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Abstract: Traditionally, many undergraduate mathematics courses have

been defined in terms of mathematical content and the techniques in which

students should become proficient or theorems they should be able to prove.

This can result in a reliance on shallow, or rote learning by students, despite

the fact that the main goal of a mathematics lecturer1 is usually to foster

mathematical understanding in his/her students. In contrast, it is suggested

that placing an emphasis on the threshold concepts involved in a course can

enable teachers and students to focus on what is fundamental to the study

and mastery of their subject.
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1 INTRODUCTION TO THRESHOLD CONCEPTS

The idea of a threshold concept emerged from a UK national research

project (Enhancing Teaching-Learning Environments in Undergraduate

courses, 2001-2005) designed to support departments involved in un-

dergraduate teaching in thinking about new ways of encouraging high

quality learning [5]. In pursuing this research in the field of economics,

it became clear to Erik Meyer and Ray Land that certain concepts were

held by economists to be essential to the mastery of their subject. These

concepts were seen to have certain features in common and were called

1Here ‘lecturer’ is used to mean an academic who teaches, either full or part-time,

at a university or similar institution and has full responsibility for the courses he/she

teaches. A lecturer may also have research responsibilities.
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‘threshold concepts’ [16]. The notion of a threshold concept was in-

troduced as a way of differentiating between learning outcomes that

involved “seeing things in a new way” and those that did not. Thresh-

old concepts have been described as portals, opening up a new and

previously inaccessible view of a topic, a view without which students

would be unable to fully progress intellectually. From that point of view,

threshold concepts form a subset of what university lecturers would usu-

ally call ‘core concepts.’ A core concept is a conceptual building block:

it must be understood but does not necessarily lead to a qualitatively

different view of the subject manner.

Meyer and Land [16] originally identified five characteristics of a

threshold concept: transformative, irreversible, integrative, bounded,

and troublesome. What do they mean by these terms? Let us start with

the idea that a threshold concept is transformative. Meyer and Land

claim that once a threshold concept is understood, it has the potential to

trigger a significant shift or transformation in the perception of a subject,

or part thereof. The mastery of each threshold concept could be viewed

as a step towards acquiring a professional’s appreciation of the subject;

this represents an ontological shift (or change in being) as well as a

conceptual shift. The change in perception is unlikely to be forgotten and

can be ‘unlearned’ only with considerable effort; therefore, this concept is

considered irreversible. For this reason, it can be difficult for lecturers or

experienced practitioners to appreciate the difficulties of their students

as this requires them to look back over thresholds they have long since

crossed. Threshold concepts often expose the inter-relatedness of a topic

and allow connections which were previously hidden to be displayed.

They can bring different aspects of a subject together and act as an

anchor for the subject. From this perspective, they have been described

as integrative. Often, but not necessarily, threshold concepts may lie on

the border between conceptual spaces or may constitute the demarcation

line between disciplinary areas. For this reason, they have been described

as bounded. Finally, threshold concepts are troublesome, in part due

to the characteristics described above, but also because they are often

inherently conceptually difficult. The concept may appear to be counter-
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intuitive, paradoxical or incoherent, or may involve subtle distinctions

being made between ideas.

In fact, Davies and Mangan [8] have argued that the transformative,

integrative and irreversible characteristics of a threshold concept are

necessarily interwoven:

A concept that integrates prior understanding is necessarily trans-

formative, because it changes a learner’s perception of their ex-

isting understanding. If a concept integrates a spectrum of prior

understanding, it is more likely to be irreversible, because it holds

together a learner’s thinking about many different phenomena.

To abandon such a threshold concept would be massively disrup-

tive to an individual’s whole way of thinking (p.712).

2 THRESHOLD CONCEPTS IN MATHEMATICS

Let us consider some candidates for the title threshold concept from the

undergraduate mathematics curriculum.

2.1 Limits

When considering the attributes of a threshold concept, most readers

will likely be reminded of the problems that students encounter with

the ϵ-δ definition of the limit of a function. Indeed, Meyer and Land

included this as an example in their original work [16]. They remarked

that

In pure mathematics the concept of a limit is a threshold concept;

it is the gateway to mathematical analysis and constitutes a fun-

damental basis for understanding some of the foundations and

application of other branches of mathematics such as differential

and integral calculus (p.3).

Understanding the limit definition opens the door to the field of Analysis

and sits on the boundary between Calculus and Analysis courses. (It

could thus be thought of as bounded, using the terminology of [16].)
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The concept is certainly a troublesome one for most students, and

this is not surprising since, historically, the evolution of the notion was

slow. Even though Newton and Leibniz developed Calculus in the sev-

enteenth century, and some of the ideas had previously been in use for

a long time, it was not until the nineteenth century that Weierstrass

finally formulated the ϵ-δ definition [1, p.287].

There has been a considerable amount of research into the problems

that students face with the notion of limit. These problems could be

divided into two main categories: those that arise from pre-existing im-

ages of limits; and those that stem from the formulation of the definition

itself [19]. Research has shown ([4], [18]) that the images that students

have which relate to the word ‘limit’ can affect and inhibit their under-

standing of the concept when they meet it in an analysis course. Cornu

[4] remarked that in the case of limits, both the phrase ‘tends to’ and the

word ‘limit’ have interpretations in everyday life which are not always

consistent with their mathematical meanings. For example, it carries

the connotation of an impassable limit which is impossible to reach, a

maximum or minimum, or a finishing point; each of these conceptions

can cause problems for students even after they are introduced to the

rigorous definition. On the other hand the structure of the definition

itself causes problems; firstly it contains the quantifiers ∀ and ∃ which

together prove confusing to students. Also, students often fail to see how

the existence of a limit limx→a f(x) = L can be inferred from a state-

ment about inequalities such as ∀ϵ > 0,∃δ such that |f(x) − L| < ϵ if

0 < |x− a| < δ [19]. Students seem to want a formula or algorithm with

which they can compute the limit ([18], [19]), and are uncomfortable

with using the definition instead.

Anecdotally, students and mathematicians often report on the mo-

ment when the point of the ϵ-δ definition became clear to them. The

fact that they can remember a precise moment when this happened is

significant and points to the transformative and irreversible nature of

the new understanding.

Research has found ([23]) that further difficulties in understanding

limits may arise from a mismatch between the (formal) concept defini-
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tion and students’ concept image. Tall and Vinner ([23] p.151) defined

the notion of a concept image as consisting of ‘all the cognitive struc-

ture in the individual’s mind that is associated with a given concept’.

They found that for the topic of limits of functions, students’ concept

images may contain elements which do not agree with the definition or

even with other parts of the concept image. Przenioslo [18] studied the

conceptions of limit held by undergraduate students. She found that

students had images of limits that were based on the formal definition,

on the computation of limits using algorithms, on the dynamic nature

of limits (ie thinking of values approaching a certain point), and on the

function value at a point. She conjectured that the last three images

were based on informal definitions used previously. In her study, the

students whose images were close to the definition were usually more

successful than the others at solving problems about limits, but also

rarely reverted back to language such as ‘getting closer and closer’. This

also provides evidence that understanding the definition is a transfor-

mative and irreversible experience. This may be one reason why it is

difficult to teach this topic, since once one has crossed the threshold with

the limit definition, it is difficult to remember what it was like on the

other side.

2.2 Functions

Even before students encounter the ϵ-δ definition of the limit of a func-

tion, of course, they will have worked with the concept of function. This

concept is fundamental in modern mathematics, and even though stu-

dents are exposed to this idea in school, it has been found that many

undergraduates have difficulties with it [3]. Pettersson [17] has suggested

that the concept of function is a threshold concept.

The Mathematics Education community has conducted many studies

into students’ understandings of and difficulties with functions. Once

again, as was the case with limits, we find that one of the main problems

that students face is that of the definition. For example, Vinner and

Dreyfus [25] found that students often think of functions as being a
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formula or an equation, and may be loath to accept functions that are

not defined by a single algebraic expression. They may also expect

all functions to be continuous. These problems with the definition of

function bear similarities to the stages of the historic development of

the concept [14], and so make a case for the concept to be described as

inherently conceptually difficult (or troublesome).

Perhaps as a consequence of viewing functions as defined by an alge-

braic expression, students often think of them in terms of actions or an

input-output model. For example, they may see f(x) = 5x−2 as a recipe

for a series of calculations rather than as an object in its own right. To

properly understand functions and to work with them in diverse areas

of mathematics, students should be able to conceive of a function as an

action, as a process, and as an object [2]. Sfard [22] discusses the comple-

mentary approaches of dealing with abstract notions such as functions:

operationally as processes and structurally as objects. She introduced

the term ‘reification’ to represent the transition of thought involved when

a learner progresses to viewing processes as objects. She warns that reifi-

cation is “an ontological shift, a sudden ability to see something familiar

in a new light” (p.19) and a “rather complex phenomenon” (p.30), caus-

ing obstacles and frustration for learners: this reinforces a view of the

concept as troublesome and illustrates how reification can be viewed as

transformative. Gray and Tall [10] maintain that the ability to think

flexibly in this manner (operationally and structurally) is at the root

of successful mathematical thinking. They also suggest that the flex-

ibililty in thought achieved by those who have experienced reification

can explain why a mathematics expert may find it difficult to appreciate

the difficulties of a novice, pointing to an irreversibility as described in

[16]. Reification seems to be quite similar to what Thurston [24] called

‘compression’. He spoke about learners of mathematics working step by

step and struggling to understand a concept, but asserted that, once

they have really understood the concept, their perspective can change

to being able to see it as a whole. He believed such insight and men-

tal compression can make it easier to recall and use the idea when it is

needed in future.
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Finally, the idea of a function permeates many areas of mathematics,

and as such a comprehensive understanding of the concept can expose

previously hidden connections between different topics. Students usually

first meet the formal definition of a function in the context of Analysis,

but, once it is properly understood, they often come to realise how it

can be related to linear systems and matrices they have encountered in

Algebra, for instance. In this sense, it could be described as integrative.

2.3 Cosets and Quotient Groups

In contrast to the concepts of functions and limits, relatively little re-

search has been carried out into the teaching and learning of Abstract

Algebra. However, researchers have suggested that students’ difficulties

in Abstract Algebra courses seem to deepen when they meet the con-

cepts of cosets and quotient groups ([13], [6]). These concepts are crucial

to the study of Group Theory, and so they could present an obstacle to

further progression in Algebra. In a study of second-year undergraduate

students at a British university, Ioannou [13] reported that students had

problems visualising cosets. This led to students encountering problems

understanding the remainder of their Group Theory course and also

contributed to diminishing levels of engagement with the course.

Dubinsky and his colleagues [6] found that students were more com-

fortable with cosets when they could form them by carrying out calculations–

that is, by performing an action or following a process. However, they

had difficulties when faced with the formation of cosets in unfamiliar set-

tings. There was evidence that some students in that study saw cosets

only in terms of an action or process to be carried out rather than as

objects in their own right. This led to difficulties when thinking about

cosets as elements of a quotient group. Students who could view cosets

as objects were better able to answer difficult questions on the topic,

and so, once this reification took place, it seemed to be transformative

and probably irreversible.
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3 THRESHOLD CONCEPTS AND IMPLICATIONS FOR

UNDERGRADUATE MATHEMATICS TEACHING

How can such research in mathematics education and the identification

of threshold concepts inform the practice of mathematics teaching and

learning? In An introduction to threshold concepts, Cousin [5] claims a

tendency among academic teachers is to stuff their curriculum

with content, burdening themselves with the task of transmitting

vast amounts of knowledge bulk and their students of absorbing

and reproducing this bulk (p.4).

Criticism has been levelled at mathematics lecturers, in particular, for

such a practice: Hillel [12] claims that, generally speaking, undergrad-

uate mathematics courses have been defined in terms of mathematical

content and the techniques students are expected to master or theorems

they should be able to prove. Although the main goal of a mathe-

matics lecturer may be to foster mathematical understanding in their

students, such an understanding is seldom specifically nurtured by the

mathematical tasks and assessments students are required to complete

[20], leading many authors to decry an over-emphasis on procedures and

the reproduction of definitions, statements of theorems etc., in under-

graduate mathematics modules. Consequently, this can result in a re-

liance on shallow, superficial or rote learning by students and an inability

to answer unseen problems or to apply or transfer their mathematical

knowledge as appropriate [21]. For instance, Dreyfus [9] asserts that

many students learn a large number of standardised procedures in their

university mathematics courses, and, although they end up with a con-

siderable amount of mathematical knowledge, they cannot use it in a

flexible manner:

They have been taught the products of the activity of scores of

mathematicians in their final form but they have not gained in-

sight into the processes that have led mathematicians to create

these products (p. 28).

This is very much in contrast with the type of approach advocated
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by Land, Cousin, Meyer and Davies [15], who suggest that a focus on

threshold concepts can enable teachers to make refined decisions about

what is fundamental to the study and mastery of their subject. Because

of the potentially powerful transformative effects of threshold concepts

on the learning experience, they advocate treating threshold concepts as

‘jewels in the curriculum’ around which courses could be organised. In

addition, since a poor understanding of these concepts can form a barrier

to further advancement, they should be given particular attention when

desgining the curriculum. If we, as mathematicians, can identify these

concepts, we may be able to help give students both the tools and the

time they need in order to develop a mastery of them. This may involve a

recursive (as opposed to a linear) approach, revisiting threshold concepts

at various stages and from various perspectives throughout a module or

programme. Land et al. [15] advocate that a framework of engagement

should be constructed by lecturers to facilitate the development of stu-

dents’ understanding of threshold concepts, actively engaging students

with the conceptual material and allowing students to experience the

‘ways of thinking and practicing’ that are expected of practitioners in

their discipline. In particular, they recommend that

tutors ask students to explain [a troublesome concept], to repre-

sent it in new ways, to apply it to new situations, to connect it to

their lives. The emphasis is equally strong that they should not

simply recall the concept in the form in which it was presented

(p.57).

Teachers should be cautious when making assumptions about what

students’ uncertainties might be. As mentioned earlier, it can be difficult

for experienced teachers to understand the obstacles met by students as

they grapple with a difficult concept for the first time. Indeed, Thurston

[24] (although he was not speaking about threshold concepts) also made

this point and remarked that once you have mastered a concept it is

very hard to “put oneself back in the mind of someone to whom they

are mysterious” (p.848). This “puts a psychological barrier in the way of

listening fully to students” ([24], p.848). Land et al. [15] advise lecturers
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to listen not just for what students know, but also for the terms that

shape their knowledge and define their uncertainties and instabilities.

Land et al. [15] also discuss the “indispensable role of metacogni-

tion in the learning process” (p.59). They outline how lecturers should

empathize with learners who are grappling with troublesome concepts,

make sure that they are aware that others are experiencing similar dif-

ficulties, and encourage them to tolerate uncertainty in the short term.

Students often abandon their studies due to conceptual difficulties, not

realising that the confusion they are experiencing may be short-lived.

It has also been suggested that students may be more likely to resort

to mimicry or plagiarism if they feel they are alone in their confusion

[5]. Furthermore, making students aware of the historical development

of concepts may be useful not only in encouraging engagement with a

concept, but also in allowing them to appreciate the difficulties experi-

enced by those responsible for first articulating or formulating a concept,

thereby encouraging perserverance.

We have seen that, for many threshold concepts, reification is an

important part of the development of understanding and thus can serve

as a marker of students’ progress in learning mathematics. In mathe-

matics teaching, however, reification often remains an implicit learning

outcome, a form of tacit knowledge that is not explicitly articulated to

learners. It may be that by focusing on threshold concepts in the cur-

riculum, this process of reification can be addressed in a more explicit

manner.

Some studies have been undertaken attempting to put these recom-

mendations into practice. Harlow et al. [11] outline findings from a

collaborative action-research project to document changes in lecturers’

threshold-concept-informed teaching and their impact on student learn-

ing in analogue electronics. The lessons for teachers learned through this

project are described as listening to students, tolerating learner confu-

sion and revisiting threshold concepts, echoing the recommendations

given by Land et al. [15]. Davies & Mangan [7] have also endeavoured

to put theory into practice in constructing a ‘framework of engagement’

for first-year undergraduate economics students. They blended insights



THRESHOLD CONCEPTS & TEACHING 11

from the theory of threshold concepts and variation theory to propose

four pedagogic principles which were then translated into three types

of teaching and learning activity—reflective exercises, problem-focussed

exercises and threshold network exercises —and they report on their

experiences of using these activities.

From a mathematics perspective, although Dubinsky et al. [6] do not

frame their discussions of teaching group theory in general, and cosets in

particular, in terms of threshold concepts, they make pedagogical recom-

mendations in line with those described above and report some success

from their efforts. For instance, they suggest “finding alternatives to

linear sequencing” of material and state “it is the role of the teacher,

not to eliminate [students’] frustration, but to help students learn to

manage it” (p.300). In particular, using technology, they aim to help

students experience reification by moving from viewing cosets in terms

of actions to seeing them as objects.

4 CONCLUDING REMARKS

In this article we have described what is meant by a threshold con-

cept, given examples of some mathematical concepts which have been

identified as threshold concepts and discussed how they could be used

in teaching and especially in curriculum design. In summary, lecturers

should give special attention to threshold concepts, and use them as

a central motif for courses; they should revisit the concepts frequently

and view them from different perspectives if possible; they should be-

come familiar with the literature on student misconceptions in order to

help understand what difficulties students might face; they could make

students aware that having difficulty understanding these concepts is

common but not insurmountable. We have found the idea of a thresh-

old concept and these recommendations both interesting and useful in

developing our own teaching practice; we hope the wider mathematical

community will do likewise. A comprehensive survey of research under-

taken on threshold concepts can be found at

http://www.ee.ucl.ac.uk/ mflanaga/thresholds.html
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