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A B S T R A C T

We employ graph-based methods to examine the connectedness between cryptocurrencies of
different market caps over time. By applying denoising and detrending techniques inherited
from Random Matrix Theory and the concept of the so-called Market Component, we are
able to extract new insights from historical return and volatility time series. Notably, our
analysis reveals that changes in volatility-based network structure can be used to identify major
events that have, in turn, impacted the cryptocurrency market. Additionally, we find that these
structures reflect investors’ sentiments, including emotions like fear and greed. Using metrics
such as PageRank, we discover that certain minor coins unexpectedly exert a disproportionate
influence on the market, while the largest cryptocurrencies such as BTC and ETH seem less
influential. We suggest that our findings have practical implications for investors in different
ways: Firstly, helping them to avoid major market disruptions such as crashes, to safeguard
their investments, and to capitalize on opportunities for high returns; Secondly, sharpening and
optimizing the portfolios thanks to the understanding of cryptocurrencies’ connectedness.

1. Introduction

Cryptocurrencies have become renowned for their sudden and unexpected price fluctuations [1]. While such price movements
can be concerning for many investors — particularly inexperienced ones [2,3], observing common patterns across different
cryptocurrencies can provide valuable insights to all investors. Specifically, by understanding the correlation in the volatility of
prices between cryptocurrencies, investors can potentially gain high profits while avoiding significant losses [4].

Several methods exist to analyze the correlation between different cryptocurrencies and between cryptocurrencies and traditional
assets (e.g. stocks, bonds, oil and fiat currencies). One of the first papers on this topic was conducted by Yermack [5], who
tested the daily dependency between Bitcoin and national currencies (e.g., EUR, JPY, GBP) using Pearson correlation measurement.
Since then, a variety of statistics-based correlation measures such as Wavelet Coherence, Vector Autoregressive (VAR), Granger
causality and q-Dependent Detrended Correlation have been widely adopted on larger datasets, comprising different cryptocurrencies
and asset classes. This diversification paints a more comprehensive picture of the dependencies present in the financial markets
[6–9]. Notably, with the fast growth of Deep Learning, several methods such as Multilayer Perceptron (MLP) and Long Short
Term Memory (LSTM) have been successfully applied to cryptocurrency-related correlation studies [10,11]. In summary, researchers
found evidence of time-varying connectedness between cryptocurrencies themselves and between the cryptocurrency market and
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traditional markets. They discovered that these connections tend to fluctuate, either increasing or decreasing frequently. However,
one consistent finding is that different asset classes become more closely related to each other during the Covid-19 pandemic and
economic crises. Additionally, the cryptocurrency market is becoming more mature over time, and its correlation with other asset
classes gradually increases.

Recently, graph-based methods have seen wider applications in learning about co-movements and spillover effects in financial
arkets [12–14]. This is due to several factors: (1) their ability to observe the time-varying connectedness among multiple objects;

2) the diversity of metrics available in Graph Theory to analyze graph structures — such as betweenness centrality, degree assortativity,
and closeness centrality. These metrics can be used to learn and understand the underlying characteristics of a graph; (3) Their ease
of implementation in comparison with statistical and Neural Networks methods. This method creates a network of various objects
where the distance between them is determined by their similarity.1 The closer the objects are, the more alike they are. In the
realm of financial markets, the measurement of similarity between two assets relies on their co-movement as reflected in their
corresponding financial time series, such as prices, returns, and volatility. When two assets are completely similar, any upward or
downward movement in one asset is mirrored simultaneously in the other. By examining the structure of the network and analyzing
its features, we can observe the interactions between the objects.

In [13], we adopted the method described above to construct time-varying network structures using cryptocurrencies’ return time
series over a 2-year period from 2019 to 2021. This period covers different market conditions, including normal times and downturn
times (e.g., the market crash in March 2020 due to the Covid-19 pandemic). We found that the network structure reflects investors’
investment decisions. During normal times, investors arguably make their own investment decisions based on their personal market
analysis and experience. On the other hand, during turbulent times, investors appear to trade only cryptocurrencies with high market
capitalization, while smaller cryptocurrencies are mainly used for other purposes such as transaction fees, smart contract tokens or
simply to run a digital platform.

One possible gap recognized in our previous work as well as in the existing literature is the limited use of volatility time series
as the main data in cryptocurrencies-related experiments since very few works have mentioned this indicator. However, as proved
in [4], return values cannot explain all phenomena in the cryptocurrency market. Instead, volatility information might also add
more insights to the return ones. From this point of view, we contribute to the existing literature by using the volatility to observe
the connectedness between different cryptocurrencies. In particular, we will use cryptocurrencies’ volatility and return time series
to construct time-varying networks with a finer window size, allowing us to capture not only normal and downturn times but also
times when bull market conditions pertain. Our research questions are described as follows:

• RQ1: Is there evidence of a difference between returns-based network structures and volatility-based network structures? In
other words, do volatility-based networks show different behaviors from returns-based networks?

• RQ2: If so, can we gain insights from these results in understanding the underlying structure (if any) in the cryptocurrency
market? By this, we mean, what can we learn from these results and where to use them?

For our research questions, we use a 30-minute dataset sourced from the HitBTC exchange,2 consisting of 34 closing price
time series corresponding to the 34 most active cryptocurrencies. We rely on Pearson correlation and Minimum Spanning Tree
(MST) to construct cryptocurrency networks. To observe the evolution of the network structure, we adopt 3 graph-based metrics,
e.g. betweenness centrality, degree assortativity and closeness centrality. Additionally, we utilize the famous algorithm used by Google
called PageRank3 to examine the importance of each cryptocurrency in the network over time. Other features such as investors’
sentiments and the number of transactions are also used to support and reinforce our findings.

Significantly, we remove the noise and trend in cryptocurrencies using Random Matrix Theory (RMT) and the Market Component
concept. This technique has been widely used in other areas such as education [20] and stock markets [21,22] but is relatively new
in the cryptocurrency market. We shall show later in this paper that the noise and trend removal scheme plays an important role
in exploring the underlying characteristics of the cryptocurrency market, revealing several characteristics that become visible only
after clearing the noise and trend.

The remainder of the article is organized as follows: Section 2 presents an overview of related works. Section 3 provides
a description of the datasets. Section 4 discusses methodology, metrics and preprocessing procedures. Section 5 describes the
experimental results followed by implications and hypothesis. Lastly, the conclusion of this study is given in Section 6.

2. Related works

2.1. Analysis of correlations in the cryptocurrency market and graph-based methods

The correlation between different financial assets has been the subject of extensive research over a considerable period of
time, particularly in the realm of traditional markets (e.g. stocks, bonds, fiat currencies) [23–28]. This topic helps scholars and

1 Several methods for measuring the similarity between two time series such as Pearson [15], Spearman [16], Dynamic time warping [17], Cosine
similarity [18], Euclidean distance [19].

2 https://hitbtc.com/.
3 PageRank is an algorithm used by Google Search to rank web pages in their search engine results. It is named after both the term ‘‘web page’’ and co-founder

Larry Page. The algorithm assigns a numerical weighting to each element of a hyperlinked set of documents, such as the World Wide Web, with the purpose of
2

‘‘measuring’’ its relative importance within the set.

https://hitbtc.com/
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traders understand the underlying interactions among various assets, incorporating various advantages. For instance, knowing
the correlations between different assets can empower investors to construct well-diversified portfolios by strategically allocating
assets with low correlations, potentially resulting in lower portfolio volatility and improving risk-adjusted returns [29,30].
Moreover, knowledge of asset correlations can aid in identifying opportunities for hedging against potential losses. Specifically, by
understanding the correlations between different financial assets, investors can identify assets that have negative or low correlation
with the rest in their portfolio and use them as hedges potentially to reduce their overall portfolio risk [31,32]. Additionally, by
expanding correlation analysis to microeconomic variables such as interest rate, inflation rate and GDP growth rate, investors can
be helped to anticipate changes in future asset prices [33].

Since the inception of the cryptocurrency market, several studies have also been conducted to support crypto investors in making
rading decisions. Two main empirical findings from them are as follows: Firstly, the most renowned cryptocurrencies (Bitcoin and
thereum) show the strongest correlation with other virtual currencies in this market and they are also seen to interact with each
ther. This correlation is primarily attributed to the impact of people’s sentiment, widely recognized as a dominant factor influencing
arket dynamics [34]; Significantly, the correlation observed in the crypto market changes regularly with several consistent

haracteristics during a specific market condition. That is, different cryptocurrencies tend to show distinct behaviors during normal
imes, leading to a low correlation between them. However, they tend to display higher levels of correlation during downturn times,
hich is mirrored among conventional stocks [26]. This phenomenon appears to stem from changes in the investment decisions of

ryptocurrency investors in response to varying market conditions [13].
Numerous studies have examined the relationship between cryptocurrencies and traditional asset classes such as stocks,

ommodities, and bonds. A common finding is that the cryptocurrency market is gradually aligning itself with traditional markets.
or example, Drozdz et al. conducted an experiment to observe the statistical features of 70 cryptocurrencies that are actively
raded nowadays, they cover different aspects of cryptocurrency time series such as returns, volatility and temporal multifractal
orrelations [14]. Their study revealed that the highest-capitalization as well as more matured cryptocurrencies BTC and ETH share
ommon statistical properties with the traditional financial markets. By contrast, smaller cryptocurrencies and less matured ones,
.g. DOGE, FUN, XLM and ONT, demonstrated some variations in this regard. Notably, a study conducted by Yosra et al. [32]
xamined the return characteristics of cryptocurrencies in relation to traditional asset classes and found that adding Bitcoin to the
ortfolio can reduce the risk and increase the returns, thereby playing a significant role in optimizing the portfolio and mitigating
iquidity risk.

The adoption of graph-based methods for analyzing the correlation between different cryptocurrencies or between cryptocurren-
ies and conventional assets has grown steadily in recent years. Graph-based approaches offer unique capabilities such as ease of
isualization, Clustering, Centrality and Pathfinding [25], enabling comprehensive exploration of correlation-related issues within

he cryptocurrency market, not only at a specific time but also in different periods [13,35] thus potentially offering a way to observe
he time-varying interactions within a system. Moreover, this method is relatively easy to implement and is not computationally
ntensive as is the case with existing statistical and regression methods [36–38].

Analyzing graph-based correlations adds more insights into the financial markets. For instance, the authors in [35] used Minimum
panning Tree4 to construct a graph of more than 100 cryptocurrencies. Based on the graph structure, they discovered the existence

of different communities within the market, where each community consists of several cryptocurrencies that have similar return
movements. Although these community structures do not persist over time, cross-correlation dynamics suggest a collective behavior
exists among these communities. This result holds potential for portfolio diversification strategies, which has been explored and
justified in [34].

Given the widespread use of graph theory for analyzing the correlations between different cryptocurrencies, we notice that most
tudies tend to focus on basic financial time series such as return time series and price time series. However, another essential aspect
hat has received limited attention is volatility. Recognizing this research gap, we aim to contribute to the cryptocurrency literature
y conducting a time-varying correlation analysis in the cryptocurrency market using volatility time series in this study.

.2. The cryptocurrency market during critical events

In [39], the authors utilized more than 100 cryptocurrencies to investigate the cryptocurrency market between 2015 and 2020.
ased on a regression model called cross-sectional absolute dispersion (CSAD), they found herd effects during the intense period
f the coronavirus outbreak. By contrast, crypto traders have not engaged in correlated investing since the end of March 2020,
hen the market started to recover. Instead, during the recovery time, they showed a more rational investment decision due to the

estoration of the market and assets’ prices. Moreover, from the experiments, the authors indicated that even though crypto traders
end to follow each other during both bull and bear market periods, their tendency to herd investing is stronger during the bullish
egime while there are more rational investors during the bearish regime. On the same topic, Samuel in [40] examined the presence
f herding for four different periods, e.g. pre-and during Covid-19, bear and bull markets between April 2019 and January 2021. He
rovided the same results as in [39] since his experiment revealed that investors make similar trading decisions for positive market
eturns and during the Covid-19 pandemic period.

On the other hand, [41] observed the cryptocurrency market during the pandemic by using the price returns-based network
pproach. In particular, they investigated the structure of the Minimum Spanning Tree (MST) constructed from 128 cryptocurrencies

4 A technique to reduce the size of a graph (network) in order to identify the so-called community structure in the graph, in which each community comprises
3

nodes that share similar characteristics and nodes in different communities have different characteristics.
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Table 1
A list of 34 cryptocurrencies used in this study. Abbreviations are put in parentheses.

Cryptocurrencies

Argur (REP) Bitcoin SV (BSV) Ethereum Classic (ETC) MaidSafeCoin (MAID) Ontology (ONT) Tron (TRX)
Bancor (BNT) Cardano (ADA) FunToken (FUN) Maker (MKR) Ox (ZRX) Verge (XVG)
Basic Attention Token (BAT) Decentraland (MANA) ICON (ICX) Monero (XMR) QTUM Zcash (ZEC)
Bitcoin (BTC) Dogecoin (DOGE) IOST Nem (XEM) Ripple (XRP) Zilliqa (ZIL)
Bitcoin Cash (BCH) EOS Lisk (LSK) NEO Stellar (XLM)
Bitcoin Gold (BTG) Ethereum (ETH) Litecoin (LTC) OMG Network (OMG) Tezos (XTZ)

before and during the pandemic to see whether this critical event causes the change of this structure. Indeed, the results showed
that the network was distributed during the year 2019, which was before the onset of Covid-19. This network structure means
that the cryptocurrencies had independent trends. Whereas, a centralized network appeared during the first half of 2020, in which
cryptocurrencies formed a big community with a central node being USDT. In other words, the cryptocurrencies were closer to each
other, sharing a common trend.

The existing studies confirmed the significant changes in the cryptocurrency market during the pandemic. However, to our
nowledge, there is a scarcity in terms of the analysis of cryptocurrencies during the bull market 2021. Our study aims to focus
ot only on the Covid-19 event but also the bull market in 2021, observed via the time-varying correlation between various
ryptocurrencies derived from a graph-based approach.

. Dataset

.1. Dataset description

For this study, we obtained tick-by-tick data of cryptocurrencies from the HitBTC exchange.5 The dataset covers the period from
13/02/2019 until 06/04/2021. This timeframe encompasses two major events, which are the market crash triggered by the Covid-19
pandemic and the subsequent bull market starting in October 2020.

To ensure the availability of data and minimize the percentage of missing values, we narrowed down our analysis to a final list
of 34 cryptocurrencies that were most frequently traded. These cryptocurrencies are shown in Table 1. Regarding granularity, our
previous study indicated that high-frequency data is more appropriate for analysis tasks since it contains sufficient information and
can capture unexpected movements, especially with highly volatile time series like cryptocurrencies [13]. Eventually, we chose a
granularity of 30 min as it is the highest frequency we can use while keeping the percentage of missing values low.

For each time series, we use its average value to replace missing data points. We acknowledge that there are other interpolation
methods (e.g. nearest, linear, splines) that are worth considering. However, the average method is chosen for the sake of the
mathematics involved. In particular, since our first pre-processing step is normalization [42], those average values will become
zero as a result of the normalization formula. Thus, they will be eliminated in further calculation steps. In other words, the average
method discriminates missing values in the time series and these values will not be used to do experiments. Consequently, our
experimental results are derived solely from the available data. On the contrary, if other interpolation methods were used, they
would result in non-zero interpolated values, which would be used in further calculation steps, potentially affecting the veracity of
experimental results.

3.1.1. Ranking survey
We use the ranking6 of each cryptocurrency to support our experiments. To do this, we collect monthly rankings from the

Historical Snapshots page on Coinmarketcap from February 2019 to April 2021 and average them to obtain an overall ranking for
each coin. This practice enables us to have a general assessment in terms of the size of a cryptocurrency during the considered period.
A major coin tends to catch more attention of the general public and is utilized more often in cryptocurrency-related activities. This
feature is displayed in Table 2

4. Methodology

4.1. Returns and volatility calculation

Given a price time series 𝑥𝑖 =
(

𝑥𝑖1, 𝑥
𝑖
2, 𝑥

𝑖
3,… , 𝑥𝑖𝑇

)

of cryptocurrency 𝑖 with a length of 𝑇 , the log-return time series 𝑟𝑖 is obtained
using the formula 𝑟𝑖𝑡 = 𝑙𝑜𝑔(𝑥𝑖𝑡∕𝑥

𝑖
𝑡−1), where 𝑟𝑖𝑡 represents the return value at time 𝑡.

The volatility 𝑣𝑡 at time 𝑡 is calculated using the window of the last 48 data points from the return time series. The choice of this
indow size is explained by two reasons: Firstly, we use a 30-minute dataset, which results in 48 data points within a day (24 h). In

5 https://hitbtc.com/.
6 The ranking of a cryptocurrency is determined by its market capitalization (current price × number of tokens in circulation). The higher the market

capitalization, the higher the corresponding rank assigned to the cryptocurrency.
4
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Table 2
Average rankings of cryptocurrencies during the period between February 2019 and April 2021.

BTC ETH XRP BCH LTC ADA BSV EOS XLM

1 2 4 6 7 10 11 11 12

TRX XMR XTZ NEO XEM ETC MKR DOGE ZEC

15 15 18 22 25 28 30 32 32

ONT BAT OMG QTUM ZRX BTG ICX LSK REP

37 40 51 51 51 59 60 64 66

ZIL IOST XVG MANA MAID BNT FUN

70 90 91 110 117 144 202

other words, we capture the intraday movements of a cryptocurrency by employing a sliding window of size 48 with a sliding step of
30 min; Secondly, we tested the market efficiency7 at each time window of 48 data points for each cryptocurrency, using two metrics:
permutation entropy8 and statistical complexity.9 This testing procedure is proposed by [45]. Specifically, given an empirical time
eries in a corresponding time window, they first calculated permutation entropy and statistical complexity for the time series, then
stimated the 95% random confidence interval for each measure by shuffling the time series randomly and calculating permutation
ntropy and statistical complexity for 30 independent realizations. The idea is that if two measures (e.g. permutation entropy and
tatistical complexity) derived from the empirical time series are within the 95% confidence intervals of randomly shuffled time
eries, then the empirical time series share common characteristics with random time series and thus no dependence patterns exist
n the empirical time series since the values are just randomly distributed. In other words, the future value is independent of the
revious values. Thus, the market efficiency presents in this time series. We found that the majority of cryptocurrencies in our study
etain their efficiency for roughly 70 percent of the observed period. This percentage is relatively high for digital currencies, which
uggests the equivalence between a coin’s market value and the relevant news of that coin on the internet at that time, according
o [45]. Therefore, the window size of 48 data points can capture and explain the movements of a cryptocurrency. The results of
his experiment are shown in Table 3. We calculate the volatility in 2 ways to ensure the stability and transparency of experimental
esults.

i. Using the standard deviation of log-returns:

𝑣𝑖𝑡 =

√

∑47
𝑘=0(𝑟

𝑖
𝑡−𝑘 − 𝜇)2

48
where 𝜇 is the mean of these log-returns.

ii. Using the moving average of squared log-returns, as suggested by Fernando et al. [46]:

𝑣𝑖𝑡 =

√

∑47
𝑘=0 𝑟

2
𝑡−𝑘

48

.2. Correlation matrix formation

Given a set of return or volatility time series 𝑧𝑖, 𝑖 = 1, 2,… , 34, corresponding to 34 cryptocurrencies mentioned in Section 3.
We first calculate the similarity between each pair of cryptocurrencies 𝐶𝑖𝑗 as follows: 𝐶𝑖𝑗 = ⟨�̂�𝑖, �̂�𝑗⟩, with �̂�𝑖 = (𝑧𝑖 − 𝜇𝑖)∕𝜎𝑖, where 𝑖
and 𝑗 are cryptocurrencies, ⟨⋅, ⋅⟩ represents the dot product, �̂�𝑖 is the normalized time series of 𝑧𝑖, 𝜇𝑖 is the mean value of 𝑧𝑖 and 𝜎𝑖
is the standard deviation of 𝑧𝑖. Such a similarity measure is called Pearson correlation coefficient [15].

We acknowledge that this correlation calculation method has its limitations, such as being sensitive to outliers and not being
able to capture non-linear relationships [47]. However, we have chosen to use it in our study for the following reasons:

i. We use returns and volatility to maintain the statistical nature of the time series. Other correlation metrics that address
non-linear problem such as Spearman and Kendall show their own drawbacks. For instance, converting rational numbers

7 The efficient market hypothesis states that the current prices of an asset reflect all available public market information relevant to that asset, making them
airly valued as they are present. Thus, no level of analysis or market timing strategy will yield opportunities for gaining excess returns. In other words, past
rice movements are not useful for predicting future prices, i.e. the future value does not depend on the historical values.

8 Permutation entropy is an ordinal-based non-parametric complexity measure for studying the temporal dependence structure in a linear or non-linear time
eries. A low permutation entropy (close to 0) means that a future value can be predictable from the historical values. Whereas, a high permutation entropy
≫0) indicates that all values in the time series are independent and uniformly distributed. This measure is calculated based on the frequency of different ordinal
atterns (permutations) in the data. Details of this complexity measure are described in [43].

9 Statistical Complexity quantifies the structural complexity of dependence patterns in a time series. A higher statistical complexity means that the dependence
atterns occur in a more complex fashion. In other words, the time series is more fluctuated and the future value is complicatedly relevant to historical values.
5

his measure combines permutation entropy with a measure of disequilibrium, as described in [44].
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Table 3
Testing the market efficiency for each cryptocurrency using 48 data points.

Crypto Percentage

ADA 70,00% MANA 54,32%
BAT 55,00% MKR 58,09%
BCH 70,37% NEO 70,10%
BNT 63,80% OMG 69,17%
BSV 70,32% ONT 69,34%
BTC 69,37% QTUM 69,77%
BTG 71,17% REP 68,38%
DOGE 70,00% TRX 70,21%
EOS 69,53% XEM 70,80%
ETC 68,72% XLM 70,63%
ETH 70,08% XMR 69,34%
FUN 43,44% XRP 70,89%
ICX 70,90% XTZ 69,81%
IOST 67,61% XVG 70,08%
LSK 70,08% ZEC 71,43%
LTC 70,70% ZIL 69,64%
MAID 69,81% ZRX 69,47%

into integer rankings can result in the loss of important information from financial time series [48]. In addition, it has been
demonstrated that rank correlation metrics (e.g. Spearman and Kendall) can also experience issues with non-linearity in certain
situations [47].

ii. Pearson correlation is a widely accepted method in the literature for both cryptocurrency [41,49,50] and traditional asset
markets [51–53]. This strongly reinforces our belief in the applicability of this method of correlation calculation for our
problem.

iii. Pearson correlation is suitable for time series with repeated observations, as is the case in financial time series, unlike other
methods that require independent observations [48].

The correlation matrix 𝐶 is formed from similarity coefficients obtained above such that

𝐶 =
(

𝐶𝑖𝑗
)

1≤𝑖≤34,1≤𝑗≤34

A concern with this type of matrix is the reliability of the correlations, specifically whether the matrix accurately reflects true
relationships between the time series being considered. To address this concern, the Random Matrix Theory provides a means of
examination [13,35,54].

We have used RMT to test our correlation matrices and found that they all contain valuable information and are not random.

4.3. Denoising and detrending

4.3.1. Denoising
The noise effect was shown to appear in the stock market several decades ago [55]. This phenomenon is even more apparent in

the cryptocurrency market. According to Thomas and Franziska [56], the average daily signal-to-noise ratio for the cryptocurrency
market is only 36%, which is significantly lower than the 90% average daily signal-to-noise ratio for established US stock exchanges
like NYSE and NASDAQ during the period from March 2017 to November 2017.

There are several factors contributing to the noise in the cryptocurrency market: Firstly, this market is vulnerable to Pump and
Dump schemes, which have become a typical characteristic that distinguishes digital assets from traditional ones [57]; Secondly,
although the purpose for inventing cryptocurrencies was to reduce the complexity of regulatory and trading operation that exists
in traditional markets [58], a large number of transactions have been found to be linked to illegal purposes [58]. Eventually, more
and more regulations have been enacted to control this young market [59]; Thirdly, transaction-related actions, in that investors
can split their budget for one transaction into multiple transactions with smaller net worth to reduce transaction fees, which may
result in unexpected price movements [60]; Additionally, other causes such as noise traders and arbitrageurs have been found to
deliberately manipulate the movement of assets [55].

We use Random Matrix Theory [54] to distinguish the noise in cryptocurrencies. This theory states that the random correlation
matrix 𝐶𝑅 obtained from 𝑁 randomly generated time series with zero mean, unit variance and length 𝑇 (matching the size of the
empirical correlation matrix 𝐶 described earlier) has eigenvalues 𝛾 that asymptotically converges (𝑁 → +∞ and 𝑇 → +∞ with
𝑇
𝑁 > 1) to the Marcenko–Pastur probability density function 𝑓 [61]

𝑓 (𝛾) =

⎧

⎪

⎨

⎪

𝑇
𝑁

√

(𝜆+−𝛾)(𝛾−𝜆−)
2𝜋𝛾 if 𝛾 ∈ [𝜆−, 𝜆+]

0 if 𝛾 ∉ [𝜆−, 𝜆+]
(1)
6

⎩
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Fig. 1. Density distribution of eigenvalues (blue) obtained from our empirical correlation matrix (from 2019-07-02 00:00:00 to 2019-07-24 23:30:00) and the
corresponding Marcenko–Pastur distribution (red). The yellow vertical line represents the minimum expected eigenvalue 𝜆− while the green vertical line represents
the maximum expected eigenvalue 𝜆+ of the Marcenko–Pastur distribution. The top right sub-figure is obtained by removing the largest eigenvalue.

where 𝜆− = (1 −
√

𝑁
𝑇 )2 is the minimum expected eigenvalue and 𝜆+ = (1 +

√

𝑁
𝑇 )2 is the maximum expected eigenvalue of the

Marcenko–Pastur distribution 𝑓 .
Eventually, given eigenvalues 𝜆 obtained from the empirical correlation matrix 𝐶, 𝜆 ∈ [𝜆−, 𝜆+] are considered to exhibit random

behavior as they belong to the random regime. Conversely, eigenvalues that fall outside of [𝜆−, 𝜆+] are expected to be informative
signals. In practice, we only use informative eigenvalues that are greater than 𝜆+ since those that are less than 𝜆− carry negligible
information [21]. Thus, we associate eigenvalues 𝜆 ∈ [0, 𝜆+] with noise. Our objective in the denoising task is to eliminate these noisy
eigenvalues from the empirical matrix 𝐶 while keeping its trace unchanged. Consequently, the correlation between cryptocurrencies
is calculated without the noise effect.

Fig. 1 illustrates an example of the density distribution of eigenvalues (shown in blue) obtained from our empirical correlation
matrix (from 2019-07-02 00:00:00 to 2019-07-24 23:30:00) and the corresponding Marcenko–Pastur distribution (shown in red). In
this case, the majority of eigenvalues fall below 𝜆+ (green vertical line), which are considered noise. There are a few eigenvalues
that are greater than 𝜆+, which carry important information, however. We would like to keep these informative eigenvalues while
processing the noisy ones to eliminate their impact from the correlation matrix. The sub-figure in the top right corner is obtained
by removing the largest eigenvalue in order to help readers compare the Marcenko–Pastur distribution with empirical eigenvalues
more easily.

For this, we employ the Eigenvector Clipping method [22]. One advantage of this approach is that it does not require any training
parameters, making its outcome robust and more reliable. On the other hand, other denoising methods such as Linear shrinkage [62],
Non-linear shrinkage [63] and Rotationally invariant, optimal shrinkage [64] require users to specify several parameters, leading to
a quandary: how do we choose parameters? Furthermore, Eigenvector Clipping is straightforward to implement, with guaranteed
efficiency as it keeps the information part, i.e., after the cleaning process, the trace of the correlation matrix remains unchanged [65].
This method has shown good performance in different studies and has been applied widely to different topics such as education,
portfolio optimization and signal processing [20,66–68].

Given eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛 and corresponding eigenvectors 𝑣1, 𝑣2,… , 𝑣𝑛 of our empirical correlation matrix 𝐂, we
can identify 𝑘 ≤ 𝑛 such that 𝜆𝑘 > 𝜆+ and 𝜆𝑘+1 ≤ 𝜆+. As a result, 𝜆𝑖,∀𝑖 ≤ 𝑘 are noisy eigenvalues, according to the Random Matrix
Theory. The Eigenvector Clipping replaces these noisy eigenvectors with their average value in which the trace of the correlation
matrix 𝐂 after denoising is similar to its origin. The denoised correlation matrix 𝐂𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 is defined by [69]:

𝐂𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =
𝑛
∑

𝑖=1
𝜆∗𝑖 𝑣𝑖𝑣

⊺
𝑖 , 𝜆

∗
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑘+1+𝜆𝑘+2+⋯+𝜆𝑛
𝑛−𝑘 ,∀𝑖 ≥ 𝑘 + 1

𝜆𝑖,∀𝑖 ≤ 𝑘
(2)

4.3.2. Detrending
As of 2023, there are nearly 23,000 cryptocurrencies in circulation in the market, as reported by one of the biggest websites for

tracking digital coins Coinmarketcap. By contrast, only around 10 blockchain protocols are used to govern cryptocurrencies [70].
As a result, the same blockchain protocol is used by many cryptocurrencies [71]. Moreover, the cryptocurrency market is heavily
manipulated by social media and breaking news, leading to ‘herding behavior’ among investors [72]. These factors contribute to
the co-movement in prices across different cryptocurrencies, which is referred to as the trend effect in the market.

Since the underlying characteristics of each cryptocurrency are masked by the existence of trend, we should eliminate this
effect from the cryptocurrencies in order to observe each individual cryptocurrency’s movements. In other words, we examine the
7
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Fig. 2. Market component (𝜆1) in an empirical correlation matrix (from 2019-07-02 00:00:00 to 2019-07-24 23:30:00).

interaction among different cryptocurrencies without considering external factors such as shared protocols and mass media-driven
price manipulation.

We adopt the concept of ‘‘market component’’ which is described in [21] to remove the trend effect. Such a component refers to
the first eigenvalue (i.e. the largest eigenvalue) and corresponding eigenvector of the correlation matrix. It represents the common
systematic risk that impacts most assets in the market and provides insights into the overall relationship between individual assets
and the market as a whole. By removing this component, the correlation matrix can highlight the unique relationships between
individual assets, providing insights into their specific dependencies and individual movements. More intuitively, according to [21],
it is similar to removing a loud tone that prevents us from hearing other sounds. We call 𝐂𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 the denoised and detrended
correlation, which is obtained by subtracting the first eigenvalue and eigenvector from the denoised matrix 𝐂𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 .

𝐂𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐂𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 − 𝜆1𝑣1𝑣
⊺
1 (3)

Fig. 2 shows an example of the market component 𝜆1 in our empirical correlation matrix (from 2019-07-02 00:00:00 to 2019-
07-24 23:30:00). As can be seen, there is a blue bar that stands significantly apart from the other blue bars, which represents the
market component. For obvious reasons, the market component is always the largest eigenvalue of a correlation matrix.

Fig. 3 displays examples of the empirical correlation matrix (a) before denoising and detrending, (b) after denoising and (c) after
denoising and detrending, respectively. The intensity of the red color (from white to dark red) represents the correlation between
two cryptocurrencies, with darker red indicating higher correlation. The maximum value of the correlation is 1 which represents a
complete similarity between two cryptocurrencies. By contrast, the minimum value of −1 represents a complete difference between
two cryptocurrencies. Obviously, the correlation values in the diagonal line of each correlation matrix are all 1 because these
values are derived from calculating the correlation between 2 identical cryptocurrencies. Fig. 3(a) shows that most cryptocurrencies
are strongly correlated with each other since the dark red color is distributed across the matrix. This means that the majority of
cryptocurrencies share a common trend, i.e. the price/volatility movements of different cryptocurrencies are similar. Additionally, we
can infer that the noise actually exists in the cryptocurrencies since the denoised correlation matrix in Fig. 3(b) shows a brighter red
color compared to the original correlation matrix. That is, the existence of noise results in the correlation between cryptocurrencies
being higher than it should be. Regarding Fig. 3(c), this correlation matrix looks completely different from the first two cases since
the low correlation is observed at a great number of cryptocurrency pairs. It is clear that the correlation between cryptocurrencies
weakens significantly as a result of removing the trend effect. In general, the removal of noise and trend opens an opportunity
to observe and explore underlying interactions between different cryptocurrencies. Hence, we can obtain novel findings that are
hidden behind the noise and trend.

4.4. Cryptocurrency network construction and associated metrics

4.4.1. Network construction
Despite the usefulness of the correlation coefficient in understanding the relationships between cryptocurrencies, it fails to

incorporate topological characteristics as it does not place connections in a metric space [73]. To overcome this limitation, the
concept of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 has been introduced as a substitute for the correlation matrix. Such a matrix, denoted as D, is derived
from the cleaned correlation matrix C such that each element 𝑑𝑖𝑗 of 𝐃 is expressed as follows:

𝑑 =
√

2 ×
(

1 − 𝑐
)

(4)
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Fig. 3. Correlation matrix of 34 cryptocurrencies between 2019-07-02 00:00:00 and 2019-07-24 23:30:00. (a) Correlation matrix before denoising and detrending,
(b) Correlation matrix after denoising, (c) Correlation matrix after denoising and detrending.

where 𝑑𝑖𝑗 ranges from zero to two with zero indicating complete dissimilarity while two represents complete similarity between 2
objects. By utilizing this approach, the resulting distance matrix satisfies the essential properties of a metric [73]: 𝑑𝑖𝑗 ≥ 0, 𝑑𝑖𝑗 = 0
if 𝑖 = 𝑗, and 𝑑𝑖𝑗 = 𝑑𝑗𝑖. Consequently, this distance matrix enables the construction of a network (graph) of cryptocurrencies, where
the proximity of nodes reflects their similarity and nodes with distinct behaviors are positioned further apart. The distance values
between pairs of cryptocurrencies serve as the links (edges) within the network.

Nevertheless, this approach tends to create a dense network, i.e. each vertex is connected to every other vertices, thereby
increasing complexity. To address this issue and focus on the most significant connections, the Minimum Spanning Tree (MST) [74]
technique is employed. The MST is a specialized tree structure that connects all vertices with minimal total edge length. By selectively
retaining only the 𝑁−1 most crucial edges, where 𝑁 represents the number of nodes (cryptocurrencies), the MST effectively captures
the underlying dynamics of network structures of a system [74]. This particular type of graph finds extensive applications across
various domains [35,75,76], especially in studies of financial markets [14,74,77].

To derive the MST, the Kruskal algorithm is chosen due to its favorable performance and time complexity [78], which render it
particularly suitable for relatively small networks like the one encompassing 34 cryptocurrencies in this study [79]. Furthermore,
the Kruskal algorithm has demonstrated its applicability in numerous finance-related domains, thereby reinforcing its reliability and
relevance [80,81].

4.4.2. Metrics for observing the evolution of a network
To track and evaluate the changes in cryptocurrency network structures over time, we use different graph-based metrics that
9
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i. Category 1: Evaluation metrics for the entire network. These metrics allow us to observe the interactions among different
cryptocurrencies over time and detect the changes in their interactions during different market conditions.

• Average Degree Assortativity: Degree assortativity measures the correlation between node degrees in a network. An
assortative network has high-degree nodes connecting to other high-degree nodes, while a disassortative network has
high-degree nodes connecting to low-degree nodes. The assortativity coefficient ranges from −1 (disassortative) to
1 (assortative). A smaller coefficient indicates a well-connected network, while a larger coefficient suggests a more
scattered network [82].

• Average Betweenness Centrality: Betweenness centrality measures a node’s importance in connecting others. It counts
how many shortest paths pass through a node. A node with high betweenness centrality means that it lies on many
shortest paths, indicating influence in information or resource flow. A high average betweenness centrality implies a
scattered network with small communities, while a low average suggests a well-connected network forming a large
community [7].

• Average Closeness Centrality: This measures the average distance from a node to all other nodes in the graph. A node
with a high closeness centrality is one that is close to many other nodes. Thus, it has a higher influence on the network.
This metric is used to identify the central node (the node that directly connects to many other nodes) in the network. For
the first category, we average the closeness centrality of all nodes. Eventually, a bigger value suggests a well-connected
network, while a smaller value suggests a more scattered network [25].

ii. Category 2: Evaluation metrics for each entity, which is used to observe the influence of each cryptocurrency on the whole
network over time to identify which cryptocurrencies have the strongest influence on the market and gain an understanding
of how cryptocurrencies function within the network.

• PageRank: An algorithm used to measure the importance of nodes in a graph based on the number of links pointing to
it. This is the same algorithm used by Google to rank web pages in search results [83].

5. Experimental results and discussion

In this section, we conduct an analysis of network structures derived from two primary types of financial time series,
e.g. returns and volatility, through different graph-based metrics, e.g. degree assortativity, betweenness centrality, closeness centrality
and PageRank. This experiment has two main objectives: Firstly, we aim to gain insights into underlying traits of interactions among
cryptocurrencies; Secondly, we seek to identify distinctive features between a returns-based crypto network and one based on
volatility. We then relate these analyzed findings to different external factors such as investors’ sentiment and transaction patterns.

5.1. The choice of optimum window size for network construction

We have presented the process of constructing a network of cryptocurrencies in Section 4. However, it is necessary to determine
the optimum window size (length) of time series for this construction. In this regard, we propose two criteria for choosing a suitable
window size for network construction: Firstly, the chosen window size should minimize the change in network metrics built on
different window sizes. In other words, we choose a window size such that the characteristics of the networks are constant for small
changes of window sizes; Secondly, it is also expected to minimize the discrepancy in network metrics (e.g. degree assortativity,
betweenness centrality and closeness centrality) obtained by two different volatility measures.

For this experiment, we have selected a range of potential window sizes, consisting of 28 cases spanning between 48 and 1344
data points, which correspond to 1 day to 28 days (4 weeks). The rationale behind this selection is that the cryptocurrency market
varies very quickly, thus a longer duration might fail to capture significant events happening to the market [84]. We use the linear
correlation metric Pearson and the non-linear correlation metric Spearman to calculate the similarity between network structures in
different cases via betweenness centrality, degree assortativity and closeness centrality.

From our experiments, we gained valuable findings that assisted us in choosing a favorable network window size. In particular,
by testing the first criterion, we found that the characteristics of the network structures do not change greatly when the window size
is large. This suggests that the network structures can remain relatively stable if we use relatively large window sizes. Remarkably,
we observed a plateau point starting at a window size of 816 (corresponding to 17 days) and the similarity slowly increases from
here until the last case (corresponding to 28 days). Thus, based on the first criterion, we exclude window sizes that are less than 816.
An example of this experimental result is shown in Fig. 4, where we use Pearson and Spearman to calculate the similarity between
betweenness centrality values of different network structures constructed using different window sizes.

Regarding the second criterion, we also found a rather similar result with the one obtained from the first criterion. Specifically,
the network structures with the window size of 816 or more show negligible changes, indicating a high similarity between network
structures with large window sizes. The only difference is that Pearson and Spearman values drop slightly after the window size of
1104 (corresponding to 23 days), before resuming a steady increase from the window size of 1248 (corresponding to 26 days). An
example of this experiment is shown in Fig. 5, where we use betweenness centrality as a feature to measure the similarity between
two network structures derived from two different volatility formulas.

In summary, we chose the window size of 1104 (23 days) to construct a network. This window size guarantees the consistency
10
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Fig. 4. The similarity of each pair of time-varying network structures using different window sizes, observed by betweenness centrality. (a) Measured by Pearson
algorithm, (b) Measured by Spearman algorithm.

Fig. 5. The similarity between two time-varying network structures derived from 2 corresponding volatility formulas, observed by betweenness centrality. (a)
Measured by Pearson algorithm, (b) Measured by Spearman algorithm.

different window size and especially, large enough to satisfy the requirement of Random Matrix Theory (as described in Section 4.2)
and minimize the time and space complexity.

Additionally, we note that two volatility formulas show negligible differences in terms of graph-based experimental results when
using this window size. Thus, without loss of generality, we only use the more commonly used standard deviation-based volatility
to conduct the remaining experiments.

5.2. Analysis of cross-interactions in cryptocurrencies through time-varying networks

5.2.1. Returns-based time-varying networks
We first observe the evolution of network structures obtained by return time series, which is the most frequently used financial

feature in the existing literature. We implement this experiment in two cases, before and after the noise and trend removal,
respectively.

Figs. 6(a) and 6(b) depict the changes in network structure every 30 min, expressed by three different metrics before and after
noise and trend removal, respectively. The red line indicates the original result, the blue line indicates the centered moving average
over a 14-day period, the green line indicates the average value and the black line indicates the border of each period.

As expected, these graph-based metrics show significant fluctuations over the considered period, both before and after denoising
and detrending. This means that the interactions between different cryptocurrencies change over time, regardless of whether noise
and trend are present or not. However, it can be seen that the changes in the network structure with the effect of noise and trend
present seem to be rather random. By contrast, we see noticeable patterns in the cleaned network structure. Specifically, the values
11
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Fig. 6. Evolution of the returns-based network structure, measured by degree assortativity, betweenness centrality and closeness centrality, respectively. (a) Before
denoising and detrending, (b) After denoising and detrending. The red line indicates the original result, the blue line indicates the centered moving average
over the 14-day period, the green line indicates the mean of the time series, and the black line indicates the boundary of each period.

Table 4
The percentage of 3 SAX segments in each period. ‘‘a’’ stands for the first segment, corresponding to the first 50
percentiles of values of graph-based metrics, ‘‘b’’ stands for the second segment, ranging from the 51st percentile
to the 80th percentile, ‘‘c’’ stands for the third segment, covering values that are greater than the 80th percentile.

SAX type Betweenness Degree assortativity Closeness

08/03/2019–15/01/2020
a 47.6 47.7 47.6
b 22.3 30.8 22.4
c 30.1 21.5 30.0

16/01/2020–23/07/2020
a 75.3 76.8 75.3
b 24.2 21.2 24.4
c 0.50 2.00 0.30

24/07/2020–06/04/2021
a 34.3 33.4 33.9
b 43.8 35.1 43.9
c 21.9 31.5 22.2

of graph-based metrics are relatively small during the period between January and July 2020, which means that the network tends
to be compressed during this time, i.e. nodes are close to each other and form one large homogeneous group. On the other hand,
large values are dominant during the first period from February 2019 until the end of the same year, implying a scattered network
where nodes are more distant from each other, forming multiple smaller groups. The last period, after July 2020, reveals a mixture
of characteristics observed in the first two periods.

For the purpose of verifying this phenomenon, we use the Symbolic Aggregate Approximation (SAX) [85] to compare the
differences between the three mentioned periods relative to each other. This technique is designed to find similar patterns of behavior
within a single time series even when the exact magnitudes of values differ due to factors like trend and seasonality [86]. In other
words, SAX can potentially find patterns in what classic time series decomposition would consider noise, as these patterns do not
occur regularly and are not part of the trend or seasonal behavior.

The SAX representation for the cleaned graph-based metrics is shown in Table 4. To implement SAX, we begin by splitting the
time series’ values into different segments based on the structure of the network. In particular, our experiments have revealed that
graph-based metric values within the first 50 percentiles represent a compressed network (i.e. nodes are close to each other and form
a big group). Values surpassing the 80th percentile represents a scattered network (i.e. node are far from each other and spread out).
On the other hand, values falling between the 51st and 80th percentile show a mixed network, displaying characteristics of both
compression and scattering. Next, we partition the time series into three periods, including 08/03/2019–15/01/2020, 16/01/2020–
23/07/2020 and 24/07/2020–06/04/2021. This division is based on the observation that the graph-based metric time series between
12
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Fig. 7. Evolution of the volatility-based network structure, measured by degree assortativity, betweenness centrality and closeness centrality. (a) Before denoising
and detrending, (b) After denoising and detrending. The red line indicates the original result, the blue line indicates the centered moving average over the
14-day period, the green line indicates the mean of the time series.

16/01/2020 and 23/07/2020 indicates a distinct pattern compared to the other periods. Lastly, we calculate the percentage of
occurrence for each segment in each of the three periods.

Table 4 shows the percentage of each segment (e.g. a,b and c) in each period. Notably, the second period clearly displays a
different behavior compared to the others. Specifically, the cryptocurrency network structure tends to be compressed during the
second period (16/01/2020–23/07/2020) with more than 75 percent of the time displaying an ‘‘a’’ SAX type and nearly 100 percent
of the time showing ‘‘a’’ and ‘‘b’’ SAX types. Conversely, the first and third periods are similar to some extent. The notable difference
is that there is an increase of ‘‘b’’ SAX type and a decrease of ‘‘a’’ SAX type between the first and third periods. This result is in line
with the findings in our previous study [13] and also other existing studies with different datasets and methodologies [87,88], where
significant changes in the network structure of cryptocurrencies during the Covid-19 pandemic from January to July 2020 were
discovered. In the meanwhile, the post-pandemic period demonstrates a combination of network structure characteristics observed
in both the pre-pandemic and peak pandemic seasons.

In summary, the return time series reveals a change between normal times and downturn times in terms of the correlation
between cryptocurrencies. However, from the graph-based metrics, as shown in Fig. 6, no other significant patterns can be discerned
by this financial feature.

5.2.2. Volatility-based time-varying networks
As mentioned earlier, volatility also plays an essential role in exploring and explaining the underlying characteristics of financial

assets [4]. In this regard, we expect that the volatility information can add more insights into understanding the correlation among
different cryptocurrencies. Thus, in this section, we analyze the time-varying network structures that are constructed by volatility
time series.

Figs. 7(a) and 7(b) illustrate the results of degree assortativity, betweenness centrality and closeness centrality of the volatility-based
cryptocurrency network over time, before and after denoising and detrending, respectively. Similar to the returns-based results, we
observe changes in the correlation between cryptocurrencies over time in both pre-and post-denoise and detrend scenarios. Again,
the graph-based metrics, when affected by noise and trend, still fail to reveal any meaningful patterns as they appear to fluctuate
randomly. This is particularly evident when looking at the degree assortativity in Fig. 7(a). However, after denoising and detrending,
we observe abnormal spikes in the results, as shown in Fig. 7(b). Notably, two common spikes are present across all three metrics,
including March 2020 and February 2021. These spikes indicate a compressed network, where its nodes are close to each other and
form a big group. In other words, our examined cryptocurrencies share the same movement in terms of volatility.

The first common spike was between 13/03/2020 and 27/03/2020, which was equivalent to the worst time in the first wave
of the Covid-19 pandemic, in the sense that the global economy experienced a crash due to the regulations and health protection
measures enacted by almost all countries across the globe to defend against the pandemic [89]. During this time, public attention
towards the pandemic increased dramatically, which was revealed by the increased volume of searches for COVID-19-related terms,
13
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Fig. 8. Public attention (a), stock volatility index (VIX) (b) and S&P500 index (c), from 13/02/2019 until 4/06/2021.

i.e. ‘‘covid 19’’ and ‘‘coronavirus disease 2019’’ (Fig. 8(a)). Regarding the stock market, one of the largest stock market indices
(𝑆&𝑃500) experienced one of the biggest downturns ever seen with a more than 30 percent loss (Fig. 8(b)), while the stock
volatility index VIX increased by more than 500% in a matter of 2 months (Fig. 8(c)). The cryptocurrency market also reacted
to this global crisis since the majority of digital coins started to lose their values in mid-February 2020 and reached the lowest
values on 13/03/2020 as shown on Coinmarketcap, which was also the date graph-based metrics had the highest peak, i.e. the
cryptocurrency network was most compressed or cryptocurrencies were closest to each other. The financial markets quickly started
to recover thereafter while graph-based metrics also gradually went back to their pre-pandemic values.

The second spike occurred between 12/02/2021 and 20/02/2021, coinciding with a bullish period in the cryptocurrency market
as shown on Coinmarketcap. This was the first time the cryptocurrency market experienced a significant surge in prices, not only
with major coins such as BTC and ETH but also with minor coins like BAT and MKR. However, the prices of most cryptocurrencies
started to decline again after 19/02/2021. Interestingly, it can be seen that the network metrics fell back to their values prior to
the spike period after 20/02/2021, as shown in Fig. 7(b).

These spikes in graph-based metrics can be attributed to herding behavior [90], which is mainly driven by the collective trading
decisions of naïve (irrational) traders [39,40]. In particular, the cryptocurrency market is shown to be ruled by such investors
(irrational investors), they tend to mimic other investment decisions and are strongly influenced by the market sentiment, especially
during market crashes and bullish periods [90]. That is, they tend to sell off their shares when the market experiences a downturn or
bad news circulates on the internet in order to avoid the loss. By contrast, they are more likely to purchase new shares during bullish
phases or when positive news about cryptocurrencies spreads among the general public due to the fear of missing out on increasing
the cryptocurrency price. As a result, similar trading actions occur across different cryptocurrencies of all sizes, causing a consistent
impact on the volatility of different coins, which in turn, leads to an increase in the correlation within the cryptocurrency market
with respect to the volatility. This collective correlation has been discussed in a study by James and Menzies [4], where the authors
calculated the proportional contribution of one cryptocurrency to the total volatility of 52 major cryptocurrencies throughout the
period between April 2019 and June 2021. They found that the proportion of the market’s total volatility is more evenly distributed
among all the cryptocurrencies during the Covid-19 market crisis and the bull market of 2021. There was less deviation between
different volatilities of individual cryptocurrencies in these two periods, i.e. everything was similarly volatile together.

To reinforce our interpretation of the aforementioned spikes in graph-based metrics, we examine the correlation between these
two spikes and the Fear and Greed index10 of investors in the cryptocurrency market. Without loss of generalization, we display
the correlation between the betweenness centrality and the Fear and Greed index in Fig. 9. In accordance with our expectations, the
spike in March 2020 corresponds to the time people are extremely pessimistic about the market due to the significant decrease in
prices. Regarding the spike in February 2021, it corresponds to the time people are most optimistic about cryptocurrencies, boosted
by the continuous growth of this market. This result clearly points out the relationship between the volatility network structure
and people’s sentiments. That is, the cryptocurrency network constructed by volatility time series is strongly compressed (i.e. the

10 Assessing the emotions and sentiments of people towards the cryptocurrency market. The index ranges from 0 to 100, which is classified into 5 levels in total,
including extreme fearful (0–25), fearful (26–46), neutral (47–54), greedy (55–75) and extreme greedy (76–100), website: https://alternative.me/crypto/fear-
and-greed-index/.
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Fig. 9. The movement of betweenness centrality and Fear and Greed index from 09/03/2019 until 06/04/2021. The red line refers to the betweenness centrality,
the blue line refers to the sentiment index, and each green line corresponds to a boundary for a type of sentiment, including extreme fearful, fearful, neutral,
greedy and extreme greedy.

correlation between different cryptocurrencies increases, and the network forms a big group) when investors overreact to movements
in the market, which is a consequence of a herding phenomenon, either buying (positive sentiment) or selling (negative sentiment)
behavior.

We also notice that the magnitude of the first spike in March 2020 is much larger than that of the second spike in February 2021.
This is not a trivial phenomenon but rather, it carries a significant implication regarding the influence of people’s sentiment on the
cryptocurrency market. Specifically, crypto investors, being naïve, tend to overreact and trade irrationally when confronted with
negative news. They engage in herding activities by imitating others’ actions in an attempt to avoid substantial losses. This causes
an increase in volatility and influences a wide range of cryptocurrencies. On the other hand, the majority of investors demonstrate
greater wisdom and make more rational investment decisions when the market sentiment is positive, thereby reducing herding
behavior. These findings contradict several studies conducted before 2020 such as [91,92], which argued that positive returns exerted
a stronger influence on volatility than negative returns. The rise in volatility can be interpreted as being due to the dominance
of uninformed traders, this time reacting to positive news. However, our result is in line with a recent study utilizing a dataset
covering 3 continuous years from 2019 until 2021 [93]. More importantly, the stronger influence of negative news compared to
positive news on investors has been well-established in traditional markets and has stood as an enduring fact [94]. This implies that
the cryptocurrency market is becoming progressively more mature and more similar to traditional ones. This is aligned with [14],
where the authors showed that major and famous cryptocurrencies are becoming more and more similar to the stock market.

We acknowledge that there are other spikes in graph-based metrics (Fig. 7(b)). However, they are only consistent in one or two
graph-based metrics and the duration for these spikes is much shorter, within one or two days. For instance, three spikes are in
betweenness centrality and closeness centrality but not in degree assortativity including May, August and November 2019. We suspect
that this might stem from illicit trading activities which we cannot track or collect information on, such as money laundering,
terrorist financing and corruption [95]. In addition, another potential reason stems from social media-related activities such as
market manipulation or pump-and-dump schemes, where a portion of crypto traders try to create herding to take advantage of the
associated upward price movement. This possibly explains the reason why people changed their sentiment regularly during the year
2019, as shown in Fig. 9. This phenomenon will be the preserve of future work since it is outside the scope of this study.

5.3. Information flow in the cryptocurrency network: Which cryptocurrency acts as the information transmission center?

In this section, we aim to analyze the influence of each cryptocurrency on a network comprising 34 diverse cryptocurrencies.
The influence of a cryptocurrency on this network is determined by the extent to which the other cryptocurrencies’ values change
when the value of that particular cryptocurrency fluctuates. Therefore, a cryptocurrency with a greater influence is associated with
a larger number of interconnected cryptocurrencies. For this purpose, we use an algorithm launched by Google which is originally
used to assess the importance of web pages based on their links, called PageRank [83]. It assigns a numerical score between 0 and 1
to each node, considering factors such as the number and quality of incoming links. Nodes with higher scores are considered more
influential, and thus transfer their information to a wider range of coins in the network.

We calculate the PageRank value for each cryptocurrency at each timestamp based on the corresponding network structure, as
observed via both returns and volatility. To assess the influence of each cryptocurrency in the network, we define two metrics
inherited from PageRank that quantify the magnitude of influence for each cryptocurrency:
15
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Table 5
Total Accumulation (TA) for each cryptocurrency with the effect of noise and trend, observed via volatility (a) and returns (b), respectively. Each table has
4 columns: Crypto represents cryptocurrency symbols; TA represents Total Accumulation values; Rank represents the ranking of cryptocurrencies; Percentage
represents the ratio of one cryptocurrency’s Total Accumulation value to the sum of all Total Accumulation values. The results are ordered from high to low.

(a) Volatility (b) Returns

Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage

ETH 1564 2 4,29 BAT 1008 40 2,76 BTC 3414 1 9,35 BAT 822 40 2,25
BCH 1387 6 3,8 DOGE 998 32 2,74 ETH 3090 2 8,46 MKR 797 30 2,18
BTC 1375 1 3,77 OMG 996 51 2,73 LTC 1692 7 4,63 ZIL 791 70 2,17
XLM 1361 12 3,73 XMR 991 15 2,72 NEO 1495 22 4,09 REP 785 66 2,15
NEO 1335 22 3,66 BSV 982 11 2,69 BCH 1473 6 4,03 XTZ 783 18 2,14
LTC 1324 7 3,63 ICX 976 60 2,68 EOS 1443 11 3,95 XVG 783 91 2,14
EOS 1304 11 3,58 BNT 971 144 2,66 ONT 1206 37 3,30 MANA 780 110 2,13
ADA 1265 10 3,47 XVG 965 91 2,64 ADA 1161 10 3,18 ZEC 774 32 2,12
ONT 1211 37 3,32 XEM 964 25 2,64 QTUM 1095 51 3,00 XMR 772 15 2,11
QTUM 1137 51 3,12 XTZ 952 18 2,61 TRX 1054 15 2,89 LSK 756 64 2,07
TRX 1070 15 2,93 MANA 925 110 2,53 XRP 1010 4 2,77 BSV 754 11 2,06
ZEC 1058 32 2,90 REP 908 66 2,49 XLM 985 12 2,70 MAID 754 117 2,06
ETC 1050 28 2,88 BTG 901 59 2,47 BNT 912 144 2,50 DOGE 753 32 2,06
ZRX 1044 51 2,86 MKR 894 30 2,45 ZRX 895 51 2,45 BTG 747 59 2,05
XRP 1037 4 2,84 FUN 860 202 2,36 ETC 879 28 2,41 XEM 733 25 2,01
LSK 1032 64 2,83 MAID 823 117 2,26 ICX 856 60 2,34 FUN 732 202 2,00
ZIL 1010 70 2,77 IOST 803 90 2,20 OMG 848 51 2,32 IOST 703 90 1,93

• Total Accumulation (TA): calculates the sum of PageRank values for each cryptocurrency across the period.

𝐓𝐨𝐭𝐚𝐥 𝐀𝐜𝐜𝐮𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧𝑖 =
𝑇
∑

𝑘=1
𝑝𝑟𝑖𝑘 (5)

• Dominance Score (DS): counts the number of times that a cryptocurrency has the highest PageRank value.

𝐃𝐨𝐦𝐢𝐧𝐚𝐧𝐜𝐞 𝐒𝐜𝐨𝐫𝐞𝑖 =
𝑇
∑

𝑘=1
ℎ𝑝𝑟𝑖𝑘

With

ℎ𝑝𝑟𝑖𝑘 =

{

1, if 𝑝𝑟𝑖𝑘 is the highest value at time 𝑘
0, otherwise

(6)

where 𝑖 represents the cryptocurrency 𝑖, 𝑇 represents the length of the period and 𝑝𝑟𝑖𝑘 represents the PageRank value of the
cryptocurrency 𝑖 at time 𝑘.

Tables 5 to 8 display the results of this experiment before and after denoising and detrending. Our experiment demonstrates that
returns and volatility yield similar outcomes. In particular, with the influence of noise and trend, the prominent cryptocurrencies
such as BTC and ETH appear to have a greater influence on the market than the rest, as evidenced by their higher PageRank values
throughout the observed period. This is a common result obtained by various studies whose experiments are based on original data
with the presence of noise and trend [72,96,97]. By constrast, this characteristic disappears after removing the noise and trend
contributions. Specifically, smaller and less famous cryptocurrencies tend to have a larger impact on the market. In contrast, BTC
and ETH show negligible impact on the market. We note that this phenomenon remains consistent across different window sizes of
the network construction.

The significant influence of minor cryptocurrencies on the market can be attributed to 3 key factors: the prevalence of Pump
& Dump schemes, the transaction activity of crypto investors and the treatment of investors on minor cryptocurrencies (e.g. how
minor cryptocurrencies are used by investors).

In relation to Pump & Dump, it has become a familiar characteristic of the cryptocurrency market, which is organized regularly by
a wide range of investors. A study [98] observed 355 such events on 2 major exchanges, Binance and Yobit. The researchers collected
data from 2 different sources, namely Telegram and PumpAnalysis.com during a 4-year period from 2018 to 2021, to analyze the
characteristics of coins that are most likely to be targeted by manipulators for a Pump & Dump scheme. Their findings revealed
that manipulators target relatively illiquid coins (low-ranking coins). This means that individuals will be more attracted to pumps
of low-ranking coins. These schemes were found to impact not only the pumped cryptocurrency but also other cryptocurrencies. In
particular, a study conducted by Balcilar and Ozdemir [99] investigated the risk spillover effect caused by the Pump & Dump among
various cryptocurrencies, using the frequency connectedness approach. They found evidence of the risk spillover among different
cryptocurrencies during pump events. Therefore, a Pump & Dump scheme often originates from a low-ranked cryptocurrency,
resulting in synchronized fluctuations between that coin and other coins.

In order to investigate the connection between investor transaction activity and the significant influence of small cryptocurren-
16
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Table 6
Total Accumulation (TA) for each cryptocurrency after removing noise and trend, observed via volatility (a) and returns (b), respectively. Each table has
4 columns: Crypto represents cryptocurrency symbols; TA represents Total Accumulation values; Rank represents the ranking of cryptocurrencies; Percentage
represents the ratio of one cryptocurrency’s Total Accumulation value to the sum of all Total Accumulation values. The values are ordered from high to low.

(a) Volatility (b) Returns

Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage

BAT 1818 40 4,98 BTC 981 1 2,69 MKR 3354 30 9,18 BTC 787 1 2,15
MKR 1627 30 4,46 BSV 975 11 2,67 FUN 3152 202 8,63 BCH 771 6 2,11
FUN 1460 202 4,00 OMG 952 51 2,61 MANA 2318 110 6,35 ZIL 768 70 2,10
MANA 1405 110 3,85 ADA 940 10 2,58 BAT 2130 40 5,83 QTUM 766 51 2,10
XTZ 1309 18 3,59 XEM 937 25 2,57 DOGE 1550 32 4,24 REP 740 66 2,03
ZIL 1288 70 3,53 ETC 931 28 2,55 ZRX 1309 51 3,58 ICX 717 60 1,96
IOST 1260 90 3,45 ZEC 919 32 2,52 BNT 1243 144 3,40 ADA 714 10 1,95
XVG 1206 91 3,30 NEO 907 22 2,49 OMG 1207 51 3,31 XRP 711 4 1,95
MAID 1190 117 3,26 ETH 904 2 2,48 MAID 1177 117 3,22 LTC 709 7 1,94
BNT 1182 144 3,24 LTC 903 7 2,47 XTZ 1054 18 2,89 ETH 707 2 1,93
BTG 1079 59 2,96 EOS 880 11 2,41 NEO 923 22 2,53 XEM 692 25 1,89
REP 1077 66 2,95 TRX 872 15 2,39 IOST 896 90 2,45 TRX 684 15 1,87
DOGE 1074 32 1,94 XMR 863 15 2,37 ONT 877 37 2,40 ETC 676 28 1,85
ZRX 1073 51 2,94 ONT 850 37 2,33 LSK 864 64 2,36 XLM 670 12 1,83
XLM 1069 12 2,93 XRP 837 4 2,30 BTG 856 59 2,34 BSV 653 11 1,79
LSK 1046 64 2,87 QTUM 813 51 2,23 XVG 798 91 2,19 XMR 641 15 1,75
ICX 1042 60 2,86 BCH 811 6 2,22 EOS 794 11 2,17 ZEC 619 32 1,70

Table 7
Dominance Score (DS) for each cryptocurrency with the effect of noise and trend, observed via volatility (a) and returns (b), respectively. Each table has 4
columns: Crypto represents cryptocurrency symbols; DS represents Dominance Score values; Rank represents the ranking of cryptocurrencies; Percentage represents
the ratio of one cryptocurrency’s Dominance Score value to the sum of all Dominance Score values. The values are ordered from high to low.

(a) Volatility (b) Returns

Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage

ETH 4244 2 11,63 ZRX 579 51 1,59 BTC 14204 1 39,89 XLM 5 12 0,01
LTC 3544 7 9,71 DOGE 511 32 1,40 ETH 11481 2 31,43 BNT 4 144 0,01
BCH 3347 6 9,17 MAID 490 117 1,34 LTC 3618 7 9,90 MAID 2 117 0,01
NEO 3094 22 8,48 ICX 475 60 1,30 NEO 1697 22 4,65 BSV 0 11 0,00
BTC 2913 1 7,98 LSK 442 64 1,21 EOS 1356 11 3,71 BTG 0 59 0,00
XLM 2563 12 7,03 BAT 319 40 0,87 QTUM 601 51 1,65 DOGE 0 32 0,00
EOS 1588 11 4,35 OMG 313 51 0,86 TRX 600 15 1,64 FUN 0 202 0,00
QTUM 1499 51 4,11 MANA 248 110 0,68 ADA 521 10 1,43 IOST 0 90 0,00
ONT 1372 37 3,76 XTZ 238 18 0,65 XRP 517 4 1,42 LSK 0 64 0,00
ZIL 1327 70 3,64 XMR 208 15 0,57 ONT 474 37 1,30 MKR 0 30 0,00
ADA 1326 10 3,63 BTG 190 59 0,57 ICX 434 60 1,19 OMG 0 51 0,00
ETC 977 28 2,68 BSV 190 11 0,52 ZRX 278 51 0,76 REP 0 66 0,00
TRX 963 15 2,64 BNT 177 144 0,49 ETC 259 28 0,71 XEM 0 25 0,00
XEM 947 25 2,60 REP 154 66 0,42 BCH 214 6 0,59 XMR 0 15 0,00
XRP 916 4 2,51 MKR 48 30 0,13 BAT 188 40 0,51 XTZ 0 18 0,00
ZEC 675 32 1,85 IOST 6 90 0,02 MANA 66 110 0,18 XVG 0 91 0,00
XVG 598 91 1,64 FUN 0 202 0,00 ZEC 9 32 0,02 ZIL 0 70 0,00

30 min throughout the period, the result is illustrated in Fig. 10. We collect the number of transactions within every 30 min for each
cryptocurrency throughout our data period, between 13/02/2019 and 06/04/2021, we then use the non-linear Spearman correlation

etric to calculate the similarity between each pair of cryptocurrencies. Additionally, we also include the ranking information in this
igure to facilitate a comparison between high-ranking and low-ranking cryptocurrencies. Specifically, we classify cryptocurrencies
anked 2111 or lower as low-ranking, which are colored green in the figure, while the rest are considered high-ranking, which are
olored red in the figure.

Our analysis has revealed that low-ranking cryptocurrencies tend to have similar transaction activity patterns. That is, an increase
r decrease in the number of transactions of one coin is reflected in trading activity in other coins, resulting in a similarity among
heir volatility movements. However, the biggest coins such as Bitcoin, Ethereum and Litecoin tend to behave independently
rom the rest since they show nearly zero correlation with other coins, showing that they have their unique trading patterns.
n the cryptocurrency market, only a few assets are well-known and have a large market capitalization, while the majority of
oins are unpopular and do not attract much public attention. Therefore, in the absence of noise and trend, we should see real

11 Based on our analysis, the number of circulating cryptocurrencies exceeded 5000 as of April 2021. However, only 20 cryptocurrencies had an average
arket capitalization (throughout the duration of our dataset) of more than 1.5 billion USD. This is the reason for classifying the top 20 cryptocurrencies with
17

he highest market capitalization as high-ranking cryptocurrencies.
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Table 8
Dominance Score (DS) for each cryptocurrency after removing noise and trend, observed via volatility (a) and returns (b), respectively. Each table has 4 columns:
Crypto represents cryptocurrency symbols; DS represents Dominance Score values; Rank represents the ranking of cryptocurrencies; Percentage represents the
ratio of one cryptocurrency’s Dominance Score value to the sum of all Dominance Score values. The values are ordered from high to low.

(a) Volatility (b) Returns

Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage Crypto TA Rank Percentage

BAT 4842 40 13,27 BNT 777 144 2,13 MKR 6328 30 17,32 ETH 429 2 1,17
MKR 3358 30 9,20 ETC 716 28 1,96 FUN 5876 202 16,09 LSK 388 64 1,06
IOST 2026 90 5,55 BTC 691 1 1,89 MANA 3782 110 10,35 BTC 346 1 0,95
ADA 1839 10 5,04 XEM 648 25 1,78 BAT 3489 40 9,55 LTC 187 7 0,51
XTZ 1696 18 4,65 OMG 647 51 1,77 ZRX 2747 51 7,52 XEM 64 25 0,18
ZIL 1612 70 4,42 LSK 612 64 1,68 DOGE 2053 32 5,62 XLM 52 12 0,14
DOGE 1601 32 4,39 ONT 557 37 1,53 OMG 1924 51 5,27 ICX 48 60 0,13
MANA 1573 110 4,31 BCH 552 6 1,51 MAID 1864 117 5,10 REP 23 66 0,06
XVG 1471 91 4,03 NEO 541 22 1,48 BTG 1479 59 4,05 TRX 13 15 0,04
REP 1265 66 3,47 ICX 515 60 1,41 NEO 1105 22 3,03 ETC 4 28 0,01
FUN 1231 202 3,37 XMR 488 15 1,34 XTZ 993 18 2,72 ZIL 3 70 0,01
MAID 1165 117 3,19 BSV 458 11 1,26 EOS 683 11 1,87 XRP 2 4 0,01
ETH 1080 2 2,96 TRX 299 15 0,82 QTUM 664 51 1,82 ZEC 2 32 0,01
BTG 1002 59 2,75 EOS 168 11 0,46 IOST 619 90 1,69 BCH 1 6 0,00
XLM 993 12 2,72 XRP 143 4 0,39 BNT 479 144 1,31 ADA 0 10 0,00
ZEC 879 32 2,41 QTUM 111 51 0,30 ONT 448 37 1,23 BSV 0 11 0,00
ZRX 835 51 2,29 LTC 90 7 0,25 XVG 433 91 1,19 XMR 0 15 0,00

Fig. 10. The correlation between 34 cryptocurrencies in terms of the number of transactions from 13/02/2019 until 06/04/2021 (on a 30-minute basis).
Cryptocurrencies which are ranked 21 or lower are considered low-ranking (marked as green), while the rest are considered high-ranking (marked as red).

connections between different cryptocurrencies. That is, when the volatility of a small coin changes, it tends to affect the majority
of cryptocurrencies. Conversely, changes in the volatility of a major coin are usually isolated due to its distinct trading pattern.

Overall, there is one main finding that has been uncovered from the results. In particular, the significant impact of the
largest coins in the network when considering the noise and trend effect highlights the crucial role of people’s sentiment in the
cryptocurrency market. Individuals primarily focus on the most prominent coins like BTC, ETH, and LTC, using them as a basis to
evaluate the entire market. Consequently, they react when the prices of these coins change and anticipate similar changes in other
assets [100,101]. This results in similar trading decisions, ultimately leading to parallel volatility movements between different
cryptocurrencies. However, without the effects of noise and trend, the dominance of large cryptocurrencies tends to diminish, giving
way to the rising influence of minor and less famous coins in the network referred to above. This observation highlights the true
18
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nature of the cryptocurrency market. That is, small cryptocurrencies are frequently targeted for a Pump & Dump, leading to an
increase in their volatility and a spillover effect that impacts a broad spectrum of coins [98]. Additionally, the transaction activity
appears to exhibit similarities among the majority of small cryptocurrencies, while major cryptocurrencies demonstrate their own
distinctive trading patterns (see Fig. 10). The similarity in transaction activity among small cryptocurrencies might arise from the
lead–lag phenomenon12 between different cryptocurrencies. That is, small cryptocurrencies often follow the price movements of

ajor cryptocurrencies like Bitcoin (BTC) and Ethereum (ETH) with a slight delay, usually within a few minutes. As a result, it is
easible to generate a profit by purchasing small cryptocurrencies whenever the price of Bitcoin (or ETH) increases, waiting a few
inutes until the price of the small coins increases as well, and then selling them [102]. Another possible reason for the similarity in

ransaction activity is that cryptocurrencies with a low market capitalization are often used as safe-havens in a portfolio, especially
uring turbulent economic and market conditions [103].

Furthermore, we notice another common result from Tables 5 to 8. That is, the cryptocurrencies with the highest influence are
AT, MKR and FUN. This seems to stem from their increasing popularity and use cases. Specifically, these cryptocurrencies gain
igher and higher usage demand and are associated with various cryptocurrencies in the market. In particular:

• BAT13: Since the beginning, BAT has been shown to have a robust business model and real-world use cases [104]. This
cryptocurrency has experienced a continuous surge in usage, partly thanks to the increase in usage of the Brave browser. To
date, Brave has 55 million monthly active users, 16 million daily active users and millions of verified creators accepting BAT.
Bat is considered one of the most successful alt-coins to date. Moreover, it is bridged across Ethereum and Solana blockchains
and offers utility to both ecosystems [105,106].

• MKR14: MKR is created to govern the MakerDAO platform. Specifically, MakerDAO offers its community of MKR holders
the right to vote on risk management and business logic. Thus, this coin plays an important role in the development of
the platform [107]. Moreover, MKR is also utilized for paying various fees associated with generating DAI- one of the most
famous stablecoins at the time of writing [107]. Initially, DAI served primarily as a means of lending and borrowing crypto
assets on MakerDAO. Over time, its utility expanded to a wide range of applications on the Ethereum blockchain such as the
creation of smart contracts. Thanks to the success of the Ethereum blockchain, DAI maintains its popularity and is relevant
to various cryptocurrencies [107,108]. Consequently, MKR experiences increased usage and is associated with numerous
cryptocurrencies, as a result of the DAI’s flourishing.

• FUN15: FUN is the only token accepted for making as well as receiving payment from players and game creators, respectively,
on FunFair. Thus, players have to exchange other cryptocurrencies or fiat currencies into FUN to be able to play on FunFair.
This online gaming platform has experienced a significant increase in different aspects, including business scale, daily active
users, and net worth [109]. Especially, since the outbreak of the pandemic, online gaming platforms have attracted a record
amount of users as a result of their being forced to stay at home due to the lockdown policy [110]. Consequently, the demand
for using FUN keeps increasing over time.

. Conclusions

In this study, we constructed a time-varying network of 34 cryptocurrencies with a mix of low and high rankings. Our main
ontributions to the existing literature arise from 2 aspects: Firstly, the use not only of the return time series but also the volatility
ime series to observe the time-varying correlations between different cryptocurrencies; Secondly, the use of a noise and trend
emoval scheme, which is not widely considered in the cryptocurrency market at the moment. To our knowledge, this is one of the
irst studies using volatility time series to calculate the correlation coefficients between different cryptocurrencies. Our expectation
s that volatility information can provide new insights distinct from return information. Thus, this draws a more complete picture of
ryptocurrency correlations. Besides this, removing noise and trend from cryptocurrencies is expected to help us find out underlying
haracteristics of the cryptocurrency market that are invisible with the existence of noise and trend.

We found that the use of volatility provides different signals compared to the return one. In particular, the returns-based
orrelation network reacts to the change in market condition between January and July 2020 (e.g. during the outbreak of the
ovid-19 pandemic and the global economic crisis) by changing its structure and this change lasts until the market recovers to its
revious condition. In the meantime, the volatility-based network can point out the most changing period within a critical event,
uch as the worst period of the market crash in March 2020 and the most bullish period in 2021. From these findings, investors can
djust their portfolios to benefit from a particular market condition. Moreover, they can anticipate the movements in the market,
specially major events such as the economic crisis and health crisis by using the volatility-based network, thereby preparing and
roposing a reasonable investment strategy to adapt to those movements.

12 A lead–lag effect describes the situation where one (leading) variable is cross-correlated with the values of another (lagging) variable at later times.
13 A cryptocurrency invented for revolutionizing the advertising industry on the internet. This coin is used on the Brave web browser as a reward for
rave users when they read an ads. This browser has a unique mechanism to block ads and only recommends relevant ads based on users’ preferences
https://basicattentiontoken.org/).
14 A main token on a peer-to-peer decentralized protocol called MakerDAO. This platform serves as an online bank for cryptocurrencies, facilitating borrowing,

ending and savings of various cryptocurrencies (https://makerdao.com/en/).
15 A token on the decentralized, cryptocurrency-based casino gaming platform called FunFair (https://funfair.games/), which is the number one online gaming
19
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We also used the PageRank method to analyze the influence of each cryptocurrency on the collection of 34 coins collected from
he HitBTC exchange and found contradictory results between pre-and post-removal of the noise and trend. Specifically, low-ranking
ryptocurrencies have the greater influence on the collection after denoising and detrending while the most influential coins in the
re-denoised and detrended collection are high-ranking cryptocurrencies (e.g. BTC, ETH and BCH). More interestingly, we found that
he most influential cryptocurrencies after denoising and detrending are BAT, MKR and FUN. This is explained by their increasing
opularity and use cases. From these results, investors should be aware of low-ranking cryptocurrencies and not underestimate them.
oreover, knowing the correlation between different cryptocurrencies helps investors adjust their portfolios to reduce the risk while
aximizing future returns. For instance, they can avoid investing in cryptocurrencies with strong correlations and diversify their
ortfolios by choosing cryptocurrencies with low correlations.

This work can be expanded in the future in different ways: Firstly, one can take the correlation of different cryptocurrencies
nto consideration to create portfolio optimization models. For example, the models can avoid choosing strongly correlated
ryptocurrencies while spending a portion of their budget on safe-haven cryptocurrencies; Secondly, researchers can expand on
his study’s concepts to other financial asset classes such as stocks, commodities as well as a combination of different asset classes.
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