
Received: 6 January 2021 - Revised: 15 March 2021 - Accepted: 6 September 2021 - IET Software
DOI: 10.1049/sfw2.12047

OR I G INAL RE SEARCH PA PER

Applying virtual reality to teach the software development
process to novice software engineers

Ulas Gulec1,2 | Murat Yilmaz3 | Veysi Isler2,4 | Paul M. Clarke5

1Department of Software Engineering, TED
University, Ankara, Turkey

2Game and Simulation Group, Simovate
Information, Ankara, Turkey

3Department of Computer Engineering, Faculty of
Engineering, Gazi University, Ankara, Turkey

4Department of Computer Engineering, Hasan
Kalyoncu University, Gaziantep, Turkey

5School of Computing, Dublin City University,
Dublin, Ireland

Correspondence

Ulas Gulec, Department of Software Engineering,
TED University, Ankara, Turkey.
Email: ulas.gulec@tedu.edu.tr

Abstract
Software development is a complicated process that requires experienced human re-
sources to produce successful software products. Although this process needs experience
from the individuals, it is hard to provide this experience without encountering real in-
cidents during the software development process. To fill this gap, this study proposes a
Virtual Reality Based Software Development Framework (VR‐SODEF), which provides
an interactive virtual reality experience for individuals learning about the tasks of software
development starting from requirement analysis through software testing. In the VR‐
SODEF, the participant takes on the role of a novice software developer being
recruited into a virtual software development organisation who should work alongside
five virtual characters, played by artificial intelligence. This exclusive viewpoint draws
participants from the 2D separation of the classical experience and virtually into the
world of the software development itself. Participants experience the intense dramatic
elements created for simulation and confront the challenges of virtual software practi-
tioners in a somewhat uncompromising virtual simulation environment. To examine the
efficiency of the VR‐SODEF, it was tested on 32 computing students, with results
indicating that virtual reality can be an effective educational medium, especially for skills
that might traditionally be acquired through experience rather than traditional classroom‐
based teaching.

KEYWORD S
interactive learning environments, software development life cycle, software development process, software
engineering education, virtual reality

1 | INTRODUCTION

The software development sector, one of the most popular
workspaces nowadays, is a difficult sector in terms of pro-
ducing successful products even if the definition of software
seems easy [1]. According to the National Institute of Stan-
dards and Technology (NIST), the annual loss of unsuccessful
software projects to the US economy is about $ 59 Billion in
2002 [2]. When today's data is analysed, the total worldwide
financial loss of failed software in 2017 is around 1.7 trillion
dollars [3]. These numerical values indicate that software
companies waste their money trying to produce successful
software products [4]. In order to prevent such undesirable
situations, software practitioners are required to gain real‐life

practice since the most important factor, which makes soft-
ware products fail, is the lack of experience and knowledge of
the individuals who work in this area [5].

Although the training of software practitioners is an
important issue to increase the success rate of the completed
software projects, it is not an easy topic since the details of the
software development is generally considered to be a complex
task for individuals to be trained [6]. To overcome this argu-
ment, virtual reality (VR) provides a beneficial training envi-
ronment, which is close to the real environment for individuals
to gain experience without having actual risk [7]. There are
various VR applications that are developed for educational
purposes in different domains such as military [8], medical and
healthcare [9], psychology [10], sport [11] and so on. Hence,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

464 - IET Soft. 2021;15:464–483. wileyonlinelibrary.com/journal/sfw2

https://doi.org/10.1049/sfw2.12047
https://orcid.org/0000-0002-6084-3590
mailto:ulas.gulec@tedu.edu.tr
https://orcid.org/0000-0002-6084-3590
http://wileyonlinelibrary.com/journal/sfw2
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsfw2.12047&domain=pdf&date_stamp=2021-09-20

this study aims to train novice software engineers on the
software development process in a 3D virtual office environ-
ment that is similar to a real environment by eliminating the
limitations of the existing studies in the literature. To achieve
this aim, two complementary applications were developed to
produce a dynamic and useful training framework for the
novice software engineers. In addition, HTC Vive, which can
create a realistic perception on the participants for the virtual
environments, was used in order to visualise the 3D virtual
office environment. The proposed system was tested with 32
students who are currently studying at a department of com-
puter engineering, to answer the research questions of the
study:

RQ1: Can the proposed training environment
increase performance of students on software en-
gineering tasks (e.g. requirement capturing, cod-
ing, testing, etc.)?

RQ 2: Can the proposed training environment
motivate the students for exercising the tasks
related to the each phase of software development
life cycle (SDLC)?

The overall structure of this study is as follows: Section 2
details the studies that were developed to train the individuals
about the software development process. The following sec-
tion describes the research technique used in this study with
the reasons of selection. In addition, this section also gives the
information about the workflow of the proposed system and
the participants of this study. The next section describes the
system description by presenting the interfaces. Section 5
mentions how the developed system has been tested by the
participants and how the results obtained from the tests were
analysed by using statistical tests. In addition, the opinions of
the participants about the system were also illustrated in this
section. Finally, the last section gives a summary of the overall
study and details the conclusions reached.

2 | BACKGROUND AND RELATED
WORKS

Whereas once upon a time VR was considered to suffer from
usability issues [12] running the risk that students might be
unnecessarily exposed to information overload [13], the
application of VR is established as a medium for learning [14]
and VR has, furthermore, been shown to be effective for
teaching in both higher [15] and elementary [16] education.
Even though students may have to overcome the technical
aspect of acquaintance with VR technology, they nevertheless
report an overall positive experience [17] and improved per-
formance [18] from VR‐based learning. Indeed, recent publi-
cations suggest that an absence of technical familiarity with

VR‐related technology is also an inhibitor for some teachers
[19] and that VR applications should offer experimental sup-
port [20]. A further recent publication supports the case that
immersive VR‐based games are effective for knowledge de-
livery because they can be highly engaging, which promotes
improved cognitive learning [21]. Given these various findings
from related literature, we believe that VR‐based learning can
play an important role in software development project and
process‐related education.

As outlined in the position paper [22] associated with this
work, individuals in software development projects are
continually challenged with process adaptation [23], a chal-
lenge we suggest must be greatly increased for novice soft-
ware professionals. And while process‐based knowledge is
difficult to acquire other than through experience, we have
also seen that knowledge can also be lost of projects simply
through turnover of personnel, which it seems a particular
challenge in the Open‐Source Software Development domain
[24]. There are, furthermore, many different types of prac-
tices, with some of these practices being carried forward
from one software development approach to another as is the
case with agile software development incorporating many
pre‐existing practices/processes [25]. It has also been shown
that there are often different terms applied for the same
practice and even different practice terms have multiple
different meanings (instances of synonymy and polysemy),
[26, 27] giving rise to a particularly difficult challenge in
terms of education. This challenge is centred on the problem
understanding: if different terms are used in sometimes
confusing ways, how can educators assist trainees in under-
stand the underlying phenomena and concerns? We suggest
that this may only be resolvable through either actual expe-
rience or simulated learning. In studies in the literature, in-
dividuals benefit from the properties of 2D, card and board
games, some of them have provided a more active learning
concept to the individuals by developing 3D virtual envi-
ronments [28, 29].

In the first study, a card game was developed to increase
the experience levels of the individuals about software
development processes [30]. This game can be played with
multiple players and the role of each player is the project team
leader. In this game, tasks related to the project management
are given to the players and it is expected from them to
complete these tasks within the limits of both time and
money. The player who completes the tasks in the most
appropriate way to the time and money constraints wins the
game. The game was tested in order to understand its effi-
ciency. The results of the tests indicate that this card game can
be used as an educational tool in order to support traditional
education techniques.

In the other study, a simulation framework was developed
to help the individuals experience different software develop-
ment methodologies by enabling them to make decisions about
the issues related to project management as a project manager
or a team leader [31]. To complete this operation, the players
have to use the flowchart elements in this educational frame-
work. Therefore, it is expected that the players increase their

GULEC ET AL. - 465

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

decision‐making skills regarding the software development
process.

Another study has produced a 2D game to describe how
the requirements of a project should be determined [32]. This
game provides different roles to the players such as system
analyst, project manager, team leader or designer in order to
determine the requirements of the project based on the given
project definition. Players are expected to enhance their per-
sonal development by taking decisions about project manage-
ment according to their roles in the game. This game was also
tested with the students to understand its efficiency. According
to the test results, this game is a useful tool to increase
the knowledge levels of the individuals about software
management.

In a similar way, a 2D game, which contains the similar
game dynamics and elements to the classical tower‐defence
game, was developed to teach the tasks that occurred during
the maintenance phase of software projects [33]. In this game,
the players have the towers and they try to protect these towers
by finding and solving the bugs in the software projects. This
study has selected 18 students to understand the effect of the
game on the students. The findings show that this game can be
an alternative training tool that can be used to teach students
the basics of the maintenance phase of the SDLC.

In addition to the above‐mentioned 2D and card games,
there are also 3D virtual environments developed to educate
individuals about software engineering issues. An example
study was completed by Aydan et al. [34]. In this study, a 3D
virtual environment was designed to increase the knowledge
levels of the individuals about the basics of ISO/IEC
12207:1995. This game was supported by non‐player charac-
ters (NPCs) to inform the participants about their wrong
choices. This game was also tested with the students and the
test results illustrate that the knowledge level of the partici-
pants about the basics of ISO/IEC 12207:1995 was increased
by using this environment.

In another similar study developed in this context, the
Second Life virtual environment was used as an environment
where students and lecturers could interact with each other
[35]. In this environment, while both students and lecturers
represent themselves with virtual characters, students can ask
questions of their lecturers on software engineering. According
to the results obtained from this study, the students have
increased their knowledge levels about software engineering
because they felt more comfortable asking questions since they
hide their real identities by using virtual characters.

In another similar study, a 3D virtual environment was
designed to describe the procedure of the Scrum methodology
[36]. An example software project was integrated into the
system to show the steps of the Scrum methodology. It was
expected that the participants complete the steps of the Scrum
methodology based on the tasks given in the project. In total,
45 undergraduate students were selected to test the system in
order to measure the effect of the environment on the in-
dividuals. The results of this study show that this virtual
environment is a useful tool that can be used to explain the
flow of the Scrum methodology.

In the final study, Open Wonderland environment was
used as a distance learning tool to train the participants about
agile methodologies [37]. An example project, which is not
related to software engineering, was integrated into the system
and it was expected from the participants to increase their
knowledge levels about the properties of the agile methodol-
ogies such as user stories, features in user stories and team
collaboration while they were developing the project. The
findings of this study illustrate that although the system needs
significant improvements, it can be used for training in-
dividuals about agile methodologies.

When the existing studies in the literature were analysed in
detail, it was observed that these studies have some limitations
when they are used for educational purposes. These limitations
are as follows:

� Large disparity between the virtual world and the real
environment: In order for the virtual environments to be
considered successful, the designed environment must be
similar to the real environment [38]. Therefore, the learning
acceleration of the individuals can be increased more since
they feel themselves to be the real environment. Hence, this
situation brings real life experience to individuals without
actual risks. Although it is an essential issue for training
tools, the card and 2D games cannot provide this feature
since they do not have enough hardware and software
functions. Hence, this situation decreases the sense of
presence, which is the most significant factor that shows the
success of the designed environment [39]. 3D environments
can provide the sense of presence; however, the interaction
between the users and environment is limited in the existing
studies so that they did not measure their participants' level
of sense of presence.

� Focus of virtual world tasks is too narrow: Software is a
product obtained after several different phases in SDLC;
however, the existing studies aim to increase the partici-
pants' level of knowledge about the specific phases. None of
them can inform the users about the whole project devel-
opment process. As a result of this situation, the users
cannot deal with the problems occurred in each phase of
SDLC and cannot experience the project as it is expected.

� Insufficient numbers and variations of simulations:
Software developers in the sector have taken part in many
different projects throughout their careers. In this way, they
have a chance to increase their experience levels. Hence, the
fact that individuals take part in different projects in gaining
experience and solving the problems in those projects has a
very important role. Although it is an essential issue, the
existing studies have contained only one project as an
example test project. Moreover, some of them were not
related to software engineering and are not detailed projects
as in real life. Therefore, this case can be shown as an
important drawback of the existing system because analysing
only one project limits the development of individuals since
the requirements of real‐life projects are very different from
each other. Participants cannot face to different problems
occurring in the different types of projects.

466 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

� Absence of AI‐enabled non‐player characters: If in-
dividuals are expected to gain experience on a subject, the
frequent repetition on the related topic plays an important
role in achieving this situation [40]. Although repetition is a
critical factor that affects personal evolution, the platforms
designed in the above studies require multiple players to
experience the actions in the software development phases.
If a person cannot find other players, s/he will not use the
system. This is the main drawback of the existing systems
since they are not continuously available.

3 | METHODOLOGY

3.1 | Mechanism of the system

As previously mentioned, this study proposes a system to train
novice software engineers about the software development
process without having any actual risks. The aim is to increase
the level of knowledge and experience of the novice software
engineers about the software development process in an
environment similar to a real environment by eliminating the
limitations of the existing studies in the literature, which have
been developed for a similar purpose. To achieve this aim, two
complementary applications were developed in the scope of
VR‐SODEF. These applications are a desktop application
for generating project scenarios and a 3D virtual office
environment.

The purpose of the desktop application is to enable the
authorised people in companies to create different project
scenarios, which contain the whole project development pro-
cess including requirement analysis, design, implementation,
test and maintenance phases. For this purpose, this application
produces an Extensible Markup Language (XML) file that
consists of the whole entered information related to the
project scenario by creating an ontological meta‐language,
which can be understood by the individuals and computers.
The tasks that should be completed by the participants are
written inside of this file.

After producing the XML file, it is necessary to animate the
scenario written in the XML file in the virtual environment. In
order to accomplish this goal, the XML file is parsed by the
virtual environment at the beginning of the simulation. The
information obtained after parsing the XML file is stored in
the classes designed in the back‐end of the virtual environ-
ment. At this stage, the virtual office environment has the
ability to simulate the project scenario since it keeps all the
information about the software project in the XML file. The
participants can live the project scenario in the virtual of-
fice environment by using HTC Vive. The systematic workflow
of the study can be summarised as shown in Figure 1.

3.2 | Research methodology and
participants

In this study, a quantitative research approach supported by
validation interviews was used since this study contains the
properties of both qualitative and quantitative research
methodologies. For the quantitative part of the study, pre‐
test and post‐test were administered to the participants to
observe the progress of their knowledge about software
engineering concepts. Then, the numerical values obtained
from the tests were analysed by applying the statistical
methods in order to figure out whether there is a significant
difference between the results of pre‐test and post‐test. In
addition, Presence Questionnaire (PQ) and Immersive Ten-
dencies Questionnaire (ITQ), which are the most commonly
used questionnaires to measure the presence levels of the
individuals when they use the virtual system [41], were
organised to measure the level of sense of presence of the
participants. For the qualitative part of the study, a set of
semi‐structural interviews was organised with experts in the
software engineering topic before starting the study to get
their suggestions and opinions about the proposed system.
In addition, a set of semi‐structural interviews was also
organised with the participants after the training period to
learn their opinions about the system. In this way, both the

F I GURE 1 Workflow of the system

GULEC ET AL. - 467

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

qualitative and quantitative data were obtained at the end of
the study.

The proposed system was tested with 32 students, who
have provided the below criteria:

� The students should know C# programming language since
they develop an algorithm using C# programming language
in the implementation phase of the simulation.

� The students should not have taken a ‘Software Engineer-
ing’ course previously. The reason for this restriction is that
if a student has taken this course, we cannot distinguish how
much the student knows of the concept of software engi-
neering at the beginning of the study since they take this
course from different universities. In order to prevent biased
results, the students who have not taken, ‘Software Engi-
neering’ course, were selected.

These students were randomly separated into an experi-
mental group (N = 16) and a control group (N = 16). The
students in the control group did not use the virtual office
environment for the topics of software engineering. They
have studied these concepts from traditional resources such
as books, presentations and videos. The students in the other
group have just used the virtual office environment to in-
crease their knowledge levels about software development
process. They were not allowed to use any other resources
related to the software engineering concepts. The training
time lasted 6 weeks. Before the training period, a pre‐test was
administered with the 32 students in order to measure their
knowledge levels about software engineering. In this test, a
case study was given to the students and it was expected from
them to find the requirements of the project given in the case
study, to create a use‐case diagram of the project, to develop
an algorithm for the problem in the project, to find the errors
inside of a code block related to the project and to order the
tasks for maintenance operations of the project. The results
of this test were calculated; however, they were not shared
with the students. After six weeks, a post‐test was adminis-
tered with the students in order to observe the progress of
their knowledge about software engineering concepts. The
post‐test gave another case‐study to the students to complete
the same issues as in the pre‐test. After obtaining the results,
the statistical tests were applied to figure out whether there
exists a significant difference between the knowledge levels of
students in different groups about software engineering
concepts.

3.3 | Threats to validity

Each study in the literature may contain some threats to val-
idity that may affect the results of the study in a negative
manner [42]. These factors can also decrease the correctness
and trustworthiness of the studies. As in many other studies in
the literature, there may be some factors affecting the results of
the study. These threads can be classified in four different
categories as follows:

1. Construct Validity: Ability to measure the proposed idea
in a correct way.
• Qualitatively: To get the opinions of experts and par-
ticipants about the proposed system and compare these
opinions with the opinions of the researcher (i.e. valida-
tion interviews).

• Quantitatively: To measure the progress of the partici-
pants on the subject by applying tests (i.e. pre‐test and
post‐test).

2. Internal Validity: The research design should be internally
consistent.
• History effect: The participants may improve them-
selves about software engineering concepts by using
other resources before the training period.

• Testing effect: The participants may intentionally give
wrong answers to the questions asked in the pre and
post‐tests. In addition, the participants in the experi-
mental group may also study the software engineering
concepts from other resources and the participants in the
control group may not study as expected.

• Instrumentation effect: Any change in the system
during the training period.

3. External Validity: The results obtained from this study
should be directive for the researchers and should be
generalised for target population.
• A conceptual replication: A study develops a similar
training environment to teach the tasks related to each
phase of SDLC or uses same dynamics to increase the
learning process of the individuals.

4. Reliability: The proposed training environment should be
a beneficial tool for the individuals, especially for the stu-
dents, to study the tasks occurred in the software devel-
opment process by supporting the traditional techniques.

4 | DESIGN AND IMPLEMENTATION

As was mentioned in the previous section, two complementary
applications were developed in the scope of this study. These
applications are Scenario Generator and 3D Virtual Office
Environment.

The aim of these applications was to create and animate a
software project scenario, which contains the tasks related to
each phase of SDLC. Therefore, the novice software engineers
have a chance to increase their level of knowledge and expe-
rience by completing the tasks in each phase of SDLC.

4.1 | Scenario generator

This program enables to enter the information, tasks and items
that are related to the whole project development processes. It
can produce lots of different project scenarios that include the
whole project development process. In this way, ‘Missing
Whole Project Development Processes’ and ‘Limited Number
of Stories' limitations of the existing studies in the literature can
be eliminated.

468 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

When the program is opened, the main page appears on
the screen as shown in Figure 2. This page consists of six
different segments: ‘Project Information’, ‘Requirement
Analysis’, ‘Design’, ‘Implementation’, ‘Test’ and ‘Mainte-
nance’, respectively, since it is necessary to generate a software
project scenario that contains the several different assignments
related to each task of SDLC for participants to experience the
entire software development process.

In the first segment, the user should enter the project
definition into the related text‐box as shown in Figure 2. After
writing the project definition, the user should pass the second
segment in order to enter the requirements of the project. In
this page, there are two different categories that are ‘Real
Requirements’ and ‘Fake Requirements’ (see Figure 2). The
reason for having two different categories is to create a chal-
lenge for the novice software engineers that they find differ-
entiate correct requirements of the projects from the wrong
requirements. Thus, they have a chance to see their missing
points since the virtual environment has an ability to give
feedback to them about their wrong choices during the
simulation.

After recording the requirements of the project, the third
segment asks the user to enter both the actors and the func-
tionalities of the system as shown in Figure 3. In addition, the
user can also create the relationships between the actors and
the functionalities using this segment. With this property, the
novice software engineers can create use‐case diagrams of the
relevant project when they arrive at the design stage in
the virtual office environment.

Figure 3 illustrates the implementation segment of the
program. In this page, the user records the problem that is
expected from the novice software engineer to solve by

developing an algorithm in the virtual office environment.
Thanks to this phase, the novice software engineer's coding
ability can be measured since s/he should write C# code to
solve the question entered by using the scenario generator
program. This code is going to be automatically executed in the
virtual office environment. Hence, it is necessary to add the
inputs appropriate to the structure of the code and the outputs
obtained from those inputs into the scenario in order to un-
derstand whether the novice software engineer has written the
code correctly. For this reason, this page allows the user to
input the desired amount of input set in order to prevent the
user from guessing and writing the output directly without
writing code in the virtual office environment. As a result of
this page, the information entered in this step enable the virtual
office environment to execute the code written by the novice
software engineer and to understand whether the written code
is correct.

In the test phase of the software development process, it is
expected of the novice software engineers to perform a code
review in the virtual office environment. In order for the
participant to be able to perform a code review, the user must
add a code block with errors to the software development
scenario. The screen in Figure 3 is designed to allow this work
to be done. At this stage, there is a similar logic to the
requirement analysis phase. This means that the user can also
add an error that is not in the code. In this case, the novice
software engineer should choose and match the correct error
lines and definitions from the pool that is constituted both
correct and wrong errors in the virtual office environment.

For the final segment, which contains the fields related to
the maintenance operations of the project, the user inputs both
the definition and the order of the tasks, which should be

F I GURE 2 Screens of scenario generator

GULEC ET AL. - 469

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ordered by the novice software engineer in the virtual office
environment. A screen as shown in Figure 3 is designed for the
user to enter this information.

After entering all information about the whole software
project development process, an XML file is automatically
created if all necessary fields are filled. This file plays a critical
role to standardise the scenarios related to the software project
development process. The content of this file should be easily
understood by the individuals working in the field of software
development in order to be able to create a common language.
In addition, it also has to be understandable by the computer in
order to visualise the entered scenario in the virtual office
environment. To achieve these goals, an ontological meta‐
language was developed to create a common language for
the software project scenarios as a content of the XML file.
After producing the XML file, it is necessary to animate the

scenario written in the XML file in the virtual office environ-
ment. The next section will introduce the virtual office envi-
ronment in detail.

4.2 | 3D virtual office environment

The virtual office environment supported by HTC Vive was
designed to teach the basis of software engineering concepts to
novice software engineers. In this environment, they have a
chance to live the whole software development process
without taking any actual risks. Therefore, the novice software
engineers may increase both their knowledge and experience
levels about software engineering concepts.

To accomplish this aim, an input, which contains the tasks
related to the software project, is required. As was mentioned

F I GURE 3 Screens of scenario generator

470 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

in the previous section, this input is provided by the ‘Scenario
Generator’ program as an XML file, which contains a scenario
of a software project. Hence, it is necessary to read the in-
formation in this XML file in order to make the software
project live in the virtual office environment. For this reason,
the environment should read and parse the XML file to store
the information related to software project.

After parsing the XML file, the novice software engineer
starts the simulation as shown in Figure 4. As shown, the
novice software engineer stands at the entrance of the office.
In the upper left corner of the screen, there is a clock to show
the elapsed time in the virtual office environment while there is
a calendar to show the date in the right‐hand side of the screen.
The date was set up as June 1 at the beginning of the simu-
lation since the novice software engineer portrays the character
who is a new worker of the virtual company. In addition, the
time zone of the virtual office environment is adjusted to equal
an hour in virtual office environment to a minute in real life.
Hence, a working day in the virtual office lasts 9 min in real life.
After passing 9 min in real life, the second working day in the
virtual office will start with an update in the date.

As it can be easily seen from the above figure, there are five
different cubicles in the virtual office. Each cubicle represents
each phase of SDLC. The cubicles on the left‐hand side of the
screen are divided into two regions: the lower cubicle is for
the requirement analysis phase and the upper cubicle is for the
design phase. The cubicles on the right‐hand side of the screen
are designed as the places where tasks relating to imple-
mentation, test and maintenance phases are sequentially per-
formed from bottom to top. Each cubicle has a total of four
employees, one of whom works on the same project as the
virtual character played by the novice software engineer.
Hence, this virtual office environment has a total of 20 NPCs.
Five of them have a basic AI algorithm with case‐based
reasoning approach to guide the novice software engineer by
determining his/her progress in the environment.

The process of the project in a virtual office environment
begins when the novice software engineer goes to his/her
project partner in the first cubicle. After that, a dialogue box
opens as shown in Figure 5. In this box, a message containing

the tasks, which should be completed by the novice software
engineer, is illustrated. Once the novice software engineer re-
ceives the message from the NPC in this manner, s/he starts to
move in the environment to complete the given task. As it is
expected from the novice software engineer to perform the
requirement analysis at the first stage, the NPC asks the novice
software engineer whether s/he reads the project description
document; hence, the novice software engineer should first read
the project description document. To achieve this aim, s/he
should find the project file. For this reason, a flashing light is
added to the file to show the document in the virtual office
environment as shown in Figure 5. After finding the file, the
panel appears on the screen (see Figure 5) to enable the novice
software engineer to read the project definition. This screen
contains the definition of the project that is generated by using
scenario generation program. To increase the reality of the
virtual office environment, both file model used in real life and
paper texture as a background of the panel is added to the
screen since the novice software engineer reads the project
description from the papers inside the file. After reading the
project definition, the novice software engineer returns to his/
her team member to get a new task. The NPC understands that
the novice software engineer has read the project definition
document and tells the novice software engineer that s/he can
start the requirement analysis phase of the project. When the
novice software engineer starts the requirement analysis phase,
the panel in Figure 5 appears on the screen. This screen con-
tains two different sub‐panels, being left and right. In the left
panel, both the correct and the wrong requirements are listed
while some of the correct requirements are randomly selected
and listed in the right panel. In this phase, the novice software
engineer should find and transfer the correct requirements of
the project from the list of all requirements.

After finishing the requirement analysis phase, the NPC
informs the novice software engineer that this phase is over
and that s/he should go to the design phase. After the novice
software engineer gets this information, s/he goes to the NPC
responsible for the design phase as shown in Figure 6.

In the design phase, it is expected of the novice software
engineer to create a use‐case diagram of the project as an early

F I GURE 4 Starting screen of simulation

GULEC ET AL. - 471

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

design phase of the project [43, 44]. As was mentioned in the
previous section, the actors, functions and relations between
the actors and the functions of the project were determined via
using the scenario generation program. In the virtual office
environment, the novice software engineer should create the
correct relations between the actors and the functions. As
shown in Figure 6, both the actors and the functions are listed
in the drop‐down lists separately. In order to create the use‐
case diagram, the novice software engineer should select the
necessary actors and functions.

When the design phase is completed, the NPC respon-
sible for the design phase of the project warns the novice
software engineer that s/he should start the implementation
phase of the project. The novice software engineer who re-
ceives this warning goes to the NPC, who is in charge of this

phase, in order to start the implementation phase (Figure 7).
At this stage, the novice software engineer is expected to
write a code block with the C# programming language by
using the virtual keyboard on the system as a solution to a
problem related to the software project. In order for the
participant to write the code, the panel in Figure 7 appears. In
this panel, there is a label at the top of the panel, which in-
cludes the text of the question that should be solved by the
novice software engineer. In addition, there is a text‐box at
the centre of the panel that enables the novice software en-
gineer to write the C# code to solve the problem. In this
section, a compiler, which is capable of executing the codes
written in C# programming language, was also designed to
see whether the code written by the novice software engineers
is correct.

F I GURE 5 Screens of requirement analysis phase in the virtual office environment

F I GURE 6 Screens of design phase in the virtual office environment

472 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

When the implementation phase is completed, the NPC
responsible for the implementation phase of the project warns
the novice software engineer that s/he should start the test
phase of the project. The novice software engineer who re-
ceives this warning goes to the NPC, who is in charge of this
phase, in order to start the test phase (Figure 8). In this phase,
the NPC tells the novice software engineer that they have a
code block, which is required to be tested with the code‐
review technique since this technique plays a critical role in
the testing phase of SDLC [45, 46]. The novice software
engineer, who takes the mission from the NPC, starts to do
code review on the code, which is shown in Figure 8. This
panel is constituted by two different sub‐panels. In the left
sub‐panel, the code block that is entered by using the scenario
generating program and which should be tested by the novice
software engineer is displayed in a label. In the right sub‐
panel, there are two different drop‐down lists, which are
designed for the error line and definition, respectively. These
drop‐down lists include both correct and wrong errors. Thus,
the novice software engineer should find the correct ones and
also match them correctly. Hence, there are two challenges in
this phase.

When the test phase is completed, the NPC warns the
novice software engineer that s/he should start the mainte-
nance phase of the project. The novice software engineer who

receives this warning goes to the NPC, who is in charge of this
phase, in order to start the maintenance phase (Figure 9). The
NPC, who is responsible for the maintenance phase of the
project, congratulates the novice software engineer as s/he is in
the final stage of the project and tells the novice software
engineer his/her duties in this phase. In this phase, the novice
software engineer is expected to put the tasks added to the
system into the correct order. As shown in Figure 9, the tasks
are listed in the left of the panel. This structure is similar to the
structure of the requirement analysis phase. The novice soft-
ware engineer has to correctly order the tasks by selecting each
of them in this phase.

After finishing this phase, the NPC tells the novice soft-
ware engineer that the simulation is over. When the simulation
is over, the evaluation process will be started for the novice
software engineer. It is an important issue because the aim is to
increase the level of knowledge of the novice software engineer
about software development process. To do this, a file, which
consists of the true answers of the tasks and the time that is
spent by the novice software engineer in the each phase of
SDLC, is generated at the end of the simulation. The novice
software engineers have a chance to see where they made
mistakes, what the correct answers were and how much time
they spent to complete the task in each phase of SDLC
through the information written in the feedback file. In this

F I GURE 7 Screens of implementation phase in the virtual office environment

F I GURE 8 Screens of test phase in the virtual office environment

GULEC ET AL. - 473

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

way, their abilities, knowledge and experience levels can be
improved. In order to understand whether this system is useful
and beneficial for the novice software engineer, a set of tests
was organised with the novice software engineers. The next
section will introduce the applied tests and analysis of these
tests.

5 | ANALYSIS AND TEST RESULTS

5.1 | Pre‐test

At the beginning of the training period, a pre‐test was
administered to the students in order to determine their
knowledge levels of software engineering. In this test, the
students dealt with problems related to the sample project. The
definition of the project was given to the students and it was
requested from them to determine the requirements of the
system, to detect the actors and functionalities of the system by
drawing the use‐case diagram of the project, to develop an

algorithm to solve the problem related to the project scenario,
to make a code‐review of a code block developed for a
problem occurred in the project scenario and to order the tasks
revealed after delivering the project to the customer. Hence,
this system consists of 5 parts: ‘Requirement Analysis’,
‘Design’, ‘Implementation’, ‘Test’ and ‘Maintenance’.

The project scenario in the pre‐test was taken from the
exam organised in the ‘Software Engineering’ course offered
at the Department of Computer Engineering, Çankaya Uni-
versity in order to build a proper assessment tool. After
determining the content of the pre‐test, 32 students, who are
currently studying at computer engineering departments,
participated in this exam. As was discussed in the previous
part of this study, the students were equally divided into 2
groups, one is the control group and the other one is the
experimental group. The pre‐test results of both groups are
shown in Figure 10 for experimental group and Figure 11 for
control group. When the average scores by the members in
both groups were calculated in all parts of the test, the results
are shown in Table 1.

F I GURE 9 Screens of maintenance phase in the virtual office environment

F I GURE 1 0 Total scores of the students for experimental group in pre‐ and post‐test

474 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

When the quantitative data was analysed, some important
points appeared. The first important point is that the average
scores of the participants of both groups in ‘Requirement
Analysis’ and ‘Design’ parts are less than the participants’
average scores in the other parts. Thus, the participants have
some trouble when they identify the requirements of the sys-
tem and find the actors and functionalities of the system. For
the ‘Implementation’ and ‘Test’ parts, they already know the
C# programming language so they did not face the problems
they had in the first two phases of SDLC. For the last part,
which is the ‘Maintenance’ phase, the participants have showed
an average success.

The second important point is that although the total
average score of the participants in the experimental groups is
little bit higher than the total average score of the participants
in the control group, the average scores of the participants in
both groups are very close to each other in all parts of the
exam. This means that the knowledge levels of the students in
both groups about the software development process are
similar at the beginning of the training program.

The last important point is the number of successful
students in the pre‐test. According to the grading policy
applied at the courses given in general, at least 60 points have
to be collected to pass the course. When the results of the pre‐
test are analysed by taking this criterion into consideration,
there were 2 students who achieved the grade to pass this test
in the experimental group as shown in Figure 10, and 1 stu-
dent in the control group as shown in Figure 11. In total, the
number of students, who could pass the test, is 3 out of 32
students.

5.2 | Post‐test

At the end of the training period, a post‐test was administered
to the selected group of students in order to determine the
participants' progress in their knowledge about software en-
gineering. In this test, the students dealt with the problems
related to the sample project as they did in the pre‐test.
Although the project scenario given in the post‐test is different
from the project scenario given in the pre‐test, the structural
content of the tests are the same. In other words, in the post‐
test, participants are expected to find solutions to the problems
they encounter in all the software development processes
related to a project scenario.

The project scenario in the post‐test was also taken from
the exam organised in the ‘Software Engineering’ course
offered at the Department of Computer Engineering, Çankaya
University in order to provide consistency between the tests
since the contents of the exams prepared for the ‘Software
Engineering’ course are periodically controlled by the Asso-
ciation for Evaluation and Accreditation of Engineering
Programs (MUDEK). After determining the content of the
post‐test, it was organised with 32 students selected for the
training programs as experimental (16) and control groups
(16). The post‐test results of both groups are shown in
Figure 10 for the experimental group and Figure 11 for the
control group. The average scores by the members in both
groups were calculated in all parts of the test and the results
are shown in Table 2.

When the post‐test results are examined using the same
process as in the pre‐test, some important results arise.

F I GURE 1 1 Total scores of the students for control group in pre‐ and post‐test

TABLE 1 Average scores of both
groups for all parts in pre‐test Group Req. analysis Design Imp. Test Maintenance Total

Experimental group 3.1 0.5 10.2 11.1 7.4 32.4

Control group 2.9 0.1 9.6 10.2 7.9 30.6

GULEC ET AL. - 475

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The first important point is that the average scores of the
students in the ‘Requirements Analysis’ and ‘Design’ phases,
which are missing in the pre‐test, have significantly increased
in the post‐test. The grades of the students in the experi-
mental group increased more than the grades of the students
in the control group. In addition, the average scores in
other parts of the post‐test are higher than the scores ob-
tained in the pre‐test. This means that the training period
was beneficial for the participants, especially for the students
who used the virtual office environment, as they have
dramatically increased their abilities in software development
process.

The second important point of this analysis appears when
the results of the post‐test are compared on a group basis. This
examination illustrates that the average scores of the experi-
mental group in all parts of the post‐test, except ‘Maintenance’
phase, are higher than the average scores of the control group.
It means that the students in the experimental group had a
more successful education period than the students in the
control group.

The last important point is the number of successful stu-
dents in the post‐test. As was indicated in the previous section,
the students have to get at least 60 points out of 100 in order to
pass the course. When the students' numerical values are
examined in the post‐test, there were seven students who
provided the minimum criterion that is required to be suc-
cessful in the exam from the experimental group of 16 stu-
dents, as shown in Figure 4 and 10 students, who have passed
the test, in the control group out of 16 students, as illustrated
in Figure 11. In total, the number of students who could pass
the test is 11 out of 32 students.

5.3 | Comparison between pre‐test and post‐
test results

When the results obtained from both pre‐test and post‐test are
analysed, it is easily observed that there are some differences
between these results. The first difference is that the number of
successful students in the post‐test is higher than the number
of successful students in the pre‐test. In the pre‐test, a total of
3 students, 2 from the experimental group and 1 from the
control group, received the grade to pass the test. In the post‐
test, this number reached 11 students, including seven from the
experimental group and four from the control group. These
numerical values show that both training methods are benefi-
cial to improve the level of knowledge of the participants since
the number of successful students in the post‐test for each
group is increased with respect to the number of successful
students in the pre‐test. However, since the number of suc-
cessful students in the experimental group is higher than the
control group, it is seen that the virtual office environment is
better than traditional methods. Another difference is that the
average scores of the participants in all parts of the post‐test is
higher than the participants' average scores in all parts of the
pre‐test as shown in Figure 12. This observation also supports
the idea that both training methods are useful for individuals.
However, the important finding is that the average scores of
the students in the experimental group are higher than the
average scores of the students in the control group in all parts
of the post‐test except the ‘Maintenance’ part. This means that
the students who were trained with the virtual office envi-
ronment have increased their knowledge levels more than the
students, who have studied the software engineering concepts

TABLE 2 Average scores of both groups for all parts in post‐test

Group Req. analysis Design Imp. Test Maintenance Total

Experimental group 9.8 10.6 13.3 15.3 8.4 57.1

Control group 8.5 6.4 10.6 12.1 10.8 48.4

F I GURE 1 2 The difference between pre‐test and post‐test results of both groups

476 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

by using traditional methods. Hence, our training environment
is more beneficial than the traditional methods.

In order to prove this claim statistically, two sample t-tests
have been used since the groups were randomly constituted.
However, the hypothesis of the study should be identified
before calculating the test statistic. This study states the null
hypothesis as the difference between the population mean of
the experimental and control groups is equal to each other.
Hence, the alternative hypothesis indicates that the population
mean of the experimental group is greater than the population
mean of the control group.

After defining the hypothesis of the study, the value of the
test statistic should be calculated at first in order to decide
which hypothesis will be accepted. To do this operation, the
numerical data, which represents the differences between pre‐
test and post‐test scores of both groups (see Table 3), have
been entered to Minitab in order to figure out whether there is
a significant difference between the groups. According to the
results obtained from Minitab, when the value of significance
level (α) was selected as 0.05 and assuming the variances of the
groups as equal to each other, the value of test statistic (T) is
2.36 and ‘p’ value is 0.03. For the critical value (t), t‐Table plays
a critical role to calculate t. Hence, according to t‐Table, this
value is equal to 2.04 when the number of population was
selected as 30 (n1 + n2 − 2).

The numerical data obtained from the t-test provide
important findings to prove whether the study was successful or
not in a statistical way. There are two different ways to under-
stand which of the hypotheses will be accepted by using this
numerical data. In the first way, the calculated ‘p’ value, which is
equal to 0.03, indicates that the null hypothesis has to be

rejected since the value of ‘p’ is smaller than 0.05. In such cases,
the statistic states to reject the null hypothesis. In the second
way, our test statistic value (T), which is calculated as 2.36, is
greater than the critical value (t), which is equal to 2.04 with
respect to the t‐Table. In such cases, the statistic also states to
reject the null hypothesis. As a result of this statistical analysis,
we accept the alternative hypothesis by rejecting the null hy-
pothesis within a 99.5% confidence interval. This means that
the population mean of the differences between pre‐test and
post‐test of the experimental group is greater the population
mean of the differences between pre‐test and post‐test of the
control group. Thus, according to the statistical results, we can
say that the members of the experimental group increase their
knowledge levels more than the members of the control group.

5.4 | PQ and ITQ

The sense of presence is one of the critical factors to establish
successful virtual environments [47]. In order to provide this
sense to the participants, the designed virtual environments
should be close to the real environments. As a result, the vir-
tual environments can be considered a successful tool. For this
reason, it is important to measure the participants' level of
sense of presence after using the virtual environment in order
to detect whether the virtual environment is successful.

PQ and ITQ are the most popular questionnaires to
measure both the participants' immersion levels and how much
the individual tends to be immersed [41]. Hence, this study has
benefited from both PQ and ITQ. Before applying these
questionnaires, items 23 and 24 in PQ, which are unrelated to
our study, were extracted from the PQ since our system does
not include any haptic mechanism; hence, it is not meaningful
to measure these questions.

Before the training program, ITQ was organised to un-
derstand how much the participants tend to be immersed. In
this questionnaire, the participants have answered 18 questions.
According to the question content, they rated each question at
a value between 1 and 7 to indicate how much the problem was
appropriate for them. The highest score that can be obtained
from this test is 126. After calculating the score of each
participant, the results are obtained as shown in Figure 13.

When the scores illustrated in Figure 13 are evaluated over
100, there are four students who tend to be immersed by 90%
and above; one student who tends to be immersed between 80%
and 90%; eight students who tend to be immersed between 70%
and 80% and three students who tend to be immersed below
70%. This means that the participants tend to be immersed at an
average of 74.55%. Actually, this result was expected because the
participants' age range is between 20 and 22 so they can be easily
affected by films, videos, games or any other technological tools
since they grow up with technological devices.

During the training period, PQ was organised with the
students after each VR session in order to measure their sense
of presence. In this questionnaire, the participants have
answered 22 questions. According to the question content,
they rated each question at a value between 1 and 7 to indicate

TABLE 3 The differences between pre‐test and post‐test results

Experimental group Control group

38 28

16 18

26 24

28 32

24 16

18 10

20 20

16 4

44 16

22 22

38 8

24 22

30 8

18 24

18 22

16 10

GULEC ET AL. - 477

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

their level of immersion based on the properties and func-
tionalities of the virtual environment. The highest score that
can be obtained from this test is 154. After calculating the
score of each participant in each VR session, the results are
obtained as shown in Figure 14.

When the values of PQ are examined, some important
points are obtained from this analysis. First of all, all students
except one have felt themselves at least 70% included in the
virtual environment. Six students felt a strong immersion sense
to our virtual office environment at 85% and above. The
second important point is that although the PQ scores ob-
tained from the last session is less than the PQ scores obtained
from the first session, the difference between these scores is
close to each other. This means that even when the system is
used frequently by the participants, the effect of the system on
them remains almost the same. Lastly, the average PQ score of
the participants in whole training period is 77.06%. This score
shows that the participants have likened the virtual office
environment to the real office environment about 77.06%. As
a conclusion, our virtual office environment has the ability to
create an atmosphere similar to the real office environment
atmosphere so that the participants can feel like they are in the
real office environment. In this way, the participants' level of
knowledge and experience can be increased more since the
sense of presence is the most important factor that shows the
success of the virtual environments when they are used for
educational purposes.

5.5 | Validation interviews

The quantitative part of the study was completed by
administrating pre‐test and post‐test, and organising PQ and
ITQ with the participants. The numerical values obtained
from these tests were also analysed by applying two sample t-
tests in order to get valid results in terms of statistic. As was

mentioned in the Section 3, ‘a quantitative research
approach supported by validation interviews’ was used for
the research methodology of the study; hence, it was
necessary to complete the qualitative part of the study. To
achieve this issue, a set of semi‐structural interviews was
organised with the experts in order to obtain their comments
about the system. The summary of these interviews is as
follows:

� ‘The fact that the practical knowledge given in the course
can be tested in an environment close to real life is a very
positive feature in terms of the students' development’.

� ‘Thanks to this environment, we can practice the software
development processes of different projects. This tool may be
a supportive training tool to the internships and graduate
projects since we have a chance to experience the software
development processes during the tasks occurred in these
activities’.

� ‘The students can increase their experience level by working
in many different project scenarios’.

� ‘As projects developed in the market create risks for in-
dividuals, there is pressure on people during project devel-
opment. Such a platform that aims to educate people
without having this pressure will play a positive role in the
development of individuals’.

In addition to these comments, a set of semi‐structural
interviews was also organised with the participants in order
to learn their opinions about the system. The summary of
these interviews are as follows:

� ‘That was an amazing experience for me. I am a student
and I have worked as an intern last year. I was so shy to ask
people what should I do who shall I talk with etc. Most
probably, I will experience the same emotions during the
first month of my job. In my opinion, these programs can

F I GURE 1 3 ITQ scores of the participants

478 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

help us get used to work. Sometimes it is hard to ask people
so many questions. Thanks to this application, we can
complete the tasks with no need to being annoying’.

� ‘I have some problems communicating with other students.
I'm sure that the same situation will occur when I start to
work. If the companies use this program in the orientation
period by demonstrating the current workers and their
duties, this will be so helpful for me since there is no need to
ask anyone for help’.

� ‘Before working in real life, I gained the confidence to
experience the fields that I will work in the future. I know
this is virtual, but I didn't feel that much when I was using
it. I think that if we could move instead of using a keyboard
to move in a virtual office environment, the realism of the
system would increase’.

� ‘Learning some things in real life can sometimes create
unwanted results. This training platform has enabled us
to gain experience about software projects without
experiencing all these problems. It is a successful
training tool because it provides opportunities to use
this system frequently without the need for space for
training and trainers. The warnings given about the
errors are very important in terms of personal
development’.

6 | CONCLUSIONS

6.1 | Validation of the proposed training
environment

The potential threats of this study, which may affect the val-
idity of the study, were identified in Section 3. In order to deal
with these threats, some procedures were performed as
follows:

� Construct Validity ⇒ Qualitative Measure: A set of
semi‐structural interviews was organised by both the lec-
turers and the students.

� Construct Validity ⇒ Quantitative Measure: A pre‐test
and a post‐test were administered with the students to
determine their progress levels during the training period. In
addition, PQ and ITQ were also applied to understand the
success of VR‐SODEF.

� Internal Validity ⇒ History Effect: A pre‐test was
administered with the students for both groups at the
beginning of the study in order to determine their knowledge
levels before starting the training period. Therefore, the his-
tory of the students was eliminated since their knowledge
levels were almost the same at the beginning of the study.

� Internal Validity ⇒ Testing Effect: In order to eliminate
this threat, the first three students in both tests were given a
gift. Therefore, the students tried to give correct answers to
the questions in order to be among the first three students in
the tests. In addition, the students in the control group were
asked how many hours they spent to study software engi-
neering topics in a week. They have indicated that they have
studied the software engineering concepts for an average of
78 min per week. Hence, these students spent as much time
as the students in the experimental group to study software
engineering subjects.

� Internal Validity ⇒ Instrumentation Effect: refers any
change in the system during the training period. The
designed system did not change during the training
period.

� External Validity ⇒ A Conceptual Replication: This
study is based on the literature that has been rigorously
reviewed to assess potential needs of a virtual training
platform. As a result, some important and novel features
were identified. After conducting this exploration, we have
added a set of features to our training platform to

F I GURE 1 4 PQ scores of the participants

GULEC ET AL. - 479

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

develop more efficient and immersive training environ-
ment for the individuals. Therefore, a novel platform was
designed to teach the tasks related to software develop-
ment process.

� Reliability: The students have tested the training platform.
During the training period, they have participated the
necessary tests that show the success of the designed plat-
form. In order to provide the reliability of the study, valid
statistical tests applied to the results obtained from these
tests. In addition, a set of semi‐structural interviews was also
conducted with the lecturers to obtain their thoughts about
our system as an expert point of view.

6.2 | Limitations

Although the potential threats, which may affect the results of
this study in a negative manner, were eliminated, one of them
cannot be eliminated since it depends on the declaration of
individuals. Hence, this threat may limit the validity of the
study. It can be listed as follows:

� The participants in the experimental group may also study
the software engineering concepts from other resources.

To deal with this threat, the students in the experimental
group were informed several times not to review the software
engineering topics from other resources. They have confirmed
that they did not study these concepts from other resources;
however, they may have studied.

In addition to above limitation, while the codified
practices are consistent with established best practice, it is
nevertheless the case that in making decisions regarding
software projects, we are necessarily dealing with non‐
deterministic systems, which seem to be amethodical in
nature [48] and which in fact may be so complex as to be
an instance of a complex adaptive system [23]. Therefore,
there is not likely to be any single absolutely and universally
acceptable ‘correct’ action for each and every scenario. To
some extent, in managing complex software projects, we are
dealing with some amount of uncertainty, and the logic‐
based reasoning implementation, which we have provided,
assists in overcoming this challenge through the use of
logical reasoning. We suggest that it is through the intro-
duction of various logic‐based alternative pathways—such as
in our virtual environment—that the broader complexity of
the software development process can be explored this
enabling improved trainee outcomes.

6.3 | Reviewing the research questions

In this section, the research questions from Section 1 are
discussed in the light of the results obtained from the user
experiences.

RQ 1: Can the proposed training environment
increase performance of students on software en-
gineering tasks (e.g. requirement capturing, cod-
ing, testing etc.)?

In order to response to the first research question, soft-
ware engineering discipline requires self‐directed training
where VR‐based environment is an opportunity to get trained
regarding best practices without having hands‐on experience
from the field. We found that using VR simulation for
training of software engineering tasks significantly improves
skills of software engineering trainees. This confirms that VR
simulation training is a useful adjunct to conventional
training. In order to validate this claim, the proposed system
was tested with the students. The students were randomly
divided into two groups, which are control and experimental
groups. The students in the control group studied the soft-
ware engineering concepts from traditional resources while
the students in the experimental group used our training
platform for these topics. In order to understand the stu-
dents' progress, a pre‐test and a post‐test were administered
with the students. The results of these tests indicate that the
students in the experimental group have increased their
knowledge levels more than the students in the control
group.

In addition, the students cannot find the opportunity to
take place in the real‐life projects frequently. However, the
students had an opportunity to practice the tasks occurred in
different types of software projects by using this training
platform since this platform has the ability to produce and
animate unlimited number of project scenarios. In addition,
artificial intelligent NPCs also help the students about the
tasks of the software development process. Therefore, the
students could repeat the concepts in the field of software
engineering without having real‐life constraints. As a result,
this environment provided an accelerated learning mechanism
for them and their knowledge levels were increased. In addi-
tion, the lecturers also indicated that they have a chance to
transfer the tacit knowledge to explicit knowledge during the
interviews.

In such training environments, the realism of the virtual
environments is one of the most important aspects that
highlights the success of designed environments. In general,
this realism is directly proportional to the feeling of being
there. For this reason, it is necessary to measure the sense of
presence of the participants. To achieve this purpose, PQ was
organised with the students in the experimental group. Ac-
cording to the results obtained from PQ, the students have felt
a strong immersion. This means that our 3D virtual office
environment is similar to real office environment. Hence, the
developed system can be evaluated as successful.

480 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

RQ 2: Can the proposed training environment
motivate the students for exercising the tasks
related to the each phase of SDLC?

Motivation plays a key role in the success of the individuals
on a topic [49]. Hence, training environments should motivate
the participants. In this study, the students have used our
virtual office environment six times. After each VR session,
PQ was administered with them. In here, the important point
is that the difference between the score of the first PQ and the
score of the last PQ is almost equal for each student in the
experimental group. This shows that our training platform has
the ability to motivate the students since both their PQ scores
did not decrease and their knowledge levels increased.

6.4 | Discussion and conclusion

This study proposes a training environment for novice soft-
ware engineers in order to increase both their level of
knowledge and experience in a similar environment to the real
environment, and with the benefit of simulation‐led learning
rather than making mistakes in a live operational environment.
For this purpose, a VR Based Software Development Frame-
work (VR‐SODEF), which contains HTC Vive, was produced.
This VR‐SODEF comprised of a run time configurable virtual
office environment for use in teaching the software develop-
ment process to individuals intending to work in this area.
Prior to developing the VR‐SODEF, a literature review was
conducted to establish the background of the study, to identify
the problems that lead to software project failure or non‐
completion, and to find related studies, which report on
earlier attempts to reduce this problem. Firstly, the literature
survey provided definitions for software, software develop-
ment and software engineering. After defining these concepts,
the reasons why it is necessary to develop software projects
within certain logical frameworks was explored so as to show
the importance of software development methodologies. The
background exploration contributed an explanation as to why
there are several different software development methodolo-
gies, each presenting with an assortment of benefits and
limitations. And while different software development meth-
odologies exist and can produce successful software products,
it was shown in the literature that most software projects do
not fully satisfy customer requirements and expectations, and
where project failures arise, negative impacts arise for various
parties: companies, individuals and even national governments.
It was further found that one of the most prevalent reasons for
software project failure is the lack of knowledge and experi-
ence of the individuals working on software development
projects. The final stage of the literature survey involved a
detailed analysis of works focused on teaching individuals
about software engineering concepts.

After analysing the studies in the literature, it was deter-
mined that there are four main limitations related to earlier
reported studies (i.e. where VR has been utilised for educa-
tional purposes). These are as follows:

� Large disparity between the virtual world and the real
environment

� Focus of virtual world tasks is too narrow
� Insufficient numbers and variations of simulations
� Absence of AI‐enabled non‐player characters

The aim of this study was to develop an effective VR‐based
software development process training tool, which addresses the
limitations of earlier related works. To achieve this aim, 2
different applications were developed in the scope of this study:
A Scenario Generator and a Virtual Office Environment. These
two applications combined to extend the effectiveness of VR‐
based software process education beyond previous works, spe-
cifically addressing identified limitations in earlier efforts in this
domain. In terms of the disparity between the virtual world and
the real environment, the 3Dvirtual office environment utilised a
head‐mounted display that produces an interactive training
environment, which is similar to the real environment. In this
environment, trainees can interact with virtual workers, who are
NPCs working in the same company, and this has been shown to
be useful in learning their role and mission on the software
project. In addition, the participants can also interact with the
elements in the virtual office environment such as accessing and
reading the project definition document. This provides the
participants with the opportunity to expose themselves to an
office‐like environment and learn to overcome project issues
thorough repeated experience. The perceived effect for trainee
participants was measured using establish state‐of‐the‐art
interviewing techniques for simulated presence evaluation (a
PQ and an ITQ).

Steps were also take to address the issue in relation to the
focus of virtual world tasks being too narrow through the
implementation of the ‘Virtual Office Environment’ and
‘Scenario Generator’. Specifically, the Scenario Generator
program has the ability to produce an XML file, which con-
tains the missions related to the each phase of SDLC, which is
achieved through the construction of an ontological meta‐
language. Using this program as a virtual project manager or
the team leader, trainees can simulate involvement in every
phase of the software development process. The Virtual Office
Environment application parses the XML file produced by the
Scenario Generator, thereby bringing the scenario to life.
Hence, the participant can experience the project scenario
generated by the authorised person of the company via the
virtual office environment. This XML‐based scenario config-
uration is both flexible and easily extensible. This extensibility
permits the introduction of a wide range of scenarios as desired
by the program administrator/educator/trainer without the
need to change existing program code or introduce new
application code, thereby resolving the issue related to insuf-
ficiency in numbers or variations of simulations that was
observed in previous related implementations.

GULEC ET AL. - 481

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

OurVirtual Office Environment also includes 20 non‐player
characters (NPCs) that are controlled by cased‐based reasoning
logic. These NPCs may assign training/education missions to
trainees, and provide automated feedback to the participants
concerning their choices. Five of the NPCs have been seeded
with extensive information on correct/recommended actions
based on existing best practices, thereby providing the partici-
pants with virtual colleagues from which they can obtain
appropriate and important experienced‐based knowledge.

As can be seen, our training framework does not just
develop a virtual learning environment, it does so by system-
atically improving upon the limitations noted in previously re-
ported attempts. Different testing methods were organised in
order to evaluate our training platform achieves and 32 stu-
dents, currently studying at the Computer Engineering
Department, participated in formal user testing. The students
were randomly divided into experimental and control groups,
with members of the experimental group having access to the
software engineering training platform (but not to any other
learning resources). Control group members were only allowed
to use traditional resources such as books, videos or pre-
sentations. Tests were administered prior to and immediately
following the training period, so as to establish the effectiveness
of both training strategies. No significant difference between
the knowledge levels of both groups was observed at prior to
training commencement. However, following completion of
the training program, software engineering knowledge levels
witnessed a dramatic increase in both groups, with the experi-
mental group demonstrating the best learning outcomes. This,
we suggest, supports the case for further development of virtual
learning platforms, though we further emphasise that it may be
of significant importance to address the four limitations that we
have identified from earlier works.

To further examine the effectiveness of the virtual training
environment, a set of semi‐structured interviews were also
organised with the participants; the results from which indicate
that the platform is perceived as being a valuable training tool.
As a further measure of the effectiveness of the virtual training
environment, PQ and ITQ were conducted; the results from
which indicate that the participants felt that the virtual envi-
ronment offered a 77% fit when compared with expectations
of a real office atmosphere. Thus, we consider a significant
success as virtual environments are merely virtual and, there-
fore, cannot presently be expected to provide a 100% fit with a
real‐world setting. As a conclusion, the findings of this study
demonstrate that our VR training platform can be efficiently
used in the training of participants about software engineering
concepts; moreover, VR can be more effective than traditional
training techniques in matters, which typically require experi-
ence for knowledge acquisition. For future work, it is planned
to include software practitioners who are currently working in
the software companies into the virtual environment to figure
out the efficiency of the system on the experienced personnel.

DATA AVAILABILITY STATEMENT
Data available on request from the authors.

ORCID
Ulas Gulec https://orcid.org/0000-0002-6084-3590

REFERENCES
1. McConnell, S.: Who needs software engineering? IEEE Softw. 18(1), 5–8

(2001)
2. Tassey, G.: reportThe Economic Impacts of Inadequate Infrastructure

for Software Testing, Tech. rep. National Institute of Standards and
Technology (2002)

3. Platz,W.: SoftwareTestingTools forContinuousTestingWebpage. https://
www.tricentis.com/wp‐content/uploads/2018/01/20180119_Software‐
Fails‐Watch_Small_Web.pdf (2018). Accessed 14 Oct 2018

4. Gulec, U., Yilmaz, M., Isler, V.: A literature survey: is it necessary to
develop a new software development methodology for virtual reality
projects? J. Univers. Comput. Sci. 23(8), 725–754 (2017)

5. Ceschi, M., et al.: Project management in plan‐based and agile companies.
IEEE Softw. 22(3), 21–27 (2005)

6. Clarke, P., O'Connor, R.V., Leavy, B.: A complexity theory viewpoint on
the software development process and situational context. In: Pro-
ceedings of the International Conference on Software and Systems
Process, pp. 86–90. ACM (2016)

7. Patle, D.S., et al.: Operator training simulators in virtual reality envi-
ronment for process operators: a review. Virtual Real, 1–19 (2018)

8. Bhagat, K.K., Liou, W.‐K., Chang, C.‐Y.: A cost‐effective interactive 3D
virtual reality system applied to military live firing training. Virtual Real.
20(2), 127–140 (2016)

9. Huang, H.‐M., Liaw, S.‐S., Lai, C.‐M.: Exploring learner acceptance of
the use of virtual reality in medical education: a case study of desktop and
projection‐based display systems. Interact Learn. Environ. 24(1), 3–19
(2016)

10. Nazligul, M.D., et al.: Interactive three‐dimensional virtual environment
to reduce the public speaking anxiety levels of novice software engineers.
IET Softw. 13(2), 152–158 (2018)

11. Stinson, C., Bowman, D.A.: Feasibility of training athletes for high‐
pressure situations using virtual reality. IEEE Trans. Visual Comput.
Graph. 20(4), 606–615 (2014)

12. Virvou, M., Katsionis, G.: On the usability and likeability of virtual reality
games for education: the case of VR‐engage. Comput. Educ. 50(1),
154–178 (2008)

13. Wu, H.‐K., et al.: Current status, opportunities and challenges of
augmented reality in education. Comput. Educ. 62, 41–49 (2013)

14. Huang, H.‐M., Rauch, U., Liaw, S.‐S.: Investigating learners attitudes
toward virtual reality learning environments: based on a constructivist
approach. Comput. Educ. 55(3), 1171–1182 (2010)

15. Merchant, Z., et al.: Effectiveness of virtual reality‐based instruction on
students' learning outcomes in k‐12 and higher education: a meta‐
analysis. Comput. Educ. 70, 29–40 (2014)

16. Blume, F., et al.: Do students learn better when seated close to the
teacher? A virtual classroom study considering individual levels of inat-
tention and hyperactivity‐impulsivity. Learn. Instr. 61, 138–147 (2019)

17. Domingo, J.R., Bradley, E.G.: Education student perceptions of virtual
reality as a learning tool. J. Educ. Technol. Syst. 46(3), 329–342 (2018)

18. Larmuseau, C., et al.: The relationship between acceptance, actual use of
a virtual learning environment and performance: an ecological approach.
J. Comput. Educ. 5(1), 95–111 (2018)

19. Pellas, N., et al.: Augmenting the learning experience in primary and
secondary school education: a systematic review of recent trends in
augmented reality game‐based learning. Virtual Real, 1–18 (2018)

20. Ibáñez, M.‐B., Delgado‐Kloos, C.: Augmented reality for stem learning: a
systematic review. Comput. Educ. 123, 109–123 (2018)

21. Feng, Z., et al.: Immersive virtual reality serious games for evacuation
training and research: a systematic literature review. Comput. Educ. 127,
252–266 (2018)

22. Gulec, U., et al.: Adopting virtual reality as a medium for software
development process education. In: Proceedings of the 2018

482 - GULEC ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6084-3590
https://orcid.org/0000-0002-6084-3590
https://www.tricentis.com/wp-content/uploads/2018/01/20180119_Software-Fails-Watch_Small_Web.pdf
https://www.tricentis.com/wp-content/uploads/2018/01/20180119_Software-Fails-Watch_Small_Web.pdf
https://www.tricentis.com/wp-content/uploads/2018/01/20180119_Software-Fails-Watch_Small_Web.pdf
https://orcid.org/0000-0002-6084-3590

International Conference on Software and System Process, pp. 71–75.
ACM (2018)

23. Clarke, P., et al.: Exploring the relationship between software process
adaptive capability and organisational performance. IEEE Trans. Softw.
Eng. 41(12), 1169–1183 (2015)

24. Rashid, M., Clarke, P.M., O'Connor, R.V.: A systematic examination of
knowledge loss in open source software projects. Int J. Inf. Manag. 46,
104–123 (2019)

25. Clarke, P., O'Connor, R.V., Yilmaz, M.: In search of the origins and
enduring impact of agile software development. In: Proceedings of the
2018 International Conference on Software and System Process,
pp. 142–146. ACM (2018)

26. Clarke, P.M., et al.: Refactoring software development process termi-
nology through the use of ontology. In: European Conference on
Software Process Improvement, pp. 47–57. Springer (2016)

27. Sauberer, G., et al.: Do we speak the same language? Terminology stra-
tegies for (software) engineering environments based on the Elcat model‐
innovative terminology e‐learning for the automotive industry. In: Euro-
pean Conference on Software Process Improvement, pp. 653–666.
Springer (2017)

28. Greenwald, S.W., et al.: Comparing learning in virtual reality with learning
on a 2D screen using electrostatics activities. J. Univers. Comput. Sci.
24(2), 220–245 (2018)

29. Barr, M.: Student attitudes to games‐based skills development: learning
from video games in higher education. Comput. Hum. Behav. 80,
283–294 (2018)

30. Baker, A., Navarro, E.O., Van Der Hoek, A.: An experimental card game
for teaching software engineering processes. J Syst. Softw. 75(1), 3–16
(2005)

31. Bollin, A., Hochmüller, E., Mittermeir, R.T.: Teaching software project
management using simulations. In: 2011 24th IEEE‐CS Conference on
Software Engineering Education and Training (CSEE&T), pp. 81–90.
IEEE (2011)

32. Hainey, T., et al.: Evaluation of a game to teach requirements collection
and analysis in software engineering at tertiary education level. Comput.
Educ. 56(1), 21–35 (2011)

33. Rusu, A., et al.: Employing software maintenance techniques via a tower‐
defense serious computer game, edutainment technologies. In: Educa-
tional Games and Virtual Reality/Augmented Reality Applications,
pp. 176–184. (2011)

34. Aydan, U., et al.: Teaching ISO/IEC 12207 software lifecycle processes: a
serious game approach. Comput. Stand. Interfac. 54, 129–138 (2017)

35. Ye, E., Liu, C., Polack‐Wahl, J.A.: Enhancing software engineering edu-
cation using teaching aids in 3‐D online virtual worlds. In: 37th Annual
Frontiers in Education Conference‐Global Engineering: Knowledge
Without Borders, Opportunities Without Passports, 2007. FIE'07,
pp. T1E–8. IEEE (2007)

36. Rodriguez, G., Soria, Á., Campo, M.: Virtual scrum: a teaching aid to
introduce undergraduate software engineering students to scrum. Com-
put. Appl. Eng. Edu. 23(1), 147–156 (2015)

37. Parsons, D., Stockdale, R.: Cloud as context: virtual world learning with
open wonderland. In: Proceedings of the 9th World Conference on
Mobile and Contextual Learning, Malta, pp. 123–130. (2010)

38. Psotka, J.: Immersive training systems: virtual reality and education and
training. Instr. Sci. 23(5), 405–431 (1995)

39. Makransky, G., Terkildsen, T.S., Mayer, R.E.: Adding immersive virtual
reality to a science lab simulation causes more presence but less learning.
Learn. Instr. 60, 225–236 (2017)

40. Buckingham, M.: What great managers do. IEEE Eng. Manag. Rev. 33(2),
3–3 (2005)

41. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a
presence questionnaire. Presence. 7(3), 225–240 (1998)

42. Yilmaz, M.: A Software Process Engineering Approach to Understanding
Software Productivity and Team Personality Characteristics: An Empirical
Investigation. Ph.D. Thesis. Dublin City University (2013)

43. Goseva‐Popstojanova, K., et al.: Architectural‐level risk analysis using
uml. IEEE Trans. Softw. Eng. 29(10), 946–959 (2003)

44. Fernández‐Sáez, A.M., Chaudron, M.R., Genero, M.: An industrial case
study on the use of UML in software maintenance and its perceived
benefits and hurdles. Empir. Softw. Eng. 1–65 (2018)

45. Bosu, A., et al.: Process aspects and social dynamics of contemporary code
review: insights from open source development and industrial practice at
microsoft. IEEE Trans. Softw. Eng. 43(1), 56–75 (2017)

46. Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer
reviewers in modern code review. IEEE Trans. Softw. Eng. 42(6),
530–543 (2016)

47. Barfield, W., Hendrix, C.: The effect of update rate on the sense of
presence within virtual environments. Virtual Real. 1(1), 3–15 (1995)

48. Clarke, P., O'Connor, R.V.: The situational factors that affect the software
development process: towards a comprehensive reference framework.
Inf. Softw. Technol. 54(5), 433–447 (2012)

49. Yu, S., Levesque‐Bristol, C.: Are students in some college majors more
self‐determined in their studies than others? Motiv. Emot. 42(6), 831–851
(2018)

How to cite this article: Gulec, U., et al.: Applying
virtual reality to teach the software development process
to novice software engineers. IET Soft. 15(6), 464–483
(2021). https://doi.org/10.1049/sfw2.12047

GULEC ET AL. - 483

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12047 by D
ublin C

ity U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1049/sfw2.12047

	Applying virtual reality to teach the software development process to novice software engineers
	1 | INTRODUCTION
	2 | BACKGROUND AND RELATED WORKS
	3 | METHODOLOGY
	3.1 | Mechanism of the system
	3.2 | Research methodology and participants
	3.3 | Threats to validity

	4 | DESIGN AND IMPLEMENTATION
	4.1 | Scenario generator
	4.2 | 3D virtual office environment

	5 | ANALYSIS AND TEST RESULTS
	5.1 | Pre‐test
	5.2 | Post‐test
	5.3 | Comparison between pre‐test and post‐test results
	5.4 | PQ and ITQ
	5.5 | Validation interviews

	6 | CONCLUSIONS
	6.1 | Validation of the proposed training environment
	6.2 | Limitations
	6.3 | Reviewing the research questions
	6.4 | Discussion and conclusion

	DATA AVAILABILITY STATEMENT

