
The Impact of Situational Context on Software Process:

A Case Study of a Very Small-sized Company in the

Online Advertising Domain

Görkem Giray1, Murat Yilmaz2, Rory V. O’Connor3, Paul M. Clarke3

1 Kokteyl Corporation, Istanbul, Turkey
gorkem.giray@kokteyl.com

2 Çankaya University, Ankara, Turkey
myilmaz@cankaya.edu.tr

3 School of Computing, Dublin City University, Dublin, Ireland

Lero – the Irish Software Research Centre, Limerick, Ireland
{paul.m.clarke,rory.oconnor}@dcu.ie

Abstract. A primary concern of software development is selecting a suitable

methodology to implement a software project. However, this selection is affected

by many factors, with evidence suggesting that a specific set of factors defines a

specific situational context for a project. This situational context leads to a pro-

ject-specific software process. In this paper, we report on our analysis of a very

small-sized company’s current software process based on a reference framework

that identifies the factors of a situational context. The outcome of our case study

confirms the earlier findings that a software process is highly dependent on situ-

ational factors. The company has a suitable situational context (such as very

small-sized, experienced, skilled, cohesive team with low turnover) to apply agile

practices and its software process is more close to an agile rather than plan-driven

approach. Moreover, the company is continuously adopting its software process

to the situational factors changing from project to project and over time.

Keywords: Software Process, Software Development Process, Situational Con-

text, Situational Factor, Process Selection, Process Tailoring.

1 Introduction

Central to the entire discipline of software engineering is the concept of software pro-

cess and the improvement of that process. Therefore, selecting and tailoring a software

process plays a critical role that guides the transformation of ideas into software prod-

ucts [1] [2] [3]. A software process consists of a set of interrelated practices, each of

which is a systematic and repeatable way of achieving a predefined objective [4]. There

have been many practices proposed over the last 20 years, each adding some value to

software engineering discipline [5]. It has now become a complex problem to tailor a

suitable software process for a given specific project. In general, a software process is

designed by making some decisions implicitly and using some tacit knowledge [6].

Recently, some efforts have been allocated to make the factors affecting software

process explicit [7] [8] [9] and associate these factors with the practices selected [10].

A software process depends on many situational factors, which are sometimes interre-

lated as well. Ensuring the harmonization between a set of situational factors and a

software process is a complex problem [11]. To help to solve this problem, some case

studies were conducted to understand how some successful organizations achieve this

harmonization [12] [13] [14]. Moreover, [10] consolidates situational factors and the

corresponding software process tailoring actions proposed in software engineering lit-

erature.

In this paper, we report on our analysis of a very small-sized software development

company in Turkey, named Kokteyl (which resides in Istanbul, Turkey) based on the

situational factors reference framework described in Clarke et al. [7]. Software pro-

cesses of small-sized companies have started to gain interest recently since small and

medium sized enterprises dominate software development sector in all countries world-

wide. In line with this, ISO/IEC 29110 [15] introduced the term “very small entities,”

defined as “an enterprise, an organization, a department, or a project having up to 25

people” [16]. According to the Scientific and Technical Research Council of Turkey,

half of the software development companies in Turkey have less than 10 employees

and 35% of them have 10-50 employees. Our objective is to understand the implicit

relationships between the situational factors and the software process adopted by this

very small-sized company. By doing so, we aim to contribute to the development of a

suite of case studies including commonalities and differences in various types of situa-

tional contexts. We believe that such a suite will help to reduce challenges in harmo-

nizing situational context and software process.

Section 2 presents a review of situational factors in the literature. Section 3 briefly

discusses the case study research method used in this work. Section 4 presents an over-

view of the online advertising domain, the case study company operating in this do-

main, and the current software process of this company. Section 5 provides our analysis

of the situational factors that shape the software process of the case study company.

Section 6 includes the discussion and threats to validity. Section 7 concludes the paper.

2 Situational Factors

A software development setting is a part of a bigger whole that is made up of human,

technologies available for software development, external factors, etc. In such a setting,

a software process guides a software development team in translating user needs into a

software product [17]. There are many approaches (generally positioned within a plan-

driven and agile spectrum nowadays) that form a software process. It is generally ac-

cepted that software process is shaped by considering factors which make up the situa-

tional context for a project and heavily affects the formation of a software process.

Many researchers have remarked the importance of assessing some of these factors as

listed in Table 1.

Table 1. A partial list of situational factors identified in the literature.

Factor Description References

Team experience denotes the degree of team experience [7] [10] [18] [19]

Team size denotes number of members in develop-

ment team

[7] [10] [18] [19] [20]

[21] [22]

Management com-

mitment

denotes the level of commitment of high-

level decision makers foe project (such as

senior management, project sponsor)

[7] [10] [19]

Feasibility of re-

quirements

denotes how much feasible to implement

requirements are (technologically, econom-

ically, etc.)

[7]

Volatility of require-

ments

denotes how much requirements are chang-

ing during the project

[7] [10] [19] [22]

Criticality denotes the impact of failures, such as loss

of human life, financial loss, etc.

[7] [10] [18] [20] [22]

Number of stake-

holders

denotes the number of stakeholders in the

project

[7] [10] [19]

Stakeholders availa-

bility

denotes how much stakeholders of the

project are readily accessible

[7] [10] [19]

Boehm and Turner identify five critical decision factors to have a properly balanced

software process in plan-driven and agile spectrum for a specific project [18]. Cockburn

proposes three variations of Crystal method family based on the assessment of team

size and criticality (magnitude of potential loss) [20]. Xu and Ramesh conducted an

empirical study to identify the factors that play a key role in software process tailoring

[19]. Ambler and Lines identify eight scaling factors a team may need to address to

adapt a software process [21]. Kruchten proposes two sets of factors making up a situ-

ational context: organization level and project level factors [22]. Kalus and Kuhrmann

built up a catalog of 49 factors [10].

Recently, two of the authors have produced and published an initial reference frame-

work [7] to better guide process designers to tailor project specific processes as well as

to understand the underlying decisions behind software process tailoring. The reference

framework comprises 44 factors classified into 8 main categories and further elaborated

into 170 sub-factors.

Using the reference framework, we have investigated the situational factors affecting

the software process in the case study company. We used case study research method,

which is briefly explained in the next section.

3 Research Method

The case study method has been proposed as a research method in software engineering

to investigate a phenomenon in its real-life context [23]. Yin states that case study

method should be used especially when the boundaries between phenomenon and con-

text are not clearly evident [23]. As we stated before, a software process is shaped in a

situational context. We consider that a case study [24] is proper research method to

build a qualitative understanding of how a software process is shaped in a particular

situational context [25]. We have used observation and interview techniques to collect

data. We analyzed these qualitative data considering the literature and reported our re-

sults. To understand the context of this case study better, the next section briefly pre-

sents the domain, the case study company, and the software process currently adopted

by the company.

4 Case Study Background

In this section, we present the important concepts of online advertising domain; intro-

duce the case study company and its software products; and explain the software pro-

cess used in the company.

4.1 Online Advertising Domain

The digital age has provided new ways for organizations for interacting with consum-

ers. With the rise of the Internet along with the increased use of computers and mobile

devices; online advertising has become one of the preferred advertising forms. Online

advertising is a form of advertising, which uses the Internet to deliver marketing mes-

sages to consumers. Fig. 1 illustrates the main stakeholders in online advertising do-

main and the relationships among them.

Advertiser Ad Network

Ad
Mediator

Publisher

Audience/
Consumer

advertises
provides ad

requests ad

provides ad

re
q

u
es

ts
 a

d

d
is

p
la

ys
 a

d

may respond to ad (by clicking, downloading/install ing
application, purchasing good, etc.)

Fig. 1. Main stakeholders in the online advertising domain.

An advertiser is a person, organization or company that places advertisements to

communicate a message to audiences/consumers. An ad network aggregates advertise-

ment demand and delivers proper ads to publishers according to their requests. An ad

mediator provides access to multiple ad networks (hence multiple ad demand pools)

from one central platform. Publishers can maximize revenue by receiving most appro-

priate ads from a much larger ad demand pool through ad mediators. Moreover, the

publisher can increase their fill rate, which denotes the ratio of a number of ad requests

in relation to the number of ads provided. From a technical perspective, publishers in-

tegrate with only ad mediator’s platform and the complexity of integrating with many

ad networks is hidden behind ad mediator’s platform. A publisher receives ads from ad

networks and/or ad mediators and displays ads to audiences/consumers. Common pub-

lishers in the online advertisement are web sites and mobile apps. Kokteyl, which is the

case study organization in this work, is operating in online advertising domain and is

briefly introduced in the next sub-section.

4.2 Case Study Company

Kokteyl is a very small-sized software development company founded in 2002. Shortly

after the establishment, they launched a website and a mobile application providing up-

to-minute live scores and statistics for football games over the globe. In 2008, they

entered to online advertisement sector and started to develop ad mediation software.

Moreover, the company is developing and maintaining mobile games. Fig. 2 illustrates

the software product portfolio of the company.

Publisher

Football Web Site
and Mobile App

AMS
SDK

Mobile
Game

AMS
SDK

Other
Publishers

AMS
SDK

Ad Network

Ad Mediator

Ad Mediation Software
(AMS) Backend

Ad Networks’ SDK

provides ad

requests ad

requests ad provides ad

Fig. 2. Company’s software product portfolio.

The company owns an ad mediation software (AMS), which has two main compo-

nents, backend services and an SDK (Software Development Kit) to be integrated with

the publisher’s software. AMS backend is integrated with more than 40 ad networks

through each ad network’s SDK. Publishers can receive ads from all of these ad net-

works only by integrating AMS SDK (one of the benefits of using an ad mediation

software as stated above).

The company also developed and maintained a football web site and mobile appli-

cation with millions of users. A UK-based company has acquired this web site and

mobile application in 2016. This football web site and mobile application are still using

AMS for displaying ads.

The company also develops and maintains 5 mobile games, which are also publish-

ers for AMS. There is also other publishers’ software (which are the customers of Kok-

teyl) that are using AMS to display ads.

As of now, the company’s main business is built on AMS. They are trying to con-

vince more publishers with high page views and active users to use AMS. Their revenue

is coming from commission fees out of ad revenues of these publishers.

The company employs a software development team, which are organized around

two software products as shown in Table 2. Five developers are creating and maintain-

ing AMS backend, including server-side services, data persistency, and report develop-

ment. 5 developers are developing and maintaining AMS SDK for Android and iOS

operating systems. Backend side and mobile app for the games are being developed by

1 and 2 developers respectively and 1 graphic designer is designing the user interfaces

for the games. No team member has been assigned to develop football web site and

mobile app anymore as a UK-based company acquired them.

Table 2. Team organization per software product.

Software product Component Number of team members

AMS

Backend 5 developers

Android SDK 3 developers

iOS SDK 2 developers

Mobile Games

Backend 1 developer

Mobile app 2 developers

UI 1 graphic designer

The team is employing a software process that is more close to agile paradigm (less

focus to documentation and more focus to working software; less focus to process and

more focus to individuals and collaboration; less focus to plan according to contracts

and/or long-term constant requirements) as briefly explained in the next sub-section.

4.3 The Software Process of the Case Study Company

Fig. 3 illustrates the software process from eliciting requirements to deployment. For

the sake of simplicity, we eliminated the iterative steps and showed the main flow of

the process. This process depicts the steps taken for the implementation of one require-

ment; therefore the company adopts an approach much more close to agile rather than

waterfall. The company does not adopt any software process standard.

The details of the process are as follows classified as the main phases of software

development:

elicit
requirement

identify
stakeholder(s)

discuss, analyze
requirement

develop?

no

plan, assign
resource

yes

team work
required?

conduct design
meeting

yes

develop

no

review code

test

deploy

Design

Document

Fig. 3. High-level software process of case study organization.

Requirements engineering: The members of the team elicit a requirement from cus-

tomers, competitors’ products, and improvement opportunities (mainly from problems)

identified by the team. The team leads identify relevant team member(s); discuss and

analyze this requirement. If they consider this requirement worth developing, the re-

quired resources are assigned; otherwise, the requirement is discarded. The require-

ments are tracked using a project management tool, Asana, and undergo the following

statuses: (1) Ice box: the requirement is not yet decided to be developed and may be

discarded; (2) Backlog: the requirement is decided to be implemented; (3) In progress:

the requirement is being analyzed and implemented; (4) Test: tests are being conducted;

(5) Done: the relevant implementation has been completed.

Design: If the development needs team work rather than one member, a design meet-

ing is conducted. The output of this meeting is a design document, which defines the

solution. Moreover, an owner is assigned to this requirement, who takes full responsi-

bility to involve relevant stakeholders based on the analysis and design conducted and

follows up the implementation until the end of the deployment.

Development: Relevant members complete development tasks sequentially and/or in

parallel.

Test: The team is organized so that there are at least two team members who are

responsible for a component and code changes made by a member are reviewed by the

corresponding peer. Each member conducts unit, integration, and system tests. User

acceptance test is also done within the team. No regression testing practice and test

automation are applied.

Deployment: The team prefers a rollout to a small group of users for evaluation and

testing. At the first step, the team members receive and start to use the new version.

Afterwards, the users of a mobile game (generally 100s of users) are receiving the new

version. When a new version of AMS SDK is being deployed, the evaluation is being

made by a restricted pool of users (1000s of users) of publishers. At the last step, the

new version is deployed for all of the users.

The next section analyzes the situational factors that have led the software process

explained in this section, using the reference framework [7].

5 Application of Situational Factors Reference Framework

Two techniques have been employed for applying situational factors reference frame-

work to the case study company: (1) Observation; (2) Interview. One of the authors,

who is knowledgeable about the situational factors, has worked in the company’s office

and conducted both silent and interactive observations [26] for 4 days. Occasionally,

the author asked questions about the current software process to find out why such a

process is being applied. The author also conducted two interviews with 3 team leads.

The author introduced the situational factors reference framework to the leads and

asked questions to them by using the sub-factors listed in the framework [7]. Table 3

lists the dominant situational factors affecting Kokteyl’s software process.

Table 3. Situational factors identified in the case study.

Category Sub-factors identified in the case study

Personnel Team size: The team consists of 19 members: 13 developers, 2 analysts, 1

project manager, 1 graphic designer, 2 user support personnel.

Personnel Experience: The average experience of the team is 7.2 years. The leads/senior

members of the team have a working experience of more than 15 years.

Personnel Skill: The team is highly skilled in software development. Each of the senior

members is specialized in a key area, namely development on Android or

iOS, and backend development. These senior members are providing on-the-

job training and guidance to the junior members. Moreover, the team is expe-

rienced in large-scale data management, distributed computing, and concur-

rent computing.

Personnel Cohesion: The team is working together in an open office and has success-

fully completed many projects in the past. A newcomer has to complete a trial

period in which her/his harmony with the team is observed. As a result, the

cohesion of the team is high.

Personnel Turnover: Turnover, especially with key developers, is low. 5 developers out

of 12 are working in the company for more than 8 years.

Organization Size: With around 25 employees Kokteyl is a very small-sized organization.

This allows efficient information exchange through conversations and face-

to-face meetings.

Operation End users: All the end users are outside the organization, mobile game users

and publishers’ owners. The users of AMS (publishers’ owners) are strategi-

cally much more important than mobile game users since publishers are

reaching thousands, millions of users. Some of the users are cooperative

while some are demanding.

Table 3. Situational factors identified in the case study.

Category Sub-factors identified in the case study

Operation Prerequisites: AMS SDK is integrated with every single mobile application.

Its integration should be easy and smooth.

Application Deployment profile: When a new version of AMS SDK is ready, all the pub-

lishers should adapt their application accordingly and launch a new version.

While some publishers update their application quickly, some prefer to stay

with the old version for any reason. Therefore, AMS backend and SDK

should be backward compatible with a number of old versions, which are still

being used by publishers.

Application Component reuse: The team prefers to reuse components if its quality has

been proved. They try to validate its quality by checking who are using that

component and what their comments are. If the references and comments are

positive, they validate the component by using it.

Application Performance: There is a significant requirement for very high performance

from AMS. AMS should respond to thousands of requests per second and the

response time should stay in a couple of milliseconds.

Business Business drivers: The company’s sustainability relies upon mainly the suc-

cess of AMS, hence most of the efforts are dedicated to the improvement of

this product.

Business Payment arrangements: The company does not make money by delivering

software products based on fixed or time and materials based contracts. The

revenue relies on commission fees out of ad revenues of the publishers.

Business Customer satisfaction: The strategically important customers are publishers.

It is very important to provide high quality software to these publishers since

they can easily switch to another as mediation product. Moreover, there are

not too many publishers, therefore it is important to try to keep all of them

satisfied in order not to lose revenue.

In the following section, we discuss the relationships between situational factors and

software process identified in the case study company.

6 Discussion

Kokteyl can be considered as a successful very small-sized company since it has been

working for software industry for 16 years and managed to develop a software product

that has been acquired by a large-scale company based in the UK. Based on this busi-

ness success, we can conclude that the company has applied a proper software process

and managed to adapt it according to changing situational factors. Kokteyl has not de-

signed and adapted its software process using situational factor reference framework

explicitly. On the other hand, we can observe that they evaluated many situational fac-

tors and selected the proper practices implicitly.

The company does not adopt any process framework (e.g. Scrum), instead a process

expert selects a set of practices to tailor a software process close to an agile approach.

There are some minor differences between the practices applied by the teams develop-

ing AMS and mobile games. While mobile game development team has a fixed release

cycle of 4 weeks, AMS development team does not have a fixed release cycle. Since

AMS is the software product on which the company’s revenue relies on, the team has

to respond to new requests and problems very quickly. Therefore, they release a new

version of AMS when a significant and urgent change has to be made and deployed.

Not fixing the release cycles ensures to keep high customer satisfaction (AMS custom-

ers, which are strategically important).

The acquisition of football web site and mobile app by the UK-based company is an

important development that has affected some of the situational factors. The company

used to be a publisher with a very high traffic and was making money from publishing

ads. The team was focused on developing a web site and a mobile app. They were

neglecting regression testing and test automation because of their overhead. When a

problem is observed, they were fixing it by updating the web site and/or sending a new

version of the mobile app to the relevant store. With the AMS, the deployment has

become a two-step process whose second part is done by publishers. When a new ver-

sion of AMS is released, all the publishers should update their applications by including

the new AMS SDK. Therefore, Kokteyl started to assess including regression testing in

their software process. To decrease the overhead of regression testing, test automation

is also being considered.

The customers of the football web site and mobile app used to be satisfied by provid-

ing data timely along with a good user experience. On the other hand, the development

of AMS requires the design of complex algorithms whose outputs cannot be validated

precisely. The team tracks realized revenues to try to understand whether they have

improved an algorithm. Design of such algorithms is related to recent research areas,

such as machine learning. Therefore, the team considers to include practices regarding

research and development in their software.

The situational factors identified during this case study are already included in the

situational factors reference framework. This is an additional evidence on the wide cov-

erage of this framework. On the other hand, it does not seem to be practically possible

to have a complete framework on situational factors, as pointed out in [7] and [10]. We

aim to conduct more case studies in various sectors and try to extend the framework

and improve the content, language, and structure. In addition, we can also provide

scales to evaluate situational factors, such as creating a taxonomy of organization size

along with intervals (i.e. very small organizations have less than 25 employees). More-

over, adding the associations between situational factors and software development

processes to the framework would contribute to software engineering discipline. Such

associations would especially contribute to situational method engineering discipline,

whose objective is creating a software process for a specific situation [27].

Our discussion is subject to some validity threats, which are briefly described. Dur-

ing the data collection, we used one researcher who has conducted observations and

interviews. Although we tried to mitigate this threat by crosschecking observation and

interview outputs and prolonged involvement [24] (by making several visits to the case

study company), there is still a potential risk that a single researcher can draw wrong

conclusions. Regarding external validity, it is not possible to generalize the findings

based on just this one case study. To reduce the impact of this threat, we evaluated the

findings based on the literature and other case studies to explore some common pat-

terns.

7 Conclusions and Future Work

To investigate how companies design a project-specific software process, we conducted

a case study in a very small-sized software development company, named Kokteyl, in

Istanbul, Turkey. The company does not adopt any process framework or standard. We

have observed that they have formed a suitable software process based on the situa-

tional context the company and its projects reside. There are also some differences be-

tween the software processes used for different projects. We have identified that these

differences are based on the situational factors identified in the literature [7] [10]. More-

over, the company constantly fine-tunes its software process based on the changes in

the situational factors.

Further work is required to confirm and validate these findings. To this end we pro-

pose the following: (1) we will continue to conduct such case studies to form a suite of

case studies to help practitioners in reducing challenges in harmonizing situational con-

text and software process; (2) we plan to guide Kokteyl for improving their company-

wide a research and development skills by analyzing changes in situational factors and

proposing corresponding actions for adopting the software process accordingly.

References

1. MacCormack, A., Verganti, R.: Managing the sources of uncertainty: Matching process and

context in software development. Journal of Product Innovation Management 20, 217–232

(2003).

2. Jones, C.: Development practices for small software applications. CrossTalk, The Journal of

Defense Software Engineering 21(2), 9-13 (2008).

3. Rong, G., Boehm, B., Kuhrmann, M., Tian, E., Lian, S., Richardson, I.: Towards context-

specific software process selection, tailoring, and composition. In Proc. of the 2014 Int.

Conf. on Software and System Process (ICSSP 2014), pp. 183-184. ACM, USA (2014).

4. Jacobson, I., Ng, P.W., McMahon, P.E., Spence, I., Lidman, S.: The essence of software

engineering: Applying the SEMAT Kernel. Addison-Wesley Professional (2013).

5. Kennaley, K.: SDLC 3.0: Beyond a tacit understanding of agile. Fourth Medium Press,

(2010).

6. Yilmaz, M.: A software process engineering approach to understanding software productiv-

ity and team personality characteristics. PhD Thesis, Dublin City University (2013).

7. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development

process: towards a comprehensive reference framework. J. Inf. Softw. Technol. 54(5), 433–

447 (2012).

8. Jeners, S., O’Connor, R.V., Clarke, P., Lichter, H., Lepmets, M., Buglione, L.: Harnessing

software development contexts to inform software process selection decisions. Software

Quality Professional 16, 35–36 (2013).

9. Ng, P., Huang, S., Wu, Y.: On the value of essence to software engineering research: A

preliminary study. 2nd SEMAT Workshop on a General Theory of Software Engineering

(GTSE 2013) pp. 51-58. (2013).

10. Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: a systematic review. In

Proceedings of the 2013 International Conference on Software and System Process - ICSSP

2013, pp. 171–180. ACM Press, New York, USA (2013).

11. Clarke, P., O’Connor, R.V., Leavy, B.: A complexity theory viewpoint on the software de-

velopment process and situational context. In: Proceedings of the 2016 International Con-

ference on Software and System Process (ICSSP 2016). (2016).

12. Marks, G., O’Connor, R.V., Clarke, P.M.: The impact of situational context on the software

development process – A case study of a highly innovative start-up organization. In SPICE,

vol. 155, pp. 455–466. (2017).

13. Clarke, P.M., O’Connor, R.V., Solan, D., Elger, P., Yilmaz, M., Ennis, A., Treanor, R.:

Exploring software process variation arising from differences in situational context. In Eu-

roSPI, vol. 748, pp. 29–42. (2017).

14. O’Connor, R.V., Elger, P., Clarke, P.M.: Exploring the impact of situational context – A

case study of a software development process for a microservices architecture. In Proceed-

ings of the International Workshop on Software and Systems Process - ICSSP’16, pp. 6–10.

(2016).

15. O’Connor, R.V., Laporte, C.: The Evolution of the ISO/IEC 29110 Set of Standards and

Guides. International Journal of Information Technologies and Systems Approach 10 (1), 1-

21 (2017).

16. Larrucea, X., O’Connor, R.V., Colomo-Palacios, R., Laporte, C.Y.: Software Process Im-

provement in Very Small Organizations. IEEE Software, 33(2), 85–89. (2016).

17. Systems and software engineering –Vocabulary, ISO/IEC/IEEE 24765:2010(E). (2010).

18. Boehm, B., Turner, R.: Observations on balancing discipline and agility. Agile Development

Conference, pp. 32-39. (2003).

19. Xu, P., Ramesh, B.: Using process tailoring to manage software development challenges. IT

Professional, 10(4), pp. 39–45. (2008).

20. Cockburn, A.: Crystal Clear A human-powered methodology for small teams. Addison Wes-

ley Professional (2004).

21. Ambler, S.W., Lines, M.: Disciplined agile delivery: A practitioner’s guide to agile software

delivery in the enterprise. 1st edn. IBM Press (2012).

22. Kruchten, P.: Contextualizing agile software development. Journal of Software: Evolution

and Process 25(4), 351-361 (2013).

23. Yin, R.K.: Case study research - Design and methods. SAGE Publications (26) (2003).

24. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software engineering:

Guidelines and examples. 1st edn. Wiley Publishing (2012).

25. O’Connor, R.V.: Using grounded theory coding mechanisms to analyze case study and focus

group data in the context of software process research. In Mora, M., Gelman, O., Steenkamp,

A., Raisinghani M. (eds.) Research Methodologies, Innovations and Philosophies in Soft-

ware Systems Engineering and Information Systems, Chapter 13, pp. 1627-1645. IGI Global

(2012).

26. Wiegers, K.: Software Requirements. 3rd edn. Microsoft Press (2013).

27. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational method engineering.

Springer-Verlag Berlin Heidelberg (2014).

