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 Human-Agent Team Dynamics: A Review and Future Research Opportunities 

ABSTRACT  

Humans teaming with intelligent autonomous agents are becoming indispensable in work environments. 

However, human-agent teams pose significant challenges as team dynamics are complex arising from the 

task and social aspects of human-agent interactions. To improve our understanding of human-agent team 

dynamics, we conducted a systematic literature review. Drawing on Mathieu et al.’s (2019) teamwork 

model developed for all-human teams, we map the landscape of research to human-agent team dynamics, 

including structural features, compositional features, mediating mechanisms, and the interplay of the 

above features and mechanisms. We reveal that the development of human-agent team dynamics is still 

nascent, with a particular focus on information sharing, trust development, agents’ human likeness 

behaviors, shared cognitions, situation awareness, and function allocation. Gaps remain in many areas of 

team dynamics, such as team processes, adaptability, shared leadership, and team diversity. We offer 

various interdisciplinary pathways to advance research on human-agent teams.  

Keywords:  human-agent teams, human-AI collaboration, intelligent agents, team dynamics, literature 

review 
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I. INTRODUCTION  

As artificial intelligence (AI) and machine learning continue to evolve, the interdependent 

interactions between intelligent agents (IAs), such as Chat-GPT, Siri, Alexa, and Google Assistant, 

are becoming increasingly integral to daily life [1]. This growing prevalence has led to the 

emergence of Human-Agent Teams (HATs), where IAs perform a variety of roles, such as task 

automation, augmentation, and decision-making [2, 3]. These evolving roles are transforming the 

nature of work and redefining the dynamics between humans and technology [4]. Consequently, 

there's an imperative to rethink team structure and composition, processes, and evaluations for 

enhanced HAT effectiveness. Apple's 1987 Knowledge Navigator video [5] serves as an early 

conceptualization of the dynamic interplay between HATs. Also, in video game settings, such as 

Fortnite, we have seen IAs assist human players by performing specific tasks. They offer a glimpse 

into a future where technology is intricately woven into human endeavors. We are now on the 

verge of realizing this vision in our daily work. For instance, in surgical settings, a collaborative 

triad emerges among human surgeons, dedicated support staff, and autonomous robotic systems, 

illustrating a dynamic partnership that allocates responsibilities across a spectrum of intricate tasks 

and meticulous oversight [6]. Research has shown that HATs can be more effective in task 

completion and can have slightly better team satisfaction than all-human teams [7]. HATs will 

soon be a significant feature in work environments, augmenting task and social aspects of human-

agent collaboration [8, 9]. Nevertheless, the road to integrating Intelligent Assistants (IAs) into the 

future of work is fraught with multifaceted challenges—ranging from technical and social to 

ethical and organizational [10, 11]. For example, an excessive dependence on the 

recommendations provided by IAs can inadvertently perpetuate biases, leading to unforeseen 
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outcomes [12]. To successfully collaborate with IAs, employees will need to cultivate a new set 

of competencies that they currently lack [13].  

Klein, et al. [14], in their seminal paper on HATs, envisaged agents in future to be fellow team 

members, akin to a novice worker, with humans. Early research on IAs was predominantly geared 

toward augmenting their autonomous and intelligent capabilities, often eclipsing the nuances of 

the human dynamics aspect [14], by fostering IAs’ capabilities through design frameworks such 

as the Belief–Desire–Intention of agency [15] and Knowledgeable Agent-Oriented System [16]. 

One notable initiative was the CALO (Cognitive Assistant that Learns and Organizes) project, 

launched by the Defense Advanced Research Projects Agency (DARPA) in 2003, aiming at 

developing IAs capable of collaborating with humans in complex tasks [17]. Early HAT 

researchers [e.g., 18] proposed that a paradigm shift in the development of IAs was required for 

effective HATs. Along this line, autonomous and multi-agent research communities have called 

for investigating sophisticated and interdependent interactions between humans and agents [e.g., 

18, 19, 20], where IAs and humans exhibit adaptive and dynamic cognition and behavior. Since 

then, AI has matured manyfold. Recent breakthroughs in deep learning and natural language 

processing (Open AI Five, Chat-GPT, Dall-E) have allowed AI systems to expand beyond 

repetitive or computational tasks and perform complex and creative tasks more accurately and 

efficiently. These technological strides, while significant, are insufficient to address the 

multifaceted nature of dynamics in HATs [21]. The endeavor to integrate agents as functional 

“team players” in these dynamics remains fraught with challenges, such as fluid and adaptive task 

and role demands, and complex social relationships [1, 9, 22, 23]. Given the escalating prominence 

of IAs and their increasing roles in teams, coupled with the diverse landscape of existing research, 

a thorough review is warranted to unify our understanding. We, therefore, conduct a narrative 
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review [24] to provide a nuanced examination of the current landscape, with a special emphasis 

on the interplay between social and technical elements in HATs. 

Drawing on extensive human teamwork literature, we explore how this knowledge can inform the 

design and functioning of HATs. As IAs attain higher levels of sophistication, they are increasingly 

perceived as comparable to human team members. Thus, we employ Mathieu et al.’s teamwork 

model [25] as an analytical model to evaluate the structural features, compositional features, 

mediating mechanisms, and their interplay in HATs. This model serves as a holistic lens for 

understanding the intricate, recurring exchanges in teamwork. It is well-suited for assessing 

human-agent teamwork given its dynamic, human-centric focus, considering team formation, 

teamwork design, contexts, team processes, and team emergent state. It differs from agent-centric 

frameworks [e.g., 26], emphasizing instead the pivotal role of humans and team interactions in 

team dynamics. While agents can be designed to understand contextual affordances and constraints 

and act accordingly, IAs also risk engendering negative attitudes [27] and algorithmic anxiety [28]. 

Hence, despite the careful design of agents, human perceptions and attitudes toward human-agent 

interactions can change the whole dynamics. A dynamic, human-centric perspective can help 

researchers and practitioners reflect on what we know and need to know about optimizing human-

agent team (HAT) dynamics. Based on a review of 101 articles published between 2004 and 2021, 

we have highlighted several research opportunities to improve HAT dynamics in work 

environments. This study synthesizes and discusses the nature, theoretical perspectives, and 

patterns of HAT dynamics. It is hoped that researchers and practitioners can pay more attention to 

value creation in the adoption and management of HATs in organizations, which has been lacking 

in the current research around human-AI collaboration [29]. 
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The rest of the paper is structured as follows. In the second section, conceptual foundations for the 

main elements of this research, i.e., agents and the nature of HATs, are laid. Section 3 describes 

the methodology for this study, and the findings are explained in Section 4. Section 5 discusses 

the implications of the findings and proposes an agenda for future research.  

II. CONCEPTUAL FOUNDATIONS 

A. Agents  

Agents are computer systems situated in an environment capable of autonomous actions to fulfill 

designated objectives within that setting [30]. To quality IAs, they must exhibit agentic 

characteristics such as reactivity, proactivity, mobility, goal-orientation, communication, 

cooperation, coordination, character and the ability to learn [2, 30-32]. Originating from the 

fusion of Artificial Intelligence (AI) and distributed programming, the concept of IAs has 

evolved significantly since the 1950s, with major advancements occurring in the 1990s [33]. 

Recent advancements in machine learning, computational power, natural language processing, 

and the availability of big data have further refined IAs [34]. There has been substantial work 

recently in the area of reinforcement learning, an area of machine learning that has helped 

optimization of IA’s behavior by training them to randomly explore the environment and 

increasingly exploiting the knowledge already learned from experiences [35].  

IAs can contribute to a breadth of processes, from natural language processing for 

communication, knowledge discovery, knowledge representation, and automated reasoning to 

augment decisions to the optimized control of complex processes [36]. These agents have found 

applications across diverse sectors, including healthcare, military operations, and urban search 

and rescue[35]. However, a notable gap remains in optimizing their collaborative interactions 

with humans, a critical aspect for the successful deployment of IAs in team settings. 
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B. Human-Agent Teams 

The increasing complexity of modern organizational tasks has led to a growing reliance on teams 

as a strategic approach to problem-solving [37]. This trend has been further amplified by 

technological advancements that facilitate the integration of IAs into human teams, where IAs and 

humans work together interdependently to achieve a common goal [32].  The literature on HATs 

is still nascent, and the definition and understanding of HATs are still evolving. We propose the 

following definition of HATs by adapting definitions from Mathieu, et al. [25] and O’Neill, et al. 

[38]. A HAT (a) consists of one or more humans and one or more IAs who (b) socially interact 

(face-to-face or virtually); (c) possess one or more common goals; (d) exhibit interdependencies 

with respect to workflow, goals, and outcomes; and (e) have distinct roles. 

C. Opportunities and Challenges for Human-Agent Teams  

Distributed work between human and non-human entities (e.g., animals) is not a new phenomenon 

[39]. However, human teams with artificial members (e.g., IAs) bring a unique set of opportunities 

and challenges. HATs offer a complementary set of abilities: humans excel in areas such as 

perception, judgment, induction and improvisation [40], whereas IAs bring computational power, 

speed, and the ability to perform simultaneous operations. The synergy can be particularly 

advantageous in complex, volatile environments where human teams may struggle. For instance, 

in situations where human teams face complex problems and multitasking, IAs can leverage their 

computational capabilities to reduce complex problem spaces to more manageable dimensions 

[41]. 

The intricate dynamics of HATs are compounded by a multitude of social factors, such as trust 

and fairness [42]. Potential challenges for HATs include difficulties in adaptation for humans to 

work with IAs as team members, coordinating interdependent activity, establishing, and 
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maintaining common ground among team members and recovering from individual or team 

breakdowns. The challenge also stems from IAs’ limited natural languages and shared cognition 

capabilities [43]. Given these complexities, there is a pressing need for frameworks that can 

harness the potential benefits of HATs while mitigating their inherent challenges. 

III. METHODOLOGY 

The research design for this study includes three main components. The first component is the 

identification of relevant literature. Section 3.1 delineates how the literature search was conducted 

and how it was narrowed down. The second component is a bibliometric analysis of the identified 

literature described in section 3.2. The third component is the concept-centric analysis based on 

[44]. The results of this analysis are presented in Section 4. 

A. Data Collection 

The literature review was conducted using the main elements of the evidence-based approach: 

Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Protocol [45, 46]. 

The data collection was administered using a four-step process (Figure 1) to ensure objectivity, 

transparency and reliability [47]. Consistent with prior review studies in information systems 

research [e.g., 48], we conducted our search in the Scopus database. This database was chosen as 

it provides a comprehensive database of information systems, computer science, artificial 

intelligence conference proceedings and journals. Moreover, these databases index other 

potentially relevant databases for our search, such as ACM, IEEE and Springer.  
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Figure 1. Article identification and selection process 

In the first step, we identified the keywords for our search by focusing on the seminal publications 

in the field. These keywords, depicted in the first box of Figure 1, were adapted to align with our 

research objectives. The search included different types of academic publications such as journal 

articles, conference papers, book chapters, and workshop papers. We excluded all non-academic 

publications. We confined our search to publications from 2004 onward, as autonomous and multi-

agent research communities mainly began research in understanding IAs’ role in teams and 

developing automated systems with sophisticated team player qualities in the early 2000s. Two of 

the most cited publications [14, 18] in the field are from 2004. The initial search resulted in 710 

articles. After removal of duplicates and entries that were not research output, we screened 672 

articles by reading the titles and abstracts of these papers. Any case that was not clear was 

discussed amongst the research team, and inclusion/exclusion decisions were made together.  

In the third phase of the process, we assessed the remaining 290 articles for full-text eligibility. In 

this step, we excluded 205 articles that did not fulfill the criteria for HATs that we defined in 

Section 2.2. This led to the exclusion of articles that focused on agent-only teams or only dealt 



 

9 

 

tangentially with human involvement. Studies that solely explored interpersonal dynamics 

between a human and an agent—such as affection or gaze—were also omitted. Notably, a 

significant portion of these studies originated from the healthcare sector. These studies were 

excluded as they do not meet the working definition of a HAT (i.e., no common goal and not 

performing organizationally relevant tasks). Subsequently, a thorough review of the remaining 

studies (N = 95) led to the inclusion of 6 additional papers based on cross-references. This final 

body of literature for our review amounted to 101 articles dating from 2004 to 2021. 

B. Bibliometric Descriptors 

The literature on HATs has been steadily growing over the last two decades, with a marked surge 

in recent years, as seen in Figure 2. In terms of research outlets of the reviewed publications, most 

of the papers were published in conference proceedings (51 papers, 50.5%), followed by journal 

articles (37 papers, 36,6%), workshops & symposiums (11 papers, 10.9%), and book chapter (2 

papers, 2%). The preponderance of conference proceedings as the primary outlet underscores both 

the emergent nature of Human-Agent Team (HAT) research and the exploratory scope of existing 

studies, many of which present work-in-progress or preliminary findings. This trend suggests that 

the volume of literature on this subject is poised for further growth. 

 

                 Figure 2. Development of HAT literature over the years 
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The reviewed papers included a diverse mix of empirical (n = 68, 67.3%) and conceptual (n = 

33, 32.7%) research. Notably, the military and defense sectors dominate the empirical 

landscape, accounting for over half of such studies. Gaming and pedagogy follow as the next 

most prevalent domains, the three domains collectively making up over 70% of empirical 

research. The remaining domains, such as rescue operations, are less represented.  

Methodologically, the majority of studies (n = 46, 67.3%) employ experimental designs, while 

25% focus on implementation and prototypes (n = 17). This suggests a design-centric research 

orientation aimed at advancing agent technology for HATs. Three papers adopted the case 

study approach (4.4%) and two papers utilized interviews (2.9%).  

IV. FINDINGS 

Most of the traditional research on teams (human-only) has predominantly been guided by IPO 

(Input-process-outcome) and lately by IMO (Input-mediating mechanisms-output) frameworks. 

However, as the nature of teams evolves, teams are now widely viewed as dynamic, multilevel, 

and complex systems [25], which can be attributed to factors such as team members’ 

characteristics (e.g., attitudes, behaviors, and cognitions), interactions, how interactions evolve, 

and how contexts change [49]. Mathieu, et al. [50] proposed a new research framework to cater to 

the temporal nature and dynamic, multilevel, and complex view of the teams. This framework 

conceives mediating mechanisms, and structural and compositional factors as overlapping and co-

evolving aspects in teams. Following Mathieu et al.'s framework, which accounts for these 

complexities, this review employs a concept-centric approach [44] to analyze HATs. Our analysis 

matrix, based on predefined units from Figure 3, serves as the foundation for this review and 

subsequent analyses of the highly dynamic and complex nature of HATs.  
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Figure 3. Teams Framework 

A. Structural Factors 

Structural factors encompass both team and task structure. Mathieu, et al. [25] define team 

structure as the “means by which the team breaks down a large or complex task that exceeds the 

capacities of any one individual into smaller parts” (p.455). Means include the formal structure 

of the team and the implicit structure concerning interdependencies among team members, tasks, 

and outcomes. Team virtuality adds a third dimension to the structure. In our review, we identified 

20 studies that either focus on or incorporate these structural factors as critical elements in HATs. 

These studies primarily explore function allocation, various team structures (e.g., functional, 

divisional), task distribution, and the role of virtuality in HATs. 

Team Structure and Structural Contingencies 

Research underscores the significance of team structure in influencing various teamwork outcomes 

such as cohesion, trust, interdependence, and confidence within HATs [9]. A system design 

method has been proposed to break down the task goals and capabilities of both humans and IAs 

to establish a robust team structure [51]. Contingency theory has also been adopted to suggest that 



 

12 

 

external factors determine the team structure, implying no one-size-fits-all structure [52]. Teams 

that can adapt their structure to the uncertainties of tasks and environments are more likely to result 

in better team performance. Regarding the specific structure, empirical studies indicate that 

functional HATs generally outperform divisional teams, except in uncertain conditions [53, 54]. 

Gao's experiment revealed that a shared pool team structure resulted in lower workload ratings 

compared to a sector team structure, albeit without a significant difference in task performance 

[55]. In the shared pool structure, human participants shared the responsibility of coordination with 

all agents, while in the sector structure, human participants were responsible for coordination with 

their sector (human participants were responsible for their own allocated agents).  

Function allocation, defined as “the design decision in which work functions are assigned to all 

agents in a team, both human and automated” [56], is crucial for effective team coordination. 

Despite its importance, this area remains underexplored. Existing research primarily focuses on 

design requirements and measurements for effective function allocations, such as workload, 

interruptions, and stability of the human work environment [57]. Function allocation is a 

challenging aspect in the design of HATs as many issues arise only in actual operations and cannot 

be predicted by simulation. Moreover, concerns and unpredictability inherent in human-agent 

interactions further complicate the challenge of effective function allocation [56]. In the current 

research, function allocation has only been studied in the context where humans are responsible 

for function allocation. 

Task Structure: Scope, Complexity, and Interdependence 

The team structure is contingent on the task structure. When task scope and complexity increase, 

a team requires more complex configurations to address task demands. Few studies have focused 

on task scope, complexity and interdependence. Smets, et al. [58] argue that for the effectiveness 
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of HATs, organizational structure should not impede the autonomy of the participating agents and 

agents should be able to disobey a policy. Agents who are not bound to predefined policies all the 

time are essential in complex task environments, as the changing scenarios might not be covered 

by the policies. In response to task complexity, Pico-Valencia, et al. [59] developed an ontology 

for HATs using a human-agent collective approach to optimize tasks with agile teaming sub-

ontology. Johnson, et al. [60] caution that increasing agent autonomy without addressing task 

interdependence can compromise team performance.  

Research on task allocation within HATs remains sparse [61]. Flushing, et al. [62] propose a task 

allocation solution for HATs with multiple agents, specifically designed for long-duration mission 

scenarios requiring shift work. Dynamic tasks involving spatial and temporal complexities, such 

as disasters, present another challenge for task allocation. Khani, et al. [61] developed a dynamic 

task allocation algorithm to allocate tasks of human-agent rescue teams to improve rescue time 

and space. Waa, et al. [63] introduced the concept of team design patterns for dynamic task 

allocation in HATs in the context of moral decision-making. They identified different team 

patterns for moral decision-making, identifying various patterns ranging from human-only to 

autonomous decision-making by IAs.  

Team Virtuality 

The concept of team virtuality explores alternatives to face-to-face interactions among team 

members. Research in this domain primarily focuses on the deployment of virtual agents and 

mixed-reality environments within HATs. Van Diggelen, et al. [64] have formulated an approach 

that leverages a virtual learning environment, wherein IAs contribute to team training.  Barange, 

et al. [65] have investigated both task-oriented and pedagogical behaviors of agents in virtual 

environments, aiming to enable proactivity and improve engagement. Similarly, Barange, et al. 
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[66] developed an architecture for agents operating in collaborative virtual environments with the 

ability to coordinate their activities using natural language communication. Recent advancements 

also include research on hybrid physical-virtual environments; for instance, Phan, et al. [67] 

designed a testbed for experimenting with geographically dispersed HATs, showing that a wide 

variety of physical spaces could be interconnected for collaboration. 

B. Compositional Factors 

Team composition, which concerns team member characteristics and the impact of diverse 

characteristics on team processes and outcomes [50], has been relatively underexplored in the 

context of HATs. Our review identified seven studies focusing on this aspect. Johnson, et al. [68] 

developed a taxonomy for human-agent interactions within military settings, emphasizing the 

interplay between structural and compositional factors like skill and authority differentiation. 

However, they fell short of specifying which member characteristics warrant attention. Our review 

found that the limited team composition research has considered member attributes and functional 

diversity in HATs. Hanna and Richards [69] examined the influence of personality traits on team 

productivity, while Silva, et al. [7] empirically demonstrated the advantages of hybrid HATs in 

role-playing game scenarios, implicitly showing the benefits of team diversity. Their findings 

suggest that hybrid teams outperform human-only teams in task completion and are rated higher 

in terms of satisfaction, dependability, and reliability. This is corroborated by studies that have 

explored functional diversity, such as expertise, as a determinant of improved work allocation 

 [70, 71]. More diversified teams performed better; however, the context may moderate the 

relationship [70]. Li, et al. [72] further substantiate this by showing that complementary policy 

adaptation enhances team performance. Damacharla, et al. [73] have outlined guidelines for 
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effective HAT composition, including role identification, rule establishment, and specialized 

training for human members, etc.  

C. Mediating Mechanisms 

Mediating mechanisms serve as the linchpin that elucidates the intricate relationships among team 

composition, structural factors, and team outcomes. It explains how and why teams operate 

differently, given similar team compositions, and task, technological, and organizational 

structures. Information sharing, emergent states, and team processes underlie mediating 

mechanisms. Scholarly attention to these mediating factors is on an upward trajectory. Our 

comprehensive review unearthed 36 studies that delve into these pivotal mechanisms. 

Information Sharing 

Information sharing in HATs is significantly reduced compared to human-only teams [64]. For 

effective teamwork and to maintain common ground in teams, team members should actively share 

relevant pieces of information. Demir, et al. [74] compared the information sharing in HATs to 

human-only teams and found that HATs had lower levels of information sharing in terms of 

pushing and pulling information than the all-human teams. In their study, pushing information 

involved sharing general status updates with team members, and suggestions and information 

about planning ahead. Pulling information involved requesting information before acting and 

inquiring about the status of other team members in the task. They argue that the member of HATs 

has insufficient need anticipation ability due to lower levels of pushing information compared to 

members of the all-human teams. The timing of the information sharing by agents has also affected 

the performance of the HAT and the behavior of the human actors within this team. Therefore, it 

is suggested that the timing of information sharing by IAs be manipulated to modulate human 

engagement within a HAT [75].  
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Replacing humans with agents that respond faster improves team performance in time-constrained 

environments. Goodman, et al. [75] argue that the development of further awareness of the role of 

agent timing within dynamic team environments can positively influence the design of future 

HATs. Research has been undertaken to improve information sharing in HATs. Yazdani, et al. 

[76] developed an infrastructure that enables IAs to share information and support other teammates 

in performing joint actions. Cook, et al. [77] investigated the impact of the visual features intended 

to improve information access in HATs. Hanna and Richards [78] emphasized the importance of 

designing IAs capable of using multiple methods of communication (verbal and non-verbal) with 

humans. The results from their experiments show that multiple methods of communication impact 

the overall performance of human-agent teamwork. Moreover, non-verbal communication from 

IAs was more effective than verbal communication because of the limited natural language 

processing abilities of IAs. 

Technologies that help agents in sharing information with human team members, such as user 

displays that are tailored with context-specific information foster the development of common 

ground among team members in HATs [79]. 

Schaefer, et al. [79] examined the advantages and limitations of user displays to communicate an 

IA’s decisions, intent and the factors considered by the agent in coming to a decision. Their 

research suggests that custom-designed user displays, tailored to the specific dynamics of the team, 

can significantly enhance the ability of IAs to convey their intentions. When integrated with 

conventional audio-visual communication tools, these displays can further optimize collaborative 

efforts. The study scrutinized four distinct types of user displays, each suited to different team 

configurations. For instance, one such display was engineered for teams comprising a single 

human and a single agent, enabling the agent to transparently communicate its decision-making 
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process. Flathmann, et al. [80], on the other hand, introduced a comprehensive framework that 

accommodates both natural language and data-centric communication. This multi-layered 

framework consists of IA interaction, human integration, and a layer of supporting technologies, 

thereby ensuring seamless collaboration between human and agent team members. 

Team Processes 

Team processes reflect the interplay of team members’ “cognitive, verbal, and behavioral activities 

directed towards organizing taskwork to achieve collective goals.” [25] These processes are 

categorized into three dimensions: transition, action, and interpersonal processes [81]. Transition 

processes refer to the transition between previous taskwork and upcoming work. Examples of 

transition processes include mission analysis, goal specification, and strategy formulation. Action 

processes occur during the execution of taskwork, including monitoring of progress, system 

monitoring, team monitoring and coordination. Interpersonal processes are related to teamwork, 

encompassing conflict management, motivation, and affect management. Wynne and Lyons [82] 

argue that these team processes will significantly influence perceptions of IAs, whether viewed as 

partners or tools. Bradshaw, et al. [83] advocate for more adaptive team processes needed for 

HATs. Instead of adhering to policies set for the system, they suggest enabling IAs to reason about 

relevant trade-offs and take appropriate measures in situations for enhanced team performance. 

Research on human-agent transition processes remains scant, although Van Diggelen, et al. [84] 

introduced reusable team design patterns to address the gap. Team design patterns, consisting of 

behavior patterns, positive and negative effects, conditions to use, and design rationale, can inform 

team members to cope with common challenges arising from team transition processes. The 

authors noted that more research is needed for artificial team members to recognize team design 

patterns and adapt their behaviors. 



 

18 

 

Coordination and collaboration are important facets of the action and interpersonal processes. The 

concept of collaboration is the means of realizing HATs to assist with decision-making and 

overcome the physical separation between humans and agents. Schneider, et al. [85] developed a 

framework for understanding coordination in HATs and suggested while designing IAs for HATs; 

designers should consider coordination mechanisms (i.e., tools used by the team to coordinate, 

such as plans and expectation-setting used in preplanning and debriefing), moderators of 

coordinating behaviors (e.g., training and team building), and internal models (e.g., shared mental 

models) used to coordinate. Coordination in HATs should be considered across the full spectrum, 

ranging from fully explicit to fully implicit. Multiple ontologies for coordination and collaboration 

have been proposed by Pico-Valencia, et al. [59] to help agents understand taskwork and teamwork 

and facilitate action and interpersonal processes.    

The specific ways that humans and agents interact with each other, known as interpersonal 

processes, are key to how well they work together in HATs. Neef [86] has delineated a 

comprehensive taxonomy for HAT collaborations, identifying eight distinct types based on the 

nature of collaboration and coordination mechanisms. Four of these types — static division of 

labor, adjustable automation, mixed-initiative collaborations, and adaptive automation — are 

intrinsically linked to task design and the interpersonal dynamics between human and agent team 

members. Extant research on interpersonal processes has mainly focused on mixed-initiative 

collaborations [58, 66, 69, 87-90], where humans and agents negotiate who will do what [86]. 

Other types, such as static division of labor [9, 74], adjustable automation [83, 91] and adaptive 

automation [92], have not received considerable attention. Static division of labor implies that 

there is a permanent division of tasks between humans and agents. Adjustable automation means 

that the level of autonomy can be adjusted by human team members. Adaptive automation is the 
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situation where the agent can alter its level of automation in response to the performance and state 

of the human operator [92]. One such example is the communication breakdown between humans 

and agents during a team task studied by Yusuf and Baber [93] in the scenario of forest fire 

searching by a team of humans and an IA. As HATs evolve, more research needs to be tailored to 

these three types, particularly adjustable and adaptive automation, given their increasing 

prevalence in emerging technologies. 

Emergent States 

Emergent states are “cognitive, motivational, and affective states of teams [that are] . . . dynamic 

in nature and vary as a function of team context, inputs, processes, and outcomes.” [81]. Trust and 

member likeness (e.g., human-like decision-making for IAs) received considerable attention in 

HAT research; however, it has mainly focused on human trust in IAs [94]. Hou's IMPACT model 

[95] delineates six pivotal elements—Intention, Measurability, Predictability, Agility, 

Communication, and Transparency—that underpin human trust in IAs. Empirical studies 

corroborate that trust enhances the congruence of mental models between humans and IAs [96]. 

Drnec, et al. [88] found that trustworthiness tends to be improved and workload reduced when 

humans’ psychophysiological signals were incorporated to help build shared mental models in 

HATs. Fan et al. [97] conducted research that demonstrated how developing an understanding of 

when to trust and when not to trust the recommendations of IAs can lead to better decision-making, 

situational awareness of the critical issues associated with agents’ errors, and trust in the agents. 

This, in turn, helps establish better trust in IAs. Ulfert and Georganta [94] offer a comprehensive 

model of team trust, incorporating both human and IA perspectives, and identify ability, integrity, 

and benevolence as antecedents. Trust repair mechanisms, such as effective explanations and 

expressions of regret, are posited as essential for sustaining inter-member trust after a mistake by 
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offering an effective explanation of the issue and expressing regret [98]. On the other hand, human 

team members' over-trust in the IAs leads to complacency [99]. Over-trust is the condition where 

an individual, either intentionally or out of habit, places greater trust in another person or entity 

than is justified based on a rational and unbiased evaluation of the circumstances [100]. The 

examination of over-trust remains predominantly unexplored.  

Transparency is crucial for building trust in HATs. When IAs elucidate their reasoning processes, 

they not only bolster human trust [101, 102] but also enhance group identification [102], resulting 

in improved team performance. Chen, et al. [26] argue that as agents are transitioning from tools 

to artificial teammates, there needs to be bidirectional transparency where both humans and agents 

understand each other's decision-making processes. To facilitate this, they introduced control 

mechanisms that allow humans to provide input to agents [26]. Similarly, Calhoun, et al. [103] 

used a chat box for the operator to input information to the agent. A simple addition of a 

conversation channel (chat box) between operators and agents can increase perceived 

transparency. Stevens and Galloway [104] propose a measure of uncertainty, designed to empower 

IAs with the capability to discern whether a human team member or the entire team is grappling 

with uncertainty, thereby signaling the need for enhanced IA transparency.  

There has been limited research on mediating mechanisms, such as conflict resolution, within the 

interpersonal dimension of HATs. Existing studies predominantly concentrate on resolving 

conflicts among human team members [53], leaving the dynamics of conflict resolution between 

humans and IAs largely uncharted territory. 

In the context of emerging states, development in IAs has been restricted in terms of studying 

human likeness in agents. Wynne and Lyons [82] introduce the concept of autonomous agent 

teammate-likeness (AAT) as perceived by a human operator. They suggest that perceived AAT be 
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positively related to HAT performance/effectiveness. AAT can be fostered when agents show 

transparency [102], especially when the agents utilize a tit-for-tat or an individualistic strategy 

instead of a cooperative strategy while interacting with human team members. Wang's simulation 

study [105] reveals that agents employing regret-based decision-making, which is more human-

like decision-making (member likeness), may compromise team efficiency but enhance human-

agent rapport. 

D. Compositional and Structural 

Compositional and structural factors represent variables that overlap with both compositional and 

structural features, such as skills and authority differentiation [25]. In the context of HATs, team 

roles [71, 106], team size [53, 54, 107], and skill and authority differentiation [107] have been 

studied.  

Team roles are defined by the characteristics of the position itself, or by the person in the given 

position [108]. Figueroa, et al. [106] equipped IAs with abilities to identify team roles based on 

team member interactions, aiming to maintain an adequate balance of roles in teams. Schulte, et 

al. [71] further studied the core and peripheral roles of IAs within HATs, offering design patterns 

to specify responsibilities for those roles. 

Authority and skill differentiation are both vital issues in HATs. While humans predominantly 

hold decision-making power in current HATs, studies like that of Paruchuri et al. [107] 

demonstrated the negative impacts of human biases on resource allocation; decisions made by IAs 

for resource optimization proved to be effective for medium to large-sized teams. This suggests 

IAs may be suitable to hold authority for specific task situations. Authority differentiation, “the 

degree to which decision-making authority is vested in one single individual or is distributed 

among team members” [50] is, therefore, a factor to consider when composing a human-agent 
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team. Skill differentiation has been shown to affect the performance of HATs, with empirical 

evidence suggesting that teams comprising skilled human members are less susceptible to 

inappropriate IA recommendations [97]. Allocation of experts seems beneficial for human-agent 

collaboration, where IAs can focus on what they are good at.  

When it comes to team size in HATs, research has so far mainly focused on scenarios with a single 

human and single agent. While some studies have ventured into exploring larger team 

configurations [e.g., 53, 54], coordination between members in these studies remains rudimentary. 

According to Neef [86], the coordination dimensions proposed include standardized, human, 

controlled, joint and agent-controlled coordination. Most research to date on HATs involves 

humans in command, as shown in Table 1. The research so far has not considered an agent in 

command scenarios in HATs. Many studies do not explicitly mention who the leader is in a team, 

barring exceptions such as [70], but it is implied that a human is in command of the team. Mixed 

initiative coordination (situation-driven control, hybrid command) is mainly studied in the space 

context, with most research in this category related to experiments for human-agent missions in 

space. The reviewed articles included only two studies that had situation-driven control 

coordination and one study with hybrid command. 

Table 1. Types of coordination in HATs 

Standardized Co-

ordination 

Human Controlled Coordination Joint  

Coordination 

Agent 

Controlled 

Coordination 

Situation Driven 

Control: function 

allocation between 

agents and humans 

in accordance with 

situations [56, 57]  

 

Human in Command  

• 1 human and 1 IA [71, 79, 96, 97, 101]  

• 1 human an 2 IAs [105, 109]  

• 3 humans and multiple agents in large teams 

[110]  

• Multiple humans and 2 IAs [70]  

• 2 humans and 2 IAs [60, 76]  

Hybrid 

Command 

independent 

human and agent 

with a common 

main goal but 

different sub-

goals [79]; some 

Agent in 

command 

(i.e., agent 

as a team 

leader) 
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• 3 humans and multiple agents in large teams 

[55] 

• 1 human and multiple agents [26, 53, 77, 111]  

  

processes are 

managed solely 

by IAs and some 

processes require 

approval from 

humans (Wright 

et al., 2014) 

 

E. Structural Factors and Mediating Mechanisms 

Structural and mediating variables simultaneously represent part of structural team features and 

the mediating mechanisms [25]. The research on structural and mediating factors is not well 

established in HATs and has scarcely dealt with team adaptability and shared leadership. Other 

structural and mediating variables, such as boundary spanning and team empowerment, are mainly 

unexplored so far.  

Previous research on team adaptability has primarily focused on the adaptability of IAs. 

Specifically, researchers have studied the concepts of agent autonomy, adjustable autonomy, and 

policy adaptation in HAT research. Adjustable autonomy, for instance, enables agents to assume 

control over resource-intensive tasks when human members are overwhelmed,  thereby allowing 

humans to focus on tasks where a human’s role is indispensable [92]. Wright, et al. [110] 

categorize automation levels into Fully Autonomous and Semi-Autonomous, with the former 

capable of adapting to the environment and assisting the team in accomplishing tasks. Preliminary 

work by Tweedale [112] aims to enhance automation levels by developing interoperable and 

scalable cognitive architectures. These architectures are designed to support multiple agents in 

complex environments by incorporating rules and functionalities. Li, et al. [72] found that teams 

with adaptive agents outperform those with static agents, particularly in dynamic settings. In highly 

dynamic environments, mutual adaption based on the characteristics of other team members 

improves team performance in HATs [72]. 
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Shared leadership research in HATs deals with shared responsibility and leaderless teams where 

influences are distributed to humans and agents. Van Diggelen, et al. [90] propose a solution for a 

leaderless HAT with the introduction of IA as an ad-hoc leader for a limited time based on the 

requirements or needs of the team. This can create a peer-to-peer team structure, devoid of 

permanent leadership, where agents collaboratively formulate plans and strategies. 

F. Composition Factors and Mediating Mechanisms 

The interplay between mediating mechanisms and team composition is represented by variables 

that embody both these factors or the interconnection between them. Key variables include 

psychological safety, transactive memory systems, shared cognition and shared mental models. 

Our review identified 38 studies that predominantly focus on these variables. Shared cognition and 

transactive memory systems have been somewhat explored in HATs, but we found no research 

related to psychological safety. 

Shared Mental Model 

Shared mental model (SMM) refers to a shared understanding of team tasks, roles, goals, and 

individual and team abilities [25]. In HATs, when IAs have a grasp of human team members,  they 

can provide accurate and timely support, resulting in reduced human cognitive load and better 

team performance [92]. Many studies on HATs have found a positive correlation between the 

development of an SMM between team members and team performance [113-115]. However, 

there is still a lack of consensus among researchers on whether teamwork (interpersonal 

requirements, such as an understanding of team member skills) or taskwork (e.g., an understanding 

of common work goals and performance requirements) SMM is more strongly associated with 

team performance [113]. 
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Several studies have contributed to the development of agents for enhancing SMM. van Zoelen, et 

al. [116] developed IAs that employ proactive communication strategies that evolve as they learn 

from human team members. Barange, et al. [87] found that proactive agents, not only learn human 

members' beliefs from dialogues but also anticipate human members’ needs, accelerate the 

development of SMM and reduce humans’ efforts to share knowledge. Schneider and Miller [115] 

took it a step further by creating IAs that maintain a computational representation of human intent 

for multi-agent teams. This semantic representation of human intent in a team can facilitate an 

improved understanding for both humans and IAs. This was expanded upon by Schneider, et al. 

[117], who captured the changing intent of the human members during task execution and used 

machine learning to update this understanding in real time, leading to more effective task 

execution. Hughes, et al. [118] found a similarly positive effect on team performance, with IAs 

capturing the changing intent of human team members. Jonker, et al. [114] build a mental model 

ontology by investigating which concepts are relevant for shared mental models and modeling how 

they are related by employing Unified Modelling Language.  

Transactive Memory System 

Transactive memory system (TMS) is defined as a “collection of knowledge possessed by each 

team member and a collective awareness of who knows what” [25]. In HATs, the TMS has been 

mainly explored through the lens of situation awareness (SA). Enhanced understanding of each 

team member's situational awareness—be it human or autonomous—amplifies individual efficacy 

within the team [79, 119]. In Mercado et al.’s [41] experimental study, the situation awareness-

based transparency (SAT) model supported by agents’ transparent reasoning and 

recommendations improved performance effectiveness without incurring additional time or 

workload costs. The information that IAs should convey to human team members for them to have 
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proper SA of the agent in its tasking environment, includes the agent’s planning process, the 

rationale of suggestions (e.g., feasibility, trade-offs between alternatives), the to-be situations (e.g., 

expected outcomes, the likelihood of errors) [21, 120]. Roth, et al. [121] corroborated that 

increased agent transparency positively influences SA and overall HAT performance, provided the 

presentation and identification of transparency information aligns with human factors principles. 

However, indiscriminate sharing of all transparency information by IAs can lead to cognitive 

overload of human team members [122]. For example, in specific contexts, conveying only the 

objectives proved more efficacious than detailing both goals and beliefs [111]. Recent 

advancements include the design of IAs for better SA. Ding, et al. [123] developed an IA to 

accelerate human-agent collaboration in tactical and strategic battlefield decision-making by 

improving the SA of the pilot. Das, et al. [124] developed a framework for the rapid development 

of SA in unknown and/or dynamic environments. Besides the agent’s awareness, successful 

operations require human members to have SA of both the changing situation and the IAs’ 

decision-making processes [125]. 

G. Contextual Factors 

Mathieu, et al. [126] classify contextual factors into internal and environmental factors. Internal 

factors originate from within the team’s organization (e.g., organizational culture and leader 

exist), whereas environmental factors originate outside the organization (e.g., national culture, 

industry environments). These contextual elements can either augment or impede team processes 

and shape the values—such as efficiency versus creativity—that teams prioritize. While HATs 

are also subject to these contextual factors [63], existing research has so far mainly considered 

contextual influences emanating within the team, and the effect of the environment is less 
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explored. Our review revealed a conspicuous absence of studies that specifically investigate the 

impact of contextual factors on HATs.  

H. Team Interventions 

While team interventions like team building, training, and the utilization of preparatory tools to 

facilitate role allocation and work processes can pose positive impacts on teams [25], our review 

found that only five studies focus specifically on team interventions in HATs. Walliser, et al. [9] 

empirically demonstrated that team-building interventions focusing on social interactions help 

connect team members (both humans and IAs) and significantly impact team performance. This 

study also highlighted a need for comparative research on different team-building interventions 

(e.g., social interaction focused, team coaching, team training). Phan, et al. [67] went a step further 

by creating a test bed specifically designed for training HATs, aiming to improve human-agent 

interactions and help humans acclimate to working with IAs. Van Diggelen, et al. [64] also 

contributed to this area by developing an IA designed to train human team members, with the 

primary objective of enhancing human participants' team skills. Johnson, et al. [127] conducted 

experiments on entrainment-based coordination training (i.e., training for “a spontaneous coupling 

and synchronization of the timing and content of teammate communication”) and trust calibration 

training in HATs, revealing improvements in task efficiency and trust building compared to the 

control group.  Brewer, et al. [128] investigated the role of after-action reviews in HATs, 

suggesting that these reviews can be instrumental in enhancing communication, shared situational 

awareness, and trust among team members. 

I. Team Performance 

Measuring the performance of HATs is a complex task that can be approached in various ways. 

Common models often look at individual contributions, the overall team setting, and both 
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individual and collective group performance [73]. Our review has identified as many as 28 

different dimensions used to measure HAT performance, including commonly used measurements 

such as team effectiveness, task performance, mission performance, mission success, human 

workload, average efficiency, and performance perception. Notably, there are no standard models 

to evaluate HATs. This highlights the need for the development of standardized evaluation 

methods to facilitate effective learning and ongoing improvement in HATs. Damacharla, et al. [73] 

suggest that a well-rounded evaluation of HATs should include three types of metrics: those that 

measure human performance, machine performance, and overall team performance. 

J. Summary  

HAT research has been mainly concentrated on the mediating mechanisms, compositional and 

mediating, and structural factors, with a specific focus on certain areas. Within the mediating 

mechanisms, information sharing has been a focus area. The research on information sharing has 

considered the effect of verbal and non-verbal communication within the HATs and recommends 

non-verbal communication as the more effective method of communication. Moreover, the timing 

of agent-initiated information dissemination has been identified as a critical design consideration. 

Trust and member likeness (e.g., human-like decision-making for IAs) have also been extensively 

studied. Transparency has a positive effect on human’s perception of trust, group identification, 

and human likeness. Studies have shown that when agents are transitioning from tools to artificial 

teammates, bidirectional transparency is necessary to support teamwork paradigms. Human-like 

decision-making (member likeness) can lead to suboptimal teamwork (in terms of observation cost 

and workload), but better acceptance by the human team members during collaboration. 

In the compositional and mediating factors, shared mental models and transactive memory systems 

have emerged as significant areas of inquiry. Teams incorporating IAs with shared human 
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cognition have demonstrated superior performance. The situation awareness-based transparency 

model exemplifies a cognitive framework that enhances performance without incurring additional 

time or workload costs.  

Regarding the structural factors, function allocation remains pivotal. When assigning tasks and 

responsibilities to IAs, factors like task scope, complexity, and team virtuality warrant careful 

consideration. Moreover, a nuanced balance between agent autonomy and task interdependence is 

recommended. As HATs increasingly become integral to organizational structures, there is an 

urgent need to elevate our understanding of HAT dynamics to the level of a human-only team. 

Table 2 provides a summary of the current literature’s focus and highlights the challenges that lie 

ahead.  

Table 2. Summary of the findings from the literature 

Research Area Main Focus Challenges and Gaps 

Structural factors Function allocation [56], 

types of team structure 

[53, 54], task allocation 

[61, 62], and virtuality in 

HATs [67]. 

• Effective function allocation 

considering the unpredictable and 

evolving nature of human-agent 

interactions.  

• Absence of recommendations on 

optimal team structures. 

• Further exploration required for task 

scope, complexity, and 

interdependence. 

• Limited research on virtuality in 

HATs. 

Compositional 

Factors 

Team member 

characteristics [69, 72] and 

functional diversity [70, 

71]  

• Further exploration is needed on team 

composition factors in the context of 

HATs. 

• Limited investigation of specific team 

member characteristics. 

Mediating 

Mechanisms 

Information Sharing [74, 

75], Team Processes [82, 

90], Emergent States [88, 

98] 

• Limited research on information 

sharing in HATs.  

• Need for more research on the timing 

of information sharing by IAs. 

• Examination of over-trust remains 

predominantly unexplored.  
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Compositional 

and Structural 

Team roles [71, 106], team 

size [53, 54, 107], skill and 

authority differentiation 

[107] 

• Limited investigation of skill 

differentiation. 

• Limited research on larger teams and 

coordination dimensions. 

• Limited research on team adaptability 

and shared leadership 

Structural Factors 

and Mediating 

Mechanisms 

Team adaptability [72, 92] 

and shared leadership [90]  
• Research required on boundary-

spanning, and team empowerment 

factors 

Composition 

Factors and 

Mediating 

Mechanisms 

Situational awareness 

(Jiang et al., 2021; 

Schaefer et al., 2017), 

shared mental models 

[113-115]  

 

• Limited research on the development 

of IAs for enhancing situation 

awareness of the team. 

• Few studies have focused on 

frameworks for the HAT for better 

situational awareness in unknown 

and/or dynamic environments. 

Contextual 

Factors 

Internal contextual factors 

[63]  
• Most research has focused on internal 

contextual factors, with less 

exploration of the effect of 

environmental factors. 

• Absence of research with an 

exclusive focus on the examination of 

contextual factors  

Team 

Interventions 

Team building [9], team 

training [127] 
• Limited research on the effects of 

team interventions in HATs.  

• Need for comparative research on 

different team-building interventions.  

Team 

Performance 

Various dimensions used 

to measure team 

performance in HATs. 

• Lack of standardized approaches and 

models for the evaluation of HAT 

performance. 

 

V. FUTURE RESEARCH OPPORTUNITIES  

Mathieu's framework unveils intricate dimensions that pave the way for interdisciplinary research 

avenues, particularly in understanding the dynamics of HAT. In this section, we discuss potential 

interdisciplinary pathways in the areas of mediating mechanisms, compositional factors, and 

structural factors.  

A. Mediating Mechanisms-related Factors 
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Team mediating concerns raised in this analysis, in particular the timing of information sharing, 

transactive memory, and methods or channels of communication, provide an opportune avenue for 

multidisciplinary perspectives on HATs to better understand the interpersonal and sociocultural 

context of these interactions. The field of Human-Robot Interaction (HRI) in particular offers 

multi-disciplinary insights and critiques on intercommunication, reciprocity and cooperation 

between humans and agents. 

As an emergent phenomenon, human-agent interactions are still in the process of being defined 

and have the potential for a significant impact on social life. Our findings in 4.3.3 show that IAs 

are still novel and transitioning from tools to teammates. This is a significant challenge that has 

philosophical and sociocultural ramifications.  The term ‘social robot’ is a prominent descriptor 

for both physical and screen-based agents that offer social interaction. Hakli and Seibt [129] have 

stated, “Social robots, if used pervasively in society, will change the fabric of human social 

interactions more profoundly than any other technology before” (p.v). Philosophical studies of IAs 

interrogate their ontological status, asking fundamentally, how we as humans see ourselves 

positioned relative to IAs and vice versa. The emerging field of ‘Robophilosophy’ encompasses 

such investigations, aiming “to come to terms with the very idea of artificial social agency” (p.v) 

by exploring “whether the notions of sociality and normativity, the hallmarks of human-human 

interactions, can be suitably extended to capture the phenomena of human interactions with so-

called “social” robots.” [129] 

Linguistic and communication studies contribute insights into the language and conversational 

mediation of interaction with IAs. Our findings in 4.3.1 highlight the critical role of timely and 

adaptive information sharing in enhancing the quality of human-agent collaboration. Modes and 

styles of communication could support information sharing by building positive rapport. To do so, 
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it is necessary to consider the conventions of language within human-agent interactions.  Linguistic 

exploration of robot interactions posits whether, when addressing agents, we talk to, or about them 

[130]. Close examination of language and conversational elements reveals the relationship 

between humans and agents. As Coeckelburg [130] reminds, “Our ‘robot talk’ is not neutral but 

interprets and shapes our relations with robots; it has a hermeneutic and normative function.” 

(p.64) Whether an agent is an ‘it’, a ‘they’ or ‘you’ speaks to its place relative to a human team 

member. Future research could consider the impact that pronouns, or a third- or second-person 

perspective has on teamwork and cohesion. Sandry [131] calls for a wider understanding of 

communication with robots, beyond privileging anthropomorphic interactions. While effective 

communication is often a matter of sharing common ground, “robots are intriguing communicators 

because they appear in such a variety of forms” (p.2).    

Information sharing and trust are also impacted by social cues. The concept of polite computing 

[132] and human-computer etiquette [133] provide cultural and behavioural perspectives on an 

agent’s perceived display of ‘memory’, or timing of communication. Polite computing outlines the 

behavioral norms required of agents if they are to be accepted in social interactions. Whitworth 

[132] finds that politeness suggests consideration and choice, while impoliteness is characterized 

by dismissiveness, lack of choice, and forgetfulness. Whitworth’s seminal example is Microsoft’s 

Mr Clippy help agent, an infamously derided user interface. Clippy was rude, because it was 

ignorant, forgetful, domineering, and inappropriate. To Whitworth, politeness in computing leads 

to efficiency and aids security by engendering trust. This has relevance to our analysis in 4.3.3 

showing that trust is incredibly important for HATs.  

Art and design shape the appearance of agents. The experience of the visual interface or 

embodiment of the IA often precedes interaction, so appearance is arguably a formative moment 
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of relationship building. Aesthetic design, therefore, is an area that could greatly impact the 

acceptance of agents as teammates, as discussed in 4.3.3. If an agent has a ‘face’ or is visually 

personified, a human teammate will relate differently than if interacting with a text-only agent 

[134, 135]. Chesher and Andreallo [136] argue that understanding faciality is a transdisciplinary 

endeavor encompassing philosophy, art, and science. Further, style is as important as specific 

features. Chesher and Andreallo [136] also contend that the face is particularly important as it 

plays a crucial role in how interactions with robots are mediated: “it is largely by reading the face 

that interactants will perceive the robot’s identity, character, style, communicative intent, emotion, 

and, indeed, its apparent virtuousness” (p.83). Also addressing appearance, Sparrow [137] argues 

that humanoid robots raise significant cultural and social tensions, as they are more likely to be 

ascribed with race, which ultimately leads to dangers in perpetuating stereotypes. Sparrow 

highlights that “the “default” race of humanoid robots today is indeed White” (p.544), and 

arguably perpetuates the racist view that human forms are associated predominantly with 

whiteness. Sparrow's work is a salient reminder that social and cultural studies provide crucial 

contextual understandings of human-agent engagements, particularly acknowledging that discreet 

interactions do not happen in a vacuum, but are informed by beliefs, norms, and values. As Julier 

[138], a design theorist, succinctly says: “No design object is an island. Rather, its meaning, 

function and value are dependent on a complex patchwork of other artifacts and people” (p. 14). 

Whether intentionally or not, humans will bring their life experiences to interactions with IAs, and 

this will shape how their relationships and teamwork unfold.  

Another crucial aspect to consider is the ethical dimensions of HATs. Utilizing Floridi's concept 

of the 'infosphere' [139] as a lens, into HAT, ethical inquiries can be made into data privacy, 

transparency, and responsible information sharing between humans and IAs. Future research in 



 

34 

 

this area could examine how ethical considerations manifest in the flow of information, ensuring 

that data shared and utilized respects individual autonomy and minimizes biases. 

B. Structural-related Factors 

Structural factors for HATs present multifaced challenges that call for a comprehensive and 

nuanced approach. Underpinning this inquiry is structural contingency theory, wherein team 

structure and task structure need to be configured corresponding to the task environments [52]. 

The theory is applicable in predictable work environments where standardized and formalized 

roles, responsibilities, rules, and procedures enhance mutual understanding of taskwork [140]. The 

alignment between team and task structures, therefore, enhances team performance [54]. However, 

as task uncertainty increases, greater coordination complexity demands more frequent 

communication among HAT members to adapt to changing conditions. Ongoing research is 

addressing this uncertainty by exploring the autonomy of autonomous agents [59] and dynamic 

task allocations [61], both of which offer promising avenues for future work. 

Autonomy in HATs is premised on trust. Existing studies underscore the role of transparency in 

reasoning [101] and communication [103, 104] as key factors in fostering team trust. The 

burgeoning field of Explainable AI (XAI) offers promising avenues for future research in HAT 

settings. Beyond mere transparency, the quality of explanations provided by agent teammates is 

crucial for human comprehension  [141]. Moreover, agents can gain trust by exhibiting [142] and 

Artificial emotional intelligence [143]. Emotional regulation remains a complex issue, particularly 

when agents' actions conflict with human expectations. Human team members can become 

emotional and resist working with IAs. Future research could explore strategies for early trust-

building, emotional support, and empathy from agents. Ultimately, emotional bonds between 

agents and humans can help team identification and collaboration [144].  Additionally, the review 
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reveals that team adaptability—dependent on organizational culture, flexible structures, and 

members' willingness to adjust [145]—has been relatively underexplored. The current research 

starts exploring dynamic task allocation, which is assigned to humans and agents corresponding 

to their skills and resources [61]. Furthermore, in response to changes, negotiation [14] and 

feedback [26] between agents and humans are essential for teams to maintain flexibility and 

adaptability. Both parties should be able to take the initiative, which can be oriented by agents or 

humans, change their behaviors, and achieve a team goal together [146]. As adaptation takes two 

to tango, future research can consider IAs’ generativity [147] and improving IAs’ sense-making 

ability using social and contextual knowledge [148], which goes beyond statistics-based 

sensemaking. Given the limitations of current technology, IAs cannot grow without human help. 

Quality control for inputs concerning agent development is essential to mitigate 

biases.  Furthermore, we would be remiss to ignore changes required from human team members. 

It has proved that humans can be reluctant to change and fall into cognitive entrenchment [149]. 

Research from persuasive systems design [150] offers comprehensive design principles to boost 

human teammates' motivation and guide behavioral changes. Besides individual learning from 

humans and AIs,  drawing on the “human-in-the-loop” perspective, building incremental and 

iterative feedback loops at the team level has the potential to ensure team adaptation at HAT [151]. 

From a theoretical standpoint, various types of learning cycles can be integrated into team learning 

frameworks to facilitate this adaptability [152]. 

C. Composition-related Factors 

Team composition research on HATs is still largely in its infancy, predominantly focusing on team 

members' attributes and functional diversity. This leaves a fertile ground for future inquiries at the 

intersection of team dynamics and IAs. Firstly, the way team members behave towards each other 
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is largely determined by surface-level attributes (e.g., age, race, gender). Once team members are 

familiar with such attributes, their collective dynamics could hinge on hidden assumptions relating 

to surface-level information about team members. How is an agent perceived by a human when it 

comes to easily detectable surface-level attributes, and what does it entail in the collective 

exchange of information for the team? This can be an interesting starting point to examine the 

impact of team composition within different human-agent settings.  

Similarly, deep-level attributes that comprise a HAT have a long-lasting impact on team 

performance [153]. Values and attitudes are good examples of deep-level aspects that often shape 

team member interactions over time. While we are largely familiar with these psychological 

characteristics as applied to humans, it is imperative to understand how (if any) such areas are 

understood within an IA. Moreover, what are the implications on team performance when there is 

significant diversity in deep-level attributes within human-agent interaction?  

Team composition can impact the affective states of teamwork [154]. The overall team’s mood 

provides an illustration of an affective state. A team’s mood is primarily shaped by the positive or 

negative predisposition of an individual’s trait [155] and the spread of this individual mood 

through evolving interactions of the team members [156]. This complex interplay of team 

composition, dynamic affective states and resulting behavior of team members opens a critical 

area of inquiry when humans and agents strive for collective goals. Depending on the level of an 

agent’s consciousness, will the team’s affective states (e.g., mood) be a product of the human team 

members only? Or if an intelligent agent can also contribute to the mood. If the latter, how might 

the agent's presence affect the spread of positive or negative emotions within the team? 

The context in which a HAT is operating will significantly determine the outcomes of team 

composition via behavioral processes. The presence of IAs within a team adds a layer of 
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consideration for the work environment in terms of the nature of roles being held by team members 

at a given time as well as their corresponding network centrality [157], whether IAs should play 

informational or social roles and exert their influences [14]. This brings forth the question of the 

degree of autonomy when it comes to job design within a human-agent team. Holistically, it seems 

vital to examine the contextual determinants (external, internal (to a team) and psychological) 

having a varying impact on team composition attributes, which translate into behavior and 

performance of HATs. Another critical factor to consider in this regard is stress. While higher 

agent autonomy generally alleviates stress, some individuals have reported discomfort when 

agents operate at maximum autonomy, where the agent makes decisions without human 

confirmation [158]. This paradox may heighten stress levels, as humans grapple with the tension 

between relying on automation and retaining accountability. Separate research links high agent 

autonomy to a rise in technostress [159], suggesting that as agents become more autonomous, 

human stress levels may increase due to technological interactions. As agent autonomy grows, so 

does the potential for stress arising from technological interactions and decision-making processes. 

These complexities necessitate further studies to better understand stress factors in HATs. 

The dynamic composition of HATs presents unique challenges, such as blurred team boundaries 

[160], changes in team membership and even multiple memberships. Such aspects would have 

direct implications on team composition. An example could be a change in membership where the 

incoming and outgoing team members hold diverse attributes toward working with agents within 

a team. Similarly, how does the learning attribute of an agent evolve with time when the 

membership is diffused in multiple teams? Coordination is particularly affected by these 

compositional shifts [161]. Consequently, future research could involve relative contribution 

models [162] in examining the dynamic composition of HATs.   



 

38 

 

VI. CONCLUSION  

The research on IAs has evolved from being completely IA-design-centric to increasingly 

considering various socio-technical aspects of HATs. This paper draws on Mathieu’s framework, 

concerning structural, compositional, mediating factors, and their interactions, to disentangle HAT 

dynamics. We suggest several potential ways forward and call for more research from multiple 

disciplines to contribute to the enhancement of HAT performance. As the future of work becomes 

increasingly dependent on effective HATs, understanding these dynamics is not just an academic 

endeavor but a societal imperative. It is our hope that the insights gained from this study will 

stimulate discussions around effective collaboration between humans and agents in the future.  
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