videos between high and low recog-

nition memorability videos revealed a significant difference (Z = 3.0542, p = .00228).

This difference in recall proportions between high and low recognition memorability

videos provides further evidence for the existence of a relationship between recogni-

tion memorability and recall memorability.

The second measure involved participants completing a Vividness of Visual Im-

agery Questionnaire (VVIQ) following the experiment. As explained in section 6.2.1,

this questionnaire provides an insight into individual differences in the ability to

form mental visual images, which could potentially influence the quality of recall

and the semantic similarity of recall drawings. The distribution of reported VVIQ

scores largely aligned with what is expected in the general population. Only one

participant reported a complete absence of mental visual imagery, scoring a 16 on

the VVIQ. This specific participant’s drawings were not discernibly different to the

average drawing, and did not result in any drawing score outliers. Additionally,
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a Pearson correlation analysis revealed no significant direct relationship between

VVIQ score and any drawing recall score measures—recall vs perceptual drawings,

synthetic recall images vs ground-truth images, and synthetic recall images vs syn-

thetic ground-truth images, r = −0.086, p = 0.182 r = 0.073, p = 0.235 r = 0.065,

p = 0.275, respectively. However, independent-samples t-tests showed a significant

difference in mean VVIQ scores between participants in the top quartile (¿64) and

those in the bottom three quartiles across the three measures of CLIP similarity

scores. For recall versus perceptual drawings t = 2.28, p = 0.026; for synthetic

recall images versus ground-truth images, t = 2.15, p = 0.034; and for synthetic

recall images versus synthetic ground-truth images, t = 1.98, p = 0.049. These

results suggest an interesting interplay between personal cognitive abilities, namely

the capacity for vivid mental imagery, and the fidelity of memory recall. While there

may not be a strong direct correlation between the ability to form mental images

and recall drawing scores when examined across all participants, within the group

that scored in the top quartile for VVIQ, there is a noticeable enhancement in the

semantic precision of the recalled information in their drawings. It should be noted

that the observed relationships might not entirely reflect the quality of recall, but

could potentially be indicative of a participant’s ability to accurately depict their

mental representation through the medium of drawing. In other words, higher VVIQ

scores might be more closely associated with better representational abilities rather

than superior recall per se.
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6.4 Conclusion

The hypothesis investigated in this chapter posited a measurable relationship be-

tween recognition and recall memorability (H3). The empirical evidence garnered

from visual and textual measures robustly validates this hypothesis, underscoring

the existence of a significant link between these two facets of memorability. Visual

measures revealed marked disparities in the semantic alignment and precision of re-

call between videos categorised as high and low in terms of recognition memorability.

Notably, a strong correlation was observed between the normalised measure of re-

call accuracy, which accounts for individual perceptual and descriptive abilities, and

video memorability. This finding underscores the impact of individual differences in

moulding recall performance, further substantiating H3.

In the textual domain, the Caption Specificity Score (CSS) was introduced as

a novel, quantifiable measure of recall precision. Intriguingly, the analysis of CSS

scores unveiled a nuanced relationship with recognition memorability. A statis-

tically significant correlation was observed between the normalised CSS and high

video recognition memorability. This lends credence to the notion that recall preci-

sion plays a crucial role in measuring the recognition memorability of video stimuli.

Importantly, the absence of forgotten or misremembered videos in the high memo-

rability category augments the body of evidence in favour of a correlation between

recognition and recall memorability. This finding resonates with the research under-

taken by Broers and Busch, providing converging evidence in support of H3. Further,

an analysis of the Vividness of Visual Imagery Questionnaire (VVIQ) scores sug-

gested an intricate interplay between individual cognitive abilities, specifically the

capacity for vivid mental imagery, and the fidelity of memory recall. While this

relationship was not universally observed across participants, a significant enhance-

ment in recall precision was noted among participants in the top VVIQ quartile.

Although this result is preliminary, it hints at the importance of accounting for

personal cognitive abilities when examining recall performance. Interestingly, the
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results obtained call into question the measures of recall employed by Bainbridge et

al. [152], as the findings contradict one another, ultimately underlining the necessity

for more extensive investigation and the development of more robust, comprehensive

measures of recall.

In summary, this chapter provides evidence that supports H3, illustrating a mea-

surable correlation between recognition and recall memorability. The support of this

hypothesis paves the way for further research exploring the cognitive and neural un-

derpinnings of recognition and recall, thereby promising to unlock new insights in

the realm of memory studies.
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Chapter 7

The Conceptual Essence of

Intrinsic Memorability

“Memory is not just the imprint of the past time upon us; it is the

keeper of what is meaningful for our deepest hopes and fears.”

— Rollo May, Musicophilia

In the unfathomable panorama of the cosmos, we find ourselves as intricately com-

plex creatures on a serendipitous blue sphere, a miraculous haven teeming with life.

Amidst the enthralling mystery of our existence, a fundamental truth emerges—we

are living beings, bound by the immutable laws of biology, borne of the unyield-

ing process of evolution. Our evolutionary history—profound, tumultuous, and

enduring—sculpts the foundation of our biology, behaviour, and cognitive faculties,

including our remarkable ability to remember [314].

In every waking moment, we find ourselves barraged by a relentless torrent of

visual stimuli—vivid hues, intricate shapes, and compelling patterns. A select few

breach the bulwarks of our consciousness, leaving an indelible imprint on our mem-

ory. What endows these chosen stimuli with their unforgettable memorability? One

might suppose that it lies in their intrinsic attributes—their aesthetic allure, their

captivating novelty, their emotive potency. Yet, we find that the reality is subtler

and far more fascinating. As beings crafted by the relentless forge of evolution,
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our capacity to remember, to store and retrieve information, serves a fundamental

purpose. It is not merely a backward-looking chronicle of our past experiences. In-

stead, it serves as a forward-facing oracle, allowing us to predict and prepare for the

unfurling tapestry of the future [117], [315]. From an evolutionary perspective, this

predictive capacity is invaluable—organisms that can anticipate danger or oppor-

tunity, navigate complex social landscapes, or detect changes in the environment,

possess a critical edge in the fierce struggle for survival [316], [317].

Thus, the memorability of a stimulus is not anchored in the stimulus itself but

rather in the profound mental representation it evokes within us. It lies in the ca-

pacity of the stimulus to resonate with our cognitive apparatus, to spark connections

with our understanding of the world, and to contribute to our future predictive abil-

ity. A memorable stimulus is one that harmonises with our evolutionary imperative

to anticipate, to forecast, and to prepare. The true essence of memorability, then,

is found not in the external perceptual appeal of a stimulus but in the conceptual

echo it creates within the chambers of our mind. This intimate relationship between

memory and prediction illuminates why certain stimuli stand out in the colourful

kaleidoscope of our perceptual experience.

Our minds serve not merely as passive observers but as active composers of a

perceptual symphony, intricately transforming sensory data into elaborate mental

representations [318]. This transformation embeds not only the physical attributes

of stimuli but also an overarching conceptual essence. In this orchestration, the

resonance of a stimulus with its conceptual connotation is the primary fuel for its

memorability. Thus, the memorability of visual stimuli depends less on their physical

features and more on their capacity to convey pertinent, utility-laden information—

information that resonates with the perceptual apparatus of the evolved human

observer. This perspective dovetails with insights drawn from diverse research do-

mains. Linguistic evolution studies, for example, posit that our communication

tools, including language, have evolved to deliver information efficiently [319]. In

concert with this, cognitive neuroscience elucidates that our brains are inherently
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VISUALS

wired to prioritise stimuli that are rewarding [320], and abundant in information

content [321]. These findings fortify the central premise that the cognitive value of

stimuli, encompassing their memorability, is intimately entwined with their infor-

mational utility.

This understanding of memorability, steeped in the nuances of biology, cognition,

and evolution, heralds new insights for computational memory research. It invites

us to shape artificial systems that more faithfully reflect the profound structure

of our biological memory, ultimately advancing our comprehension of both natural

and artificial intelligences [322]. This discourse also imparts a salient lesson: it

beckons us to view our perceptual experience not as a passive registration of sensory

inputs, but as an active and dynamic engagement with the world around us—an

engagement that is imbued with meaning and purpose and is intimately tied to our

very existence. In this sense, every act of remembrance underscores our existence as

biological entities, extracting meaningful information from the sensory deluge that

envelops us. In this rich context, studying memorability emerges as more than an

exploration of cognitive faculties—it unfurls as a journey into the essence of our

shared humanity.

7.1 The Nature of Visual Memorability:

Concepts over Visuals

The intricate relationship between visual content and memorability has been the

subject of rigorous investigation over recent years, leading to a myriad of theo-

ries focusing on the intrinsic characteristics of visual stimuli that may influence

their memorability. However, while the exploration of these physical, aesthetic ele-

ments have undoubtedly contributed to the depth of understanding within the field,

they are predominantly rooted in the realm of static imagery [1], [141], [323], only

very recently delving into the dynamic, rich, and complex realm of video content,

which necessitates a recalibration of the theories of memorability to encapsulate this

06/09/2023



7.1. THE NATURE OF VISUAL MEMORABILITY: CONCEPTS OVER
VISUALS

broader spectrum of stimuli.

Conceptually, the work described in this chapter takes a novel approach, focusing

on the memorability of visual content as largely driven by the underlying concept it

conveys, rather than its inherent visual features. This shift in perspective has hith-

erto not been explored or experimentally validated. This work does however align

with the idea that content is memorable if it has a high utility of information. As

posited by Bylinskii et al. [284], humans are more likely to remember that which sur-

prises them, contradicts their current model of the world, or is likely to be relevant

or useful in the future. This notion fundamentally shifts the focus from the visual

features of an image or a video to the information it delivers, highlighting the crucial

role of cognitive factors in shaping memorability. In essence, it is something akin to

the distinctiveness of the concept relative to its context that makes a visual stimulus

memorable. This suggests that our memory is primed to retain information that has

a high utility, possibly because this type of information enables us to better prepare

for future encounters and to adjust our worldview accordingly. The studies leverag-

ing large, diverse memorability datasets, as described in [284], underscore this point

further by revealing what universally tends to be memorable: emotional/affective

stimuli, unexpected actions, social aspects, animate objects (human faces, gestures,

interactions, etc.), and tangible objects.

In this light, it becomes clear that memorability transcends aesthetics or low-

level visual features like colour or contrast. Instead, it encapsulates the higher-level

properties of semantics (objects and actions) and composition (layout and clutter)

in an image or video. In the context of video memorability, this proposition takes

on an even greater importance. As we will explore in this chapter, the experiments

reveal that machine learning models trained exclusively on synthetic data based on

the underlying concept portrayed in the video, achieve state-of-the-art video memo-

rability prediction. These models outperform their counterparts trained directly on

frames extracted from the videos, thereby corroborating the central hypothesis of

this chapter. Namely, that the memorability of visual content lies in the underlying

06/09/2023



7.2. DISTILLING INTRINSIC MEMORABILITY

concept and the mental representation it induces, not the specifics of its visual char-

acteristics. As such, this chapter will further elucidate the cognitive and conceptual

basis of video memorability, bringing to the fore the importance of conceptual infor-

mation over visual specifics in shaping our visual memory. The implications of this

for the broader field of memorability research are considerable, with the potential

to redefine our understanding of what makes visual stimuli memorable.

7.2 Distilling Intrinsic Memorability

Although much progress has been made thinning the query-saturated haze that

conceals the landscape of answers mapped by the seminal question: “What makes

an image memorable?” [141], [192], [211], [324], the summit remains out of sight,

with 25% of the variance (i.e., the proportion of total variability in memorability

not yet explained by the identified factors) still remaining unaccounted for [1]. The

shortest path to understanding is through a hurricane of light: given that we are

visually dominant creatures, with over half of the cortex involved in visual processing

[325], we naturally expect visual sensory data to exert the greatest influence on

memorability. However, it is important not to be lead awry by our brain’s appetite

for visual sensory soup, as semantic meaning is known to play a critical role in

visual memorability. Richer and more conceptually distinctive events last longer in

memory, and certain semantic categories are inherently more memorable than others

[1], [326]. Even though visual memories are stored with an exceptional fidelity of

detail (i.e., configurations and contexts of viewed objects[140]), our performance is

poor when it comes to remembering random patterns unless they take on object-like

qualities [327], suggesting that visual memory is not driven entirely by visual details.

Further evidence suggests that visual data is merely a means to conceptual un-

derstanding, which is in turn intimately tied to memory, with conceptual distinc-

tiveness supporting higher fidelity visual long-term memory representations than

perceptual distinctiveness, and influencing memory retention in a manner that can-

not be accounted for by perceptual distinctiveness alone [326], [328]. Perceptual
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distinctiveness is typically measured within a given object category, and with refer-

ence to variations in low dimensional, knowledge agnostic, perceptual features (i.e.,

colour, and shape). Unfortunately, the line between perceptual and conceptual fea-

tures begins to blur as we move into higher dimensional features (e.g., length of

torso relative to head size), which become more category-specific and likely to be

acquired through visual experience [329], making it difficult to probe the depth of

connection between concept and memorability. However, with the recent explosion

in progress in the image synthesis field, and the release of the open-source text-

to-image diffusion model Stable Diffusion, we find ourselves uniquely positioned to

assess the impact of conceptual features on video memorability independent of its

perceptual features, with the exceptional ability to preserve the depth and richness

of information inherent to the visual domain. Introducing synthetic images offers a

distinct advantage over direct textual encoding of captions in this context. While

text provides a linear and descriptive representation of a concept, it inherently lacks

the nuanced, multidimensional interplay of visual features present in images. A sim-

ple caption might be able to convey the general gist or theme of a video, but it fails

to capture the subtleties and visual relationships within stimuli that may contribute

to memorability. Synthetic images, on the other hand, allow for a richer, more de-

tailed representation, maintaining (as a product of having been trained on very large

corpora of visual data), but not directly preserving, the intricacies of visual data

that text simply cannot. By employing synthetic images, we ensure a robust and

comprehensive exploration of the relationship between conceptual features and their

impact on memorability, without the oversimplifications and limitations associated

with textual representations.

As captured in (H5), if visual data truly is merely a means to conceptual under-

standing, and that it is the concept itself—which is conveyed/represented through

the visual data—that holds the content’s intrinsic memorability, then the inter-video

relationship of memorability scores predicted with ground-truth video frames should

be observable in the memorability scores predicted with synthetic images predicated
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on purely conceptual video data.

The investigation begins by leveraging state of the art image synthesis to fa-

cilitate the exploration of the aforementioned hypothesis, which can be concisely

captured with the following question: can the intrinsic memorability of visual con-

tent be distilled to its underlying concept/meaning?

7.2.1 Overview of the Stable Diffusion Model

Latent Diffusion models, a novel addition to the generative modeling landscape, have

emerged recently as a powerful tool for high-quality image synthesis tasks. Stable

Diffusion, a meticulously crafted configuration of these models, offers an illustrative

example of the capabilities of this new approach [311]. By intertwining three distinct

and potent components–—a Variational Autoencoder (VAE) for perceptual image

compression, a U-Net for diffusion, and a CLIP ViT-L/14 text encoder for text-to-

image conditioning—Stable Diffusion achieves an impressive blend of performance

and fidelity. The following sections delve into the intricacies of these components

and their specific roles in the functioning of Stable Diffusion.

Perceptual Image Compression: The Power of Variational Autoencoders

One critical step in Stable Diffusion, and indeed, in any latent diffusion model, is the

encoding of data into a compressed latent space. A latent space refers to a lower-

dimensional representation of the training data, constructed such that it captures

the essential, semantically significant features of the data. This encoding allows the

model to focus on the most meaningful aspects of the data and improves compu-

tational efficiency by reducing the dimensionality of the training space. The task

of encoding the data into a compressed latent space is entrusted to the Variational

Autoencoder (VAE). A VAE is a type of generative model that performs a dual func-

tion: it not only encodes the input data into a compressed form but also is capable

of generating new data that resemble the input [330]. The VAE accomplishes this

through a two-part architecture. The first part, the encoder, is a neural network
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that takes as input the data and outputs a set of parameters defining a probability

distribution in the latent space. This distribution is intended to capture the essential

features of the input data. The second part, the decoder, is another neural network

that takes as input a point sampled from the latent space distribution and outputs

a reconstruction of the original data as shown in Figure 7.1.

Figure 7.1: Variational Autoencoder architecture.

One of the distinguishing aspects of VAEs is the principle of “variational” inference,

a method used to approximate complex probability distributions. In the context of

the VAE, variational inference allows the model to encode the data into a standard

Gaussian distribution in the latent space. This encoding provides a structured, nor-

malized form for the latent space that facilitates the learning process of the diffusion

model [330]. The Stable Diffusion model leverages the capabilities of the VAE to

construct an efficient and semantically rich latent space. The use of VAEs brings

a critical advantage: it decouples the learning of the latent space from the training

of the diffusion model. This separation results in a more controlled learning pro-

cess, avoiding a delicate balancing act often needed when simultaneously optimising

reconstruction quality and learning the prior over the latent space [311]. Conse-

quently, Stable Diffusion can concentrate on the distribution learning task, with a

carefully curated, VAE-defined latent space serving as its starting point. This latent

space, rich in perceptually significant features and lean in dimensionality, forms an

ideal platform for the diffusion model to build upon, leading to more nuanced and

high-quality image synthesis.
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Diffusion in Latent Space: The U-Net Architecture

The latent diffusion model’s core premise is the generation of a forward diffusion

process, and its counterpart, the reverse process. This dichotomy of processes grad-

ually transforms the original data into Gaussian noise and recovers the original data

from the noise, respectively. The heart of this undertaking is the U-Net architecture,

a robust convolutional network variant, integral to the successful image synthesis in

the Stable Diffusion model [331]. Named for its characteristic “U” shape, the U-Net

architecture shown in Figure 7.2, was originally developed for biomedical image seg-

mentation. The structure of the U-Net is an innovation in itself: it is a symmetric

architecture that comprises an encoder (the “contracting” path) and a decoder (the

“expanding” path), connected by a bottleneck. Each stage in the contracting path is

typically composed of two convolutional layers followed by a max pooling operation

for downsampling, while each stage in the expanding path consists of an upsampling

of the feature map followed by a convolution (“up-convolution”) [331].

Figure 7.2: U-Net architecture. Each blue box corresponds to a multi-channel fea-
ture map. The number of channels is denoted on top of the box. The x-y-size is
provided at the lower left edge of the box. White boxes represent copied feature
maps. The arrows denote the different operations. Reproduced from [331].
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A critical feature of U-Net architecture is its series of long-range connections linking

layers in the contracting path to the corresponding layers in the expanding path.

These connections allow the network to leverage localized, detailed features along

with the global, abstract ones, thereby synthesizing images with precise localization

and rich context. The Stable Diffusion model adopts a time-conditional variant of

the U-Net architecture. This variant enables the U-Net to learn and replicate the

distribution of training images effectively. Coupled with a new optimisation target—

the “reweighted bound”—that focuses on perceptually significant parts of the data,

the U-Net in Stable Diffusion has a more balanced and refined optimisation target.

This adjustment enhances the model’s ability to create high-quality and diverse

images that are perceptually close to the training data [311]. The role of the U-Net

in the Stable Diffusion framework is, therefore, to enable effective diffusion in the

latent space by establishing an intricate balance between data detail and abstraction.

This balance facilitates the creation of images that are not only visually appealing

but also retain the semantically significant features of the original data, thereby

ensuring the quality of image synthesis.

Conditioning Mechanisms: Text-to-Image

Conditioning mechanisms are a crucial facet of generative models, providing control

over the generation process to ensure that outputs adhere to specific requirements

or guidelines. In Stable Diffusion, this conditioning process is achieved through

a cross-attention mechanism [281] that interacts with a specific text encoder: the

CLIP ViT-L/14 model. This encoder serves as a bridge between text prompts and

their corresponding image outputs, empowering the Stable Diffusion model to syn-

thesise high-fidelity images from textual descriptions [309]. The CLIP (Contrastive

Language-Image Pretraining) model marries the strengths of vision transformers

(ViT) and large language models, training on a vast array of image-text pairs to

learn the intricate connections between words and their visual representations shown

in Figure 7.3. [309], [332].
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Figure 7.3: CLIP jointly trains an image encoder and a text encoder to predict
the correct pairings of a batch of (image, text) training examples. At test time,
the learned text encoder synthesises a zero-shot linear classifier by embedding the
names or descriptions of the target dataset’s classes. Reproduced from [309]

In the context of Stable Diffusion, the CLIP ViT-L/14 variant is utilised in this work.

This particular model is a more substantial configuration of CLIP, offering higher

performance at the expense of increased computational requirements. The ViT-L/14

text encoder within CLIP maps textual descriptions to an embedding space where

semantically similar concepts, regardless of their format (textual or visual), cluster

together. This conditioned encoding of textual prompts into a shared embedding

space paves the way for the Stable Diffusion model to synthesise images that not

only visually embody the text but also maintain semantic consistency [309]. The bi-

directional interaction between the text embeddings and the latent code in the Stable

Diffusion model (see Figure 7.4) is realised through the cross-attention mechanism,

which in practice manifests as a set of blocks within the U-Net architecture. It

allows the global context, derived from the text encoder, to interact with the local

features of the latent code, thereby ensuring that the global structure of the data is

considered during the image synthesis process [311]. The net result is the creation

of images that adhere to the semantics of the original text prompts, making Stable

Diffusion a potent tool for text-to-image synthesis tasks.
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Figure 7.4: Stable Diffusion architecture. Reproduced from [309].

7.3 Visual Abstraction and Conceptual

Distillation

The rapid emergence of high-fidelity open-source image synthesis technologies has

ushered us into a remarkably novel landscape of visual analytics and understanding.

By leveraging this innovation, we can strategically peel back the perceptual layers

of a visual stimulus to focus our exploration on its underlying conceptual fabric.

This perspective offers an innovative approach to dissect the memorable aspects of

visual content, shifting the lens from merely its physical characteristics to its foun-

dational concepts. Such an approach is further facilitated by the intricate interplay

of the visual modality’s richness and the prowess of advanced deep learning visual

prediction techniques. This unique position is the stage for our exploration into the

conceptual essence of video memorability.

Using Stable Diffusion—the open-source state-of-the-art image synthesis model—

large swaths of synthetic images that transcend the domain of perceptual features

are generated and used to delve into the subject of conceptual representation. This

investigation is bifurcated into two parts: first, an initial foray into the efficacy of

using synthetically generated images to discard perceptual features while preserv-
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ing the underlying conceptual essence, involving the generation of four aesthetically

distinct synthetic datasets, and the assessment of their comparative predictive ca-

pacity; second, the creation and benchmarking of a fully automated synthetic image

predicated conceptual video memorability prediction framework.

7.3.1 Diffusing Surrogate Dreams of Video Scenes

The first strand of this investigation is unfurled with the generation of a diverse

assortment of synthetic images. These images, while embodying distinct aesthetic

styles, share a common purpose: to push the boundaries of perceptual traits while

anchoring the underlying conceptual essence. The chosen tableau of aesthetic styles—

realistic depiction, monochrome photography, surrealist art, and minimalist art—is

not arbitrary, but chosen with deliberate academic intent. These styles offer not

only a spectrum of aesthetic variance but also set the stage for deeper insights into

how Stable Diffusion negotiates the intricate dynamics of preserving the conceptual

kernel amidst a shift in aesthetics.

The first style—termed Real for brevity—anchors itself in the familiar territory

of the everyday, a stylistic sibling to the Memento10k videos, and serving as a touch-

stone for the subsequent styles. By utilising the very style that mirrors our daily

visual reality, we establish a comprehensive baseline for the ensuing comparisons.

A realistic style helps us understand the capacity of synthesised images to preserve

conceptual features while meaningfully altering the perceptual features, and equally

attempting to maintain a high degree of visual fidelity to the original image.

The second style—termed Monochrome for brevity—is grounded in the world of

black and white. The absence of color in this landscape places emphasis on elements

like contrast, texture, and form. This greyscale style, brings into sharp relief the

potential synthesised images to hold the underlying concept intact when colour, a

vital instrument in perceptual communication, is eliminated.

The third style—termed Minimal for brevity—steps into the realm of simplicity

and conceptual essence concentration. This style prides itself in distilling visual
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content to its bare essentials. The analytic value of minimalism is derived from the

desire to evaluate the performance of synthetic images when extraneous details are

pared away and the representation is simplified to its core concept.

The final style—termed Surreal for brevity—firmly sits in the expressive and of-

ten enigmatic domain of surrealist abstract art. This style signifies a substantial de-

viation from realistic representations, favouring emotional, symbolic, or conceptual

expression over literal depiction. This setting, marked by its visual unpredictabil-

ity, tests the limits of perceptual and conceptual distortion, allowing us to examine

whether core conceptual elements can still be effectively perceptually communicated

while radically deviating natural depiction.

Each of these styles holds a unique academic motivation, and provides a distinct

setting from which to examine the ability of synthesised to preserve/encapsulate the

conceptual essence of ground visual stimuli. Together, they form a diverse aesthetic

panorama from which we can broaden our understanding. The generation of syn-

Figure 7.5: Images used to fine-tune the Stable Diffusion model and create the
mem10kstyle token.

thetic images was carried out within the purview of predicting video memorability,

with the Memento10k dataset—comprised of 7,000 training videos, 1,500 validation

videos, and 1,500 test videos—acting as the data landscape. This landscape was

terraformed into four distinct synthetic datasets—based on the four aforementioned

styles, and consisting of 20,000 images, two per video—collectively termed “Me-

mento10k surrogate dream”. A common base of the stable-diffusion-v1-5’ checkpoint

was used to generate each dataset, with the exception of the model used for the Real

style, which was fine-tuned on 20 real-world photographs (see Figure 7.5), which en-

capsulate the heterogeneity and “in the wild” nature of Memento10k videos, and
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provides a stylistic grounding for the nature of realistic images desired. The input

prompts to the Stable Diffusion models combine the Memento10k video’s ground-

truth first caption, action labels, custom prompt modifiers which specify the stylistic

nature and emphasis of the models’ generation, and in the exclusive case of the Real

style, a“mem10kstyle” token (see Figure 7.7). This fusion aims to guide the genera-

tion process towards images that echo the conceptual substance of the original videos

while jettisoning their perceptual specifics. The prompt modifiers play an integral

role in generating high-quality, style-specific images that align with the desired out-

put characteristics. Leveraging the power of language, these modifiers—which could

be in the form of famous artists, renowned photographers, specific mediums (e.g.,

paint, photography, sketch), art styles, and compositional keywords (portrait, land-

scape, wide-angle, and more)—provide Stable Diffusion with precise instructions on

the aesthetic attributes desired in the final output.

A caption categorisation algorithm acts as the backbone of this approach, ensur-

ing that hand-crafted, style and category-specific prompt modifiers are appropriately

assigned. By classifying the video captions into categories such as People, Animals,

Landscapes, or Interiors, not only does this ensure the preservation of the inherent

category characteristics in the ground-truth videos, but it aids in emphasising certain

features or inducing one of the four—Real,Monochrome, Minimalist, and Surreal—

image generation styles. For instance, using a prompt modifier like “Picasso” might

result in images with strong Cubist influences, whereas “Ansel Adams” might pro-

duce high contrast monochrome landscapes. The caption classification algorithm is

built upon a careful selection of indicative keywords for each category: People, An-

imals, Landscapes, and Interiors. These keywords, essentially specific nouns, serve

as our classifiers, enabling us to assign a corresponding category label to a caption

if it contains a word from these sets. The classification begins with the tokenization

of the caption, transforming it into individual words which are then cross-checked

against the dictionaries of each category. A match leads to the immediate labeling

of the caption and halts the search. In case of no matches, the caption is classified
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Video 
Frame

Real
(1)

Monochrome
(2)

Minimalist
(4)

(A) (B) (C) (D) (E)

Surreal
(3)

Figure 7.6: Example surrogate images generated for each of the styles.

as “Misc”. This approach, as simple as it is, was chosen due to a lack of readily

available labeled caption data for our specific categories, and perhaps more impor-

tantly, the fact that it met the requirements. The corresponding pseudo-code for

this method is shown below:

Algorithm 3 Caption categorisation algorithm for prompt modification

people← {′man′,′woman′,′ child′, ...,′ person′}
animals← {′dog′,′ cat′, ...,′ elephant′}
landscapes← {′mountain′,′ ocean′, ...,′ canyon′}
interiors← {′livingroom′,′ kitchen′, ...,′ attic′}
function categorize caption(caption)

tokens← word tokenize(caption.lower())
for all word in tokens do

if word in people then return ’People’
else if word in animals then return ’Animals’
else if word in landscapes then return ’Landscapes’
else if word in interiors then return ’Interiors’
end if

end forreturn ’Misc’
end function

Each of the synthesised datasets were generated with a different set of category

specific prompt modifiers unique to their style. Below are the prompt modifiers

used to generate images in the Real style:
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• People: “by Alasdair McLellan, by Jovana Rikalo by Alessio Albi, by Andrea

Kowch, by Guy Aroch, detailed, sharp focus, cinematic, unsplash featured

photograph 8k, mem10k style”

• Animals: “by Frans Lanting, by Steve McCurry, by Tim Flach, macro, sharp

focus, national geographic style, trending on Instagram, featured photograph

8k, mem10k style”

• Landscapes: “by Alvar Aalto, by Christophe Jacrot, by Wayne Thom, by

David Muench, 35mm, stunning environment, sharp focus, landscape photo-

graph, cinematic, featured photograph 8k, mem10k style”

• Interiors: “by Valeria Lazareva, by Julius Shulman, by Vincent Van Duysen,

architectural digest, sharp focus, minimalist, vogue living, featured photograph

8k, mem10k style”

• Misc: “by Neil Leifer, by Frans Lanting, by Frank Lloyd Wright, by David

Muench, 35mm, sharp focus, insanely detailed, trending on pixabay, cinematic,

featured photograph 8k, mem10k style”

The People’s selection leans heavily into the human element, referencing photog-

raphers renowned for their distinctive capture of people. These include Alasdair

McLellan, known for his authentic portraiture and Jovana Rikalo, a surreal and

conceptual photographer, and Alessio Albi who specializes in emotive portraiture.

Andrea Kowch, a painter recognized for her intense, narrative compositions, adds

an artistic perspective. Guy Aroch’s modern, cinematic style further broadens the

spectrum. Terms like ‘detailed’ and ‘sharp focus’ emphasise the intent for high-

definition and clear imagery, with ‘cinematic’ suggesting a storytelling component.

“Unsplash featured photograph 8k” and “mem10k style” hint at seeking top-rated

and popular aesthetics in contemporary photography.

The Animals ’ prompt modifiers reference esteemed wildlife photographers Frans

Lanting, Steve McCurry, and Tim Flach, signalling a desire for high-quality, pro-

fessional animal imagery. ‘Macro’ alludes to the often-used technique in wildlife
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photography that captures intricate details of animals, while ‘sharp focus’ under-

scores the importance of clarity. By including ‘national geographic style’, we denote

a wish for impactful, action oriented wildlife photography. The prompts ‘trending

on Instagram’ and ‘featured photograph 8k’ indicate the need for popular, high-

resolution images, and distinctive animal photography.

The Landscape category incorporates a blend of urban architects, urban pho-

tographers, and landscape photographers. Alvar Aalto, a renowned architect, and

Christophe Jacrot, a photographer with a contemporary, contrast focused style, adds

a dimension of precise architectural detail and compositional structure typical for

cityscapes. The inclusion of photographers like Wayne Thom, and David Muench

shows a focus on capturing the natural world’s awe-inspiring vistas. ‘35mm’ invokes

a classic, wide field of view often associated with landscape photography. ‘Stunning

environment’, ‘sharp focus’, ‘landscape photograph’, and ‘cinematic’ all point to a

desire for immersive, breathtaking sceneries in high detail. The prompt ‘featured

photograph 8k’ aims for popular, high-resolution and unique landscape photography.

The Interiors array draws from the works of interior architectural photographers

Valeria Lazareva and Julius Shulman, creating a focus on professional, aesthetically

pleasing interior shots. Vincent Van Duysen, a renowned interior designer, adds

an additional design perspective that focuses on detail. ‘Architectural Digest’ and

‘Vogue Living’ evoke high-end, modern interior designs. ‘Sharp focus’ and ‘mini-

malist’ imply a preference for crisp, uncluttered images, while ‘featured photograph

8k’ for aims popular, high-resolution, and distinctive interior photography.

Finally, the Misc prompt modifiers is a versatile and category agnostic set to

cover everything not covered by the previous categories and references a wide array of

photographers with different specialities. This includes Neil Leifer capturing intense

sports shots, Frans Lanting capturing wildlife shots, Frank Lloyd Wright capturing

modern architecture, and David Muench capturing landscape photography. ‘35mm’

and ‘sharp focus’ emphasise the image’s overall clarity and depth. ‘Insanely detailed’

and ‘cinematic’ imply a desire for rich, narrative images. ‘Trending on pixabay’
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indicates popular appeal, while ‘featured photograph 8k’ aim for high-resolution,

popular, and unique photography regardless of the category.

“Action Labels”,
“Captions”

action labels, caption, prompt modifiers, mem10kstyle

Figure 7.7: Surrogate Dream Pipeline to synthesise images (the “mem10kstyle”
token is only included in the generation of the Real dataset images).

7.3.2 Predicting Video Memorability

Evaluating the efficacy of the synthesised datasets1 in downstream tasks is critical in

gauging their ability to capture and preserve the conceptual essence inherent within

the original video frames. To this end, five ImageNet pre-trained DenseNet121 [196]

neural networks—one for each synthesised dataset, and one for extracted ground-

truth video frames—were trained to predict video memorability. Each of these

models was put through a standardised training regime, fine-tuned for 50 epochs

with a maximum learning rate of 1e-3 and a weight decay of 1e-2. The intent behind

this methodology was to ascertain the predictive capacity of each synthesised dataset

relative to a control model. This control model, referred to as the Mem10k model,

was trained on unaltered, ground-truth video frames extracted directly from the

original Memento10k videos. At test time, a video’s memorability score is calculated

by averaging predictions over the first, middle, and last frame.

The testing strategy can be split into one of two categories, namely Genesis and

Surrogate Dream. Approaches trained on vanilla Memento10k data—the control—

are considered to be Genesis, and serve to establish a baseline memorability pre-

diction performance, and a baseline for how well the synthesised images preserve

the videos’ underlying memorability. Approaches trained on the synthetic image

datasets are considered to be Surrogate Dream, and with the exception of memo-

1available at https://figshare.com/projects/Memento10k_Conceptual_Dream/177663
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rability scores, are trained exclusively on surrogate visual data. By comparing the

predictive performance of these two categories of approach, the extent to which

the synthesised datasets maintain conceptual features pertinent to memorability

through a transformation in perceptual features. Performance was quantified using

Spearman rank correlation, a non-parametric measure that assesses how well the

relationship between two variables can be described using a monotonic function.

Table 7.1: Results on the test sets for each of our approaches.The syntax for each
approach communicates the datasets used for training and testing in the following
manner: trainedOn ModelArchitecture testedOn.

Approach Spearman

Genesis

Mem10k DenseNet121 Dream Real 0.583
Mem10k DenseNet121 Dream Monochrome 0.501
Mem10k DenseNet121 Dream Minimal 0.407
Mem10k DenseNet121 Dream Surreal 0.438
Mem10k DenseNet121 Mem10k 0.645

Surrogate Dream
Dream Real DenseNet121 Mem10k 0.625
Dream Monochrome DenseNet121 Mem10k 0.567
Dream Minimal DenseNet121 Mem10k 0.431
Dream Surreal DenseNet121 Mem10k 0.489
Dream Real DenseNet121 Dream Real 0.664
Dream Monochrome DenseNet121 Dream Monochrome 0.601
Dream Minimal DenseNet121 Dream Minimal 0.458
Dream Surreal DenseNet121 Dream Surreal 0.512

State-f-the-art
SemanticMemNet [192] 0.663

The results, shown in Table 7.1, elucidate insights into the nature of visual

memorability and the efficacy of synthetic datasets in memorability prediction. The

Genesis approach, which involves training a DenseNet121 model on ground-truth

Memento10k video frames, yielded a robust Spearman correlation of 0.645 when

tested on the same Mem10k test set.

Fascinating observations arise when the Genesis model is tested on synthetic
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datasets (Real, Monochrome,Minimal, and Surreal). Despite the notable percep-

tual differences between the ground-truth and synthetic images, the model was still

able to predict memorability with reasonable accuracy, with Spearman correlations

ranging from 0.407 to 0.583. This suggests that memorability is not strongly tied

to the specific perceptual features of the visual stimuli. A clear divergence in model

performance was observed when it was tested on the Minimal and Surreal datasets,

where Spearman correlations dropped to 0.407 and 0.438 respectively, indicating

a significant divergence in the perceptual features used by the model to predict

memorability. Interestingly, despite the Monochrome dataset’s significant stylistic

transformation, it still retained enough visual cues that the model linked to memo-

rability to attain a respectable correlation of 0.501.

Shifting attention to the Surrogate Dream approaches, the “Dream Real” model,

trained on the Real synthetic dataset, surprisingly outperformed the control Genesis

model when tested on its own test set, achieving the highest Spearman correlation

of 0.664. This noteworthy performance suggests that the dataset does not simply

retain a high degree of perceptual alignment with the original data, but instead

displays an improved conveyance of the underlying memorability, which accordingly

suggests that memorability is not merely a perceptual attribute. Additionally, the

“Dream Monochrome” model, trained and tested on its test set, showed a lower

but still competitive correlation of 0.601, corroborating the fact that the synthetic

datasets, despite their perceptual mutation, can retain sufficient conceptual infor-

mation for accurate memorability prediction. The lower correlation scores of the

“Dream Minimal” and “Dream Surreal” models, when compared to their counter-

parts, can be interpreted as these synthetic datasets being more conceptually di-

vergent from the original video frames due to radical nature of their stylistic trans-

formations. Yet, even these models managed to perform decently, demonstrating

that even with significant alteration in perceptual features, they capture enough of

the videos’ conceptual essence to reasonably predict memorability. Taken together,

these results strongly suggest that memorability is less about specific perceptual
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attributes and more about the underlying conceptual essence of the visual stimuli.

Even synthetic surrogate images, bearing no perceptual resemblance to the original

video, can effectively predict memorability. This has profound implications for un-

derstanding visual memorability and opens exciting avenues for future research in

this field.

The distributions of memorability score predictions for the best performing Gen-

esis and Surrogate dream approaches, shown in Figure 7.8, indicates a strong overlap

between predictions made with the Genesis control, the Dream Real model tested

on the control test set, and the Dream Real model tested on its own test set. This

combined with the evaluation scores, provides the first-of-its-kind strong evidence

that visual data is merely a means to conceptual understanding, and that it is the

concepts themselves—which are conveyed/represented through the visual data–that

hold the content’s intrinsic memorability. Additionally, graph B in Figure 7.8 tenta-

tively suggests that surrogate dream images can be more memorable than ground-

truth video frames by virtue of the left skew in predicted scores from the Genesis

model tested on the surrogate Real test set.

Figure 7.8: Distribution of memorability predictions.
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7.4 ConceptualDream: A Video Memorability

Prediction Framework

The second part of this chapter’s investigation details the creation and benchmark-

ing of a fully automated framework for prediction of conceptual video memora-

bility for synthetic images. This framework, named ConceptualDream, represents

an approach to prediction of short-term recognition video memorability, merging

cutting-edge techniques in synthetic image generation, and state-of-the-art memo-

rability prediction. It is an entirely automated framework, requiring only a video

as input, and yielding a memorability prediction based on the conceptual essence of

the video. ConceptualDream can be broken down into its two underlying core pro-

cesses: image synthesis, and short-term recognition memorability prediction. The

first process generates a set of four synthetic images based on the conceptual essence

of the input video, and the second process uses these synthetic images to predict

the video’s short-term recognition memorability. In the initial stage of the first pro-

Figure 7.9: ConceptualDream framework. The lilac block represents the image
synthesis process, and the blue block represents the memorability prediction process.

cess, an input video is parsed at a rate of one key frame per second. For videos of
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a three-second duration, such as those in the Memento10k dataset, this results in

three key frames—one from the start, middle, and end of the video. Each frame

is then processed through the BLIP model [333], a robust image captioning neural

network. The BLIP model employs a unique architecture known as the Multimodal

mixture of Encoder-Decoder (MED), where a visual transformer (ViT) is used as the

image encoder. This structure allows the model to effectively understand the con-

tent of each frame and generate a high-quality summary. As a result, this procedure

yields three separate captions that accurately summarise the content of the start,

middle, and end of the video. To synthesise a single coherent caption that encap-

sulates the full narrative of the video, the individual captions are then passed to an

open-source large language model, namely Vicuna 13B [334], which is a fine-tuned

LLaMA-13B model [335]. The LLaMA model is an auto-regressive language model

based on the transformer architecture [281], but leverages various improvements

(pre-normalisation, the SwiGLU activation function, and rotary positional embed-

dings) that were subsequently proposed and used in other language models. This

advanced language model is instructed to integrate the information from the three

captions into a single, unified and comprehensive caption that effectively captures

the essence of the video. To further enrich the resultant caption, and ultimately

transform it into a Stable-Diffusion prompt, the top-k keywords from a pre-existing

bank of keywords are appended to the caption. The selection of keywords is guided

by their CLIP scores, which measure the semantic similarity between the keywords

and the extracted images. The bank of keywords is a robust compilation sourced

from multiple resources, including the names of 5,265 artists, and 100,970 phrases

drawn from prompt engineering exercises. The keywords are greedily sampled until

the prompt reaches CLIP’s token length limit of 77. This process is termed CLIP

Interrogation. The final prompt, is sent to a Stable Diffusion model fine-tuned on

high quality real-world photographs. The model generates four distinct synthetic

images, each visually representing perceptual variations of the conceptual essence

encapsulated in the prompt. This part of the framework was applied to all 10,000
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Memento10k videos to produce a synthetic dataset called MementoDream, which

consists of 40,000 synthetic images, each ground-truth video corresponding to four

synthetic images. The second part of the framework focuses on prediction of short-

Figure 7.10: Example images generated with the ConceptualDream framework.

term recognition memorability. Here, visual embeddings from the synthetic images,

processed via the CLIP model, are extracted and then stacked together to form a

structured representation. This structured input serves as a basis for a Bayesian

Ridge Regressor (BRR), which delivers a memorability score. The BRR model,

using the sklearn library’s implementation and the Grid Search algorithm [195], is

trained on stacked CLIP visual embeddings from the MementoDream training and

validation sets. To demonstrate the efficacy of the ConceptualDream framework,

it was compared against the Memento10k benchmark Spearman scores [192]. As

illustrated in Table 7.2, ConceptualDream surpasses the performance of the previ-

ous state-of-the-art model, SemanticMemNet, by achieving a remarkable Spearman

score of 0.724, marking a new high in the realm of video memorability prediction.

Furthermore, the magnitude of this achievement becomes even more significant when

considering the innovative methodology ConceptualDream adopts.

7.5 Conclusion

This chapter has presented a rigorous investigation of Hypothesis 5 from the thesis,

which posits that it is the conceptual essence of a video, rather than its percep-

tual features, that holds the key to its memorability. This investigation employed a

blend of advanced machine-learning methodologies, most notably the leading edge

synthetic image generation technique of latent diffusion. In the initial phase of the
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Table 7.2: Comparison of state-of-the-art on Memento10k test set.

Memorability

Approach Spearman

Human Consistency 0.730
MemNet Baseline [198] 0.485
Cohendet et al. (Semantic) [222] 0.552
Cohendet et al. (ResNet3D) [222] 0.574
Feature Extraction + Regression (as in [223]) 0.615
MeMAD [212] 0.658
SemanticMemNet [192] 0.663
ConceptualDream 0.724

investigation, a novel experimental design was implemented to probe the relation-

ship between visual perceptual features and conceptual representation in predicting

video memorability. This was achieved by generating a diverse array of synthetic

surrogate images that retained the conceptual essence of ground-truth videos, but

drastically transformed the perceptual features. The experiment was designed to test

models on four distinctive styles of synthetic images. The results painted a capti-

vating narrative: despite perceptual disparities between ground-truth and synthetic

variants, accurate memorability predictions remained achievable. This revelation

indicates a diminished reliance on perceptual characteristics in the determination

of memorability, spotlighting the importance of conceptual characteristics instead.

The ConceptualDream framework, introduced in the subsequent phase, marks an

evolution in the exploration of video memorability prediction. By harmoniously

inter-twinning the essence-capturing capabilities of advanced synthetic image gen-

eration and the acuity of state-of-the-art memorability prediction techniques, Con-

ceptualDream was able to achieve a remarkable Spearman score of 0.724, not only

surpassing the previous state-of-the-art model by a significant margin, but approach-

ing human consistency.

The findings in this chapter provide compelling evidence in support of Hypoth-

esis 5. It is shown that even synthetic images bearing no perceptual resemblance to

an original video can effectively predict its memorability. This firmly implies that

memorability is less about specific perceptual attributes and more about the under-
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lying conceptual essence conveyed by the visual stimuli. This chapter offers a novel

understanding of the nature of visual memorability, while simultaneously opening

new avenues for future research. The exciting potential of this work encourages

subsequent inquiries to delve deeper into the intricate interplay of memorability and

the conceptual essence of visual stimuli. These findings have implications not only

within the academic realm of computational memorability research and cognitive

psychology, but also in broader sectors like visual arts, advertising, and content

creation, underscoring the broad relevance and significance of this work.
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Chapter 8

Conclusions

This thesis set out to investigate the intricate complexities of a fundamental as-

pect of human cognition: memorability. The primary aim was to elucidate its true

character, decipher its mechanisms, and examine its relationship with sensory expe-

riences, its temporal aspects, and its interplay with recognition and recall. Intrinsic

to human cognition, memorability broadly refers to the propensity of a stimulus to

be remembered or forgotten. Yet, it possesses far-reaching implications that extend

beyond this simple definition, its influence might not merely affect surface-level

cognition; it could be closely aligned with preferences rooted in our evolutionary

lineage, thus influencing what we instinctively prioritise. It’s not merely about

what is remembered but also how, where, and when. Understanding memorability

could unveil layers of our cognitive processes, offering a scaffold to refine didactic

strategies, shape neuropsychological interventions, and even discern the patterns of

selective attention in various scenarios. This research advanced the hypothesis that

the intrinsic memorability of a given stimulus is a complex construct, shaped by the

dynamic and symbiotic interplay of various sensory modalities. It built on the fact

that due to inherent cortical bias, visual stimuli act as the primary modality through

which it is communicated. Furthermore, this thesis proposed that remembrance is

a polymorphic process. It involves an intricate balance between recognition, de-

tailed recollection, or a confluence of both. This nuanced process is proposed to

be governed by biological storage limitations, implying that specific moments of
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representational compression exist, and these correspond to particular instances of

recollection. Arguably the most significant part of this hypothesis was the assertion

that memorability transcends the perceptual attributes of a stimulus. The con-

ceptual understanding gleaned from a perception was suggested to be the key to

memorability. This perspective signals a radical departure from traditional views

of memorability, suggesting that it is not just a visual feature, but fundamentally a

conceptual one. In alignment with these research objectives, this dissertation con-

ducted a systematic exploration of the multifaceted phenomenon of memorability,

delving into its sensory, temporal, and cognitive aspects, and ultimately attempting

to decode the essence of what makes experiences memorable. The intention was

to illuminate the intrinsic nature of memorability, providing fresh insights into why

and how memories are formed, stored, and retrieved.

8.1 Summary of Findings

Chapter 6 delved into the intricacies of multimodal memorability, and in doing so,

provided robust empirical support for the first hypothesis (H1), which emphasises

the inherently multimodal nature of memorability. The audio modality was found

to be a potent contextual element, assisting recognition when conveying high-level

features. This finding substantiates the assertion that recognition memorability

correlates strongly with conceptual properties of the content, extending beyond just

the visual domain.

However, a complete understanding of the role of audio in short-term video recog-

nition memorability remains elusive. The complex interaction between a video’s

auditory and visual content could have a more profound, and yet to be discov-

ered, influence on its overall memorability. A comprehensive understanding of this

interplay necessitates further rigorous investigation, potentially through the imple-

mentation of independent memorability metrics for each sensory modality—audio,

visual, and textual.

The second hypothesis (H2) examined the part played by visual sensory data in
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multimodal memorability prediction. While the findings reaffirmed the substantial

role of the visual domain, they simultaneously highlighted the powerful impact of

textual features. The considerable importance of the textual modality in memora-

bility underlines the proposition that semantics can encapsulate a significant propor-

tion of a video’s memorability, thereby reducing reliance on perceptual information.

Consequently, these findings hint at the potentially amodal nature of memorability,

revealing it as less of a direct product of a single modality, but a fine interplay of

sensory inputs, and possibly even an abstraction beyond the direct grasp of senses.

Chapter 7 explored the use of electroencephalography (EEG) signals in concert

with advanced deep learning techniques to predict subsequent recognition of previ-

ously seen videos. While the investigation did not identify a significant interaction

between subject-dependent (SD) and subject-independent (SI) training approaches,

it nevertheless illuminated the potential relevance of subject-specific EEG data for

enhancing prediction accuracy. A cornerstone of this chapter was the introduction of

the novel ‘moment of memorability’ hypothesis (H4). This transformative perspec-

tive reframes the consideration of video content and its memorability, proposing

that memorability is not a static property of the video, but rather, dynamically

linked to the point at which observers typically form a compressed mental repre-

sentation of the conceptual content conveyed, and assign it an information-utility

value—memorability score. Chapter 7, therefore, paved the way for further de-

tailed investigation into the facets of memory encoding and retrieval, focusing not

only on what content is remembered, but also explored the critical timing of con-

tent comprehension, and the underlying reasons why specific content garners higher

memorability. This fresh perspective, built on the integration of neurophysiologi-

cal data and machine learning techniques, opens new avenues of exploration in the

nuanced domain of memorability.

Chapter 8 validated the hypothesis that there is a measurable relationship be-

tween recognition and recall memorability (H3). Both visual and textual measures

provided robust empirical support for this hypothesis. There were noticeable dispar-
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ities in the semantic alignment and precision of recall between videos categorised as

high and low in recognition memorability. A strong correlation was found between

the normalised measure of recall accuracy and video memorability, highlighting the

impact of individual differences on recall performance. In the textual domain, the

introduction of Caption Specificity Score (CSS) as a novel measure of recall precision

further validated H3. There was a significant correlation between the normalised

CSS and high video recognition memorability. These findings emphasised the im-

portance of recall precision in determining the recognition memorability of video

stimuli. The absence of forgotten or misremembered videos in the high recogni-

tion memorability category bolsters the body of evidence supporting a correlation

between recognition and recall memorability.

Chapter 9 conducted a detailed investigation of Hypothesis 5, which posited

that memorability of a stimulus is essentially a reflection of its underlying conceptual

representation. According to this hypothesis, perception serves as a conduit to con-

ceptual understanding, and memorability acts as a gauge of information utility. This

supposition was scrutinised using cutting-edge machine learning techniques, includ-

ing the novel synthetic image generation technique known as latent diffusion. The

initial stage of the investigation involved the creation of synthetic surrogate images.

These images were a transformative departure from the original videos in terms of

perceptual features, but preserved the conceptual essence of the source. The potency

of these surrogates lay in their utility as test entities for analysing the interplay be-

tween visual perceptual features and conceptual representation in predicting video

memorability. Remarkably, despite the pronounced perceptual variations between

the original and synthetic variants, memorability prediction accuracy remained high.

The chapter further unfolded to introduce the ConceptualDream framework, a leap

forward in the field of video memorability prediction. By integrating the synthetic

image generation’s essence-capturing capabilities with state-of-the-art memorabil-

ity prediction techniques, ConceptualDream achieved a laudable Spearman score of

0.724—surpassing previous state-of-the-art, and approaching human consistency. In
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essence, the chapter’s findings provided robust support for Hypothesis 5 by demon-

strating that the recognition memorability of a stimulus is more strongly tied to its

conceptual representation than its perceptual attributes.

8.2 Implications of Findings

Plunging into the neural undercurrents of cognition, this thesis has surfaced with an

enlightened view of memorability, altering its standing within the cognitive architec-

ture. Memorability, often treated as a mere result of a specific stimulus’s distinctive

or peculiar aspects, emerges, in reality, as an intricate cognitive phenomenon that

is as complex as it is fascinating. This thesis heralds a shift from a narrow, limiting

perspective of memorability to a broader, more comprehensive conceptualisation.

The notion of memorability as a proxy measure of human importance or infor-

mation utility unfurls in this exploration. The essence of memorability, it appears, is

tied less to the perceptual distinctiveness of the stimuli and more to their underlying

conceptual representation, which resonates with the hypothesis (H5) that the mem-

orability of a stimulus can be reduced to its underlying conceptual representation.

Herein, the crucial point of departure is the emphasis on the significance of the ‘con-

ceptual essence’ of stimuli and its impact on human cognition and its operation. It

is the content that carries meaning, relevance, and utility to the viewer that indeed

becomes memorable, positing memorability as a measure of the informational value

a stimulus holds for an individual.

This approach invites us to perceive memorability not as a static property inher-

ent in the stimulus, but rather as a dynamic process intricately tied to the timing and

comprehension of the stimulus’s content. This temporal aspect of memorability—

captured in the notion of a ‘moment of memorability’—augments the traditional

view, encouraging us to delve deeper into not only ‘what’ is remembered but also

‘when’ and ‘why’ certain content is remembered. This temporal dynamism extends

the dimensions of memorability, adding a depth of complexity to our understanding

of it.
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Within the complex milieu of this investigation, the intertwined roles of audi-

tory, visual, and textual modalities emerge as critical in forming a robust prediction

of memorability in multimodal contexts such as video. Their collective influence,

either amplifying or tempering the memorability of a given stimulus. This intricate

relationship extends the understanding of memorability beyond the confines of the

visual realm, revealing its deeply multimodal nature. Memorability, thus, emerges

not as a one-dimensional perceptual response, but as a rich cognitive process medi-

ated by the dynamic interplay of multiple sensory modalities.

Additionally, the intertwining of recall and recognition memorability in this ex-

ploration enhances the understanding of memorability. The interconnected nature of

recognition and recall, far from being isolated phenomena, form an integral corner-

stone of our understanding of remembrance. This sheds light on a key misconception

(see chapter 6), elevating memorability from being a solitary phenomenon, tethered

merely to recognition, to a broader cognitive tapestry, intricately woven with the

threads of both recognition and recall. This nuanced interpretation, no longer con-

fined within the rigid walls of a binary recognition task, but expanded to incorporate

the more profound facets of recollection, offers a more comprehensive representation

of human information utility.

In conclusion, this thesis illuminates the nuanced landscape of memorability, re-

vealing it as a measure of information’s human importance or utility. This innovative

interpretation invites a broader, deeper exploration of memorability, transcending

its traditionally narrow confines and resonating across various domains of cognition

and expressions of remembering. It opens up new pathways for future research,

elucidating the rich mosaic of cognitive processes that constitute the complex ex-

periences of remembering. Through this lens, we are invited to look beyond the

traditional boundaries of memorability and embrace a more expansive, more nu-

anced understanding of this fascinating cognitive phenomenon.
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8.3 Future Work

Influence of Modalities

The complex interplay of modalities in determining video memorability represents a

promising yet largely unexplored domain. While our current studies provide founda-

tional insights into the synergistic effects of audio and visuals, a holistic understand-

ing demands more granular investigations. Different combinations of modalities –

such as visual-audio, visual-textual, and audio-textual – could potentially produce

effects more pronounced than the mere sum of their individual contributions.

To navigate this intricate landscape, we propose a series of comprehensive, large-

scale experiments. The objective is to evaluate memorability metrics across various

modality combinations systematically. This can be achieved by implementing suc-

cessive iterations of the ’Memorability Game’ across diverse participant cohorts.

In one proposed iteration, participants would experience a video in its entirety –

encompassing visuals, audio, and on-screen captions. Successive iterations would

then refine the modalities: a pairing of visuals with audio, visuals combined with

captions, and an amalgamation of audio with captions. To distill the essence of

each modality’s contribution, subsequent versions would present each in isolation –

focusing solely on visuals, audio, or captions.

This multifaceted approach promises a dual advantage. Firstly, it enables the dis-

section of the unique memorability footprint imprinted by each modality. Secondly,

it uncovers any emergent properties arising from their combined presentation. Such

revelations could significantly augment our comprehension of multimedia memora-

bility. As we look ahead, these findings have the potential to guide content creators,

allowing them to craft more resonant and memorable multimedia experiences.

EEG Video Memorability

The research outline in chapter 5 underscores the potential significance of theta

band oscillations over the right temporal lobe in memory encoding, and introduces
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the intuitive notion of a ‘moment of memorability’, where a moment of represen-

tational compression (“biological understanding”) of the video content corresponds

to the moment in the video at which the content is recognised. These findings,

while insightful, are limited, and signal the need for more extensive inquiries in

the field. A large-scale EEG study, with a proposed participant sample of approx-

imately four times the typical study minimum (typical is 30, suggested is 120) is a

logical next step. Such a study would permit a more comprehensive investigation

of recognition memorability scores, enabling us to move beyond the limiting binary

“remembered”/”forgotten” categorisations. With this refined approach, subtle vari-

ations in recognition memorability and its EEG correlations can be more accurately

discerned. Additionally, the ‘moment of memorability’ warrants further validation.

By pinpointing exact instances within video content where comprehension peaks,

we can attempt to elucidate the specific moments when memory encoding is most

potent. Such understanding would offer a more refined perspective on the temporal

dynamics of memory formation in relation to video content. Moreover, the sub-

tle distinction in performance between subject-dependent and subject-independent

models raises questions about the role of individualised EEG patterns in memory

related predictions. Expanding the study to include a larger sample could more

definitively determine whether models trained on specific individual EEG data or

generalised EEG data are more effective in forecasting memorability.

Recall Video Memorability

The relationship this research (see chapter 6) suggests between recognition and recall

memorability underscores an novel area of exploration in memory studies with much

to offer. As we strive to gain a more comprehensive understanding of memory and

its related areas, there’s an evident need to refine our approaches, especially those

concerning the measurement of recall in the context of video stimuli.

Leveraging drawings as a metric for recall offers a unique lens through which to

view and analyse memory processes. However, the subjective nature of such a mea-
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sure demands a meticulous, standardised criterion for its analysis. Future endeavors

should focus on establishing a rigorous framework, both qualitative and quantita-

tive, which can encompass the multifarious nuances of recall. This method, though

rich in potential, also calls for a universally accepted set of guidelines, ensuring

consistent interpretations despite the inherent subjectivity.

The marked correlation between the normalised measures of recall accuracy and

video recognition memorability underscores that recall, much like recognition mem-

orability, exhibits a degree of consistency across the population. This consistency

hints at a symbiotic relationship between recognition and recall memorability, with

one potentially informing or influencing the other. The nuances revealed by the

VVIQ scores offer an intriguing dimension to this discourse. The absence of a broad

correlation between VVIQ scores and recall accuracy, coupled with enhanced re-

call among those with the highest VVIQ scores, suggests that the drawing-based

measurement might inherently favour those with particularly vivid mental imagery.

Consequently, while individual cognitive differences can certainly shape recall out-

comes, the chosen measure—drawing in this instance—may play a pivotal role in the

manifestation of these outcomes. This underlines the imperative to further refine

and broaden recall measures in future investigations. Moreover, the correlation be-

tween the Caption Specificity Score (CSS) and recognition memorability advocates

for its potential as a reliable metric. Yet, its full adoption mandates an in-depth

evaluation, potentially leading to its enhancement to ensure that it remains robust

across different contexts and applications.

Conceptual Dream

The empirical findings presented in Chapter 7 underscore the primacy of a video’s

conceptual essence in determining its recognition memorability, rendering perceptual

features secondary in this regard. This observation naturally begets several forward-

looking research trajectories.

To begin with, the term ‘conceptual essence’ in video content, as employed within
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the present research context, necessitates rigorous academic unwrapping. While the

significance of conceptual attributes in driving memorability is strongly suggested,

the next logical step mandates a detailed dissection of these attributes. A methodical

exploration into which conceptual elements—or a synergy thereof—hold the most

sway in the memorability paradigm remains as a potentially useful undertaking.

Latent diffusion has been used effectively in our research for generating synthetic

images. However, with machine learning techniques constantly evolving, it’s impor-

tant for future research to consider and assess other emerging methods. Two key

questions arise: Do other techniques provide different insights into the conceptual

core of videos? And do some methods emphasize certain aspects of video memora-

bility more effectively?

Additionally, a next logical step in research would be to expand our findings

to longer video formats. Videos are more than just a series of frames; they tell

stories over time. Therefore, understanding memorability in the context of full-

length videos, which can span minutes or even hours, is crucial. This would help

confirm if our conclusions about the conceptual core of videos remain consistent

across different video lengths and types.

From a practical perspective, the concept of memorability has potential applica-

tions in areas like visual arts, advertising, and digital content creation. It would be

beneficial to investigate how these industries can utilise our findings. Specifically,

it’s worth exploring if content designed with our memorability insights in mind is

more impactful or resonant with its intended audience.
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Appendix A

Data Quality Concerns with the

TRECVid Video Memorability

Dataset

The TRECVid Video Memorability Dataset, although a valuable resource, has

prompted several queries related to its data quality. Here we elaborate on the

primary concerns:

• Annotation Variability: There are significant disparities in the number of

annotations across different subsets. For instance, the VideoMem and Me-

mento10k collections have an average of 40 and 90 annotations for each video

in terms of short-term memorability respectively. In contrast, the TRECVid

2019 Video-to-Text dataset settles for an average of 22 annotations per video.

Such inconsistencies can lead to variations in memorability score computa-

tions, thereby questioning the comparative robustness and reliability of the

datasets.

• Annotator Authenticity: A notable anomaly in the dataset is the emer-

gence of memorability scores that are significantly higher than what one would

expect. This aberration raises concerns about the authenticity of annotators.

It’s plausible that some participants might have engaged with the memorabil-
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ity game on multiple occasions, leading to potential biases in the scores due

to their familiarity with the video content.

• Video Quality: Another influential variable in this context is the inherent

quality of videos present in the dataset. Factors such as video resolution,

content clarity, and even the thematic uniqueness could inadvertently influ-

ence memorability scores. As such, it becomes imperative to account for these

attributes and discern their respective contributions to the memorability quo-

tient.

• Limited Long-term Annotations: When it comes to long-term memorabil-

ity assessments, there’s a noticeable paucity in annotations, especially in the

TRECVid 2019 Video-to-Text dataset. This dataset, in particular, demon-

strates a reduced average of annotations for long-term memorability relative

to its short-term counterpart. Such imbalances can potentially skew the in-

sights derived, thereby underscoring the need for a more balanced annotation

approach to ensure comprehensive long-term memorability evaluations.

To rectify these concerns and shed light on the inherent ambiguities, a meticulous

investigation is currently underway. The outcomes of this investigation are eagerly

awaited, as they promise to enhance our confidence in the dataset and refine the

way we interpret and leverage its findings.
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of memory space in the hippocampus,” Elife, vol. 5, e16534, 2016.

06/09/2023



BIBLIOGRAPHY

[109] L. Jacoby, “A process dissociation framework: Separating automatic from

intentional uses of memory,” Journal of Memory and Language, vol. 30, no. 5,

pp. 513–541, 1991.

[110] D. Maurer, R. Le Grand, and C. J. Mondloch, “The many faces of configural

processing,” Trends in Cognitive Sciences, vol. 12, no. 6, pp. 255–260, 2007.

[111] L. R. Squire, “Memory systems of the brain: A brief history and current

perspective,” Neurobiology of Learning and Memory, vol. 82, no. 3, pp. 171–

177, 2004.

[112] T. F. Heatherton, “The neuroscience of self and self-regulation,” Annual Re-

view of Psychology, vol. 57, pp. 573–598, 2006.

[113] J. P. Keenan, P. Long, G. Rhodes, and E. Ryan, “The cognitive neuroscience

of self-enhancement and self-denigration,” Annals of the New York Academy

of Sciences, vol. 1001, no. 1, pp. 210–212, 2003.

[114] R. N. Henson, “A mini-review of fMRI studies of human medial temporal

lobe activity associated with recognition memory,” Quarterly Journal of Ex-

perimental Psychology Section B, vol. 58, no. 3-4, pp. 340–360, 2005.

[115] K. A. Ericsson and A. C. Lehmann, “Expert and exceptional performance:

Evidence of maximal adaptation to task constraints,” Annual Review of Psy-

chology, vol. 47, no. 1, pp. 273–305, 1996.

[116] D. L. Schacter, N. M. Alpert, C. R. Savage, S. L. Rauch, and M. S. Albert,

“Recollective experience in recognition memory: Functional neuroanatomy

and cognitive characteristics,” Neuropsychology, vol. 9, no. 4, p. 514, 1995.

[117] D. L. Schacter, D. R. Addis, and R. L. Buckner, “Remembering the past

to imagine the future: The prospective brain,” Nature reviews neuroscience,

vol. 8, no. 9, pp. 657–661, 2007.

[118] M. A. Conway, “Memory and the self,” Journal of Memory and Language,

vol. 53, no. 4, pp. 594–628, 2005.

06/09/2023



BIBLIOGRAPHY

[119] J. T. Wixted, “Dual-process theory and signal-detection theory of recognition

memory,” Psychological Review, vol. 114, no. 1, p. 152, 2007.

[120] A. P. Yonelinas, “Receiver-operating characteristics in recognition memory:

Evidence for a dual-process model,” Journal of Experimental Psychology:

Learning, Memory, and Cognition, vol. 20, no. 6, p. 1341, 1994.

[121] B. B. Murdock, “An analysis of the strength-latency relationship,” Memory

& Cognition, vol. 13, no. 6, pp. 486–493, 1985.

[122] J. M. Gardiner, C. Ramponi, and A. Richardson-Klavehn, “Remembering

and knowing: Two different expressions of declarative memory,” Journal of

Experimental Psychology: Learning, Memory, and Cognition, vol. 24, no. 3,

p. 789, 1998.

[123] J. R. Quamme, A. P. Yonelinas, and K. A. Norman, “Effect of unitization on

associative recognition in amnesia,” Hippocampus, vol. 17, no. 3, pp. 192–200,

2007.

[124] M. K. Johnson, S. Hashtroudi, and D. S. Lindsay, “Source monitoring,” Psy-

chological Bulletin, vol. 114, no. 1, p. 3, 1993.

[125] B. B. Murdock Jr, “The serial position effect of free recall.,” Journal of Ex-

perimental Psychology, vol. 64, no. 5, p. 482, 1962.

[126] M. Glanzer and N. Bowles, “Analysis of the recall of unorganized lists,”

Journal of Experimental Psychology, vol. 71, no. 6, p. 872, 1966.

[127] E. Tulving and D. M. Thomson, “Encoding specificity and retrieval processes

in episodic memory,” Psychological Review, vol. 80, no. 5, p. 352, 1977.

[128] R. N. Henson, “Short-term memory for serial order: The start-end model,”

Cognitive Psychology, vol. 36, no. 2, pp. 73–137, 1998.

[129] M. A. McDaniel and G. O. Einstein, “Remembering to perform actions: A

different type of memory?” Memory for action: A distinct form of episodic

memory, pp. 25–44, 1995.

06/09/2023



BIBLIOGRAPHY

[130] C. Baldwin and J. Runkle, “Biohazard symbol design,” Archives of Environ-

mental Health, vol. 15, pp. 388–392, 1967.

[131] T. Valentine, “A unified account of the effects of distinctiveness, inversion,

and race in face recognition,” The Quarterly Journal of Experimental Psy-

chology, vol. 43, pp. 161–204, 1991.

[132] T. Valentine, M. Lewis, and P. Hills, “Face-space: A unifying concept in face

recognition research,” The Quarterly Journal of Experimental Psychology,

vol. 69, pp. 1996–2019, 2016.

[133] L. Light, S. Hollander, and F. Kayra-Stuart, “Why attractive people are

harder to remember,” Personality and Social Psychology Bulletin, vol. 5,

pp. 269–276, 1979.

[134] E. Winograd, “Elaboration and distinctiveness in memory for faces,” Journal

of Experimental Psychology: Human Learning and Memory, vol. 7, pp. 181–

190, 1981.

[135] J. Bartlett, S. Hurry, and W. Thorley, “Typicality and familiarity of faces,”

Memory & Cognition, vol. 12, pp. 219–228, 1984.

[136] J. Vokey and J. Read, “Familiarity, memorability, and the effect of typicality

on the recognition of faces,” Memory & Cognition, vol. 20, pp. 291–302, 1992.

[137] V. Bruce, M. Burton, and N. Dench, “What’s distinctive about a distinctive

face?” The Quarterly Journal of Experimental Psychology Section A, vol. 47,

pp. 119–141, 1994.

[138] T. Busey and J. Tunnicliff, “Accounts of blending, distinctiveness, and typi-

cality in the false recognition of faces,” Journal of Experimental Psychology:

Learning, Memory, and Cognition, vol. 27, pp. 1618–1632, 2001.

[139] L. Standing, “Learning 10000 pictures,” Quarterly Journal of Experimental

Psychology, vol. 25, no. 2, pp. 207–222, 1973.

06/09/2023



BIBLIOGRAPHY

[140] T. F. Brady, T. Konkle, G. A. Alvarez, and A. Oliva, “Visual long-term

memory has a massive storage capacity for object details,” Proceedings of the

National Academy of Sciences, vol. 105, no. 38, pp. 14 325–14 329, 2008.

[141] P. Isola, J. Xiao, A. Torralba, and A. Oliva, “What makes an image mem-

orable,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, IEEE, 2011, pp. 145–152.

[142] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva, “Sun database:

Exploring a large collection of scene categories,” International Journal of

Computer Vision, vol. 119, pp. 3–22, 2016.

[143] W. A. Bainbridge, P. Isola, and A. Oliva, “The intrinsic memorability of face

photographs.,” Journal of Experimental Psychology: General, vol. 142, no. 4,

p. 1323, 2013.

[144] M. A. Borkin, A. A. Vo, Z. Bylinskii, et al., “What makes a visualization

memorable?” IEEE Transactions on Visualization and Computer Graphics,

vol. 19, no. 12, pp. 2306–2315, 2013.

[145] K. Mahowald, P. Isola, E. Fedorenko, E. Gibson, and A. Oliva, Memorable

words are monogamous: The role of synonymy and homonymy in word recog-

nition memory, PsyArXiv, 2018.

[146] R. Dubey, J. Peterson, A. Khosla, M.-H. Yang, and B. Ghanem, “What makes

an object memorable?” In Proceedings of the IEEE International Conference

on Computer Vision, 2015, pp. 1089–1097.

[147] R. Cohendet, K. Yadati, N. Q. Duong, and C.-H. Demarty, “Annotating,

understanding, and predicting long-term video memorability,” in Proceedings

of the 2018 ACM International Conference on Multimedia Retrieval, 2018,

pp. 178–186.

[148] W. A. Bainbridge, “The memorability of people: Intrinsic memorability across

transformations of a person’s face.,” Journal of Experimental Psychology:

Learning, Memory, and Cognition, vol. 43, no. 5, p. 706, 2017.

06/09/2023



BIBLIOGRAPHY

[149] Q. Lin, S. R. Yousif, M. M. Chun, and B. J. Scholl, “Visual memorability in

the absence of semantic content,” Cognition, vol. 212, p. 104 714, 2021.

[150] Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva, “Intrinsic and

extrinsic effects on image memorability,” Vision research, vol. 116, pp. 165–

178, 2015.

[151] L. Goetschalckx, P. Moors, and J. Wagemans, “Image memorability across

longer time intervals,” Memory, vol. 26, no. 5, pp. 581–588, 2018.

[152] W. A. Bainbridge, E. H. Hall, and C. I. Baker, “Drawings of real-world scenes

during free recall reveal detailed object and spatial information in memory,”

Nature Communications, vol. 10, no. 1, pp. 1–13, 2019.

[153] W. A. Bainbridge, “The resiliency of image memorability: A predictor of

memory separate from attention and priming,” Neuropsychologia, vol. 141,

p. 107 408, 2020.

[154] W. A. Bainbridge, D. D. Dilks, and A. Oliva, “Memorability: A stimulus-

driven perceptual neural signature distinctive from memory,” NeuroImage,

vol. 149, pp. 141–152, 2017.

[155] N. Kanwisher, J. McDermott, and M. M. Chun, “The fusiform face area: A

module in human extrastriate cortex specialized for face perception,” Journal

of Neuroscience, vol. 17, no. 11, pp. 4302–4311, 1997.

[156] R. Epstein and N. Kanwisher, “A cortical representation of the local visual

environment,” Nature, vol. 392, no. 6676, pp. 598–601, 1998.

[157] K. Grill-Spector, T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, and R.

Malach, “Differential processing of objects under various viewing conditions

in the human lateral occipital complex,” Neuron, vol. 24, no. 1, pp. 187–203,

1999.

[158] M. W. Brown and J. P. Aggleton, “Recognition memory: What are the roles

of the perirhinal cortex and hippocampus?” Nature Reviews Neuroscience,

vol. 2, no. 1, pp. 51–61, 2001.

06/09/2023



BIBLIOGRAPHY

[159] W. Xie, W. A. Bainbridge, S. K. Inati, C. I. Baker, and K. A. Zaghloul,

“Memorability of words in arbitrary verbal associations modulates memory

retrieval in the anterior temporal lobe,” Nature Human Behaviour, vol. 4,

no. 9, pp. 937–948, 2020.

[160] W. A. Bainbridge and J. Rissman, “Dissociating neural markers of stimulus

memorability and subjective recognition during episodic retrieval,” Scientific

Reports, vol. 8, no. 1, p. 8679, 2018.

[161] A. Jaegle, V. Mehrpour, Y. Mohsenzadeh, T. Meyer, A. Oliva, and N. Rust,

“Population response magnitude variation in inferotemporal cortex predicts

image memorability,” Elife, vol. 8, e47596, 2019.

[162] Y. Mohsenzadeh, C. Mullin, A. Oliva, and D. Pantazis, “The perceptual

neural trace of memorable unseen scenes,” Scientific Reports, vol. 9, no. 1,

p. 6033, 2019.

[163] N. C. Rust and V. Mehrpour, “Understanding image memorability,” Trends

in Cognitive Sciences, vol. 24, no. 7, pp. 557–568, 2020.

[164] M. N. Hebart, A. H. Dickter, A. Kidder, et al., “Things: A database of 1,854

object concepts and more than 26,000 naturalistic object images,” PLoS

ONE, vol. 14, no. 10, e0223792, 2019.

[165] M. Kramer, M. Hebart, C. Baker, and W. Bainbridge, “Revealing the relative

contributions of conceptual and perceptual information to visual memorabil-

ity,” Journal of Vision, vol. 21, no. 9, pp. 2048–2048, 2021.

[166] J. Deese and R. A. Kaufman, “Serial effects in recall of unorganized and

sequentially organized verbal material.,” Journal of Experimental Psychology,

vol. 54, no. 3, p. 180, 1957.

[167] M. H. Erdelyi and J. Becker, “Hypermnesia for pictures: Incremental memory

for pictures but not words in multiple recall trials,” Cognitive Psychology,

vol. 6, no. 1, pp. 159–171, 1974.

06/09/2023



BIBLIOGRAPHY

[168] M. Bock, “The influence of emotional meaning on the recall of words pro-

cessed for form or self-reference,” Psychological Research, vol. 48, no. 2,

pp. 107–112, 1986.

[169] D. L. Nelson and T. A. Schreiber, “Word concreteness and word structure

as independent determinants of recall,” Journal of Memory and Language,

vol. 31, no. 2, pp. 237–260, 1992.

[170] M. A. Upala, L. O. Gonce, R. D. Tweney, and D. J. Slone, “Contextualizing

counterintuitiveness: How context affects comprehension and memorability

of counterintuitive concepts,” Cognitive Science, vol. 31, no. 3, pp. 415–439,

2007.

[171] A. Paivio, R. Philipchalk, and E. J. Rowe, “Free and serial recall of pictures,

sounds, and words,” Memory & Cognition, vol. 3, no. 6, pp. 586–590, 1975.

[172] D. C. Rubin and M. Friendly, “Predicting which words get recalled: Measures

of free recall, availability, goodness, emotionality, and pronunciability for 925

nouns,” Memory & Cognition, vol. 14, no. 1, pp. 79–94, 1986.

[173] V. M. Garlock, A. C. Walley, and J. L. Metsala, “Age-of-acquisition, word fre-

quency, and neighborhood density effects on spoken word recognition by chil-

dren and adults,” Journal of Memory and Language, vol. 45, no. 3, pp. 468–

492, 2001.

[174] P. Klaver, J. Fell, T. Dietl, et al., “Word imageability affects the hippocampus

in recognition memory,” Hippocampus, vol. 15, no. 6, pp. 704–712, 2005.

[175] E. A. Kensinger and S. Corkin, “Memory enhancement for emotional words:

Are emotional words more vividly remembered than neutral words?”Memory

& Cognition, vol. 31, no. 8, pp. 1169–1180, 2003.

[176] L. L. Jacoby and M. Dallas, “On the relationship between autobiographi-

cal memory and perceptual learning.,” Journal of Experimental Psychology:

General, vol. 110, no. 3, p. 306, 1981.

06/09/2023



BIBLIOGRAPHY

[177] I. Begg and W. A. Wickelgren, “Retention functions for syntactic and lex-

ical vs semantic information in sentence recognition memory,” Memory &

Cognition, vol. 2, no. 2, pp. 353–359, 1974.

[178] J. C. Bartlett, “Remembering environmental sounds: The role of verbalization

at input,” Memory & Cognition, vol. 5, no. 4, pp. 404–414, 1977.

[179] I. Ananthabhotla, D. B. Ramsay, and J. A. Paradiso, “HCU400: An anno-

tated dataset for exploring aural phenomenology through causal uncertainty,”

in 2019 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), IEEE, 2019, pp. 920–924.

[180] D. Dubois, C. Guastavino, and M. Raimbault, “A cognitive approach to

urban soundscapes: Using verbal data to access everyday life auditory cat-

egories,” Acta Acustica United with Acustica, vol. 92, no. 6, pp. 865–874,

2006.

[181] L. Jäncke, “Music, memory and emotion,” Journal of Biology, vol. 7, no. 6,

pp. 1–5, 2008.

[182] J. Bigelow and A. Poremba, “Achilles’ ear? inferior human short-term and

recognition memory in the auditory modality,” PloS One, vol. 9, no. 2,

e89914, 2014.

[183] A. Thelen, D. Talsma, and M. M. Murray, “Single-trial multisensory memo-

ries affect later auditory and visual object discrimination,” Cognition, vol. 138,

pp. 148–160, 2015.

[184] A. Schirmer, Y. H. Soh, T. B. Penney, and L. Wyse, “Perceptual and concep-

tual priming of environmental sounds,” Journal of Cognitive Neuroscience,

vol. 23, no. 11, pp. 3241–3253, 2011.

[185] D. Ramsay, I. Ananthabhotla, and J. Paradiso, “The intrinsic memorability

of everyday sounds,” in Audio Engineering Society Conference: 2019 AES

Intnl. Conference on Immersive and Interactive Audio, 2019.

06/09/2023



BIBLIOGRAPHY

[186] C. Spence and J. Driver, Crossmodal space and crossmodal attention. Oxford

University Press, 2004.

[187] M. I. Posner, M. J. Nissen, and R. M. Klein, “Visual dominance: An information-

processing account of its origins and significance.,” Psychological Review,

vol. 83, no. 2, p. 157, 1976.

[188] A. Fathi, J. K. Hodgins, and J. M. Rehg, “Social interactions: A first-person

perspective,” in 2012 IEEE Conference on Computer Vision and Pattern

Recognition, IEEE, 2012, pp. 1226–1233.

[189] A. Zadbood, J. Chen, Y. C. Leong, K. A. Norman, and U. Hasson, “How we

transmit memories to other brains: Constructing shared neural representa-

tions via communication,” Cerebral Cortex, vol. 27, no. 10, pp. 4988–5000,

2017.

[190] M. G. Boltz, “The cognitive processing of film and musical soundtracks,”

Memory & Cognition, vol. 32, pp. 1194–1205, 2004.

[191] E. Perego, F. Del Missier, M. Porta, and M. Mosconi, “The cognitive effec-

tiveness of subtitle processing,”Media Psychology, vol. 13, no. 3, pp. 243–272,

2010.

[192] A. Newman, C. Fosco, V. Casser, A. Lee, B. McNamara, and A. Oliva,

“Multimodal memorability: Modeling effects of semantics and decay on video

memorability,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof,

T. Brox, and J.-M. Frahm, Eds., Cham: Springer International Publishing,

2020, pp. 223–240, isbn: 978-3-030-58517-4.

[193] G. Awad, A. A. Butt, K. Curtis, et al., “TRECVID 2019: An evaluation cam-

paign to benchmark video activity detection, video captioning and matching,

and video search & retrieval,” 2019.

[194] R. S. Kiziltepe, M. G. Constantin, C. H. Demarty, et al., “Overview of the

mediaeval 2021 predicting media memorability task,” in MediaEval Multime-

dia Benchmark Workshop Working Notes, 2021.

06/09/2023



BIBLIOGRAPHY

[195] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine

learning in python,” the Journal of Machine Learning Rf esearch, vol. 12,

pp. 2825–2830, 2011.

[196] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger, “Con-

volutional networks with dense connectivity,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2019.

[197] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for

image classification with convolutional neural networks,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 558–567.

[198] A. Khosla, A. S. Raju, A. Torralba, and A. Oliva, “Understanding and pre-

dicting image memorability at a large scale,” in Proc. IEEE International

Conference on Computer Vision, 2015, pp. 2390–2398.

[199] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing lstm

language models,” in International Conference on Learning Representations,

2018.

[200] J. Howard and S. Ruder, “Universal language model fine-tuning for text

classification,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 328–339.

[201] P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual captions:

A cleaned, hypernymed, image alt-text dataset for automatic image cap-

tioning,” in Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2018, pp. 2556–2565.

[202] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,

“PANNs: Large-scale pretrained audio neural networks for audio pattern

recognition,” IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, vol. 28, pp. 2880–2894, 2020.

06/09/2023



BIBLIOGRAPHY

[203] S. Hershey, S. Chaudhuri, D. P. Ellis, et al., “Cnn architectures for large-scale

audio classification,” in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 131–135.

[204] L. Sweeney, M. G. Constantin, C. H. Demarty, et al., “Overview of the me-

diaeval 2022 predicting video memorability task,” in MediaEval Multimedia

Benchmark Workshop Working Notes, 2022.

[205] M. G. Constantin, B. Ionescu, C.-H. Demarty, N. Q. Duong, X. Alameda-
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