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The Development of a Function Concept Inventory  

This paper describes the development of a concept inventory, a test designed to 

investigate undergraduate students’ understanding of the concept of function. A 

central purpose was to address conceptual understanding. We outline a set of 

elements of the understanding of function, based on key properties of the 

function concept, which were used to construct test items.   We describe the 

design and validation process for the concept inventory and comment on some 

implications for the refinement of the instrument and its use. 

Keywords: function; concept inventory; conceptual understanding; assessment 

design.  

Introduction 

Functions are central to present day mathematics. As Selden and Selden (1992) explain, 

the function concept has evolved with mathematics and now plays a unifying role. For instance, 

going beyond calculus, functions are widely used in the comparison of abstract mathematical 

structures. Yet comprehension of the function concept is remarkably complex and studies have 

shown that undergraduate students often have difficulties with this concept (Carlson 1998) and 

even with the notion of variable (Trigueros and Ursini 2003). Pettersson (2012) identified 

function as being a threshold concept in mathematics; that is, that it is transformative 

(understanding the concept leads to a new perception of the subject), irreversible (the change in 

perception is unlikely to be forgotten), integrative (the new understanding reveals connections 

and relations with other topics), bounded (in the sense that these concepts often lie at the 

borders of disciplinary areas), and troublesome (in that it presents difficulties to students) as 

described by Meyer and Land (2003). Since students usually first encounter the concept of 

function in school, university lecturers might assume that undergraduates have crossed this 

particular threshold of understanding. However due to the complexity and troublesome nature of 

the concept, this is often not the case (Pettersson, Stadler and Tambour 2013).  

Working with functions in various contexts and in diverse areas of mathematics, 

requires the ability to think flexibly about functions and to appreciate them not just as actions 
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and processes but as mathematical objects. The importance of this has been recognised by many 

authors. Based on Piagetian constructivism, Dubinsky and colleagues (e.g., Briedenbach, 

Dubinsky, Hawks and Nichols 1992) postulated a hierarchy of concept development, in which 

the student starts from actions, shifting to processes, developing mathematics objects and 

ultimately mental schemas. Transitions through the stages of  

action -->process-->object-->schema  

are usually not linear, but involve shifting between stages through which a concept develops.  

Dubinsky and McDonald elaborate actions with reference to the concept of function as follows: 

With an action conception of function, for example, an individual may be limited 

to thinking about formulas involving letters which can be manipulated or replaced 

by numbers and with which calculations can be done. We think of this notion as 

preceding a process conception, in which a function is thought of as an input-

output machine. What actually happens, however, is that an individual will begin 

by being restricted to certain specific kinds of formulas, reflect on calculations and 

start thinking about a process, go back to an action interpretation, perhaps with 

more sophisticated formulas, further develop a process conception and so on. In 

other words, the construction of these various conceptions of a particular 

mathematical idea is more of a dialectic than a linear sequence. (Dubinsky and 

McDonald 2001 p.277) 

They suggest that “An object is constructed from a process when the individual 

becomes aware of the process as a totality and realizes that transformations can act on it” and “a 

schema for a certain mathematical concept is an individual’s collection of actions, processes, 

objects, and other schemas which are linked by some general principles to form a framework in 

the individual’s mind that may be brought to bear upon a problem situation involving that 

concept” ( p.276-277).  Sfard (1991) talks of a duality, with processes and objects acting as two 

sides of the same coin and conceptualisation shifting between them.   She suggests a process of 

reification, consisting of 3 stages of concept construction -  interiorization, condensation and 

reification --  through which processes become objects.  In interiorization, operations on lower 

level mathematics objects enable the learner to get acquainted with processes which will 
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eventually give rise to a new concept;  condensation involves the squeezing of lengthy 

sequences of operations into more manageable units, thinking of a process as a whole without 

going into details but attaching a label for a new concept to be born; reification involves an 

ontological shift, a quantum leap, a sudden ability to see something familiar in a totally new 

light.  A new entity (an object) is soon detached from the process that produced it.  Sfard (1991) 

speaks of reification as a “rather complex phenomenon” (p.30), causing obstacles and 

frustration for learners, illustrating why reaching an understanding of  a function, for instance, 

as an object can be said to be troublesome though transformative.  

Given the importance of function in mathematics, it is useful for a lecturer to have 

information on their students’ level of understanding of this concept. In this paper, we will 

describe the development of an instrument to elicit this information, namely a function concept 

inventory. In particular, we were hoping to gain insight into students’ understanding of some 

key properties of a function object. 

Literature Review 

A concept inventory is an instrument, or test, designed to explore conceptual or relational 

understanding as opposed to procedural or instrumental competence (e.g., Skemp 1976; Hiebert 

and Lefevre 1986). The term concept inventory originates in the Physics Education literature.  

Hestenes, Wells and Swackhamer (1992) developed a concept inventory for the concept of 

force. Their intention was to explore students’ knowledge and understanding about this basic 

concept. To do this, they decomposed the force concept into six conceptual dimensions (similar 

to what we have described as ‘key properties’), and then designed multiple-choice questions to 

illuminate understanding and misunderstanding in each dimension. Hestenes et al. (1992) claim 

their inventory is a very good detector of Newtonian thinking and probes commonsense 

misconceptions. They say their instrument has proven valuable at every level of physics 

instruction from high school to university, providing sound technical knowledge required for 

effective teaching. Not only this, but it has been widely used as a pre- and post-test to evaluate 

gains in student understanding after instruction. Moreover, Epstein (2013) maintains that the 
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Force Concept Inventory has “spawned a dramatic movement of reform in physics education” 

(p.1018). Concept inventories have also been used in other subjects such as biology and 

chemistry (Garvin-Doxas and Klymkowsky 2008; Mulford and Robinson  2002).  

Carlson and her colleagues developed the Precalculus Concept Assessment (PCA) to 

test students’ understanding of function and of rates of change (Carlson 1998; Carlson, 

Oehrtman and Engelke 2010). In a similar manner to Hestenes et al. (1992), they first developed 

the PCA taxonomy to articulate foundational knowledge for beginning calculus. Their 

taxonomy consists of three categories of reasoning abilities and three categories of 

understandings which they claim are essential for using central concepts of precalculus and 

understanding key concepts of beginning calculus. The reasoning abilities identified in the PCA 

taxonomy are: process view of a function (viewing a function as a process instead of an action); 

covariational reasoning (dealing with change in two related variables); computational abilities. 

The categories of understandings are: understand meaning of function concepts (such as 

composition, inverse, rate of change, evaluation); understand growth rates of function types (for 

example linear, rational, exponential functions); understand function representations (graphical, 

algebraic, numerical, contextual) (Carlson et al. 2010 p. 120). Carlson and her team then used 

the taxonomy to design, develop and validate the PCA in a four-phase process. This included 

reviewing existing research on learning precalculus and beginning calculus, conducting a series 

of focussed studies on characterizing reasoning abilities and understandings, carrying out 

clinical interviews to validate questions and distractors for multiple choice items, and using 

quantitative data from the final version of the PCA to establish the meaning of a PCA score. 

They explain how the PCA is useful for assessing pre-post learning and thus for comparing 

various approaches to teaching precalculus courses, and suggest it may have potential as a 

‘calculus readiness’ assessment tool. 

O’Callaghan (1998) developed a conceptual model to describe the understanding of 

functions. The elements of his framework stem from applying theory about the sources of 

meaning in mathematics (following Kaput (1989)) specifically to the function concept 
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and he described this model in terms of four competencies: modelling (the ability to represent a 

problem situation using functions); interpreting (the ability to interpret different representations 

of functions); translating (the ability to move from one representation to another); reifying (the 

creation of a mental object from a process or procedure) (O’Callaghan 1998 p 25). He then 

designed an instrument to test these competencies, by attempting to operationalise these 

abstractions and formulate them in terms of a problem-solving environment, and used it 

to investigate the effects of different types of instruction on students’ knowledge of functions. In 

fact, the desire to carry out such an investigation motivated his development of a conceptual 

model. 

In our study, we wished to investigate aspects of students’ understanding of some key 

properties of function as an object. Carlson et al. (2010) recognised a ‘process view of function’ 

as central to the understanding of precalculus and beginning calculus and included it as one of 

the three reasoning abilities in their PCA taxonomy. They explain that for many students taking 

precalculus modules “reasoning is dominated by a static image of arithmetic computation used 

to evaluate a function at a single numerical value” (p.115). This is problematic as students who 

are unable to imagine a continuum of input values producing a continuum of output values, that 

is, conceptualise a function as a process, have difficulty inverting and composing functions, 

which can in turn hamper their effective use of functions to solve word problems. The PCA 

attempts to assess students’ understandings of the meanings of function concepts such as 

composition and inverse among others. The four competencies described by O’Callaghan 

(1998), forming components of his model for function, include ‘reifying’ which goes beyond 

the process view of a function.  Reification represents the “ultimate goal” or “final stage in the 

acquisition of function” and is defined as “the creation of a mental object from what was 

initially perceived as a process” (O’Callaghan 1998 p.25). The research question which 

accompanies this competency (reification) involves students performing operations (such as 

composition) on functions and knowing properties of families of functions (such as linear and 
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quadratic) and thus overlaps with the assessment of the understandings outlined in the PCA 

taxonomy (understanding meaning of function concepts and growth rate of function type).   

Furthermore, it would seem that the questions O’Callaghan poses to assess reifying 

competence could be successfully completed by students using a process view of function. For 

instance, one of these questions gives expressions for two functions, C=0.10(p-1000) and 

p=100n-n2, (O’Callaghan 1998 p.30) and asks the students to find C(p(50)) and then an 

expression for C(p(n)), which it would appear could be completed using an operational 

approach (action or process view) rather than a ‘structural’ approach (object view).  

Breidenbach et al. (1992, p.251) contend that students with an action conception of function 

would be able to perform the steps necessary to find an expression such as that for C(p(n)). In 

an attempt to avoid this type of response, we hoped that the inclusion of questions in which a 

specific example or description of a function was not given would give better insight into 

students’ understanding  of function and this influenced the design of our questions (for 

instance, Questions 5 and 10 described below). 

Another instrument, called the Calculus Concept Inventory (CCI), was developed by 

Epstein (2013) and his co-workers. The aim of the CCI is to measure conceptual understanding 

rather than computational skill, with a focus on understanding the concept of derivative, and as 

such involves material beyond the notion of function itself. The authors report that the first 

version, drafted in 2005, was too difficult for freshman students and was revised in 2006. The 

revised test has 22 multiple choice items and has been administered as a pre- and post-test in a 

variety of universities, predominantly in North America. Epstein (2013) reports that the results 

suggest that the class performance (measured by a normalized gain) in almost all traditional 

courses showed little or no improvement from the pre-test to the post-test, however the courses 

taught using interactive engagement (IE) methods showed significant gains. Epstein defines IE 

methods as those which involve ‘activities which yield immediate feedback through discussion 

with peers and/or instructors’ (Epstein 2013 p. 1020).   
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While alternative instruments to test understanding of the function concept exist 

(O’Callaghan (1998), Carlson et al. (2010)) they were not all readily available to us at the time 

when we designed our concept inventory, nor were they precisely aligned with the elements of 

understanding we identified as most important for our students. For instance, our own 

experience of teaching has shown us that students often have difficulty in determining whether a 

given relationship (in the form of a formula(e), graph, table or verbal description) represents a 

function or not and so we thought this was an important aspect to have included in a concept 

inventory.  

Development of the Function Concept Inventory 

Motivation 

The three authors of this paper have each taught courses to first year undergraduate students in 

which functions play an important role. At the time of this study, we were teaching groups of 

finance or humanities students attending one Irish university, pre-service primary teachers or 

humanities students at a second Irish institution, and materials-engineering students in a UK 

university. In all three cases, we were concerned that our students seemed to come to their 

university programme with a procedural view of functions, seeing a function merely as a 

formula relating variables, a machine for finding the output from a given input, or a form of 

equation, but unappreciative of key conceptual ideas such as uniqueness of image or existence 

conditions for an inverse function.  We wanted to investigate these concerns with a view to 

gaining insights into how to address them in our programmes. Thus, in an effort to evaluate our 

students’ understanding of the function concept we developed a function concept inventory. We 

made attempts to seek a pre-existing instrument, but neither that of O’Callaghan (1998) or 

Carlson et al. (2010) seemed suitable:  either they went beyond our focus on functions or they 

did not cover all aspects of the concept of function that we wanted to investigate.  At the time, 

we were not aware of the CCI, although retrospectively we see that CCI questions go beyond 

the material we were addressing.  Also, we were concerned that O’Callaghan’s instrument, 
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containing 14 constructed response questions with multiple parts would take too long to both 

administer and correct if it were to be used year after year. Thus we designed our own 

assessment tool.  

Process 

The process that we followed in creating the concept inventory is similar to that advocated by 

the AERA, APA and NCME (1999) in the Standards for Psychological and Educational 

Testing. In that document, four phases of test development are identified (p. 37): 

Phase 1: Delineation of the purpose of the test and scope of the construct or the extent 

of the domain to be measured; 

Phase 2: Development and evaluation of the test specifications; 

Phase 3: Development, field testing, evaluation, and selection of the items and scoring 

guides and procedures; and 

Phase 4: Assembly and evaluation of the test for operational use. 

In the next section, we will outline the stages of the development of our inventory. 

Theoretical Basis for Elements of Understanding Identified 

Following the example of Hestenes et al. (1992), we began by identifying key properties of the 

function concept with which we were concerned; we did this by drawing on the literature on the 

subject as well as by drawing on our own experience as teachers. For example, from our own 

experience we felt that students sometimes struggle with the difference between a function and 

an equation. The literature provided more evidence of this; Vinner (1983) investigated students’ 

concept definitions and concept images of the notion of function and found that one of the 

major categories of definition was that a function is an algebraic term, a formula, or an equation 

(p. 300). Sajka (2003) also found that the concept of function is closely related to that of 

equations in some students’ minds (p. 238).  If we think of the concept of functions from a 

perspective of reification, we might see a transition from an incomplete conceptualisation of 

functions and equations, in which their important difference is only vaguely perceived, towards 

a recognition of them as different conceptual objects related in important ways. 



 

9 

 

 Carlson et al. (2010) and O’Callaghan (1998) recognised the value of being able to 

work with different representations of functions, with O’Callaghan noting that two of the most 

common representational systems for functions to this day are graphs or tables. This is perhaps 

not surprising considering the historic development of the function concept can be traced from 

tables to curves and on to the formal definition in analysis (Balacheff and Gaudin 2010).  The 

work of Vinner (1983) and Vinner and Dreyfus (1989) highlighted the difficulties that students 

have with defining functions and being able to classify a relationship as being a function or not. 

Slavit (1997) argued that a property-oriented view of function can help students appreciate 

functions as objects. In addition, Carlson et al. (2010) included understanding the meaning of 

function concepts or properties as one of their dimensions of understanding. The ability to use 

functions in context or as part of a mathematical model has been recognised as important in the 

literature, for example O’Callaghan (1998) cited modelling and interpreting as two of his four 

competencies in this area. He explained these as formulating a mathematical representation of a 

problem situation and reversing this process.  Covariational reasoning, or the ability to 

determine how the output values of a function are changing by imagining changes to the input 

values, was included by Carlson et al. (2010) as one of their core reasoning abilities and this 

resonated with our experience as lecturers. 

Design of a set of elements of understanding 

Based on these insights we suggested a set of elements of understanding which we 

should like students to develop, enabling them to work with key properties of functions. The 

aim of mathematics teaching at university level should be to give students tools and 

opportunities to develop their understanding of concepts, that is, where students appear to have 

only an action and/or process view of functions, to move to the reification or object stage of 

concept construction. It is difficult to judge whether a person has an object view of function, but 

based on the literature cited above, we endeavoured to outline some indicators which would 

allow us to tell if a student has made some progress on the action/process/object continuum. The 

six elements of understanding identified are: 
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1. the ability to distinguish between functions and equations; 

2. the ability to recognise and relate different representations of functions and use them 

interchangeably; 

3. the ability to classify relationships as functions or not functions; 

4. the ability to have a working familiarity with properties of functions such as one-

one/many-one, increasing/decreasing, linearity, composition, inverses; 

5. the ability to use functions in context, modelling and interpreting; 

6. the ability to engage with co-variational reasoning. 

Design of Instrument 

Using these elements of understanding, we designed an initial set of fourteen 

assessment questions. With considerable discussion of what to include, we wrote thirteen of 

these questions ourselves, drawing on and modifying questions we had used in our courses, and 

also choosing one item on co-variational reasoning available from the PCA (Carlson et al., 

2010). We intended that the test would be administered in class-time and so did not want it to be 

too long. After further discussion we reduced the number of questions to twelve which spanned 

all elements of understanding listed above.  . 

 

Q1. Let f(x) =3x+5. Given the equation 3a+5=2, which of the following 

are true? (There may be more than one true statement.)  

(a) f(a)=3a+5,    True False  

(b) f(a) = 2,     True False  

(c) f(x)=2 for all x,   True False  

(d) f(x)=2 for some value of x.  True False  

Figure 1: Question 1 
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For example, Question 1 (Figure 1) tests the ability to distinguish between function and 

equation, seeing these as two distinct but related objects. For parts (b) and (d) students need to 

make a connection between the function f and the equation 3a+5=2, but in part (c) students need 

to recognise the difference between the equation and the function. Students may recognise f as a 

linear function and thus realise it has unique functional values for all real numbers; thereby 

recognising that f(x) = 2 => x =  -1, and that no value of x other than  -1 can give a functional 

value of 2.  The question thus tests Element 1 and relates also to Element 4. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Question 5 

 

Question 5 (Figure 2) tests Element 2 and touches on Element 4.  Students need to be able to 

think in terms of a function defined for all real values and visualise its square. As f has not been 

specified, students cannot take an operational approach but must focus on structure.  They 

should recognise that (b) does not represent the square of a function, that (c) excludes values for 

which the square would be defined and that (d) is acceptable for a constant function (something 

that students frequently ignore). Note that we assume here that students will recognise the 

horizontal axis in each graph as the line y=0 and therefore that the function graphed in (a) takes 

no negative values. 

Q5. Suppose f(x) is a function defined for all real values of x. Which of 

the following are possible graphs of g(x) = [f(x)]
2
 ? (Please circle all of the 

options you think are possibilities.) 

(a)     (b)     (c)  

(d)           (e) I don’t know 
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Except for Element 6, most of the elements were assessed using more than one question: for 

example, Element 3 was tested using three questions. These questions are given in Figure 3 (the 

full concept inventory can be found in Breen, Jaworski and O’Shea (2012)). Questions 8 and 9 

were designed to examine the students’ ability to decide whether relationships were functions or 

not when the information was presented in a graphical or tabular form, while Question 10 

concerns elements of the formal definition of a function.  We see each of these questions as 

testing the students’ ability to work with the key properties of the function concept.   In 

Question 8 students are asked to deduce function relationships from a graphical representation; 

this requires them to identify relationships which are functions and those which are not. As no 

formula or analytical expression has been given for the function, it is difficult for the student to 

take an operational approach in terms of following through a series of actions or a process. 

Question 9 challenges the view of functions as always defined by formulae: for example, a 

student with an action or process view of function might look for a formula relating house size 

to its selling price, whereas a student with an object view might see a function as a relationship 

between two sets of numbers which is required to have unique outputs.  In particular, Question 

10 requires students to think in terms of the formal definition of a function allowing (i) but not 

(ii). Since a specific function is not given here, we hoped to test whether students were able to 

think about properties of functions without performing actions or calculations or working 

through a process. 

Ten of the twelve questions contained in the inventory were multiple choice. The 

remaining two were short constructed response questions for which partial credit could be 

awarded. Such questions are much more difficult to mark, and would probably cause problems 

when comparing results if the test was to be used widely; however we feel that the high quality 

of information on  students’ understanding gleaned from this type of question makes the case 

for including them in a test compelling. We hope to report on the findings relating to these 

questions elsewhere. Some of the multiple choice questions had multiple parts, and when sub-

questions were counted there were 15 separate items; each was graded separately. 
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Q8. Consider the curve below which describes a relationship between t and s. 

 

Which of the following is true? (Please circle one of (a)-(d), or (e).) 

a)           s is a function of t but t is not a function of s. 

b)           t is a function of s but s is not a function of t. 

c)           s is a function of t and t is a function of s. 

d)           s is not a function of t and t is not a function of s. 

e)    I don’t know. 

 

Q9. Let s denote the size of a house and p denote its selling price. The tables below show the 
sizes and prices of houses sold each month by a suitable estate agent.  

            May 

S p 

100m2 €300,000 

120m2 €375,000 

75m2 €257,000 

90m2 €300,000 

110m2 €350,000 
 

           June 

s p 

100m2 €302,000 

120m2 €370,000 

70m2 €200,000 

131m2 €400,000 

120m2 €350,000 
 

            July  

s P 

110m2 €330,000 

90m2 €270,000 

80m2 €240,000 

50m2 €125,000 

120m2 €360,000 
 

For which months is it true that p could be a function of s? (Please circle all of the options you 
think could be functions.) 

(a) May  (b)  June  (c)  July                (d)  I don’t know 

 

Q10. Suppose f(x) is a function defined for all real values of x. For each of the following 
statements decide if the statement is always, sometimes or never true. 

i. There are two different real numbers a and b such that f(a)=f(b). 

Always    Sometimes   Never      

ii. There are three different real numbers a, b, c such that f(a)=b and f(a)=c.  

Always    Sometimes   Never      

 

Figure 3: Questions 8, 9, and 10. 



 

14 

 

Validation 

Piloting and Refinement 

The inventory was piloted in three different ways: it was administered to a group of students 

attending a bridging course at an Irish university; it was sent to a group of Irish second level 

mathematics teachers for comment; it was given to university lecturers for comment. Based on 

the feedback from this piloting process, some of the wording of the questions was altered and 

one question was changed substantially. This question concerned the property of injectivity, a 

topic with which the Irish mathematics teachers felt their students would not be acquainted. The 

question was adapted so that it asked about increasing functions rather than injective ones; we 

wished to administer the assessment before any instruction on the function concept at university 

took place and thus it was necessary to make sure that the material was covered by the school  

syllabi. The authors considered sample answers to the partial credit items and together 

developed an agreed marking scheme.  

Rasch Analysis 

Following the pilots, the concept inventory was administered to three groups of first year 

students in October 2011: a group of 53 first year engineering students in a UK university 

studying a basic mathematics course; a group of 37 BA and BEd students in one Irish 

university, and a group of 127 BA and Finance students in a second Irish university. All of the 

students in Ireland had chosen to study Mathematics and were taking a first Calculus course.  

The test was taken during class time at the beginning of the students’ first semester at 

university before the topic of functions was covered in any of the three modules. Ethical 

approval for this study was sought and received prior to administration of the concept inventory. 

The students were told that participation was voluntary and were given 30 minutes to complete 

the inventory. The scripts were marked by research assistants and the data was compiled into a 

single file.  
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When designing a test such as this one, it is important to consider whether it is valid and 

reliable. Validity here refers to the extent to which the concept inventory measures the variable 

that it is intended to measure (Gravetter and Furzano 2012, p. 78). In our case, we would want 

to know if our test instrument measures the trait of conceptual understanding of functions. An 

important aspect of validity in this is content validity (Sireci, 2007), that is the extent to which 

subject experts agree that the test concerns the concept in question and covers all aspects of this 

concept.   As noted previously, we piloted the instrument in various ways, with students, 

secondary teachers and with university mathematicians. The experts in this pilot phase (i.e. the 

teachers and mathematicians) did not raise any questions as to the content validity of the 

concept inventory. A further question regarding the validity of the concept inventory is whether 

the test items combine to give a measure of one single trait i.e., that of conceptual understanding 

of function. In our design phase we outlined the different aspects or elements of this type of 

understanding using the literature and our own experience. We designed the test items based on 

these elements, and then it was necessary to check whether these items actually measured a 

single construct as set out above: that is, whether the six elements described were contributing 

to an understanding of the concept of function. Note that this scenario is common in test 

construction. For example, when measuring mathematical literacy, the PISA studies use items 

that concern different mathematical content areas as well as thinking processes but together 

form an instrument which measures the underlying construct (OECD 2014).  

In order to further study this aspect of the validity of the concept inventory we used 

Rasch Analysis (Bond and Fox 2007) by means of the computer software Winsteps (Linacre 

2009). The Rasch model is an Item Response Theory model which can be used to evaluate tests, 

especially those that claim to measure one construct. This is for example, how the PISA studies 

validate their test instruments and construct measures of mathematical literacy (OECD 2014). 

Similarly, Wilson and MacGillivray (2007) used Rasch Analysis to validate a test designed to 

measure the basic mathematical skills of first year university students. The test, in their case, 

consisted of items relating to different components of algebraic proficiency. Furthermore, 
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Pantziara and Philippou (2012) used the Rasch model to investigate the validity and reliability 

of a test to measure understanding of fractions; we will use similar methods here. 

The Rasch model is based on the assumption that useful measurement involves the 

consideration of a single trait or construct at a time (i.e. assumption of unidimensionality),  and 

it incorporates a quality control mechanism using error estimates and fit statistics to verify this. 

For an introduction to this model, please see Edwards and Alcock (2010).  The Rasch analysis 

computes weighted and un-weighted mean square statistics (called the infit and outfit statistics 

respectively) for each item. These are chi-square statistics divided by their degrees of freedom 

and thus have expected values of 1. Bond and Fox (2007 p.243) report that a reasonable range 

of infit and outfit statistics for test items is 0.7 to 1.3. We used the dichotomous Rasch model; 

that is we graded each multiple choice item on our test as either correct or incorrect. Fit 

statistics for all items were computed, with infit statistics ranging from 0.85 to 1.18 and outfit 

statistics between 0.74 and 1.29. Thus,  all items are shown to be behaving well and 

contributing to the measurement, providing evidence that the items on the test are working 

together to measure a single construct. (Full details of the item infit and outfit statistics can be 

found in Table 1.) In addition, the point-measure correlation (equivalent to the point biserial 

correlation) was computed for each item. This measures the correlation between scores on an 

item with the average scores on the remainder of the test. Wolfe and Smith (2007 p 206) 

recommend that these correlations should ideally be above 0.3, but report that for a test such as 

a concept inventory any positive correlation is acceptable. There seems to be a difference of 

opinion in the literature about this cut-off with Jarrett et al. (2012) quoting various sources who 

recommend that point biserial correlations should be above 0.2.  In our case, all of these 

correlations were positive, with only those of Q9 (point-measure correlation =0.2) and Q3b 

(point-measure correlation =0.23) lying significantly below 0.3 and none lying below 0.2. This 

provides some further evidence that the items are relatively consistent with each other. 
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Question 

 Number 

 Measure Infit MNSQ Outfit MNSQ Point 

Measure 

Correlation 

1(a) -1.39 1.07 1.18 0.33 

1(b) -0.71 1.05 1.12 0.34 

1(c) -1.44 0.86 0.75 0.53 

1(d) -0.62 0.97 0.93 0.42 

3(a) -1.33 1.01 1.03 0.39 

3(b) -1.31 1.18 1.29 0.23 

4 0.15 1.08 1.17 0.29 

5 2.5 0.92 0.74 0.29 

6 -.11 0.87 0.84 0.49 

8 1.98 0.97 0.96 0.27 

9 1.9 1.06 1.05 0.2 

10(i) -0.28 1.03 1.02 0.35 

10(ii) 0.32 0.97 0.95 0.38 

11 -0.47 0.91 0.85 0.48 

12 0.8 1.03 0.99 0.32 

Table 1: Fit statistics and measures of multiple choice questions 

 

In order for a test to lead to a useful measure, it is important that it is able to 

discriminate between students with high and low levels of the trait in question (Wolfe and Smith 

2005). For example, if all questions are very easy or all are very hard then most students will 

have similar scores and the test will not give good information. Rasch Analysis computes item 

difficulties for each question (using the number of correct answers in the sample) and person 

measures for each participant (using the number of correct answers for that person). These 

measures and difficulties are given on the same scale. Therefore to have a good test it is 

important to have a range of item difficulties and also to have this range correspond to the range 
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of person measures. If there is a significant difference in the range of person measures and item 

difficulties the test may be too easy or too hard for the group in question. The results of the 

Rasch analysis using the responses to the multiple choice questions showed that there was a 

good spread of item difficulties (see also Table 1 below), and an item-person map showed that 

the range of item difficulties matched well on the whole with the range of individuals’ scores. 

Questions 5, 8 and 9 have measures that are located above the highest person measure for this 

group. Since this group consists of students at the beginning of first-year in university, it is 

desirable that some items on our test are difficult for these students. This allows the concept 

inventory to be responsive to increases in the understanding of the function concept if it was 

used as a pre and post-test. Therefore, the assessment instrument seems to be appropriate for 

this group. 

As well as being a valid test, we need to examine whether our concept inventory is 

reliable or not. In this context, reliability refers to the stability or consistency of the measure 

(Gravetter and Furzano 2012 p. 85). According to Adams and Wieman (2011 p. 1303), there are 

three main methods of testing reliability of an instrument such as ours. The first is to create 

different versions of the test and administer them; they point out that this is very time-

consuming. An alternative would be to administer the same test to the same group at a later 

point in time; this was not possible for us since our courses covered the notion of function in 

some detail and thus the students’ performance on a re-test would be affected.  The second 

method advocated by Adams and Wieman (2011) is to administer the same test to equivalent 

populations and compute a stability coefficient. In our analysis, we randomly split our sample in 

two parts and computed the resulting item difficulties for each sample. The correlation between 

the item measures for the two parts was 0.971. The third is to consider internal consistency 

measures. We used the Rasch model to do this. To begin with, we looked at the item reliability 

index.  According to Bond and Fox (2007 p.311) this index  estimates ‘the replicability of item 

placement within a hierarchy of items along the measured variable if these same items were to 

be given to another sample of comparable ability’. This index is given on a scale running from 0 

to 1. The item reliability here was 0.98, which indicates that the order of item difficulty is 



 

19 

 

unlikely to change. Similarly, we computed the person reliability index (which is analogous to 

the Cronbach alpha coefficient and measures how robust the person ordering would be if a 

similar test was used with the same group of students). In our case the person reliability was 

0.45 and the Cronbach alpha coefficient was 0.531. We removed some items from the test 

(namely Q3b and the Q9) and recomputed the person reliability and Cronbach alpha coefficients 

but this did not lead to significant increases. The data indicates that the concept inventory would 

not be a good high-stakes test but it does allow us to discriminate between students with high 

and low levels of understanding of function. Indeed Adams and Wieman (2011 p.1304) state 

that low values of Cronbach’s alpha on a concept inventory are acceptable given the restrictions 

on the size of such a test and the possible uses of the resulting data. They also posit that high 

values of such an index could indicate redundant questions. Jarrett et al. (2012) quote Miller 

(1995) who said that for instruments such as concept inventories tests of internal consistency, 

like the person reliability index or the Cronbach alpha coefficients, could under-estimate 

reliability.  

The maximum possible score (for the whole test including the partial credit questions) 

was 26 marks.  A marking scheme is available (Breen et al. 2012). The mean score for the group 

was 12.9862, with a standard deviation of 4.33171. The median score was 13 marks. No student 

achieved a perfect score; in fact the highest personal score was 23 marks while the lowest was 

0. Table 1 shows the (multiple-choice) questions and parts of questions and their difficulty 

measures. Note that low measures correspond to easy items and high measures correspond to 

difficult ones:  questions 5, 8, and 9 were the hardest questions for the students tested, while 

questions 1 and 3 were the easiest questions (note that this remained the case for each subgroup 

when the group was randomly divided into two halves). When computing these measures and 

the fit statistics, we graded the responses as right or wrong and did not award partial credit. 

Discussion 

Our aim in this paper was to describe the design of a function concept inventory. As function is 

a pivotal concept in mathematics and teaching for understanding is a common goal of lecturers, 
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it was believed that a concise valid and reliable instrument exploring conceptual understanding 

of functions would be of considerable value, not only to ourselves but to the wider community.  

The design began with the identification of elements of understanding of key properties 

of the function concept.  This was related directly to ideas of action/process/object as set out 

above.  We drew on the literature to recognise that an object perspective was desirable while 

recognising the partial steps on the way to this as indicated by Dubinsky and colleagues (e.g. 

Breidenbach et al. 1992; Dubinsky and McDonald 2001) and by Sfard (1991).  Thus the 

questions as a whole, while addressing key properties of functions, as indicated in the literature, 

were designed to provide insight into students’ understanding of function. We then wrote 

questions related to these elements and pilot-tested them. Our questions sometimes concerned 

more than one element (for instance,  Question 9 addressed Elements 3 and 5); this was 

deliberate on our part since we wanted the questions to span the types of understanding we had 

identified as important, we wanted each element to have more than one question associated to it 

if possible, and we did not want the test to be too long. We endeavoured to present a number of 

questions in such a way that it would be difficult for students to adopt an action or process 

approach in response, in an attempt to ascertain whether the student has made some progress on 

the action/process/object continuum. 

Epstein (2013) reports that the results for 250 students who completed a pilot CCI 

assessment prior to undertaking Calculus I appeared to be mostly at the random guess level. The 

same could be said of the students’ performance (collectively) on some but not all of the 

questions on our concept inventory instrument as reported in Table 1. However Table 1 shows 

that the concept inventory does have a good range of item difficulties. The Rasch analysis also 

supported this finding. Adams and Wieman (2011) comment on the necessity of a test like this 

to have such a range, since it allows discrimination between students and gives the researchers 

information about the levels of mastery of the concept in question. In addition, if the questions 

are not accessible to a student before studying the course, they remark that the test would only 

be appropriate as a post-test. This was why we trialled our test with pre-university students and 
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secondary teachers, since we wanted to be sure that all items concerned material familiar to 

school-leavers.  

  The majority of students who completed the inventory had problems working with 

functions in real-life contexts. It would be interesting to run the concept inventory test again in 

the next few years in Ireland, since the second level curriculum has recently been revised and 

now has as its aim the teaching of mathematics ‘in contexts that allow learners to see 

connections within mathematics, between mathematics and other subjects and between 

mathematics and applications to real-life’ (NCCA 2012 p.6). The students in this study would 

not have had the benefit of working with the new curriculum; therefore, it would be interesting 

to investigate whether students who have studied mathematics with a more applicable focus 

would do better on the concept inventory. It would also provide a means of attempting to 

measure a change in the implemented curriculum.  

From our experience of administering this concept inventory, we would make some 

changes to the test. Consider, for example Question 3 given in Figure 4. 

Q3. Suppose f(x) is an increasing function.  

a)   Is it true that 3f(x) must be an increasing function?         

                          Yes                                   No                         

b)   Is it true that f(x)+3 must be an increasing function?       

                     Yes                                  No                         

 

Figure 4: Question 3 

 

Reflection on our results shows that the correct answer to part (b) of this question may 

have been chosen for invalid reasons– by this we mean that students may have assumed the ‘+3’ 

term guaranteed f(x)+3 was increasing.  The question may have discriminated better or elicited 

responses more reflective of the students’ understanding of the ‘increasing’ property if it had 

considered ‘f(x)-3’ instead. The latter would have challenged the direct link between adding a 
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value and the concept of increasing, and required a more object-like consideration of the nature 

of this function. We would also label the axes in Question 5 in order to avoid confusion. 

Before modifying our concept inventory for future use, we would first like to evaluate it 

using think-aloud interviews, as other researchers (see for example Epstein 2013;  Carlson et al 

2010; O’Callaghan 1998) have done. This method of evaluation would allow us to delve deeper 

into the type of understanding required to attempt each of our questions and the reasoning 

behind the students’ choices of responses.  

Many universities already administer diagnostic tests to students in first-year 

mathematics modules and then provide support for those students who do not do well on these 

tests. The diagnostic tests usually focus on basic mathematical skills; however the mathematical 

community places high value on conceptual understanding and concept inventories could also 

be used as a diagnostic tool. Hestenes et al. (1992) suggest their Force Concept Inventory 

can be used thus to identify and classify misconceptions, with errors made by students 

being more informative than correct answers to the questions posed. Thus, they claim 

their inventory is particularly useful for teachers in raising their awareness of the 

misconceptions among their own students. As teachers, we gained important information 

from the responses of our students on our function concept inventory; the results showed us that 

our students’ understanding of the function concept was limited. This information has been used 

when redesigning our courses and in particular when designing learning activities. We are more 

aware that, since the concept of function is so fundamental to a Calculus course, it can be 

revisited many times in a module and the students can be given many different opportunities to 

develop their understanding of the concept (Meyer and Land 2003). Thus, the information from 

the concept inventory can give a teacher data on the areas where their students had most 

difficulty, and the teacher can then tailor the module appropriately.  

The Function Concept Inventory described here could also be used by researchers or 

researcher-teachers to evaluate the effects of different types of instruction in promoting 
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conceptual understanding and, in particular, the elements of understanding underlying the 

instrument’s design. O’Callaghan’s (1998) conceptual model for describing an understanding of 

functions was initially developed as part of a project to test whether students following a 

‘Computer-Intensive Algebra (CIA)’ curriculum would develop a richer understanding of 

functions that their counterparts following a ‘Teaching Algebra (TA)’ or more traditional 

curriculum. The test O’Callaghan developed to probe each of the competencies he had 

identified (modelling, interpreting, translating, reifying) was used to investigate whether CIA 

students were more competent than TA students when working with functions in each of these 

ways. Hestenes et al. (1992) also used the Force Concept Inventory to test the effectiveness of 

pedagogical techniques in both school and university settings. They claim they have abundant 

evidence that their inventory is a very accurate and reliable instrument for evaluating 

instruction. However, Caballero et al. (2012) point out that challenges arise when concept 

inventories are used to make comparative evaluations of curricular course reforms if core course 

content is affected by the reforms. 

 In particular, we were intrigued by Epstein (2013) reporting on results obtained on the 

CCI following the use of interactive engagement (IE) methods between pre- and post-

applications of their inventory.  Perhaps the teaching of O’Callaghan’s CIA curriculum would 

have been considered to include IE methods. It would be interesting to see if the use of IE 

methods similarly improved students responses to the Function Concept Inventory presented 

here. This is certainly an area which begs further research. 

Furthermore, the Function Concept Inventory may also be useful as a placement 

assessment in institutions in which there is a choice of precalculus and first calculus/analysis 

courses available to undergraduate students. Diagnostic tests have been used to date in Irish 

institutions in the placement of students (Burke, Mac an Bhaird and O’Shea 2012) but, 

depending on the programme of study followed by the students concerned there are cases where 

a concept inventory would be more appropriate.  
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