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Abstract 

The atomic configurations play a key role in predicting the solidification process of high-entropy alloys (HEAs). The atomic scale structures of 

AlXCrCoFeCuNi (x = 0.5, 1.5, 3.0) HEAs that emerge during solidification with a cooling rate of 12 × 109 (K/s) are evaluated using molecular 
dynamics (MD) simulation. While BCC (body- centered cubic) structure is obtained for Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi where lattice distortion 
increases with increasing aluminum fraction from x = 0.5 to x = 1.5, for Al3.0CrCoFeCuNi, an amorphous structure is formed under the same cooling 
rate. The diffusion coefficient of all the elements at 2200 K and the super-heating temperature of each alloy are evaluated to explain the disordering 
mechanism due to aluminum addition, which affects both the aluminum mobility and diffusion of the constituent atoms in the HEA. Finally, the 
compression behavior of all the three HEAs was studied to show the effect of crystalline structure on the stress fluctuation. It was found that phase 
transformation induced plasticity occurred which led to a secondary hardening of crystalline alloys after ultimate compressive strength (UCS). 

 
 

 

Introduction 

In 2004, a new class of alloys, referred to as high entropy alloy (HEAs), 

were proposed. HEAs commonly contain more than five elements with 

equal or near equal molar percent, but crystallize as solid solution, 

rather than intermetallic, when a suitable cooling rate is applied [1–

23]. According to the constituent elements, methods and conditions of 

fabrication, HEAs with different structures and different number of 

phases (single-phase or multi-phase) can be synthesized. In single-

phase crystalline structures, BCC HEAs exhibit high strength and low 

plasticity, while FCC (face-centered cubic) HEAs shows high plasticity 

and low strength[24]. To overcome the formation of undesirable phases 

with unsuitable morphology, rapid surface melting with cooling rates as 

high as 106 K/s contrary to 10–102 K/s in conventional casting has been 

utilized for microstructural refinement, enhanced homogenization, as well 

as to reduce formation of brittle phases. However, an in-situ study of 

microstructural evolution at such high cooling rates, to under- stand 

how atomic ordering occurs, is a hard task experimentally. One of the 

most extensively investigated HEAs with notable mechanical properties 

is AlXCrCoFeCuNi [25–47], where x (the molar ratio in the alloy) ranges 

from 0 to 3. This alloy has been extensively studied especially to 

investigate phase formation after casting followed with a normal cool- 

ing rate (10–102 K/s) and after splat quenching with a high cooling rate. 

Microstructure characterization of the AlXCrCoFeCuNi alloy system 

was reported by Tong et al. (2005) [48]. In that paper it was noted 

that arc-melting of the elements followed by a normal cooling rate led 

to the prediction of a phase diagram that showed the occurrence of 

BCC crystallographic structures by the addition of aluminum. Also, it 

was found that by increasing the amount of aluminum (x = 0–3), the 

lattice constant of BCC and especially FCC structure increased. Finally, 

it was reported that high miXing entropy and sluggish cooperative 

diffusion enhanced the formation of simple solid-solution phases and 

submicronic structures with nanoprecipitates in the alloys with multi- 

principal elements rather than intermetallic compounds. Some studies 

[49,50] have been reported regarding diffusion kinetics of elements in 

HEAs, while the effect of sluggish diffusion hypothesis in HEAs is not 

fully understood. The concurrence of spinodal decomposition and nano- 

phase precipitation in a AlCrCoFeCuNi high-entropy alloy produced by 

arc melting, spray casting and melt spinning was investigated by Zhang 

et al. (2019) [51]. They applied 106 − 107 K/s as the high cooling rate 

for the melt spinning process which however could not inhibit the 

spinodal decomposition and nano-phase precipitation. In fact, three typical 

struc- tures including Cu-rich nano-precipitates of FCC structure, Al-

Ni-rich plate of B2 structure, and Fe-Cr-rich plate of A2 structure were 

observed and the width of modulated plate decreased with the increase 

of the cooling rate. Xu et al. (2015) [36] suggested that in 

Al0.5CrCoFeCuNi 
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structure of these HEAs after quenching was reported and discussed. Fi- 6 𝜕𝑡 6 𝑁  
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HEAs, nano-scale phase separation can effectively minimize the lattice 

distortions caused by the atomic size difference in the constituent 

elements, which may offer phase stability of the FCC structure in such 

alloys. In fact, they reported that complex microstructural evolution 

occurs in dual-phase HEAs, while in single-FCC phase, HEAs may 

behave like a traditional FCC metal. Based on the above-mentioned 

reports, it seems that researchers have focused on a high cooling rate to 

reduce the detrimental effects of brittle intermetallic phases. Instead, 

they have reported the advantages of nano-sized precipitate dispersion 

of intermediate phases and improvement in mechanical properties 

via increasing the solidification rate even up to 107 (K/s) using new 

techniques such as splat quenching and the selective laser melting 

process. The difficulty in observing the phase transition of materials at 

the nanoscale with in-situ experiments promotes the use of powerful 

computational techniques like MD simulations and ab-initio calcula- 

tions [1,13,26,34,35,47,52–56]. Sharma et al. (2017) [57] studied the 

atomic origin of the structural phase transformation in AlXCrCoFeNi. 

They investigated the role of Al in diffusive transformation from molten 

to crystalline phase. Zhang et al. (2018) [47] investigated the structural 

and bonding transformation of Al0.67CrCoFeNi during solidification. 

They have studied the effect of cooling rate on the type of clusters 

formed in the HEA. In addition, Li et al [58] reported the effect 

of cooling rate on proportion of BCC solid solution and amorphous 

structure in AlCrCoCuFeNi. From the literature to date, it is clear that 

the effects of Al concentration at the atomic scale on the structure of 

these solidified HEAs is not well understood and the main aim of this 

study is to contribute to achieving a more clear understanding of these 

effects. 
For HEAs, phase transformation induced plasticity (TRIP) has been 

reported during tensile deformation which can cause hardening or soft- 

ening in the plastic region [59–61]. To the best of the authors knowl- 

edge, no attempt has been made to study the compression behavior of 

HEAs based on TRIP mechanisms at atomic scale. In this study, the cool- 

ing rate during the solidification process was examined ranging from 

21 × 1012 K/s (Used in [62]) to 12 × 109 K/s to characterize the solidifi- 

cation mechanisms and provide the final microstructure by the addition 

of aluminum. Results showed that a BCC-based structure with homoge- 

neous distribution of components can be formed with a low concentra- 

tion of aluminum. Also, the microstructural evolution during solidifica- 

tion of AlXCrCoFeCuNi and the effect of Al concentration on the final 

 

 

Fig. 1. g(r) of Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi and Fe at 300K. 

 
auto-correlation functions (VACF) and self-diffusion coefficients for 

each species were derived. The M(t) (MSD at time t) could be defined 

as [54] 

𝑁 

𝑀(𝑡) = < (𝑥 (𝑡) − 𝑥 (0))2  > (1) 
𝑁  

𝑖=1 

where xi(t) is the position of each atom at time t and N is the total num- 

ber of atoms. The VACF is another technique to derive the self-diffusion 

coefficient that can be defined as [54] 

𝐶(𝑡) =< 𝑣𝑖(𝑡).𝑣𝑖(𝑡 = 0) > (2) 

where vi(t) is the velocity of atom i at time t and brackets shown an aver- 

age over time and all the same species of the atoms. Both MSD and VACF 

can be used to extract the self-diffusion coefficient, D of the molten 

HEAs. D can be derived from the linear slope of the MSD, as [54] 

𝐷 =  
1 𝜕𝑀(𝑡)  

=  
1 
𝜕(  

1  ∑ 
< (𝑥𝑖(𝑡) − 𝑥𝑖(0))2  >)∕𝜕𝑡 (3) 

nally, the compressive behavior of crystalline and amorphous structures 
 

Also, it is possible to calculate D using time integration of VACF, as [54] 

was evaluated and the occurrence of TRIP during compression test was 

discussed for the crystalline alloys. 
 
𝐷 = 

1 ∞ 
 

 

3 ∫0 

 
𝐶(𝑡)𝑑𝑡 (4) 

1. Simulation details 

Due to the importance of choosing a reliable interatomic potential 

in MD simulations, EAM (Embedded Atom Method) potential was used 

for describing the interatomic interaction between Al-Cr-Co-Fe-Cu-Ni, 

[8,63,64]. 

In order to check the reliability of the employed EAM potential, 

the density of the HEAs were calculated and compared with the den- 

sity obtained from the miXture rule. MD results showed that density 

of Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi are 7.6 (g/cm3 ) and 6.72 

(g/cm3 ), respectively, which is in good agreement with the miXture rule 

results as 7.634 (g/cm3 ) and 6.639 (g/cm3 ), respectively. The atomic 

simulation boX for the three types of alloys was exposed to the solid- 

ification process with a rate of 12 × 109 K/s. The superheating and 

supercooling temperature were estimated by the change in the slop of 

simulation boX potential energy difference with the temperature in the 

cooling and heating process. Finally, The uni-axial compression test was 

then applied along the z direction at the strain rate of 1010 𝑠−1 . The other 

simulation details have been provided elsewhere [62]. 

The dynamics of atoms in three molten HEAs were investigated 

through calculation of mean square displacement (MSD) and velocity 

The large-scale atomic/molecular massively parallel simulator 

(LAMMPS) [65] was used for MD simulations and trajectories of atoms 

were studied using The Open Visualization Tool (OVITO) [66] soft- 

ware. The CNA (Common Neighbor Analysis) [67,68] was used to show 

the crystal structure of the samples. The X-ray diffraction (XRD) peak 

profiles was extracted from the LAMMPSUSER-DIFFRACTION package 

[69,70]. The chosen wavelength was 𝜆 = 1.541838 A∘. 

2. Results and discussion 

The pair distribution function (PDF or g(r)) results for the 

Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi showed strong peaks in some cutoff 

distances (signature of the BCC structure) which can indicate ordered 

structure in the sample while g(r) results for Al3.0CrCoFeCuNi showed a 

disordered structure (see Fig. 1). Occupying the same crystallographic 

sites by atoms with a different size could lead to the distorted lattice 

which can affect the microstructure of HEAs. [71]. The whole g(r) of 

the HEA samples and BCC-Fe as perfect crystal model shows the signifi- 

cant difference especially at the second peak. The strong broadening of 

the peaks in Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi compared with the 

Fe model illustrated that locally lattice distorted away from the average 
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Table 1 

FWHM of the first peaks of the al- 

loys shown in the Fig. 1. 
 

 

Alloys FWHM∗ 

Table 2 

The simulation boX size of all the samples after the solidification process. 
 

 

Alloys x y z Volume VC∗ 

(nm) (nm) (nm) (nm3 ) 
 

 

(Angstrom(Å)) Al0.5 CrCoFeCuNi 7.271 7.271 18.179 961.077 – 

Al1.5 CrCoFeCuNi 7.372 7.372 18.432 1001.712 +4.228 

Al3.0 CrCoFeCuNi 7.596 7.596 18.99 1095.708 +14.008 

∗ Volume Change relative to Al0.5CrCoFeCuNi 

 
 

 
 

 

Fig. 2.   a) Full g(r) for Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi and Al3.0CrCoFeCuNi. 

b) X-ray Diffraction peak profile of BCC phase of Al0.5CrCoFeCuNi, 

Al1.5CrCoFeCuNi and Al3.0CrCoFeCuNi. 

 
 

BCC structure (Fe) in these HEAs. Owen et al. [72] reported that broader 

PDF peaks in HEAs could suggest the highest level of local lattice strain 

within the materials studied. In order to compare the broadening of the 

first peaks, full width at half maximum (FWHM) of the peaks from Gaus- 

sian fits were obtained and tabulated in the Table 1. From the results, 

it can be concluded that lattice distortion in Al1.5CrCoFeCuNi is a lit- 

tle higher than Al0.5CrCoFeCuNi due to the broader peaks of this alloy. 

These results are in good agreement with the experimental results show- 

ing that Al0.5CrCoFeCuNi has a distorted lattice and addition of Al could 

cause a more distorted structure [26,71,73]. 

The XRD results as shown in the Fig. 2, illustrate the phase analy- 

sis of the solidified alloys. As can be seen, there is a strong texture for 

(110) planes of BCC structure for Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi 

almost with the same peak intensity between these two alloys. How- 

ever, for (200), (211) and (220) planes, there are some mismatch be- 

tween Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi. In another experimental 

study [74], both Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi were prepared 

by vacuum arc melting followed by a high rate of solidification where 

a higher peak intensity was obtained for the (110) crystal texture com- 

pared with the other peaks. Also, a slight peak shift towards the lower 

angles are observed from Al0.5CrCoFeCuNi to Al3.0CrCoFeCuNi. These 

peak shifting can be the consequence of enlarging the lattice constant 

by the addition of Al atoms as tabulated in Table 2. The size of simu- 

lation boX after solidification was increased by increasing the number 

of Al atoms. It can be seen that the volume change from x = 0.5 to 

x = 1.5 was around 4.23% while a considerable volume change of 14% 

was obtained from x = 0.5 to x = 3.0. 

The CNA results illustrated that no apparent elemental segrega- 

tion can be found in the samples proving the uniform distribution of 

the HEA models. These results were interesting compared with the re- 

sults of Zhang et al. (2019) [51] where they applied a high cooling 

rate and found a miXture of three typical structures including Cu-rich 

nano-precipitates of FCC structure, Al-Ni-rich plate of B2 structure, and 

Fe-Cr-rich plate of A2 structure. The CNA Results showed that about 

97% and 96% of atoms were in BCC structure for Al0.5CrCoFeCuNi 

and Al1.5CrCoFeCuNi respectively which is in agreement with the re- 

cent study of Li et al. (2019) [75] for AlCrCoFeCuNi alloy. The nucle- 

ation and growth of BCC phase during solidification is shown in Fig. 3 

for Al1.5CrCoFeCuNi. In Al3.0CrCoFeCuNi about 99% of atoms were in 

other unknown category and no considerable FCC, BCC, HCP (hexago- 

nal close-packed) or icosahedral structures in the sample were found. 

This difference in crystal structure by rising the molar ratio of Al con- 

tent could be due to the difficulty in atomic mobilities as atomic radius 

of Al is bigger than the other elements (see Table 3). The effect of larger 

atomic size of the Al on the structure of the HEAs have been reported 

in some studies [55,57,76]. For example, Sharma et al. (2017) [57] re- 

ported that increasing the Al concentration in AlXCrCoFeNi above the 

equiatomic percentage strongly triggers the glassy structure after solid- 

ification. According to the reports of Li et al. (2008) [76] and Yeh et al. 

(2004) [74], addition of Al as a BCC stabilizer to HEAs can facilitate 

the formation of BCC phase, while Bonisch et al. (2018) [77] and Tung 

et al. [73] reported that elements like Fe, Ni, Co and Mn could form 

HEAs with a FCC structure. 

From the above results, Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi can 

be classified as crystalline HEAs with true miXing of the 6 elements in 

BCC structure, indicating the importance of applying the high cooling 

rates. 

To obtain supercooling and superheating temperatures, the varia- 

tion of the average potential energy of each atom as a function of tem- 

perature were determined during solidification and heating processes. 

As the temperature decreases in the cooling process, the potential en- 

ergy is decreased and the transition temperature as the supercooling 

temperature could be evaluated from the deviation of the potential en- 

ergy from its linear relationship with the temperature[78,79]. Here, the 

changes of the potential energy versus temperature during cooling and 

heating processes with the cooling and heating rate of 12 × 109 K/s and 

10 × 1012 K/s respectively, were plotted for all the samples with differ- 

ent Al concentrations as shown in the Fig. 4. As can be seen, a sudden 

reduction occurred in Al0.5CrCoFeCuNi and Al1.5CrCoFeCuNi where an 

amorphous structure changed to a BCC structure. The extracted super- 

heating and supercooling temperatures are listed in Table 4. 

The calculated MSD of the molten HEAs (2200K) are shown in the 

Fig. 5 and the diffusion coefficient extracted from the slope of these 

curves according to the Eqs. 3. This increase in the slope of the curves 

by the addition of Al shows a rise in diffusion coefficient. The extracted 

diffusion coefficient from the MSD and VACF of HEAs at their superheat 

temperatures and also 2200 K are available in Table 5. As can be clearly 

seen, there is a good agreement between the results of both techniques. 

In addition, the self-diffusion coefficient of each species was extracted 

using VACF analysis for HEAs with different molar ratio of Al and listed 

in Table 5. As the results show, both the methods give almost the same 

outcomes that increasing in Al concentration can lead to a larger diffu- 

Al0.5 CrCoFeCuNi 0.2388 

Al1.5 CrCoFeCuNi 0.2647 

Al3.0 CrCoFeCuNi 0.4785 

Fe 0.1697 

∗ Full Width at Half Maximum 
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Table 3 

Atomic radiuses of each elements used in interatomic potential. 

Fig. 3.  Snapshots  of  atomic  configuration  dur- 

ing nucleation and growth of BCC phase in 

Al1.5CrCoFeCuNi at temperature around  881K 

a)111 ns(nanosecond) b)111.04 ns c)111.08 ns 

d)111.12 ns e)111.16 ns and f)111.2 ns after the 

quenching process.(Only BCC atoms are shown for 

clarity). 

 

Elements Al Cr Co Fe Cu Ni 

Atomic radius (×10−10 m) 1.43 1.24 1.25 1.24 1.27 1.24 

Mass (a.m.u) 26.982 51.996 58.933 55.845 63.546 58.693 

 
 

 

Fig. 4. Potential energy per atom as a function of temperature during the sim- 

ulated quenching and heating process to estimate the value of supercooling and 

superheating temperatures at all samples. 

Table 4 

Estimated superheating and supercooling temperature of all the 

samples. 
 

 Superheating Temp(K) Supercooling Temp(K) 

Al0.5 CrCoFeCuNi 1800 1040 

Al1.5 CrCoFeCuNi 1600 880 

Al3.0 CrCoFeCuNi 1000 700 

 

Table 5 

 
 

Fig. 5. MSD for Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi and Al3.0CrCoFeCuNi at 

2200K . 

 
sion coefficient at 2200K since at this high temperature, light aluminum 

atoms might have a higher mobility. As can be seen in Table 3, although, 

the atomic radii of the Al atoms is higher (about 14%), its mass is lower 

(about 50%) than the other elements. It seems that atoms with a FCC 

structure (Al, Cu and Ni) have a larger diffusion coefficient compared 

with the atoms with a BCC structure (Fe and Cr). The high mobility of 

Diffusion coefficients for HEAs and all species at different temperatures. 
◦ 2 ◦ 2 

Temp D( 𝐴 ) D( 𝐴 ) DAl DCo DCr DFe DCu DNi 
𝑝𝑠 𝑝𝑠 ◦ 

 
◦ 2 ◦ 2 ◦ 2  ◦ 2 ◦ 2 

(K) MSD VACF ( 𝐴 ) ( 𝐴 ) ( 𝐴 ) ( 𝐴 ) ( 𝐴 ) ( 𝐴 ) 

 
HEA(Al0.5 ) 

𝑝𝑠 𝑝𝑠 𝑝𝑠 𝑝𝑠 𝑝𝑠 𝑝𝑠 

2200 0.715 0.68 0.87 0.65 0.55 0.622 0.77 0.725 

1800 0.42 0.41 0.56 0.43 0.36 0.365 0.46 0.365 

Reduction 22%↓ 70%↓ 65%↓ 55%↓ 51%↓ 52%↓ 70%↓ 67%↓ 98%↓ 

HEA(Al1.5 ) 

2200 0.91 0.89 0.915 0.96 0.734 0.745 1.0 0.965 

1600 0.395 0.39 0.405 0.36 0.32 0.36 0.46 0.41 

Reduction 37.5%↓ 130%↓ 128%↓ 125%↓ 166%↓ 129%↓ 106%↓ 117%↓ 135%↓ 

HEA(Al3.0 ) 

2200 1.16 1.19 1.33 1.15 0.98 1.0 1.26 1.15 

1000 0.097 0.082 0.108 0.075 0.065 0.075 0.06 0.058 

Reduction 120%↓ 1095%↓ 1351%↓ 1131%↓ 1433%↓ 1407%↓ 1233%↓ 2000%↓ 1882%↓ 

2 
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Fig. 6. Al mobility during solidification in Al1.5CrCoFeCuNi at temperature around 881K a)111.08 ns b)111.12 ns c)111.16 ns d)111.2 ns after the quenching process. 

The yellow colored atoms represent Al atoms while blue color associated to the other atoms. (The movie of these snapshots from different perspective is available in 

the online version of the article). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Al atoms can be seen in the samples with 0.5 and 3.0 in molar ratio 

of Al. In Al1.5CrCoFeCuNi, Cu atoms showed a higher mobility almost 

in good agreement with the ab-initio calculation of Al1.3CrCoFeCuNi in 

[26,80]. This high diffusion rate for Cu may facilitate its precipitation 

from the matriX, as observed in Santodonato et al. (2015) [26] study in 

Al1.3CrCoFeCuNi and Zhang et al. (2019) [51] study in AlCrCoFeCuNi. 

The mobility of Al atoms is shown in the Fig. 6 for Al1.5CrCoFeCuNi at 

temperature around 881K which shows changing the position of the Al 

atoms (yellow colored one) during the solidification. The main impor- 

tant outcome from Table 5 is that the addition of aluminum will highly 

reduce the super-heating temperature and more interestingly, for x = 3, 

a higher reduction in mobility of the other atoms occurred compared 

with that of aluminum itself that might affect the lack of structure ob- 

tained in the CNA analyses. In fact, the presence of aluminum by re- 

ducing the super-heating temperature will cause a sharp reduction in 

mobility of the other atoms especially copper and nickel ones that fi- 

nally lead to formation of an amorphous structure for x = 3. 

Fig. 7 shows the compressive behavior of the current HEAs with crys- 

talline and amorphous structure. A lower stress was recorded for the 

amorphous structure of the Al3.0CrCoFeCuNi and also no fluctuation af- 

ter UCS was observed for this alloy. A highest stress level at the initial 

stages of plastic deformation was obtained for the Al0.5CrCoFeCuNi, in 

which a secondary hardening was found after the UCS. Also, for the 

Al1.5CrCoFeCuNi a similar behavior was recorded while at the start 

of deformation a negative stress was obtained, indicating that the boX 

Fig. 7. Compression test results for Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi and 

Al3.0CrCoFeCuNi at 300K and strain rate of 1010 . 

was in the negative stress state at the start of compression. In order to 

find the root cause of secondary hardening for the Al0.5CrCoFeCuNi and 

the Al1.5CrCoFeCuNi, in-situ microstructural characterization was per- 

formed and the results were provided in Fig. 8. For this purpose, four 

points were assigned on the stress–strain curves. 
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Fig.   8. CNA   results    during    compression 

test at points illustrated in the Fig. 7 for 

Al0.5CrCoFeCuNi, Al1.5CrCoFeCuNi and 

Al3.0CrCoFeCuNi. In the CNA analysis, each 

atom is colored for identification of atomic 

structures as blue for BCC atoms, green for 

FCC atoms, red for HCP atoms and white for 

others unknown categories. (For interpretation 

of the references to color in this figure legend, 

the reader is referred to the web version of this 

article.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first row of Fig. 8 shows four snapshots for point aAl0.5, bAl0.5, 

cAl0.5 and dAl0.5. As can be seen, by the start of plastic deformation, a 

phase transformation from BCC structure (blue area) to the other phases 

occurred during compression. It is interesting that at point cAl0.5 where 

can be considered for the start of hardening, a higher phase transfor- 

mation was recorded and point dAl0.5 demonstrates the highest phase 

transformation and lowest amount of the BCC structure. Similarly, for 

Al1.5CrCoFeCuNi, the same trend (second row) was obtained, showing 

the occurrence of TRIP. It should be mentioned that stacking faults (SFs) 

were detected as HCP structure inside FCC structure. Previous report 

[81] indicated the considerable effect of the stacking faults formation 

on the hardening of high entropy alloys. Therefore, it can be concluded 

that the compressive behavior of high entropy alloys can be influenced 

by the TRIP mechanism specially when stacking faults can be formed as 

a result of the phase transformation. Finally, no considerable change 

in CNA results (third row) was detected for amorphous structure of 

Al3.0CrCoFeCuNi in which no fluctuation was recorded after UCS. 
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Conclusions 

The solidification behavior of AlXCrCoFeCuNi HEAs from 2200 K 

to 300 K was investigated in this study. In addition, the compressive 

behavior of the solidified alloys was investigated. From the simulation 

results, the following conclusions can be drawn: 

1. The RDF results, XRD and CNA analyses indicated that the 

addition of Al at a molar ratio of 3.0 could lead to an amorphous 

structure due to the reduced mobility of other atoms. Also, A 

strong texture of (110) was obtained for crystalline alloys after the 

solidification which is in agreement with experimental results. 

 

2. The distribution of elements depicted that no phase segregation was 

formed after solidification which could be due to the higher cooling 

rate (12 × 109 K/s). 

 

3. MSD and VACF analyses were used for diffusion coefficient 

derivation and acceptable agreement in extracted results were shown. 

They showed that increasing in Al concentration results in higher 

diffusion coefficients of all the elements at 2200K. 

 
 

4. It was obtained that the addition of aluminum, highly reduces the 

super-heating temperature of HEA and therefore, the mobility of the 

other atoms especially nickel and copper will be sharply reduced 

that causes the formation of an amorphous structure for x = 3 in this 

study. 

 

5. The compressive stress–strain curves indicated that a secondary 

hardening can be observed for HEAs due to the TRIP mechanism and 

formation of SFs. It was found that crystalline alloys of this study has 

a higher UCS compared with amorphous structures. 

In future work, super-fast solidification behavior of other types of 

HEAs with almost the same melting temperature of elements will 

be studied and validated in experiment to prepare a homogeneous 

single-phase HEA with a focus on FCC (HCP) structure and a low or 

negative stacking fault energy (SFE). 
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