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Language Modelling Approaches to Adaptive Machine Translation
YASMIN MOSLEM

Abstract

Consistency is a key requirement of high-quality translation. It is especially important
to adhere to pre-approved terminology and adapt to corrected translations in domain-
specific projects. Machine translation (MT) has achieved significant progress in the
area of domain adaptation. However, in-domain data scarcity is common in translation
settings, due to the lack of specialised datasets and terminology, or inconsistency
and inaccuracy of available in-domain translations. In such scenarios where there is
insufficient in-domain data to fine-tune MT models, producing translations that are
consistent with the relevant context is challenging. While real-time adaptation can
make use of smaller amounts of in-domain data to improve the translation on the fly,
it remains challenging due to supported context limitations and efficiency constraints.
Large language models (LLMs) have recently shown interesting capabilities of in-context
learning, where they learn to replicate certain input-output text generation patterns,
without further fine-tuning. Such capabilities have opened new horizons for domain-
specific data augmentation and real-time adaptive MT. This work attempts to address
two main relevant questions: 1) in scenarios involving human interaction and continuous
feedback, can we employ language models to improve the quality of adaptive MT at
inference time? and 2) in the absence of sufficient in-domain data, can we use pre-trained
large-scale language models to improve the process of MT domain adaptation?



Chapter 1

Introduction

Neural Machine Translation (NMT) is capable of producing high-quality translations in terms of

fluency and adequacy. The emergence of the Transformer architecture (Bahdanau et al., 2015;

Vaswani et al., 2017) has revolutionised the field of Natural Language Processing (NLP) in gen-

eral and NMT in particular, and paved the way for many subsequent breakthroughs in the field.

Nevertheless, NMT still faces some challenges when it comes to translation of out-of-domain texts

(Koehn and Knowles, 2017). Domain adaptation of MT systems using in-domain parallel texts has

been an active area of research to handle this situation. Several research works on domain adap-

tation assume the availability of in-domain data. However, in-domain data scarcity is common in

translation settings, due to the lack of specialised datasets and terminology, or inconsistency and

inaccuracy of available in-domain translations (Axelrod et al., 2011; Haddow and Koehn, 2012).

Recent advances in language modelling techniques in general and large-scale language mod-

els (LLMs) in particular have shown significant potential in improving a wide range of NLP tasks.

Inspired by this idea, this research aims to answer two major Research Questions (RQ):

RQ1 In scenarios involving human interaction and continuous feedback, can we employ language

models to improve the quality of adaptive MT at inference time? In the subsequent sections,

I will be referring to this question as “Adaptive and Interactive MT”.

RQ2 In the absence of sufficient in-domain data, can we use pre-trained LLMs to improve the

process of NMT domain adaptation? In the following sections, I will be referring to this

question as “Domain-specific Text Generation for MT”.

1
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Figure 1.1: Translation environment, involving adaptive MT and human interaction

1.1 Background and Motivation

Initially, as translators transitioned to using computers and text editors, they manually main-

tained previous translations and terminology in regular electronic documents. The introduction

of computer-aided translation tools has significantly transformed traditional approaches, changing

the landscape of translation workflows.

Figure 1.1 illustrates a typical workflow in translation environments nowadays, where the

process starts with an MT suggestion that a translator revises to achieve the required quality. Ap-

proved translations are then saved into a translation memory (TM). After some time, bilingual text

segments stored in the TM are used to fine-tune the MT model to adapt to the required domain

and style. The fine-tuned MT model is then used to generate translation suggestions. Ideally, the

model should be able to make use of similar translation pairs retrieved from the TM at inference

time. It should also be able to interact with the translator by providing them with suggestions

and adapting to their edits during translation. However, such real-time adaptivity and interactiv-

ity features are not currently implemented in the majority of MT systems that translators have

2



Chapter 1. Introduction

been using, which highlights the challenges of transitioning research in this area into real-world

production workflows.

Throughout my career in the translation technology industry, I have heard from several trans-

lators about situations where they edit a term or expression, yet subsequent MT-ed segments con-

tinue to repeat the same mistakes. Despite the wide research conducted on real-time adaptive MT

and related fields such as context-aware MT and document-level MT, practical application of these

techniques in real-world tools remains limited. Some of these approaches were proposed with ar-

chitectures before the Transformer model1 or verified only through medium-sized experiments,

which sometimes means that such methods cannot achieve the same performance gains when im-

plemented on a large scale. Others suffer from lack of efficiency, which makes deploying them in

production challenging for several language service providers (Meng et al., 2022; Martins et al.,

2023; Treviso et al., 2023). In addition, even the details of the limited state-of-the-art commercial

applications of adaptive MT are not necessarily shared in publicly accessible publications.

The emergence of the in-context learning capability of LLMs has opened new avenues for

diverse NLP tasks, including MT. In-context learning refers to the ability of a model to refine its

output based on the context provided within the input itself, without the need for fine-tuning on

specific scenarios (Brown et al., 2020). This capability is especially useful in retrieval-augmented

generation, a technique that integrates external knowledge sources to enhance the responses of

the model. For adaptive MT, this means that LLMs can dynamically adapt translations to various

sources of context, such as fuzzy matches or terminology, leading to more accurate translations.

1.2 Research Questions

This section provides an overview of the aforementioned research questions, while the follow-

ing chapters elaborate on experimental setups and results. It is worth noting that the two questions

overlap in several aspects, which make it possible to use any of the employed approaches to ad-

dress both of them.

1Given that LSTM models generally have been superseded by Transformer models (Vaswani et al., 2017), performance gains
achieved via methods originally proposed with LSTM might not be noticeable. This can also be due to the complexity of the Trans-
former architecture or using variations of tokenisation and data preparation methods (Popović et al., 2023).

3
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1.2.1 RQ1. ADAPTIVE AND INTERACTIVE MT

Adaptive MT utilises user feedback to improve translation quality over time, particularly in

domain-specific scenarios where baseline MT systems may lack relevant data. Incorporating user

feedback into the translation process, especially at inference time, poses challenges.

In my research, I investigated two forms of utilising language modelling to improve MT real-

time adaptivity and interactivity. This can be outlined into the following sub-questions:

RQ1.a Can we utilise the autoregressive property of NMT models, i.e. their ability to decode

the target sentence word by word according to the translation history, to generate relevant

autosuggestions? So instead of providing the most probable word, the system can interact

with typed sequences at inference time to generate more accurate translations. In my research

(Moslem et al., 2022b), I employed random sampling techniques to generate diverse alterna-

tives, which led to improving the ability of an MT system in the scenario where the user types

a few characters, and the system is expected to predict and auto-complete the correct word,

given the current context (cf. Section 1.2.1.1).

RQ1.b Can we improve adaptive MT by employing the in-context learning capability of LLMs?

This involves learning from similar translations (fuzzy matches) found in approved TMs.

In my research (Moslem et al., 2023a), I explored leveraging LLMs to boost adaptive MT

at inference time. I concluded that LLMs can be leveraged for adapting new translations

to match the terminology and style of pre-approved fuzzy matches, post-editing translations

from encoder-decoder MT systems, and performing terminology-constrained MT (cf. Section

1.2.1.2).

RQ1.c Can we reinforce MT adherence to terminology through prompting LLMs to use pre-

approved terms in translations? In my work (Moslem et al., 2023a), I proposed adding rele-

vant term pairs during translation with an LLM to enhance real-time terminology-constrained

MT. Similarly, in my research (Moslem et al., 2023c), I used LLMs for terminology-

constrained automatic post-editing, where an LLM is instructed to incorporate missing terms

in translations originally generated by an MT model (cf. Section 1.2.1.3).

4



Chapter 1. Introduction

1.2.1.1 RQ1.a Translation autosuggestions and autocompletion

Looking at the NMT decoder as an autoregressive language model, that can predict the next word

depending on previously generated words, several researchers studied the capabilities that this per-

spective can bring to the quality of NMT in general, and domain adaptation in particular. Research

in this direction involves: a) iterative prediction–correction approaches, b) information retrieval

from training datasets, and c) employing external language models at inference time.

In a user survey I conducted (Moslem et al., 2022b), participants indicated that suggesting

translation alternatives can be a source of inspiration. Moreover, it can be easier or faster than

typing, and it can limit their need to refer to external resources. When a high-quality baseline MT

model is employed, MT auto-completion can yield higher quality translation (Green et al., 2014).

The WMT’s Word-Level AutoCompletion (WLAC) shared task2 addresses a more specific

scenario, where the user types a few characters, and the NMT system predicts and auto-completes

the correct word, given the current context. In 2022, I made submissions for Chinese-to-English,

English-to-Chinese, German-to-English, and English-to-German language directions. I employed

random sampling to generate diverse alternatives, and achieved excellent results (1st and 2nd

places in the shared task) based on both automatic and human evaluation. Random sampling

is a decoding mode that randomly samples tokens from the model output distribution. To obtain

diverse generations from the MT model, I rely on randomness in the decoding method, in particular

through top-K sampling that samples the next word from the top-K most probable choices (Fan

et al., 2018; Holtzman et al., 2018; Radford et al., 2019), instead of aiming to decode text that

maximises likelihood. More details on this topic can be found in Chapter 3.

1.2.1.2 RQ1.b Adaptive MT with LLMs

Real-time translation that can adapt to changes in the context and terminology remains a chal-

lenging task. Autoregressive decoder-only LLMs such as BLOOM (Le Scao et al., 2022), Falcon

(Penedo et al., 2023), GPT-3 (Brown et al., 2020), and GPT-4 (OpenAI, 2023) are trained to pre-

dict the next word given the previous context. In-context learning allows these models to adapt

2https://statmt.org/wmt22/word-autocompletion.html

5
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their output to adhere to the terminology and style used in previously approved translation pairs

without further training.

In my research (Moslem et al., 2023a), I explored employing the in-context learning feature of

LLMs to enhance real-time adaptive MT. The findings illustrated in the paper show that LLMs can

effectively adapt to specific domains and terminologies at translation time, outperforming strong

encoder-decoder MT systems, especially for high-resource languages. In this paper, I employed

an embedding-based similarity approach for retrieving similar translation pairs (fuzzy matches)

from a TM instead of providing random examples. The performance further improves as more

fuzzy matches are added to the context.

One significant advantage of in-context learning is its capacity for real-time customisation.

This advantage can give MT systems the capability to learn from previous interactions and adapt

their output to align with the user’s preferred terminology and style at inference time (Moslem

et al., 2023a). Although in-context learning can improve adaptive MT without any special fine-

tuning, LLMs can be fine-tuned to further enhance their in-context learning ability at translation

time (Moslem et al., 2023b). Overall, my research demonstrates the practical implications of

using in-context learning of LLMs for real-time adaptive MT, offering opportunities to improve

translation quality and efficiency in diverse language pairs and domains at inference time.

1.2.1.3 RQ1.c Terminology-constrained MT with LLMs

Terminology-constrained MT is the scenario where domain-specific terminology can be enforced

in a multi-domain NMT model at translation time. The approach should be capable of handling

unseen terminology while retaining NMT’s ability to produce fluent output sequences (Hokamp

and Liu, 2017; Dinu et al., 2019; Exel et al., 2020).

In my work (Moslem et al., 2023a), I investigated terminology-constrained MT with LLMs.

Simply put, I added lists of relevant terms while prompting an LLM for translation. In addition

to automatic evaluation, human evaluation for terminology-constrained MT with LLMs was con-

ducted by professional linguists, who evaluated the adherence of the model to required terms and

its impact on the overall translation quality. The evaluation compared diverse scenarios, such as

zero-shot translation, zero-shot with glossary terms, two-shot translation with fuzzy matches, and

6
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two-shot translation with both fuzzy matches and glossary terms, to assess the usage of provided

terms in the translations. The evaluators found that for Arabic, French, and Spanish, terminology-

constrained MT was more successful at incorporating the provided glossary terms into the trans-

lations.

Similarly, in my research (Moslem et al., 2023c), LLMs were used for terminology-

constrained automatic post-editing to insert missing terms into translations generated by an

encoder-decoder MT system. In other words, if an MT model does not produce a translation

that includes the terms provided by the organisers, the translation is fed into the LLM, prompting

it to incorporate these terms while retaining the rest of the translation. While the approach can be

used independently with a generic MT model, in this paper, it was used after fine-tuning an MT

model on synthetic in-domain data to assess the extra gains that can be achieved from this step.

The whole process almost doubled the use of terms across three language pairs, compared to the

translations generated by a baseline generic model.

1.2.2 RQ2. DOMAIN-SPECIFIC TEXT GENERATION FOR MT

In-domain data scarcity is common in translation settings, which makes it challenging to fine-

tune MT models, and produce translations that are consistent with the relevant context (Axelrod

et al., 2011; Haddow and Koehn, 2012; Moslem et al., 2022a). Purely synthetic data may be

beneficial for domain adaptation when even monolingual in-domain natural data is unavailable,

either due to lack of resources or an extremely narrow target domain. Synthetic sentences may

be produced by a template or an external model, in conjunction with forward-translation or back-

translation (Saunders, 2022).

Recently, there has been a considerable advancement in training LLMs, not only for English,

but also for diverse languages. My research investigates the feasibility of domain-specific text

generation using LLMs and seeks to answer the following sub-questions:

RQ2.a Can we improve the quality of MT domain adaptation by using a small in-domain dataset

to generate huge amounts of synthetic in-domain data? This includes two main scenarios: (a)

where there is only a small bilingual dataset available, and (b) where only the monolingual

7
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source text to be translated is available. Given a pre-trained language model for the target

language, I fed existing in-domain target sentences as language model prompts to generate

additional examples, then back-translated the new synthetic target sentences to obtain the

equivalent source sentences. Finally, I used the resulting synthetic bilingual data for domain

adaptation of the baseline NMT system. This topic was covered in my paper, Domain-Specific

Text Generation for Machine Translation (Moslem et al., 2022a), which won a Best Presenta-

tion Award at AMTA 2022. The work proposes a novel approach to domain adaptation, that

makes use of huge amounts of synthetic in-domain data to fine-tune baseline NMT models,

and demonstrates significant improvements in translation of in-domain texts in both scenarios

(cf. Section 1.2.2.1).

RQ2.b Can we improve the quality of MT domain adaptation by using approved terminology

to generate huge amounts of synthetic bilingual in-domain data? In my WMT 2023 paper

(Moslem et al., 2023c), I built on the approach described in the first sub-question (RQ2.a).

Instead of generating the target only with an LLM and using back-translation to generate the

source, I employed an LLM to generate both the source and target sides of the synthetic data,

instructing it to incorporate a term pair in the generated translation pair (cf. Section 1.2.2.2).

1.2.2.1 RQ2.a Insufficient in-domain data

In Moslem et al. (2022a), I investigated utilising large-scale autoregressive (GPT-like) language

models (Radford et al., 2019; Brown et al., 2020), pre-trained to predict the next word in a se-

quence. When there is a small in-domain dataset, that is insufficient to fine-tune a baseline MT

system, I can use each target sentence as a prompt to generate text. Interestingly, the generated

text simulates the domain and linguistic characteristics of the authentic in-domain data. Com-

bining the idea of in-domain text generation with back-translation, I was able to generate huge

amounts of synthetic bilingual in-domain data. Finally, I fine-tuned the baseline MT model, on a

mix of synthetic in-domain data and generic data. More details on the approach can be found in

Chapter 2.
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If there is no in-domain dataset at all, we can first forward-translate the source text to be

translated, or a portion of it, using the baseline MT model. Then, the same aforementioned steps

are applied (Moslem et al., 2022a).

In the case that we have a list of pre-approved terms, we can use each target term or term pair

to generate synthetic translation pairs that include the term (Moslem et al., 2023c). Then, we can

use the bilingual term-based synthetic data to fine-tune an MT model. The process is elaborated

in the next section.

1.2.2.2 RQ2.c Terminology-aware text generation

In Haque et al. (2020a), I investigated using terminology for data mining of a target-side large

monolingual dataset, to extract sentences similar to those in an in-domain test set. Then, back-

translation is employed to generate the source. Finally, mixed fine-tuning (Chu et al., 2017) is

applied to the MT baseline to train an in-domain model. This terminology can be either pre-

approved and provided by the client or mined with a terminology extraction tool such as Key-

BERT3 (Grootendorst, 2020), or TM2TB4 (Mondragón, 2021). Even more similar terms can be

generated using sense2vec5 (Trask et al., 2015). Nowadays, LLMs can even be used for bilingual

terminology extraction, as I demonstrated in previous work (Moslem et al., 2023c), which is ad-

dressed in Chapter 4 of this thesis. We can also use already identified terms from tasks such as the

WMT biomedical shared task, ClinSpEn6 (Neves et al., 2022).

There are multiple approaches to employing terminology and LLMs to generate more

in-domain sentences:

Term-based generation: Each term can be used as a prompt to generate in-domain sentences.

Alternatively, as in Haque et al. (2020a), we can extract sentences that include the terms, and then

generate text using these sentences as prompts (Moslem et al., 2022a).

3https://github.com/MaartenGr/KeyBERT
4https://github.com/luismond/tm2tb
5https://github.com/explosion/sense2vec
6https://doi.org/10.5281/zenodo.6497350
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Term-constrained generation: Lin et al. (2020) and Zhang et al. (2020) investigated using lexical

constraints while generating texts using language models. They introduced CommonGen models,

which are fine-tuned versions of BLOOM, GPT-2, and T5. Unlike prefix-constrained generation,

CommonGen generates text that includes the term at any position, i.e. not necessarily at the

beginning. This can help generate diverse sentence patterns.

Bilingual few-shot in-context learning: During unsupervised pre-training, a language model de-

velops a broad set of pattern recognition abilities. It then uses these abilities at inference time to

rapidly adapt to or recognise the desired task. In their experiments, Brown et al. (2020), use the

term “in-context learning” to describe the inner loop of this process. In-context learning is a sce-

nario where a pre-trained language model at inference time learns to replicate certain input-output

text generation patterns, without further fine-tuning. They showed that autoregressive large lan-

guage models such as GPT-3 can perform well in diverse tasks, through zero-shot, one-shot, and

few-shot in-context learning without weight updates. Zero-shot generation can be used to create

sentences from terms with strong LLMs out of the box. For some other LLMs, one-shot or few-

shot in-context learning can achieve better results than zero-shot generation. The approach can be

applied to a number of generation cases, including a) term-to-term generation, b) source-to-target-

sentence generation, c) term-to-target-sentence generation, and d) term-to-bilingual-sentence gen-

eration.

In the paper describing our submission to the WMT 2023 Terminology Shared Task (Moslem

et al., 2023c), ChatGPT was used to generate bilingual sentence pairs, based on the terms provided

by the organisers. So, given a target term, the model was asked to generate multiple translation

pairs, including both the source (e.g. German) and the target (e.g. English). This approach

can be particularly useful in distilling bilingual terminology-based knowledge from an LLM, to

a specialised encoder-decoder MT model, which can improve both the quality and efficiency,

and reduce computing costs at inference time. After fine-tuning an encoder-decoder MT model

with this terminology-based bilingual synthetic data, the model adherence to the pre-approved

terminology was improved (cf. Chapter 5).
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1.3 Publications

The following publications are directly related to the research questions, and they have been

incorporated as chapters within this thesis:

• Adaptive Machine Translation with Large Language Models (Moslem et al., 2023a)

Yasmin Moslem, Rejwanul Haque, John Kelleher, and Andy Way. 2023. In Proceedings of the 24th Annual Con-

ference of the European Association for Machine Translation (Research: Technical), pages 227–237, Tampere,

Finland. Association for Machine Translation in the Americas.7

• Domain Terminology Integration into Machine Translation: Leveraging Large Language

Models (Moslem et al., 2023c)

Yasmin Moslem, Gianfranco Romani, Mahdi Molaei, Rejwanul Haque, John Kelleher, and Andy Way. 2023. In

Proceedings of the Eighth Conference on Machine Translation, Sentosa, Singapore. Association for Computa-

tional Linguistics.

• Fine-tuning Large Language Models for Adaptive Machine Translation (Moslem et al., 2023b)

Yasmin Moslem, Rejwanul Haque, and Andy Way. 2023. arXiv preprint arXiv:2312.12740 [cs.CL].

• Domain-Specific Text Generation for Machine Translation (Moslem et al., 2022a)

Yasmin Moslem, Rejwanul Haque, John Kelleher, and Andy Way. 2022. In Proceedings of the 15th biennial

conference of the Association for Machine Translation in the Americas (Volume 1: Research Track), pages 14–30,

Orlando, USA. Association for Machine Translation in the Americas.8

• Translation Word-level Auto-Completion: What can we achieve out of the box? (Moslem

et al., 2022b)

Yasmin Moslem, Rejwanul Haque, and Andy Way. 2022. In Proceedings of the Eighth Conference on Machine

Translation. Abu Dhabi, UAE. Association for Computational Linguistics.

7This paper is already well-cited in public literature.
8This paper won a “Best Presentation Award” at AMTA 2022.
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While the following publications still overlap in many aspects with my research topic, they

are less relevant compared to the aforementioned publications; hence, they are only cited in this

thesis as needed.

• Preparing an Endangered Language for the Digital Age: The Case of Judeo-Spanish

(Öktem et al., 2022)

Alp Öktem, Rodolfo Zevallos, Yasmin Moslem, Güneş Öztürk, Karen Şarhon. 2022. In Proceedings of the Work-

shop on Resources and Technologies for Indigenous, Endangered and Lesser-resourced Languages in Eurasia

(EURALI), LREC 2022, pages 105–110, Marseille, France. European Language Resources Association (ELRA).

• Arabisc: Context-Sensitive Neural Spelling Checker (Moslem et al., 2020)

Yasmin Moslem, Rejwanul Haque, and Andy Way. 2020. In Proceedings of the 6th Workshop on Natural

Language Processing Techniques for Educational Applications, pages 11–19, Suzhou, China. Association for

Computational Linguistics.

• Terminology-Aware Sentence Mining for NMT Domain Adaptation: ADAPT’s Submission

to the Adap-MT 2020 English-to-Hindi AI Translation Shared Task (Haque et al., 2020a)

Rejwanul Haque, Yasmin Moslem, and Andy Way. 2020. In Proceedings of the 17th International Conference on

Natural Language Processing (ICON): Adap-MT 2020 Shared Task, pages 17–23, Patna, India. NLP Association

of India (NLPAI).

• The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation

Task (Haque et al., 2020b)

Rejwanul Haque, Yasmin Moslem, and Andy Way. 2020. In Proceedings of the Fourth Workshop on Neural

Generation and Translation: Simultaneous Translation and Paraphrasing for Language Education (STAPLE),

pages 144–152, Online. Association for Computational Linguistics.
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1.4 Research Context

This section aims at reviewing the most related research work. It covers the following top-

ics: adaptive and interactive MT, terminology-constrained MT, retrieval-augmented MT, retrieval-

augmented LLMs, and in-context learning for LLMs and MT.

1.4.1 Adaptive and Interactive MT

Adaptive MT usually refers to modifying the MT output at inference time to simulate the char-

acteristics of the text that is currently translated. Moreover, in such an adaptive environment, the

system is supposed to learn in real time from the edits implemented by the users. In other words,

the MT system should adapt to reduce the likelihood that the error will be repeated in subsequent

translations (Richardson and Rashid, 2007; Farajian et al., 2017; O’Brien, 2022), which improves

consistency and boosts productivity. Interactive MT can be considered a type of adaptation, where

an MT system can simultaneously adjust its output based on user input, such as typing part of the

translation or selecting a word suggestion from a list of the most probable completions. In such

an iterative prediction–correction process, every time the user corrects a word, the system reacts

offering a new translation hypothesis, expected to be better than the previous one (Langlais et al.,

2000; Peris et al., 2017).

State-of-the-art MT systems are usually Transformer-based encoder-decoder models

(Vaswani et al., 2017). Researchers investigated how to adjust the output of these models to adapt

to certain domains at translation time. Such real-time adaptation might include fine-tuning a model

on the fly on translation pairs similar to the current source segment, or manipulating the decoding

step to adjust the output to match the characteristics of the source text and any other requirements

such as terminology. There are several approaches that fall under adaptive and interactive MT, and

I will try to cover popular methods that are relevant to my work.

To deal with a multi-domain NMT scenario, especially where the domain might not be known

in advance, researchers proposed an unsupervised (on-the-fly) adaptation approach. Given a

source input, the most similar translation pairs are extracted from the “context” dataset (TM) (Li

et al., 2018; Farajian et al., 2017). Then, the baseline MT model is fine-tuned with the retrieved
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pairs, which is then applied to translate the source. After a linguist edits the MT translation, the

approved translations are added to the dataset/TM. It is also recommended to dedicate a “context”

dataset to each client or project. Finally, the adapted model is reset to the original parameters. The

same process is applied for each source segment.

In contrast to the aforementioned instance-based adaptation approach that utilised retrieved

fuzzy matches to fine-tune the NMT model for each source segment independently, some re-

searchers investigated real-time augmentation. In other words, they experimented with augment-

ing the source input with one or more fuzzy matches at inference time, without the need to repeat-

edly fine-tune the model for each segment (Bulte and Tezcan, 2019; Xu et al., 2020). Nevertheless,

this approach usually works much better if the model is pre-trained to perform such a task. The

main advantage of this approach over the instance-based adaptation approach is that it does not

risk overfitting by fine-tuning the model on only a few segments. Moreover, as the model is al-

ready pre-trained, it does not necessarily need to be served on GPUs as it does not require further

fine-tuning at inference time. Due to the relevance of such retrieval-augmented MT approaches to

my work, I dedicate Section 1.4.3 to research on this area.

The concept of “online learning” in production environments has been the focus of many re-

searchers, not only in NMT, but also in several fields of machine learning. However, according to

Etchegoyhen et al. (2021), this type of adaptation typically requires higher learning rates, which

can affect the quality of the models over time. Alternatively, less aggressive online learning se-

tups may preserve model stability, at the cost of reduced adaptation to user-generated corrections.

Hence, in their work, they evaluated different online learning configurations over time, measuring

their impact on user-generated samples, as well as separate in-domain and out-of-domain datasets.

The results reported in their work indicate that mixed approaches combining online learning with

periodical batch fine-tuning might be needed to balance the benefits of online learning with model

stability.

When it comes to interactive MT, several approaches adopted the teacher forcing mode

(Williams and Zipser, 1989) where ground truth previous tokens are fed into the decoder, instead

of the predicted tokens yi-1 as suggested by Bahdanau et al. (2015). Then, the engine expands the
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next N most likely words, and continues (auto-completes) the decoding for these N hypotheses

independently. Peris and Casacuberta (2019) explored the incremental update of NMT systems

during the post-editing or interactive translation processes. Such modifications aim to incorporate

the new knowledge from the edited sentences into the translation system. Updates to the model are

performed on-the-fly as sentences are corrected via online learning techniques. They implemented

an interactive, adaptive system, able to react to single-character interactions, hoping to reduce the

human effort required for obtaining high-quality translations. As interactive prediction can be

computing intensive, Wuebker et al. (2018) demonstrated that a large proportion of model param-

eters can be frozen during adaptation with minimal or no reduction in translation quality, which

significantly improves efficiency. They evaluated this technique for both batch and incremental

adaptation across multiple data sets and language pairs.

1.4.2 Terminology-Constrained MT

Despite the impressive quality improvements yielded by NMT systems, controlling their

translation output to adhere to user-provided terminology constraints remains an open challenge

(Hasler et al., 2018). The end-to-end nature of NMT removes many ways of manually guiding the

translation process that were available in older paradigms (Post and Vilar, 2018), which makes it

very sensitive to domain shift (Hu et al., 2019a). Hence, there have been several research efforts

to boost NMT adherence to pre-approved terminology, either through adapting the decoding step

only, or through training a terminology-aware NMT model.

Lexically constrained decoding is a modification to beam search that yields decoder outputs

honouring user-supplied constraints. These constraints can be provided in the form of either pos-

itive constraints, which specify that certain token sequences must be present in the output, or

negative constraints, which specify token sequences that must not be generated (Hu et al., 2019b).

Hokamp and Liu (2017) proposed an approach to lexically constrained decoding using grid beam

search, an algorithm which extends beam search to allow the inclusion of pre-specified lexical

constraints. The algorithm can be used with any model which generates sequences token by to-

ken. Lexical constraints take the form of words or phrases that must be present in the output

sequence. Their experiments on interactive-predictive translation and domain adaptation of NMT
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showed that the approach can provide large improvements in translation quality in interactive sce-

narios. Moreover, Hasler et al. (2018) introduced an approach to constrained neural decoding

which supports target-side constraints as well as constraints with corresponding aligned input text

spans.

However, the aforementioned approaches have computational complexities. Hence, Post and

Vilar (2018) presented an algorithm for lexically constrained decoding with less complexity, and

higher efficiency. The algorithm was shipped as part of the Sockeye framework.9 Likewise, the

Fairseq framework10 has implemented this approach along with the algorithm for faster decod-

ing described by Hu et al. (2019a), who extended research in lexically constrained decoding to

work with batching, leading to a five-fold improvement in throughput when working with positive

constraints.

The aforementioned works have mainly proposed modifications to the decoding algorithm to

constrain the output to include target terms at inference time. While effective, these constrained

decoding methods add significant computational overhead to the inference step. In contrast, Dinu

et al. (2019) approached this challenge by training an NMT system to learn how to use custom

terminology when provided with the input, leading to efficiency gains comparable to constraint-

free decoding. The authors used inline annotation of the target terms in the source segment plus

source factor embeddings during training and inference. Later, Exel et al. (2020) investigated

variations of the approach proposed by Dinu et al. (2019) and compared them to constrained

decoding. Similarly, Hu et al. (2019a) proposed an unsupervised adaptation method which fine-

tunes a pre-trained out-of-domain NMT model using a pseudo-in-domain corpus. Specifically,

they performed lexicon induction to extract an in-domain lexicon, and construct a pseudo-parallel

in-domain corpus by performing word-for-word back-translation of monolingual in-domain target

sentences.

In the same context of teaching NMT models to use terminology, placeholders can be incor-

porated as part of a pre-processing step of the training data, and then training the system with this

data that contains these special placeholders (Crego et al., 2016). A similar workflow is applied

9https://github.com/awslabs/sockeye
10https://github.com/facebookresearch/fairseq
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at inference time. Firstly, pre-processing replaces source terms with placeholders. Secondly, post-

processing is applied over the NMT output to replace placeholders with target terms. Michon et al.

(2020) extended the approach to cover a wider variety of cases, and to control morphology. They

used several placeholders indicating part-of-speech (POS) and morphological information, both in

the source and target sides. For each source-target term pair, they encoded all possible inflections

of the source and target word, labelled with inflection type. Similarly, Sun et al. (2022) proposed

a prompt-based method that pre-trains an NMT model to adapt to terms augmented to the input at

translation time.

1.4.3 Retrieval-Augmented MT

In the realm of NMT, researchers discovered that it is possible to improve the performance

of encoder-decoder NMT models by retrieving external knowledge at inference time. This can be

achieved through diverse means, ranging from memorising the whole training data to retrieving

similar translation pairs from relevant TMs and incorporating such knowledge at inference time.

Retrieval can take different forms, ranging from sentence-based to document-based retrieval. On

the one hand, utilisation of the retrieved information can be relatively explicit, e.g. by interpolating

the distribution of the retrieved target tokens with the output distribution from the pre-trained MT

model. On the other hand, the model can be provided with the retrieved segment of text along with

the input source text, and hopefully it will try to modify its output translation accordingly.

Leveraging information retrieved from a TM is a simple yet powerful data augmentation ap-

proach for boosting MT performance. Researchers concatenated source segments with the targets

of the retrieved fuzzy matches, and then trained an MT model on the augmented data (Bulte and

Tezcan, 2019). Similarly, Xu et al. (2020) explored data augmentation methods for training an

NMT system to make use of fuzzy matches. In particular, they simply provided the neural model

with information from both source and target sides of the fuzzy matches. This augmentation step

can be incorporated into both the training and inference stages to boost the NMT model qual-

ity as well as adherence to the preferred domain features. Pham et al. (2020) compared diverse

approaches to augmentation of fuzzy matches and retrieval algorithms. While both Pham et al.

(2020) and Xu et al. (2020) tagged related and unrelated words in the retrieved target tokens to
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avoid copying them to the new translation, Pham et al. (2020) modified the decoding process to

make it more efficient. Zhang et al. (2018b) proposed a method to improve MT of low-frequency

words or phrases by retrieving similar sentence pairs, extracting “translation pieces”, and finally

rewarding the outputs that contain the retrieved translation pieces at decoding time.

In contrast to the majority of work that uses a bilingual corpus as TM and employs source-

side similarity search for memory retrieval, Cai et al. (2021) proposed a framework that uses

monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Hence,

instead of retrieving bilingual translation pairs based on the similarity with current source and

retrieved source, they use cross-lingual retrieval to measure the similarity of the current source

with monolingual data in the target language. Moreover, the ability to leverage monolingual data

makes this approach effective in low-resource and domain adaptation scenarios. Different from

previous works that make use of mutually similar but redundant TMs, Cheng et al. (2022) proposed

contrastively retrieving TMs that are holistically similar to the source sentence while individually

contrastive to each other, providing maximal information gains.

Dabre et al. (2017) explored a simple solution to “multi-source” NMT which relies solely

on preprocessing a multilingual corpus without modifying the model architecture or training pro-

cedure. They simply concatenated the source sentences to form a single long multi-source input

sentence while keeping the target-side sentence as is and trained an NMT system using this prepro-

cessed corpus. Hence, in institutions that maintain their proceedings in multiple languages, they

can use, for example, two languages to generate a translation in a third language. The authors eval-

uated the method in low-resource as well as rich-resource settings and showed its effectiveness,

demonstrating how the NMT system leverages multilingual information to improve the translation

to a target language. Zhang et al. (2018a) introduced an additional context encoder on the source

side that receives the previous two source sentences as context, encodes them and passes the

context encodings to both the encoder and decoder, integrating them using additional multi-head

attention mechanisms.

Previous approaches to leveraging TMs to improve translation generated by encoder-decoder

NMT models require either a significant update of the model architecture and/or additional train-
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ing efforts to make the models well-behaved when TMs are taken as additional input. In their

work, Reheman et al. (2023) presented a simple but effective method to introduce TMs into NMT

systems in a prompting fashion. Specifically, they treat fuzzy matches as prompts to the NMT

model at inference time, without changing the training process. Although this approach can work

with strong encoder-decoder NMT models without further adaptation, Reinauer et al. (2023) found

that it is most effective when the model is fine-tuned towards this task by concatenating similar

translations to the training data.

In their work, Khandelwal et al. (2021) introduced k-nearest-neighbour machine translation

(kNN-MT), and demonstrated that it can lead to significant performance boosts over standard

NMT systems. kNN-MT predicts tokens with a nearest neighbour classifier over a large data-

store of cached examples, using representations from an NMT model for similarity search. In

other words, the translation is generated word-by-word, and at each time step, they found the most

similar contexts in the datastore, and computed a distribution over the corresponding target to-

kens. This distribution was then interpolated with the output distribution from the pre-trained MT

model. The authors demonstrated that memorising the training data improves MT generalisation,

and allows a multilingual model to specialise. As a result, a single translation model can adapt to

multiple domains by memorising domain-specific data, without any in-domain training. They in-

terpolated a pre-trained autoregressive language model (an NMT decoder, in this case) with a kNN

model, with no additional training. However, kNN-MT heavily relies on high-quality in-domain

parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain par-

allel corpora are scarce or non-existent. Hence, Zheng et al. (2021) proposed a framework that

directly uses in-domain monolingual sentences in the target language to construct an effective

datastore for k-nearest-neighbour retrieval. To this end, they first introduced an autoencoder task

based on the target language, and then inserted lightweight adapters into the original NMT model

to map the token-level representation of this task to the ideal representation of the translation task.

Their experiments on multi-domain datasets demonstrated that the proposed approach significantly

improves translation accuracy with target-side monolingual data, while achieving comparable per-

formance with back-translation (Sennrich et al., 2016; Poncelas et al., 2019).
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Another downside of kNN-MT is its inefficient performance, since it uses the entire reference

corpus as the datastore for the nearest neighbour search at inference time. This means each step for

each beam in the beam search has to search over the entire reference corpus. Therefore, other re-

searchers extended the previous work and proposed approaches to improve efficiency (Meng et al.,

2022; Wang et al., 2022). In their work, Meng et al. (2022) proposed Fast kNN-MT to address this

issue. Fast kNN-MT constructs a significantly smaller datastore for the nearest neighbour search:

for each word in a source sentence, Fast kNN-MT first selects its nearest token-level neighbours,

which is limited to tokens that are the same as the query token. Then at each decoding step, in

contrast to using the entire corpus as the datastore, the search space is limited to target tokens

corresponding to the previously selected reference source tokens. This strategy avoids searching

through the whole datastore for nearest neighbours and hence improves decoding efficiency with-

out loss of performance. The authors suggested that their approach enables the practical use of

kNN-MT systems in real-world MT applications. Similarly, Wang et al. (2022) explored a more

efficient kNN-MT implementation and proposed to use clustering for feature reduction to improve

the retrieval efficiency, while retaining translation quality.

1.4.4 Retrieval-Augmented LLMs

In recent years, several pre-trained LLMs have been made available to the research com-

munity, covering a wide range of linguistic tasks. Among the state-of-the-art LLMs are GPT-3

(Brown et al., 2020), GPT-J (Wang and Komatsuzaki, 2021), GPT-NeoX (Black et al., 2022),

PaLM (Chowdhery et al., 2022), BLOOM (Le Scao et al., 2022), GLM (Zeng et al., 2022), OPT

(Zhang et al., 2022), Falcon (Penedo et al., 2023), Llama (Touvron et al., 2023a,b), Mistral (Jiang

et al., 2023), and Phi-2 (Li et al., 2023c).

According to Lewis et al. (2020), large pre-trained language models have been shown to store

factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned for

downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is

still limited, and hence on knowledge-intensive tasks, their performance lags behind task-specific

architectures. Hence, the authors explored a general-purpose fine-tuning recipe for retrieval-

augmented generation (RAG), models which combine pre-trained parametric and non-parametric
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memory for language generation. The authors introduced RAG models where the parametric

memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index

of Wikipedia, accessed with a pre-trained neural retriever. They found that RAG models gen-

erate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq

baseline. Similarly, augmenting language model pre-training with a knowledge-retriever allows it

to capture knowledge in a more modular and interpretable way. In this context, Guu et al. (2020)

augmented language model pre-training with a latent knowledge retriever, which allows the model

to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-

training, fine-tuning and inference. They demonstrated the effectiveness of retrieval-augmented

language model pre-training by fine-tuning on the challenging task of open-domain question an-

swering. Even when there are multiple sources of knowledge, it is possible to use tools such as

Toolformer (Schick et al., 2023), a model trained to decide which sources of knowledge (in this

case, APIs) to call, when to call them, what arguments to pass, and how to best incorporate the

results into future token prediction. The authors showed that their approach achieves substantially

improved zero-shot performance across various downstream tasks, often competitive with much

larger models, without sacrificing its core language modelling abilities.

Borgeaud et al. (2021) demonstrated that autoregressive language models can be enhanced

by conditioning on document chunks retrieved from a large corpus, based on local similarity with

preceding tokens. Their Retrieval-Enhanced Transformer (RETRO) obtained comparable per-

formance to the state-of-the-art LLMs despite using 25⇥ fewer parameters. After fine-tuning,

RETRO performance can translate to downstream knowledge-intensive tasks such as question an-

swering.

When it comes to few-shot in-context learning with retrieval-augmented generation, LLMs

have shown impressive few-shot results on a wide range of tasks. However, when knowledge

is key for such results, as is the case for tasks such as question answering and fact checking,

massive parameter counts to store knowledge seem to be needed. Izacard et al. (2022) showed

that retrieval-augmented LLMs excel at knowledge-intensive tasks without the need for as many

parameters even in few-shot settings. In their work, they presented Atlas, a carefully designed

and pre-trained retrieval-augmented language model able to learn knowledge-intensive tasks with

21



Language Modelling Approaches to Adaptive Machine Translation

very few training examples. They reported that Atlas outperforms a 540B parameters model by

3% despite having 50x fewer parameters. Moreover, Shi et al. (2022) further addressed whether

retrieval-augmented LLMs achieve similar gains in few-shot and zero-shot end-task accuracy.

They believed that the main challenge was to achieve coverage of the verbaliser tokens that de-

fine the different end-task class labels. To address this challenge, they introduced kNN-Prompt,

a simple and effective kNN-LM with automatically expanded fuzzy verbalisers. In other words,

they expanded a word like “great” to also include “excellent” and other task-specific synonyms for

sentiment classification. In their experiments, kNN-Prompt was effective for domain adaptation

with no further training.

In spite of the success of retrieval-augmented generation, LLMs can only afford fixed-sized

inputs due to the input length limit, preventing them from utilising rich long-context informa-

tion from past inputs. For instance, GPT-3 increases the input length from 1k tokens supported

by GPT-2 to 2k tokens for capturing better long-range dependencies. However, this approach

typically incurs computation-intensive training. To address this, Wang et al. (2023b) proposed a

framework, Language Models Augmented with Long-Term Memory (LongMem), which enables

LLMs to memorise long history. They designed a novel decoupled network architecture, with

the original backbone LLM frozen as a memory encoder and an adaptive residual side-network

as a memory retriever and reader. Enhanced with memory-augmented adaptation training, Long-

Mem can thus memorise long past context and use long-term memory for language modelling.

Typically, LongMem can enlarge the long-form memory to 65k tokens (instead of the original

1k supported by GPT-2) and thus cache many-shot extra demonstration examples as long-form

memory for in-context learning. It is worth noting that LongMem is inspired by the previous work

“Memorising Transformer” (MemTRM) (Wu et al., 2022). The main difference is that MemTRM

faces a memory staleness challenge during training due to its coupled memory design, which uses

a single model for encoding memory and fusing memory for language modelling, while uses a

decoupled memory module to address the issue of memory staleness. The results demonstrate that

the proposed method is effective in helping language models to memorise and utilise long-form

contents.
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1.4.5 In-Context Learning for LLMs and MT

Recent research has shown that scaling up language models greatly improves task-agnostic,

few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-

tuning approaches. The idea was highlighted by Brown et al. (2020) who trained GPT-3, an

autoregressive language model with 175 billion parameters, and tested its performance in the few-

shot setting. For all tasks, GPT-3 was applied without any gradient updates or fine-tuning, with

few-shot demonstrations specified purely via text interaction with the model. In few-shot settings,

the model is given K examples of the task at inference time. An example typically has a context

and a desired completion (e.g. a source sentence and its translation), and then one final example of

context, with the model expected to provide the completion. In their experiments, GPT-3 achieved

strong performance on many NLP datasets, including question answering and translation. Figure

1.2 shows examples of popular LLMs and illustrates how research in this area has evolved from

scaling LLMs (Brown et al., 2020; Chowdhery et al., 2022) to building smaller and efficient LLMs

with comparable performance (Jiang et al., 2023; Li et al., 2023c; Penedo et al., 2023; Touvron

et al., 2023b).

Figure 1.2: Large language models moving from scaling to efficiency

The introduction of such a new paradigm opened up new horizons for researchers to explore

and leverage the in-context learning capabilities of LLMs in diverse NLP tasks. Wang et al. (2021)

demonstrated that a single language model (LM4MT) can achieve comparable performance with
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strong encoder-decoder NMT models on standard MT benchmarks. Similarly, LLMs that have

been trained on multilingual but not parallel text exhibit a remarkable ability to translate between

languages. Lin et al. (2022) trained XGLM, a multilingual generative language model (up to 7.5

billion parameters), and presented a comprehensive study of multilingual zero-shot and in-context

few-shot learning. They trained the models using a large-scale corpus of 500B tokens that com-

prises 30 diverse languages, over-sampling the less-resourced languages to render a more balanced

language representation. They evaluated the models on multiple multilingual tasks, including

translation. They conducted an in-depth analysis of different multilingual prompting approaches,

showing in particular that strong few-shot learning performance across languages can be achieved

via cross-lingual transfer through both templates and demonstration examples. Similarly, Vilar

et al. (2023) conducted an in-depth study demonstrating the strong translation performance of

PaLM among similarly trained LLMs. They investigated various strategies for choosing trans-

lation examples for few-shot prompting, concluding that example quality is the most important

factor.

Researchers, including myself, explored the use of few-shot prompting strategies for transla-

tion, showing that the number, quality, and domain of the in-context examples significantly impact

translation performance (Agrawal et al., 2023; Moslem et al., 2023a; Mu et al., 2023; Zhang et al.,

2023a). Garcia et al. (2023) demonstrated that by incorporating examples of high-quality transla-

tion pairs at inference time, a Transformer decoder-only model trained solely with self-supervised

learning is able to match specialised supervised state-of-the-art models. Sarti et al. (2023) intro-

duced an in-context learning approach to leverage attribute annotations and similar same-language

or cross-lingual examples for better prompting quality. They demonstrated its effectiveness with

multilingual LLMs for both formality-controlled and gender-controlled translation. Interestingly,

such translation capabilities of LLMs are not only limited to commercial systems, but they are also

available in open-source LLMs such as BLOOM (Bawden and Yvon, 2023; Moslem et al., 2023a)

and GLM (Zhang et al., 2023a).

In addition to real-time domain adaptation with fuzzy matches, my research (Moslem et al.,

2023a) was among the first efforts to study in-domain lexical and terminology-constrained trans-

lation with LLMs, and showed how incorporating domain-related information while prompting
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LLMs enhances in-context learning and improves the translation quality of domain-specific texts.

Later, Ghazvininejad et al. (2023) proposed using bilingual dictionaries to provide control hints in

the prompts, thereby enabling fine-grained phrase-level prompted control of the LLM. Moreover,

they showed the effectiveness of their approach even for low-resource languages.

Schioppa et al. (2023) demonstrated that pre-training Large Language Models on a mixture of

a self-supervised language modelling objective and the supervised MT objective, therefore includ-

ing multilingual parallel data during pre-training, yields models with better in-context learning

abilities. Chen et al. (2023) and Liu et al. (2023) proposed methods to enhance the instruction-

following capability of LLMs by shifting the position of task instructions after the input sentences

and adding a global instruction representation on the following input and response representations,

respectively.

When it comes to low-resource languages, researchers evaluated the translation performance

of LLMs for a wide range of languages and dialects, revealing that these models approach or

exceed traditional MT model performance for some high-resource languages, but consistently lag

for low-resource languages (Kadaoui et al., 2023; Ojo and Ogueji, 2023; Robinson et al., 2023).

This matches my research outcomes (Moslem et al., 2023a), while we observe that leveraging

in-context learning via augmenting the translation prompt with similar translation pairs or even

aligned phrases can significantly improve the quality of translation of low-resource languages.

However, for very low-resource languages, fine-tuning the LLM might be required.

1.5 Contribution

With real-world production scenarios in mind, I designed and conducted the experiments in

this research, building on the efforts of previous researchers to boost real-time adaptivity of MT

systems. Exploring new horizons beyond traditional MT, I have taken a step forward towards

leveraging LLMs for scenarios involving human interaction and continuous feedback, where the

MT system is expected to concurrently adapt to such interactions.

In the light of the research questions and related work, the contribution of this research can

be outlined as follows:
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• leveraging pretrained LLMs for domain-specific data augmentation, through generating bilin-

gual in-domain synthetic data and using it to fine-tune an MT model, resulting in significant

improvements in translation quality and adherence to pre-approved terminology (Moslem

et al., 2022a, 2023c). The detailed experiments are in Chapter 2 and Chapter 5.

• exploring the gains that can be achieved through incorporating LLMs in real-time adaptive

MT workflows, showing that LLMs can adapt to pre-approved in-domain translation pairs

and terminology, while being solely used for translation, or while post-editing translations

generated by specialised MT systems (Moslem et al., 2023a,b,c). The detailed experiments

are in Chapter 4 and Chapter 5.

• investigating approaches to encouraging MT output to use pre-approved terms, which is usu-

ally referred to as terminology-constrained MT (Moslem et al., 2023a, 2022a), or to complete

user-typed sequences (which can be terms or regular words) through either word-level auto-

completion or predictive auto-suggestions (Moslem et al., 2022b). The detailed experiments

are in Chapter 3, Chapter 4 and Chapter 5.
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Domain-Specific Text Generation for
Machine Translation
Yasmin Moslem, Rejwanul Haque, John Kelleher, and Andy Way

In Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (AMTA 2022), Volume 1:

Research Track, pages 14–30, Orlando, USA. Association for Machine Translation in the Americas.1

Abstract

Preservation of domain knowledge from the source to target is crucial in any translation workflow.
It is common in the translation industry to receive highly specialised projects, where there is
hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain
data to fine-tune Machine Translation (MT) models, producing translations that are consistent
with the relevant context is challenging. In this work, we propose a novel approach to domain
adaptation leveraging state-of-the-art pretrained language models (LMs) for domain-specific data
augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset,
or (b) the monolingual source text to be translated. Combining this idea with back-translation,
we can generate huge amounts of synthetic bilingual in-domain data for both use-cases. For
our investigation, we use the state-of-the-art Transformer architecture. We employ mixed fine-
tuning to train models that significantly improve translation of in-domain texts. More specifically,
in both scenarios, our proposed methods achieve improvements of approximately 5-6 BLEU
and 2-3 BLEU, respectively, on the Arabic-to-English and English-to-Arabic language pairs.
Furthermore, the outcome of human evaluation corroborates the automatic evaluation results.

1Published at: https://aclanthology.org/2022.amta-research.2/
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2.1 Context

The emergence of open-source large language models (LLMs) such as GPT-2 (Radford et al.,

2019) and BERT (Devlin et al., 2019) opened the door for researchers to explore the capabilities of

such models. At the time, the use of these models was limited to certain NLP tasks, and was condi-

tioned by their architectures (e.g. encoder-only, decoder-only, or encoder-decoder models), which

work for some tasks better than for others. In 2020, the release of GPT-3, an autoregressive LM

with 175 billion parameters, was announced. The associated paper (Brown et al., 2020) mentioned

an attractive feature that the authors called “in-context learning”. This refers to pattern recognition

abilities that an LLM develops during pre-training and then uses at inference time to rapidly adapt

to or recognise the desired task. The authors showed how to employ “in-context learning” in a

range of tasks, including translation, question answering, natural language inference, and reason-

ing. For some of these tasks, the results reported in the paper were surprising, since the use of

an autoregressive decoder-only model such as GPT-2 or GPT-3 was not the common practice for

certain tasks. The authors noted that there was a consistent trend of quality improvement as the

model scales, as well as a tendency for translation into English to be stronger than translation from

English. When translating French, German, and Romanian into English, the reported scores for

few-shot translation with GPT-3 were either on par with or better than the state-of-the-art WMT

results for these language pairs. Similarly, the authors demonstrated the advantages of using “in-

context learning” in other tasks. However, as GPT-3 was never open-sourced, this ‘magical power’

was kept in a black box. As the scalability ‘space race’ started to emerge, companies and institu-

tions built larger and larger LMs, some of which were propriety such as Gopher (Rae et al., 2021),

MT-NLG (Smith et al., 2022), and PaLM (Chowdhery et al., 2022), while others were open-

sourced such as GPT-J (Wang and Komatsuzaki, 2021), GPT-NeoX (Black et al., 2022), BLOOM

(Le Scao et al., 2022), mGPT (Shliazhko et al., 2022), and OPT (Zhang et al., 2022). By the time

of writing this paper, some of these models were publicly available, such as GPT-2, and GPT-J,

while others were released later. I thought that we should try these models to improve MT domain

adaptation, especially in scenarios of in-domain data scarcity, and the co-authors (my supervisors)

encouraged the idea, which led to this research work. This paper won a Best Presentation Award

at AMTA 2022.
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2.2 Introduction

Preservation of domain knowledge from the source to target is crucial in any translation work-

flow. Domain adaptation of MT systems on in-domain parallel texts has been an active area of

research to handle this situation. Among popular contributions to the domain adaptation research,

Luong and Manning (2015) proposed to adapt an already existing NMT system to a new domain,

with further training on the in-domain data only. In an effort to avoid overfitting on the in-domain

data, Chu et al. (2017) employed the mixed fine-tuning approach, resuming training the baseline

NMT model on a mix of in-domain and out-of-domain data. Other researchers suggested adding

domain tags to either the source or target sentences of the in-domain data, to inform the NMT

model about the domain during training and decoding (Britz et al., 2017; Kobus et al., 2017; Ster-

giadis et al., 2021).

In this sense, several research works on domain adaptation assume the availability of in-

domain data. However, in-domain data scarcity is common in translation settings, due to the lack

of specialised datasets and terminology, or inconsistency and inaccuracy of available in-domain

translations. To tackle this problem, researchers have proposed diverse approaches, such as util-

ising large monolingual datasets through selecting instances related to a given test set, then auto-

matically translating this source-synthetic corpus, and finally fine-tuning the general NMT system

on this data (Chinea-Rı́os et al., 2017). Similarly, some works have investigated retrieving similar

translations (fuzzy matches) from bilingual datasets, and then applying on-the-fly domain adapta-

tion through fine-tuning the baseline model at translation time (Farajian et al., 2017), or integrating

them into NMT training (Bulte and Tezcan, 2019; Xu et al., 2020).

While the aforementioned approaches prove to be helpful in certain scenarios of domain adap-

tation, we believe there is a need for further research in this area to address current challenges of

in-domain data scarcity and synthetic data creation. Some approaches, such as on-the-fly domain

adaptation, require using GPUs synchronously at translation time, which presents a challenge for

some institutions due to the lack of resources. When it comes to mining monolingual or bilingual

datasets for similar instances, in several domains a good similar sentence can be a mix of portions
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of multiple sentences. Besides, with the lack of in-house specialised translation memories, mining

publicly available datasets can be an inefficient process.

In this work, we introduce a new approach to MT domain adaptation, leveraging state-of-the-

art pre-trained language models (LMs) for domain-specific data augmentation. Our method can

generate an unlimited number of in-domain sentences out of the box. Recently, there has been a

considerable advancement in training large LMs (Radford et al., 2019; Brown et al., 2020; Black

et al., 2022; Zhang et al., 2022), not only for English, but also for diverse languages (Antoun et al.,

2021; Zhang et al., 2021; Müller and Laurent, 2022). More specifically, our current work ex-

ploits GPT-J (Wang and Komatsuzaki, 2021) and mGPT (Shliazhko et al., 2022) to generate texts

from in-domain sentences. We investigate the feasibility of this domain-specific text generation

technique when either no or limited bilingual in-domain dataset is available. Incorporating this

approach in a process of bilingual in-domain synthetic data creation and then fine-tuning our base-

line generic MT model on the new dataset (cf. Section 2.4), we report significant improvements

in the translation quality of the in-domain test set (cf. Section 2.6).

The rest of the paper is organised as follows. In Section 2.3, we discuss the related work in

detail. Then, we present our methods in Section 2.4. In Section 2.5, we describe the experimental

setup and present the results of our experiments in Section 2.6. Finally, we conclude the paper and

discuss future work in Section 2.7.

2.3 Related Work

In recent years, several pre-trained large LMs have been made available to the research com-

munity, covering a wide range of linguistic tasks. Among the state-of-the-art LMs are GPT-2

(Radford et al., 2019), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), XLNet (Yang

et al., 2019), GPT-3 (Brown et al., 2020), ELECTRA (Clark et al., 2020), DeBERTa (He et al.,

2021b,a), T5 (Raffel et al., 2020), Gopher (Rae et al., 2021), GPT-J (Wang and Komatsuzaki,

2021), GPT-NeoX (Black et al., 2022), PaLM (Chowdhery et al., 2022), Chinchilla (Hoffmann

et al., 2022), ELMFOREST (Li et al., 2022), MT-NLG (Smith et al., 2022), and OPT (Zhang

et al., 2022). Some of these models are multilingual, such as BLOOM (Le Scao et al., 2022),

AlexaTM (FitzGerald et al., 2022) and mGPT (Shliazhko et al., 2022).
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Using LMs for specialised domains has been explored by previous works for diverse tasks.

Researchers explored the possibility to retrieve factual knowledge from LMs in various domains

(Petroni et al., 2019; Sung et al., 2021). Similarly, Horawalavithana et al. (2022) developed large-

scale models of foundational scientific knowledge that can be effectively used to perform a wide

range of in-domain and out-of-domain tasks.

LMs have been used in Unsupervised NMT (Lample and Conneau, 2019; Chronopoulou et al.,

2021; Wang et al., 2021). Large-scale pre-trained LMs have also been employed in a variety of MT

tasks, to improve the robustness of MT models or their ability to work on domain texts (Bawden

et al., 2020; Specia et al., 2020; Wenzek et al., 2021).

Recently, Chang et al. (2021) aimed at addressing the lack of training data for new application

domains for data-to-text generation. They automatically augmented the data available for training

by (a) generating new text samples by replacing specific values with alternative ones from the same

category, (b) generating new text samples using GPT-2, and (c) proposing an automatic method

for pairing the new text samples with data samples. Their approach boosted the performance of a

standard seq2seq model by over 5 BLEU points. Sawai et al. (2021) investigated the use of GPT-2

for source-side data augmentation to improve the robustness of a generic pre-trained NMT model.

They first fine-tuned the pre-trained model, BERT-fused (Zhu et al., 2020), on authentic bilingual

data. Then, they augmented the English source with data generated by GPT-2. Thereafter, they

forward-translated the source-side English monolingual data with the fine-tuned version of BERT-

fused. Finally, they fine-tuned the model on a combination of the authentic and synthetic data.

While the reported results showed reasonable improvement (approx. 2.0 BLEU points) for the

English-to-Japanese language direction, insignificant improvement (avg. 0.3 BLEU) was achieved

for both English-to-German and English-to-Chinese language directions. The authors concluded

that the result could be due to the relatively small amount of the original English-to-Japanese data

compared to the other two language directions. We conjecture that more factors might have led to

this result, including using forward-translation (rather than back-translation) of a huge amount of

data, due to the noise it introduces for the decoder (Haddow et al., 2022). In our current work, we

try to be more specific about the task description, focussing on domain adaptation in the absence

of enough in-domain data; utilising back-translation as an effective data augmentation technique
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(Edunov et al., 2018; Caswell et al., 2019); and giving more attention to data distribution through

applying approaches like mixed fine-tuning and oversampling (Chu et al., 2017).

Back-translation (Sennrich et al., 2016; Fadaee and Monz, 2018; Poncelas et al., 2019)

corresponds to the scenario where target-side monolingual data is translated using an MT system

to give corresponding synthetic source sentences, the idea being that it is particularly beneficial

for the MT decoder to see well-formed sentences (Haddow et al., 2022). Back-translation has

become a popular strategy among MT researchers, especially in low-resource scenarios (Haque

et al., 2021). Burlot and Yvon (2018) performed a systematic study, which showed that forward-

translation might lead to some improvements in translation quality, but not nearly as much as

back-translation. Bogoychev and Sennrich (2019) concluded that forward-translation is more sen-

sitive to the quality of the system used to produce synthetic data. Compared to back-translation,

biases and errors in synthetic data are intuitively more problematic in forward-translation, since

they directly affect the gold labels. The authors also reported that human evaluators favoured

their back-translation systems over forward-translation systems, mostly in terms of fluency, while

adequacy was largely the same across all of them, especially on the original translation direc-

tion. In their analysis, Edunov et al. (2018) showed that sampling or noisy synthetic data gives a

much stronger training signal than data generated by beam or greedy search. Caswell et al. (2019)

proposed a simpler alternative to noising techniques, consisting of tagging back-translated source

sentences with an extra token. Hoang et al. (2018) empirically showed that the quality of the

back-translation system matters for synthetic corpus creation, and that NMT performance can be

improved by iterative back-translation in both high-resource and low-resource scenarios.

When it comes to fine-tuning strategies for MT domain adaptation, researchers demonstrated

that applying the right data distribution can significantly mitigate catastrophic forgetting of strong

baselines in domain adaptation settings. Chu et al. (2017) proposed the mixed fine-tuning method,

whose training procedure is as follows: (a) train an NMT model on out-of-domain data until

convergence, and (b) resume training the NMT model from the first step on a mix of in-domain

and out-of-domain data (by oversampling the in-domain data) until convergence. According to the

authors, mixed fine-tuning can address the overfitting problem of regular fine-tuning. In addition,

mixed fine-tuning does not worsen the quality of out-of-domain translations, while regular fine-
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tuning does. Similarly, Hasler et al. (2021) studied the problem in an adaptation setting where the

goal is to preserve the existing system quality while incorporating data for domains that were not

the focus of the original MT system. They found that they could improve over the performance

trade-off offered by Elastic Weight Consolidation (Kirkpatrick et al., 2017) with a relatively simple

data mixing strategy.

2.4 Methods

In this work, we investigate two scenarios of in-domain data scarcity, and propose approaches

to leverage pre-trained LMs for domain-specific data generation for MT training.

2.4.1 Use Case 1: Limited bilingual in-domain data available

This is a common scenario where a specialised translation project is received, and although

there is a large bilingual generic dataset and a small bilingual in-domain dataset (e.g. translation

memory), the in-domain data is insufficient for fine-tuning a baseline model. From now on, we

will refer to this use case as “Setup 1”. To handle this situation, we propose the following steps:

1. We employ text generation with a large LM in the target language to augment the in-domain

data. In this process, each target sentence in the in-domain dataset is used as a prompt to

generate synthetic segments using the pre-trained language model. As expected, the generated

text preserves the domain characteristics of the authentic in-domain data. This step enables

us to have sufficient data in the target language.

2. To obtain parallel source sentences, we back-translate the target-side synthetic sentences that

were generated in the previous step.

3. We apply mixed fine-tuning proposed by Chu et al. (2017) to the baseline model. In other

words, we continue training our baseline model on a mix of (a) the synthetic bilingual in-

domain dataset we got from the two previous steps, and (b) a randomly sampled portion of

the original generic dataset, with a data size ratio of 1:9, respectively. To apply oversampling,

we employ the dataset weights feature in OpenNMT-tf2 (Klein et al., 2020a), with weights

0.9 and 0.1, respectively. Hence, the dataset weights are inversely proportional to the sizes of
2https://github.com/OpenNMT/OpenNMT-tf
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the two datasets.3 As the in-domain corpus is smaller than the generic corpus, oversampling

allows the model to pay equal attention to both corpora. As a result of the mixed fine-tuning

process, we obtained a new model that translates in-domain data significantly better than the

baseline (cf. Section 2.6).4

4. Although the new fine-tuned model can still adequately translate generic data, we noticed it

can degrade performance by 1-2 BLEU points. Therefore, we experimented with checkpoint

averaging (Vaswani et al., 2017) of the fine-tuned model with the baseline model to reduce

variability between trainings and address rapid overfitting during fine-tuning (Tran et al.,

2021). This step helps regain the higher evaluation score of the baseline model on generic

data, while retaining the improved score of the fine-tuned model on in-domain data.

2.4.2 Use Case 2: Zero bilingual in-domain data available

In this case, we assume that there is no bilingual in-domain data at all. There is only the

source text that requires translation. From now on, we will refer to this use case as “Setup 2”.

The first step is to use the baseline MT model for forward-translation of the source text. The

generated translation might not be perfect; however, it can still include useful information about

the domain. This approach bootstraps some parallel data for a situation where there was none.

Then, we follow the same four steps mentioned in the previous use case.

2.5 Experimental Setup

2.5.1 Datasets

For training Arabic-to-English and English-to-Arabic generic models, we collect high-quality

datasets from OPUS (Tiedemann, 2012). The breakdown of segment numbers in our datasets be-

fore and after filtering is shown in Table 2.1. To ensure the quality of our datasets, we apply a

3This configuration creates a weighted dataset where examples are randomly sampled from the data files according to the provided
weights. In simple words, it sequentially samples 9 examples from the smaller in-domain dataset, and 1 example from the larger
generic dataset, and so on.

4Inspired by Hasler et al. (2021) who applied 20x oversampling, we experimented with a higher oversampling ratio. Increasing
both the data size and weight degraded performance on the in-domain test set, compared to our applied 9x ratio, while increasing the
weight only did not result in a significant improvement. We might investigate the effect of changing the oversampling ratio further in
the future.
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multi-filtering process. First, we apply rule-based filtering to individual datasets, removing dupli-

cates, source-copied segments, those with too long source/target (ratio 200% and > 200 words),

and HTML tags. Then, we calculate the similarity between each source and target to semanti-

cally filter out segments with a similarity threshold lower than 0.45. Finally, we concatenate the

datasets and apply global filtering. For the development and test datasets, we randomly sampled

5000 segments each from the original dataset.5

For in-domain NMT models, we use TICO-19 (Anastasopoulos et al., 2020), a dataset in the

Public Health domain. After filtering, the dataset includes 3062 segments. Table 2.2 shows the

dataset details. We split the TICO-19 dataset into a development dataset, with 1000 segments, and

a test dataset which includes the rest, i.e. 2062 segments. The whole TICO-19 dataset is used for

generating a large synthetic in-domain training dataset, as described in Section 2.5.5.

2.5.2 Vocabulary

To create our vocabulary, we first train SentencePiece unigram models (Kudo and Richardson,

2018; Kudo, 2018) for the source and target individually, to learn subword units from untokenised

text.6 Then, we utilise this SentencePiece model to subword our dataset. We use a vocabulary

size of 50,000. Subsequently, we convert the learned subword units into our final vocabulary in

the format supported by OpenNMT-tf. Segments are automatically augmented with start and end

tokens via source sequence controls option.

2.5.3 NMT Model Architecture

Our baseline generic NMT models use the Transformer “Big” architecture (Vaswani et al.,

2017) as implemented in OpenNMT-tf, and relative position representations (Shaw et al., 2018)

with a clipping distance k=20. The models consist of 6 layers with a model dimension of 1,024,

split into 16 heads, and a feedforward dimension of 4,096.

5Our MT preparation scripts are publicly available at: https://github.com/ymoslem/MT-Preparation
6In SentencePiece, we utilise the training options --split_digits to split all digits into separate pieces, and --byte_

fallback to decompose unknown pieces into UTF-8 byte pieces to help avoid out-of-vocabulary tokens.
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Filtering

Dataset Raw Rule-based Semantic

Bible 62,195 47,699 43,951
ELRC 2922 15,129 14,937 14,850
GlobalVoices 63,071 55,201 51,220
GNOME 150 143 134
Infopankki 50,769 15,531 14,635
KDE4 116,239 85,003 68,180
MultiUN 9,759,125 7,807,811 7,508,443
News-Commentary 97,384 80,744 77,715
OpenSubtitles 29,823,188 23,666,245 20,176,228
Tatoeba 27,905 27,649 26,714
Ubuntu 5,978 5,617 5,340
UN 74,067 63,074 62,901
UNPC 20,044,478 15,696,210 15,441,996
Wikimedia 407,543 335,783 317,285
Wikipedia 151,136 117,859 116,940

Total 60,698,357 48,019,506 43,926,532

Global Filtering 40,207,905

Table 2.1: Generic datasets

Filtering

Dataset Raw Rule-based Semantic

TICO-19 3,071 3,069 3,062

Table 2.2: In-domain dataset (Public Health)

2.5.4 Training

The training takes place on 2x NVIDIA RTX A4000 GPUs, with a batch size of 2048 tokens

per GPU, for an effective batch size of 25k tokens/step. The Arabic-to-English model is trained

for 240k steps, while the English-to-Arabic model is trained for 105k steps. Early stopping is used

after 3 evaluations with less than 0.01 BLEU improvement on the development dataset.

2.5.5 Domain-Specific Data Generation with LMs

For English, we use GPT-J (Wang and Komatsuzaki, 2021), a Transformer-based language

model with 6B trainable parameters.7 For Arabic, we use mGPT (Shliazhko et al., 2022), a multi-

lingual language model.8

7https://huggingface.co/EleutherAI/gpt-j-6B
8https://huggingface.co/sberbank-ai/mGPT
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To fit the models onto an NVIDIA RTX A4000 GPU (16 GB of GPU memory), the half-

precision floating-point (float16) format is used.9 We also use a batch size of 1.10 For inference,

we employ 50 Top-K sampling and 0.95 Top-p (nucleus) sampling (Fan et al., 2018; Holtzman

et al., 2018; Radford et al., 2019; Holtzman et al., 2020). The maximum length of the generated

text is set to 300 tokens, and we return 5 sequences for each segment, to get multiple independently

sampled outputs. Finally, we split the generated text into sentences.11

As explained in Section 2.4, we have two use-cases: (a) a small bilingual in-domain dataset

is available; and (b) the source only is available, so we utilise forward-translation to generate the

target side. After that, each target sentence of the in-domain dataset TICO-19 (i.e. the authentic

target in the first case, or the MT-ed target in the second case) is fed to the LM as a prompt to gen-

erate synthetic in-domain segments. We use random seeds to generate multiple datasets, namely

2 for English and 3 for Arabic.12 We filter the concatenated datasets, by removing duplicates and

cleaning lines with a wrong language, and those including only dashes or filenames. Table 2.3

illustrates the numbers of in-domain synthetic segments generated by the LMs.

Setup 1 Setup 2

Language LM 1st Run 2nd Run 3rd Run Total Filtered 1st Run 2nd Run 3rd Run Total Filtered

English GPT-J 131,730 131,554 N/A 263,284 242,469 137,705 138,702 N/A 276,407 253,287
Arabic mGPT 96,296 97,031 94,513 287,840 271,665 103,272 103,459 103,303 310,034 294,391

Table 2.3: Data generated by language models (LMs)

2.5.6 Back-Translation

For back-translation, we use OPUS models,13 specifically the Transformer-Big versions. For

efficiency purposes, we convert the models to the CTranslate214 format (INT8 quantisation). We

use beam size 5. After back-translation, we run the same rule-based and semantic filtering on the

generated dataset as we did for the original datasets. Table 2.4 elaborates on the numbers.

9In Hugging Face Transformers, we also set the option low_cpu_mem_usage to True.
10It is worth mentioning though that for batch generation (i.e. >1), padding and attention masking should be used; note that left

padding is required for GPT-like models.
11Our scripts are available at: https://github.com/ymoslem/MT-LM
12As two data generation runs for Arabic resulted in a less amount of data than for English, we increased the data size for Arabic

by generating a third dataset (cf. Table 2.3).
13https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models
14https://github.com/OpenNMT/CTranslate2
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Setup 1 Setup 2

Filtering Filtering

Language Translated Rule-based Semantic Translated Rule-based Semantic

English 242,469 240,329 239,931 253,287 251,357 250,317
Arabic 271,665 271,645 270,743 294,391 294,234 293,252

Table 2.4: Back-translated datasets

2.5.7 Mixed Fine-tuning

Following Chu et al. (2017), we employ the mixed fine-tuning approach. We randomly sample

a portion from the generic data we used to train the baseline model, and use it during the fine-

tuning step along with the in-domain dataset. Oversampling the in-domain data is a crucial step,

as explained in Section 2.4. We first train a baseline NMT model on out-of-domain data until

convergence, and then continue training the NMT baseline model on a mix of in-domain and

out-of-domain data (by oversampling the in-domain data) until convergence.

In most experiments, we fine-tuned the baseline for 5000 steps. However, for Setup 2 of the

English-to-Arabic language pair, we found that the best automatic evaluation scores were achieved

with training for only 500 or 1000 steps. We believe that this might be due to the quality or

distribution of the generated in-domain data compared to the original generic data. Although Chu

et al. (2017) observed that both regular fine-tuning and mixed fine-tuning tend to converge after

1 epoch of training, it seems there is no golden rule as to how many steps or epochs the baseline

model should be fine-tuned on the mixed data. Depending on the size of data, we recommend

conducting less-frequent evaluations on the development dataset during the fine-tuning process

for finding out the best model checkpoint.

2.6 Results

In this section, we elaborate on our automatic and human evaluations and discuss the results.

As Table 2.5 shows, scores obtained from diverse automatic metics provide good correlation with

the human evaluation. Moreover, the linguistic analysis (cf. Section 2.6.3) supports these numeri-
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cal results, and demonstrates how the models fine-tuned on synthetic in-domain data produce more

accurate translations of the in-domain test set compared to the baseline model.

2.6.1 Automatic Evaluation

For automatic evaluation, we calculated spBLEU (Papineni et al., 2002; Goyal et al.,

2022) which uses a SentencePiece tokeniser with 256,000 tokens and then the BLEU score is

computed on the sub-worded text. spBLEU has been recently added to sacreBLEU v2.1.0.15

Goyal et al. (2022) showed that spBLEU exhibits a strong correlation with the tokenisation-

independent chrF++, yet has the advantage of keeping the familiarity of BLEU. To verify our re-

sults, we employed other evaluation metrics, namely the character-based metric chrF++ (Popović,

2017), and the word-based metric TER (Snover et al., 2006), as implemented in sacreBLEU (Post,

2018). Furthermore, we integrated COMET16 (Rei et al., 2020) as a semantic evaluation metric,

with the “wmt20-comet-da” model.

We experimented with averaging parameters across multiple model checkpoints (Vaswani

et al., 2017), to address bias towards recent training data (Tran et al., 2021). Sometimes, averaging

multiple checkpoints of a baseline model, or averaging a baseline model with a fine-tuned model

could lead to extra improvements of the automatic and/or human evaluation of our models. Table

2.5 shows evaluation results on the in-domain test dataset, and Figure 2.1 elaborates on all the

automatic evaluation results, including the results for averaged models.

Language Model spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑ Human ↑

AR-EN
Baseline 44.57 66.68 46.67 65.78 87.0
Setup 1 Mixed Fine-Tuning 49.79 70.54 43.32 71.89 93.5
Setup 2 Mixed Fine-Tuning 47.22 69.38 45.38 70.08 94.5

EN-AR
Baseline 36.15 58.3 58.29 57.5 87.0
Setup 1 Mixed Fine-Tuning 42.38 62.52 53.99 67.48 90.0
Setup 2 Mixed Fine-Tuning 37.91 59.42 55.95 59.47 88.5

Table 2.5: Evaluation results on the in-domain test set, TICO-19

15https://github.com/mjpost/sacrebleu
16https://github.com/Unbabel/COMET
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2.6.2 Human Evaluation

Since translation focusses mainly on word choice, syntax, and semantics, and how people

perceive it, we decided to complement our evaluation process with human evaluation.

The evaluator was an Arabic native speaker and domain expert. We conducted a bilingual

evaluation, providing the evaluator with both the original source sentences and translations gen-

erated by the MT models. The human test set contained 50 sentences, randomly extracted from

the original test set, and verified as accepted translations. The evaluator was asked to assess the

acceptability of each translation generated by our baselines and fine-tuned MT systems, using the

scale proposed by Coughlin (2003), ranging from 1 to 4, and outlined as follows:

• 4 = Ideal: Not necessarily a perfect translation, but grammatically correct, with all information accurately trans-

ferred.

• 3 = Acceptable: Not perfect (stylistically or grammatically odd), but definitely comprehensible, AND with accu-

rate transfer of all important information.

• 2 = Possibly Acceptable: Possibly comprehensible (given enough context and/or time to work it out); some

information transferred accurately.

• 1 = Unacceptable: Absolutely not comprehensible and/or little or no information is accurately transferred.

Human evaluation results on the in-domain dataset, TICO-19, are expressed in percentage

points in the last column of Table 2.5. In addition, Table 2.6 elaborates on the results for all the

systems, showing the mean value for each system on the 1-4 scale.17 The models fine-tuned on the

domain-specific synthetic dataset achieve improvements on the in-domain test set, while retaining

the baseline’s quality on the generic holdout test set.

Language Test Set BS BS-Avg8 MixFT-1 MixFT-1+BS MixFT-1+BS-Avg8 MixFT-2 MixFT-2+BS MixFT-2+BS-Avg8

AR-EN
Generic 3.84 3.90 3.84 3.88 3.88 3.84 3.84 3.84
TICO-19 3.48 3.62 3.74 3.82 3.80 3.78 3.72 3.74

EN-AR
Generic 3.96 3.90 3.82 3.96 3.90 3.94 3.96 3.96
TICO-19 3.48 3.50 3.60 3.54 3.52 3.54 3.56 3.54

Table 2.6: Human evaluation of MT models for Arabic-to-English (AR-EN) and English-to-Arabic (EN-AR) language pairs,
the baseline (BS), baseline averaged 8 checkpoints (BS-Avg8), mixed fine-tuning model (MixFT), averaging MixFT with BS
(MixFT+BS), and averaging MixFT with BS-Avg8 (MixFT+BS-Avg8). MixFT-1 refers to Setup 1 and MixFT-2 refers to Setup 2.

17Sentence-level human evaluation is available at: https://github.com/ymoslem/MT-LM
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2.6.3 Linguistic Analysis

We observe that in several cases, the fine-tuned (in-domain) models generate more idiomatic

translations or better capture the meaning in the Public Health context. Samples from the test

dataset translated by the baseline model and in-domain models reflect these improvements.

Among Arabic-to-English examples, the phrase “ ⇣
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translated as “not pathogenic in their naturally occurring host” by the baseline, and “non-

pathogenic in their natural reservoir hosts” by both in-domain models. The former translation

somehow conveys the meaning; however, the latter translation is more idiomatic in the medical

context. The baseline system translated “ ⇣

Ë X BÒÀ @
⇣

H A” A‘
g” as “maternity wards” which is an incorrect

translation, while the in-domain models in Setup 1 and Setup 2 produced more relevant translations

as “birthing pools” and “birth baths”, respectively. The baseline model translated “ ⇣
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⌦

 

Æ
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⇣
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⌦

”Ò™ K
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⇣
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as “a nasal laryngeal swab” which is an inaccurate translation. In contrast, both in-domain models

translated the term as “a nasal nasopharyngeal swab”, which uses the accurate “nasopharyngeal”

medical term. It can still be edited by removing the redundant “nasal”; however, our evaluator

gave it a higher score than the translation provided by the baseline. The term “ ⇣

È
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k @” was

translated as “serum tests” by the baseline, while it was translated as “serological tests” by both

in-domain models, which is more idiomatic.

Examining some of the English-to-Arabic translations, the baseline model mistranslated

“HCoVs” as “(
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Ø” (HIV/AIDS), as opposed to the

in-domain models, which correctly translated it as “ ⇣

ÈK
⌦

QÂ
⌘
ÑJ

.
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⇣
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Ø” or just “HCoV ⇣
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Q
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⌦

 

Ø”. Inter-

estingly, even for a simpler phrase like “five times more cases”, the baseline incorrectly translated

it as “ ⇣
H B Ag Å‘

 

g” (five cases), whilst the in-domain models correctly conveyed the meaning as

“ ⇣
H B Am

Ã
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ì
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⇣

ÈÇ‘

 

g”.

There are also examples where one of the in-domain systems generated the correct translation

while the other could not. For instance, both the baseline and Setup 2 in-domain model trans-

lated “If you do wear a mask” as “® A

 

J

⇣

Ø Z @ Y

⇣

KP @ B
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Jª @

 

X @
�
”, which is both syntactically and semantically

incorrect. In contrast, the Setup 1 in-domain model perfectly translated it as “ A
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The baseline model translated the phrase “passive antibody therapy” as “ ⇣

Ë X A

 

í÷œ @ – AÇk
.

�

CÀ ˙

⌦
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 ÇÀ @ h
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which uses the preposition “⇧À” (of) instead of “⇧K
.
” (with), missing the fact that in this context “an-

tibody” is equivalent to “antibody-based” rather than being the issue to be treated. Similarly, the

Setup 2 in-domain model mistranslated it as “˙

⌦

Ê

.

 ÇÀ @ X A

 

í÷œ @ h
.

C™À @” while the Setup 1 in-domain model

accurately translated it as “ ⇣

Ë X A

 

í÷œ @ – AÇk
.

�

B AK
.

˙

⌦

Ê

.

 ÇÀ @ h
.

C™À @”.

Since some phrases can be expressed in multiple ways, we notice that sometimes the evaluator

equally ranked different translations. This might explain why automatic metrics evaluate Arabic-

to-English Setup 1 higher than Setup 2, whereas the human evaluation shows that the translation

quality of both setups is comparable.

2.7 Conclusion and Future Work

In this work, we propose two simple methods to utilise pre-trained language models for

domain-specific data augmentation for NMT systems. We report significant improvements, sup-

ported by both automatic and human evaluation. The proposed techniques enable the generation

of large amounts of data, simulating the characteristics of the specialised text to be translated, and

facilitating the domain adaptation process.

For the Arabic-to-English language direction, human evaluation demonstrates that Setup 2

is on par with Setup 1 even though in the former we did not have any authentic bilingual in-

domain data (cf. Section 2.4). Nevertheless, the English-to-Arabic model in Setup 2 has lower

performance compared to the Setup 1 model, although both setups outperform the baseline on the

in-domain test set. We believe this might be due to the quality of synthetic data generated for

Arabic, which is an interesting aspect to explore further.

In the future, we would like to investigate utilising terminology for domain-specific data gen-

eration, and experiment with employing the same proposed approaches for low-resource languages

and multilingual settings.
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Figures: Automatic Evaluation
(a) AR-EN Setup 1 - In-Domain Test Set (TICO-19) (b) AR-EN Setup 2 - In-Domain Test Set (TICO-19)

(c) AR-EN Setup 1 - Generic Test Set (d) AR-EN Setup 2 - Generic Test Set

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(e) EN-AR Setup 1 - In-Domain Test Set (TICO-19) (f) EN-AR Setup 2 - In-Domain Test Set (TICO-19)

(g) EN-AR Setup 1 - Generic Test Set (h) EN-AR Setup 2 - Generic Test Set

Figure 2.1: Performance comparison of 5 models for Arabic-to-English (AR-EN) and English-to-Arabic (EN-AR) language pairs,
the baseline (BS), baseline averaged 8 checkpoints (BS-Avg8), mixed fine-tuning model (MixFT), averaging MixFT with BS
(MixFT+BS), and averaging MixFT with BS-Avg8 (MixFT+BS-Avg8). The MixFT models fine-tuned on the domain-specific
synthetic dataset achieve improvements on the in-domain test set (a,b & e,f), while retaining the baselines quality on the generic
test set (c,d & g,h).
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Abstract

Research on Machine Translation (MT) has achieved important breakthroughs in several areas.
While there is much more to be done in order to build on this success, we believe that the language
industry needs better ways to take full advantage of current achievements. Due to a combination
of factors, including time, resources, and skills, businesses tend to apply pragmatism into their
AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases,
and features, and adopt high-level working production solutions, where possible. Among the
features thought to be helpful for translators are sentence-level and word-level translation auto-
suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their
need to refer to external resources, which hopefully boosts their productivity. This work describes
our submissions to WMT’s shared task on word-level auto-completion, for the Chinese-to-
English, English-to-Chinese, German-to-English, and English-to-German language directions.
We investigate the possibility of using pre-trained models and out-of-the-box features from
available libraries. We employ random sampling to generate diverse alternatives, which reveals
good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve
translations, auto-suggestions, and auto-completions.

1Published at: https://aclanthology.org/2022.wmt-1.119/
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3.1 Context

As large language models (LLMs) demonstrate a high level of generation diversity through

sampling techniques, this reminds us that encoder-decoder MT models can also employ that au-

toaggressive feature at the decoder level. The research into interactive MT is not new. It was in-

spired by well-established techniques such as teacher forcing (Williams and Zipser, 1989), where

the ground truth previous tokens are fed into the decoder, instead of the predicted tokens yi-1 as

suggested by Bahdanau et al. (2015), and then the model is expected to predict the next words.

In this context, Langlais et al. (2000) proposed a system that watches over the user while typ-

ing a translation and repeatedly suggests completions for the text already entered. Later, several

researchers studied this feature to improve the interactivity of encoder-decoder MT models. For

example, Peris et al. (2017) proposed segment-based interactive MT; besides correcting a wrong

word, the user can validate segments (word sequences) to be kept in future iterations. The sys-

tem then offers alternative hypotheses that take into account the corrected word together with the

validated segments. Such auto-suggestions help to adapt the translation to the desired style and

terminology at inference time. Recently, researchers started to look into even prompting encoder-

decoder models in a manner similar to prompting decoder-only LLMs (Patel et al., 2023). In 2022,

WMT organised a shared task on MT word-level auto-completion. We found it a good opportunity

to explore this direction that employs the autoregressive feature of the decoder of an MT model

through random sampling techniques usually used in language modelling. The next sections elab-

orate on our submitted systems that employed random sampling to generate diverse alternatives

at inference time, and achieved excellent results (1st and 2nd places in the shared task) based on

both automatic and human evaluation.

3.2 Introduction

Translation auto-suggestion and auto-completion are among the important features that can

help translators better utilise MT systems. In a Computer-Aided Translation (CAT) environment,

a translator can make use of the MT word auto-suggestion feature as follows:
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• typing a few words, or clicking a word in a proposed MT translation, a list of suggestions is

displayed, as illustrated by Figure 3.1.2

• selecting one of the word suggestions from the list, the rest of the translation is modified

accordingly.

Figure 3.1: Auto-Suggest: Word Suggestions List

The WMT’s Word-Level AutoCompletion (WLAC) shared task addresses a more specific

scenario, where the user types a few characters, and the system predicts and auto-completes the

correct word, given the current context. The WLAC task even suggests that the context might be

partial, and it can consist of preceding and/or following words. Given a source sequence x, typed

character sequence s and a context c, WLAC aims to predict a target word w which is to be placed

in the middle between the left context cl and right context cr to constitute a partial translation.

Note that the last word of cl, the auto-completed word w, and the first word of cr are not necessary

consecutive.

Previous work proposed diverse approaches, mostly to translation sentence-level auto-

suggestion and auto-completion. In their work, Li et al. (2021) proposed an approach to tackle

the word-level auto-completion task. Given a tuple (x, c, s), the system decomposes the word

autocompletion process into two parts: 1) model the distribution of the target word w based on the

source sequence x and the translation context c; and 2) find the most possible word w based on

the distribution and human typed sequence s. Hence, they first use a single placeholder [MASK]

to represent the unknown target word w, and use the representation of [MASK] learned from the

word prediction model, based on BERT (Devlin et al., 2019), to predict it. Then, the predicted
2The image is from our demo at: https://www.machinetranslation.io/
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distribution of the masked token is used over the vocabulary to filter out invalid words, namely

those that do not start with the human typed sequence s. Finally, they return the token with the

highest probability over the new distribution.

Researchers in other natural language processing areas such as language modelling offered

approaches to improve predictions of decoder-only autoregressive models, trained to predict the

next word given the previous context. Among these approaches are top-K sampling and top-p

(nucleus) sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019; Holtzman et al.,

2020). Since NMT inference depends on a decoder model, such approaches from language mod-

elling can be employed. In particular, we investigate the use of top-K sampling during decoding

to generate better word-level auto-completions.

3.3 User Survey

Previous work reported that a user can save over 60% of the keystrokes needed to produce

a translation in a word completion scenario (Langlais et al., 2000). Other researchers noted that

post-editing is faster than MT auto-completion (Koehn, 2009), while MT auto-completion can

yield higher quality translation when the baseline MT quality is high (Green et al., 2014).

In a user survey we designed and distributed via social media networks, we asked participants

whether they thought an MT word-level auto-suggestions feature could be helpful, and provided

a simple definition and an illustrative image. If their answer was “yes”, the respondent was asked

to specify a reason. By the time of writing this work, we received 41 responses to our survey.

While we do not believe this survey is enough to justify introducing an auto-suggestions feature

into every MT system, it can be an indicator as to why some users think such a feature could be

helpful. To answer the question, “Which of the following best describes you?” 46.3% (19) of the

respondents chose “Translator/Linguist”, 31.7% (13) selected “NLP Engineer/Researcher”, and

the rest 22% (9) were other “MT Users”, not included in the two aforementioned categories.

Among the respondents to the survey, 90.2% (37) answered “Yes” to the question “In general,

do you believe that a word-level auto-suggestions feature is helpful?” Figure 3.3 shows the break-
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Figure 3.2: MT user categories

down of answers to the question, “Why do you believe that a word-level auto-suggestions feature

can be helpful?” taking into consideration those who answered “No” to the previous question.

Out of the 37 persons who believed a word-level auto-suggestions feature can be helpful,

40.5% (15) of the respondents specified that it can give them some inspiration. This answer is

specifically interesting as it is not constrained by time-saving benefits; hence, it focusses more on

effectiveness rather than efficiency. The respondent that answered with “Other” mentioned that

it allows them to look for alternative senses or phrasings, especially when they suspect the initial

translation is bad, and referred to this as “human in the loop”.

Respondents were allowed to give extra comments; among the notable comments were:

• I think word-level suggestions can be a useful feature, particularly when the target language can have
several translations of a single source word.

• Word-level suggestions can be helpful, but sometimes you end up spending a lot of time figuring out if
the MT suggestion is a valid translation in that context. So, I’m not really sure yet how I feel about it.

• It’s useful, as long as it’s seen as a suggestion, and not inserted in the target where the translator is

typing.

Among the respondents who chose “For me, it is easier or faster than typing”, comments

included:

• Though most of the time; the suggestions are lousy.

• I don’t think it gives me inspiration as I mostly need it for structures, not single words.

• Auto-suggestion does not have to come from machine translation. History is much more useful.

The last comment above might be referring to the fact that in some CAT tools, auto-

suggestions can also include glossary terms, and translation memory sub-segments, which encour-
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ages further research efforts to investigate methods to enhance leveraging and interaction between

various translation resources in human-in-the-loop environments.

Figure 3.3: How translators and other MT users perceive word-level auto-suggestions

We hope this survey will inspire future user studies to look deeper into how diverse users

of MT and CAT tools prefer to utilise certain features, such as auto-suggestions, and the value

they seek. More aspects should be taken into consideration, such as language pairs, translation

workflows, and user interfaces. This can help improve these features to better support linguists

and other MT users and boost their productivity as well as translation quality.

3.4 Experimental Setup

Models We use OPUS pre-trained models3 based on the Transformer architecture (Vaswani

et al., 2017) for the Chinese-to-English, English-to-Chinese, German-to-English, and English-

to-German language directions.

Tokenisers OPUS models depend on SentencePiece4 (Kudo and Richardson, 2018) for tokeni-

sation. Hence, we use their provided subword models in our pre-processing and post-processing

processes. As OPUS’s English-to-Chinese model requires defining the target dialect using a pre-

specified token, we prepend [“>>cmn Hans<<”] to the list of tokens generated by Sentence-

Piece. For word-level tokenisation, we use NLTK for English and German, and Jieba5 for Chinese.

This list of words can be used later to find the word that starts with the typed sequence.
3https://github.com/Helsinki-NLP/Tatoeba-Challenge
4https://github.com/google/sentencepiece
5https://github.com/fxsjy/jieba
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Inference Engine We employ CTranslate2 (Klein et al., 2020a) for sentence-level MT, as well as

for translation auto-suggestions. To this end, we first convert OPUS models into the CTranslate2

format. After that, we utilise a number of CTranslate2 decoding features, including “alterna-

tives at a position” and “auto-completion”.6 The translation options return alternatives and

num hypotheses are essential for all our experiments; the former should be set to True while

the latter determines the number of returned alternatives. These decoding options can be used

with regular beam search, prefix-constrained decoding, and/or random sampling. If the decoding

option return alternatives is used along with target prefix, the provided target left context

is fed into the decoder in the teacher forcing mode,7 then the engine expands the next N most

likely words, and continues (auto-completes) the decoding for these N hypotheses independently.

The shared task investigates four context cases: (a) empty context, (b) right context only, (c) left

context only, and (d) both the right and left contexts are provided. Hence, for all cases we returned

multiple alternative translations, while for (c) and (d) we also returned another set of alternative

auto-completions using the left context as a target prefix. In this sense, it is worth noting that we

make use only of the left context, when available, and we do not use the right context at all, which

we might investigate further in the future. To enhance the diversity of translations, especially for

(a) and (b), we applied random sampling with the CTranslate2’s decoding option sampling topk,

with various sampling temperatures. Our experiments are further elaborated in Section 3.5 and

Section 3.6.

Pinyin The official Romanisation system for Standard Mandarin Chinese is called Pinyin. Since

the task organisers used the pypinyin library8 to prepare the test files, we did too. OPUS English-

to-Chinese models accept Chinese input, so we had to use the library to convert between the two

writing systems. Since the conversion from Chinese characters to Pinyin is a lossy process and

cannot be perfectly converted back, we keep a list of Chinese words resulted from tokenisation

with Jieba to be able to map Pinyin tokens to Chinese tokens later.

6https://github.com/OpenNMT/CTranslate2/blob/master/docs/decoding.md
7In teacher forcing (Williams and Zipser, 1989), ground truth previous tokens are fed into the decoder, instead of the predicted

tokens yi-1 as suggested by Bahdanau et al. (2015)
8https://github.com/mozillazg/python-pinyin
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3.5 Method

We experimented with both beam search alternatives and random sampling, and found that

the latter achieves better results. This could be due to the fact that alternatives generated from

each beam are usually very similar, and lower beam values tend to generate translations of lower

quality. This section elaborates on the actual methods we used for our submissions, while more

details about the initial experiments that led us to these decisions are explained in Section 3.6.

Language Settings Accuracy Human

de-en ST=1.0 0.61444 0.885
ST=1.3 0.60924 0.8875

en-de
ST=1.0 0.58942 0.6725
ST=1.3 0.58494 0.655

zh-en

ST=1.0 + detok 0.50411 0.8675
ST=1.3 + detok 0.50260 0.8675
ST=1.0 0.49348 0.86
ST=1.3 0.49062 0.87

en-zh
ST=1.0 0.31942 0.5775
ST=1.3 0.31935 0.5725

Table 3.1: Evaluation results on the test datasets. Automatic evaluation uses the “Accuracy” metric. “Human” refers to
human evaluation. Results obtained from sampling temperature (ST) 1.0 are slightly better than those with the value
1.3. When the source is Chinese, detokenisation (detok) resulted in slightly better scores.

Random sampling is a decoding mode that randomly samples tokens from the model output

distribution. In our experiments, we restrict the sampling to the top-10 candidates at each time-

step. To obtain diverse generations from the MT model, we rely on randomness in the decoding

method, in particular through top-K sampling that samples the next word from the top-K most

probable choices (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019), instead of aiming

to decode text that maximises likelihood.

For each translation, we use the CTranlsate2 option return alternatives to return 10 sequences,

with 10 top-K sampling. If the entry has a left context starting with a capital letter, we use the prefix

to constrain the decoding. In CTranslate2, combining target prefix with the return alternatives

flag returns alternative sequences just after the prefix. We compose a list of alternatives with and
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without the prefix, and try to find the word starting with the typed sequence.9 If the word is not

found, we repeat the same process for up to five runs. In each new run, random sampling can

generate a new set of alternatives. Our experiments show that returning 20 sequences with 20

top-K sampling could lead to more correctly predicted words (cf. Table 3.2); however, we had to

consider the trade-off between quality and efficiency.10

Furthermore, we investigate increasing the randomness of the generation by using a value for

sampling temperature between 1.0 and 1.3. For each run, a random value is generated in this range.

The default sampling temperature in CTranslate2 is 1, which achieved relatively better results, as

demonstrated in Table 3.1.11

3.6 Other Experiments

This section elaborates on some initial experiments we conducted to decide what approach to

use. The final approach we actually used in our submissions is explained in Section 3.5.

We used 10,000 entries of a Chinese-to-English golden sample provided by the organisers to

evaluate various experiments. For sentence translation, when there is no left context, we experi-

mented with the following values:

• beam size 1, 5, and 10, without sampling

• beam size 1, with random sampling top-K 10, 20, and 50

Table 3.2 shows the results for these experiments, and demonstrates that random sampling

achieves the best overall accuracy. Random sampling with beam size 1 reveals better results than

mere beam size 1 and even beam sizes 5 and 10 without random sampling. Multiple runs of

random sampling can result in more correctly predicted words.

9In a prefix-free target sequence, if multiple words start with the typed sequence, we return the first word. In practice, users could
be prompted to choose from potential options.

10Our scripts are available at: https://github.com/ymoslem/WLAC
11To measure the performance of the submitted systems, the organisers chose “accuracy” as the automatic evaluation metric and

defined it as follows: ACC = Nmatch / Nall where Nmatch is the number of correct predicted words and Nall is the number of
all test examples (Casacuberta et al., 2022).
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Beam Size Sampling Top-K Hypotheses Accuracy Runs

1 N/A 10 0.6519 1
5 N/A 10 0.6588 1

10 N/A 10 0.6573 1

1 10 10 0.6918 1
1 20 10 0.6907 1
1 20 20 0.7108 1
1 50 10 0.6853 1

5 N/A 10 0.6588 5
1 10 10 0.7165 5
1 20 20 0.7310 5

Table 3.2: Results for the Chinese-to-English golden sample dataset (10,000 entries). Random sampling outperforms
even higher beam sizes.

3.7 Conclusion

Random sampling is a decoding mode used for sequence generation. Instead of always se-

lecting the most probable next word or token at each step, the model samples from the probability

distribution over the vocabulary. In our experiments, we employed top-K sampling to obtain di-

verse generations from the MT model. In other words, the next word was sampled from the top-K

most probable choices, given the typed context. We also investigated increasing the randomness

of the generation using different values of sampling temperature. Our approach led to excellent

results based on both automatic and human evaluation, across three language pairs.
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nical, pages 227–237, Tampere, Finland. Association for Machine Translation in the Americas.1

Abstract

Consistency is a key requirement of high-quality translation. It is especially important to adhere
to pre-approved terminology and adapt to corrected translations in domain-specific projects.
Machine translation (MT) has achieved significant progress in the area of domain adaptation.
However, real-time adaptation remains challenging. Large-scale language models (LLMs) have
recently shown interesting capabilities of in-context learning, where they learn to replicate certain
input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference
time with a prompt that consists of a list of translation pairs, it can then simulate the domain and
style characteristics. This work aims to investigate how we can utilise in-context learning to
improve real-time adaptive MT. Our extensive experiments show promising results at translation
time. For example, LLMs can adapt to a set of in-domain sentence pairs and/or terminology
while translating a new sentence. We observe that the translation quality with few-shot in-context
learning can surpass that of strong encoder-decoder MT systems, especially for high-resource
languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder
models with fuzzy matches, which can further improve translation quality, especially for less
supported languages. We conduct our experiments across five diverse language pairs, namely
English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-
to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES).

4.1 Context

As explained in the previous chapters, the release of LLMs such as BLOOM (Le Scao et al.,

2022) (open-sourced), GPT-{3.5,4} (Brown et al., 2020; Ouyang et al., 2022) (via a commercial

API), and PaLM (Chowdhery et al., 2022) (limited access) has paved the way for new approaches

that utilise their in-context learning capabilities (Dong et al., 2022). By the end of 2022, many
1Published at: https://aclanthology.org/2023.eamt-1.22/
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researchers started investigating the use of LLMs for all NLP areas. While this paper was a natural

extension of my previous work, this research was among the earliest to conduct an extensive

investigation into the employment of LLMs for MT in general and for adaptive MT in particular,

and to compare the performance of a wide range of both open-source and commercial systems,

across five language pairs. This paper first appeared as a preprint in January 2022, and then was

peer-reviewed and published at EAMT 2022. By the time of writing this thesis, the paper is already

well-cited in public literature. The following sections elaborate on the contribution of this work.

4.2 Introduction

Adaptive MT is a type of machine translation that utilises feedback from users to improve

the quality of the translations over time. Feedback usually includes corrections to previous trans-

lations, terminology and style guides, as well as ratings of the quality of the translations. This

can be particularly useful for domain-specific scenarios, where baseline MT systems may have

insufficient relevant data to accurately translate certain terms or phrases. There are still several

challenges to effectively incorporate user feedback into the translation process, especially at in-

ference time. In this work, we use a relatively wide definition of adaptive MT to refer to learning

from similar translations (fuzzy matches) found in approved translation memories (TMs) on the

fly (Farajian et al., 2017; Wuebker et al., 2018; Peris and Casacuberta, 2019; Etchegoyhen et al.,

2021), as well as real-time terminology-constrained MT (Hokamp and Liu, 2017; Post and Vilar,

2018; Dinu et al., 2019; Michon et al., 2020).

Autoregressive decoder-only LLMs, such as GPT-3 (Brown et al., 2020; Ouyang et al., 2022),

BLOOM (Le Scao et al., 2022), PaLM (Chowdhery et al., 2022), and Llama (Touvron et al.,

2023a,b) are trained to predict the next word given the previous context. During unsupervised pre-

training, a language model develops a broad set of pattern recognition abilities. It then uses these

abilities at inference time to rapidly recognise and adapt to the desired task. In their experiments,

Brown et al. (2020) use the term “in-context learning” to describe a scenario where a pre-trained

language model at inference time learns to replicate certain input-output text generation patterns

without further fine-tuning. They show that autoregressive LLMs such as GPT-3 can perform well
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on diverse tasks, through zero-shot, one-shot, and few-shot in-context learning without weight

updates. Instead of asking the model to directly perform a given task, the input can be augmented

with relevant examples, which help the model adapt its output. The key idea of in-context learning

is to learn from analogy. The model is expected to learn the pattern hidden in the demonstration

and accordingly make better predictions (Dong et al., 2022).

Previous researchers investigated using neural language models for MT through few-shot in-

context learning (Vilar et al., 2023) and even in zero-shot settings (Wang et al., 2021). Other

researchers proposed using LLMs for generating synthetic domain-specific data for MT domain

adaptation (Moslem et al., 2022a). Recently, researchers (Agrawal et al., 2023; Zhang et al.,

2023a) confirmed the importance of in-context example selection for the quality of MT with

LLMs.

Figure 4.1: Evaluation results for GPT-3.5 zero-shot, and few-shot translation with random context or fuzzy matches.
Average scores across EN-AR, EN-ES, EN-FR, and EN-ZH language pairs. While using a random context outperforms
zero-shot translation, using fuzzy matches reveals the best results.

The main contribution of this paper is investigating the capabilities of LLMs such as GPT-3.5,

GPT-4 (including ChatGPT), and BLOOM for real-time adaptive MT through in-context learning.

As illustrated by Figure 4.1, such LLMs can achieve better translation quality through adapting

its output to adhere to the terminology and style used in previously approved translation pairs.

In particular, we would like to understand the quality with which such models can perform the

following tasks, without any further training:

57



Language Modelling Approaches to Adaptive Machine Translation

• Adapting new translations to match the terminology and style of previously approved TM

fuzzy matches, at inference time;

• Matching or outperforming the quality of translations generated by encoder-decoder MT

models across a number of languages;

• Fixing translations from stronger encoder-decoder MT systems using fuzzy matches, which

is especially useful for low-resource languages; and

• Terminology-constrained MT, by first defining terminology in the relevant sentences or

dataset, and then forcing new translations to use these terms.

4.3 Experimental Setup

In all our experiments, we use GPT-3.5 text-davinci-003 model via its official API.2 For pa-

rameters, we use top-p 1, with temperature 0.3 for the three translation tasks, and 0 for the termi-

nology extraction task.3 For the maximum length of tokens, we observe that French and Spanish

tokens can be 3–4 times the number of English source words, while other languages can be longer.

Hence, we roughly choose a length multiplier value, which we set to 8 for Arabic, 5 for Chinese

and Kinyarwanda, and 4 for French and Spanish. We used batch requests with a batch size of 20

segments.4 Our scripts are publicly available.5

As we aim to simulate a document-level scenario where translators are required to adhere to

a project’s or client’s TM, we use the domain-specific dataset, TICO-19 (Anastasopoulos et al.,

2020), which includes 3070 unique segments. From now on, we will refer to it as the “context

dataset”. We focus on a range of languages with diverse scripts and amounts of resources, namely

English as the source language, and Arabic, Chinese, French, Kinyarwanda, and Spanish as the

target languages.

2https://openai.com/api/
3To avoid over-generation, the option stop can be set to [‘\n’]. However, if a new line is generated by the model before the

translation, this might result in not generating a translation. Alternatively, over-generation can be manually handled.
4For higher values of few-shot translation into Arabic using text-davinci-003, we had to decrease the batch size to avoid exceeding

the tokens-per-minute limit.
5https://github.com/ymoslem/Adaptive-MT-LLM
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Lang Context spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR

zero-shot 27.6 48.36 70.6 41.28
random 2-shot 28.94 49.35 70.55 43.32
fuzzy 1-shot 36.38 55.08 63.99 55.1
fuzzy 2-shot 38.41 56.57 62.31 57.36
fuzzy 3-shot 39.75 57.52 61.12 59.68
fuzzy 4-shot 40.84 58.27 60.39 62.16
fuzzy 5-shot 41.33 58.64 59.95 62.65
fuzzy 7-shot 41.81 59.1 59.38 64.01

EN-ES

zero-shot 53.91 72.61 36.86 84.0
random 2-shot 54.78 73.12 36.09 85.25
fuzzy 2-shot 59.64 75.83 32.56 90.37
fuzzy 5-shot 61.24 76.73 31.32 91.51
fuzzy 10-shot 61.77 77.05 30.9 92.0

EN-FR

zero-shot 44.87 65.29 50.34 58.67
random 2-shot 45.91 65.4 49.92 57.6
fuzzy 1-shot 48.39 66.58 48.18 59.49
fuzzy 2-shot 49.79 67.41 46.79 61.38
fuzzy 3-shot 50.96 68.06 45.85 61.97
fuzzy 4-shot 51.89 68.5 44.94 62.7
fuzzy 5-shot 51.94 68.43 45.09 62.81
fuzzy 10-shot 53.72 69.39 43.82 63.57

EN-RW

zero-shot 2.82 22.53 143.12 N/A
random 2-shot 3.8 25.19 129.88 N/A
fuzzy 2-shot 12.23 36.66 105.54 N/A
fuzzy 5-shot 14.96 39.84 100.11 N/A
fuzzy 10-shot 17.87 41.44 92.84 N/A

EN-ZH

zero-shot 32.41 40.82 99.45 59.87
random 2-shot 38.72 44.06 87.56 68.39
fuzzy 2-shot 46.18 49.12 69.0 73.9
fuzzy 5-shot 47.94 50.28 64.96 74.86
fuzzy 10-shot 49.11 51.22 63.14 75.3

Table 4.1: Adaptive MT with fuzzy matches for GPT-3.5 few-shot in-context learning outperforms using random sen-
tence pairs as context examples. Increasing the number of fuzzy matches can improve the translation quality further.
The table shows consistent results for EN-AR, EN-ES, EN-FR, EN-RW, and EN-ZH language pairs.
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4.4 Adaptive MT with Fuzzy Matches

In translation environments, similar approved translated segments are usually referred to as

“fuzzy matches”, and are stored in parallel datasets, known as translation memories (TMs).6 Re-

searchers have investigated the possibilities of improving MT quality and consistency with fuzzy

matches (Knowles et al., 2018; Bulte and Tezcan, 2019; Xu et al., 2020). Incorporating fuzzy

matches into the MT process can help the system generate more accurate translations, and try to

ensure adherence to pre-approved terminology and preferred style requirements.

In this set of experiments, we investigate the possibility of forcing the translation of a new

sentence pair to adapt to fuzzy matches in the context dataset. To extract fuzzy matches, we use

embedding similarity-based retrieval. Previous researchers have shown that approaches that de-

pend on embeddings to retrieve fuzzy matches can outperform those that use Edit Distance (Hos-

seini et al., 2020; Pham et al., 2020). To this end, we employ the paraphrase mining module from

the Sentence-Transformers library (Reimers and Gurevych, 2019). We use the all-MiniLM-L6-v2

model because of its high accuracy and efficiency.7 For each sentence, we retrieve up to top k

other sentences. We experiment with diverse values of 1 to 10 sentence(s) from the context

dataset.8 Table 4.2 elaborates on the statistics of fuzzy matches based on their similarity to the

new source sentence in 2-shot and 5-shot scenarios.9

6Segments stored in a TM can be smaller than a full sentence (e.g. a title) or larger. However, as most segments in a TM are
supposed to be sentence pairs, we use the two words interchangeably throughout the paper.

7https://www.sbert.net/
8For Arabic, we could only integrate up to 7 matches (not 10 matches) because the tokeniser used by GPT-3.5 generates many

more tokens for some Unicode languages, which can easily hit the max length of 4097 tokens. We observe that the issue has been
alleviated by newer models.

9While creating prompts, we arrange fuzzy matches in descending order, making higher matches closer to the segment to be
translated. We experimented with reversing the order, and there was no significant difference in terms of translation quality.
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Similarity
Score

Segment Statistics

fuzzy 2-shot fuzzy 5-shot

>90% 167 2.7% 168 1.1%
89-80% 751 12.2% 1,103 7.2%
79-70% 1,593 25.9% 3,143 20.5%
69-60% 1,825 29.7% 4,661 30.4%
<60% 1,804 29.4% 6,275 40.9%

Total 6,140 = 3,070*2 15,350 = 3,070*5

Table 4.2: Numbers and percentages of segments based on their similarity to the new source segment, in the 2-shot
and 5-shot experiments using fuzzy matches for in-context learning. The English source is used to calculate similarity
across the 5 language pairs.

The following illustrations show the difference between zero-shot and few-shot translation

prompts. In the zero-shot prompt, only the source sentence and language names are provided,

encouraging the model to generate the translation. The few-shot prompt incorporates translation

examples to influence the style of the output.

Prompt: EN-AR zero-shot translation

English: <source segment>
Arabic:

Prompt: EN-AR two-shot translation

English: <source fuzzy match2>

Arabic: <target fuzzy match2>

English: <source fuzzy match1>

Arabic: <target fuzzy match1>

English: <source segment>
Arabic:

Results illustrated by Figure 4.1 show that few-shot translation with GPT-3.5 using fuzzy

matches as context outperforms few-shot translation with random examples, although using ran-

dom sentence pairs outperforms zero-shot translation. As demonstrated by Table 4.1, across five

language pairs, adding more fuzzy matches improves translation quality further. At some point,

there might be diminishing returns of adding more similar sentences as their similarity score de-

creases. In other words, increasing the number of fuzzy matches from 2 sentences to 5 or 10

sentences incrementally improves translation quality, but with smaller quality gains.
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4.5 GPT-3 vs Encoder-Decoder MT Models

In this section, we aim to compare evaluation results we obtained from various MT encoder-

decoder Transformer-based systems (Vaswani et al., 2017) with those from GPT-3.5. To this end,

we translate our context dataset with a range of open-source and commercial MT models, in-

cluding DeepL Translate API,10 Google Cloud Translation API, OPUS (Tiedemann, 2020),11 and

NLLB-200 (Costa-jussà et al., 2022). We converted OPUS and NLLB models to the CTranslate2

(Klein et al., 2020b) format with int8 quantisation for efficiency. Inference parameters include

beam size 4 and max batch size 2024, on a GPU A100-SXM4-40GB (Google Colab Pro). For

tokenisation, we used SentencePiece (Kudo and Richardson, 2018) with the source and target sub-

word models provided for each OPUS model, and the multilingual model provided by NLLB for

tokenisation.12

Figure 4.2: Evaluation results for GPT-3.5 few-shot translation with 5 or 10 fuzzy matches compared to encoder-
decoder MT models (DeepL, Google, OPUS, and NLLB). Specifically, for EN-ES, EN-FR, and EN-ZH language pairs,
few-shot translation with GPT-3.5 outperforms conventional systems.

10DeepL supports French, Spanish and Chinese, but not Arabic and Kinyarwanda.
11We use OPUS models from the Tatoeba-Challenge, specifically the models augmented with back-translation, and trained with

Transformer-Big.
12flores200 sacrebleu tokenizer spm.model is used for both tokenisation for NLLB and also for spBLEU (Goyal et al., 2022)

in sacreBLEU.
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We observe that for high-resource languages, adaptive MT with fuzzy matches using GPT-3.5

few-shot in-context learning (cf. Section 4.4) can outperform strong encoder-decoder MT sys-

tems. For the English-to-French and English-to-Spanish language pairs, few-shot translation

with GPT-3.5 incorporating only 5 fuzzy matches outperforms strong encoder-decoder MT mod-

els, as demonstrated by Figure 4.2. For English-to-Chinese translation, only when we used 10

fuzzy matches could we achieve better results. However, for English-to-Arabic and English-to-

Kinyarwanda translations, results were not on par with the other three language pairs. The results

are detailed in Table 4.3.

Among the popular adaptive encoder-decoder MT systems is ModernMT.13 Originally, the

system adopted the instance-based adaptation approach proposed by Farajian et al. (2017). To

control our experiments with ModernMT to match those with GPT-3.5 few-shot translation, we

created a new TM for each segment to include only the top-10 fuzzy matches for this segment.

Table 4.3 illustrates the evaluation results of ModernMT translation with and without a TM. In

general, using a TM with ModernMT improves translation quality. Moreover, we observe that

zero-shot translation performance (without a TM) of ModernMT outperforms GPT-3.5 for the

4 supported language pairs. However, except for English-to-Arabic, few-shot translation with

GPT-3.5 using either 5 or 10 fuzzy matches outperforms the translation quality of ModernMT

using a TM with 10 fuzzy matches per segment, for English-to-Chinese, English-to-French, and

English-to-Spanish language pairs.

4.6 Incorporating Encoder-Decoder MT

As we demonstrated in the previous section, encoder-decoder MT models have achieved high

translation quality for several language pairs. Nevertheless, adaptive MT with LLM few-shot in-

context learning can surpass such quality, especially for high-resource languages. In this section,

we investigate whether we can utilise encoder-decoder MT models to further improve adaptive

translation with GPT-3.5. In the next subsections, we study two scenarios:

13https://www.modernmt.com/
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• appending fuzzy matches with MT from an encoder-decoder model to enhance in-context

learning.14

• translating the source side of fuzzy matches, and using these MT translations for few-shot

in-context learning along with the original translations.

4.6.1 Fuzzy matches + new segment MT

Incorporating a translation from an encoder-decoder MT model with fuzzy matches, we could

achieve substantial improvements over the baseline MT performance. As illustrated by Table 4.5,

although OPUS English-to-Arabic translation quality outperforms GPT-3.5 few-shot translation

with 5 fuzzy matches, appending these fuzzy matches with OPUS translation outperforms both

OPUS translation only and GPT-3.5 translation with fuzzy matches only. Similarly, adding Google

English-to-Chinese translation to 5 fuzzy matches outperforms both baselines. Even for the very

low-resource English-to-Kinyarwanda language pair, we relatively notice a similar behaviour, us-

ing MT outputs of OPUS or NLLB models.

However, we observe that if the translation with only fuzzy matches is significantly better than

the encoder-decoder MT baseline, we may not achieve further gains. For example, the GPT-3.5

translations with 5 fuzzy matches are already much better than the OPUS translation for English-

to-French or Google translation for English-to-Spanish. That is why incorporating the MT output

from OPUS or Google did not enhance the GPT-3.5 translation quality for these language pairs.

4.6.2 Fuzzy matches + all segments MT

In Section 4.6.1, we added MT of the new segment from an encoder-decoder model to fuzzy

matches, which enhanced GPT-3.5 in-context learning. In this experiment, we include MT for

all fuzzy matches and also for the new source segment to be translated. For the English-to-

Kinyarwanda and English-to-Spanish language pairs, it is not clear whether including MT for

all in-context examples can significantly outperform including MT for only the new source seg-

ment to be translated. Again, this depends on the quality of the original MT and requires further

investigation.
14This scenario can be considered an approach to “automatic post-editing” of MT generated by task-oriented models such as Google,

OPUS and NLLB.
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Lang System spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR

OPUS (bt-big) 43.11 60.79 57.24 63.64
NLLB 600M 35.66 54.6 62.07 54.53
NLLB 1.2B 41.1 58.51 57.15 63.85
NLLB 3.3B 43.42 60.11 55.58 66.8
Google API 43.56 61.58 57.79 65.5
ModernMT (no TM) 47.17 62.82 53.53 66.64
ModernMT (TM) 50.33 65.19 50.19 71.0
GPT-3 zero-shot 27.6 48.36 70.6 41.28
GPT-3 fuzzy 5-shot 41.33 58.64 59.95 62.65
GPT-3 fuzzy 7-shot 41.81 59.1 59.38 64.01

EN-ES

OPUS (bt-big) 54.99 72.66 36.26 83.69
NLLB 600M 53.31 72.19 37.13 83.09
NLLB 1.2B 56.1 73.85 34.96 85.91
NLLB 3.3B 57.47 74.6 33.99 86.86
DeepL API 55.39 72.87 36.21 85.68
Google API 58.98 75.17 32.46 86.62
ModernMT (no TM) 57.09 74.2 34.27 85.53
ModernMT (TM) 59.22 75.4 32.79 86.99
GPT-3 zero-shot 53.91 72.61 36.86 84.0
GPT-3 fuzzy 5-shot 61.24 76.73 31.32 91.51
GPT-3 fuzzy 10-shot 61.77 77.05 30.9 92.0

EN-FR

OPUS (bt-big) 46.05 65.08 49.8 56.29
NLLB 600M 43.25 64.17 51.28 56.16
NLLB 1.2B 46.3 66.25 48.68 59.76
NLLB 3.3B 47.27 66.89 48.19 60.91
DeepL API 47.38 66.45 48.47 61.01
Google API 46.81 66.34 47.01 59.01
ModernMT (no TM) 47.17 66.28 47.91 58.46
ModernMT (TM) 49.24 67.41 46.17 59.84
GPT-3 zero-shot 44.87 65.29 50.34 58.67
GPT-3 fuzzy 5-shot 51.94 68.43 45.09 62.81
GPT-3 fuzzy 10-shot 53.72 69.39 43.82 63.57

EN-RW

OPUS (Tatoeba 2021) 1.38 15.32 153.58 N/A
OPUS (2020) 5.58 27.05 101.25 N/A
NLLB 600M 19.46 47.61 80.01 N/A
NLLB 1.2B 23.6 50.73 74.53 N/A
NLLB 3.3B 25.17 52.59 73.06 N/A
Google API 20.63 48.37 73.54 N/A
GPT-3 zero-shot 2.82 22.53 143.12 N/A
GPT-3 fuzzy 5-shot 14.96 39.84 100.11 N/A
GPT-3 fuzzy 10-shot 17.87 41.44 92.84 N/A

EN-ZH

OPUS (bt-big) 37.51 40.72 121.49 50.4
NLLB 600M 24.9 33.87 109.37 39.28
NLLB 1.2B 29.02 37.45 110.22 50.05
NLLB 3.3B 31.35 39.08 109.52 53.89
DeepL API 37.79 47.67 100.83 69.92
Google API 48.58 52.02 70.87 73.62
ModernMT (no TM) 37.61 48.46 102.18 67.45
ModernMT (TM) 39.85 50.95 101.53 69.64
GPT-3 zero-shot 32.41 40.82 99.45 59.87
GPT-3 fuzzy 5-shot 47.94 50.28 64.96 74.86
GPT-3 fuzzy 10-shot 49.11 51.22 63.14 75.3

Table 4.3: Comparing GPT-3.5 few-shot translation using fuzzy matches with encoder-decoder MT systems, DeepL Translate API, Google Cloud
Translation API, OPUS (Tatoeba-Challenge, with back-translation and Transformer-Big), and NLLB-200 (600M, 1.2B & 3.3B parameters).
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4.7 Bilingual Terminology Extraction

Terminology extraction is the task of automatically defining domain-specific terms in a

dataset. Extracted terms are naturally used for building glossaries to help translators. Furthermore,

it is possible to improve MT performance through finding sentences that include these terms and

fine-tuning the system with them (Hu et al., 2019a; Haque et al., 2020a).

In this set of experiments, we ask GPT-3.5 to extract 5 bilingual terms from each sentence

pair in the context dataset. For parameters, we use temperature 0 and top p 1.

Lang Sentences Terms Correct %

EN-AR 500 2,500 2,427 97.08
EN-ES 500 2,500 2,397 95.88
EN-FR 500 2,500 2,382 95.28

Table 4.4: Human evaluation results for the terminology extraction task for English-to-Arabic (EN-AR), English-to-
Spanish (EN-ES), and English-to-French (EN-FR) language pairs. The majority of the terms that GPT-3 extracted
(> 95%) were accurate.

Human evaluation was performed for Arabic, French,15 and Spanish. We provided the eval-

uators with a random sample of 500 sentences and their extracted terms. They were asked to use

a 0-1 scale to determine whether each source and target term were equivalent, and whether the

extracted terms were actually in the sentence pair (relevant inflexions are acceptable). In several

cases where the evaluators marked the extracted term pair with 0, the model had made up either

the source, target, or both; although it might be correct, it was not in the provided sentence pair.

In other cases, the extracted term was partial, sometimes due to reaching the maximum length of

tokens. Nevertheless, as Table 4.4 illustrates, the majority of the terms in the provided sample

were accurately extracted by the model.

15We observe that the original English-to-French TICO-19 dataset includes several misaligned translation pairs. This can negatively
affect the quality of tasks using such sentences. That is why it is important to filter parallel datasets to remove possible misalign-
ments. The evaluation sample has been manually refined to include only well-aligned translation pairs. Automatic semantic filtering
approaches can be applied to large datasets.
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Lang System spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR
MT (OPUS) 43.11 60.79 57.24 63.64
GPT-3 fuzzy 5-shot 41.33 58.64 59.95 62.65
GPT-3 fuzzy 5-shot + 1-MT 45.9 62.9 55.14 67.74

EN-ES

MT (Google) 58.98 75.17 32.46 86.62
GPT-3 fuzzy 2-shot 59.64 75.83 32.56 90.37
GPT-3 fuzzy 2-shot + 1-MT 59.82 75.73 32.16 89.0
GPT-3 fuzzy 2-shot + all-MT 60.2 76.06 32.32 92.0

GPT-3 fuzzy 5-shot 61.24 76.73 31.32 91.51
GPT-3 fuzzy 5-shot + 1-MT 60.49 76.16 31.49 89.55
GPT-3 fuzzy 5-shot + all-MT 61.1 76.52 31.8 92.07

EN-FR
MT (OPUS) 46.05 65.08 49.8 56.29
GPT-3 fuzzy 5-shot 51.94 68.43 45.09 62.81
GPT-3 fuzzy 5-shot + 1-MT 47.95 66.72 48.34 59.69

EN-RW

MT #1 (Google) 20.63 48.37 73.54 N/A
GPT-3 fuzzy 5-shot 14.96 39.84 100.11 N/A
GPT-3 fuzzy 5-shot + 1-MT #1 22.51 49.69 72.97 N/A
GPT-3 fuzzy 5-shot + all-MT #1 25.01 49.43 74.75 N/A

MT #2 (NLLB 3.3B) 25.17 52.59 73.06 N/A
GPT-3 fuzzy 5-shot + 1-MT #2 25.59 53.12 72.73 N/A
GPT-3 fuzzy 5-shot + all-MT #2 27.52 53.23 73.79 N/A

EN-ZH
MT (Google) 48.58 52.02 70.87 73.62
GPT-3 fuzzy 5-shot 47.94 50.28 64.96 74.86
GPT-3 fuzzy 5-shot + 1-MT 49.45 52.4 67.81 74.61

Table 4.5: Combining fuzzy matches with high-quality MT from encoder-decoder systems can improve translation
quality with GPT-3.5 few-shot in-context learning, especially for low-resource and medium-resource languages. 1-MT
refers to appending fuzzy matches with the MT of the segment to be translated, while all-MT refers to additionally
adding MT for each segment of the fuzzy matches along with its approved translation. For EN-AR and EN-RW
improvements are clearer than for EN-ES, EN-FR and EN-ZH, potentially due to the limited support of EN-AR and
EN-RW by GPT-3.5, which made them benefit more from incorporating MT from stronger encoder-decoder models.
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4.8 Terminology-Constrained MT

As observed in Section 4.4, adding more fuzzy matches enhances in-context learning and

hence improves translation quality. However, early in a real-world translation project, we might

not have so many fuzzy matches. By incorporating domain-specific terminology, the system can

produce translations that are more accurate and consistent with the terminology used in that field.

In this section, we investigate integrating terms in the process when there are N fuzzy matches. For

example, if we have only two fuzzy matches, we either extract terms from these similar sentences

or from a glossary, and use those that match up to 5-gram phrases in the source sentence to be

translated. In this work, we use the terminology extraction process elaborated in Section 4.7.

Obviously, if a pre-approved glossary is available, it can be used instead. We investigate three

scenarios:

• Few-shot translation with 2 fuzzy matches and their terms. As we do not have terms for

the segment to be translated, we use terms from the 2 fuzzy matches if they are found in a

set of n-grams (1-5) of the source segment to be translated. Integrating terms into two-shot

prediction, i.e. using both terms and two fuzzy matches for in-context learning, outperforms

using fuzzy matches only.

• We automatically compile a glossary including all terms from the dataset, with 2+ frequency,

and up to 5-grams. If there are multiple targets for the same source, the term pair with the

highest frequency is selected. Stop words and terms with empty source or target sides are

excluded. The list is sorted by n-gram length, so terms with longer n-grams are prioritised.

As illustrated by Table 4.6, integrating terms from a glossary outperforms adding terms from

only two fuzzy matches, most likely due to the diversity that this option offers. In prompts

(cf. Section 4.12), we use terms found in a set of n-grams (1-5) of the source segment to

be translated. We experiment with adding maximum 5 terms and maximum 10 terms, which

does not show a huge difference in performance; in some cases only a smaller number of

terms is available in the glossary.

• Zero-shot translation, i.e. without any fuzzy matches. This is similar to the previous scenario,

except that we only use terms from the glossary. In zero-shot prediction, adding terms from
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the glossary improves translation quality. As shown in Table 4.6, improvements are significant

across all 5 language pairs.

We conducted human evaluation for English-to-Arabic, English-to-French, and English-to-

Spanish terminology-constrained MT, to see to what extent the model adheres to the required

terms, and how this affects the overall translation quality. The evaluators are professional linguists

in the respective languages. We provided the evaluators with 4 sets of 100 randomly selected

sentence pairs (zero-shot, zero-shot with glossary terms, fuzzy two-shot, and fuzzy two-shot with

glossary terms). They were asked to evaluate the sentence-level translation quality on a 1-4 scale

(Coughlin, 2003) and the usage of each provided term in the translation on a 0-1 scale, as elabo-

rated by Table 4.7.

Lang GPT-3 Context Human Eval. ↑ Terms ↑

EN-AR

Zero-shot 2.80 0.67
Zero-shot + glossary terms 3.19 0.94

Fuzzy two-shot 2.89 0.80
Fuzzy two-shot + glossary terms 3.03 0.94

EN-ES

Zero-shot 3.76 0.87
Zero-shot + glossary terms 3.93 0.96

Fuzzy two-shot 3.77 0.89
Fuzzy two-shot + glossary terms 3.84 0.97

EN-FR

Zero-shot 3.55 0.89
Zero-shot + glossary terms 3.64 0.97

Fuzzy two-shot 3.50 0.91
Fuzzy two-shot + glossary terms 3.55 0.92

Table 4.7: Human evaluation of terminology-constrained MT, for EN-AR, EN-ES, and EN-FR. The results cover zero-
shot and two-shot translation without and with (maximum 5) glossary terms. The column “Human Eval.” refers to the
average evaluation score on a 1-4 scale. The column “Terms” refers to the average number of terms that the model has
successfully transferred into the translation on a 0-1 scale.

According to the evaluators, for Arabic, French and Spanish, terminology-constrained MT

successfully transferred the provided glossary terms into the target more often than zero-shot and

few-shot translation without terminology incorporation. In several cases, forcing glossary terms to

be used could help improve the overall translation quality; however, sometimes it was detrimen-

tal to grammatical accuracy. Although we provided the model with longer terms before shorter

ones, contradictory terms can hurt translation quality. Hence, it might be better to exclude shorter
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Lang GPT-3.5 Context spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR

zero-shot 27.6 48.36 70.6 41.28
zero-shot + max 5 terms (glossary) 35.38 54.53 65.36 54.91

fuzzy 2-shot 38.41 56.57 62.31 57.36
fuzzy 2-shot + terms (fuzzy) 39.38 57.22 62.01 59.36
fuzzy 2-shot + max 5 terms (glossary) 41.27 58.84 60.09 62.17
fuzzy 2-shot + max 10 terms (glossary) 41.95 59.34 59.45 62.48

EN-ES

zero-shot 53.91 72.61 36.86 84.0
zero-shot + max 5 terms (glossary) 55.99 74.18 35.3 87.21

fuzzy 2-shot 59.64 75.83 32.56 90.37
fuzzy 2-shot + terms (fuzzy) 59.66 75.91 32.53 90.04
fuzzy 2-shot + max 5 terms (glossary) 60.5 76.55 31.93 91.05
fuzzy 2-shot + max 10 terms (glossary) 60.54 76.58 32.02 91.05

EN-FR

zero-shot 44.87 65.29 50.34 58.67
zero-shot + max 5 terms (glossary) 45.94 66.01 49.22 59.78

fuzzy 2-shot 49.79 67.41 46.79 61.38
fuzzy 2-shot + terms (fuzzy) 50.58 67.93 45.81 62.04
fuzzy 2-shot + max 3 terms (glossary) 50.46 67.69 46.22 68.94
fuzzy 2-shot + max 5 terms (glossary) 50.55 67.78 46.19 60.24
fuzzy 2-shot + max 10 terms (glossary) 49.64 66.86 47.34 58.57

EN-RW

zero-shot 2.82 22.53 143.12 N/A
zero-shot + max 5 terms (glossary) 7.26 30.83 115.44 N/A

fuzzy 2-shot 12.23 36.66 105.54 N/A
fuzzy 2-shot + terms (fuzzy) 12.43 36.48 102.22 N/A
fuzzy 2-shot + max 5 terms (glossary) 15.34 39.96 96.09 N/A
fuzzy 2-shot + max 10 terms (glossary) 15.49 40.53 96.0 N/A

EN-ZH

zero-shot 32.41 40.82 99.45 59.87
zero-shot + max 5 terms (glossary) 36.31 44.72 96.45 68.6
zero-shot + max 10 terms (glossary) 36.64 45.06 96.24 68.94

fuzzy 2-shot 46.18 49.12 69.0 73.9
fuzzy 2-shot + terms (fuzzy) 46.16 49.11 68.79 73.41
fuzzy 2-shot + max 5 terms (glossary) 46.6 49.51 69.46 73.88
fuzzy 2-shot + max 10 terms (glossary) 46.31 49.25 69.39 73.57

Table 4.6: Terminology-constrained MT with GPT 3.5 outperforms both zero-shot and 2-shot translation with fuzzy
matches, although gains are much higher for zero-shot translation. For zero-shot translation, we experimented with
adding terms from a glossary. For 2-shot translation with fuzzy matches, we compared adding terms from these 2 fuzzy
matches to adding terms from a glossary. The latter revealed better results.
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terms if they overlap with longer ones.16 In production workflows, linguists can be provided with

translation alternatives with and without fuzzy matches and/or terminology to be able to use the

best translation. Alternatively, automatic quality estimation can be conducted to select the best

translation.

Among interesting observations that human evaluation reveals is that in few-shot translation

with fuzzy matches (even without terms), the number of successfully used terms is more than those

in zero-shot translation. This can help enhance consistency with approved translations. Moreover,

incorporating glossary terms in a zero-shot prompt can result in quality gains comparable to those

of few-shot translation with fuzzy matches.

4.9 ChatGPT

At the time of writing this paper, OpenAI has released new conversational models, publicly

referred to as ChatGPT. This range of models includes: GPT-3.5 Turbo and GPT-4. In this section,

we briefly investigate the translation capabilities of these models compared to GPT-3.5 Davinci.

Generally, we observe that both of the new models solve some tokenisation issues, especially for

non-Latin languages such as Arabic. While gpt-3.5-turbo is more efficient than text-davinci-003,

it shows comparable quality for both zero-shot and few-shot translation (with fuzzy matches). The

newest model gpt-4 provides better zero-shot translation quality, while the quality of few-shot

translation is relatively similar to that of the two other models. Table 4.8 demonstrates the results.

16For example, “New York Times” can be transferred without translation into the target, while “New York” might be translated. If
the model is provided with both terms while it is actually supposed to use the former, this can cause confusion.
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Lang Model Context spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR

GPT-3.5 Davinci
0-shot

27.6 48.36 70.6 41.28
GPT-3.5 Turbo 38.06 56.35 61.34 62.68

GPT-4 40.29 57.86 59.55 64.25

GPT-3.5 Davinci
2-shot

38.41 56.57 62.31 57.36
GPT-3.5 Turbo 46.04 62.18 55.03 73.35

GPT-4 47.52 63.28 53.04 73.7

EN-ES

GPT-3.5 Davinci
0-shot

53.91 72.61 36.86 84.0
GPT-3.5 Turbo 52.91 70.87 38.86 82.28

GPT-4 56.93 74.41 34.35 87.89

GPT-3.5 Davinci
2-shot

59.64 75.83 32.56 90.37
GPT-3.5 Turbo 60.35 76.51 32.05 91.57

GPT-4 60.16 76.51 31.77 91.86

EN-FR

GPT-3.5 Davinci
0-shot

44.87 65.29 50.34 58.67
GPT-3.5 Turbo 46.85 66.75 48.31 61.34

GPT-4 47.39 67.14 48.03 61.93

GPT-3.5 Davinci
2-shot

49.79 67.41 46.79 61.38
GPT-3.5 Turbo 49.88 68.33 46.27 63.62

GPT-4 49.75 68.38 45.97 64.04

EN-RW

GPT-3.5 Davinci
0-shot

2.82 22.53 143.12 N/A
GPT-3.5 Turbo 5.31 29.77 114.34 N/A

GPT-4 8.95 35.28 93.15 N/A

GPT-3.5 Davinci
2-shot

12.23 36.66 105.54 N/A
GPT-3.5 Turbo 12.49 39.37 105.51 N/A

GPT-4 16.78 44.21 83.31 N/A

EN-ZH

GPT-3.5 Davinci
0-shot

32.41 40.82 99.45 59.87
GPT-3.5 Turbo 36.83 45.77 99.83 69.13

GPT-4 37.65 47.02 99.37 70.75

GPT-3.5 Davinci
2-shot

46.18 49.12 69.0 73.9
GPT-3.5 Turbo 45.95 49.79 74.53 74.63

GPT-4 45.37 50.26 79.29 74.9

Table 4.8: Comparing GPT-3.5 text-davinci-003 to ChatGPT models gpt-3.5-turbo and gpt-4 for zero-shot and few-shot
translation with 2 fuzzy matches
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4.10 BLOOM and BLOOMZ

In this section, we compare GPT-3.5 to open-source multilingual models, namely BLOOM

(Le Scao et al., 2022) and BLOOMZ (Muennighoff et al., 2022). While BLOOM is a general-

purpose LLM, BLOOMZ belongs to a family of models capable of following human instructions

in a zero-shot manner.

We use BLOOM and BLOOMZ via the Hugging Face’s Inference API.17 As mentioned in

Section 4.3, recommended (sampling) parameters for translation with GPT-3.5 are top-p 1 and

temperature up to 0.3. For BLOOM, the same parameters are not good for translation.18 We found

that “greedy search” achieves better results for BLOOM, which are reported in Table 4.9. We use

a batch size of 1, and set the max new tokens parameter to be double the number of words of the

source sentence if it is less than 250, the maximum number of new tokens allowed by BLOOM’s

API; otherwise, we set it to 250 tokens. For comparison purposes, we use the same values for

BLOOMZ.19

When providing each system with two fuzzy matches, generally GPT-3.5 outperforms both

BLOOM and BLOOMZ for most language pairs, except English-to-Arabic translation. The

English-to-French translation quality of BLOOM and GPT-3.5 is comparable.

17https://huggingface.co/inference-api
18Using lower sampling values of top-p and temperature such as 0.9 and 0.1, respectively, can generate good outputs. However,

greedy search shows better translation performance.
19BLOOMZ is trained to generate the required output only; however, using BLOOM, we had to truncate over-generated text outputs,

excluding anything generated in a new line.
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Lang System spBLEU ↑ chrF++ ↑ TER ↓ COMET ↑

EN-AR
BLOOM fuzzy 2-shot 43.19 59.48 57.58 67.36
BLOOMZ fuzzy 2-shot 36.29 53.33 66.86 58.4
GPT-3 fuzzy 2-shot 38.41 56.57 62.31 57.36

EN-ES
BLOOM fuzzy 2-shot 57.67 74.25 34.86 86.48
BLOOMZ fuzzy 2-shot 53.07 70.44 40.45 81.38
GPT-3 fuzzy 2-shot 59.64 75.83 32.56 90.37

EN-FR
BLOOM fuzzy 2-shot 50.52 66.81 46.45 55.74
BLOOMZ fuzzy 2-shot 45.1 62.73 51.69 47.49
GPT-3 fuzzy 2-shot 49.79 67.41 46.79 61.38

EN-RW
BLOOM fuzzy 2-shot 10.95 31.87 91.07 N/A
BLOOMZ fuzzy 2-shot 12.26 35.44 88.36 N/A
GPT-3 fuzzy 2-shot 12.23 36.66 105.54 N/A

EN-ZH
BLOOM fuzzy 2-shot 40.62 40.62 75.24 66.23
BLOOMZ fuzzy 2-shot 34.82 38.23 80.03 59.92
GPT-3 fuzzy 2-shot 46.18 49.12 69.0 73.9

Table 4.9: Comparing GPT-3.5 to BLOOM and BLOOMZ for few-shot translation with 2 fuzzy matches

4.11 Conclusion

In this work, we conducted several experiments to assess the performance of GPT-3.5 across

multiple translation tasks, namely adaptive MT using fuzzy matches (cf. Section 4.4), MT post-

editing (cf. Section 4.6), terminology extraction (cf. Section 4.7), and terminology-constrained

MT (cf. Section 4.8). Moreover, we compared its translation quality with strong encoder-decoder

MT systems. Generally speaking, results obtained from these experiments are very promising.

While some high-resource languages such as English-to-French, English-to-Spanish and even

English-to-Chinese show excellent results, other languages have lower support either because they

are low-resource languages such as English-to-Kinyarwanda or because of issues in the GPT-3.5

tokeniser such as English-to-Arabic. Nevertheless, when we used GPT-3.5 for MT post-editing

of the English-to-Arabic translation obtained from OPUS, the quality significantly surpassed that

obtained from both OPUS and Google Translation API. This means that different pipelines can be

adopted in production for different language pairs, based on the level of support of these languages

by an LLM.
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Furthermore, we briefly compared GPT-3.5 translation quality with open-source LLMs such

as BLOOM and BLOOMZ. In the future, we would like to expand our experiments with open-

source LLMs to cover more aspects.

For adaptive MT with fuzzy matches, it would be interesting to investigate dynamic few-shot

example selection. For instance, instead of selecting 5 fuzzy matches for all sentences, only high-

quality fuzzy matches up to a certain similarity score are used. Similarly, when incorporating

glossary terms or MT outputs from other systems, only those with certain quality characteristics

are utilised. This can potentially enhance performance gains.

For terminology extraction, we would like to try “phrases” instead of “terms”. This would

generate longer strings. We would like to see the effect of using such longer phrases, especially

for low-resource languages.

This work mainly aims at understanding the quality and level of support that LLMs can

achieve (out of the box) for a range of translation tasks across diverse language pairs. In the

future, we might consider starting with fine-tuning the model, and then conducting similar exper-

iments.20 This can be especially beneficial for low-resource languages and rare domains, and can

help enhance quality and efficiency.

20Section 4.13 demonstrates preliminary experiments of fine-tuning Mistral 7B for the purpose of adaptive MT.
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4.12 Prompts

These are some examples of the prompts we used for our experiments.

4.12.0.1 Zero-shot Translation

Prompt: EN-AR zero-shot translation

English: <source segment>
Arabic:

4.12.0.2 Adaptive MT with Fuzzy Matches

Prompt: EN-AR two-shot translation

English: <source fuzzy match2>

Arabic: <target fuzzy match2>

English: <source fuzzy match1>

Arabic: <target fuzzy match1>

English: <source segment>
Arabic:

4.12.0.3 MT Post-editing

Prompt: EN-ZH two-shot + 1-MT

English: <source fuzzy match2>

Chinese: <target fuzzy match2>

English: <source fuzzy match1>

Chinese: <target fuzzy match1>

English: <source segment>
MT: <mt segment>
Chinese:

Prompt: EN-ZH two-shot + all-MT

English: <source fuzzy match2>

MT: <mt fuzzy match2>

Chinese: <target fuzzy match2>

English: <source fuzzy match1>

MT: <mt fuzzy match1>

Chinese: <target fuzzy match1>

English: <source segment>
MT: <mt segment>
Chinese:

4.12.0.4 Terminology Extraction

Prompt: terminology extraction

<source lang>: <source sentence>
<target lang>: <target sentence>

Extract <number> terms from the above sentence
pair. Type each <source lang> term and its
<target lang> equivalent in one line, separated by
’<separator>’.

1.

4.12.0.5 Terminology-constrained MT

Prompt: EN-ES zero-shot + glossary terms

Terms: <src term1> = <tgt term1> - <src -
term2> = <tgt term2> ... <src term5> = <tgt -
term5>

English: <source segment>
Spanish:

Prompt: EN-ES two-shot + fuzzy terms

Terms: <terms fuzzy match2>

English: <source fuzzy match2>

Spanish: <target fuzzy match2>

Terms: <terms fuzzy match1>

English: <source fuzzy match1>

Spanish: <target fuzzy match1>

Terms: <terms from fuzzy matches1+2>

English: <source segment>
Spanish:

Prompt: EN-ES two-shot + glossary terms

Terms: <terms fuzzy match2>

English: <source fuzzy match2>

Spanish: <target fuzzy match2>

Terms: <terms fuzzy match1>

English: <source fuzzy match1>

Spanish: <target fuzzy match1>

Terms: <terms from glossary>
English: <source segment>
Spanish:
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4.13 Appendix: Fine-tuning LLMs for Adaptive MT

This section21 demonstrates the setup and results of experiments with fine-tuning an LLM,

namely Mistral 7B (Jiang et al., 2023), for “adaptive” MT. Hence, the model is not only fine-

tuned for regular (zero-shot) translation, but also for adaptation to one fuzzy match (one-shot) at

translation time (Moslem et al., 2023b). The experiments were conducted for Spanish-to-English

medical adaptive MT.

In Table 4.10, the last two rows show the results for fine-tuning Mistral 7B. The rest of the

results are for baselines, i.e. without fine-tuning. As illustrated, fine-tuning has led to quality

improvements in terms of both zero-shot and one-shot translation. The fine-tuned version of

Mistral outperforms its own baseline (i.e. without fine-tuning) for both zero-shot and one-shot

translation. Zero-shot translation quality of the fine-tuned Mistral outperforms ChatGPT “gpt-3.5-

turbo”, while one-shot translation quality of the fine-tuned Mistral is on par with that of ChatGPT.

Zero-shot translation of the fine-tuned Mistral is on par with NLLB 3.3B, while one-shot transla-

tion quality of the fine-tuned Mistral outperforms that of NLLB 3.3B. To conclude, fine-tuning an

efficient LLM like Mistral 7B helps to produce a high-quality zero-shot translation comparable to

that of MT task-oriented models such as NLLB 3.3B, while achieving adaptive gains of one-shot

translation on par with commercial LLMs such as ChatGPT “gpt-3.5-turbo”.

Lang Model Context BLEU ↑ chrF++ ↑ TER ↓ COMET ↑

ES-EN

NLLB 3.3B
Source only (zero-shot) 47.02 68.82 43.43 66.46

+ Fuzzy (one-shot) 47.42 68.77 45.26 64.57

ChatGPT Source only (zero-shot) 44.65 68.36 44.28 74.48
“gpt-3.5-turbo” + Fuzzy (one-shot) 48.34 70.54 40.80 80.25*

Mistral 7B
Source only (zero-shot) 42.88 66.03 46.54 69.56

+ Fuzzy (one-shot) 47.35 69.25 42.53 76.37

Mistral 7B Source only (zero-shot) 46.71 69.55 41.81 77.44
“Fine-tuned” + Fuzzy (one-shot) 49.69 70.89 40.08 79.62

Table 4.10: Comparing adaptive MT with NLLB-200 3.3B, ChatGPT, and Mistral 7B (before and after fine-tuning). Our fine-tuned
Mistral demonstrates quality gains for both zero-shot translation and one-shot adaptive MT.

21More details can be found at: https://arxiv.org/abs/2312.12740
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4.13.1 Data

In this experiment, fine-tuning uses a mix of 10,000 segments with zero-shot prompts and

10,000 segments with one-shot prompts. The whole dataset was split into 19,000 segments for

training the model and 1,000 randomly selected segments for validation while training. Fuzzy

matches are extracted from a “context dataset” including 50,000 translation pairs. The test dataset

includes 10,000 sentences, and it has its own unique context dataset, which consists of 50,000

unique translation pairs. Figure 4.3 shows examples of zero-shot and one-shot prompts. The

retrieval process of fuzzy matches is detailed in Section 4.13.2.

Prompt: ES-EN zero-shot translation

Spanish: <source segment>
English: <target translation>

Prompt: ES-EN one-shot translation

Spanish: <source fuzzy match>
English: <target fuzzy match>
Spanish: <source segment>
English: <target translation>

Figure 4.3: Zero-shot and one-shot prompts used for fine-tuning Mistral

Originally, we mixed Spanish-to-English medical datasets from OPUS (Tiedemann, 2012),

namely ELRC (Berzins et al., 2019), EMEA (EMA, 2012), SciELO (Soares et al., 2018), and

TICO-19 (Anastasopoulos et al., 2020) datasets. Then we filtered22 the resulted dataset to exclude

duplicates and too long segments.23 The whole dataset includes 1,868,505 segments before filter-

ing, and 922,343 segments after filtering.24 However, we used only part of it for this preliminary

experiment. In the future, we would like to increase the size of the training data and compare the

performance. Nevertheless, achieving these results (cf. Table 4.10) with such a small dataset (cf.

Section 4.13.1) shows how promising this approach is.

22Filtering scripts are available at: https://github.com/ymoslem/MT-Preparation
23As NLLB supports a maximum token length of 512 tokens, we exclude any segment whose source or target text is longer than 70

words to also take into account the one-shot case that will augment another segment to the original one. As the context window of
Mistral is much larger (8K tokens), it is theoretically possible to translate longer segments.

24We observe that almost two-thirds of the EMEA dataset are duplicates.
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4.13.2 Information Retrieval

For indexing and retrieval of fuzzy matches, we use Sentence-Transformers (Reimers and

Gurevych, 2019) and Faiss (Johnson et al., 2019), with a multilingual model to generate the em-

beddings for the datasets and later to extract fuzzy matches through semantic search.

Embedding: To encode all the translation segments into embeddings, we employ a multilingual

model, namely Microsoft’s “Multilingual-MiniLM-L12-H384” (Wang et al., 2020). These em-

beddings will be used later for both indexing and retrieval. The step of generating embeddings can

be implemented with the Sentence-Transformers library25 (Reimers and Gurevych, 2019).

Indexing: For indexing, we use Faiss26 (Johnson et al., 2019), a library for efficient similarity

search and clustering of dense vectors. We train an IndexIVFFlat index, which uses IndexFlatL2

as a quantiser.27 The embedding size is 384, which is the same as the embedding size of model

used. For the number of clusters at indexing time, the nlist parameter was set to 4096, while the

number of clusters to explore at search time nprobe was set to search for nearest neighbours in 32

clusters.28

Semantic Search: This step computes the cosine similarity between the query and all the docu-

ments in the corpus based on their embeddings, and retrieves the top k matching entries. In this

case, our query is each source segment, and the corpus is the unique “context dataset” (cf. Section

4.13.1) leveraged to extract fuzzy matches.

4.13.3 Fine-tuning

We used QLoRA (Hu et al., 2021; Dettmers et al., 2023) for efficient fine-tuning with 4bit

quantisation, with Hugging Face Transformers.29 Fine-tuning was for only one epoch, which
25https://www.sbert.net/
26https://github.com/facebookresearch/faiss
27https://github.com/facebookresearch/faiss/wiki/Faster-search
28According to Faiss’ guidelines for choosing an index, the number of clusters is recommended to be between 4*sqrt(N) to

16*sqrt(N), where N is the size of the dataset. As the “context dataset” includes 50,000 segments, we might experiment in the
future with increasing the number of clusters while training an index. Obviously, this would depend on the available computational
resources.

29https://github.com/huggingface/transformers
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revealed better results than fine-tuning for 4 epochs. The configuration of quantisation through

BitsAndBytes includes: load in 4bit=True, bnb 4bit quant type=“nf4”, bnb 4bit use double -

quant=True, and bnb 4bit compute dtype=torch.bfloat16. LoRA configuration was set via the

PEFT library30 as follows: the dimension of the low-rank matrices r=64, the scaling factor for

the weight matrices lora alpha=16, dropout probability of the LoRA layers lora dropout=0.1,

and without training the bias parameters for better performance bias=“none”. Training argu-

ments include: batch size for training and evaluation 32 examples, warmup steps=0.03, learn-

ing rate=2e-3, lr scheduler type=“constant”, and bf16=True. Both training and inference utilise

Google Colab Pro+ with one GPU NVIDIA A100-SXM4-40GB.

4.13.4 Inference

For inference (translation), we experimented with a number of models including NLLB-200

(Costa-jussà et al., 2022) whose architecture is encoder-decoder Transformer as well as ChatGPT

(Brown et al., 2020; Ouyang et al., 2022) and Mistral 7B, which are autoregressive decoder-only

Transformer-based LLMs. Mistral 7B was used both without fine-tuning and after fine-tuning on

a mix of zero-shot and one-shot translation prompts.

Mistral 7B: We converted both the baseline and our fine-tuned models of Mistral 7B to the

CTranslate2 31 (Klein et al., 2020b) format (with 8int quantisation) for more efficiency. We em-

ployed greedy search by setting sampling topk=1 and added the new line \n character to end -

token to avoid overgeneration. Mistral through CTranslate2 translates the zero-shot test dataset

that includes 10,000 sentences in 2–3 minutes (approx. 80 segments/second). The time almost

doubles for the one-shot test dataset. Figure 4.3 illustrates the prompts used for both inference

and fine-tuning. Two versions of Mistral were tested, the baseline model without fine-tuning,

and the model we fine-tuned on a mix of zero-shot and one-shot translation prompts. Table 4.10

shows translation evaluation results of both models. Fine-tuning Mistral on a mix of zero-shot

and one-shot prompts improved both its regular translation quality (i.e. when only the source text

30https://github.com/huggingface/peft
31https://github.com/OpenNMT/CTranslate2
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is available) and adaptive translation quality (in this case, when one fuzzy match is provided) at

inference time.

ChatGPT: The model used is “gpt-3.5-turbo” with temperature=0.3 and top p=1. Requests were

sent in batches of 20 segments, and the max tokens argument was set as the largest number of

words per source segment in a batch multiplied by 4, which is a rough number that can be increased

or decreased based on the language and model. When the source text is augmented with one fuzzy

match, the translation quality is improved by several points across all the automatic evaluation

metrics. However, it is worth noting that although batch processing was employed, there is no

guarantee of the generation time with ChatGPT, which can range from several minutes to a couple

of hours. In this sense, we observe that Mistral 7B is much more efficient.

NLLB-200: In this set of experiments, the NLLB-200 model was used as is, i.e. without fine-

tuning. The first two rows of Table 4.10 show the evaluation scores of using NLLB 3.3B for

translation without a fuzzy match (zero-shot) and with a fuzzy match (one-shot). The same test

dataset and its unique context dataset were used; however, fuzzy matching augmentation was done

differently to match the architecture of the NLLB model. Each source sentence was augmented

with its best fuzzy match, and the two sentences were separated by the language code of the

source language (in this case “spa Latn”). As NLLB was mainly pre-trained on sentences, we

had to add an extra token that usually comes at the beginning of sentences, such as a bullet point

(“•”) after the language code between the two source sentences. Hence, the target fuzzy match

was fed to the model as a prefix augmented by the target language code (in this case “eng Latn”)

and the extra token. In this sense, the model was encouraged to complete the translation through

teacher-forcing (Williams and Zipser, 1989), i.e. using the ground truth as input, instead of the

model output. In other words, the model is not required to translate the target fuzzy match, but

rather to use the provided translation as is to guide the translation of the new untranslated source

sentence. Translation arguments include: batch type=“tokens”, max batch size=2024, beam -

size=2, min decoding length=2, and max decoding length=512. Although there is a marginal

improvement given the BLEU score, the performance degrades according to the other reported
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automatic evaluation metrics, chrF++, TER and COMET. The fact that NLLB was trained to

translate individual sentences rather than a series of sentences or full documents could be the main

reason for this. In the future, we would like to experiment with fine-tuning NLLB with fuzzy

matching augmentation and compare the results.

4.13.5 Conclusion and Future Work

In this section, we showed how fine-tuning a general purpose LLM such as Mistral 7B can

improve its in-context learning ability, especially for real-time adaptive MT. Moreover, such trans-

lation quality gains were achievable through fine-tuning using a relatively small dataset (20,000

segments). Incorporating a mix of zero-shot and one-shot prompts in the training data helps im-

prove both regular zero-shot translation, and one-shot translation that incorporates a fuzzy match.

It is worth noting that Mistral 7B is much more efficient than ChatGPT, which is an added benefit

in production scenarios.

In the future, we would like to experiment with other domains and language pairs, including

low-resource languages. As currently there are several multilingual LLMs such as BLOOM (46

languages) (Le Scao et al., 2022), Falcon (EN-DE-ES-FR) (Penedo et al., 2023), larger versions

of Mistral/Mixtral (EN-DE-ES-FR-IT) (Jiang et al., 2023), Jais (AR-EN) (Sengupta et al., 2023),

Baichuan (ZH) (Yang et al., 2023a), and Qwen (ZH) (Bai et al., 2023), it can be insightful to apply

the same approach with these models. Furthermore, as we experimented with NLLB-200 without

fine-tuning, we would like to experiment with fine-tuning for fair comparison. While we fine-

tuned Mistral on a small dataset, it is recommended to experiment with fine-tuning on more data,

especially from the same domain. It can also be helpful to incorporate different types of prompts,

such as few-shot prompts, and terminology-based prompts.
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Abstract

This paper discusses the methods that we used for our submissions to the WMT 2023
Terminology Shared Task for German-to-English (DE-EN), English-to-Czech (EN-CS), and
Chinese-to-English (ZH-EN) language pairs. The task aims to advance machine translation
(MT) by challenging participants to develop systems that accurately translate technical terms,
ultimately enhancing communication and understanding in specialised domains. To this end, we
conduct experiments that utilise large language models (LLMs) for two purposes: generating
synthetic bilingual terminology-based data, and post-editing translations generated by an MT
model through incorporating pre-approved terms. Our system employs a four-step process: (i)
using an LLM to generate bilingual synthetic data based on the provided terminology, (ii) fine-
tuning a generic encoder-decoder MT model, with a mix of the terminology-based synthetic data
generated in the first step and a randomly sampled portion of the original generic training data,
(iii) generating translations with the fine-tuned MT model, and (iv) finally, leveraging an LLM
for terminology-constrained automatic post-editing of the translations that do not include the
required terms. The results demonstrate the effectiveness of our proposed approach in improving
the integration of pre-approved terms into translations. The number of terms incorporated into
the translations of the blind dataset increases from an average of 36.67% with the generic model
to an average of 72.88% by the end of the process. In other words, successful utilisation of terms
nearly doubles across the three language pairs.

1Published at: https://aclanthology.org/2023.wmt-1.82/
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5.1 Context

This work builds on our two previous papers for AMTA 2022 and EAMT 2023. It inves-

tigates techniques to enhance adherence to pre-approved terminology in translation, including

terminology-based data generation and MT automatic post-editing with LLMs. Section 5.2 elab-

orates on the research context of this paper.

5.2 Introduction

The primary goal of the WMT 2023 Terminology Shared Task is to evaluate the ability of MT

systems to accurately translate technical terminology.2 The task aims to assess the extent to which

MT models can utilise additional information regarding the translation of terminology. The shared

task requires the participants to provide three translations, one without terms and the others with

two individual sets of terms.

There have been several advancements in the area of MT domain adaptation, where an MT

model is expected to follow the style and terminology of a certain domain or client (Chu et al.,

2017; Kobus et al., 2017). Moreover, some researchers give special focus to terminology while

training and fine-tuning MT systems (Dinu et al., 2019; Hu et al., 2019a; Haque et al., 2020a;

Michon et al., 2020; Nayak et al., 2023). However, forcing an MT model to adhere to certain

terminology at inference time is among the most challenging aspects of MT. Hence, several re-

searchers have investigated approaches to terminology-constrained decoding at translation time

(Hokamp and Liu, 2017; Hasler et al., 2018; Post and Vilar, 2018; Hu et al., 2019b; Exel et al.,

2020). The goal is to ensure that the MT system can accommodate unseen terminology while

retaining translation accuracy and fluency.

2For the test dataset of the Chinese-to-English language pair, the organisers used the BWB corpus, which comprises texts extracted
from novels. The test dataset of the English-to-Czech language pair consists of NLP paper abstracts, while the test dataset of the
German-to-English language pair consists of medical paper abstracts (Semenov et al., 2023).
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Recently, since the emergence of advanced LLMs such as GPT-3 (Brown et al., 2020),

BLOOM (Le Scao et al., 2022), PaLM (Chowdhery et al., 2022), Falcon (Penedo et al., 2023),

Llama 2 (Touvron et al., 2023b), Mistral (Jiang et al., 2023), and Jais (Sengupta et al., 2023) to

mention just a few, researchers have been exploring the capabilities of these models for a number

of tasks including MT (Bawden and Yvon, 2023; Hendy et al., 2023; Jiao et al., 2023b; Moslem

et al., 2023a; Vilar et al., 2023). Some work investigates whether it is possible to employ the

in-context learning feature of LLMs for adaptive MT with fuzzy matches (Agrawal et al., 2023;

Moslem et al., 2023a), and terminology-constrained MT using a pre-defined glossary (Moslem

et al., 2023a) or even a dictionary (Ghazvininejad et al., 2023). They found the approach is gen-

erally effective in increasing the number of terms used in the translation, even for low-resource

languages.

We highlight our key contributions with the systems that we submitted for the WMT 2023

Terminology Shared Task as follows:

• LLMs for domain-specific data augmentation: In our previous work (Moslem et al.,

2022a), we employed LLMs, namely GPT-J (Wang and Komatsuzaki, 2021) and mGPT (Shli-

azhko et al., 2022), to generate domain-specific datasets based on the target sentences in a

small authentic dataset, then generated the source sentences with back-translation (Sennrich

et al., 2016; Poncelas et al., 2019), and finally fine-tuned an encoder-decoder MT model on

this data. In this work, we take a couple of steps forward by instructing an LLM, namely

ChatGPT (Brown et al., 2020; Ouyang et al., 2022), to generate terminology-based bilingual

synthetic data. In other words, the LLM will generate both the source and target sides of

translation pairs, making sure the pre-approved target terms provided by the organisers are

used in the translations.

• LLMs for terminology-constrained MT and MT post-editing: In our previous work, we

utilised an LLM for translation and provided it with a list of terms to support in-context learn-

ing, which improved adherence to the required terminology at inference time (Moslem et al.,

2023a). We also investigated whether we could use an LLM for post-editing MT generated

by other systems. In this work, we prompt ChatGPT to insert missing terms into translations
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generated by an encoder-decoder MT system. In other words, if some of the translations gen-

erated by a fine-tuned MT model still do not include the terms provided by the organisers,

we feed these translations into an LLM, namely ChatGPT, instructing it to incorporate these

terms while using the same translation.

5.3 Method

In our submissions to the WMT 2023 Terminology Shared Task, we followed these steps:

(i) Generate bilingual synthetic data based on the pre-approved terms, using an LLM, namely

ChatGPT.

(ii) Fine-tune a generic model, OPUS (Tiedemann and Thottingal, 2020), on a mix of the

terminology-based synthetic data generated in (i) and a randomly sampled portion of the

original generic training data.

(iii) Generate translations of the dev, test, and blind datasets provided by the organisers with the

fine-tuned model from (ii).

(iv) Apply terminology-constrained automatic post-editing using ChatGPT to incorporate miss-

ing terms into translations that do not yet include the required terminology.

5.3.1 Synthetic Data Generation

We used ChatGPT “gpt-3.5-turbo”3 to generate bilingual sentence pairs, using the terms pro-

vided by the organisers. So, given a target term, the model was asked to generate multiple trans-

lation pairs, including both the source (e.g. German) and the target (e.g. English). For parameters

of ChatGPT’s API, we used top p 1 and temperature values 0 and 0.3 to generate diverse outputs.

Example prompt: Terminology-based generation

Please use the “Federal Ministry of Science” to generate just 20 numbered sentences in German-English in one Python dictionary

format.

3The model “gpt-3.5-turbo” is a relatively efficient and cost-effective option, so we wanted to understand the quality we can achieve
with it.
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To filter the generated data, we first removed duplicate sentences from the whole dataset,

based on both the source and target. Then, we applied language detection of both sides of the data

using fastText4 and pycld25 libraries to ensure that the generated sentences were in our desired

languages. We excluded any sentences whose scores were below a certain threshold, namely 0.9

for fastText and 90 for pycld2.

The filtering step removed less than 1% of the generated data. However, due to computational

resource and time limitations, we could not use all the generated data. Table 5.1 reports the number

of generated, filtered, and used translation pairs.

Initially, we only had the development and test datasets, so we used them for the German-to-

English language pair. Later, when the organisers released the blind dataset, we used the develop-

ment, test and blind datasets for the Chinese-to-English and English-to-Czech language pairs.

Lang Raw Filtered Used

DE-EN 124,215 104,318 68,265
EN-CS 187,471 103,797 64,218
ZH-EN 90,538 72,695 49,001

Table 5.1: Terminology-based bilingual data generated by ChatGPT for fine-tuning the OPUS model

To assess the quality of the bilingual data generated by ChatGPT, we computed cross-entropy

scores (Moore and Lewis, 2010) of the synthetic translation pairs based on the strong encoder-

decoder MT model, NLLB-200 3.3B (Costa-jussà et al., 2022). For scoring, we used CTrans-

late26 (Klein et al., 2020b) score batch() method with the parameters batch type “tokens” and

max batch size 2024. We scored each synthetic translation pair generated by ChatGPT, and then

calculated the average score for the whole dataset. Computing dual cross-entropy scores accord-

ing to two inverse translation models trained on clean data is an effective method to evaluate data

quality (Junczys-Dowmunt, 2018). Hence, we computed the scores of both directions of each lan-

guage pair according to the multilingual MT model NLLB-200 3.3B because both directions are

generated by ChatGPT. To produce a baseline for translation quality, we generated the translations

of the same datasets using NLLB-200 3.3B for each language direction with beam size 4, and then

4https://fasttext.cc/docs/en/language-identification.html
5https://github.com/aboSamoor/pycld2
6https://github.com/OpenNMT/CTranslate2
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scored these translations with the same model. As the scores are in the form of negative log prob-

abilities, we converted them to their exponential equivalents for readability, which are reported in

Table 5.2. It is normal that the model NLLB-200 generates higher scores for its own translations;

however, we wanted to know to what extent such scores are comparable to those of ChatGPT’s

synthetic translation pairs. According to the scores, the German$English language pair had the

most comparable quality, followed by Czech$English, and Chinese $English language pairs.

Among the approaches that can be employed for assessing the quality of synthetic bilingual

data is semantic similarity between the two sides of each translation pair (e.g. with mUSE (Yang

et al., 2020)). However, the scoring approach that we previously described and used achieves a

similar goal while comparing the quality of the synthetic bilingual data to the translation quality

of a strong MT baseline model, namely NLLB-200 3.3B.

Lang ChatGPT NLLB Diff.

DE-EN 0.59 0.68 0.09
EN-DE 0.56 0.64 0.08

Avg. 0.58 0.66 0.08

CS-EN 0.58 0.70 0.12
EN-CS 0.49 0.58 0.09

Avg. 0.54 0.64 0.10

ZH-EN 0.39 0.56 0.17
EN-ZH 0.09 0.34 0.25

Avg. 0.24 0.45 0.21

Table 5.2: Scores of translation pairs generated by ChatGPT based on the NLLB-200 3.3B model

5.3.2 Fine-tuning

Using the term-based synthetic bilingual data generated in the previous step, we fine-tuned

encoder-decoder Transformer-based MT models (Vaswani et al., 2017). In particular, we fine-

tuned OPUS MT models, with Hugging Face Transformers.7 We applied mixed fine-tuning (Chu

et al., 2017); in other words, we fine-tuned the baseline model with a mix of the terminology-based

synthetic data generated from the previous step (cf. Section 5.3.1) and a randomly sampled portion

of the original generic data used to train the OPUS baseline model. The numbers of segments

taken from the OPUS generic data are as follows: CS: 372,928, DE: 419,881, ZH: 462,780. We
7https://github.com/huggingface/transformers
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over-sampled the synthetic terminology-based data to make it the same size as the used portion of

generic data. The fine-tuning parameters are as follows: train = 0.9, val = 0.1, batch size = 32,

learning rate = 2e-5, accumulate gradient = 4, weight decay = 0.01, num train epochs = 1, max -

input length = 256, max target length = 256. Finally, we used the fine-tuned model to generate

translations for the development, test, and blind sets.

At first glance, the fine-tuning step might look redundant if the LLM can achieve the

same translation quality directly, either via zero-shot translation or few-shot in-context learning

(Moslem et al., 2023a). However, domain-specific or terminology-based knowledge distillation

(Treviso et al., 2023) from a massive LLM to a compact task-oriented MT model can help boost

efficiency at inference time while enhancing domain adaptation and terminology adherence. Obvi-

ously, when authentic in-domain data is available, it can be used for fine-tuning instead of synthetic

data for domain adaptation of the MT model. In production workflows, only segments that do not

meet specific quality criteria are passed to either human or automatic post-editing. Hence, deploy-

ment of a model fine-tuned on in-domain data can reduce the number of translations that need

post-editing.

5.3.3 Terminology-constrained Automatic Post-Editing

For the shared task, the organisers provided two term sets for each source sentence in the

test and blind datasets, and expected the participants to generate two translations that use one

term set each. In this step of terminology-constrained automatic post-editing, we aim to refine

the translations generated by an MT system by inserting the required terminology. To this end,

we checked the translations generated by the fine-tuned model from the previous step (cf. Section

5.3.2). For each term set provided for the sentence, if the translation does not include all the terms,

we ran this step of terminology insertion into the translation.

This step involves instructing ChatGPT to post-edit the translation by making sure it includes

all the terms without changing the rest of the translation. For the API’s parameters, we used top p

1 and temperature values 0 and 0.2, and then chose the generation that fixed more terms.
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Example prompt: Terminology-constrained post-editing

In the following <tgt lang> translation, use the <tgt term> to translate the <src lang> term <src term>, and the...8

Leave everything else the same.\n\n

<src lang>: <src segment>\n

<tgt lang>: <tgt segment>

5.4 Evaluation

To assess the effectiveness of our process, we conducted two types of evaluation: (i) term-

level evaluation in order to measure the level of adherence to the required terminology, and (ii)

sentence-level evaluation in order to see whether the process affected the quality of the overall

translation.

5.4.1 Term-level Evaluation

In Tables 5.3 and 5.4, we report the number of terms used in the translations of the test and

blind datasets, respectively, in respect to the two term sets provided by the organisers. The results

show the effectiveness of our proposed process, increasing the integration of the required terms

in the final translations of the blind dataset from an average of 36.67% with the baseline generic

model to an average of 72.88% after the LLM-based post-editing, across the three language pairs.

Interestingly, prompting an LLM to integrate the required terms into the translations generated

by a fine-tuned encoder-decoder MT model was more effective than solely using the fine-tuned

model.

5.4.2 Sentence-level Evaluation

After the end of the submission phase, the organisers released the references for the partici-

pants to conduct automatic evaluation. The main purpose of this sentence-based evaluation pro-

cess is to determine whether terminology integration affected the overall quality of translation. In

general, as demonstrated in Table 5.4 and Table 5.5, this terminology-constrained automatic post-

8We can add more terms, if needed.
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editing step significantly increased the inclusion of the necessary terms into the final translation

while improving translation quality across the three language pairs.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %

DE-EN
Baseline 432 291 317 168 60.18

Fine-tuned 432 302 317 165 60.98
Term APE 432 397 317 239 83.65

EN-CS
Baseline 550 221 313 139 42.30

Fine-tuned 550 135 313 108 29.53
Term APE 550 466 313 283 87.57

ZH-EN
Baseline 1779 498 1938 491 26.66

Fine-tuned 1779 854 1938 570 38.71
Term APE 1779 1137 1938 886 54.81

Avg. %
Baseline 43.05

Fine-tuned 43.07
Term APE 75.34

Table 5.3: For the test dataset, the number of terms used in the translations from the first term set [1] and the second term set [2].
According to the results, terminology-constrained automatic post-editing (“Term APE”) using ChatGPT achieved the best adoption of
the required terminology.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %

DE-EN
Baseline 11357 4120 11202 4623 38.77

Fine-tuned 11357 4130 11202 4621 38.81
Term APE 11357 6257 11202 5893 53.85

EN-CS
Baseline 10626 3964 10563 5122 42.90

Fine-tuned 10626 3397 10563 4412 36.87
Term APE 10626 8727 10563 8681 82.16

ZH-EN
Baseline 2892 1375 2908 265 28.33

Fine-tuned 2892 1422 2908 970 41.26
Term APE 2892 2471 2908 2322 82.65

Avg. %
Baseline 36.67

Fine-tuned 38.98
Term APE 72.88

Table 5.4: For the blind dataset, the number of terms used in the translations from the first term set [1] and the second term set [2].
According to the results, terminology-based automatic post-editing (“Term APE”) using ChatGPT achieved the best adoption of the
required terminology.

For the automatic evaluation of each MT system, we used the BLEU (Papineni et al., 2002),

chrF++ (Popović, 2017), and COMET (Rei et al., 2020) metrics. Since many of the Chinese-to-

English segments in the blind dataset did not have two term sets, we evaluated only those that had

two term sets (1629 segments out of 2640 segments). We observe that the evaluation scores of
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the Chinese-to-English translation task are much lower than those of the two other language pairs.

This can be due to the literary nature of the blind dataset extracted from Chinese novels, which

might be difficult for both the MT model and automatic evaluation metrics.

Lang Count System BLEU chrF++ COMET

DE-EN 2963

Baseline 19.81 48.04 21.81
Fine-tuned 19.27 47.75 21.51

Term APE [1] 32.36 60.84 40.25
Term APE [2] 27.84 56.84 33.20

Term APE Avg. 30.10 58.84 36.73

EN-CS 3005

Baseline 29.13 53.11 50.90
Fine-tuned 24.54 49.14 33.78

Term APE [1] 45.65 67.36 79.84
Term APE [2] 37.88 61.19 63.64

Term APE Avg. 41.77 64.28 71.74

ZH-EN 1629

Baseline 6.95 27.95 -50.90
Fine-tuned 7.76 29.26 -38.83

Term APE [1] 9.56 32.80 -18.96
Term APE [2] 11.93 35.30 -13.51

Term APE Avg. 10.75 34.05 -16.24

Table 5.5: Automatic evaluation of the overall translation quality across the three language pairs based on the blind dataset. The
“Baseline” refers to the OPUS model without fine-tuning, while “Fine-tuned” refers to the model after domain adaptation with the
bilingual terminology-based synthetic data generated by an LLM. Finally, the three last rows for each language pair refer to using
ChatGPT for terminology-constrained automatic post-editing (“Term APE”) of the MT output generated by the fine-tuned model. In
other words, “Term APE [1]” indicates the results when the first term set was used to prompt ChatGPT to integrate terms of this set
into the translation generated by the fine-tuned model, while “Term APE [2]” refers to using the second term set. Finally, “Term APE
Avg.” is the average of “Term APE [1]” and “Term APE [2]” for each language pair. Terminology-constrained automatic post-editing
with ChatGPT achieves the best results across the three language pairs in terms of the overall translation quality. As reported in Table
5.4, the number of terms integrated after the automatic post-editing step also increased.

Moreover, it is worth noting that we used the English term while generating bilingual syn-

thetic data (cf. Section 5.3.1) for the three language pairs. However, English is the target language

for both Chinese-to-English and German-to-English language directions, while it is the source lan-

guage for the English-to-Czech language direction. This can explain the performance degradation

after the fine-tuning step in the English-to-Czech language direction (cf. Tables 5.4 and 5.5). In

other words, it is recommended in the step of bilingual synthetic data generation to either use the

target term or both the source and target terms while prompting the LLM to generate translation

pairs.
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As explained in Section 5.3.3, our final step of terminology-constrained automatic post-

editing involves instructing an LLM to insert terms that were missing from the output of the fine-

tuned model. This significantly increased term usage across all the Chinese-to-English, English-

to-Czech, and German-to-English language pairs (cf. Table 5.4). Furthermore, as demonstrated

in Table 5.5, this step had no detrimental effects on translation quality. In fact, integrating the

necessary terms into the translation using ChatGPT improved translation quality according to our

automatic evaluation.

5.5 Conclusion and Future Work

In this work, we showed that applying a multistep process of mixed fine-tuning on

terminology-based synthetic bilingual data and then terminology-constrained automatic post-

editing with an LLM can increase the adherence to the pre-approved terms in the generated trans-

lations. By the end of the process, the use of the required terms has increased in the translations

of the blind dataset across the three language pairs from an average of 36.67% with the baseline

generic model to an average of 72.88% after instructing an LLM to integrate the required terms

into the translations.

Due to the task restrictions, we had to fine-tune OPUS models only. We would like to experi-

ment with fine-tuning NLLB models, and probably the new SeamlessM4T (Barrault et al., 2023),

Mistral (Jiang et al., 2023), and MADLAD-400 models (Kudugunta et al., 2023), on the same

data and compare the output quality. In our experiments, we employed ChatGPT “gpt-3.5-turbo”

for both terminology-based synthetic data generation and terminology-constrained automatic post-

editing, as it is a relatively efficient and cost-effective option. In the future, we would like to repeat

the same experiments with GPT-4 in order to assess the benefit of using a stronger language model

on overall performance. We observe that BLOOM can be used as an alternative LLM for data gen-

eration; however, one-shot generation might work better than zero-shot generation. In this case,

the prompt can consist of a term, a bilingual sentence pair, and then another term. Interestingly,

the model will predict a new translation pair including the second term. While certain open-source

models such as Llama 2 and Falcon might be employed for the terminology-constrained automatic
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post-editing step for certain languages, we suspect that they will need fine-tuning before being re-

liably usable for most languages.

In future work, we will carry out a deeper analysis9 of the generated synthetic data together

with the outputs of the fine-tuned models in order to understand how the properties of the synthetic

data affect the fine-tuning results. It is important also to test the same approach for other languages,

especially low-resource language pairs.

Moreover, it would be interesting to exclude the fine-tuning step and assess the overall trans-

lation quality after LLM-based post-editing. It is possible that domain adaptation through fine-

tuning the baseline MT model either on authentic or synthetic data would still be beneficial. It can

lead to domain-specific improvements in the overall translation quality that may not be achievable

by the baseline model or the terminology-constrained post-editing step. Again, deploying a model

fine-tuned on in-domain data into production can enhance terminology adherence in initial trans-

lations. As there is no need to send the translations that already include the pre-approved terms

to the LLM for terminology-constrained post-editing, this can reduce the number of translations

that require post-editing. Such an efficient workflow can allow us to save resources, and minimise

latency at inference time. Similarly, there are potential advantages of employing an LLM for post-

editing rather than for direct translation. Instead of solely relying on the translation quality of

the LLM, quality estimation can be performed to select the best MT model in general or for the

current source text segment. Ultimately, only segments that do not meet quality criteria are then

passed to the LLM for post-editing.

9It is recommended to ask professional linguists to analyse both the synthetic data and output translations, assess the quality, and
report common linguistic characteristics.
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Chapter 6

Conclusions and Future Work

The previous chapters explained how I addressed the two main research questions and elaborated

on the findings of my research. This chapter concludes the accomplished progress and potential

future work.

6.1 Conclusions

In the first research question, I examined how to leverage language modelling techniques in

general and LLMs in particular to improve translation features that involve human interaction and

continuous feedback, such as adaptive MT, terminology-constrained MT, domain-aware automatic

post-editing, auto-suggestion and auto-completion. In the second research question, I addressed a

common scenario in the translation industry, namely receiving highly specialised projects, where

there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain

data to fine-tune MT models, producing translations that are consistent with the relevant context

is challenging. One way to address this question is through domain-specific text generation with

LLMs and then fine-tuning an MT model using the generated bilingual in-domain synthetic data.

Furthermore, this question overlaps with the first question, since real-time adaptive MT with LLMs

can serve as an alternative approach to address in-domain data scarcity.

In Chapter 2, I proposed a novel approach to domain adaptation leveraging state-of-the-art

pretrained LLMs for domain-specific data augmentation for MT, simulating the domain charac-

teristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be trans-

lated. Combining this idea with back-translation, I was able to generate huge amounts of synthetic

bilingual in-domain data for both use-cases. For this investigation, I used the state-of-the-art

Transformer architecture. I employed mixed fine-tuning to train models that significantly im-

prove translation of in-domain texts. In this work, I suggested potential future work ideas, such
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as terminology-aware text generation, as well as low-resource and multilingual text generation for

domain-specific MT, some of which I have already addressed in the next papers/chapters.

In Chapter 3, I described our submissions to WMT 2022 Shared Task on Word-level Auto-

completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-

German language directions. I discussed how utilising random sampling to generate diverse al-

ternatives can reveal good results. Moreover, the survey I conducted shows that suggesting alter-

natives can inspire translators and limit their need to refer to external resources, which hopefully

boosts their productivity. In the future, I intend to expand this work by investigating whether do-

main adaptation and/or simulated annealing can improve translation suggestions. In a user survey

I conducted (cf. Chapter 3), 90.2% of the participants stated that they believed that word-level

auto-completion was helpful. This can be considered an indicator that users appreciate adaptivity

and interactivity features in MT system.

Chapter 4 emphasises the significance of consistency for high-quality translation, especially

in domain-specific projects. It addresses the challenge of real-time adaptation through leveraging

LLMs. In-context learning involves replicating text generation patterns without additional fine-

tuning. Inspired by this idea, I explored the use of in-context learning to improve real-time adap-

tive MT. I investigated whether prompting LLMs with similar translations (fuzzy matches) and/or

terminology enables them to simulate domain and style characteristics. Experiments strongly

suggest that LLMs can adapt to domain-specific translation pairs and terminology, and that the

quality of adaptive translations can surpass that of strong encoder-decoder MT systems, especially

for high-resource languages.

In Chapter 5, I described the systems submitted to the WMT 2023 Terminology Shared Task

for German-to-English, English-to-Czech, and Chinese-to-English language pairs. The aim of the

task was to improve MT by developing systems that can accurately translate technical terms. The

methods used involve leveraging LLMs to generate synthetic bilingual terminology-based data and

to post-edit translations though inserting missing terminology. The process consists of four steps:

generating terminology-based synthetic data with an LLM, fine-tuning a generic encoder-decoder

MT model, generating translations with the fine-tuned model, and finally using an LLM to fix the
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translations that do not include the required terms. The results indicate that the use of pre-approved

terms in the translations doubles across the three language pairs, which is very encouraging.

Revisiting my research questions, this research was able to answer both of the two main

research questions and their sub-questions. For the first research question, this work explored a

number of scenarios to employ language models to improve the quality of adaptive MT at inference

time, and achieved performance gains based on both human and automatic evaluation. Chapter 3

demonstrated that by only utilising the autoregressive property of NMT models through teacher

forcing, the performance of word-level auto-completion can surpass other approaches, without us-

ing any external models.1 Chapter 4 showed that LLM in-context learning can enhance real-time

adaptive MT, leveraging user (translator) feedback and modifications. These models (e.g. Chat-

GPT, BLOOM, Mistral) can adapt to approved in-domain translation pairs and/or terminology

while translating new texts. Moreover, Chapter 5 demonstrated that LLMs can be prompted for

terminology-constrained automatic post-editing of translations generated by MT models, which

doubled the integration of the pre-approved terminology into the final translations. In other words,

instead of inputting a raw source sentence to translate, providing more linguistic information

improves translation quality. As for the second research question, this work demonstrated that

pre-trained LLMs can be used for in-domain data augmentation to improve domain-specific MT

models. In-domain texts or terminology can be fed to an LLM to generate more data, simulating

the domain characteristics of the original text. As demonstrated by Chapter 2 and Chapter 5, if

there is only a small in-domain dataset (e.g. 1000 sentences) or a glossary, LLMs can be used to

generate large domain-specific datasets (e.g. 200,000 sentences). Then, the generic model can be

fine-tuned on this synthetic data, which improves translation quality of in-domain texts.

This research is beneficial for translators and MT providers alike. For translators, it aims

to provide them with better flexibility and consistency while translating. Boosting MT real-time

adaptation can be considered one method of enhancing the user-friendliness of translation en-

vironments. Once a linguist edits a translation, the system should comply with the approved

modifications in subsequent translations. For MT providers, adaptability is essential for serving

a wider range of customers from diverse domains. While some MT providers offer the feature

1Our systems achieved the first and second places at WMT 2023 Shared Task on Word-level Auto-completion.
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of fine-tuning on customised data, giving their clients the ability to adapt an MT system out of

the box without any further fine-tuning (or on top of fine-tuning) is an added benefit. Language

service providers seek to achieve the consistency required by their clients efficiently. However,

new clients might not have sufficient TMs if any, and access to TMs owned by other clients is

restricted by ethics and laws of intellectual property. Hence, I believe that the ability to employ

both in-domain synthetic data for fine-tuning, and in-context learning for real-time adaptivity can

help improve the productivity and satisfaction of both linguists and clients.

6.2 Future Work

The design and execution of these experiments were guided by a commitment to making the

research findings highly applicable and beneficial to real-world production scenarios. For instance,

in Chapter 4, I tried to address a number of common use cases, such as real-time sentence-level

translation adaptivity and terminology adherence. Moreover, throughout my research, I covered

a wide range of languages with diverse scripts and availability of data resources, exploring the

opportunities and limitations associated with these languages. While Chapter 4 addresses using

LLMs for both translation and real-time adaptation to fuzzy matches and terminology, Chapter 5

investigates using LLMs for terminology-constrained automatic post-editing of translations gen-

erated by other MT systems. As shown in Chapter 4, when the original translation quality of an

LLM is much lower than that produced by an (encoder-decoder) MT model for a language pair,

starting from this strong baseline and trying to improve it can reveal better results (cf. Section

4.6). Nevertheless, this depends on the language and its level of support by the LLM. As stated

in Chapter 4 and Chapter 5, real-time adaptive MT is not a replacement for fine-tuning. Hence,

starting with fine-tuning, when possible, should be more efficient as the original translation quality

of a model will be better, which minimises the need for post-editing. As serving multiple models

in production can be challenging, the optimal scenario would be to fine-tune an LLM on both

zero-shot and few-shot translation data. As demonstrated in Section 4.13, this can help improve

not only its ability to produce high-quality zero-shot translation, but also to improve its in-context

learning capability to adapt to a range of translation-related instructions.
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In the future, I would like to further focus on relevant topics, elaborated in the following

sections.

6.2.1 MT adaptation for multilingual and low-resource settings

I aim to investigate the aforementioned approaches in multilingual and/or low-resource set-

tings. During my PhD, I worked with more than 20 language pairs. In respect of my research

questions, I already experimented with some low-resource languages, such as Czech and Kin-

yarwanda. Moreover, I co-authored a couple of works on MT for low-resource languages. For

example, in our work (Haque et al., 2020a), we applied domain adaptation to an English-to-Hindi

MT system. To this end, we used terminology to select relevant target sentences for the AI domain,

generated the sources with back-translation, and finally applied mixed fine-tuning of the generic

model, which improved the translation quality for the AI domain while retaining the translation

quality of generic texts. Similarly, in our work (Öktem et al., 2022), we built NMT systems for

a very low-resource language, Ladino, utilising diverse data augmentation approaches, employ-

ing rule-based MT and back-translation. We collected data in English-to-Spanish and Turkish-

to-Spanish language pairs, since Spanish shares a wide range of linguistic characteristics with

Ladino. Then, we used a rule-based system to translate Spanish to Ladino. This process resulted

in English-to-Synthetic-Ladino and Turkish-to-Synthetic-Ladino datasets, which I used later for

building NMT models. Furthermore, I have experience with building a multilingual MT model2

for 10 low-resource Indic languages.3 Multilingual models can exploit the similarity between lan-

guages and particularly benefit low-resource languages (Imankulova et al., 2019; Liu et al., 2020;

Gala et al., 2023).

Text generation for low-resource languages can be challenging, since some major LLMs lack

decent support for such languages (Moslem et al., 2023a; Robinson et al., 2023). As the quality

of synthetic data generated affects the quality of the MT model fine-tuned on such data, applying

the same approach I used in my research (Moslem et al., 2022a) might not work out of the box.

Among the research directions to consider is to start by fine-tuning the LLM on monolingual data

2Notes on multilingual MT: https://blog.machinetranslation.io/multilingual-nmt/
3MT demo: https://www.machinetranslation.io/
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in the low-resource target language or a mix of monolingual data in both the source and target

languages. Then the fine-tuned model can be used for text generation. Nevertheless, it is always

important to evaluate the generated synthetic data through both human linguistic analysis and

automatic quality estimation before using it for fine-tuning.

Similarly, real-time adaptive MT for low-resource languages might benefit from the availabil-

ity of target-side monolingual data. Hence, instead of feeding the model with similar sentence

pairs, monolingual sentences with higher similarity to the source can be used to adapt the trans-

lation. This would require multilingual embeddings to calculate similarity between monolingual

data in the target language and the input text in the source language. Moreover, I recommend ex-

perimenting with extracting chunks of short bilingual phrases of a low-resource language, and then

prompting an LLM to use these phrases either during translation or text generation. Augmenting

NMT systems with phrases can be useful in diverse scenarios (Gupta et al., 2021; Ghazvininejad

et al., 2023; Puduppully et al., 2023).

6.2.2 Domain-specific word-level autosuggestions and autocompletion

In Chapter 3, I concluded that random sampling can improve word-level auto-completion

using generic NMT models. In the future, I hope to investigate the effect of incorporating domain

adaptation into this process. Potentially, fine-tuning the baseline model on in-domain data can

achieve better performance on the test dataset of the same domain, especially when combined

with random sampling.

6.2.3 Analysis of critical errors and text generation for difficult-to-translate words

The core of this idea is first defining critical errors in translation of in-domain texts (e.g. in the

medical domain) and then fixing these errors. In their work, Fadaee and Monz (2018) introduced

variations of sampling strategies targeting difficult-to-predict words using prediction losses and

frequencies of words. In addition, they also target the contexts of difficult words and sample sen-

tences that are similar in context. They proposed a two-stage approach, identifying difficult words

and sampling with the objective of increasing occurrences of these words, and identifying contexts
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where these words are difficult to predict and sample sentences similar to the difficult contexts.

With targeted sampling of sentences for back-translation, their approach achieved improvements

of up to 1.7 BLEU points over back-translation using random sampling. Similarly, Huck et al.

(2019) started by translating the new text and finding out-of-vocabulary words (OOVs). Then,

they translated them using bilingual word embeddings. Afterwards, they used the 5-best target

words as queries to mine target sentences, and back-translated these sentences, forcing the back-

translation of each of the five proposed target OOVs to be the original source OOV. Finally, they

used this synthetic data to fine-tune the system. As a result, the translation of OOVs was sig-

nificantly improved. To boost the quality of target-to-source word alignments of attention-based

models, researchers proposed guided alignment training (Chen et al., 2016; Garg et al., 2019).

In this sense, we can improve the robustness of the MT model by finding such difficult words,

and then using them or their full sentences for text generation, or for prompting LLMs through

in-context learning. The idea is similar to my previous work (Moslem et al., 2023a,c), where I

used pre-approved terminology to enhance the translation quality. However, it goes beyond ter-

minology to consider other error categories. For example, these problematic words can be named

entities (e.g. person, location, organisation, product) in the medical domain, or untranslatables

(e.g. websites, email addresses, or phone numbers of hospitals in a certain country). Words or

phrases that are difficult to translate can be automatically defined as in Fadaee and Monz (2018),

or using human annotation of a sample dataset. They can also be extracted from localisation com-

ments that are originally authored by software developers to provide rules or hints for localisers.

While the idea can be employed to improve MT models through leveraging LLMs, the same con-

cept can be applied to knowledge distillation from a larger teacher LLM to a smaller student LLM

to enhance efficiency.

6.2.4 Improving random sampling via simulated annealing

For word-level auto-completion and to complement our previous work (Moslem et al., 2022b),

I will investigate using simulated annealing. In the beginning, we will allow the search process to

explore less-probable options, and it will not always choose the token with the highest probability.

Towards the end of the translation, the model will usually choose the option with the highest
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probability. Sampling temperature and potentially top-k/top-p parameters can control this. This

idea can also be investigated to improve the quality of text generation using pre-trained language

models (Moslem et al., 2022a).

6.2.5 Domain-Specific Efficient Fine-tuning of LLMs

Several researchers have demonstrated the abilities of LLMs for diverse translation tasks (Ak-

ter et al., 2023; Bawden and Yvon, 2023; Cheng et al., 2023; He et al., 2023; Hendy et al., 2023;

Hoang et al., 2023; Jiao et al., 2023b; Koneru et al., 2023; Kumar et al., 2023; Moslem et al.,

2023a; Peng et al., 2023; Sia and Duh, 2023; Tan et al., 2023; Vilar et al., 2023; Wang et al.,

2023a; Zhu et al., 2023). Nevertheless, fine-tuning LLMs specifically for MT tasks can help im-

prove translation quality and efficiency (Moslem et al., 2023b). So far, training LLMs to work

better with MT mostly involves either: (i) pre-training an LLM to work with zero-shot MT (Li

et al., 2023a; Schioppa et al., 2023); or (ii) fine-tuning LLMs with the purpose of improving zero-

shot capabilities (Sia and Duh, 2022; Alves et al., 2023; Iyer et al., 2023; Jiao et al., 2023a; Li

et al., 2023b; Xu et al., 2023; Yang et al., 2023b; Zhang et al., 2023b). Moreover, there are several

works that investigate pre-training or fine-tuning encoder-decoder MT models for adaptive MT

(cf. Section 1.4: Research Context), and there is at least one work that compares this with using

in-context learning of LLMs for adaptive MT (Reinauer et al., 2023). However, there is still a need

for research that instead investigates fine-tuning available open-source models to enhance their in-

context learning ability for real-time adaptive MT and compares this to current approaches. To this

end, these models can be fine-tuned to perform better at in-context learning scenarios, where spe-

cial prompt templates incorporate in-domain sentences, phrases, or terminology. In Section 4.13,

I demonstrated that with a relatively small dataset that incorporates a mix of zero-shot and one-

shot prompts, fine-tuning significantly enhances Mistral’s in-context learning ability, especially for

real-time adaptive MT (Moslem et al., 2023b). This direction can improve both translation quality

and efficiency, especially as fewer examples might be required for in-context learning. Moreover,

both inference and fine-tuning of the largest LLMs can be challenging. Hence, knowledge distilla-

tion approaches that transfer robust in-context learning features from stronger teachers to smaller

students for the purpose of adaptive and interactive MT should be investigated.

102



Chapter 6. Conclusions and Future Work

Accordingly, I can start by fine-tuning an LLM for zero-shot, one-shot, two-shot translation,

and then build on this. The model used can be at least one encoder-decoder model, e.g. NLLB-

200 (Costa-jussà et al., 2022), and one decoder-only model, e.g. BLOOM (Le Scao et al., 2022).

Furthermore, I can compare other models like Llama (Touvron et al., 2023b), Falcon (EN-DE-ES-

FR) (Penedo et al., 2023), Mistral/Mixtral (EN-DE-ES-FR-IT) (Jiang et al., 2023), Jais (AR-EN)

(Sengupta et al., 2023), Baichuan (ZH) (Yang et al., 2023a), and/or Qwen (ZH) (Bai et al., 2023).

I am interested in conducting an in-depth investigation into fine-tuning LLMs to enhance their

domain-specific in-context learning capability, and improve their ability to work better in adaptive

MT scenarios. To this end, I would like to conduct a range of experiments, including: instruction

fine-tuning on the in-domain data only; instruction mixed fine-tuning on the in-domain data and

a randomly sampled portion of the original generic data, over-sampling the in-domain data; and

investigating diverse scenarios of boosting in-context learning for adaptive MT, ranging from zero-

shot and few-shot translation to integration of terminology and in-domain monolingual data.

The aforementioned experiments should employ efficient fine-tuning approaches (Wan et al.,

2023) such as QLoRA (Hu et al., 2021; Dettmers et al., 2023). I would like to apply the ex-

periments to a range of diverse languages, including high-resource, medium-resource, and low-

resource languages, as well as different domains. Preliminary experiments in this direction demon-

strate promising results (cf. Section 4.13).

Among the benefits of fine-tuning open-source LLMs are efficient self-hosting. In other

words, those who would like to serve their own LLMs for privacy reasons can utilise an open-

source model, and efficiently achieve quality gains comparable to those of strong commercial

LLMs. Moreover, so far, for very high-resource languages, LLMs can be used independently.

However, for other languages, a hybrid approach using both conventional MT models and LLMs

leads to better results, which means we have to deploy/use two models at translation time. If fine-

tuning a small “standalone” LLM is possible for both regular (zero-shot) and adaptive (one-shot

or few-shot) translation, this would be much more efficient. In addition, researchers can definitely

build on this direction rather than having to rely on closed models. Open-source research can lead

to more interpretability as we know better what is going on in the background.
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6.2.6 Cross-Lingual Retrieval-Augmented Generation

Retrieval-augmented MT or cross-lingual generation is crucial in diverse scenarios. For exam-

ple, legal companies receive huge amounts of documents in one language while they are operating

in another language. In such case, they want a quick way to retrieve information in their work-

ing language. However, translating them manually is time-consuming and expensive. It can lead

to inaccuracies and delays due to the complexity and specificity of legal terminology. Similarly,

refugees and immigrants need to retrieve information, e.g. about health and education, in the host-

ing countries. However, they might require mass information from different countries, and they

need to receive this information in their native languages.

Advances in technology have made it possible to use MT for this purpose to quickly translate

large volumes of text, making it easier for legal professionals to access the information they need.

Due to the specificity and importance of legal documents, these translations often still need to be

reviewed or edited by human translators. However, if information retrieval is successfully used,

only the documents that matter most to the case at hand can be professionally translated.

Employing information retrieval approaches such as semantic search entails that users would

receive results that refer them to the most probable documents. Such an outcome can suffice if the

user is seeking information in the style provided by search engines. Nowadays, users might prefer

retrieving information in a more comprehensive way that probably summarises the whole docu-

ment, relevant portions of the document, or even multiple documents, in a cross-lingual manner.

In this future work, I aim to understand the effect of using multilingual information retrieval

approaches in combination with LLMs to retrieve information based on legal or medical queries.

In other words, I would like to investigate the effect of initially employing MT before retrieving

information with semantic search versus merely using multilingual embeddings, while the final

output is generated by a multilingual LLM. Analysing the quality of the generated output by the

LLM based on the retrieved information can help understand whether explicit MT is still required,

or whether the use of cross-lingual semantic search based on multilingual embedding is sufficient

while using a multilingual LLM to generate the final output.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou (2019). Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data. 7(3):535–547, IEEE Transactions on Big Data, 7(3):535–547.

Marcin Junczys-Dowmunt (2018). Dual Conditional Cross-Entropy Filtering of Noisy Parallel Corpora.
In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 888–895,
Belgium, Brussels. Association for Computational Linguistics.

Karima Kadaoui, Samar M Magdy, Abdul Waheed, Md Tawkat Islam Khondaker, Ahmed Oumar El-
Shangiti, El Moatez Billah Nagoudi, and Muhammad Abdul-Mageed (2023). TARJAMAT: Evaluation
of Bard and ChatGPT on Machine Translation of Ten Arabic Varieties. In The First Arabic Natural
Language Processing Conference (ArabicNLP 2023), Sentosa, Singapore.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis (2021). Nearest Neigh-
bor Machine Translation. In Proceedings of the 9th International Conference on Learning Representa-
tions (ICLR), Virtual.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell (2017). Overcoming catastrophic forgetting in neu-
ral networks. Proc. Natl. Acad. Sci. U. S. A. 114(13):3521–3526, Proc. Natl. Acad. Sci. U. S. A.,
114(13):3521–3526.

Guillaume Klein, François Hernandez, Vincent Nguyen, and Jean Senellart (2020a). The OpenNMT Neural
Machine Translation Toolkit: 2020 Edition. In Proceedings of the 14th Conference of the Association for
Machine Translation in the Americas (Volume 1: Research Track), pages 102–109, Virtual. Association
for Machine Translation in the Americas.

Guillaume Klein, Dakun Zhang, Clément Chouteau, Josep Crego, and Jean Senellart (2020b). Efficient and
high-quality neural machine translation with OpenNMT. In Proceedings of the Fourth Workshop on Neu-
ral Generation and Translation, pages 211–217, Stroudsburg, PA, USA. Association for Computational
Linguistics.



Rebecca Knowles, John Ortega, and Philipp Koehn (2018). A Comparison of Machine Translation
Paradigms for Use in Black-Box Fuzzy-Match Repair. In Proceedings of the AMTA 2018 Workshop on
Translation Quality Estimation and Automatic Post-Editing, pages 249–255, Boston, MA. Association
for Machine Translation in the Americas.

Catherine Kobus, Josep Crego, and Jean Senellart (2017). Domain Control for Neural Machine Translation.
In Proceedings of Recent Advances in Natural Language Processing, pages 372–378, Varna, Bulgaria.

Philipp Koehn (2009). A process study of computer-aided translation. Mach. Transl. 23(4):241–263, Mach.
Transl., 23(4):241–263.

Philipp Koehn and Rebecca Knowles (2017). Six Challenges for Neural Machine Translation. In Proceed-
ings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Sai Koneru, Miriam Exel, Matthias Huck, and Jan Niehues (2023). Contextual Refinement of Trans-
lations: Large Language Models for Sentence and Document-Level Post-Editing. arXiv preprint
arXiv:2310.14855 [cs.CL].

Taku Kudo (2018). Subword Regularization: Improving Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson (2018). SentencePiece: A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A Choquette-Choo, Katherine
Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, and Orhan Firat (2023). MADLAD-400:
A Multilingual And Document-Level Large Audited Dataset. arXiv preprint arXiv:2309.04662 [cs.CL].

Aswanth Kumar, Ratish Puduppully, Raj Dabre, and Anoop Kunchukuttan (2023). CTQScorer: Combining
Multiple Features for In-context Example Selection for Machine Translation. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2023, pages 7736–7752, Singapore. Association for
Computational Linguistics.

Guillaume Lample and Alexis Conneau (2019). Cross-lingual Language Model Pretraining. In Advances
in Neural Information Processing Systems (NeurIPS 2019), volume 32, Vancouver, Canada. Curran As-
sociates, Inc.

Philippe Langlais, George Foster, and Guy Lapalme (2000). TransType: a Computer-Aided Translation
Typing System. In ANLP-NAACL 2000 Workshop: Embedded Machine Translation Systems.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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José G C de Souza, and André F T Martins (2023). Empirical Assessment of kNN-MT for Real-World
Translation Scenarios. In Proceedings of the 24th Annual Conference of the European Association for
Machine Translation, pages 115–124, Tampere, Finland. European Association for Machine Translation.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xiaofei Sun, Tianwei Zhang, and Jiwei Li (2022). Fast
Nearest Neighbor Machine Translation. In Findings of the Association for Computational Linguistics:
ACL 2022, pages 555–565, Dublin, Ireland. Association for Computational Linguistics.

Elise Michon, Josep Crego, and Jean Senellart (2020). Integrating Domain Terminology into Neural Ma-
chine Translation. In Proceedings of the 28th International Conference on Computational Linguistics,
pages 3925–3937, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Luis Mondragón (2021). TM2TB: Bilingual term extraction and matching with spaCy and sentence trans-
formers. GitHub. doi:””.

Robert C Moore and William Lewis (2010). Intelligent Selection of Language Model Training Data. In
Proceedings of the ACL 2010 Conference Short Papers, pages 220–224, Uppsala, Sweden. Association
for Computational Linguistics.

Yasmin Moslem, Rejwanul Haque, John Kelleher, and Andy Way (2022a). Domain-Specific Text Gener-
ation for Machine Translation. In Proceedings of the 15th biennial conference of the Association for
Machine Translation in the Americas (Volume 1: Research Track), pages 14–30, Orlando, USA. Associ-
ation for Machine Translation in the Americas.

Yasmin Moslem, Rejwanul Haque, John D Kelleher, and Andy Way (2023a). Adaptive Machine Translation
with Large Language Models. In Proceedings of the 24th Annual Conference of the European Associ-
ation for Machine Translation, pages 227–237, Tampere, Finland. European Association for Machine
Translation.

Yasmin Moslem, Rejwanul Haque, and Andy Way (2020). Arabisc: Context-Sensitive Neural Spelling
Checker. In Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educa-
tional Applications, pages 11–19, Suzhou, China. Association for Computational Linguistics.

Yasmin Moslem, Rejwanul Haque, and Andy Way (2022b). Translation Word-Level Auto-Completion:
What Can We Achieve Out of the Box? In Proceedings of the Seventh Conference on Machine Trans-
lation (WMT), pages 1176–1181, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Yasmin Moslem, Rejwanul Haque, and Andy Way (2023b). Fine-tuning Large Language Models for Adap-
tive Machine Translation. arXiv preprint arXiv:2312.12740 [cs.CL].

Yasmin Moslem, Gianfranco Romani, Mahdi Molaei, John D Kelleher, Rejwanul Haque, and Andy Way
(2023c). Domain Terminology Integration into Machine Translation: Leveraging Large Language Mod-
els. In Proceedings of the Eighth Conference on Machine Translation, pages 902–911, Singapore. Asso-
ciation for Computational Linguistics.

Yongyu Mu, Abudurexiti Reheman, Zhiquan Cao, Yuchun Fan, Bei Li, Yinqiao Li, Tong Xiao, Chunliang
Zhang, and Jingbo Zhu (2023). Augmenting Large Language Model Translators via Translation Mem-
ories. In Findings of the Association for Computational Linguistics: ACL 2023, pages 10287–10299,
Toronto, Canada. Association for Computational Linguistics.



Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel (2022). Crosslingual Generalization through Multitask Finetuning. arXiv preprint
arXiv:2211.01786 [cs.CL].

Martin Müller and Florian Laurent (2022). Cedille: A large autoregressive French language model. arXiv
preprint arXiv:2202.03371 [cs.CL].

Prashanth Nayak, Rejwanul Haque, John D Kelleher, and Andy Way (2023). Instance-Based Domain
Adaptation for Improving Terminology Translation. In Proceedings of Machine Translation Summit
XIX: Research Track, pages 222–231, Macau SAR, China. Association for Machine Translation in the
Americas.

Mariana Neves, Antonio Jimeno Yepes, Amy Siu, Roland Roller, Philippe Thomas, Maika Vicente Navarro,
Lana Yeganova, Dina Wiemann, Giorgio Maria Di Nunzio, Federica Vezzani, Christel Gerardin, Rachel
Bawden, Darryl Johan Estrada, Salvador Lima-lopez, Eulalia Farre-maduel, Martin Krallinger, Cristian
Grozea, and Aurelie Neveol (2022). Findings of the WMT 2022 Biomedical Translation Shared Task:
Monolingual Clinical Case Reports. In Proceedings of the Seventh Conference on Machine Translation
(WMT), pages 694–723, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational
Linguistics.

Sharon O’Brien (2022). How to deal with errors in machine translation: Post-editing. In Machine transla-
tion for everyone, pages 105–120. Language Science Press.

Jessica Ojo and Kelechi Ogueji (2023). How Good are Commercial Large Language Models on
African Languages? In Proceedings of the 4th Workshop on African Natural Language Processing,
AfricaNLP@ICLR 2023, Kigali, Rwanda.
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