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Integrating Structured and Unstructured Data for

Imbalanced Classification Using Meat-Cut Images

Satya Prakash

Abstract

The identification of different meat cuts for labeling and quality control on pro-

duction lines is still largely a manual process. As a result, it is a labor-intensive

exercise with the potential for not only error but also bacterial cross-contamination.

Artificial intelligence is used in many disciplines to identify objects within images,

but these approaches usually require a considerable volume of images for training

and validation. The objective of this study was to integrate structured and unstruc-

tured data to identify five different meat cuts from images and weights collected by

a trained operator within the working environment of a commercial Irish beef plant.

The dataset for one of the products exhibited sparsity, resulting in an imbalanced

distribution. To rectify this issue, image augmentation techniques were employed to

tackle the inherent imbalance within the dataset. Individual cut images and weights

from 7,987 meats cuts extracted from semimembranosus muscles (i.e., Topside mus-

cle), post editing, were available. A variety of classical neural networks and a novel

Ensemble machine learning approaches were then tasked with identifying each in-

dividual meat cut; performance of the approaches was dictated by accuracy (the

percentage of correct predictions), precision (the ratio of correctly predicted objects

relative to the number of objects identified as positive), and recall (also known as

true positive rate or sensitivity). A novel Ensemble approach outperformed a selec-

tion of classical neural networks including convolutional neural network and residual

network. The accuracy, precision, and recall for the novel Ensemble method were

99.13%, 99.00%, and 98.00%, respectively, while that of the next best method were

98.00%, 98.00%, and 95.00%, respectively. The Ensemble approach, which requires

13
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relatively few gold-standard measures, can readily be deployed under normal abat-

toir conditions; the strategy could also be evaluated in the cuts from other primals

or indeed other species such as lamb, chicken, or pork.
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Chapter 1

Introduction

The study of artificial intelligence (AI) has philosophical, mathematical, and computer-

scientific foundations. The development of artificial intelligence may be traced back

to the period when scientists and philosophers were enthralled by the idea of build-

ing intelligent machines. However, the development of electronic computers in the

1940s marked the beginning of the contemporary history of AI (Russell 2010).

British mathematician Alan Turing made one of the earliest important contri-

butions to AI when he created the idea of a universal computer that could carry

out any computation that a person could. He also proposed the Turing Test, which

determines if a machine can display intellect comparable to a person’s. Turing’s

contributions laid the groundwork for AI research, and his theories on computing

and AI are still relevant today (Turing 1950; Russell 2010).

The term ”Artificial Intelligence” was first used by a group of scientists that

included John McCarthy, Marvin Minsky, and Claude Shannon in the 1950s (Press

2022). They then started looking into how to build computers that could think

and reason like humans. They created the Logic Theorist and the General Problem

Solver, two early AI algorithms. These early programs had great potential but were

constrained by the processing capability at the time (Russell 2010).

AI research started to flourish in the 1960s and 1970s when substantial advance-

ments were achieved in fields like computer vision and natural language processing.

At Stanford University in 1965, Edward Feigenbaum and Joshua Lederberg created

15



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

the first expert system, known as Dendral. Expert systems were utilized extensively

in business and government because they were created to emulate a human expert’s

decision-making abilities in a given subject (J. McCarthy 2007).

However, the hype surrounding AI led to unrealistic expectations, and progress

slowed down in the 1980s. Funding for AI research was reduced, and many re-

searchers shifted their focus to other areas.

AI research began to focus on more useful applications in the 1990s, such as

machine learning and expert systems. Computers can now spot patterns and make

predictions thanks to the development of machine learning algorithms that can learn

from data. The World Wide Web’s introduction during this time period was one of

the most important advancements in AI since it made it possible for researchers to

more easily exchange data and cooperate.

In recent years, AI has experienced a resurgence, fueled by advances in com-

puting power, big data, and deep learning. AI technologies are now being used

in various applications, from self-driving cars and speech recognition systems to

medical diagnosis and financial analysis (Russell 2010).

One of the applications of AI is picture analysis using a camera. When a picture

is taken from any smartphone camera, the images are automatically labeled based on

the objects in that picture. This is quite an interesting feature of a smartphone that

uses the concept of artificial intelligence and in particular deep learning to classify

images. Figure 1.1 shows how Google Lens identifies various objects in images

including a QR code, a car model, Yakisoba, tandoori chicken, sunscreen, a colon

image from a colonoscopy report, a shoe, and the moon. Google uses deep learning

models based on Convolutional Neural Networks (CNNs) to classify various images.

Their image classification models have been trained on massive datasets containing

millions of images, covering thousands of different object categories. They have

achieved state-of-the-art performance on standard image classification benchmarks,

demonstrating the effectiveness of deep learning approaches for image classification

tasks.
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(a) QR Code (b) Car Model (c) Yakisoba (d) Tandoori

(e) Sunscreen (f) Colon (g) Shoe (h) Moon

Figure 1.1: Object Detection in Google Photos using Google Lens.
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1.1 Prevalence of Artificial Intelligence in Society

AI is becoming increasingly prevalent in society, and its use is expanding across a

wide range of fields and industries. Here are some examples of how AI is being used

in society.

1.1.1 Virtual Personal Assistants

Digital assistants called Virtual Personal helpers (VPAs) employ artificial intelli-

gence to comprehend and carry out spoken commands in natural language. Siri

is an Apple-created virtual assistant that can do a variety of things, like setting

reminders, sending messages, placing calls, and conducting online searches. The

Google Assistant is a virtual assistant that can respond to queries, send reminders,

manage smart home appliances, and offer tailored advice based on user behavior.

Amazon created Alexa, a virtual assistant that can operate smart home appliances,

play music, respond to inquiries, and offer news updates. Microsoft created the vir-

tual assistant Cortana, which can do things like send emails, make reminders, and

provide weather information. Bixby is a virtual assistant developed by Samsung that

can control smart home devices, perform web searches, and send text messages (Inc.

2011; LLC 2016; Coates and Amordeluso 2019; Group 2023; Corporation 2014).

1.1.2 Social Media

AI is employed in a number of ways and is becoming more and more significant in

social media. To deliver tailored information and suggestions, AI systems examine

user behavior, preferences, and interests. Social media networks benefit from in-

creased engagement and user retention as a result. It is used to identify and delete

offensive material, hate speech, and fake news. This keeps the environment around

users secure and healthy. Ads are targeted to consumers based on their interests,

demographics, and behavior using AI algorithms. This makes it easier and more

effective for advertising to reach their target market. It is used to assess the tone of
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user-generated material, including reviews and comments. This enables firms and

brands to comprehend the viewpoints and preferences of their target market and

modify their strategic plans accordingly. AI-driven chatbots are used in social me-

dia messaging to perform basic transactions, offer customer support, and respond

to commonly asked inquiries. AI is being used to identify and classify pictures and

videos (Rai 2020; Granik and Mesyura 2017; Ozbay and Alatas 2020), making it

simpler to find and arrange material.

1.1.3 Healthcare

AI is being used in various ways in healthcare, from diagnosing diseases to developing

new drugs. AI algorithms are being used to analyze medical images such as X-

rays, CT scans, and MRIs. These algorithms can help detect abnormalities that

may be difficult for human radiologists to spot, leading to faster and more accurate

diagnoses. AI is being used to develop new drugs by analyzing large amounts of data

and identifying potential drug candidates. This can speed up the drug development

process and reduce costs. Also, it is being used to predict and prevent diseases

by analyzing patient data and identifying patterns and risk factors. This can help

doctors to diagnose diseases earlier and develop personalized treatment plans for

patients. AI-powered virtual assistants are being used to help patients manage their

health by providing personalized recommendations and reminders. These assistants

can also answer questions and provide support for patients with chronic conditions.

AI-enabled robots are being used in surgery to assist surgeons with tasks such as

suturing, cutting, and manipulating tissues. This can improve the precision and

accuracy of surgical procedures and reduce the risk of complications (Panch, Mattie,

and Celi 2019; F. Jiang et al. 2017; K.-H. Yu, Beam, and Kohane 2018).
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1.2 Artificial Intelligence in Agriculture andMeat

Plants

AI has the potential to revolutionize agriculture and meat processing plants by

increasing efficiency, reducing costs, and improving sustainability. Here are some

ways AI is being used in these industries:

• Precision Agriculture: AI technologies can be used to optimize the use of water,

fertilizer, and pesticides, based on real-time data collected from sensors and

drones. This can help reduce waste and increase yields (Patrıcio and Rieder

2018; Selvaraj et al. 2019).

• Crop Monitoring: AI can be used to monitor crops and detect issues such

as diseases, pests, or nutrient deficiencies before they become visible to the

human eye. This can help farmers take action before the crops are damaged,

leading to better yields and quality (Singh, S. Srivastava, and Mishra 2020).

• Livestock Management: AI technologies can be used to monitor the health and

behavior of livestock, such as detecting early signs of illness or stress. This

can help farmers take proactive measures to prevent disease outbreaks, reduce

the need for antibiotics, and improve animal welfare (Neethirajan and Kemp

2021; Fricke et al. 2014).

• Meat Processing: AI can be used to automate various aspects of meat pro-

cessing, such as sorting, grading, and packaging. This can help reduce labor

costs, improve quality control, and increase efficiency.

• Supply Chain Management: AI can be used to optimize logistics and supply

chain management, from predicting demand to tracking inventory and ship-

ping. This can help reduce waste, minimize transportation costs, and improve

sustainability (Zawish et al. 2022; Nayal et al. 2022).
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1.3 Challenges for Irish Meat Industry

The agri-food sector includes primary production in farming, fishing, and forestry,

and the processing and manufacture of food, beverages, and wood products. It

is Ireland’s oldest and largest indigenous sector and reaches out to every corner

of the country and across our seas. In 2021, the sector employed 170,400 people,

representing 7.1% of the total workforce across 135,000 farms, 2,000 fishing vessels

aquaculture sites and some 2,000 food production and beverage enterprises. The

sector is responsible for 4.5 million hectares of agricultural land, 770,000 hectares

of forestry and producing close to 10% of Ireland’s exports each year (Agriculture

2022).

Up to 90% of Ireland’s food production is thought to be exported. Over 180

nations around the world imported Irish food and drink in 2021. Exports of agri-

food products reached a new high of €15.4 billion, up from €10.2 billion in 2012

and representing a 50% rise over the previous ten years. Irish merchandise exports

made up 9.4% of agri-food exports, which generated a €5.6 billion trade surplus

(Agriculture 2022).

Increasing population and rising affluence in developing nations are predicted to

contribute to a 1.4% annual increase in global meat consumption. The world will

need to import an additional 3.4 million tonnes of beef to make up the difference be-

tween domestic demand and production in several nations. In the EU meat markets,

sustainability is anticipated to become increasingly important for both consumers

and farmers. By 2031, it is anticipated that per capita meat consumption in the

EU would slightly decrease to 67 kg as consumers’ environmental awareness, health

concerns, and convenience patterns shift (Office 2022).

In 2021, the supply of Total Meat in Ireland experienced a decline of 37,000

tonnes (-3%), reaching a total of 1.423 million tonnes (Office 2022). Among this

total, Beef & Veal accounted for 637,000 tonnes (45%). Slaughterings also saw a

decrease, falling by 27,000 tonnes (-2%), with the exception of Pigs, which showed

an increase of 15,000 tonnes (+5%).
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The largest decline in slaughterings was observed in the Beef & Veal category,

which decreased by 39,000 tonnes (-6%) to 595,000 tonnes. Net exports, which

represent the difference between exports and imports, fell by 47,000 tonnes (-6%) to

707,000 tonnes. Within this reduction, Beef & Veal accounted for 40,000 tonnes.

Among the different categories of meat, Poultry Meat was the only one with

net imports, as imports exceeded exports by 19,000kg. In terms of self-sufficiency,

Ireland’s overall self-sufficiency in Total Meat decreased by 19% to 267% in 2021

compared to 2020.

However, there were variations in self-sufficiency rates for specific types of meat.

Pig Meat saw an increase of 8% to 240% in self-sufficiency, while Sheep Meat ex-

perienced a 3% rise to 361%. On the other hand, self-sufficiency rates decreased

significantly for Beef & Veal by 51% to 661% and for Poultry Meat from 100% in

2020 to 90% in 2021.

The meat industry also generates significant exports, accounting for approx-

imately 30% of Ireland’s total food and drink exports. Ireland is particularly

renowned for its beef exports, which are recognized globally for their high qual-

ity and safety standards. Moreover, the meat industry has a significant impact on

rural economies, where many meat processing plants are located. The industry pro-

vides a significant source of income for farmers who supply the raw materials for

meat production.

Access to a skilled and experienced workforce is fundamental to businesses that

depend on human intervention in their production processes. The meat industry is

one such sector, and this was highlighted by the levels of absenteeism during the

coronavirus disease 2019 (COVID-19) restrictions. Processes such as meat cutting,

fat determination, and meat deboning have been partially automated (Bostian et

al. 1985; Umino et al. 2011). However, the labeling and identification of meat cuts

still require a substantial amount of human intervention and manual handling. This

can incur additional labor costs as well as being a source of error and potential

microbiological contamination (Choi et al. 2013).
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1.3.1 Maintaining Hygiene

Food safety and animal welfare have been ongoing issues in the meat processing in-

dustry globally. In Ireland, there have been reports of meat plants failing to comply

with hygiene standards, resulting in product recalls and concerns over the safety of

meat products. One of the main concerns is the potential for cross-contamination.

This can occur when workers handle meat products without proper hygiene prac-

tices, such as washing their hands and wearing gloves, hairnets, and other protective

clothing. This can lead to the transfer of bacteria and other contaminants from work-

ers to meat products, which can cause foodborne illnesses if consumed by humans.

Cross-contamination can have a significant impact on the shelf life of meat prod-

ucts. Cross-contamination occurs when harmful bacteria or microorganisms are

transferred from one surface or food item to another. In the case of meat prod-

ucts, if contaminated meat comes into contact with uncontaminated meat, it can

cause the spread of harmful bacteria and pathogens, such as Salmonella, E. coli,

or Listeria. These microorganisms can cause spoilage and shorten the shelf life of

meat products, reducing their safety for consumption. Additionally, the growth of

bacteria can result in the production of harmful toxins that can lead to foodborne

illnesses when consumed by humans.

In addition, the presence of humans in meat plants can also increase the risk

of spreading diseases among workers. This was evident during the COVID-19 pan-

demic, where meat processing plants were identified as high-risk environments due to

the close proximity of workers and the potential for the virus to spread through res-

piratory droplets. Overall, while the presence of humans in meat processing plants

can present hygiene challenges, it is possible to mitigate these risks through proper

protocols, training, and the use of technology.

1.3.2 Labor Shortage

The robust economic growth in Ireland in the past few years resulted in a drop in

unemployment rates below 5%, causing significant recruitment challenges in vari-
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ous industries, including meat processing. Meat Industry Ireland (MII) members

prioritize local recruitment, collaborating with government departments to identify

suitable candidates from the live register. If local recruitment efforts fail, they ex-

tend their search throughout the country and across the European Union to hire

workers with the necessary skills (Ibec 2022; Accounts 2022).

The meat processing industry has been struggling to recruit the required work-

force in recent years, leading to a significant labor shortage. To tackle this issue,

meat processors have turned to the Employment Permit system implemented by the

government, which allows them to hire skilled workers from outside the EU. The em-

ployment permit scheme has allowed more than 3,000 workers from outside the EU

to work for Irish meat industries. Under the Employment Permit system, employ-

ees are authorized to work in Ireland for a maximum of two years, with the option

to extend their permits upon expiration. All workers, including permit holders,

are protected by Irish employment laws and are entitled to the same employment

rights and benefits. Furthermore, the regulations of the permit scheme prescribe

specific employer obligations, such as ensuring a safe and healthy work environ-

ment and complying with employment, health and safety, and anti-discrimination

laws. At present, there are 50% Irish, 30% EU/EEA (excluding Ireland), and 20%

non-EU/EEA (via the Employment Permit system) in meat industries.

In the meat industry, a beef primal cut refers to a large section of meat that is

initially separated from the carcass during the butchering process. Primal cuts are

typically divided based on the anatomical structure of the animal and are further

broken down into smaller retail cuts that are found at the grocery store or butcher

shop. (Warriss 2010; Underly 2011)

Primal boning lines are a typical example of where multiple operators simulta-

neously work on a range of meat cuts. Each cut will eventually arrive at a weighing

station where a single operator will inspect, identify, and weigh the arriving meat

cut. The automation of the weighing process on boning lines has traditionally been

conducted on single-meat-cut production lines. However, due to spatial restrictions
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in many meat plants, there is a preference in the beef industry to operate multi-

ple meat cut types simultaneously on a single processing line. This multi-meat-cut

processing strategy has made the automation of meat cut identification extremely

challenging as there is a high probability of incorrect meat cut identification; any

proposed automated system must have a high level of accuracy in order to avoid

misclassification and line downtime.

1.3.3 Labor Productivity

Labor productivity in the agricultural sector of Ireland has traditionally been lower

than in the non-agricultural sector due to the nature of the production processes

and inputs required. The labor productivity gap refers to the difference in labor

productivity between two or more sectors of an economy. It typically arises due

to differences in the nature of production processes, the level of technological ad-

vancement, and the amount and quality of capital and labor inputs used in each

sector.

There has been a similar trend of a labor productivity gap between the agricul-

tural and nonagricultural sectors in Ireland. According to data from the Central

Statistics Office (CSO) of Ireland, labor productivity in the non-agricultural sec-

tor in Ireland has been consistently higher than in agriculture (Office 2023). This is

largely due to the nature of the production processes and inputs required in each sec-

tor. The non-agricultural sector tends to be more capital-intensive and technology-

driven, which can lead to higher labor productivity. In contrast, agriculture relies

more on manual labor, which can be less productive. However, as mentioned earlier,

labor productivity in agriculture has been increasing over time due to the adoption

of new technologies and practices. Nonetheless, the labor productivity gap between

the agricultural and non-agricultural sectors is still present in Ireland and has im-

plications for income distribution and economic growth. It highlights the need for

policies aimed at increasing labor productivity in the agricultural sector to ensure a

more balanced and sustainable development of the economy.
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1.4 Motivation

With the advent of digital photography in devices such as smartphones and digi-

tal security cameras, the volume of images produced on a daily basis has increased

dramatically. The identification of objects within images and the classification of

these objects has received a considerable amount of attention. For example, Deep

Learning has been successfully used to classify images in areas such as autonomous

vehicles or medical image classification (Guo, Shang, and Z. Li 2019; H. Wang et al.

2019). In the meat industry application of image-classification has predominantly

been applied to product quality characteristics such as fat content or product blem-

ishes but not to the specific identification of disparate products (Al-Sarayreh et al.

2018; Ropodi et al. 2015; X. Yu et al. 2018). However, in high-volume meat plants,

the use of human operators to identify and weigh these products can increase the

risk of cross-contamination between cuts and the reduction of human operators could

have a beneficial impact on shelf life (Véronique 2008) and line efficiency.

The image data of topside beef cuts were collected to create a novel dataset

containing five different product types, which will be described in Chapter 3. This

provides a simulation of a real-world scenario where quality control staff identify dif-

ferent products simultaneously at the end of the product line, and is an ideal dataset

to implement machine learning algorithms as part of the solution architecture for

the automation of product identification.

1.5 Contribution

The main goal of this research is to automate the processes of identifying meat

products. Removing a human operator will reduce the risk of cross-contamination

across cuts and improve product shelf life along meat processing lines. In that

context, the contribution can be articulated as follows:

• A novel ensemble machine learning classifier has been proposed that automates

the identification of meat products using their images and weights, to deliver
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a high degree of accuracy.

• By comparing the performance of a number of machine learning methodologies,

some new insights in terms of processing color and greyscale images of meat

cuts have been uncovered.

• This research also generated a dataset containing 8,237 labeled images of five

different beef products, which can be exploited by agricultural (abbr. Agri)

researchers focusing on related topics.

• The evaluation had two objectives: to understand the effectiveness of different

machine learning models for meat cut identification and thus demonstrate the

efficacy of our method to automate product identification on beef boning lines.
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Chapter 2

Literature Review

Machine Learning and, in particular, deep learning have been used to varying lev-

els of success in determining food quality and food safety. In this section, how

previous approaches used image processing within the food industry and in partic-

ular, their application in the meat industry are examined. This also sheds light on

the techniques used for object identification and image detection also called image

classification, imbalanced classification, ensemble methods, and meta-learners.

The following procedure was followed to choose related studies:

• Defining a review protocol states the research question being addressed

and the methods that will be implemented to accomplish the review. In this

research, the research question is ”Can structured and unstructured data be

integrated for imbalanced classification of meat-cut images?” The research

method is experiment-based where an array of experiments has been carried

out to answer the question.

• Search strategy aims to identify as much of the relevant literature as pos-

sible. In this research, databases such as Google Scholar, IEEE Xplore, and

ResearchGate have been looked into to find relevant papers and articles. A

number of keywords were used to choose the related study such as Quality OR

Food Classification AND Machine Learning, Meat-Cut AND Image Identifica-

tion OR Image Classification OR Object Detection, Image Classification AND
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Imbalanced Dataset, Synthetic minority oversampling technique (SMOTE)

OR Generative Adversarial Networks (GAN) AND Object Identification, etc.

• Inclusion and exclusion are the criteria that assess each potential primary

study. To avoid the necessity for translation during the research, the scope of

the search was restricted in this study to papers that were written in English.

An effort was made to limit the literature from grey sources (such as mod-

erated blogs) and peer-reviewed academic publications to those that offered

high standards of quality in order to decide which sources were appropriate to

employ throughout the proposed research.

2.1 Artificial Intelligence in Food and Meat In-

dustries

The problem space for image detection within the food industry has been broadly

broken into three criteria outlined by (L. Zhou et al. 2019), and they are as follows:

product quality, food type classification, and product traceability.

Product quality has attracted a considerable volume of attention within the

literature. For example, in (Al-Sarayreh et al. 2018), the authors implemented

different machine learning techniques and a deep neural network on hyperspectral

images (HSI) to detect adulteration in red meat. In (K. Chen et al. 2010), computer

vision and machine learning methods were used for the color grading of beef fat.

In (Y. Han et al. 2021), the HSI system along with deep learning techniques was

implemented to estimate the quality of nuts. In (Ropodi et al. 2015), meat adulter-

ation was identified in beef and pork products using samples from pure beef, pure

pork, and adulterated meats from a multispectral imaging system by implementing

machine learning tools such as partial least square discriminant analysis (PLS-DA)

and linear discriminant analysis (LDA). Numerous other classifiers such as logistic

regression (LR), decision trees (DT), k-nearest neighbor (KNN), artificial neural

networks (ANN), and support vector machines (SVM), have been used in quality
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classification, identification of freshness, and nutrient prediction based on spectral

data (L. Zhou et al. 2019). In (X. Yu et al. 2018), a regression-based classifier

with stacked auto-encoders was implemented on the features extracted from HSI of

shrimps to classify them as fresh or stale. The quality of meat can also be assessed

by the level of fat content in addition to the composition of chemical indicators.

The measurement and identification of the percentage of fat in pieces of meat were

performed using dual-energy X-ray absorptiometry in conjunction with an array of

machine learning algorithms (Sabol et al. 2006). These approaches all showed vary-

ing levels of success but in general, were either a binary classification problem or

used machine learning solutions to measure the level of fat within a piece of meat

and avoided the multi-class problem of product identification. Additionally, the

use of HSI technology does not necessarily create an advantage over normal camera

technology as the shape of the product will have more significance in identifying the

product.

Food type classification frequently uses deep learning to determine if an image

represents food or, alternatively, to identify the food type within an image. For ex-

ample, the authors in (Jia et al. 2019) used transfer learning to identify the presence

of food within images with a test accuracy score of 86.4% on the eButton dataset

(Beltran et al. 2016) and 98.7% on the Food 5k dataset (Technology Lausanne

n.d.). However, the training dataset for eButton data had a considerably higher

accuracy score of 91.5%, which suggest the occurrence of overfitting. In (McAllis-

ter et al. 2018), the authors managed an improved result on the Food-5K dataset

with an accuracy of 99.4% using a Radial Basis Function (RBF) kernel-based SVM

with ResNet-152. As well as identifying food within an image, the ResNet and the

DenseNet transfer learning algorithms were used to classify the Betawi traditional

food image dataset into various food types (Setyono, Chahyati, and Fanany 2018).

In this particular study, there was a wide variety of differing food types but the

authors did not focus on the differences within food types, such as the different cuts

of meat that can be created from a single primal cut in meat processing.
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Product traceability has not been extensively researched using image detec-

tion techniques, although a small study by the researchers in (Hviid, Jørgensen, and

Dahl 2011) and a subsequent larger study presented in (Larsen et al. 2014), were the

first attempts to use computer vision techniques to track pork loins (40 and 211 loins

respectively) along a slaughterhouse production line. This approach used DAISY

image features (Tola, Lepetit, and Fua 2010) to generate Bag of Words descriptors

of the meat cuts. However, this technology focused on production lines where only

one outcome product was possible and did not take into account the multi-product

nature of many meat plant boning lines.

AI has transformed the food and meat industries by leveraging machine learning,

computer vision, and data analysis. It enables automated quality control, detecting

contaminants, and spoilage, and ensuring food safety. AI-powered systems enhance

production efficiency and optimize yield estimation and portion control. Computer

vision algorithms enable accurate classification and sorting of meat products, re-

ducing manual labor. AI also contributes to traceability, providing transparency in

the supply chain and enabling quick identification of issues. Furthermore, AI-driven

innovations improve consumer experience by personalizing recommendations and

enhancing product development.

2.2 Image Identification

Image identification has been a topic of research for many years, with significant

progress being made due to the advent of deep learning techniques. In this literature

review, some of the recent developments in the field of image identification will be

highlighted.

In recent years, Convolutional Neural Networks (CNNs) have become the domi-

nant approach for image identification due to their ability to extract complex features

from images. (Krizhevsky, Sutskever, and Hinton 2017) introduced the AlexNet

CNN architecture, which achieved a significant improvement in image classifica-

tion accuracy on the ImageNet dataset. Since then, many CNN architectures have
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been proposed that have achieved state-of-the-art performance on various image

classification benchmarks. Some notable examples include VGGNet (Simonyan and

Zisserman 2014), InceptionNet (Szegedy et al. 2015), and ResNet (K. He, X. Zhang,

et al. 2016).

Recently, attention-based models have been proposed for image identification

tasks. These models learn to attend to different parts of the image that are relevant

to the task. One example is the Transformer model (Vaswani et al. 2017), which

was originally proposed for natural language processing but has been adapted for

image recognition by replacing the text input with image features.

Deep learning techniques have significantly advanced the state-of-the-art in ob-

ject detection. The most successful approaches are based on Convolutional Neural

Networks (CNNs) can be categorized into two groups: two-stage detectors and one-

stage detectors.

Two-stage detectors first generate a set of region proposals and then classify

each proposal as an object or background. The most popular two-stage detector is

Faster R-CNN (Ren et al. 2015), which achieved state-of-the-art performance on the

PASCAL VOC and MS COCO object detection benchmarks. Several extensions of

Faster R-CNN have been proposed to further improve the accuracy and efficiency,

such as Mask R-CNN (K. He, Gkioxari, et al. 2017) and Cascade R-CNN (Cai and

Vasconcelos 2018).

One-stage detectors, on the other hand, directly predict the class and location of

objects without the need for region proposals. The most successful one-stage detec-

tor is YOLO (Redmon, Divvala, et al. 2016), which achieved real-time performance

on a single GPU. YOLO has several variants, including YOLOv2 (Redmon and

Farhadi 2017) and YOLOv3 (Redmon and Farhadi 2018), which further improve

the accuracy and speed of the original YOLO.

Recently, anchor-free object detectors have been proposed to further simplify

the object detection pipeline by removing the need for anchor boxes. These detec-

tors directly predict the location and size of objects without the need for anchor
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boxes. Some successful anchor-free detectors include CornerNet (Law and Deng

2018), CenterNet (X. Zhou, D. Wang, and Krähenbühl 2019), and FCOS (Tian et

al. 2019).

Image identification is a rapidly evolving field with various techniques and ar-

chitectures being developed and applied to different tasks. CNNs, transfer learning,

attention mechanisms, and generative models are some of the popular techniques

used in image identification, while interpretability and explainability continue to be

active areas of research.

2.3 Imbalanced Classification

Imbalanced classification refers to a classification problem where the distribution of

classes in the training dataset is not balanced, i.e., one class may have significantly

more samples than the other(s). For example, in a medical diagnosis task, the

majority of patients may not have a disease, while only a small fraction of patients

may have the disease. This results in an imbalanced dataset where one class has a

much higher frequency than the other.

Imbalanced classification can pose challenges for machine learning algorithms

because they tend to be biased towards the majority class. This means that the

model may perform well in identifying samples from the majority class but may

perform poorly in identifying samples from the minority class. This is particularly

problematic when the minority class represents the class of interest, such as detecting

rare diseases.

The following methods are incorporated to address the imbalanced classification.

2.3.1 Dataset Geometry

In (Weiss 2004), the author discusses the concept of rarity within the context of the

minority class. Rarity can be categorized into two types: absolute and relative. Ab-

solute rarity refers to situations where the number of data points associated with a
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rare class or case is extremely small. Due to this scarcity of data, detecting patterns

or regularities within the rare class becomes challenging. On the other hand, relative

rarity occurs when the proportion of data points in one of the classes is significantly

low, while the overall number of data points is high. It is important to note that

imbalances between classes and within classes are interconnected. Therefore, ad-

dressing the issue of between-class imbalance automatically helps in managing the

within-class imbalance as well.

The geometry of the minority class has been discussed in (Napierala and Ste-

fanowski 2012). The authors identified that there are four ways in which minority

classes can be categorized by analyzing a 2D visualization of a dataset trained by

Multidimensional Scaling (MDS).

• Safe are the data points located in the homogeneous regions populated by the

examples from a single class only.

• Borderline are the data points placed at the boundary of majority and mi-

nority classes.

• Outliers are the data points appearing deeper in the regions where the ma-

jority class prevails.

• Rare are some data points far from the clusters.

To identify the type of data points, an analysis of the class labels of their k -nearest

neighbors was performed. For simplicity, the authors set the value of k to 5. It was

also mentioned that a value smaller than 5 may poorly distinguish the nature of

examples. A high value of k can lead to inconsistency with its local neighborhood.

Table 2.1 shows the labels assigned to the data points as safe, borderline, rare, and

outlier using the proportion.

(Lin et al. 2017) characterized the imbalanced classification as follows:

• Class overlapping: As shown in Figure 2.1, when the examples from different

classes overlap, the learners have difficulties learning the attributes between
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Table 2.1: Labels assigned to the data-proportion

Proportion Labels

5:0 or 4:1 Labelled as safe (S)

3:2 or 2:3 Labelled as borderline (B)

1:4 Labelled as rare (R)

0:5 Labelled as outlier (O)

different classes. Predominantly, the examples belonging to the minority class

are categorized into the majority class.

• Small sample size: Generally, during the data-mining process it is not always

possible to collect sufficient data which is a major challenge as further data

collection is not possible.

• Small disjuncts: In Figure 2.2, the minority class samples are distributed in

numerous feature spaces which results in a high degree of compilation during

the classification process.

Figure 2.1: Class overlapping

In (Sampath et al. 2021) the imbalanced data has been classified as inter-class

and intra-class imbalances. The inter-class imbalance lies with a binary class classi-

fication problem where one of the classes is having less number of data points. The

04-Aug-2023 35 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Figure 2.2: Class disjunct

imbalance can be described using proportion or imbalance ratio. When the imbal-

ance lies within one of the classes, it is called an intra-class imbalance problem.

2.3.2 Data-level Approach

In the data-level approach, one aims to deal with the imbalanced nature at the

beginning. Here the aim is to balance the data by reducing or increasing the number

of data points. Re-sampling and synthesizing techniques are two extensively used

methods.

Re-sampling In re-sampling, oversampling, under-sampling, and hybrid sam-

pling are implemented. Resampling techniques aim to alleviate the effects of class

imbalance by manipulating the dataset to create a more balanced representation of

the classes. Resampling techniques aim to create a more balanced dataset by either

increasing the number of samples in the minority class (oversampling) or reducing

the number of samples in the majority class (undersampling). Oversampling tech-

niques generate synthetic samples or duplicate existing minority class samples, while

undersampling techniques remove instances from the majority class. By rebalancing

the class distribution, resampling helps improve the performance and generalization

of machine learning models, enabling them to learn from both classes effectively.

Oversampling : Over-sampling of imbalanced data is a technique used to address

the problem of class imbalance by increasing the number of samples in the minority

class. In situations where the minority class is underrepresented, over-sampling
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aims to create a more balanced dataset to mitigate the bias towards the majority

class. By increasing the representation of the minority class, over-sampling enables

the model to learn from a more diverse set of instances, improving its ability to

recognize and classify minority class instances accurately. Random oversampling is

one of the strategies that generate samples randomly using the bootstrap method

(Menardi and Torelli 2014).

Under-sampling : Under-sampling of imbalanced data is a technique used to

tackle class imbalance by reducing the number of samples in the majority class.

When the majority class dominates the dataset, under-sampling aims to create a

more balanced representation of the classes. This approach helps to address the

bias that may arise due to the unequal distribution of classes. By reducing the

dominance of the majority class, under-sampling allows the model to focus more

on learning from the minority class, leading to better recognition and classification

of minority class instances. Random under-sampling is an under-sampling strategy

that removes the data points from the majority class randomly with or without

replacement. For example, if there are 4000 majority examples and 500 minor-

ity examples, the dataset can be made a 50:50 ratio by removing 3500 examples

from the majority examples (Mohammed, Rawashdeh, and Abdullah 2020; Shelke,

Deshmukh, and Shandilya 2017; Lin et al. 2017; Guan et al. 2021). (Lin et al.

2017) implemented two strategies that employed a clustering algorithm to remove

the samples from a majority class. In the first strategy, the k-means clustering al-

gorithm was implemented where the number of clusters (i.e. k) was set to be the

number of examples in the minority class (i.e. k=N). Then, the k cluster centroids

are generated using the k-means algorithm over M data samples in the majority

class. These centroids were used to replace the entire majority class examples which

balanced the classes in an imbalanced dataset. The second strategy employed the

method of Euclidean distance to calculate the similarity between cluster centroids

and the data sample in the same cluster as it was found that the cluster centroids

were the average of the data samples in a cluster and a new additional sample for
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the majority class. Similar data points were removed from the majority class.

The concept of Tomek link was used to remove the examples from the majority

class while leaving the examples from the minority class untouched in (Tomek 1976).

Tomek link, (C. Jiang et al. 2023), takes two points, x andy, each having different

majority class then calculate distance, δ, between x and y. The pair (x, y) is called

a Tomek link if no example z exists such that δ(x, z) < δ(x, y) or δ(y, z) < δ(y, x).

Using Tomek links, the borderline examples and examples suffering from the class-

label noise can be removed. To reduce the number of redundant samples, the creation

of a consistent subset, C, from the training set, S, is proposed in which C ⊆ S is

consistent with S if, when used by the 1–NN rule, it correctly categorizes data points

in S.

In condensed nearest neighbor (Susan and Kumar 2021), the nearest neighbors

are removed based on the distance calculated, and the distance metric used is Eu-

clidean. However, the steps for edited nearest neighbors are as follows:

1. For each i,

(a) find the k-nearest neighbors to Xi among {X1, X2, ..., Xi−1, Xi+1, ..., XN}

(b) find the class θ associated with the largest number of points among the

K-nearest neighbors, breaking ties randomly when they occur.

2. Edit the set {(Xi, θi)} by deleting (Xi, θi) whenever θi does not agree with the

largest number of the K-nearest neighbors as determined in the foregoing.

Hybrid sampling : In this method, the oversampling and under-sampling are

implemented as one followed by the other. There are various combinations, such as

Random Oversampling with Random Under-sampling, Random Oversampling with

Tomek Link, etc., that can be used to resample the training datasets. Initially,

the data points belonging to the minority class are oversampled to reach a certain

percentage of the total number of data points in the majority class. Subsequently,

the majority class is down-sampled to align its number of data points with that of

the minority class.
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2.3.3 Synthesizing Techniques

The synthetic generation of data takes place in synthesizing methods. The syn-

thetic minority oversampling technique (SMOTE) is a method that uses the nearest-

neighbor concept to create data synthetically. (Chawla et al. 2002) proposed over-

sampling techniques, synthetic minority oversampling technique (SMOTE), nominal

SMOTE (SMOTEN), and nominal and continuous SMOTE (SMOTE-NC). SMOTE

is implemented to oversample the numerical attributes while SMOTEN oversamples

only the categorical features. To oversample a mixture of both, SMOTE-NC is used.

To oversample a categorical variable, the new examples are generated by picking the

most frequent category of the nearest neighbors present. Equation 2.1 shows the

mathematics of a synthetic example generation for continuous features.

xnew = xi + y ∗ (xzi − xi) (2.1)

where, xi is the minority sample, xzi is the nearest data point, and y is a random

number between 0 and 1. For example, in Figure 2.3, (Imblearn 2021), the green

point between two minority data points, xi and xzi, is the new point generated which

is labeled as xnew. If xi = (0.3, 3.5) and xzi = (0.4, 3.2), then the distance between

the x-axis and y-axis are, d1 = (0.4 − 0.3) = 0.1 and d2 = (3.2 − 3.5) = −0.3,

respectively. The generated point will be given as, xnew = (0.3, 3.5) + [0, 1] ∗ (0.1−

(−0.3)).

Figure 2.3: Synthetic Minority Oversampling Technique
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Adaptive synthetic (ADASYN) was proposed in (H. He et al. 2008) that uses

the k nearest neighbor rules and the SMOTE mathematics to generate new samples.

It is an extension of SMOTE that addresses the challenge of imbalanced datasets

with varying class densities. It focuses on generating synthetic samples in regions

where the density of the minority class is low, giving more importance to these

harder-to-learn instances.

(H. Han, W.-Y. Wang, and B.-H. Mao 2005) proposed borderline-SMOTE to

oversample the minority examples on the borderline of the minority and majority

classes. The method is based on finding the borderline minority examples and then

selectively generating synthetic samples near the decision boundary to address the

challenge of overlapping class distributions.

Data augmentation is a widely used technique in machine learning and computer

vision to address the challenge of limited training data. It involves applying various

transformations to existing data samples to create additional synthetic samples. By

expanding the dataset with augmented samples, the model can learn more robust

and generalizable representations. This literature review explores different data

augmentation techniques and their impact on model performance.

One commonly used data augmentation technique is image augmentation, which

involves applying transformations to images. One of the most common image aug-

mentation techniques is random rotation, which involves rotating images to a certain

degree. (Shorten and Khoshgoftaar 2019) demonstrated that applying random ro-

tation improved the accuracy of deep learning models for object recognition tasks.

In addition to rotation and flipping, random cropping is a popular augmentation

technique. (Han Zhang et al. 2019) proposed the Random Erasing technique, which

randomly crops patches from images and replaces them with random noise. They

found that Random Erasing improved the performance of object detection models.

Color jittering is another augmentation technique that alters the colorize of im-

ages. (Cubuk et al. 2018) introduced AutoAugment, an algorithm that automat-

ically searches for the best color augmentation policies for a given dataset. They
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demonstrated that AutoAugment significantly improved the accuracy of image clas-

sification models.

Cutout is a technique where random patches of pixels are masked out from

images. (DeVries and Taylor 2017) showed that Cutout regularized deep learning

models, prevented overfitting and improved generalization performance. Moreover,

there are domain-specific augmentation techniques. For medical image analysis,

(Ronneberger, Fischer, and Brox 2015) proposed elastic deformation, which ap-

plies local deformations to medical images to simulate anatomical variations. They

showed that elastic deformation improved the performance of deep learning models

for medical image segmentation tasks.

Furthermore, generative adversarial networks (GANs) have been used for data

augmentation. (Chamier et al. 2021) introduced CycleGAN, a GAN-based augmen-

tation method that generates synthetic images from existing ones while preserving

the original content. They demonstrated that CycleGAN effectively increased the

diversity of training data and improved the performance of deep learning models for

image classification.

Overall, image data augmentation techniques play a crucial role in deep learning

for computer vision. The choice of augmentation techniques depends on the specific

task and dataset. By effectively augmenting the training data, these techniques

enhance model performance, improve generalization, and make deep learning models

more robust.

Imbalanced classification methods address the challenges posed by imbalanced

datasets where the distribution of class labels is skewed. These methods aim to im-

prove the performance of machine learning models by effectively handling the minor-

ity class and reducing the bias towards the majority class. Various techniques are em-

ployed, such as resampling methods (oversampling or undersampling), cost-sensitive

learning, ensemble methods, and algorithmic modifications. Resampling methods

adjust the class distribution by either increasing the minority class samples or de-

creasing the majority class samples. Cost-sensitive learning assigns different costs
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to misclassification errors, giving more importance to the minority class. Ensemble

methods combine multiple classifiers to leverage their complementary strengths. Al-

gorithmic modifications adapt existing algorithms to handle imbalanced data, such

as modifying the decision thresholds or introducing class weights. These methods

enhance model performance, promote better generalization, and mitigate the impact

of class imbalance in classification tasks.

2.4 Ensemble Methods

Ensemble methods are widely used in machine learning to combine multiple models

and improve the overall predictive performance. In this literature review, some of

the recent developments in the field of ensemble methods will be discussed.

Bagging and Boosting are two of the most popular ensemble methods. Bagging

involves training multiple models independently and combining their predictions by

averaging or voting. Random Forest (Breiman 2001) is a popular bagging algorithm

that builds decision trees on random subsets of the data and aggregates their predic-

tions. Boosting, on the other hand, involves iteratively training models that focus

on hard-to-predict examples. The most successful boosting algorithm is AdaBoost

(Freund and Schapire 1997), which assigns higher weights to misclassified examples

and trains subsequent models on the re-weighted data.

Another popular ensemble method is Stacking, which involves training multiple

models and using their predictions as inputs to a higher-level model. Stacking has

shown promising results in several machine learning competitions, such as the Netflix

Prize and the KDD Cup.

Recently, neural network-based ensemble methods have gained attention due

to their superior performance in many tasks. One of the most successful neural

network-based ensemble methods is the Deep Ensemble (Lakshminarayanan, Pritzel,

and Blundell 2017), which trains multiple neural networks with different architec-

tures and combines their predictions using Bayesian model averaging. Another neu-

ral network-based ensemble method is the Snapshot Ensemble (Huang et al. 2017),

04-Aug-2023 42 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

which trains a single network with multiple learning rates and snapshots its weights

at regular intervals.

Ensemble methods have been widely used in machine learning to improve predic-

tive performance. Bagging and Boosting are two popular ensemble methods, while

Stacking and neural network-based ensemble methods have shown promising results

in recent years. Further research in the area is likely to lead to even more effective

ensemble methods.

2.5 Meta Learners

Learning to learn is called meta-learning where a new task is learned using the

systematic observations from meta-data of previously learned algorithms. It is a

subfield of machine learning (ML) that aims to improve the efficiency and gener-

alization of learning algorithms by enabling them to learn how to learn from past

experiences. Meta-learning has been an active area of research in ML and AI for sev-

eral decades. In this literature review, the recent advancements and key concepts in

meta-learning will be reviewed. Meta-learning can be seen as a higher-order learning

process, where the goal is to learn how to learn new tasks efficiently and effectively.

In traditional machine learning, the goal is to learn a fixed model that performs well

on a specific task, given a set of training examples. However, in the real world, one

encounters a large variety of tasks that require different types of models and strate-

gies. Therefore, meta-learning has emerged as a promising approach to address the

challenge of learning across different tasks and domains.

Meta-learning algorithms can be categorized into three main types: model-based,

metric-based, and optimization-based. Model-based approaches use Bayesian infer-

ence to learn a distribution over models or model parameters. Metric-based ap-

proaches learn a distance metric between examples or tasks, which can be used to

generalize to new tasks. Optimization-based approaches learn a set of hyperparam-

eters or optimization algorithms that can be applied to different tasks.

Meata-learning approaches make learning much faster compared to machine
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learning algorithms and improve the design of ML pipelines. Meta-learning is a data-

driven approach that replaces hand-engineered algorithms with novel approaches

(Vanschoren 2018). The difference between a base-learning and a meta-learning is

the scope of the level of adaptation: meta-learning focuses on choosing the right bias

dynamically while base-learning fixes the bias a priori or user parametrized (Vilalta

and Drissi 2002).

2.5.1 Meta-Features

In a meta-learning framework, the initial task is to collect meta-data that explains

previously learned models on various tasks. These include the same configuration

of algorithms used for training models such as setting hyper-parameters, composing

pipelines, the architecture of networks, resulting model evaluations like time to train

and accuracy, and learned parameters like trained weights are called meta-features.

2.5.2 Meta-Learners with Imbalanced Classification

(Z. Liu et al. 2020) created a meta-learner for imbalanced classification tasks with

three parts, meta-sampling and ensemble training to build ensemble classifiers and

meta-training to optimize the meta-sampler. The meta-state provided information

about the bias/variance of the ensemble models. This research focused only on the

binary classification tasks and did not perform any multi-class classification.

Meta-learners are powerful techniques that aim to improve the performance and

generalization of machine learning models by learning how to learn. These algo-

rithms operate at a higher level by leveraging insights from multiple base learners

and combining their predictions or models to make more accurate and robust de-

cisions. Meta-learners can adapt to changing data distributions, handle limited

labeled data, and enhance model transferability across different tasks or domains.

By effectively utilizing the knowledge acquired from base learners, meta-learners

provide a means to optimize model architectures, hyperparameters, or feature rep-

resentations, ultimately leading to improved model performance and more efficient
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learning processes.

Table 2.2 shows the difference between Meta learners and Ensemble methods.

Table 2.2: Meta Learners vs Ensemble Methods

Meta Learners Ensemble Methods

Meta-learners are algorithms or frameworks de-
signed to learn from multiple learning tasks in
order to improve the learning process or adapt
to new tasks more efficiently. They aim to learn
higher-level knowledge or representations that can
be applied across different tasks.

Ensemble methods, on the other hand, involve
combining multiple models (learners) to create a
more powerful or accurate prediction. The goal of
ensemble methods is to leverage the diversity of
individual models to enhance overall performance.

Meta-learners typically focus on learning how to
learn or adapt. They often employ techniques
such as gradient-based optimization, memory-
augmented architectures, or reinforcement learn-
ing to optimize the learning process. Meta-
learners can be trained on a set of tasks and then
generalize that knowledge to new, unseen tasks.

Ensemble methods combine the predictions of
multiple models, known as base learners or weak
learners, to generate a final prediction. Each base
learner is trained independently on the same or
different data subsets, and their predictions are
aggregated using various techniques such as ma-
jority voting, weighted averaging, or stacking.

The primary objective of meta-learners is to
improve generalization and adaptability to new
tasks. They aim to capture patterns or rela-
tionships across multiple tasks and leverage this
knowledge to quickly adapt to new, unseen tasks
with limited training data.

Ensemble methods primarily aim to enhance pre-
dictive accuracy and reduce overfitting. By com-
bining multiple models, ensemble methods can re-
duce the impact of individual model biases and
errors, leading to improved overall performance.

Meta-learners are often applied in few-shot learn-
ing, transfer learning, and reinforcement learning
domains. They excel in scenarios where training
data is limited or tasks exhibit certain similarities.

Ensemble methods have a wide range of applica-
tions and are commonly used in various machine
learning tasks such as classification, regression,
and anomaly detection. They can be applied to
any problem where multiple models can be trained
and combined.

2.6 Summary

Ensemble methods, transfer learning, and large-scale deep neural networks have been

deployed in numerous image detection problems both within and outside the meat

sector, but none of the approaches studied have applied these methods to identify

individual boneless beef cuts and in many cases, the volume of data used was quite

small. In contrast, the research presented in this thesis assesses the application

of deep learning in detecting products from images that in many cases are highly

homogeneous.
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Chapter 3

Dataset

The first stage is to gather a sizable and varied dataset of meat cut images. The

collection of meat-cut image data is crucial for experimental studies on the meat

business, food science, and animal husbandry. It entails taking pictures of different

slices of meat for research and development purposes.

The primary benefit of collecting meat-cut image data is the visual documenta-

tion of various meat cuts and their features. The shape, size, marbling, fat distribu-

tion, and texture of meat pieces might vary. Researchers can build a comprehensive

dataset that appropriately portrays the wide variety of meat products available by

gathering high-quality photos of various meat slices. These images act as a visual

reference for researchers, but they also serve as a valuable resource for the industry,

aiding in quality control, standardization, and meat classification.

Accurate and standardized meat-cut images are vital for quality control and

product consistency in the meat industry. Meat processors and retailers rely on

consistent visual standards to classify and grade meat products. By collecting and

analyzing meat-cut images, researchers can develop objective criteria for categoriz-

ing meat cuts based on visual attributes. This enables the industry to maintain

consistent quality standards, improve consumer trust, and ensure that consumers

receive the expected meat product based on visual appearance.

The collection of such data is also essential for the study of meat and food

technologies. Researchers investigate a number of variables, such as animal breed,
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age, food, and post-mortem procedures, that affect the quality of meat. Researchers

can examine the visual characteristics and correlate them with the associated meat

quality indicators by gathering photos of meat cuts from various sources and under

various circumstances. This enables a greater comprehension of the connection

between meat quality and its visual appeal, resulting in advancements in meat-

processing methods, product creation, and customer pleasure.

Furthermore, this is valuable in consumer studies and sensory analysis. Visual

appeal plays a significant role in consumers’ perception and acceptance of meat

products. By presenting consumers with meat-cut images and collecting their feed-

back, researchers can study the influence of visual cues on consumer preferences,

purchasing decisions, and sensory perception. This information helps guide mar-

keting strategies, product design, and consumer-oriented innovations in the meat

industry.

Meat-cut image collection also supports the development of automated meat

grading and sorting systems. With advancements in computer vision and machine

learning, researchers can train algorithms to recognize and classify meat cuts based

on their visual features. The availability of a comprehensive meat-cut image dataset

enables the training and evaluation of such algorithms, leading to the development

of efficient and accurate automated grading and sorting systems. These systems

offer benefits such as increased productivity, reduced labor costs, and improved

consistency in meat processing operations.

Additionally, it facilitates education and training in the meat industry. Students,

researchers, and professionals in meat science and food technology programs require

access to authentic and diverse meat-cut images for educational purposes. A well-

curated dataset of meat-cut images allows for hands-on learning, fostering a better

understanding of meat anatomy, identification of different cuts, and the relationship

between visual appearance and quality characteristics.
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3.1 PaceLine Debonning

PaceLine deboning is a method used in the beef industry that utilizes a conveyor

belt system to transport carcass portions through the cutting room. The conveyor

belt serves a dual purpose, not only transporting the product but also serving as

the work surface for the deboners.

As shown in Figure 3.1, the speed of the conveyor belt determines the pace at

which the work is performed on the deboning line. Each employee in the PaceLine

has a designated task in the deboning process, and they must complete their task

within the timeframe of the specific piece of meat passing by them on the conveyor

belt. This synchronized workflow ensures that the deboning process is efficient and

consistent.

One of the advantages of the PaceLine deboning method is that it allows for

efficient and uniform deboning with a potentially lower-skilled workforce. The indi-

vidual tasks in the process are specific and straightforward, making them easier to

learn and perform. This enables companies to train personnel quickly, reducing the

need for highly skilled and experienced deboners.

Once the meat is deboned, it is typically fed into crates or onto a conveyor belt

for further processing, storage, or packing. This allows for the seamless integration

of the deboned meat into subsequent stages of the production process.

Overall, PaceLine deboning offers several benefits to the beef industry. The use

of a conveyor belt system ensures a consistent pace of work, optimizing productivity.

The simplicity of the individual tasks makes it easier to train personnel and maintain

a skilled workforce. Additionally, the efficient deboning process and subsequent

handling of the meat facilitate its storage, packing, and further processing.

3.2 Data Collection

Deductive Analytics for Tomorrows Agri Sector (DATAS) (McCarren, S. McCarthy,

et al. 2017) is a project sponsored by the government of Ireland to create Agricul-
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Figure 3.1: PaceLine Deboning

tural/Food related datasets that can be used to enhance practitioners’ insights in

the Agri sector. The data collected for this project range from international macro

economic indicators to micro data collected at the plant level. One such dataset

was the collection of data from beef cuts taken from the Topside trimming line of

a major Irish beef processor. In most Irish meat plants, a Topside cut is an inner

muscle taken from the hind quarter of a bovine animal. The process flow for this

line required an operator to weigh the primal topside cut on a Start of Line (SOL)

weighing scale. Each cut was then placed on a conveyor belt where a team of op-

erators removed fat, gristle, or secondary muscles. The remaining primary muscles

were then labeled and weighed, and an image was captured by a trained operator

at the End of Line (EOL) weighing scales. For this particular study, there were five

different types of the cut as shown in Figure 3.5: (a) is a Cap Off Pear Off, PAD

topside muscle (product 20001); (b) is a Cap off, Pear on topside muscle (20002);

(c) is a Topside Heart muscle (20003); (d) is a topside Bullet muscle (20004); and

(e) is a Cap Off, Non-Pad, Blue Skin Only topside muscle (20010).
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Figure 3.2: Data Collection Process

For this study, data acquisition required a hardware setup of weighing scales

(System 1985) at both the Start of Line (SOL) and End of Line (EOL) together

with a Vivotek bullet camera (Vivotek n.d.) at the EOL to capture a photo image

of each meat cut as shown in Figure 3.2.

3.2.1 Weight Collection Using DEM Weighing Scale

DEM weighing scale, also known as dynamic electronic measuring weighing scale, is

a type of scale that is used to measure the weight of objects or materials in motion. It

is commonly used in industries such as logistics, manufacturing, and transportation,

where weighing objects while they are in motion is necessary. An overview of how

a DEM weighing scale typically works is as follows:

• Load Cell: The DEM weighing scale consists of load cells, which are sensors

that convert the force or weight applied to them into an electrical signal. Load

cells are strategically placed at specific points on the scale or conveyor system

to accurately measure the weight of the moving objects.

• Conveyor Belt or System: The objects to be weighed are typically placed on

a conveyor belt or passed through a conveyor system. As the objects move
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along the conveyor, they come into contact with the load cells.

• Measurement and Data Processing: When an object comes in contact with a

load cell, it applies force to the load cell, which then generates an electrical

signal proportional to the weight of the object. These electrical signals are

collected and processed by the weighing scale’s electronics.

• Calibration and Adjustment: To ensure accurate measurements, DEM weigh-

ing scales require calibration. Calibration involves setting the scale to zero

when there is no load on the conveyor system and verifying that the scale

provides accurate measurements at specific load points.

• Display and Data Output: The measured weight data is displayed on a digital

or graphical interface. This display can show the weight in various units, such

as kilograms or pounds. Additionally, DEM weighing scales often have data

output capabilities, allowing the weight data to be sent to other systems or

devices for further analysis or integration into larger operational processes.

• Control and Feedback: DEM weighing scales can be integrated into control

systems to automate processes based on weight measurements. For example,

in a manufacturing environment, the weight data from the scale can trigger

actions such as sorting, packaging, or quality control checks.

The weight of each product was collected using DEM weighing scale. Table 3.1

shows a description of these. In Figure 3.3, the box plot shows that there are no

outliers in the collected weights.

3.2.2 User Interface for Data Collection

In addition, bespoke data capture software using a node.js platform (Cantelon et al.

2013) was used to acquire the characteristics of each product being weighed.

1. The first step sees a manual capture of: weight, batch number and time at the

SOL scales.
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Figure 3.3: Box Plot of Weights

Figure 3.4: EOL User Interface for Data Collection
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Table 3.1: Descriptive Statistics of Weights Collected

Metric Value

Mean 5.36

Std Dev 2.80

Min 0.62

25% 1.80

Median 5.92

75% 7.39

Max 12.72

2. The next step sees a software-based capture of: time, operator, batch number,

product label, weight and photo image at the EOL scales.

3. As the variables are captured using different devices at step 2, both SOL

and EOL variables must be linked to the image capturing at Step 3. The

EOL operator identifies the product using the data capture interface (shown

in Figure 3.4), ensuring the correct image is stored to disk and linked to the

appropriate database entry containing the variables captured at both EOL

and SOL points.

4. After each product is removed from the scales, an image of the empty scales

is captured for usage in background removal during the pre-processing step

discussed in section 3.4.

The user interface for the data capture software can be seen in Figure 3.4. A

trained operator identifies the products and selects one of the buttons from Cap Off,

Pear Off, PAD, Cap Off, Pear On, Topside Heart PAD, Topside Bullet and Cap Off

Non Pad Blue Skin Only, to align the images and variables described above. The

data collection period lasted 3 weeks and the equivalent weights were collected for

each cut from the topside trimming line over this period. A summary of the data
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captured is shown in table 3.2, where N is the frequency distribution of images, and

X̄ and S are mean and standard deviation of weights respectively.

Table 3.2: Dataset Analysis

Product ID N Product Description X̄ ± S (kgs) Cut Yield(%)

20001 1060 Cap Off, Pear Off, PAD 6.47 ± 1.17 55.11

20002 14 Cap Off, Pear On 8.87 ± 0.98 68.18

20003 2132 Topside Heart PAD 5.78 ± 1.10 44

20004 2085 Topside Bullet 1.40 ± 0.29 9.45

20010 2696 Cap Off Non Pad Blue Skin Only 7.82 ± 1.59 61.55

At the end of the data collection period, a yield analysis was conducted to

determine if there were any outlying weights by comparing the weights on the SOL

scales with the weights of the product on the EOL scales. As the beef plant operator

had a specification limit of 10% for each of the products used in these experiments,

any absolute difference between the yield value and the expected yield that exceeded

10% was flagged as an outlier and subsequently, removed from the dataset. As

a result, 7,987 records were deemed acceptable for the final dataset (McCarren,

Scriney, et al. 2021).

3.3 Dataset Features

In general, image datasets contain various features that are essential for training and

evaluating computer vision models. These features provide important information

about the images and enable the models to learn and make accurate predictions.

The data collected in this research has

• Classes/Categories: Image datasets are typically organized into different

classes or categories. Each image is assigned a specific class label indicating the

object, scene, or concept it represents. This data has five mutually exclusive

classes with their product ID label.
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(a) Meat cut 20001 (b) Meat cut 20002 (c) Meat cut 20003

(d) Meat cut 20004 (e) Meat cut 20005

Figure 3.5: Topside Cuts: 5 meat cut variations.

• Metadata: Image datasets may contain additional metadata associated with

each image, providing supplementary information about the images. In this

dataset, the background images have also been collected.

3.4 Image Pre-processing

This section begins with an outline of the pre-processing steps required for image

data before describing the implementation of the three separate deep learning models

and a fourth approach, an ensemble method, used to detect the meat cuts within

the image data.

When conducting image pre-processing, one generally aims to improve the predic-

tion process by enhancing certain characteristics and/or blurring others (Lancaster

et al. 2018). For this study, each meat cut image was accompanied by its associated

background image such as that shown in Figure 3.6a. In order to remove distracting

or confusing items such as operator hands or small meat blobs, the background im-

age (3.6a), was removed from the image meat cut in 3.6b, resulting in Figure 3.6c.

This image was then converted to greyscale as shown in Figure 3.6d, and finally, the

edges were enhanced as shown in Figure 3.6e using Gaussian blur and edge detection

techniques.

04-Aug-2023 55 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

(a) Background (b) Scale with cut (c) Difference

(d) Greyscale image (e) Detecting Edges

Figure 3.6: Images At Various Stages of Pre-processing

Theoretically, with image identification algorithms such as convolutional neural

networks, there is no need to engineer features during this process, as the mix of

the convolution kernels and max pooling automatically creates features that can

be inserted into a typical neural network (H. Liu et al. 2019). However, neural

networks are highly non-linear, and estimating the choice of initial weights can be

computationally expensive. Creating a simplified set of initial features, such as the

object extremities, and using these as inputs to a basket of simpler algorithms or

an ensemble of algorithms has been found to be successful in other applications (R.

Wang, W. Li, and L. Zhang 2019). In order to identify these object extremities,

images were standardized by rotating them so that the longest side was always in

a vertical position. Figure 3.7 shows the co-ordinates and the virtual box drawn

around the meat cut. From this image, the following features were calculated:

Figure 3.7: The co-ordinates and the virtual box around the meat cut
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• Density: white pixel count relative to the total number of pixels.

• (Xmin, XminY ): the minimum X and the corresponding Y coordinate.

• (Xmax, XmaxY ): the maximum X and the corresponding Y coordinate.

• (YminX,Ymin): the minimum Y and the corresponding X coordinate.

• (YmaxX, Ymax): the maximum Y and the corresponding X coordinate.

3.5 Handling Imbalanced Class

The frequency breakdown for the products shown in table 3.2 highlights product

20002 as having a disproportionately lower volume of occurrences. As the distribu-

tion of product 20002 in the classification problem is heavily skewed, this is called as

an imbalanced class. This class imbalance can pose challenges for machine learning

algorithms, as they tend to have a bias towards the majority class and may struggle

to accurately predict the minority class.

It was decided to use data augmentation to create artificial training samples

for 20002 in order to improve the imbalanced nature of the dataset. As part of

the augmentation process, transformations such as anticlockwise rotation, clockwise

rotation, horizontal flip, vertical flip, noise addition, and blurring were implemented.

These processes created 84 additional images for product 20002 providing a final

count of 98 images for product 20002.

3.6 Summary

The collection of meat image data is crucial for the development of artificial intel-

ligence models and systems in the domain of food processing, quality control, and

agriculture. The data can be described as ”Big,” indicating a large number of images

summing up to 7,987, which provides a substantial dataset for training and analy-

sis. Furthermore, the data can be characterized as ”Diverse,” representing samples
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(a) Original Product (b) Anticlockwise rotation (c) Clockwise rotation

(d) Horizontal flip (e) Vertical flip (f) Noise addition

(g) Blurring

Figure 3.8: Image Augmentation
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from five distinct categories, likely enhancing the representativeness and variability

of the dataset. The mentioned attributes of the dataset can contribute to various

applications such as automated inspection and sorting, yield estimation and portion

control, traceability and food safety, as well as research and innovation in the field.
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Chapter 4

Methodology

In this section, the effectiveness of several machine-learning algorithms for identi-

fying beef cuts, as described in Chapter 3, is evaluated. Taking into account the

insights shared in Chapter 2, convolutional neural networks (CNNs) will be applied

to process the structured image data. Additionally, a transfer learning technique

known as ResNet (short for residual network) will be incorporated for its efficient

training capabilities. The weights obtained from ResNet will be combined with the

CNN model, and subsequently, a novel ensemble method, that leverages the predic-

tions from the algorithms and their corresponding weights, will be introduced.

4.1 Convolutional Neural Networks

The Neural Network family of machine learning algorithms has evolved from the

original Artificial Neural Network (ANN) to Deep Learning Architectures such as

the Convolutional Neural Network (CNN) (Shah and Gandhi 2004; Hang et al.

2019). The CNN algorithm has shown particular success in identifying objects within

images (Wallelign, Polceanu, and Buche 2018). The CNN algorithm processes data

by passing images through multiple convolutional and pooling layers and applies

non-linear transformations such as the Softmax or ReLU function to obtain the

probability-based classes (X. He and Y. Chen 2019; Prabhu 2018). The elements of

CNN are as follows:
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• Convolutional Layers: CNNs utilize convolutional layers as their fundamental

building blocks. The core operation of a convolutional layer is the convolution

operation. It involves applying a set of learnable filters (also known as kernels

or feature detectors) to the input data. This operation enables the network to

learn hierarchical representations of visual features with increasing complexity.

• Pooling Layers: Pooling layers are often inserted between convolutional layers

to downsample the feature maps, reducing their spatial dimensions. Max

pooling and average pooling are common techniques used in CNNs to retain

the most salient features while reducing computational complexity.

• Activation Functions: Non-linear activation functions, such as ReLU (Rectified

Linear Unit), are typically applied element-wise after each convolutional or

fully connected layer. ReLU introduces non-linearity and helps the network

model more complex relationships between features.

• Fully Connected Layers: Towards the end of the network, one or more fully

connected layers are commonly employed to aggregate the spatial information

and make predictions based on the learned features. These fully connected

layers are often followed by a softmax activation function for multi-class clas-

sification.

• Loss Function and Optimization: CNNs are trained using supervised learning,

where a loss function, such as cross-entropy, is used to measure the difference

between predicted and true labels. The network parameters are updated iter-

atively using optimization algorithms like stochastic gradient descent (SGD)

or its variants to minimize the loss.

The functional form of a convolution layer is described in equation 4.1.

X l
j = g(

∑
i∈Nj

X l−1
i ∗W l

ij +Bl
j) (4.1)
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In equation 4.1, X l
j is an output vector, W l

ij is the convolution kernel, also known

as weights, X l−1
i is the previous layer’s feature map, Bl

j is an additive bias given to

each output map, Nj represents the selection of the input maps, and ∗ represents

the convolution operation.

In a neural network, regularisation is a technique to prevent overfitting. Over-

fitting occurs when the model is over-parameterized relative to the volume of data

available. Typically one finds that the training loss continues to reduce as validation

loss remains the same and the final model selection does not perform well on the

test data. A solution that is regularly proposed to prevent overfitting is the addition

of dropouts within the input and flatten layers (N. Srivastava et al. 2014). A loss

function describes the deviation of predictions from the ground truth (Zhao et al.

2016), and is required to calculate the model error. The error for a single pattern can

be expressed as in equation 4.2, where λ is a user-defined parameter that controls

the trade-off and αi is the weights for a given output.

ϵ̃n = ϵn + λ
∑
i,j

|(α)ij| (4.2)

After each step, the parameters and learning rates get updated in order to min-

imize the error using algorithms such as Adaptive Moment (Adam), which is a

first-order gradient-based optimization of the stochastic function and is based on

adaptive estimates of lower-order moments (Kingma and Ba 2015). ReLU, a com-

putationally inexpensive activation function, accelerates the training procedure by

avoiding the vanishing gradient problem (X. He and Y. Chen 2019). In order to

avoid overfitting, a CNN architecture, which was originally used to identify num-

bers in the MNIST dataset (Garg et al. 2019) by adding max-pooling and a dropout

on each convolution layer (Park and Kwak 2016), was adapted.

04-Aug-2023 62 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

4.2 CNN mixed with Product Weights

To create a model that incorporates both unstructured data i.e., images, and struc-

tured data i.e., weights, first a CNN branch was defined that processes the image

data, utilizing convolutional layers, pooling layers, and fully connected layers. Si-

multaneously, a separate branch was constructed to handle the CSV data, which

may consist of fully connected layers or other appropriate layers for structured data.

The outputs from both branches are concatenated by merging the learned repre-

sentations from both the image and weight data. To further enhance the model’s

capabilities, additional layers such as fully connected layers or softmax layers can be

added after the merging point to facilitate predictions or perform the desired task.

Figure 4.1: Architecture with Product Weight Infusion

Once the model architecture is defined and the branches are combined using the

Parallel API, the next step is to compile the model. This involves specifying the loss

function, optimizer, and evaluation metrics that will be used to train and evaluate

the model. The loss function determines how the model’s predictions are compared

to the true labels, while the optimizer controls how the model’s parameters are

updated during training. Additionally, evaluation metrics provide insights into the

model’s performance during the training and evaluation phases.

With the model compiled, the training process begins. The combined image and

CSV data are fed into the model, ensuring that the multiple inputs and outputs

are appropriately handled. The model learns from the training data by iteratively

adjusting its parameters based on the defined loss function and optimizer. This

process continues for a certain number of epochs or until a convergence criterion is
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met.

After training, it is crucial to evaluate the model’s performance on unseen data.

This evaluation is typically done using a separate validation dataset. The model’s

predictions are compared against the true labels, and various evaluation metrics are

calculated to assess its accuracy, precision, recall, or other relevant performance mea-

sures. Based on the evaluation results, the model may require fine-tuning to improve

its performance. This can involve adjusting hyperparameters, such as learning rate

or regularization strength, or modifying the model architecture itself to optimize its

performance on the target task.

By following this approach of compiling the model, training it with combined

data, and evaluating its performance, practitioners can iteratively refine and enhance

the model’s effectiveness. Fine-tuning based on evaluation results helps ensure that

the model generalizes well and achieves optimal performance on the desired task.

As explained in the previous section, the weights (kgs) and images of the meat

cuts were recorded simultaneously. In the meat industry, cuts are generally extracted

from primal cuts, and knowing the weights of these cuts can potentially help in the

identification of candidate labels. Integrating external models or input nodes such

as the weights into the hidden layers of a Deep Learning architecture has been shown

to be successful in previous research (Shi et al. 2020).

In figure 4.1, the weight of each meat cut has been integrated into the flatten layer

of CNN mentioned in section 4.1. Flattening the final convolution layer converts

the images into a 1-dimensional array and transfers it to the fully connected, dense

layer. The weight is concatenated with 1-dimensional features and the last dense

layer is used as an output layer which predicts the classes of the meat cut images.

4.3 Ensemble Approach with Product Weights

The ensemble architecture is presented in figure 4.2 as a 5-layer structure. At the

first layer (Training: Data-Level 1), the handcrafted features x1, x2, ..., x8, were used

in conjunction with each product weight, together with a basket of machine learning
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approaches to identify each meat cut. The three base learners shown at layer 2, were

Multinomial Logistic Regression (MLR), Decision Tree Classifier (DTC), and CNN.

Figure 4.2: Ensemble Architecture using Multinomial Logistic Regression, Decision
Tree classifier and CNN Learners

4.3.1 Base Learners

In machine learning, a base learner refers to an individual model or algorithm that

serves as a building block within an ensemble learning framework. It is the basic or

elementary model that forms the foundation for more complex learning architectures.

The base learner is typically a relatively simple and weak model that may not

perform optimally on its own. However, when combined with other base learners

or integrated into an ensemble, it contributes to the overall predictive power and

generalization ability of the ensemble.

The choice of base learner depends on the specific problem domain and the

characteristics of the data. Common examples of base learners include decision

trees, logistic regression models, support vector machines, or neural networks with a

small number of layers. These models are often selected for their simplicity, speed,

or interpretability.
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Ensemble methods, such as bagging, boosting, or stacking, are commonly used

to combine the outputs of multiple base learners. The diversity and complementary

strengths of different base learners can help mitigate individual model weaknesses

and improve the overall predictive performance of the ensemble.

Base learners play a crucial role in ensemble learning as they form the fundamen-

tal components that work together to make collective predictions. The ensemble’s

final prediction is typically a combination of the predictions made by the base learn-

ers, either through voting, averaging, or weighted aggregation.

It is important to note that the success of an ensemble often relies on the diversity

of the base learners. If all base learners are too similar or produce similar predictions,

the ensemble may not be able to improve performance significantly. Therefore, the

selection and diversity of base learners are crucial considerations when designing

effective ensemble models.

Multinomial Logistic Regression

Multinomial logistic regression (MLR), also known as softmax regression, is a statis-

tical regression model used for predicting categorical outcomes with three or more

classes. It is an extension of binary logistic regression, which is used for binary

classification problems. MLR is particularly useful when the dependent variable has

more than two categories and the relationship between the independent variables

and the outcome is assumed to be linear.

In MLR, the goal is to estimate the probabilities of each category of the de-

pendent variable. The model assumes that the probabilities follow a multinomial

distribution. The predicted probabilities are obtained using the softmax function,

which transforms the linear combination of the independent variables into a proba-

bility distribution.

The model is typically trained using maximum likelihood estimation (MLE),

where the parameters are estimated by maximizing the likelihood of observing the

given data. The likelihood is calculated as the product of the predicted probabilities
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for the observed outcomes. The optimization process involves iteratively adjusting

the parameters to find the values that maximize the likelihood.

Interpreting the results of MLR involves examining the estimated coefficients

(also known as log odds or logits). These coefficients indicate the direction and

magnitude of the relationship between the independent variables and the outcome

categories. The exponential of the coefficients represents the odds ratios, which

quantify the change in odds for a one-unit increase in the corresponding independent

variable, holding other variables constant.

MLR can handle both categorical and continuous independent variables. Cat-

egorical variables are typically converted into dummy variables, with one category

serving as the reference category. The interpretation of the coefficients in this case

is in relation to the reference category.

It is important to assess the goodness of fit of the MLR model. This can be done

using various measures, such as the likelihood ratio test, AIC (Akaike Information

Criterion), or BIC (Bayesian Information Criterion). These measures help evaluate

how well the model fits the data and compare different models.

MLR has applications in various fields, including social sciences, healthcare,

marketing, and natural language processing. It is commonly used for tasks such as

sentiment analysis, document classification, customer segmentation, and predicting

multiple categories in survey data.

As the dataset has 5 different product IDs the MLR relies on a posterior class

distribution, using Bayesian inference, to provide a degree of plausibility for each clas-

sification. The general equations of the MLR model are shown in equations 4.3 and

4.4, where: pi is the probability of occurrence of each event; θ is the likelihood param-

eter; pk+1 represents the monotonicity of the lower bound iterate; x = (x1, . . . , xm)
T

is the covariate-vector; and θi is the parameter vector corresponding to the i − th

response category (Böhning 1992; J. Li, Bioucas-Dias, and Plaza 2010).

pi =
exp (θ(i)

T
x)

1 +
∑k

j=1 exp (θ
(j)Tx)

for i = 1, ..., k (4.3)
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pk+1 =
1

1 +
∑k

j=1 exp (θ
(j)Tx)

(4.4)

Decision tree classifiers

Decision tree classifiers (DTC) are a rapid and useful top-down greedy approach to

classify a dataset with a large number of variables (Farid et al. 2014). In general,

each decision tree is a rule set. It is a supervised machine learning model that utilizes

a tree-like structure to make predictions or classify instances based on a set of input

features. They are popular due to their simplicity, interpretability, and ability to

handle both categorical and numerical data.

The DTC starts with a root node that represents the entire dataset. It then

recursively splits the data into subsets based on the values of different features,

creating internal nodes and branches. Each internal node represents a decision

based on a specific feature, and each branch represents a possible outcome or value

of that feature. The process continues until a stopping criterion is met, such as

reaching a maximum depth, a minimum number of instances in a leaf node, or no

further improvement in splitting the data.

To make a prediction with a DTC, an instance is traversed down the tree from

the root node to a leaf node. At each internal node, a decision is made based on

the feature value, and the traversal continues until a leaf node is reached. The leaf

node provides the predicted class or outcome for the instance.

The splitting of nodes in a decision tree is typically based on metrics that measure

the homogeneity or impurity of the subsets created by the split. Common impurity

measures include Gini impurity and entropy. The goal is to find splits that maximize

the homogeneity within the subsets and minimize the impurity, resulting in pure leaf

nodes.

DTC has several advantages. They are easy to understand and interpret, as the

tree structure provides a clear visualization of the decision-making process. Decision

trees can handle both numerical and categorical features, making them versatile for
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a wide range of datasets. They are also robust to outliers and can handle missing

values by creating surrogate splits.

Researchers have used the ID3 (Iterative Dichotomiser) algorithm widely where

information content is used to measure the attributes (Chandra and Varghese 2009).

In the proposed approach, the handcrafted features were used to calculate the infor-

mation content and then the classes were predicted. In addition to the decision tree

and ML classifier, the CNN predictions described in section 4.1 were also included

as part of the input layer to the neural network shown in figure 4.2.

4.3.2 Meta Learning using Stacking

Stacking, also known as stacked generalization, is a meta-learning technique that

involves training a meta-learner or a higher-level model to make predictions based

on the outputs of multiple base learners. It is a type of ensemble learning where the

base learners’ predictions are combined to create a new set of features that serve as

input to the meta-learner.

Stacking offers several advantages over traditional ensemble methods. It allows

for more complex relationships and interactions between the base learners, as the

meta-learner can learn from the combined predictions and make a more informed

decision. It can capture different perspectives and patterns present in the base

learners’ outputs, potentially improving the ensemble’s performance.

Moreover, stacking can effectively handle situations where the base learners have

complementary strengths or weaknesses. If certain base learners specialize in specific

aspects of the data, the meta-learner can learn to leverage this diversity and make

more accurate predictions.

In this experiment, the predictions from the base learners comprise layer 3 of

the architecture. The predictions y1i, y2i, ..., y4k, y5k are shown where i(s) are the

predictions of MLR, j(s) are the predictions from DTC and k(s) are the predictions

from CNN. These are then used in conjunction with the product weights with an

additional learner neural network (layer 4) and the final predictions, z1, z2, ..., z5
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are delivered at layer 5 in the architecture.

4.4 Transfer Learning

Transfer learning is a machine learning technique that leverages knowledge learned

from one task or domain to improve performance on a different but related task

or domain. In the context of deep learning and neural networks, transfer learning

involves using pre-trained models as a starting point for new tasks instead of training

from scratch.

The process of transfer learning typically involves two main steps: pre-training

and fine-tuning. In the pre-training phase, a deep model is trained on a large-scale

dataset that is often unrelated to the target task. For instance, in computer vision,

models may be trained on datasets like ImageNet, which contains millions of labeled

images spanning a wide range of categories. During this phase, the model learns

general features and representations that can be applied to various tasks.

Once the pre-training phase is complete, the knowledge acquired by the model

can be transferred to the target task. In the fine-tuning phase, the pre-trained model

is further trained on a smaller dataset that is specific to the target task. The idea is

to adapt the learned features to the target task by adjusting the model’s parameters

while retaining the valuable knowledge obtained during pre-training. Fine-tuning

often involves modifying the architecture of the pre-trained model, such as replacing

or retraining the top layers to suit the target task.

Transfer learning offers several advantages. Firstly, it reduces the need for large

amounts of labeled data, which can be expensive and time-consuming to acquire.

By utilizing a pre-trained model as a starting point, transfer learning allows the

target task to benefit from the general features learned from the source task. This

is particularly beneficial when the target dataset is small or when there is a scarcity

of labeled examples.

Additionally, transfer learning can significantly speed up the training process.

Since the initial layers of the pre-trained model are frozen during fine-tuning, the
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model can converge faster on the target task. The lower layers, which capture low-

level features like edges or textures, have already learned general representations

that are likely to be useful across tasks. By reusing these representations, the model

requires less time to learn the specific task-related features.

Transfer learning is applicable in various scenarios. One common scenario is

domain adaptation, where the source and target domains are different but related.

For example, a model trained on a dataset of indoor scenes can be transferred to a

target task involving outdoor scenes. By leveraging the learned features from the

source domain, the model can generalize well to the target domain, even with limited

labeled data.

Another scenario is task adaptation, where the source and target tasks are re-

lated. For instance, a model trained for image classification can be used as a starting

point for object detection or image segmentation tasks. By fine-tuning the model on

the target task, it can learn to localize objects or segment regions of interest while

still benefiting from the pre-trained knowledge of general image features.

The choice of a pre-trained model depends on the similarity between the source

and target tasks or domains. In computer vision, popular pre-trained models include

VGGNet, ResNet, InceptionNet, and EfficientNet, trained on large-scale datasets

like ImageNet. These models have learned rich representations of images that can

be effectively transferred to various computer vision tasks. In natural language pro-

cessing, pre-trained models such as BERT (Bidirectional Encoder Representations

from Transformers) and GPT (Generative Pre-trained Transformer) have revolu-

tionized language understanding.

Approaches such as a Residual Network (ResNet) have been found to be suc-

cessful in classifying images (K. He, X. Zhang, et al. 2016; Setyono, Chahyati, and

Fanany 2018; Marsden et al. 2017). A ResNet is a CNN with a skip connection,

which is also known as an identity shortcut connection. The concept behind the

skip connection is to allow gradients to flow between layers as they help to reduce

the impact of the vanishing gradient problem in deep learning architectures (K. He,
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X. Zhang, et al. 2016). The general form is shown in equation 4.5, where θ is the

learning parameter, i = 1, 2, ...,m and j = 0, 1, ...,m− 1.

a(l+2i) = g(θ + a(l+2j)) (4.5)

For this research, a 34-layer ResNet architecture was used as it is well-balanced

and gives accuracy equivalent to the CNN used in section 4.1 with relatively low

computational power requirements (K. He, X. Zhang, et al. 2016).

4.5 Summary

This research involves the utilization of different deep learning and machine learning

algorithms both individually and in combination. Specifically, a three-layer CNN

architecture with a dropout layer has been employed. Additionally, in the paral-

lel CNN approach, the weight is concatenated with the initial layer. For transfer

learning purposes, ResNet 50 has been implemented. As for the base learners, Multi-

nomial Logistic Regression (MLR) and Decision Tree Classifier (DTC) have been

utilized in conjunction with CNN and a neural network serves as the meta-learner

in the Ensemble approach.
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Chapter 5

Experiment And Results

The primary purpose of the evaluation was to investigate the efficacy of the 4 ma-

chine learning techniques presented in Chapter 4 using the data acquired by the

4-step process outlined in Chapter 3.

5.1 Experimental Setup

Two broad sets of experiments were carried out in order to better understand the

effect of a data transformation step on the predictive performance of the applied al-

gorithms. In the first set of experiments, the colored input images are transformed

to greyscale which has been shown to reduce the noise-to-signal ratio (Vidal and

Amigo 2012), thus reducing the complexity and improving the performance of sta-

tistical learning techniques. In the second set of experiments, the color of the input

images was primarily retained because it was hypothesized that the color contrasts

which exist between the fat and meat components of each cut contained potentially

useful information that would inform a better predictive performance. In each ex-

periment, the datasets were split into a training set and a test set using an 80:20

stratified sampling ratio. The training set was further split using a 90:10 ratio for

the purpose of implementing a validation strategy. The training data was used to

train the model while the validation data was used to examine if the hyperparame-

ters required further tuning. A hyperparameter is a parameter whose values cannot
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be estimated from the data and are external to the model. The test data was used

as an unseen dataset to examine the results of the model.

The evaluation metrics used in image identification are typically accuracy, preci-

sion, recall, F1- score, and convergence time (Al-Sarayreh et al. 2018; Ropodi et al.

2015; Larsen et al. 2014; X. Yu et al. 2018; R. Wang, W. Li, and L. Zhang 2019;

Setyono, Chahyati, and Fanany 2018). Although different methods have been used

in a variety of studies, average accuracy is the most frequently used. In table 5.1,

the results for the accuracy and the F1-score are shown for the training and test

datasets, for each model, and for both the color and greyscale images. In addition,

the convergence times for the color and greyscale images, for each method are also

shown.

Overall Accuracy =

∑n=5
i=1 TPi

N
(5.1)

In equation 5.1, TPi or the True Positive is the number of instances predicted

correctly for class i and N is the total number of predictions.

F1i = 2.
Precisioni ∗ Recalli
Precisioni +Recalli

(5.2)

where

precisioni =
TP i

TPi + FPi

(5.3)

recalli =
TP i

TPi + FNi

(5.4)

and FNi and FPi are the False Negative and False Positive respectively for product

i.

The F1i Score, shown in equation 5.2, is a metric that combines both precision

and recall for each class i. In comparison to accuracy, it is a useful metric as

it penalizes the incorrectly classified minority sampled classes and is commonly
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reported as a weighted score of all the class F1 scores (Goutte and Gaussier 2005).

5.1.1 Experiment 1: CNN

In this set of experiments, the pre-processed greyscale and colored images were used

as inputs in the CNN algorithm described in 4.2.1. The train accuracy, test accuracy,

and the F1 score for B/W and color images are shown in the table 5.1.

5.1.2 Experiment 2: CNN with Product Weights.

In this experiment, the product weights were concatenated with the images used in

the previous experiment as a second input within the flattened layer. The average

accuracy and F1 score on the training and test dataset are shown in table 5.1.

5.1.3 Experiment 3: Ensemble Approach with Product Weights.

In this experiment the features outlined in 4.3 were used as input variables for

both the Multinomial logistic regression and Decision Tree Classifiers while the pre-

processed greyscale and the colored images were used as inputs for the CNN. These

three algorithms were the level 1 models and acted as base learners Figure 4.2. At

level 2, the predictions from these models have been used with the actual weights (in

kgs) of the meat cuts as input for the neural network which acts as a meta learner.

The result obtained with the greyscale and the colored images has been shown in

the evaluation table 5.1.

5.1.4 Experiment 4: Transfer Learning - ResNet.

In this experiment, a 34-layer residual network with a weight initialization, was

used (K. He, X. Zhang, et al. 2016). Again the network was fed the pre-processed

greyscale and color images. The train and test accuracy and the F1 score have been

shown in table 5.1.
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5.2 Results

Accuracy statistics for each model and for both the color and grayscale images are

in Table 2 for the training and test datasets. In addition, the convergence times for

the color and grayscale images, for each method are also summarized in Table 5.1.

While there was a wide disparity in convergence times, ranging from 4,025 seconds

for the CNN on color images to 19,224 seconds for the Ensemble approach with color

images, it was not unexpected given the difference in model complexities.

In order to determine the statistical significance of the results, a beta regres-

sion model with a “loglog” link function was implemented in the R programming

language to model accuracy against the algorithm, dataset, and product variables.

Only 2-way interaction terms on combinations of the product, algorithm, and image

type were examined as the degrees of freedom in this particular analysis was limited

to 40. The final beta regression model had a pseudo R2 of 0.98 and the comparison

with an identity link was significant (ϕ=350.37, z=3.99, p<0.001). A Type III analy-

sis was conducted and interaction effects between the algorithm and image type and

between algorithm and product were found to be significant (Algorithm*Image Type

F4,26 = 3.046 and P =0.016, Algorithm*Product F12,26 = 5.082 and P <0.001).

From this analysis, a post-hoc analysis on the estimated marginal means with a

Tukey correction for multiple comparisons was conducted and is outlined in Table

3.

The Ensemble approach with color images was the best-performing algorithm

with a test accuracy of 99.13% and a training accuracy of 99.50%. The esti-

mated marginal mean (EMM) for the test accuracy difference on color images was

higher for the Ensemble approach compared with either the CNN ((EMMCNN-

EMMEnsemble) Zscore= -4.72 or P< 0.001) the ResNET ((EMMEnsemble-EMMResNET)

Z score= 7.82 or P < 0.001) algorithms without incorporating the cut weight in-

formation. The same algorithm also performed best for images in grayscale, with a

test accuracy score of 95.00% and a train accuracy of the same value. However, the

only statistical difference found was between the Ensemble and the ResNET without

04-Aug-2023 76 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

(a) CNN without weights B/W overfit (b) CNN without weights color no overfit

(c) CNN with weights B/W overfit (d) CNN with weights color no overfit

(e) Ensemble B/W no overfit (f) Ensemble color no overfit

(g) ResNet B/W overfit (h) ResNet color overfit

Figure 5.1: Training and Validation Loss Graphs.
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Figure 5.2: F1 score for all five meat cuts with different models on both the pre-
processed black and white (PBWI) and the colored images (CI)

using cut weight information algorithms ((EMMEnsemble-EMMResNET) Z score=

4.42 or P < 0.001). With a score of 98.00%, the Ensemble approach also had the

highest weighted-average F1 score. The weighted-average F1 score was derived from

the average F1 score from each classification category weighted by the number of

meat cuts in each product group.

Figure 5.1 illustrates both the training and validation accuracy as the number

of epochs changed for each method, for both the color and grayscale images. All

approaches, with the exception of the Ensemble approach, demonstrated varying

degrees of percentage difference in accuracy between the training and test accuracy

on the grayscale images (CNN 4.80%, CNN with weights 5.80% and ResNET 0.90%

and Ensemble 0.00%), implying the algorithms over-fitted the training data. The

level of overfitting was reduced for both the CNN and the CNN that also used the

cut weight information, albeit, there was a marginal increase in overfitting with the

ResNET and Ensemble approaches for the color images (CNN 2.90%, CNN with

weights 1.60% and ResNET 1.30% and Ensemble 0.43%).

All five algorithms, CNN, CNN concatenated with weights, ResNET, ResNET

concatenated with weights and the Ensemble method performed better with color

images, as the EMM difference between algorithms run on color images with those
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run on grayscale images was statistically significant ((EMMcolour-EMMgrayscale)

Z ratio = 13.649, P < 0.001). This was an interesting finding as the color images

did not receive any pre-processing.

The inclusion of product weights in the model demonstrated a beneficial effect

when detecting meat cuts from images, as the CNN and the Ensemble approaches

when including weights out-performed the same algorithms when excluding the

weights ((EMMCNN with Weights-EMMCNN) Z ratio = 3.527, P < 0.015, ((EMM-

CNN with Weights-EMMResNET) Z ratio = 5.37, P < 0.001, ((EMMEnsemble-

EMMCNN) Z ratio = 3.211, P < 0.043, ((EMMEnsemble-EMMResNET) Z ratio =

5.095, P<0.001).

Figure 5.2 shows the F1 score for each model for each individual meat cut. In

all cases, the highest F1 score was achieved for the Ensemble method with colored

images (CI); while meat cut 20004 had the highest F1 score (100.00%) using the

Ensemble method. Meat cut 20002, had the fewest number of images and corre-

spondingly had the smallest F1 scores. However, using the Ensemble method with

CI, meat cut 20002 did have the highest F1 score (97.00%).

In table 5.1 the accuracy for the training and test datasets, and the weighted-

average F1 score for the test dataset are shown in the columns Train Accuracy,

Test Accuracy, and Test Weighted F1 Score respectively. For each of the four

models, there are two rows representing the pre-processed black and white images

(PBWI) and the colored images (CI). The time(S) column displays the time in

seconds, taken for the experiment to train the model.
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Table 5.2: Post hoc contrast analysis of predicted Marginal mean difference between
algorithms by image type

Image Type Contrast Marginal Mean Difference SE Z ratio P value

Color CNN-CNN with weights -0.7573 0.215 0.0153 0.0153

Color CNN-Ensemble -0.6719 0.209 -3.211 0.0433

Color CNN-ResNET 0.3505 0.174 2.017 0.5871

Color CNN with weights-Ensemble 0.0584 0.237 0.361 1

Color CNN with weights-ResNET 1.1078 0.206 5.37 <0.001

Color Ensemble-ResNET 1.0224 0.201 5.095 <0.001

Grayscale CNN-Ensemble -0.4688 0.175 -2.687 0.1789

Grayscale CNN-ResNET 0.2886 0.145 1.996 0.602

Grayscale CNN with Weights-Ensemble -0.3269 0.183 -1.782 0.7468

Grayscale CNN with Weights-ResNET 0.4306 0.155 2.769 0.147

Grayscale Ensemble-ResNET 0.755 0.171 4.422 0.0004

5.3 Summary

The primary aim of this study was to create an automated meat cut identification

strategy for beef boning lines that simultaneously process multiple beef cuts; the

present study focused solely on the cuts from the Semimembranosus muscle. In

order to do this, a number of state-of-the-art image detection methodologies and a

novel Ensemble strategy were applied to a dataset consisting of 7987 product cut im-

ages and their corresponding weights. A series of eight experiments were conducted

on both color and preprocessed grayscale images and the novel Ensemble approach

developed in this study performed best for each individual cut using color images

and outperformed those using grayscale while availing of product weights and also

improved the accuracy of categorization. These results demonstrated some inter-

esting findings relating to AI and implementation strategies for future commercial

deployment strategies.
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Chapter 6

Discussion

The primary aim of this study was to create an automated meat cut identification

strategy for beef boning lines that simultaneously process multiple beef cuts; the

present study focused solely on the cuts from the semimembranosus muscle. In or-

der to do this, a number of classical neural networks that perform image detection

and a novel Ensemble strategy were applied to a dataset (McCarren, Scriney, et al.

2021) consisting of 7,987 product cut images and their corresponding weights. A

series of eight experiments were conducted on both color and preprocessed grayscale

images, and the novel Ensemble approach developed in this study performed best

for each individual cut and that using color images outperformed those that used

grayscale while availing of product weights also improved the accuracy of catego-

rization. These results demonstrated findings relating to artificial intelligence (AI)

and implementation strategies that would be applicable for future commercial de-

ployment strategies.

6.1 AI Strategy

Typically, in image detection problems, one highlights image features using a variety

of pre-processing techniques to improve the algorithm’s performance. However, in

the live production environment, where these experiments were conducted, the op-

posite result was found; accuracy and weighted-average F1 score was 4.00% higher
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for all models using color images. While this is not typical in object detection prob-

lems (Y. Xu et al. 2016), the occurrence in these experiments can be explained by

the fact that the background remained relatively constant throughout the experi-

mental period, thus removing it from the images had little or no effect. In addition,

grayscaling the images potentially limited the ability of all algorithms to differentiate

between fat and red meat.

6.1.1 Meat Cuts and Product Weight

In the meat industry, meat cuts are generally extracted from primal cuts, and know-

ing the weights of these cuts can potentially help in the identification of candidate

labels. Results from the present study clearly demonstrate the benefit of knowing

the weight of the on-coming cut, as the inclusion of the product weight into the flat

layer of both the CNN and ResNET improved the resulting meat cut identification.

This is not surprising as it has been shown to be successful in previous research on

product identification (Shi et al. 2020). However, in this study, a simplified model

where product weights alone were used as the only independent variable resulted in

an accuracy of 60.12% on the test dataset. This result justifies the importance of

the product weights but also demonstrates that the product weights alone are not

sufficient for categorizing product cuts.

6.1.2 The Role of Transfer Learning and Algorithm Selec-

tion

Transfer learning is one of the more recent evolutions of machine learning and, in

particular, the ResNET transfer learning algorithm is considered to be one of the

most advanced deep learning architectures in image detection (Marsden et al. 2017).

However, in the experiments conducted in the present study, the incorporation of the

weight of each meat cut in the final layer and the outputs of the simpler approaches

outperformed the ResNET architecture. While this was somewhat surprising, the

combined use of multinomial logistic regression, the CNN and the decision tree al-

04-Aug-2023 83 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

gorithm in the ensemble approach on the set of artificially created features, was the

most consistent with respect to overfitting and suggests that the use of simpler algo-

rithms in the Ensemble approach may have assisted the CNN algorithm in finding

a stable solution. While the Ensemble approach with color images required took

longer to converge, the ability to avoid overfitting is extremely important in a live

environment.

6.1.3 Overcoming Overfitting and Ensuring Stability

In a live environment, the convergence time would not be a considerable issue as

model fitting would only be implemented in order to calibrate the model in an

offline mode. Finding a stable solution can be an issue when using Neural Network

algorithms as the level of non-linearity in the cost function can cause overfitting

(Nguyen et al. 2011). Using a mixture of simpler algorithms in the early stage of

the Ensemble has been shown to outperform more complex methods with regard

to accuracy and F1-score (Abdelaal et al. 2018) and to reduce overfitting (Perrone

and Cooper 1995). (Gc, Y. Zhang, et al. 2021) achieved a maximum test accuracy

of 98.57% and a weighted average F1-score of 94.00% on the test dataset of beef

cuts using the alternative VGG16 transfer learning model, a state-of-the-art method.

The proposed Ensemble method was able to achieve an accuracy up to 99.13% and a

weighted-average F1-score of 98.00%. While this improvement in accuracy appears

modest, it effectively reduces the error by over 39.00

6.2 Deployment Strategy

The data capture unit developed in the present study was implemented using the

Node.js programming language, and consisted of a DEM weighing scale (System

1985), a DEM terminal, and a Vivotek harsh environment camera. In order to truly

automate the collection of the cut weight and subsequently identify the products

in a live environment, an external harsh environment color camera will need to be
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integrated into an inline weighing scale. The terminal for this scale will then need

a script that runs the Ensemble machine learning models; however, the code used

to create the Ensemble approach in the present study can be easily integrated into

many diverse operating systems. For each new group of products, the algorithm will

need to be trained on images collected from the live production of the corresponding

plant.

The number of samples required to train the algorithm will be problem specific.

However, in previous research studies, researchers have recommended that at least

1000 images of each object should be used during the AI training phase (Cho et al.

2015). This is not a hard rule and in this study, the results demonstrated that there

was ample data with the exception of product 20002, where the overall accuracy was

lower. As mentioned previously, the data collection for this study was implemented

on bespoke software. This code can be readily implemented to help create training

data for the Ensemble machine learning algorithm during new deployments and

makes the implementation in a commercial environment an attractive proposition.

6.2.1 Cost-Effectiveness

The deployment of the system in a live environment is not expected to be expen-

sive, as all the software used is open source. The Node.js programming language and

Python (Tilkov and Vinoski 2010; Python 1991), which are both open source, were

employed in the development of the data capture unit. The camera technology used

in the study was also relatively inexpensive, as the image processing did not require

the use of spectral images. This finding is noteworthy, as previous studies (Larsen

et al. 2014; Ropodi et al. 2015; Al-Sarayreh et al. 2018; X. Yu et al. 2018) have often

relied on multispectral or infrared spectroscopy for image processing in similar ap-

plications. The advancements in object detection algorithms and the incorporation

of weights in this study have potentially eliminated the need for expensive infrared

spectroscopy, opening up possibilities for cost-effective implementation in various

food industry applications.
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6.2.2 Accuracy of the Ensemble Algorithm

The results of the study highlight the ability of artificial intelligence (AI) to replicate

the behavior of a human operator. The test accuracy achieved with the Ensemble

algorithm demonstrates the effectiveness of AI in accurately identifying and catego-

rizing products. By incorporating various algorithms, including multinomial logis-

tic regression, CNN, and decision tree, the Ensemble approach outperformed more

complex deep learning architectures like Residual Neural Network (ResNET). This

finding emphasizes the importance of algorithm selection and the potential benefits

of combining simpler algorithms in ensemble models, especially in live environments

where overfitting and stability are crucial.

6.3 Applications

6.3.1 The Need for Automation in Beef Boning Process

The meat processing industry often considers the implementation of automated or

robotic processes based on the potential return on investment. Improved product

quality, reduced labor costs, and a decrease in safety incidents are some of the fac-

tors influencing this decision (Purnell and Further 2013; Caldwell 2012). Automa-

tion has already found its way into the sector, with applications such as fat and red

meat yield prediction and a limited number of cutting procedures being automated

(Pabiou et al. 2011). However, the beef boning process still heavily relies on man-

ual labor, particularly on modern pace boning lines. In these operations, operators

are responsible for identifying products, checking their quality characteristics, and

redirecting them to the appropriate packing stations. Currently, there is no provi-

sion for monitoring yields during the boning process when multiple cuts are being

processed simultaneously. This poses a significant challenge, as plant management

relies on continuous supervision to monitor the boning operators’ cut decisions. By

automating the identification of meat cuts and incorporating automated weighing

technology, it becomes possible to accurately monitor the yield of each cut relative
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to the original primal weight during production, resulting in improved meat yield

for the plant.

Apart from the potential yield improvement, the elimination of an operator from

the production line can also reduce the risk of cross-contamination from bacteria

such as Staphylococcus or Escherichia coli, which are commonly transmitted by

line operators during food operations (Véronique 2008). However, the absence of

a trained human operator may increase the likelihood of misspecification of meat

cuts. To mitigate this issue, the system applied in this study can be adapted to

remove products onto a separate quality control (QC) line if the system fails to

recognize the meat cut or if it falls outside the weight specifications. This approach

effectively mimics the actions of a human operator, ensuring that quality control

measures are maintained throughout the automated process. By incorporating such

safeguards, the system can maintain high standards of accuracy and minimize the

risk of misspecification, thereby enhancing food safety protocols.

6.3.2 Real-time Monitoring for Improved Performance

Implementing automated weighing technology and integrating it with the identifi-

cation of meat cuts offers several advantages beyond improved yield and reduced

contamination risks. One significant advantage is the ability to monitor and assess

the performance of the boning process in real-time. Traditional systems rely on end-

of-batch assessments, which may result in delays in identifying and rectifying any

issues. By monitoring yields and other quality characteristics during production,

plant management can promptly address any deviations, ensuring that production

remains on track and consistently meets the required specifications. Real-time mon-

itoring also enables more effective planning and scheduling, as adjustments can be

made as soon as deviations are detected, minimizing disruptions and optimizing

production efficiency.

The integration of automation and robotic processes into the meat processing

industry has the potential to revolutionize the sector by streamlining operations and
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enhancing overall productivity. However, it is crucial to strike a balance between

automation and human expertise to ensure optimal outcomes. While automation

offers numerous benefits, the human factor cannot be entirely replaced, particularly

when it comes to complex tasks such as meat cut identification. In this study, the

system applied successfully combined automation with the ability to replicate the

decision-making capabilities of human operators, ensuring the accuracy and relia-

bility of the process. By utilizing advanced technologies and integrating human-like

decision-making algorithms, the meat processing industry can leverage the advan-

tages of automation while preserving the critical aspects of human expertise.

In the meat processing industry, the decision to implement automated or robotic

processes is usually dictated by the return on investment which, in turn, is usu-

ally a function of improved product quality, reduced labor costs, or a reduction in

safety incidents (Purnell and Further 2013; Caldwell 2012). Automation has been

introduced in the sector and has been used in applications such as fat and red meat

yield prediction (Pabiou et al. 2011) and a limited number of cutting procedures.

However, beef boning is still predominantly a highly manual process on modern pace

boning lines. These operations rely on operators at the end of the line to identify

products, check their quality characteristics, and then manually redirect them to

the appropriate packing stations. At present, in operations where there are multiple

cuts being processed simultaneously, there is generally no facility to monitor yields

during the boning process. This is a major weakness in current systems as plant

management relies on in-line supervision to continually monitor the operator cut

decisions of boning operators. By automating the identification of the relevant meat

cuts and, in conjunction with automated weighing technology, the yield of the cut

relative to the original primal weight can be accurately monitored during production

rather than at the end of the batch, thus improving the meat yield of the plant.
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6.4 Summary

The implementation of automated weighing technology and automated meat cut

identification systems presents significant opportunities for improving the meat pro-

cessing industry. By monitoring yields and quality characteristics in real-time, plant

management can enhance production efficiency, reduce labor costs, and ensure con-

sistent product quality. The removal of operators from the production line also

minimizes the risk of cross-contamination, enhancing food safety.
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Chapter 7

Conclusion And Future Work

In this final chapter, the concluding remarks of the thesis have been presented, out-

lining the contributions, acknowledging any constraints in this work, and proposing

avenues for future research. The chapter is structured as follows: Section 7.1 pro-

vides a summary of the main discoveries and insights obtained from each technical

chapter. In Section 7.2, the limitations encountered during this study have been

discussed by identifying potential directions for future investigations.

7.1 Thesis Summary

Access to a skilled workforce is crucial for industries that rely on human involve-

ment in their production processes. The meat industry is one such sector, and the

importance of skilled labor was evident during the COVID-19 pandemic when ab-

senteeism levels were high. While some processes in the meat industry have been

partially automated, such as meat cutting and fat determination, the labeling and

identification of meat cuts still heavily rely on human intervention and manual han-

dling. This reliance on manual labor can lead to increased costs and the potential for

errors and microbiological contamination. Automating the labeling and identifica-

tion of meat cuts could help address these challenges. By implementing automated

systems, businesses in the meat industry can reduce labor costs, minimize errors,

and mitigate the risk of microbiological contamination. Furthermore, automation
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can enhance productivity and efficiency in meat processing, ensuring consistent and

accurate identification of meat cuts.

In this thesis, an approach to automate the identification of meat cuts using a

live beef production line over a three-week period has been proposed. It was unclear

at the outset as to which machine learning model would perform best on these types

of images in the live environment and thus a number of computer vision algorithms

were evaluated. As is normal with the construction of a new dataset, imbalances in

terms of image distribution frequencies can occur but this was offset using different

pre-processing methods and data augmentation.

The experimental studies conducted in the meat industry shed light on the impor-

tance of considering color images, product weights, and algorithm selection in image

detection tasks. The incorporation of weight information significantly enhances the

identification of meat cuts, while the ensemble approach, utilizing a combination of

simpler algorithms and artificial features, outperforms complex deep learning archi-

tectures. By understanding these insights and employing suitable techniques, the

meat industry can further improve its image detection capabilities, enabling more

accurate categorization and quality control processes.

This also showcases the development and implementation of a data capture unit

using the Node.js programming language, along with a DEM weighing scale and a

Vivotek harsh environment camera. The integration of an external color camera with

an inline weighing scale, along with the implementation of the Ensemble machine

learning models, holds promise for fully automating the collection of cut weights and

product identification in live environments. The availability of open-source software

and the elimination of the need for costly spectral images through advancements in

object detection algorithms make the system cost-effective and applicable to a range

of food industry applications. The accuracy achieved by the Ensemble algorithm

further validates the potential of artificial intelligence in replicating human operator

behavior and improving overall efficiency in industrial processes.
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7.2 Limitation and Future Work

This study has the following limitations:

• Limited Dataset: One limitation of this study is the relatively small dataset

used for training and evaluation. The dataset primarily focused on a specific

range of primal cuts, which may limit the generalizability of the results to a

broader set of meat products. To address this limitation, future work should

involve constructing a larger dataset with a more diverse range of primal cuts

to ensure the robustness of the model.

• Scope of Evaluation: The evaluation of the models was conducted on a spe-

cific test dataset, which may not fully represent the variability and complex-

ity encountered in a real-world commercial application. Further testing and

validation on a more challenging dataset, possibly encompassing different pro-

duction environments and variations in product characteristics, would provide

a more comprehensive assessment of the model’s performance.

The potential future work can be:

• Expansion of Dataset: To enhance the applicability of the developed model,

future work should involve collecting a larger and more diverse dataset. In-

cluding a broader range of primal cuts, variations in quality attributes, and

potential challenges encountered in real-world scenarios would help improve

the robustness and generalizability of the model.

• Real-world Implementation: The next step in this research is to apply the

best-performing model in a full-scale commercial application. This involves

integrating the model into an automated system that can accurately iden-

tify and label meat cuts in a live production environment. The performance

and feasibility of the model should be evaluated under real-world conditions,

considering factors such as lighting variations, noise, and production line dy-

namics.
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• Model Optimization: Further optimization of the model can be explored to

improve its accuracy, efficiency, and convergence rate. This may involve fine-

tuning the hyperparameters, exploring different architectures or ensembles,

and investigating advanced techniques such as transfer learning or data aug-

mentation. By continually refining the model, its performance can be further

enhanced, leading to more reliable and accurate meat cut identification.

• System Integration and User Interface: Future work should focus on integrat-

ing the developed model into a user-friendly system with an intuitive interface.

This would facilitate its adoption and usage by industry professionals, allowing

them to easily access and utilize the model for automated meat cut identifi-

cation. User feedback and usability testing should be conducted to ensure the

system meets the practical needs of the meat processing industry.
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Vidal, Maider and José Manuel Amigo (2012). “Pre-processing of hyperspectral

images. Essential steps before image analysis”. In: Chemometrics and Intelligent

Laboratory Systems 117, pp. 138–148.

Cantelon, Mike et al. (2013). “Node. js in Action”. In.

Choi, S. et al. (2013). “Applications and requirements of industrial robots in meat

processing”. In: 2013 IEEE International Conference on Automation Science and

Engineering (CASE), pp. 1107–1112. doi: 10.1109/CoASE.2013.6653967.

Purnell, G and Grimsby Institute of Further (2013). “Robotics and automation in

meat processing”. In: Robotics and Automation in the Food Industry. Elsevier,

pp. 304–328.

Corporation, Microsoft (Apr. 2014).Microsoft. url: https://www.microsoft.com/

en-us/cortana (visited on 05/16/2023).

Farid, Dewan Md et al. (2014). “Hybrid decision tree and naıve Bayes classifiers

for multi-class classification tasks”. In: Expert systems with applications 41.4,

pp. 1937–1946.

Fricke, PM et al. (2014). “Expression and detection of estrus in dairy cows: the role

of new technologies”. In: Animal 8.s1, pp. 134–143.

Larsen, Anders Boesen Lindbo et al. (2014). “Vision-based method for tracking meat

cuts in slaughterhouses”. In: Meat science 96.1, pp. 366–372.

Menardi, G. and N. Torelli (2014). “Training and assessing classification rules with

imbalanced data”. In: Data mining and knowledge discovery 28.1, pp. 92–122.

04-Aug-2023 97 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks

for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks

from overfitting”. In: The journal of machine learning research 15.1, pp. 1929–

1958.

Cho, Junghwan et al. (2015). “How much data is needed to train a medical image

deep learning system to achieve necessary high accuracy?” In: arXiv preprint

arXiv:1511.06348.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Opti-

mization”. In: 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed.

by Yoshua Bengio and Yann LeCun.

Ren, Shaoqing et al. (2015). “Faster r-cnn: Towards real-time object detection with

region proposal networks”. In: Advances in neural information processing systems

28.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolutional

networks for biomedical image segmentation”. In: Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2015: 18th International Confer-

ence, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer,

pp. 234–241.

Ropodi, AI et al. (2015). “Multispectral image analysis approach to detect adul-

teration of beef and pork in raw meats”. In: Food Research International 67,

pp. 12–18.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 1–9.

Beltran, A et al. (2016). “Adapting the eButton to the abilities of children for diet as-

sessment”. In: Proceedings of Measuring Behavior 2016: 10th International Con-

ference on Methods and Techniques in Behavioral Research. International Con-

04-Aug-2023 98 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

ference on Methods and Techniques in Behavioral Research (10th: 2016: Dublin,

Ireland). Vol. 2016. NIH Public Access, p. 72.

He, Kaiming, Xiangyu Zhang, et al. (2016). “Deep residual learning for image recog-

nition”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778.

LLC, Google (May 2016). Hey Google. url: https://assistant.google.com/

(visited on 05/16/2023).

Park, Sungheon and Nojun Kwak (2016). “Analysis on the dropout effect in con-

volutional neural networks”. In: Asian conference on computer vision. Springer,

pp. 189–204.

Redmon, Joseph, Santosh Divvala, et al. (2016). “You only look once: Unified, real-

time object detection”. In: Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 779–788.

Xu, Yong et al. (2016). “Approximately symmetrical face images for image prepro-

cessing in face recognition and sparse representation based classification”. In:

Pattern Recognition 54, pp. 68–82.

Zhao, Hang et al. (2016). “Loss functions for image restoration with neural net-

works”. In: IEEE Transactions on computational imaging 3.1, pp. 47–57.

DeVries, Terrance and Graham W Taylor (2017). “Improved regularization of con-

volutional neural networks with cutout”. In: arXiv preprint arXiv:1708.04552.

Granik, Mykhailo and Volodymyr Mesyura (2017). “Fake news detection using naive

Bayes classifier”. In: 2017 IEEE first Ukraine conference on electrical and com-

puter engineering (UKRCON). IEEE, pp. 900–903.

He, Kaiming, Georgia Gkioxari, et al. (2017). “Mask r-cnn”. In: Proceedings of the

IEEE international conference on computer vision, pp. 2961–2969.

Huang, Gao et al. (2017). “Snapshot ensembles: Train 1, get m for free”. In: arXiv

preprint arXiv:1704.00109.

Jiang, Fei et al. (2017). “Artificial intelligence in healthcare: past, present and fu-

ture”. In: Stroke and vascular neurology 2.4.

04-Aug-2023 99 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2017). “Imagenet classi-

fication with deep convolutional neural networks”. In: Communications of the

ACM 60.6, pp. 84–90.

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Sim-

ple and scalable predictive uncertainty estimation using deep ensembles”. In:

Advances in neural information processing systems 30.

Lin, W. C. et al. (2017). “Clustering-based undersampling in class-imbalanced data”.

In: Information Sciences 409, pp. 17–26.

Marsden, Mark et al. (2017). “ResnetCrowd: A residual deep learning architecture

for crowd counting, violent behaviour detection and crowd density level classi-

fication”. In: 2017 14th IEEE International Conference on Advanced Video and

Signal Based Surveillance (AVSS). IEEE, pp. 1–7.

McCarren, Andrew, Suzanne McCarthy, et al. (2017). “Anomaly detection in agri

warehouse construction”. In: Proceedings of the Australasian Computer Science

Week Multiconference, pp. 1–10.

Redmon, Joseph and Ali Farhadi (2017). “YOLO9000: better, faster, stronger”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 7263–7271.

Shelke, Mayuri S, Prashant R Deshmukh, and Vijaya K Shandilya (2017). “A review

on imbalanced data handling using undersampling and oversampling technique”.

In: Int. J. Recent Trends Eng. Res 3.4, pp. 444–449.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural

information processing systems 30.

Abdelaal, Hammam M et al. (2018). “Improve the automatic classification accuracy

for Arabic tweets using ensemble methods”. In: Journal of Electrical Systems

and Information Technology 5.3, pp. 363–370.

Cai, Zhaowei and Nuno Vasconcelos (2018). “Cascade r-cnn: Delving into high qual-

ity object detection”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 6154–6162.

04-Aug-2023 100 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Cubuk, Ekin D et al. (2018). “Autoaugment: Learning augmentation policies from

data”. In: arXiv preprint arXiv:1805.09501.

Lancaster, Jenessa et al. (2018). “Bayesian optimization for neuroimaging pre-processing

in brain age classification and prediction”. In: Frontiers in aging neuroscience

10, p. 28.

Law, Hei and Jia Deng (2018). “Cornernet: Detecting objects as paired keypoints”.

In: Proceedings of the European conference on computer vision (ECCV), pp. 734–

750.

McAllister, Patrick et al. (2018). “Combining deep residual neural network fea-

tures with supervised machine learning algorithms to classify diverse food image

datasets”. In: Computers in biology and medicine 95, pp. 217–233.

Patrıcio, Diego Inácio and Rafael Rieder (2018). “Computer vision and artificial

intelligence in precision agriculture for grain crops: A systematic review”. In:

Computers and electronics in agriculture 153, pp. 69–81.

Prabhu, Raghav (2018). “Understanding of convolutional neural network (CNN)—deep

learning”. In: A Medium Corporation, US.

Redmon, Joseph and Ali Farhadi (2018). “Yolov3: An incremental improvement”.

In: arXiv preprint arXiv:1804.02767.

Al-Sarayreh, Mahmoud et al. (2018). “Detection of red-meat adulteration by deep

spectral–spatial features in hyperspectral images”. In: Journal of Imaging 4.5,

p. 63.

Setyono, Noer Fitria Putra, Dina Chahyati, and Mohamad Ivan Fanany (2018).

“Betawi Traditional Food Image Detection using ResNet and DenseNet”. In:

2018 International Conference on Advanced Computer Science and Information

Systems (ICACSIS). IEEE, pp. 441–445.

Vanschoren, Joaquin (2018). Meta-Learning: A Survey. doi: 10.48550/ARXIV.

1810.03548.

04-Aug-2023 101 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Wallelign, Serawork, Mihai Polceanu, and Cédric Buche (2018). “Soybean plant

disease identification using convolutional neural network”. In: The thirty-first

international flairs conference.

Yu, Kun-Hsing, Andrew L Beam, and Isaac S Kohane (2018). “Artificial intelligence

in healthcare”. In: Nature biomedical engineering 2.10, pp. 719–731.

Yu, Xinjie et al. (2018). “Nondestructive freshness discriminating of shrimp using

visible/near-infrared hyperspectral imaging technique and deep learning algo-

rithm”. In: Food analytical methods 11.3, pp. 768–780.

Coates, Dustin A. and Max Amordeluso (2019). Voice applications for Alexa and

Google assistant. url: https://www.amazon.com/alexa-voice-assistant/b?

node=13727921011 (visited on 03/16/2023).

Garg, Adhesh et al. (2019). “Validation of random dataset using an efficient CNN

model trained on MNIST handwritten dataset”. In: 2019 6th International Con-

ference on Signal Processing and Integrated Networks (SPIN). IEEE, pp. 602–

606.

Guo, Yang, Xuequn Shang, and Zhanhuai Li (2019). “Identification of cancer sub-

types by integrating multiple types of transcriptomics data with deep learning

in breast cancer”. In: Neurocomputing 324, pp. 20–30.

Hang, Renlong et al. (2019). “Cascaded recurrent neural networks for hyperspectral

image classification”. In: IEEE Transactions on Geoscience and Remote Sensing

57.8, pp. 5384–5394.

He, Xin and Yushi Chen (2019). “Optimized input for CNN-based hyperspectral

image classification using spatial transformer network”. In: IEEE Geoscience

and Remote Sensing Letters 16.12, pp. 1884–1888.

Jia, Wenyan et al. (2019). “Automatic food detection in egocentric images using

artificial intelligence technology”. In: Public health nutrition 22.7, pp. 1168–1179.

Liu, Hongyu et al. (2019). “CNN and RNN based payload classification methods for

attack detection”. In: Knowledge-Based Systems 163, pp. 332–341.

04-Aug-2023 102 pre-examination copy



Integrating Structured and Unstructured Data for Imbalanced Classification Using
Meat-Cut Images

Panch, Trishan, Heather Mattie, and Leo Anthony Celi (2019). “The “inconvenient

truth” about AI in healthcare”. In: NPJ digital medicine 2.1, p. 77.

Selvaraj, Michael Gomez et al. (2019). “AI-powered banana diseases and pest de-

tection”. In: Plant Methods 15, pp. 1–11.

Shorten, Connor and Taghi M Khoshgoftaar (2019). “A survey on image data aug-

mentation for deep learning”. In: Journal of big data 6.1, pp. 1–48.

Tian, Zhi et al. (2019). “Fcos: Fully convolutional one-stage object detection”.

In: Proceedings of the IEEE/CVF international conference on computer vision,

pp. 9627–9636.

Wang, Hai et al. (2019). “A comparative study of state-of-the-art deep learning

algorithms for vehicle detection”. In: IEEE Intelligent Transportation Systems

Magazine 11.2, pp. 82–95.

Wang, Rui, Wei Li, and Liang Zhang (2019). “Blur image identification with ensem-

ble convolution neural networks”. In: Signal Processing 155, pp. 73–82.

Zhang, Han et al. (2019). “Self-attention generative adversarial networks”. In: In-

ternational conference on machine learning. PMLR, pp. 7354–7363.

Zhou, Lei et al. (2019). “Application of deep learning in food: A review”. In: Com-

prehensive Reviews in Food Science and Food Safety 18.6, pp. 1793–1811.

Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl (2019). “Objects as points”.
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