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Abstract

For any rational number h and all sufficiently large n we give a deterministic construction

for an n× bhnc compressed sensing matrix with (`1, t)-recoverability where t = O(
√
n).

Our method uses pairwise balanced designs and complex Hadamard matrices in the con-

struction of ε-equiangular frames, which we introduce as a generalisation of equiangular

tight frames. The method is general and produces good compressed sensing matrices from

any appropriately chosen pairwise balanced design. The (`1, t)-recoverability performance

is specified as a simple function of the parameters of the design. To obtain our asymp-

totic existence result we prove new results on the existence of pairwise balanced designs

in which the numbers of blocks of each size are specified.
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1 Introduction

Compressed sensing is an approach to data sampling under the hypothesis that all observa-

tions are drawn from a set X of t-sparse vectors in RN , where a vector is said to be t-sparse

if it has at most t non-zero entries, and t << N . It has attracted a lot of attention in the

statistics, signal processing, optimization and computer science literature [5, 13] (an extensive

bibliography is maintained at http://dsp.rice.edu/cs). It is often possible to recover arbi-

trary x ∈ X with far fewer than N linear measurements. Note that while the measurements

are linear, the reconstruction algorithm may be complex and non-linear. We will address

computational and algorithmic aspects of our construction in a subsequent paper.

The problem then is to design an n × N matrix Φ, with n small relative to N , such

that the matrix equation Φx = y has a unique solution for every t-sparse vector x . This can

be phrased in terms of `0 -minimization1. Unfortunately, it is known that `0 -minimization

is NP-hard [20], so we expect that efficient polynomial-time algorithms for this problem do

not exist. A novelty of compressed sensing lies in the surprising connection between `0 -

minimization and `1 -minimization [6], which is essentially linear programming, and for which

efficient algorithms are available.

Definition 1. A matrix Φ is said to have (`1, t)-recoverability if and only if for any t-sparse

vector x with Φx = y , the solution of the linear programming problem Φx = y of minimal

`1 -norm is equal to x .

1.1 Mutual incoherence parameters and the Welch bound

Given a matrix Φ, finding the maximum value of t for which Φ has (`1, t)-recoverability

appears to be a computationally difficult problem. The restricted isometry property (RIP) of

Candès, Romberg and Tao is one approach which has proved to be useful in the analysis of

probabilistic constructions [6]. For example, their methods can be used to show that n ×N
matrices whose entries are drawn independently from a Gaussian distribution have the (`1, t)-

recoverability property with high probability for t ∼ n/ log(N), a result which is best possible.

Evaluating the RIP parameters of order t for a matrix Φ requires knowledge of the largest

and smallest eigenvalues of all principal t× t-submatrices of the N ×N Gram matrix Φ>Φ.

While random matrix theory can supply this information for random matrices, applications

of RIP have been less successful for deterministic constructions.

Instead, the mutual incoherence parameters (MIP) approach seems to be a standard tool

for establishing (`1, t)-recoverability results for deterministic compressed sensing matrices, see

[14]. The mutual incoherence parameter MIP(Φ) of a matrix Φ is defined by

MIP(Φ) = max
|〈ci, cj〉|
|ci||cj |

for distinct columns ci and cj of Φ, where the norm here is `2 . The following theorem

provides the basis for the MIP approach to establishing (`1, t)-recoverability.

1Recall that for p > 0 the `p norm of v is
(∑

1≤i≤n |vi|p
) 1

p
. The `0 ‘norm’ of a vector v is given by the

limit as p → 0 of the norm `p . It counts the number of non-zero entries in v . While it is not a true norm, it

is convenient to abuse notation in order to facilitate a comparison with the `1 norm.
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Theorem 2 (Proposition 1, [4]). If MIP(Φ) = µ, then Φ has (`1, t)-recoverability for all

t < 1
2µ + 1

2 .

The Welch bound [22] states that if Φ is any n ×N matrix with columns of unit norm,

then

MIP(Φ) ≥ µn,N =

√
N − n

(N − 1)n
. (1)

Combining the Welch bound with Theorem 2, we see that if (`1, t)-recoverability can be

established for an n×N matrix Φ using the MIP approach, then

t ≤
√
n

2

√
N − 1√
N − n

+
1

2
. (2)

Provided that N > 4n−1
3 , we have that t <

√
n . It should be emphasised that a matrix Φ may

support (`1, t)-recovery for values of t greater than the bound in (2), but the MIP framework

is too coarse a tool to establish this. This shortcoming of the MIP approach is known as

the square-root bottleneck, and overcoming it requires a fundamentally different approach to

estimating (`1, t)-recoverability.

For restricted ranges of parameters, there are many known constructions for compressed

sensing matrices close to the square-root bottleneck. Indeed, the first deterministic construc-

tion for compressed sensing matrices by de Vore reached this limit [12]. The only progress

towards overcoming the square-root bottleneck is a deep paper of Bourgain et al. [4] in which

(`1, t)-recoverability for t ∼ n
1
2
+ε is achieved. Instead of attempting to exceed this threshold,

in this paper we will show that matrices reaching the square-root bottleneck are plentiful and

easily constructed.

2 ε-equiangular frames

Matrices in which MIP(Φ) = µn,N (see Equation (1)) are called equiangular tight frames

(ETFs). We give an overview of some of their properties in this section. We then introduce a

generalisation which we call ε-equiangular frames. If V is a finite dimensional inner product

space and T is a finite subset of V , then T is a frame if and only if T spans V (the term

originates in functional analysis, and needs refinement if T is infinite).

A frame T is tight if there exists a constant α such that for any v ∈ V∑
x∈T
|〈x, v〉|2 = α|v|22,

and is equiangular if there exists some µ ∈ R such that for all distinct xi, xj ∈ T

|〈xi, xj〉| = µ.

Note that if Φ is an n×N ETF, then elementary arguments show that any pair of columns

necessarily has inner product µn,N , see [21] for a survey of ETFs.

It is known that if T is an ETF in V , then |T | ≤
(
dim(V )

2

)
if V is real, or |T | ≤ dim(V )2

if V is complex. In the case that all entries of T are contained in some proper subfield

of C (e.g. the rationals or a cyclotomic field), number theoretic constraints can be used to
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rule out the existence of certain large ETFs [21]. The theory of equiangular tight frames has

applications in quantum computing and functional analysis, however we are interested in its

application to compressed sensing. By Theorem 2, an n × N ETF has (`1, t)-recoverability

for all t ≤
√
n
2

√
N−1√
N−n + 1

2 , and so reaches the square-root bottleneck.

Now, for any columns ci and cj of the matrix Φ, let µ(ci, cj) =
|〈ci,cj〉|
|ci||cj | denote the

normalised inner product of the vectors ci and cj (unless specified otherwise, all measurements

are with the `2 -norm).

Definition 3. Let Φ be an n×N frame and let µn,N be the Welch bound. We say that Φ

is ε-equiangular if

(1− ε)µn,N ≤ µ(ci, cj) ≤ (1 + ε)µn,N

for any two distinct columns ci and cj of Φ.

Our interest in ε-equiangular frames stems from the following straightforward result.

Proposition 4. If Φ is an ε-equiangular frame, then Φ has the (`1, t)-recovery property for

all t ≤
√
n

2(1+ε) .

Proof. By definition, MIP(Φ) ≤ (1 + ε)µn,N . By Theorem 2, Φ has (`1, t)-recoverability for

all

t ≤
√

(N − 1)n

2(1 + ε)
√
N − n

+
1

2
=

1

2(1 + ε)

√
n+

n(n− 1)

N − n
+

1

2
. (3)

So the result holds by observing that 1
2(1+ε)

√
n is less than the right side of (3).

Remark 5. We observe that 2n ≤ N implies n(n−1)
N−n ≤ n , which means that we cannot es-

tablish (`1, t)-recoverability for values of t larger than 1√
2(1+ε)

√
n within the MIP framework.

Thus in all cases of interest, the results that we obtain are best possible to within a (small)

multiplicative constant.

Now we give a construction of ε-equiangular frames. (We give an alternate construction

in Section 4.3 which gives ε-equiangular frames for ε < 1 and generalises a result of Fickus,

Mixon and Tremain [15].) We begin by recalling the definition of a pairwise balanced design.

Our use of terminology is standard, and consistent with [3], for example.

Definition 6. If V is a set of v points and B is a collection of subsets of V , called blocks,

such that each pair of points occurs together in exactly λ blocks for some fixed positive integer

λ , then (V,B) is a pairwise balanced design. If each block in B has cardinality in K , then

the notation PBD(v,K, λ) is used. For each point x ∈ V , the replication number rx of x is

defined by rx = |{B ∈ B : x ∈ B}| .

Construction 7. If (V,B) is a PBD(v,K, 1), then let n = |B| and N =
∑

x∈V rx and define

Φ to be the n×N frame constructed as follows.

• Let A be the transpose of the incidence matrix of (V,B): rows of A are indexed by

blocks, columns of A by points, and the entry in row B and column x is 1 if x ∈ B
and 0 otherwise.
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• For each x ∈ V let Hx be a (possibly complex) Hadamard matrix of order rx (see e.g.

Section 2.8 of [11]).

• For each x ∈ V , column x of A determines rx columns of Φ: each zero in column x

is replaced with the 1× rx row vector (0, 0, . . . , 0), and each 1 in column x is replaced

with a distinct row of 1√
rx
Hx .

By Theorem II.2.6 of [3], the rows of Φ span Rn , and so Φ is a frame. The substitution

of one matrix into another in Construction 7 is similar to the column replacement techniques

considered in [8]. Note that column x of A has precisely rx 1s, which is the number of rows in

Hx . A standard counting argument implies that N =
∑

x∈V rx =
∑

B∈B |B| , so the number

of rows in Φ is the number of blocks in B and the number of columns is the sum of the sizes

of the blocks in B . These parameters are not directly dependent on v , or on the sizes of

individual blocks. Furthermore, we observe that there exist complex Hadamard matrices of

order r for each natural number r ; the character table of a cyclic group of order r will suffice

for the purposes of our construction. (See [17] for the definition and properties of a character

table.)

Lemma 8 shows that while the frames given by Construction 7 are not tight, a small

modification makes them so. In Proposition 9 we show that Construction 7 does indeed

produce ε-equiangular frames.

Lemma 8. If c ∈ R, c > 0, and Φ is a frame from Construction 7, then any frame Φ′

produced by normalising every row of Φ to have length c is tight.

Proof. Since all rows have equal length, it suffices to verify that distinct rows of Φ′ are

orthogonal. Consider two rows of Φ′ , labelled by blocks Bi and Bj ∈ B . Both rows are

non-zero precisely on the columns labelled by the points in Bi∩Bj . Orthogonality is obvious

if Bi ∩ Bj is empty, so suppose otherwise. Consider the set of rx columns labelled by some

x ∈ Bi ∩Bj . These contain two entire rows of a Hadamard matrix, say hi and hj . The inner

product restricted to these columns is of the form 〈αhi, βhj〉 = αβ〈hi, hj〉 = 0. Since the

inner product on the set of columns labelled by each point is zero, the result follows.

If K is a set of integers, then we denote the maximum element of K by Kmax and the

minimum element of K by Kmin .

Proposition 9. If (V,B) is a PBD(v,K, 1) with 2 ≤ Kmin and Kmax ≤
√

2(Kmin− 1), then

the frame Φ produced by Construction 7 is 1-equiangular.

Proof. Recall that Φ is n×N where n = |B| and N is the sum of the block sizes (equivalently

the sum of the replication numbers of points), and that µn,N is the Welch bound for Φ, see

Equation (1). Also recall that µ(ci, cj) =
|〈ci,cj〉|
|ci||cj | and that MIP(Φ) = maxµ(ci, cj), where the

maximum is taken over all pairs of distinct columns of Φ.

It suffices to show that µ(ci, cj) ≤ 2µn,N for any pair ci and cj of columns of Φ. Instead

of verifying this inequality directly, we show that 1
2
Kmax
v−1 ≤ µn,N ≤ MIP(ci, cj) ≤ Kmax

v−1 . This

suffices to show 1-equiangularity. (Later, in Proposition 20, we will replace Kmax
v−1 with another

function of the block sizes of (V,B) and follow a similar argument to that given here.)
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1. For each x ∈ V we have v−1
Kmax−1 ≤ rx ≤ v−1

Kmin−1 . By counting pairs of incident points,

we can bound the number n of blocks in B , as follows:

v(v − 1)

Kmax(Kmax − 1)
≤ n ≤ v(v − 1)

Kmin(Kmin − 1)
.

2. We produce upper and lower bounds on µn,N in terms of Kmax and v . First, using the

given lower bound for n ,

µn,N =

√
N − n

(N − 1)n
<

√
1

n
<

√
Kmax(Kmax − 1)

v(v − 1)
<
Kmax

v − 1
.

(We use 2 < Kmax < v to establish the last inequality.)

Under the hypothesis (which fails only in degenerate situations) that 2n − 1 ≤ N ,

we have that 1√
2n
≤ µn,N . Using the given upper bound on n , the trivial fact that

v > Kmax and the hypothesis that Kmax√
2
≤ Kmin − 1, we obtain

µn,N ≥

√
Kmin(Kmin − 1)

2v(v − 1)
≥ 1√

2

Kmin − 1

v − 1
≥ 1

2

Kmax

v − 1
.

3. We have established bounds on µn,N . To complete the argument it suffices to show that

for any choice of i and j , µ(ci, cj) is bounded above by Kmax
v−1 . Clearly, any two columns

of Φ labelled by the same point x ∈ V are orthogonal, and hence have inner product

0. (Note that this implies that Φ cannot be ε-equiangular for ε < 1.) So it suffices to

consider columns labelled by distinct points.

4. If ci and cj are columns labelled by distinct points, then there exists a unique row of

Φ in which ci and cj are both non-zero. Every entry φxy in the matrix Φ satisfies√
Kmin−1
v−1 ≤ |φxy| ≤

√
Kmax−1
v−1 , so we have Kmin−1

v−1 ≤ |〈φik, φjk〉| ≤ Kmax−1
v−1 . In particu-

lar, µ(ci, cj) ≤ MIP(Φ) ≤ Kmax
v−1 . (The lower bound is irrelevant due to the presence of

orthogonal vectors.) This completes the proof.

In the statement of Proposition 9 the constants
√

2 and 1 were chosen to obtain a neat

formulation of the theorem. In fact, for the purposes of showing (`1, O(
√
n))-recoverability, it

suffices to show that maxµ(ci, cj) ≤ αµn,N for some constant α . The structure of Proposition

9 lends itself to easy adaption to other constants.

We demonstrate that designs not meeting the conditions of Proposition 9 can be shown

to produce ε-equiangular frames for some easily computable value of ε . A PBD(v, {3, 5}, 1)

with a single block of size 5 exists for all v ≡ 5 mod 6 (see Theorem 6.8, [10]). Applying

Construction 7 it is easily seen that all non-zero inner products of columns are in the range[
2
v−1 ,

2
v−3

]
, while the Welch bound is very closely approximated by 2√

(v−4)(v+3)
. Thus the

matrix obtained from a PBD(v, {3, 5}, 1) via Construction 7 is 1-equiangular for all v ≥ 5.

We summarise the main results of this section as a theorem.

Theorem 10. Let K be a set of integers with 2 ≤ Kmin and Kmax ≤
√

2(Kmin− 1). If there

exists a PBD(v,K, 1) with n blocks in which the sum of the block sizes is N , then there exists

an n×N compressed sensing matrix with the (`1, t)-recovery property for all t ≤
√
n
4 .
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Proof. Construction 7 gives a frame Φ with n rows and N columns, Proposition 9 establishes

1-equiangularity and Proposition 4 guarantees (`1, t)-recovery for all t ≤
√
n
4 .

Theorem 10 demonstrates that pairwise balanced designs offer a rich supply of compressed

sensing matrices with (`1, t)-recovery properties close to the square-root bottleneck.

3 Asymptotic existence of compressed sensing matrices

In this section we use results on the existence of PBDs, which we derive from a result of Caro

and Yuster on asymptotic existence of certain graph decompositions, to construct compressed

sensing matrices. We begin by producing some results, which we believe to be new, on the

existence of PBDs in which the number of blocks of each size is specified. This builds on an

existing literature [23, 9].

A decomposition of a graph G is a set D = {H1, H1, . . . ,Hn} of subgraphs of G such

that
⋃n
i=1E(Hi) = E(G) and E(Hi) ∩ E(Hj) = ∅ for 1 ≤ i < j ≤ n . If F is a family of

graphs and D = {H1, H2, . . . ,Hn} is a decomposition of G such that each Hi is isomorphic

to some graph in F , then D is called an F -decomposition. It is clear that a PBD(v,K, 1)

is equivalent to an F -decomposition of Kv where F = {Kk : k ∈ K} . Here Kv denotes the

complete graph on v vertices. It has an edge joining each pair of distinct vertices.

We shall be using a result of Caro and Yuster [7] on F -decompositions. Their result

uses a theorem of Gustavsson [16] which has not been published in a refereed journal, but

two independent proofs have recently been published on arxiv.org by Barber, Kühn, Lo

and Osthus [2], and also by Keevash [18]. If H is a graph, then gcd(H) is defined by

gcd(H) = gcd({deg(x) : x ∈ V (H)}) where deg(x) denotes the degree (in H ) of the ver-

tex x . Let F = {H1, H2, . . . ,Hs} . A graph G is said to be F -list-decomposable if for

every list α1, α2, . . . , αs of integers satisfying
∑s

i=1 αi|E(Hi)| = |E(G)| , there exists an F -

decomposition of G in which the number of copies of Hi is αi for i = 1, 2, . . . , s .

Theorem 11 ([7], Theorem 1.1). If F is any finite family of graphs such that gcd(H) = d

for each H ∈ F , then there exists a constant CF , depending only on F , such that Kn is

F -list-decomposable for all n satisfying n > CF and d | n− 1.

We require F -decompositions where F consists of a number of complete graphs. Theorem

11 cannot be applied directly in this case because gcd(Kk) 6= gcd(Kl) for k 6= l . Lemma 13

provides a way around this issue, though first we require some more notation.

Definition 12. Let D be an {F1, F2, . . . , Fs}-decomposition of G and let (F1, F2, . . . , Fs)

be a given ordering of F1, F2, . . . , Fs . The type of D is the vector (α1, α2, . . . , αs) where αi
is the number of copies of Fi in D for i = 1, 2, . . . , s . We say that a type (α1, α2, . . . , αs) is

(G, (F1, F2, . . . , Fs))-feasible if
∑s

i=1 αi|E(Fi)| = |E(G)| . A {Kk1 ,Kk2 , . . . ,Kks}-decomposition

of Kv is a PBD(v,K, 1) with K = {k1, k2, . . . , ks} , and in the context of PBDs we

shall write (v, (k1, k2, . . . , ks))-feasible rather than (Kv, (Kk1 ,Kk2 , . . . ,Kks))-feasible. When

G and (F1, F2, . . . , Fs) are clear from context, we may just write feasible rather than

(G, (F1, F2, . . . , Fs))-feasible.

Lemma 13. Let K = {k1, k2, . . . , ks} and let M be an s× t matrix with non-negative integer

entries with rows indexed by k1 − 1, k2 − 1, . . . , ks − 1. Further, suppose that for each column
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c of M , the gcd of the row indices of the non-zero entries in c is 1. There exists a constant

C such that if v > C and (α1, α2, . . . , αs) is (v, (k1, k2, . . . , ks))-feasible, then there exists a

(v,K, 1)-PBD of type (α1, α2, . . . , αs) whenever

MX = (α1, α2, . . . , αs)
>

has a solution X in non-negative integers.

Proof. For j ∈ {1, 2, . . . , t} define the graph Fj = Σs
i=1mijKki . Here, mij is the entry in row

i and column j of the given matrix M , and m1jKk1 +m2jKk2 + . . .+msjKks is the union of

vertex disjoint complete graphs, where the number of copies of Kki is mij for i = 1, 2, . . . , s .

The hypothesis concerning the columns of M ensures that gcd(Fj) = 1 for all j . Thus, by

Theorem 11, there exists a constant C such that for all v > C , Kv is {F1, F2, . . . , Ft}-list-
decomposable.

By hypothesis, MX = (α1, α2, . . . , αs)
> has a solution (x1, x2, . . . , xt)

> . Since the

type (α1, α2, . . . , αs) is (v, (k1, k2, . . . , ks))-feasible, it follows that the type (x1, x2, . . . , xt) is

(Kv, (F1, F2, . . . , Fs))-feasible. Hence there exists an {F1, F2, . . . , Ft}-decomposition of type

(x1, x2, . . . , xt) (because Kv is {F1, F2, . . . , Ft}-list-decomposable). For j = 1, 2, . . . , t , Fj
can be decomposed into m1j copies of Kk1 , m2j copies of Kk2 , and so on. The resulting

decomposition of Kv corresponds to PBD(v,K, 1) of type (α1, α2, . . . , αs).

In the case that M is invertible, a PBD of type (α1, α2, . . . , αs) exists whenever

M−1(α1, α2, . . . , αs)
> consists of non-negative integers. If in addition M is unimodular,

we need only check non-negativity. Proposition 14 illustrates the utility of Lemma 13.

Proposition 14. If k > 3 is an integer, then there exists a constant Ck such that for every

v > Ck , there exists a PBD(v, {k − 1, k, k + 1}, 1) of type (αk−1, αk, αk+1) for every integer

solution (αk−1, αk, αk+1) of the following linear program.

αk ≥ αk−1 (4)

αk ≥ αk+1 (5)

αk+1 + αk−1 ≥ αk (6)

αk−1

(
k − 1

2

)
+ αk

(
k

2

)
+ αk+1

(
k + 1

2

)
=

(
v

2

)
(7)

Proof. Let K = {k − 1, k, k + 1} , and let

M =

 1 0 1

1 1 1

0 1 1

 .

Note that M satisfies the requirements of Lemma 13, with constant Ck .

Since M is invertible the system MX = (αk−1, αk, αk+1)
> is equivalent to 0 1 −1

−1 1 0

1 −1 1

 αk−1
αk

αk+1

 =

 x1
x2
x3

 .
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Now, M is unimodular, so (x1, x2, x3)
> is integral when (αk−1, αk, αk+1)

> is. Clearly,

x1 = αx − αk+1 is positive precisely when inequality (5) is satisfied. Likewise, Inequal-

ities (4) and (6) correspond to the second and third rows of this linear system. It fol-

lows that for any integer solution (αk−1, αk, αk+1)
> of the system of equations (4)-(7),

X> = M (αk−1, αk, αk+1)
> consists of non-negative integers. Hence by Lemma 13 there

exists a PBD(v,K, 1) of type (αk−1, αk, αk+1).

Now we turn to the construction of compressed sensing matrices. The following lemma

follows from an easy manipulation of binomial coefficients, but will be used repeatedly, so we

record it here.

Lemma 15. The number of pairs of edges covered by the union of αk−1 vertex disjoint

copies of Kk−1 , αk vertex disjoint copies of Kk and αk+1 vertex disjoint copies of Kk+1

is F (αk−1, αk, αk+1) = αk−1
(
k−1
2

)
+ αk

(
k
2

)
+ αk+1

(
k+1
2

)
. This function obeys the identity

F (αk−1 + t, αk − 2t, αk+1 + t) = F (αk−1, αk, αk+1) + t.

Proposition 16. If k > 3 is an integer, then there exists a constant Ck such that for all

n > Ck , there exists an n × kn compressed sensing matrix with (`1, t)-recoverability for all

t ≤
√
n
4 .

Proof. By Theorem 10, it is sufficient to construct a PBD(v,K, 1) with n blocks such that

the sum of the block sizes is kn . We show that such designs exist for all sufficiently large n .

Let K = {k − 1, k, k + 1} and suppose that v is sufficiently large that Proposition 14

holds. Then every solution to Equations (4)-(7) corresponds to a PBD(v,K, 1), (V,B), of

type (αk−1, αk, αk+1).

Set n = αk−1 + αk + αk+1 = |B| . For the moment, we assume that n ≡ 0 mod 12 to

reduce the amount of notation we need to employ. We discuss the other congruence classes

at the end of the argument. We require that the number of columns be kn , that is

kn = αk−1(k − 1) + αkk + αk+1(k + 1).

This is clearly equivalent to the requirement that αk−1 = αk+1 . Note that only k is specified

in the statement of the proposition: in addition to the value of (αk−1, αk, αk+1), we are free

to choose the value of v . We now have the following simplified system of inequalities for

Proposition 14:

αk−1 ≤ αk ≤ 2αk−1 (8)

2αk−1 + αk = n (9)

αk−1(k
2 − k + 1) + αk

k2 − k
2

=

(
v

2

)
(10)

(We have expanded the binomial coefficients and gathered like terms in Equation (10).)

We note that the simultaneous solutions to Equations (8) and (9) are all of the form

(αk−1, αk, αk−1) =
(n

4
+ τ,

n

2
− 2τ,

n

4
+ τ
)

(11)

for some 0 ≤ τ ≤ n
12 . It suffices to show that there exists a solution to (10) among the vectors

of form (11). We demonstrate this via the function F (αk−1, αk, αk+1) of Lemma 15.

9



As τ ranges over the interval
[
0, n12

]
, F (αk−1, αk, αk+1) ranges over the interval

[
n
(
k
2

)
+ n

4 , n
(
k
2

)
+ n

3

]
.

Clearly every integer in this interval has a unique preimage of the form given in Equation (11).

This interval is of length n
12 ∼ O(n). On the other hand, the distance between consecutive

triangular numbers of order n (that is numbers of the form
(
v
2

)
for positive integer v ) is

O(
√
n). We conclude that for sufficiently large n (guaranteed already by our application

of Proposition 14) this interval contains many numbers of the form
(
v
2

)
. Furthermore, each

equation F (αk−1, αk, αk+1) =
(
v
2

)
in this interval corresponds to solution (αk−1, αk, αk+1)

of the linear program of Proposition 14. By construction, the design corresponding to this

solution has n blocks and average block size k , establishing the required result in the case

that n ≡ 0 mod 12.

The general case n ≡ i mod 12 requires the introduction of an error term ι ≡ −n mod 12

in Equation (11) which complicates the presented formulae and reduces the range of τ slightly,

but does not change the general argument or the conclusion of the theorem. This completes

the proof for every integer k and every n > Ck .

Theorem 17 below is an extension of Proposition 16 to all rational numbers. While The-

orem 17 subsumes Proposition 16, we feel that the proof of Proposition 16 illustrates the key

concepts without the technical complications of the proof of Theorem 17.

Theorem 17. If h > 3 is a rational number, then there exists a constant Ch such that for

all n > Ch there exists an n× bhnc matrix with (`1, t)-recoverability for all t ≤
√
n
4 .

Proof. The proof here is similar in outline to that of Proposition 16. Proposition 14 will

not suffice in this case, we will need to apply Lemma 13 directly. Our notation here is as

in Proposition 16. Take k to be the integer closest to h , so h = k + ε for |ε| ≤ 1
2 . Take

K = {k− 1, k, k+ 1} . If ε < 1
n , then Proposition 16 applies. We consider the case ε ∈

[
1
n ,

1
2

]
first. By Theorem 10, the existence of a PBD satisfying the following linear system for all

sufficiently large n will establish the theorem.∑
i∈K

αi = n (12)∑
i∈K

iαi = b(k + ε)nc = kn+ bεnc (13)

For convenience, we write σ = bεnc . Since
∑

i∈K αi = n , Equation 13 is equivalent to

αk+1 − αk−1 = σ , where by hypothesis 1 ≤ σ ≤ n
2 . We have two linear equations in three

unknowns, so solutions are parameterised by a single variable. It is easily verified that one

solution is (0, n−σ, σ) and that a vector in the nullspace is (1,−2, 1). So clearly every solution

is of the form (αk−1, αk, αk+1) = (τ, n − σ − 2τ, σ + τ). The number of blocks in a design

is a non-negative integer, so we require this of any putative solution. Observe that there is

a linear order (given by the value of τ ) on the solutions and that the extremal elements of

this system are (0, n− σ, σ) and (n−σ2 , 0, n+σ2 ). By hypothesis, σ ≤ n
2 , so we have at least n

4

distinct integer solutions.

Now, for the existence of a PBD, we require that
∑

i∈K
(
i
2

)
αi =

(
v
2

)
has a solution. As in

Proposition 16, we consider the function F (αk−1, αk, αk+1) of Lemma 15, supported on the

set (αk−1, αk, αk+1) = (τ, n−σ−2τ, σ+τ) where 0 ≤ τ ≤ n
4 . We will show that for any choice

of σ , there exists a matrix M as in Lemma 13 such that there exists an interval of length

10



at least n
36 on which each solution of the equation F (αk−1, αk, αk+1) =

(
v
2

)
corresponds to a

PBD(v,K, 1) of type (αk−1, αk, αk+1). Note that, as σ → n
2 , the inequalities of Proposition

14 fail to hold on an interval of length O(n).

First we deal with the case where 0 ≤ σ ≤ n
4 . The three inequalities (4), (5) and (6) are

equivalent to the requirement 2σ + 3τ ≤ n ≤ 2σ + 4τ . Recalling that σ = bεnc , we have

3τ ≤ (1 − 2ε)n ≤ 4τ . Solving for τ we obtain (1−ε)n
4 ≤ τ ≤ (1−ε)n

3 . This is an interval of

length (1−ε)n
12 , which is of length O(n) for any 0 ≤ ε ≤ 1

4 .

Now we consider n
4 ≤ τ ≤

n
2 . Let

M =

 1 0 0

5 1 1

0 1 2

 .

Inverting M as in Proposition 14, we obtain the inequalities

αk−1 ≥ 0, and 10αk−1 + 2αk+1 ≥ 2αk ≥ 10αk−1 + αk+1.

Substituting for σ and τ as given in our parametrisation (αk−1, αk, αk+1) = (τ, n−σ−2τ, σ+τ)

of the solution space, we find that we require 16τ + 4σ ≥ 2n ≥ 15τ + 3σ . Now, recalling that

σ = bεnc with 1
4 ≤ ε ≤

1
2 , we solve for τ :

n(1− 2ε)

8
≤ τ ≤ n(2− 3ε)

15
.

This is an interval of length n(1+6ε)
120 , where ε ≥ 1

4 . It follows that this interval is of length at

least n
48 ∼ O(n).

The density of triangular numbers then establishes the existence of many solutions of∑
i∈K

(
i
2

)
αi =

(
v
2

)
in the solution space of Equations (12) and (13) for any value of ε ∈

[
0, n2

]
.

So we have shown that for any ε ∈
[
0, 12
]
, for any k and for all sufficiently large n , there

exists an interval of length O(n) on which every feasible type (αk−1, αk, αk+1) corresponds

to a PBD(v,K, 1) of type (αk−1, αk, αk+1). By construction, each such design has n blocks

and the sum of the block sizes is b(k + ε)nc = bhnc . The argument extends to −1
2 ≤ ε ≤ 0

by swapping the roles of k − 1 and k + 1 in the preceding argument.

4 Generalisations and modifications

We have introduced methods of some generality for the construction of compressed sensing

matrices. In the interests of clarity and brevity, we have sketched only the basic ideas. In this

section we give a number of extensions.

4.1 Extending Construction 7 using MUBs

Let M = {M0,M1, . . . ,Me} be a set of orthonormal bases of Cn (written as matrices with

the basis vectors as columns). We say that M is a set of mutually unbiased bases (MUBs)

if, for any i 6= j , all entries of M †iMj have absolute value 1√
n

. Without loss of generality, we

take M0 = I , in which case each Mi is a complex Hadamard matrix. We show that a set of

11



MUBs can be used to increase the number of columns in the matrices given in Construction

7 without any loss in (`1, t)-recoverability.

Suppose that (V,B) is a PBD in which all points have replication number r , and let

{M0(= I),M1, . . . ,Me} be a set of MUBs of dimension r . Denote by Φi the frame constructed

from Construction 7 using Mi throughout. We claim that the frame [Φ1|Φ2| . . . |Φe] is 1-

equiangular. To see this, it suffices to consider the inner product of a column from Φi with

a column from Φj . In the case that the columns are labelled by distinct points, the columns

share a single non-zero entry, so the inner product is of absolute magnitude at most 1
r . In the

case that the columns are labelled by the same point from V , we have that the inner product

is 1
r , by the definition of the MUBs.

Thus we obtain a frame with the same number of rows as in a naive application of Con-

struction 7, but with e times as many columns. This construction is particularly effective

when r is a prime power, as in this case a full set of r + 1 MUBs exists [19]. If (V,B) is a

BIBD(v, k, 1) (that is, a PBD(v,K, 1) with K = {k}), then |B| = n = v(v−1)
k(k−1) , and every point

has replication number v−1
k−1 . A direct application of Construction 7 yields a v(v−1)

k(k−1) ×
v(v−1)
k−1

compressed sensing matrix. Under the assumption that r = v−1
k−1 is a prime power and using

a set of MUBs, we obtain a v(v−1)
k(k−1) ×

v(v−1)2
(k−1)2 matrix. While in the first case we obtain a ratio

1 : k between rows and columns, in the second we obtain a ratio 1 : k(v−1)
k−1 > v , which is a

substantial improvement.

Of course, the restriction that all replication numbers are equal is merely a convenience.

We are free to replace each Hadamard matrix in Construction 7 with a set of mutually unbiased

Hadamard matrices. Little is known about the existence of MUBs when the dimension is not

of prime power order, so the practical applications of this observation in the general case may

be limited.

4.2 A generalisation of Construction 7 using packings

If V is a set of V points and B is a collection of subsets of V , then (V,B) is a packing if each

pair of points occurs together in at most one block of B . If each block in B has cardinality in

K , then we denote such a packing by PBD(v,K, q). (If every pair of points is contained in

exactly one block we recover the definition of a PBD.) It is easily verified that Construction 7

produces ε-equiangular frames when a packing is used in place of a pairwise balanced design,

provided that there are no points with replication numbers that are too small.

Proposition 18. If there exists a PBD(v,K, 1) with 2 ≤ Kmin and Kmax ≤
√

2(Kmin−1) in

which the smallest replication number is at least rx ≥ v−1
τ(Kmin−1) , then there exists a compressed

sensing matrix with (`1, t)-recoverability for all t ≤
√
n

4τ . If the average block size is k , then

the ratio of rows to columns is 1 : k .

We observe that the existence of dense packings is guaranteed by the Rödl ‘nibble’ (see

Section 4.7 of [1], for example). Whilst results depending on Theorem 11 are asymptotic

in nature, one can apply the Rödl nibble to obtain a packing of any complete graph with

graphs from F . As v → ∞ , this packing will tend to an F -decomposition. Thus we can in

principal construct compressed sensing matrices of any size using this method, though they

will approach Welch-optimality only as n→∞ .

12



4.3 An alternative construction for ε-equiangular frames

Construction 19. If (V,B) is a PBD(v,K, 1), then let n = |B| and N =
∑

x∈V rx + 1 and

define Φ to be the n×N frame constructed as follows.

• Let A be the transpose of the incidence matrix of (V,B), defined precisely as in Con-

struction 7.

• For each x ∈ V let Hx be a (possibly complex) Hadamard matrix of order rx + 1.

• For each x ∈ V , column x of A determines rx + 1 columns of Φ: each zero in column

x is replaced with the 1× (rx + 1) row vector (0, 0, . . . , 0), and each 1 in column x is

replaced with a distinct non-initial row of 1√
rx+1

Hx .

Results analogous to those shown for Construction 7 hold also for Construction 19. The

main interest of Construction 19 is as a source of ε-equiangular frames for ε < 1.

Proposition 20. If (V,B) is a PBD(v,K, 1), then Construction 19 produces an Kmax−Kmin
Kmin−1 -

equiangular frame.

Proof. Using the techniques developed in Proposition 9, it can be shown that

Kmin − 1

v +Kmin − 2
≤ 1

rmax + 1
≤ |〈ci, cj〉| ≤

kmax − 1

v + kmax − 2
≤ kmax − 1

v + kmin − 2
.

We note in particular that the ratio between the upper and lower bounds is Kmax−1
Kmin−1 .

It is almost immediate from the statement of the Welch bound that µn,N ≤ Kmax−1
v+Kmin−2 .

We now produce a sharper lower bound for µn,N than that given in Proposition 9. Observe

that µn,N is an increasing function in N and N ≥ nKmin . Recall also that n ≤ v(v−1)
Kmin(Kmin−1) .

Then

µn,N ≥

√
nKmin − n
n(nKmin − 1)

≥
√
Kmin − 1

nKmin

≥

√√√√ Kmin − 1

Kmin
v(v−1)

Kmin(Kmin−1)

≥

√
(Kmin − 1)2

v(v − 1)

≥
√

(Kmin − 1)2

v2

≥ Kmin − 1

v

≥ Kmin − 1

v +Kmin − 2
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Using the ratio between the upper and lower bounds on inner products described above

and the fact that µn,N lies between the bounds, we obtain the following:

Kmin − 1

Kmax − 1
µn,N ≤ |〈ci, cj〉| ≤

Kmax − 1

Kmin − 1
µn,N .

Finally, as in the definition of equiangularity, we solve for ε , finding it to be the greater

of Kmax−Kmin
Kmax−1 and Kmax−Kmin

Kmin−1 , completing the proof.

We note that in the special case that K = {k} , we achieve a 0-equiangular frame. Lemma

8 implies that such a frame is tight, and so we obtain an ETF. This is the main result of Fickus

et al., see Theorem 1 of [15].

4.4 Adaptations of Theorem 17

In Proposition 16 we showed that in the (n,N) plane, if we choose any ray through the origin

(with integer slope k ), there exists a constant Ck such that all points of the form (n, kn)

at distance at least Ck from the origin correspond to compressed sensing matrices meeting

the square-root bottleneck. We generalised this in Theorem 17 to rational slopes, and showed

that points close to the ray of form (n, bknc) corresponded to compressed sensing matrices.

We give another result in this section which shows that small perturbations to the underlying

PBD can be used to obtain n× (k+ ε)n compressed sensing matrices close to the square-root

bottleneck.

Proposition 21. If Φ is an n× kn compressed sensing matrix with (`1, t)-recoverability as

considered in Proposition 16, then for each ε ∈
[ −1
12k ,

1
12k

]
there exists an n×b(k+ε)nc matrix

Φε with (`1, t)-recoverability.

Proof. First note the elementary identity

(2k − 1)

(
k

2

)
= k

(
k − 1

2

)
+ (k − 1)

(
k + 1

2

)
,

which tells us that 2k − 1 blocks of size k cover the same number of pairs of points as k

blocks of size k − 1 and k − 1 blocks of size k + 1. But observe that the sum of the block

sizes on the left is k(2k − 1), whereas the sum of the block sizes on the right is 2k2 − k − 1.

That is, we can reduce the number of columns by 1 by swapping 2k − 1 blocks of size k for

k blocks of size k − 1 and k − 1 blocks of size k + 1. The inverse operation increases the

number of blocks by 1.

Now, suppose that Φ is constructed with the maximum possible number of blocks of

size k , so Φ is of type (αk−1, αk, αk+1) =
(
n
4 + η, n2 − 2η, n4 + η

)
, where η is close to zero.

Then we can reduce the number of columns approximately n
6 ×

1
2k−1 ≈

n
12k times before we

reach our lower bound n
3 on the number of blocks of size k . Likewise, beginning with the

minimum number of blocks of size k , we can increase the number of columns approximately
n
12k times.
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