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Abstract

“Exploring Synthetic Image Generation for Training Computer Vision
Models under Data Scarcity”

Enric Moreu

This thesis presents research conducted in the area of synthetic data generation
for computer vision tasks. The research aims to address the challenge of data-
hungry deep learning models by generating synthetic images that can effectively train
computer vision models to solve tasks such as object counting, polyp segmentation,
and pattern classification. The work carried out explores the use of various techniques
to ensure effective use of synthetic data, including domain randomisation and domain
adaptation in both self- and semi-supervised setups. Through the application of
these techniques, the research aims to develop a robust and effective approach for
generating synthetic data that can improve the performance of computer vision
models with a reduced amount of human annotations.
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Chapter 1

Introduction

1.1 Computer Vision Applications

Computer vision is a well-established but rapidly growing field that enables computers

to interpret and understand visual data from the real-world. This includes tasks

such as classification, detection, and segmentation, among others (see Figure 1.1).

The rise of computer vision has been driven by factors, including the availability of

large amounts of data, the development of powerful machine learning algorithms,

and the increasing ability of computers to process data efficiently. The applications

of computer vision are diverse and range from consumer applications, such as those

used in image and video search engines, to more specialised uses in industries such

as healthcare, manufacturing, and security. As the field of computer vision continues

to grow and evolve, its applications are likely to become even more widespread and

impactful.

In this section, a formal introduction to some relevant tasks within computer

vision [3], including classification, detection, segmentation, and counting is provided.

1.1.1 Classification

Given a classification dataset D comprising pairs (xi, ci) where xi denotes an image

and ci represents the class label, a model determines the category or class of the

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Object instance segmentation sample from He et al. [1]. The algorithm
us applied on an image from the COCO dataset [2].

entire image. For instance, if we’re classifying images like ’cat’ and ’dog’, the output

for an image xi would be either ’cat’ or ’dog’:

ci ∈ {’cat’, ’dog’}

Chapter 6 is focused on the classification task for fashion pattern classification

using synthetic data. Synthetic images and labels (xi, ci) are used to train the model.

1.1.2 Detection

In the context of object detection, D consists of pairs (xi, Bi), where xi is an image

and Bi is a set of bounding boxes with corresponding class labels. The aim is to

identify and localize multiple objects within the image. Given an image xi, the model

predicts bounding boxes bj and their associated class labels cj:

Bi = {(bj, cj)|bj is the bounding box and cj is the class label for the jth object in xi}

2



CHAPTER 1. INTRODUCTION

This allows the model to detect and classify multiple entities within a single

image, providing spatial information about where each entity is located.

1.1.3 Semantic segmentation

In semantic segmentation, D comprises pairs (xi, yi) of images and segmentation

masks. The objective is to predict a label for each pixel x
(n,m)
i , its corresponding

label y
(n,m)
i would belong to one of the predefined categories, such as ’car’, ’tree’,

’road’, etc.:

y
(n,m)
i ∈ {’car’, ’tree’, ’road’, . . . }

The primary goal is to segment the image based on semantic meaning, differenti-

ating between distinct object classes and the background. Chapters 3, 5, and 5 are

focused on the semantic segmentation task for colorectal polyps.

1.1.4 Instance segmentation

Instance segmentation can be considered an extension of semantic segmentation.

While semantic segmentation predicts a class label for each pixel, instance segmenta-

tion also differentiates between distinct instances of the same class. Given D with

pairs (xi, zi), a model predicts not just the class label but also an instance identifier

for each pixel. For instance, two cars in an image would have the same class label

’car’ but different instance identifiers:

z
(n,m)
i = (y

(n,m)
i , iid)

Where y
(n,m)
i is the class label and iid is the instance identifier. This distinction

allows for understanding both the kind of object and its unique occurrence in an

image.

3
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1.1.5 Object counting

Object counting is the task of quantifying the number of specific objects present

within an image or sequence of images. Given D with image and object pairs (xi, Oi),

where xi represents an image and Oi is a set of object instances, a model aims to

determine the cardinality of Oi, denoted as |Oi| for each image:

∀xi ∈ D : Count(xi) = |Oi|

Unlike detection, where the spatial positioning of each object is of primary concern,

or segmentation, which focuses on delineating the precise boundaries of objects,

counting emphasizes the quantification of instances. It’s particularly challenging in

scenarios where objects overlap or are densely packed, making individual distinction

difficult. Chapter 2 is focused on the object counting task for people, vehicles, fruit,

and animals.

1.2 Convolutional Neural Networks

Building upon the foundations of computer vision, it’s important to note that its

recent advancements have been largely fuelled by the emergence of Convolutional

Neural Networks (CNNs) [4]. These are a specific type of neural network designed

to process data with a grid-shaped structure, such as images.

CNNs contain multiple grid-shaped layers of interconnected nodes or neurons.

These networks can learn representations of data in a layered hierarchy, with higher

layers capturing more abstract and composite features. The depth of these networks,

meaning the number of layers, has played a crucial role in their ability to perform

complex tasks. The operation of a neuron in a layer can be described as:

y = f

(∑
i

wixi + b

)

where xi are the input values, wi are the weights, b is a bias term, and f is an
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activation function such as the rectified linear unit [5]. The combination of these

simple mathematical operations across numerous neurons and layers enables the

network to model complex non-linear relationships.

In the context of a two-dimensional image, a convolution involves the use of a

filter or kernel to slide over the image. Given an image matrix I and a filter matrix

F , the convolution operation for a specific position is computed as:

(C ∗ F )(x, y) =
∞∑

i=−∞

∞∑
j=−∞

I(i, j) · F (x− i, y − j)

Where (C ∗ F )(x, y) is the output feature map after the convolution operation.

The filter, usually a small matrix, identifies certain features from the input matrix

based on how it’s trained.

Training a deep neural network involves the use of algorithms like backpropagation

[6]. Given a dataset, the network makes a prediction, and the error between this

prediction and the true label is computed using a loss function. Backpropagation,

combined with optimisation techniques such as stochastic gradient descent [7], adjusts

the weights of the network to minimize this error.

One of the main reasons that CNNs are so effective is that they can automatically

learn the features that are relevant for a given task, rather than requiring the features

to be manually designed by a human. This is useful for tasks where abstract features

that are important for the application are hard for a human to define. Additionally,

CNNs can take advantage of the spatial structure of the data, which is important

for tasks such as object recognition, where the relative position of the objects in the

image is important.

However, there are some challenges associated with CNNs. They require a large

amount of data to be trained effectively. This can be a problem because it can

be difficult and time-consuming to collect and annotate large amounts of data,

especially for tasks that require specialised knowledge or expertise, such as medical

imaging. In addition, using large amounts of data raises privacy concerns, as it may

be difficult to ensure that personal data is protected when it is used for training a
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CNN. Furthermore, the performance of a CNN can vary depending on the quality

and diversity of the data, so it is important to curate the data used for training

carefully. For example, when training a vision model for a self-driving car, it is

equally important to use images with cloudy weather and sunny weather.

1.3 Synthetic data

Synthetic data is any sample that is not obtained by direct measurement in the

physical world. In the context of computer vision, synthetic data can be generated

using software that produces images that bear a resemblance to real-world images (see

Figure 1.2). The use of synthetic data can help to solve some of the above-mentioned

challenges associated with training CNNs.

Figure 1.2: Sample from the GCC synthetic dataset [8] generated using a game
engine.

One of the key benefits of using synthetic data is that it can be generated in

large quantities. This allows CNNs to be trained on a much larger amount of data

than would be possible using real-world data alone. In addition, synthetic data

does not require any sensitive or private information during its generation. Hence,

synthetic datasets can ensure that no personal information is used to train the

model. Furthermore, because synthetic data is generated using algorithms, it can be

generated with a wide range of random variations, allowing CNNs to be trained on
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diverse and varied data sets. This can help to improve the performance of the CNN,

as it will be better able to handle a wider range of inputs.

Last but not least, synthetic data can be automatically annotated during the

synthetic data generation process. This is important because one of the challenges

of training CNNs is the need for large amounts of annotated data, which can be

time-consuming and labour-intensive to produce. By using synthetic data, the

annotations can be generated automatically, which can save time and effort. For

example, a human annotator can spend up to 7 minutes [9] to annotate all the pixels

in an image while a rendering engine can do this in less than a second and in an

error-free manner.

1.3.1 Domain shift

While synthetic data can be useful for some purposes, it is not always useful for

computer vision tasks. One of the reasons for this is the “domain shift”, also referred

to as “domain gap” or “reality gap”.

Domain shift is a problem that arises when the distribution of data in the training

set differs from the distribution of data in the test set. This can reduce performance

because a model that is trained on one distribution of data may not perform well

on a different data distribution. In the context of synthetic data, domain shift can

be a problem because synthetic data is often generated under controlled conditions,

which can result in a distribution of synthetic data that differs from the distribution

of real-world data. As a consequence, the computer vision model won’t be able to

generalise properly because it will be biased by the synthetic data. For example, if a

model is trained on synthetic data that has been generated to have perfect lighting

and clear shapes, it may not perform well on real-world images that have low lighting,

noise, or blur – see Figure 1.3 for a comparison of a real and a synthetic image of an

urban environment.

Domain shift is a well-known problem in computer vision, and there are a variety

of techniques to overcome it, such as transfer learning or data augmentation. This
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Figure 1.3: Comparison of real-world image from the Cityscapes dataset [9] and
synthetic image from the Synthia dataset [10].

thesis studies how domain randomisation and domain adaptation techniques can

reduce the effects of domain shift when training on synthetic data.

1.4 Literature review

1.4.1 Deep Convolutional Networks

The concept of a neural network can be traced back to the perceptron model

introduced in the late 1950s by Rosenblatt et al. [11]. However, it wasn’t until the

advent of powerful computational hardware and large datasets that deep learning

truly began to flourish in the 2010s with AlexNet [12].

An important advancement in deep learning was the introduction of regularisation

techniques, like dropout [13]. Dropout involves randomly setting a fraction of input

units to 0 at each update during training, preventing overfitting and leading to a

more robust network. This form of regularisation was essential in ensuring that deep

networks generalize well to unseen data.

Another cornerstone in the evolution of deep learning is transfer learning [14],

where a pre-trained model on a large dataset is fine-tuned for a specific task with a

smaller dataset. This technique leverages the generic features learned by the model,
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reducing the need for large labelled datasets and computational resources in diverse

applications.

Deep learning, underpinned by these concepts and advancements, has become

the bedrock of numerous applications, from computer vision and natural language

processing to medical diagnosis and autonomous driving. Its capacity to extract

intricate patterns and representations from vast amounts of data has continually

pushed the boundaries of what machines can perceive and achieve.

One significant advancement in CNNs has been the inception of skip connections

[15]. In deep networks, training becomes challenging due to the vanishing and

exploding gradient problems, which can stagnate learning or even make it counter-

productive. Skip connections tackle this by providing an identity shortcut connection

that bypasses one or more layers. This approach not only alleviates the gradient

issues but also allows for the training of much deeper networks.

Another major enhancement has been the utilisation of dilated convolutions [16],

which can increase the receptive field of the network without increasing the number

of parameters or computational costs. Dilated convolutions expand the kernel by

introducing gaps, enabling the network to capture a broader context without the need

for pooling or increasing the convolutional kernel size. This has been particularly

useful for segmentation tasks where fine-grained spatial details are imperative.

In addition to these improvements, the application of normalisation techniques,

like batch normalisation [17], has revolutionised training dynamics. By normalising

the activations of each layer to maintain a mean of zero and a variance of one, batch

normalisation not only accelerates training but also mitigates the internal covariate

shift, which refers to the change in the distribution of network activations due to the

changing parameters during training.

1.4.2 Synthetic datasets for computer vision applications

Since the early days of computer vision, synthetic datasets have been used to avoid

gathering and annotating images from the real-world. This section reviews different
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approaches to generating synthetic datasets, from primitive 2D shapes to photo-

realistic images from a videogame.

Data augmentation is often used as a replacement for synthetic data because it

can significantly expand the size of the dataset. Data augmentation is the process

of performing simple operations to produce additional training data by rotating

the image, stretching it or altering the colours (see Figure 1.4). It is widely used

in deep learning because it can considerably improve generalisation. For example,

applying a simple horizontal flip to a dataset will double the amount of training data

available. Modern data augmentation techniques can increase the dataset size by a

magnitude of 2,048 as in AlexNet [12]. These operations can dramatically improve

the performance of the model because they increase the data available for training.

Figure 1.4: Data augmentation operations using the Albumentations package [18].
Sample from the Albumentations documentation.

Data augmentation can improve the performance of a model with very low

overhead since it only requires simple CPU operations to rotate or crop an image.

10
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However, data augmentation should be used with caution because it may alter the

nature of the image, e.g. stretching a healthy chest X-ray image will modify the

shape of the heart, potentially causing it to be classified as an anomaly. Last but not

least, data augmentation requires an existing dataset from the real world to generate

variations of the data.

It is worth noting that data augmentation is not exactly the same as synthetic

data. While both methods are useful for creating new training data, synthetic data

is generated from scratch, while data augmentation uses the existing data to create

new samples. Synthetic data also provides additional benefits, such as privacy and

security protection.

One of the early studies that exclusively used synthetic images was conducted by

Pomerleau [19] in 1991, who used a computer graphics program to generate 1,200

synthetic images of roads and trained a neural network to identify road features like

signs and lanes. Pomerleau found that the neural network trained on synthetic data

performed well on real-world data, demonstrating the potential of synthetic data for

training and evaluating machine learning algorithms.

Rahnemoonfar et al. [20] generated a synthetic dataset for fruit counting using

simple 2D primitive shapes (see Figure 1.5). The synthetic dataset is composed of

24,000 images representing tomatoes on a green background. For each image, an

annotation is generated based on the number of red circles used (the number of

tomatoes).

Figure 1.5: Generation of a synthetic image for counting tomatoes using simple 2D
circles by Rahnemoonfar et al. [20].

With the ongoing rapid evolution of modern rendering engines [21], 3D-based

synthetic datasets provide additional features like realistic lighting and camera effects
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such as perspective or blur. MPI Sintel [22] is an animation film generated with 3D

software that the authors released as a synthetic dataset, including the flows, depth,

occlusions, and other useful data alongside the film (see Figure 1.6). It is one of the

main benchmarks for the task of optical flow prediction. Optical flow is the task

of estimating the movement between two images, typically consecutive frames of

a video. An optical flow model produces a map of the direction and magnitude of

movement for each pixel between the two frames.

Figure 1.6: Sample from the Sintel [22] dataset

The Flying Chairs dataset [23] is also used for optical flow estimation. It is

composed of 22,872 image pairs generated with backgrounds from Flickr and 3D

models of chairs from ShapeNet [24] with random displacements and rotations. More

complex versions of The Flying Chairs dataset were subsequently generated, including

other objects, realistic lighting, and improved background. Figure 1.7 displays a

sample from the FlyingThings3D dataset [25], which is an extended version of the

Flying Chairs dataset that contains a wider variety of 3D models. In addition, the

background is composed of large textured primitive shapes, rather than plain images.

However, optical flow models are extremely sensitive to the distribution of move-

ments in the training dataset. Mayer et al. [26] found that if the distribution of

movements in the training dataset is significantly different from the distribution of

movements in the test dataset, the model may not perform well on the test data
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Figure 1.7: Sample from the FlyingThings3D dataset [25] for optical flow estimation.

and may produce poor results. This is because the model has not been exposed to a

sufficient variety of movements during training and is not able to generalise well to

new situations. For example, an optical flow prediction model trained on a video of

a tennis match will perform well on similar datasets with limited movements (e.g.

players and ball), but may not generalise to other types of sports videos with diverse

movements.

Richter et al. [27] produced 25,000 synthetic images using the game engine from

the Grand Theft Auto V (GTA V)[27] videogame (see Figure 1.8). GTA V uses

realistic lighting and reflections combined with effects such as motion blur or lens

distortion. Although the GTA V dataset may appear photorealistic, the performance

of a computer vision model trained on it may not be as expected. One might assume

that investing more effort in generating more realistic data (e.g., using a team of 3D

artists and a custom render engine) would result in a model that performs better.

However, the performance of the model depends more on using the appropriate

machine learning techniques to address the domain shift effect, as demonstrated by

Wang et al. in their study [8]. The authors found that, without domain adaptation,

the performance of the model was poor even when the images were highly realistic.

If the right techniques are not used, the model may simply memorise the synthetic

traits that look realistic to humans (e.g., dynamic lighting, high-quality textures, or
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Figure 1.8: Samples extracted from the GTA V videogame for image segmentation[27].

high-poly models), but are not necessarily relevant for the target dataset.

The synthetic representation in Figure 1.9 illustrates how this problem may arise.

The argument made in the previous paragraph is that despite the complex features

of the simulated setting, which includes 3D models, lighting, shadows, and textures,

the model might incorrectly learn to identify anything with an asphalt texture as

a road. This could result in misidentification of real-world buildings with similar

textures as roads. Note that the asphalt texture in the synthetic image is uniform,

unlike real asphalt which varies in colour and may have different markings or debris.

The study by Geirhos et al. [28] supports the observation that CNNs often make

such errors by showing how an image of a cat is incorrectly classified as an elephant

because the model favours the use of texture recognition over other key features like

shape.

The model may learn details that are not important for the target domain but

only serve to impress human viewers.
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Figure 1.9: Sample from the Synthia dataset [10] simulating a urban environment.

1.4.3 Overcoming the Domain Shift Problem

Transfer learning is the most common approach to reduce the negative impact of

domain shift. First, a large model is trained on a source dataset from a source

domain where data and annotations are abundant. Then, the model is fine-tuned on

the target domain using a smaller dataset. The concept was first introduced in 1976

by Bozinovski et al. [29]. Transfer learning is especially effective when the target

domain is small or lacks annotated data. It also has the added benefit of speeding up

the training process. This is because the model is initialised with weights that have

already been trained on a large dataset, which allows it to converge faster towards

the target domain. One major limitation of transfer learning, however, is that it

requires a large, annotated dataset in the source domain, which may not always be

available.

An alternative to reducing the impact of domain shift is Domain Randomisation

(DR). It was first proposed by Tobin et al. [30] as a technique for reducing the domain

gap in computer vision tasks. They demonstrated the effect of varying the texture

of objects, background images, and lighting in a semantic segmentation task. The

goal of DR is to create sufficient variations in the synthetic data such that the model

views real data as just another variation, even if the variations used for training

may appear unrealistic to humans. If the model is trained on a sufficient number

of environments, it will perform well on novel ones. Domain randomisation can be
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seen as an advanced form of data augmentation and is especially effective when

the target domain is significantly different from the source domain. Figure 1.10

illustrates how Tremblay et al. [31] use DR to produce a synthetic dataset for urban

image segmentation by combining 3D models of vehicles with random 3D shapes and

textures.

Figure 1.10: Sample from a domain randomisation dataset [31]. Random 3D shapes
and textures are introduced in the scene to force the model to generalise better.

While domain randomisation is a useful technique for reducing the domain gap

and improving performance on the target domain, it has its limitations. For example,

it may not be practical to generate enough variations in synthetic data to cover

the full range of variations in the target domain. Additionally, the model may not

generalise well to the target domain if the variations used for training are significantly

different from those in the target domain.

To address these limitations, domain adaptation techniques [32] have been pro-

posed as an alternative approach for reducing the domain gap. Unlike domain

randomisation, domain adaptation aims to make the data more realistic. Domain

adaptation involves adjusting the source domain to the target domain using unsu-

pervised or semi-supervised learning methods. This approach is effective in reducing

the domain gap, especially when there is limited labelled data in the target domain.

Figure 1.11 illustrates the distinctions between domain adaptation and domain
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randomisation.

Figure 1.11: Diagram illustrating how domain adaptation and domain randomisation
can address the domain gap issue.

Before the development of GANs (Generative Adversarial Networks), Gatys et

al. [33] introduced style transfer: a method for manipulating images by combining the

style and content of two separate images. This approach, which served as a precursor

to GANs, involved using a CNN to extract the style and content representations of

each image, and then combining these representations to create a new image with

the desired style and content (see Figure 1.12). Style transfer has become a widely

used tool in the field of domain adaptation because it allows the target domain to

be set as the style.

Style transfer, however, is not particularly efficient, as it requires optimising

the combination of the style and content for each image. In contrast, GANs such

as CycleGAN [35] can perform image style transfer through inference, rather than
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Figure 1.12: Style transfer samples that combine the content of Chicago’s skyline
(first row) with the style of “The Great Wave off Kanagawa” by Hokusai (second
row) and “Mysterious Rain Princess” by Leonid Afremov (third row). Images were
generated using the Fast Style Transfer implementation [34].

optimisation, which makes them much faster and more efficient.

GANs [36] are considered to be a highly effective technique for domain adaptation.

A GAN is a type of neural network that consists of two parts: a generator and

a discriminator. These two parts work together in a min-max game, where the

generator tries to produce samples that are indistinguishable from the target domain,

while the discriminator tries to distinguish between the generated samples and

real samples from the target domain. The generator and discriminator continue to

improve and “compete” with each other until the generator can produce samples

that are indistinguishable from the real samples in the target domain.

Wang et al. [8] use CycleGAN to translate synthetic images of crowds to the

real-world domain. Their translation model learned a mapping between synthetic
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and real images in the context of crowded scenes. Unpaired image translation

models are effective for domain adaptation in computer vision tasks since they don’t

require one-to-one correspondence between the images in the two domains. Despite

the usefulness of CycleGAN, the lack of label information can make it difficult for

unpaired image translation models to accurately translate images with complex labels

like segmentation masks. More details about CycleGAN are provided in Chapter 3.

In conclusion, the use of synthetic data for computer vision has gained increasing

attention because CNNs require large datasets to achieve good performance. Us-

ing expensive 3D techniques to generate synthetic data does not always produce

satisfactory results, as the model may simply memorise the synthetic traits rather

than learning generalisable features. Among the various approaches that have been

proposed to address this problem, GAN-based methods have shown promising results

for domain adaptation.

The limitations mentioned in this section are addressed in this thesis, with a focus

on the difficulty of acquiring large annotated datasets. To overcome this challenge,

the use of synthetic data and domain randomisation is proposed as a cost-effective

solution for data generation. The limitations of domain adaptation techniques in

utilising real-world annotations in a semi-supervised manner are also addressed.

1.5 Hypotheses and Research Questions

This thesis proposes three hypotheses (H1, H2, H3), each of which requires a specific

research question (RQ1, RQ2, RQ3) to be investigated. These are outlined in the

following.

H1 (Chapter 2): It is possible to train a computer vision model exclusively using

low-poly synthetic data and without requiring experienced 3D artists and advanced

rendering engines.

RQ1: Can domain randomisation compensate for the lack of realism in

synthetic images and successfully train a computer vision model using
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low-quality 3D assets?

H2 (Chapters 3, 4): The incorporation of real-world annotations may enhance the

realism of images produced through domain adaptation techniques.

RQ2: What are some ways that domain adaptation can leverage informa-

tion from segmentation labels to generate images that are more realistic

and that are consistent with the segmentation labels?

H3 (Chapters 5, 6): Models trained using domain adaptation are exposed only

to a “transformed” version of the data distribution and never encounter genuine

real-world images. Assigning soft labels to images from the real world may help the

model to better understand the target domain.

RQ3: How can real-world data be incorporated into a domain adaptation

process to improve the generalisation capabilities of the model?

RQ1 is addressed in Chapter 2, RQ2 is addressed in Chapters 3 and 4. Finally,

RQ3 is addressed in Chapters 5 and 6.

1.6 Thesis structure

The remainder of the thesis is structured as follows. In Chapter 2, a domain

randomisation approach is applied to synthetic data for the task of counting vehicles,

penguins, people, and fruit. In Chapter 3, domain adaptation is presented as

an alternative to domain randomisation. This chapter addresses the detection of

colorectal polyps by using synthetic images and an image translation model. In

Chapter 4, a new label-aware method is proposed to generate improved synthetic

images for the polyp segmentation task. In Chapter 5, real-world images and

labels are incorporated into the model’s training to reduce the domain gap in polyp

segmentation. In Chapter 6, an example of a commercial application of the techniques

from the previous chapters is presented. Label-aware domain adaptation and pseudo-

labels are applied to the fashion pattern classification task. Chapter 7 provides a
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summary of the research in this thesis, a discussion of the research questions and

possible directions for future research on synthetic data.

Finally, Appendix A (Section 7.4) includes a technical framework that illustrates

how to produce synthetic data using computer graphics software. The framework is

designed to be easy to replicate, facilitating other researchers to quickly generate

synthetic data.
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Domain randomisation

In this chapter, the technique of Domain Randomisation (DR) is employed to address

Research Question 1 (RQ1) in the context of object counting. Object counting is

a particularly well-suited task for the exploration of DR techniques because of the

diversity of textures, occlusions, shapes, and high noise present in the majority of

object counting datasets. DR can reduce the impact of the domain gap by generating

highly variable samples at the cost of increasing the complexity of the task. The

objective of increasing variability is to expand the spectrum of possibilities of the

source domain whereby the real-world domain becomes just another variation. The

synthetic samples generated with this technique tend to look less realistic because

of the random textures, lighting, and backgrounds used. DR avoids photorealism,

minimising the need for artistic design. The work reported in this chapter has

been presented at the 29th Irish Conference on Artificial Intelligence and Cognitive

Science (AICS) [37]. The code to replicate the experiments is available in the online

repository of the paper.

2.1 Introduction

Object counting is a computer vision task the goal of which is to automatically

estimate the number of objects in an image or video. It has gained a lot of interest in

recent years because of its many potential uses: it can help to identify the congestion
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level in a shopping centre [38] (crowd counting), the level of traffic on a road [39]

(vehicle counting), the state of a harvest [20] (fruit counting), or even the state of a

penguin colony [40] (habitat monitoring).

The challenges of object counting are that the model has to learn all the variations

of the objects in terms of their size, shape, and pose whilst also dealing with occlusion

and perspective effects. Furthermore, object counting algorithms tend to overfit

because of the small amount of annotated data available, which degrades their

performance when applying the model to other slightly different domains.

To address the problems above, some counting algorithms are trained/pretrained

using synthetic data, which can be automatically annotated with perfect precision

for a range of domains, including those where collecting data is problematic.

People counting in particular has benefited from modern video games [27] because

they have abundant scenes of crowds in an urban context, which can be easily used

to produce synthetic datasets for counting people. However, video games often focus

on creating realistic environments filled with humans and vehicles, but they usually

don’t include penguins or apples. Because of this, the data produced by video game

engines isn’t helpful for realistic representations of these items. It is not practical to

create realistic datasets for many different tasks because of the significant manual

effort and production costs required [41]. However, some video games [27] allow

modifying the source code and upload custom 3D models. High-quality models that

are not present in the video game (e.g. an apple) can be uploaded as long as the 3D

model and textures are available.

Furthermore, models trained with synthetic images from a particular domain

perform poorly when tested on a different target domain because of the domain gap,

which, as discussed in Chapter 1, has posed considerable obstacles to real-world

adoption of synthetic data for computer vision applications. The main cause is that

convolutional neural networks introduce a bias towards textures [28], memorising

them instead of shapes. For object counting, understanding the shape of the items

is of paramount importance to address the challenges of overlapping objects and
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(a) Crowd counting (b) Vehicle counting

(c) Harvest study (d) Environmental survey

Figure 2.1: Synthetic images generated using the proposed domain randomisation
approach

occlusions. Textures provide less useful information because they tend to differ from

real-world textures, where the lighting and the details are more complex.

A domain randomisation approach for object counting is proposed in this chapter.

DR can be used to generate synthetic datasets for counting people, vehicles, penguins

and fruits. Figure 2.1 shows several examples of DR applied to different environ-

ments. The variability of the synthetic dataset is increased by applying random

textures, backgrounds and lighting effects to the 3D scene. Additionally, a set of 3D

transformations is applied to the 3D models. Transformations increase the variability

of the 3D models while preserving their inner shape, making the task more complex

during training but improving generalisation during testing. This approach achieves

excellent performance in real-world datasets of multiple domains.
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2.2 Related work

2.2.1 Object counting

Early object-counting algorithms mainly targeted crowd counting. They applied

detection-based approaches such as Regions with CNN Features (R-CNN) [1] and

You Only Look Once (YOLO) [42] to estimate the number of people in an image

and demonstrate satisfactory accuracy in sparse scenes. However, the performance

dropped on densely crowded scenes where people overlapped with heavy occlusion.

Alternative regression-based methods [43] can extract features (textures, gradients,

shapes) to overcome occlusion and learn a mapping function to evaluate how sparse the

scene is, but they ignore the spatial information. In general, CNN-based approaches

predict density maps to estimate the number of instances in the scene and use

the spatial information contained in the density map [44]. Currently, most of

the object counting state-of-the-art algorithms are based on fully convolutional

networks [45] combined with other techniques such as analising the context [46],

using the perspective information [47] or applying a multi-column architecture [38].

Later in this chapter, the counting performance is compared with state-of-the-art

algorithms. In the context of crowd counting, PGCNet [48] uses perspective-guided

convolution to better understand the spatial information of the scene. Instead of

applying a multi-scale architecture, they present a single scale that understands the

relationship between the camera and the crowd.

On the other hand, SANet [49] obtains the best results on the crowd counting

datasets with less density by combining multi-scale features with a local consistency

loss that enforces local structure limiting the pixel-wise error.

In the context of counting penguins, the best results are obtained by Marsden et

al. [50]. They train a single model that learns counting across multiple modalities

including people, penguins and cells. Using transfer learning, they enable cross-

domain features that can extrapolate to all domains.

Finally, FCN-rLSTM[51] obtains the best vehicle counting results by learning
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spatiotemporal features from multiple frames of a video. This method is very efficient

on low-resolution videos where there is high occlusion and large perspective.

2.2.2 Object counting datasets

Many object-counting datasets have appeared in recent years [38, 40, 39, 52], es-

pecially for crowd counting. In general, they are annotated with dots indicating

the position of the objects, e.g. crowd counting datasets define a dot on the head

of each person (see Figure 2.2). The annotation of object counting datasets is

expensive because it requires precise dot annotations performed by an expert, hence

the datasets tend to be small, as shown in Table 2.1.

SHT A [38] is a crowd-counting dataset collected from internet images. It is

composed of city scenes where each person in the crowd is annotated with one point

on the centre of the head. Similarly, SHT B[38] contains city images exclusively from

Shanghai annotated in the same manner.

The Counting in the Wild dataset [40] is composed of images from Anatartica

displaying penguins. The dataset has been annotated through crowd-sourcing by

tens of thousands of volunteers. The dataset shows a high degree of occlusion and

scale variation.

TRANCOS [39] is a vehicle counting dataset recorded by surveillance cameras

in Spain. The dataset shows traffic congestion situations with extreme overlapping.

The dataset also includes a video version where each frame is annotated.

MinneApple [52] is a dataset for apple detection and segmentation. The data has

been collected by the Horticultural Research Center at the University of Minnesota

in the United States. The images are extracted from a video captured with a phone

in the orchard. The camera moved at a slow speed to avoid motion blur.
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Figure 2.2: Annotated sample from crowd counting JHU-CROWD++ [53] dataset.

Dataset Images Resolution Avg. Count

SHT A (people) [38] 482 589 × 868 501.4
SHT B (people) [38] 716 768 × 1024 123.6
Penguins (penguins) [40] 80,095 2048 × 1536 7.2
TRANCOS (vehicles) [39] 1,244 640 × 480 36.5
MinneApple (apples) [52] 670 720 × 1280 42.1

Table 2.1: Details of the real-world datasets used to evaluate the proposed object
counting method

2.3 Domain Randomisation for Object Counting

The objective of DR is to generate enough variations of synthetic data that the model

views real data as just another variation, even if the variations used for training

appear unrealistic to humans. Expanding the spectrum of possibilities also raises

the complexity of the task, requiring a model with a higher capacity. If the model is

trained on a sufficient number of environments, it will interpolate well to novel ones.

This method can be considered as an evolved form of data augmentation.

This section presents the methodology for the generation of datasets utilising DR

techniques and the training of a model trained on this dataset for object counting.
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2.3.1 Scene creation

The DR datasets used for the experiments are generated using a mixture of 3D

models, textures, background images, and lighting effects. The 3D software to render

the scenes is Blender, which can be easily automated. 3D models used are low-poly

models, i.e. they have less than 200 faces, as shown in Figure 2.5. Using highly

realistic models, which can have thousands of faces, does not improve the results

while significantly increasing the rendering time. Low-poly 3D models are used

because they have a relatively smaller number of polygons and decrease the rendering

time. For instance, rendering a 3D scene with 500 models with 200 faces each, takes

2 seconds. On the other hand, rendering 500 models with a higher quality (20,000

faces each) takes around 3 hours.

In terms of performance, a comparison between the low-poly dataset from Figure

2.1 and a high-poly dataset is made. The high-poly dataset is generated with

MakeHuman [54] software (see Figure 2.3). The software allows the creation of

high-quality 3D models with customized clothes and body styles (gender, height, skin

colour, hair). An experiment shows that, although the high-poly images look more

realistic, they have a counting performance of 23.5 MAE compared to 23.2 MAE

with low-poly images on the SHT B [38] dataset. Figure 2.4 displays a sample from

the high-poly dataset, which took 94 hours to generate to generate 10,000 images

with around 20,000 faces.

In crowd counting datasets, persons that are occluded are omitted from the

ground truth, or more precisely, datasets designated for crowd counting exclude

individuals whose heads are not discernible. To replicate this, the dataset generation

algorithm evaluates when a particular vertex on the forehead is within the camera’s

field of view and is not occluded by other objects. In the synthetic ground truth, only

those objects with the specified vertex in the visible range are included in the count.

For the other domains (penguins, vehicles, and apples) all the models included in

the scene are considered in the synthetic ground truth, even if they are completely

occluded. This hardly occurs because the number of objects is low in these contexts
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Figure 2.3: MakeHuman [54] user interface to generate high-poly models.

compared to crowd counting (see Table 2.1). On 50 samples from the penguins and

vehicles synthetic datasets, only an average of 1.4 objects are occluded.

The low-poly 3D model’s structure is modified to produce more variations, some

of them unrealistic. The generated structures are, however, constrained to keep the

basic shape, e.g. humans with one head and two legs, otherwise the model will not

learn the inner properties of the object. Learning a vast amount of shapes improves

generalisation to novel scenarios. Figure 2.8 shows the different 3D transformations

used to produce the synthetic datasets: scale, randomisation, and extrusion. Scale

smoothly expands/contracts all the vertices on the same axis. It is useful when

objects tend to have very different sizes, e.g. adults tend to be twice as big as children.

The scale of every 3D model is determined by K ∼ U(1/No, 8/No) where U is a

uniform distribution and No is the number of objects in the image. Randomising

the vertices of the mesh translates all the vertices in different lengths and directions,

uniformly by a factor of 40%. This method improves the performance in environments

where the pose of the objects is variable, e.g. people can have multiple poses while
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Figure 2.4: Sample image with high-poly models generated with MakeHuman [54].

vehicles do not. Extrusion alters the surfaces of the mesh to increase the thickness

by adding depth. This helps to make objects bigger or smaller by adding bumps and

holes. We used the built-in Solidify transform in Blender and modified the thickness

by T where T ∼ U(−0.1, 0.5).

Textures from the “Describable Textures Dataset” [55] are applied on the 3D

models as shown in Figure 2.6. The dataset contains 5640 textures organised in

47 categories. Textures are mapped to the different parts of the 3D models, e.g.

hair, skin, shirt, pants. This technique helps DR to transcend realism by producing

unrealistic sets of randomly textured 3D models.

The 3D models are placed in the scene by sampling positions from a standard

(a) Human (b) Vehicles (c) Penguin (d) Apple

Figure 2.5: Low-poly 3D models used to create synthetic datasets
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Figure 2.6: Random textures from the Describable Textures Dataset applied on a
low-poly 3D model of a penguin

Figure 2.7: Synthetic crowd counting sample with random textures.

Gaussian mixture distribution as follows:

p(x) =
K∑
i=1

λi N (x | µi,Σi), (2.1)

where x is the three-dimensional x, y, z position, λi are the mixture component

weights, µi are the means, and Σi = I. The number of components K is sampled for

each scene as K ∼ U(1 +No/20, 2+No/8) where U is a uniform distribution and No

is the number of objects in the scene. The mean vectors are uniformly sampled from

the visible region. Figure 2.7 shows a synthetic scene of people in a single cluster.

This method creates occlusion in the clusters but also produces large empty areas
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(a) Scale (b) Randomisation (c) Extrude

Figure 2.8: 3D transformations used for domain randomisation.

where the background image is displayed. It also mimics how objects are distributed

on the real world, e.g. people are not uniformly distributed, they tend to form small

groups on the street[56]. Note that when the objects are distributed uniformly the

test Mean Absolute Error (MAE, see Section 2.5 for details) rises to 63.4 on the

SHT B dataset for crowd counting, compared with 23.2 using the Gaussian mixture

approach.

Images from the Places2 dataset [57] are used as the background image. The

dataset contains a wide range of scenes from 365 different environments including

indoors, streets and nature. The fact that the background images are very different

makes the task more complex but improves generalisation. Depending on the task,

some image categories have been removed to avoid unlabeled instances of the relevant

objects in the background, e.g. the “stadium-football” category when counting

people or the “iceberg” category when counting penguins. Note that these efforts

were not exhaustive and some conflicts between backgrounds and annotations may

remain. Finally, a combination of coloured lights is randomly placed around the

scene to produce different exposure levels and cast shadows around the 3D objects.

2.4 Methodology

2.4.1 Setup

Experiments are conducted utilising the standard train/test splits for each dataset,

as described in Section 2.2.1. These specified splits correspond with those utilised

in the official benchmarks. Contrary to the conventional approach of utilising the
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training set, synthetic data and annotations are employed in this research. Note

that the test set comprises data from the real-world domain, posing a challenge in

generalising from a synthetic to a real domain. Outcomes from the experiments

are compared with state-of-the-art methodologies as outlined in Section 2.2.1. This

serves as a robust comparative framework for evaluating the model. The hardware

infrastructure employed for these experiments comprised an NVIDIA RTX 2080 Ti

graphics processing unit, equipped with 11GB of memory. Hyperparameters for

the experiments are adopted from a publicly accessible baseline implementation,

which can be located at the authors’ online repository [58]. It should be noted that

the batch size is modified from 16 to 8 due to constraints related to graphics card

memory.

2.4.2 Model

The Distribution Matching for Crowd Counting [58] approach is used as a baseline.

The authors of the paper use Optimal Transport to measure the similarity between

the normalised predicted density map and the normalised ground truth density map.

They also include a total variation loss to force the neighbouring pixels to have

similar values. The baseline performance is particularly good in scenes where the

density and overlapping of the objects are high. A ResNet50[15] model, pre-trained

on ImageNet Large Scale Visual Recognition Challenge, is used as the base model

for all of the counting tasks. It is observed that smaller versions of ResNet, such

as ResNet18, suffice for real data. However, for the randomised synthetic dataset,

ResNet50 improves the MAE for crowd counting by 17%. The hypothesis posits

that a more complex model architecture, in this case, ResNet50, is required owing

to the need for learning a broader range of variations. This complexity presumably

requires a larger model capacity. Horizontal flips are applied to duplicate the amount

of available synthetic images. In addition, training images are randomly cropped

into multiple smaller images (512 × 512) to obtain more samples.
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2.5 Experiments

In this section, the metrics for object counting are presented, and subsequently, the

performance of DR for object counting is evaluated by testing models trained solely

with synthetic data on real-world datasets. The experiments conducted include

assessing the performance of the models on real-world datasets and investigating the

impact of 3D transformations.

2.5.1 Metrics

Performance in object counting is measured using two main metrics: MAE (Mean

Absolute Error) and MSE (Mean Squared Error). They compute the average L1 and

L2 distance between the predicted count and the ground truth respectively. MAE and

MSE are scale-dependent and therefore can not be used to make comparisons between

datasets using different scales. The formula used to compute them is described as

follows:

MAE =
n∑

i=1

|xi − yi|
n

(2.2)

MSE =
n∑

i=1

(xi − yi)
2

n
(2.3)

where x is the predicted count, y is the groundtruth and n is the number of

images evaluated. The main difference between both metrics is that MAE is more

robust against outliers whilst large errors have a greater effect on the MSE score.

2.5.2 Comparison with real-world datasets

Table 2.2 compares the performance of training with real data and synthetic data.

Results manifest a lower performance when compared to models trained on real

data and annotations. The MAE observed on the SHT A dataset stands out as

notably elevated. This can be attributed to the intrinsic complexities of the dataset,
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Dataset Real DR

SHT A [38] PGCNet [48]: 57.0 158.7
SHT B [38] SANet [49]: 6.5 23.2
Penguins [40] Marsden et al. [50]: 5.8 14.6
TRANCOS [39] FCN-rLSTM [51]: 4.2 13.6

Table 2.2: Object counting performance (MAE) of real and DR synthetic data on
multiple real-world domains.

which has a substantial average count of 501 individuals per image. Contrastingly,

the outcomes on the TRANCOS dataset appear more promising. Given the dataset’s

average count of 36.5 vehicles, an error magnitude of 13.6, in the absence of any prior

information, merits recognition as a significant accomplishment. It is postulated

that the distinctive shape of cars when compared with entities such as humans or

penguins, may account for this relative success. Regarding the MinneApple dataset,

there are no publications that evaluate its performance specifically in relation to

counting tasks.

Table 2.3 compares the current DR approach with Wang et al. [8] for crowd

counting. Their method is based on DA applied on images from a realistic video game.

Using real-world images to feed a GAN they improve the textures of the video game

images. DA is successfully applied to domains where it is easy to obtain real-world

images and produce synthetic data using a video game, e.g. urban environments

involving people and vehicles. The current DR approach obtains similar results

without using real-world data and very simple rendering techniques. Whilst the

approach of [8] performs better than the current approach, it should be noted that

our performance is achieved with a synthetic dataset that was generated completely

automatically without the need for 3D artists.

Dataset GCC [8] Proposed approach

MAE MSE MAE MSE

SHT A [38] 123.4 192.4 158.7 253.2
SHT B [38] 19.9 28.3 23.2 41.5

Table 2.3: Crowd counting performance using synthetic data comparison.
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3D transformation Scale Extrude Randomise

MAE MSE MAE MSE MAE MSE

SHT A [38] 183.97 291.7 159.0 253.2 158.7 253.2
SHT B [38] 29.17 47.8 30.2 54.2 23.2 41.5
Penguins [40] 18.9 25.1 14.6 20.1 14.6 20.4
TRANCOS [39] 15.4 19.3 13.6 17.3 13.6 17.6
MinneApple [52] 22.4 29.4 21.3 27.5 17.5 22.3

Table 2.4: Domain randomisation techniques performance in MAE and MSE. Results
in bold indicate best performance.

2.5.3 3D transformations analysis

3D transformations increase the variability of the dataset in terms of shape, improving

the generalisation on novel domains. Table 2.4 shows how 3D transformations affect

performance of the object counting task. For each experiment 2,000 synthetic images

with the given 3D transformation are generated.

Also, note that when applying strong 3D transformations the training process

takes longer because the task becomes more complex.

Overall, 3D transformation represent a relative improvement of 18% across all

five datasets. The impact of 3D transformations depends on the nature of the object,

e.g. variable pose and size. Randomising the vertices works better on environments

with objects that can present different poses, e.g. people. The results obtained with

the extrude transform are similar to the randomise ones because it also creates small

irregularities in the shape, which improved the penguins counting performance by

22%. Extrude also exhibits good performance in environments where the objects are

solid. In the case of vehicle counting, it improved the performance by 15%.

2.6 Conclusions

We can conclude that domain randomisation allows training an object counting

model when no real-world data is available.

Table 2.2 shows that the performance of state-of-the-art models trained with

real-world data is far from the purely synthetic proposed approach.
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(a) Healthy hearth (b) Afflicted right ventricle (c) afflicted left ventricle

Figure 2.9: Samples from M&Ms cardiac segmentation dataset [59].

However, in evaluating the proposed approach against other models that also

utilize synthetic data, the performance gap between the proposed approach and

state-of-the-art algorithms trained on synthetic data is not significantly large. For

instance, in Table 2.3, the GCC [8] model achieved a 19.9 MAE in the SHT B dataset

[38], whereas the proposed method recorded 23.2 MAE.

Increasing the capacity of the model (Section 2.4.2), randomising the position of

the objects accordingly (Section 2.3.1), and applying the right 3D transformations to

the meshes (Section 2.4) have been found to be an effective solution addressing RQ1.

It is important to note that there is still significant potential for enhancement

and improvement for domain randomisation. As future work, it could be interesting

to investigate the application of domain randomisation to other tasks, particularly

those with high noise and variance, such as people and vehicle segmentation. The

technique’s ability to increase the diversity of synthetic images, making the model

more robust to real-world variations, could prove to be beneficial in these tasks.

However, domain randomisation is not always the most effective approach for all

computer vision tasks, and there are some situations where it may not be useful at all.

The literature indicates a strong inclination towards domain adaptation [60]. Despite

the prevalence of studies focusing on domain adaptation, domain randomisation still

has a small presence within the research area [61]. One example of a task where

domain randomisation might not be effective is when the input data has a small

variance. For example, if the task is to classify images of a single, well-defined object

with a consistent colour and shape, then introducing artificial perturbations to the

data may not provide any additional benefit. In this case, it is hypothesised that
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the model may already be able to generalise to new, unperturbed examples of the

same object, and adding more variability to the training data may actually make

the task more difficult. Another example of a task where domain randomisation

may not be useful is when the performance of the model is highly sensitive to

the specific characteristics of the input data. There is a lack of empirical studies

investigating the efficacy of domain randomisation in medical imaging. The hypothesis

here is that medical imaging datasets might perform poorly when using domain

randomisation. For instance, medical imaging datasets perform poorly when using

domain randomisation because they are small and very sensitive to augmentations.

Figure 2.9 illustrates this with an example of a ventricular segmentation ground

truth for cardiac magnetic resonance images. This example highlights the inability

of domain randomisation to tackle some tasks where the difference between a healthy

heart and an afflicted heart is very subtle. Changing the textures or the shape of

an image of this nature will inevitably distort the inner properties of some images,

and may (inadvertently) change the classification of a cardiac image from healthy to

diseased.
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Chapter 3

Domain adaptation

In this chapter, Domain Adaptation (DA) is introduced as an alternative to domain

randomisation. Domain adaptation is utilised as a preamble to the examination of

Research Question 2 (RQ2) in the subsequent chapter. DA is particularly useful

in situations where domain randomisation is not effective, such as when working

with small datasets with specific characteristics, such as polyp segmentation in

medical imaging. This chapter leverages domain adaptation techniques for polyp

segmentation by producing realistic synthetic images using a combination of 3D

technologies and generative adversarial networks. No annotations from medical

professionals are used in the process because the method is fully unsupervised,

achieving promising results on five real polyp segmentation datasets. In addition,

this chapter introduces Synth-Colon, an entirely synthetic and freely available dataset

that includes 19,917 realistic colon images and additional details about depth and

3D geometry. The work reported in this chapter has been published in the 29th Irish

Conference on Artificial Intelligence and Cognitive Science (AICS) [62] and the code

to replicate the experiments is available in the online repository of the paper.

3.1 Definitions

In this section, important definitions for the following chapters are provided.

Ground truth: Ground truth refers to the baseline or ”true” data that serves
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as a standard for comparison. This baseline data is associated with specific samples

in a dataset and is used to train models or evaluate the accuracy and reliability of

algorithms. Groundtruth data falls into two categories:

Real Labels : These are annotations performed manually by human experts. Real

labels are often considered the gold standard because they incorporate human

understanding, although they may be susceptible to human error and biases.

Synthetic Labels : In contrast, synthetic ground truth is generated algorithmically,

without human intervention. For example, a computer program may automatically

produce an image and its corresponding label. Synthetic ground truth can be

produced at scale and is highly accurate.

Supervised Learning: Supervised learning refers to a class of machine learning

algorithms that are trained using ground truth. Each input sample in the training

dataset is accompanied by a corresponding output label, known as the annotation.

During the training phase, the algorithm attempts to learn the mapping function

from the input to the output. The objective is to make accurate predictions or

decisions without human intervention. Supervised learning is commonly used in

applications such as image recognition, email filtering, and predictive analytics.

Unsupervised Learning: Unsupervised learning refers to machine learning

algorithms that operate without the need for labelled ground truth during the training

phase. These algorithms seek to identify inherent structures, patterns, or features in

the data, such as clusters or associations. Importantly, in the context of this thesis,

the term ”unsupervised learning” also includes scenarios where synthetic labels are

used for training purposes. Such cases can also be described as “synthetically

supervised”, acknowledging that no real, human-annotated ground truth is involved.

Semisupervised Learning: Semisupervised learning involves scenarios where

the training dataset contains both labelled and unlabeled data. While the majority

of data may be unlabeled, a smaller subset of labelled data is also included to guide

the learning process. This approach combines elements of both supervised and

unsupervised learning methods, aiming to use the strengths of each. Semi-supervised
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Figure 3.1: Synth-Colon dataset [62] samples include synthetic image, annotation,
realistic image, depth map, and 3D mesh (from left to right).

learning is particularly useful in situations where annotating a fully labelled dataset is

expensive or time-consuming, but a smaller set of labelled examples can still provide

valuable guidance to the model.

3.2 Introduction

Colorectal cancer is the third most commonly diagnosed cancer type worldwide [63],

representing approximately 10% of all cancer cases. This is in contrast to breast

and lung cancers, which each account for about 12% of global cancer diagnoses,

out of the total cancer cases globally. It can be treated with an early intervention

which consists of detecting and removing polyps in the colon. The accuracy of the

procedure strongly depends on the medical professional’s experience and hand-eye

coordination during the procedure, which can last up to 60 minutes. Computer

vision can provide real-time support for doctors to ensure a reliable examination

by double-checking all the tissues during the colonoscopy. This is usually done by

highlighting the pixels around the areas of the video that are likely to represent a

polyp, helping the doctor to spot hidden polyps during the procedure.

The data obtained during a colonoscopy is accompanied by a set of issues that

prevent the creation of datasets for developing computer vision algorithms. First,

there are privacy issues because it is considered personal data that can not be

used without the consent of the patients. Second, there is a wide range of cameras

and lights used to perform colonoscopies. Every device has its own focal length,

aperture, and resolution. There are no large datasets with standardised parameters.

Ultimately, polyp segmentation datasets are difficult to create because they depend
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on the annotations of qualified professionals.

A synthetically supervised method to detect polyps is proposed in this chapter.

The method does not require annotations and combines 3D rendering and a CycleGAN

[35]. First, artificial colons and polyps are produced based on a set of parameters.

Annotations of the location of the polyps are automatically generated by the 3D

engine. Second, the synthetic images are used alongside real images to train a

CycleGAN. The CycleGAN is used to make the synthetic images more realistic.

Finally, a HarDNeT-based model [64] is trained with realistic synthetic data and

self-generated synthetic labels.

The main benefit of the proposed method is that it does not require annotations

from the real world. Additionally, the Synth-Colon dataset (see Figure 3.1) is

publicly released. It is the largest synthetic dataset for polyp segmentation including

additional data such as depth and 3D mesh.

While this thesis studies an approach for use with conventional colonoscopy,

it is intended as a demonstrator of how a deep learning medical imaging system

for detecting a new type of disease could be quickly put in place with little or no

training data. As such, this project in its current form is not intended for deployment

in clinical settings. It is also worth noting that there is a critical caveat that

undermines the real-world applicability of the proposed polyp segmentation model:

the composition of the benchmark datasets used to train it are very different from real-

world colonoscopy images. These datasets predominantly feature images containing

only one polyp and lack instances of either multiple polyps in a single image or

images with no polyps. Such unrepresentative datasets produce biased models that

exhibit low performance when applied to actual clinical scenarios. Specifically, a

model trained solely on these datasets is predisposed to identifying a polyp in every

frame it processes, because it has never been exposed to images without polyps. This

bias would produce a high number of false positives, making it unusable. Even if

said model exhibits good performance metrics on the benchmark datasets, its clinical

applicability remains compromised due to this high incidence of false positives.
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3.3 Related work

3.3.1 Colonoscopy datasets

In recent years, a variety of datasets have been introduced to aid the advancement

of colorectal polyp segmentation. Figure 3.2 showcases the five datasets selected for

algorithmic benchmarking in this thesis. These datasets are chosen not only because

they are commonly utilised in state-of-the-art benchmarks but also because they

offer a comprehensive range of cameras, lighting conditions, and textures. Next, the

key points of each dataset are discussed:

• CVC-ClinicDB [65]: Released by the Computer Vision Center at the Univer-

sitat Autònoma de Barcelona, this dataset provides colonoscopy video frames

tailored for colorectal cancer diagnostic assistance. Each image is paired with

an annotated mask that highlights a polyp. One of the challenges of this

dataset is the variability of lighting and the presence of artefacts.

• CVC-T [66]: Another contribution by the Computer Vision Center, CVC-

Texture contains polyp and background texture patches intended for texture

classification tasks. The dataset addresses the challenge of discriminating

between polyp textures and normal textures but also includes detailed segmen-

tation masks.

• CVC-ColonDB [67]: Released by the same entity, CVC-ColonDB is designed

specifically for the detection and segmentation of polyps in colonoscopy images.

• ETIS-LaribPolypDB [68]: This dataset, curated by the ETIS Laboratory,

offers colonoscopy images featuring various sizes and types of polyps. A

distinctive challenge in this dataset is the presence of small polyps which may

be hard to detect.

• Kvasir [69]: Introduced by a consortium of researchers, the Kvasir dataset is

the largest and most used benchmark for polyp segmentation. The dataset
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Figure 3.2: Real samples from CVC-ColonDB [67] with the corresponding annotation
made by a medical professional indicating the location of cancerous polyps.

stands out due to its broad range of conditions and related challenges, such as

differentiating between subtle abnormalities.

3.3.2 Polyp segmentation

Early approaches to polyp segmentation were based on the texture and shape

of the polyps. Hwang et al. [70] used ellipse fitting techniques based on shape.

However, colorectal polyps tend to be small and are not detected by these techniques.

The similarities between the polyp texture and the background texture may cause

complications in the detection process (see Figure 3.2).

The advent of convolutional neural networks [71] allowed better characterisation

of the features of polyps and segmentation accuracy was substantially increased.

Several authors have applied deep convolutional networks to the polyp segmentation

problem. Brandao et al. [72] used a fully convolutional neural network based on

the VGG [73] architecture to identify and segment polyps. Unfortunately, the small

datasets available and the large number of parameters make large networks prone

to overfitting. Zhou et al. [74] used an encoder-decoder network with dense skip

pathways between layers that prevented the vanishing gradient problem of VGG

networks. They also significantly reduced the number of parameters, reducing

the amount of overfitting. More recently, Chao et al. [64] reduced the number of

shortcut connections in the network to speed up inference time, a critical issue when

performing real-time colonoscopies in high-resolution. They focus on reducing the

memory traffic to access intermediate features, reducing the latency.

Later in this chapter, the proposed polyp segmentation technique is benchmarked

against four previously published segmentation models that use different architectures.
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First, Ronneberger et al.[75] use the U-Net network architecture to predict the pixels

associated with the polyps. The model consists of an encoder that contracts followed

by a symmetric interconnected decoder that expands, allowing precise localisation.

The encoder has skip connections that transfer context information across layers.

Second, Fang et al. [76] propose Selective Feature Aggregation that trains an encoder

and two decoders. The decoders predict polyps areas and boundaries, improving the

detection of polyps that have a texture similar to the colon. Convolutional layers

include kernels of multiple sizes that extract features, which helps in identifying

polyps that are smaller than usual. Third, PraNet[77] uses an attention mechanism to

detect areas that are likely to contain a polyp and focus on them. It also uses multiple

decoders in parallel. Finally, HardNet-MSEG[78] uses a low-traffic architecture. The

solution proposed in this chapter is based on this model. More details are explained

in Section 3.4.2.

3.3.3 Synthetic data for polyp segmentation

The basis of this thesis is addressing a fundamental limitation of using large neural

networks: they require large amounts of annotated data. This problem is particularly

acute in medical imaging due to problems in privacy, standardisation, and the lack

of professional annotators. Table 3.1 shows the limited size and resolution of the

datasets used to train and evaluate existing polyp segmentation models. The lack of

large datasets for polyp segmentation can be addressed by generating synthetic data.

Thambawita et al. [79] use a generative adversarial network to produce new

colonoscopy images and annotations. They added a fourth channel to SinGAN [80]

to generate annotations that are consistent with the colon image. They then use

style transfer to improve the realism of the textures. Their results are excellent

considering the small quantity of real images and professional annotations that are

used. Gao et al. [81] use a CycleGAN to translate colonoscopy images to polyp

masks. The generator learns how to segment polyps by trying to fool a discriminator.

Synthetic images combined with generative networks have also been widely used
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Table 3.1: Real polyp segmentation datasets size and resolution.

Dataset #Images Resolution

CVC-T [66] 912 574 x 500
CVC-ClinicDB [65] 612 384 x 288
CVC-ColonDB [67] 380 574 x 500
ETIS-LaribPolypDB [68] 196 1225 x 966
Kvasir [69] 1,000 Variable

in the depth prediction task [82, 83]. This task helps doctors to verify that all the

surfaces in the colon have been analysed. Synthetic data is essential for this task

because of the difficulties of obtaining depth information in a real colonoscopy.

Unlike previous works, the DA method described here is entirely unsupervised and

does not require any human annotations. It automatically generates the annotations

by defining the structure of the colon and polyps and transferring the location of

the polyps to a 2D mask. The key difference between this approach and other

state-of-the-art is the combination of 3D rendering and generative networks. First,

the 3D engine defines the structure of the image and generates the annotations.

Second, the adversarial network makes the images realistic.

Similar unsupervised methods have also been successfully applied in other domains

like crowd counting. For example, Wang et al. [8] render crowd images from a video

game and then use a CycleGAN to increase the realism.

3.4 Domain Adaptation for polyp segmentation

The proposed approach is composed of three steps: first, procedurally generate colon

images and annotations using a 3D engine; second, feed a CycleGAN with images

from real colonoscopies and synthetic images; finally, use the realistic images created

by CycleGAN to train an image segmentation model.
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Figure 3.3: Synthetic colons with corresponding annotations rendered using a 3D
engine.

3.4.1 CycleGAN

A standard CycleGAN comprises of two generators and two discriminators and is

trained using real images from colonoscopies and synthetic images generated using

the 3D engine as depicted in Figure 3.5.

CycleGAN is a variant of adversarial neural networks that comprises two gen-

erators and two discriminators. Each generator and discriminator duo is tasked

with learning and establishing a distinct mapping between two separate domains.

Generators undertake the role of translating images from one domain to the other.

For instance, one generator might convert photographs into paintings, while its

counterpart reverses this process. On the other hand, the discriminators evaluate

these translations by differentiating between authentic and generated images within

each domain. Their function is crucial for refining the performance of the generators,

as they work in tandem to produce increasingly convincing translations. The key to

CycleGAN is the concept of cycle consistency. Cycle consistency ensures that an

image, once translated from one domain to another and back again, should closely

resemble the original image. This concept is essential for the robustness of the model,

as it minimises the risk of information loss during the translation process.

A key advantage of CycleGAN is its capacity for unpaired image-to-image trans-

lation. This means that images from the two domains do not have to share a direct

correspondence or feature items in identical positions. This characteristic makes the

model particularly adaptable for a broad array of applications. However, CycleGAN

has some drawbacks. First, the model is memory-intensive, requiring significant com-

putational resources for training four models (two generators and two discriminators).

Second, achieving convergence is challenging because of the interactions between four
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Figure 3.4: Synthetic images (first row) and realistic images generated by CycleGAN
(second row).

different models. The models must reach a stable state while continually adapting

to each other, a process that can be computationally expensive.

Figure 3.4 displays synthetic images before and after the CycleGAN domain

adaptation. Note that the position of the polyps is not altered. Hence, the ground

truth information generated by the 3D engine is preserved.

Figure 3.5: CycleGAN architecture. Two generator models are trained to fool two
discriminator models by changing the domain of the images. Real images are passed
to the “Generator Synth to Real” model, producing realistic colon images.
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Figure 3.6: The structure of the colon is composed of 7 segments to simulate the
curvature of the intestinal tract.

3.4.2 Polyp segmentation

After creating a synthetic dataset that has been adapted to the real colon textures,

an image segmentation model is trained. A HarDNeT-MSEG [78] model architecture

is used for segmenting the colonoscopy images . The architecture employs a simplified

encoder-decoder framework based on HarDNet [64], a low-memory traffic CNN, with

a Cascaded Partial Decoder, known for its efficiency in salient object detection. Low

traffic refers to the small amount of data that is read or written to memory during

the forward and backward pass. This significantly decreases the time it requires

to infer predictions from an image, allowing the algorithm to work on real-time

videos. The key to reducing the memory resources is using fewer parameters and

sharing weights across layers. The Cascaded Partial Decoder implies that multiple

steps process the data partially. Each step incrementally refines the output of the

decoder, which is more efficient than a single step where the entire output must be

generated all at once. This staged approach allows for intermediate corrections and

adjustments, potentially reducing the computational load and making the process

more accurate. The hyperparameter configuration is the same as in the original

paper.
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3.5 Methodology

3.5.1 3D colon generation

As in Chapter 2, Blender is used to create 3D-based synthetic data. The 3D colon

structure is a cone composed of 2,454 faces. It is important to add a high number of

faces in order to mimic the irregular geometry of the colon. Vertices are randomly

displaced following a normal distribution in order to simulate the tissues in the colon.

Additionally, the colon structure is modified by displacing seven segments as in Figure

3.6. A base colour [0.80, 0.13, 0.18] (RGB) is used for the textures, which is the

average colour of the Kvasir dataset. For each sample, the colour is shifted randomly

within a range of 40% for each channel value to other tones. Similar to the existing

polyp datasets, there is only one polyp present in every image, which is placed inside

the colon. The polyp may either adhere to the walls of the colon or remain suspended

in the centre of the colon, without making contact with any surrounding surfaces.

Polyps are distorted spheres with 1282 faces to ensure that the surface is smooth,

resembling real polyps. A uniform distribution with a range of 120% is used to define

the scale of the polyps along each of the three axes. The meshes corresponding to

the scaled polyps models are then distorted using the “Randomize” tool in Blender

with a value of 2.0. The real size of the polyps is unknown since they are created in

a virtual environment. However, their average area relative to the overall image area

is similar to the Kvasir image to polyp ratio, ensuring a realistic range. Samples with

polyps occupying less than 20,000 pixels are removed because there are no polyps

with this size in the real-world datasets examined in this thesis.

The spherical morphology of the generated polyps allows them to represent

various polyp types (sessile or pedunculated). The polyp type is defined by the

proximity between the sphere and the cylinder wall. Sessile polyps will be represented

when the sphere that represents the polyp is closer to the wall, while pedunculated

polyps will be displayed when the sphere is far from the wall, although they will

miss the stalked element. Additionally, the process of domain adaptation can further
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modify these features, helping to compensate for the lack of pedunculated polyps.

CycleGAN, for instance, can enhance a synthetic image featuring a polyp suspended

in space, not in contact with the colon walls, by creating a stalk-like structure that

links the polyp to the colon.

Note that this dataset is designed to perform well on benchmark datasets, which

is why each image features just one polyp (since all benchmark datasets include

images with one polyp, not zero or two). As pointed out in Section 3.2, this approach

isn’t ideal. For a synthetic dataset to be truly useful in real-world situations, it

should include images with zero or several polyps.

Lighting is composed of a white ambient light, two white dynamic lights that

project glare into the walls, and three negative lights that project black light at the

end of the colon. Having a dark area at the end helps CycleGAN to understand the

structure of the colon. The 3D scene must be similar to real colon images because

otherwise, CycleGAN will not translate the images to the real-world domain. Figure

3.3 illustrates the images and ground truth generated by the 3D engine.

It is worth mentioning that real-world cameras tend to use different Field of View

(FOV), or depth of field settings. It could be beneficial to incorporate colonoscopy-

specific augmentations alongside the standard augmentations utilised. Exploring the

integration of camera-specific parameters during the rendering presents a promising

avenue for improving the performance of the dataset.

3.5.2 Setup

The experimental pipeline can be divided into multiple steps (see Figure 3.7). The

initial phase involves the creation of a synthetic dataset, referred to as Synth-Colon,

as described above.

Subsequently, for each of the benchmark datasets under consideration, a Cycle-

GAN [35] model is trained to perform image-to-image translation from the synthetic

to the real domain. The training process uses real colonoscopy images extracted from

the training set, which are combined with the synthetic images generated earlier.
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Figure 3.7: Methodology for training a CycleGAN and a HarDNet-MSEG model
utilizing both authentic and synthetic datasets. It is important to observe that real
annotations are not employed in this process.

The parameters and code used for training CycleGAN are from the official release

issued by the original authors.

Experiments conducted on CycleGAN across a range of epochs reveal that optimal

performance is obtained at the default parameter setting of epoch 200, defined by the

original authors. When the model is trained for fewer epochs, the generated images

tend to lack specific real-world features. Conversely, extending the training beyond

epoch 200 leads to a phenomenon where the generator starts creating new polyps in

the image. Such deviations from the ground truth make these images unsuitable for

training the segmentation model.

Once the CycleGAN models have been trained adequately, they are then utilised

to translate all synthetic images into the real domain. This translation helps bridge

the gap between synthetic and real image distributions.

Then, HarDNet-MSEG [78] is trained using the translated synthetic images,

alongside their corresponding synthetic ground truth labels. Note that this experi-

mental methodology is applied across five distinct datasets defined in Section 3.3.1.

Consequently, this results in the training of five individual CycleGAN models and

an equal number of HarDNet-MSEG models—one for each dataset. The parameters

and code used for training HarDNet-MSEG are from the official release issued by

the original authors.
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As this chapter is a preliminary study, the hyperparameters employed are the

ones suggested by the original authors for both models. However, fine-tuning these

parameters could lead to enhanced outcomes.

Finally, the segmentation models are evaluated on the corresponding test sets using

the mean Dice score and mean intersection over union described in the Experiments

section.

Note that the primary contribution of this paper lies in the development of

Synth-Colon, which, when combined with pre-existing methodologies like CycleGAN

and HarDNet-MSEG, illustrates an effective approach for training a model in the

domain of polyp segmentation without real-world annotations.

3.6 Synth-Colon

Synth-Colon is a synthetic dataset for polyp segmentation. It is the first dataset

generated using zero annotations from medical professionals. The dataset is composed

of 19,917 images with a resolution of 500×500. Synth-Colon additionally includes

realistic colon images generated with CycleGAN and the Kvasir training set images.

Synth-Colon can also be used for the colon depth estimation task [83] because depth

and 3D information is provided for each image. Figure 3.1 shows some examples

from the dataset. In summary, Synth-Colon includes:

• Synthetic images of the colon and one polyp.

• Masks indicating the location of the polyp.

• Realistic images of the colon and polyps. Generated using CycleGAN and the

Kvasir dataset.

• Depth images of the colon and polyp.

• 3D meshes of the colon and polyp in OBJ format.

Synth-Colon is available in the online repository of the paper [62]. The source

53



CHAPTER 3. DOMAIN ADAPTATION

code is available for users to create their version of the dataset. Rendering all the

images in this process takes four hours.

3.6.1 Video-Colon

Additionally, “Video-Colon” has been created to investigate polyp segmentation

applied to real videos. Although the dataset is not utilised in this thesis, it is suggested

that researchers use it in future work. The dataset includes videos simulating a

colonoscopy with accompanying annotations of the polyp positions.

The dataset has been generated using the same setup and parameters as Synth-

Colon, but in a closed loop where the camera is moved alongside the synthetic

colon. Video-colon includes the Python code used to generate the dataset, the user is

encouraged to generate its own Video-Colon with the desired parameters, like frame

rate or video duration.

The process to produce the 3D colon begins with the creation of a 2D circle. The

next step involves using Blender’s transformation tools to randomly alter the circle’s

path in three dimensions, adding variation to the structure. This randomised line is

then transformed into a cylindrical shape, establishing a basic 3D form similar to

the colon’s shape. The final step is to apply random adjustments to the surface of

the cylinder. This is done to replicate the uneven and textured surface of the colon,

adding realism to the model.

Comparable to the process outlined in Section 3.5.1 regarding Synth-Colon

generation, there exist instances where certain polyps are not affixed to any colon

walls. As previously articulated, it is anticipated that the implementation of domain

adaptation will address this by generating a stalked element that connects the polyp

to the wall.

Figure 3.8 shows the 3D scene in Blender The viewpoint is located outside the

model to illustrate how the dataset is generated. Note that the floating polyps

around the colon are not rendered in the dataset, since the camera only visualizes

the inside part of the colon. The floating polyps are a residue of the generation

54



CHAPTER 3. DOMAIN ADAPTATION

Figure 3.8: Video-colon synthetic dataset scene in Blender. The dataset is available
at the online repository [84].

process, that accidentally placed polyps outside the colon, instead of embedded in

the inner walls.

3.7 Experiments

This section aims to outline the metrics employed to evaluate the performance of the

method, as well as to present an analysis of the method’s performance when applied

to real polyp datasets. Additionally, a study on the influence of the quantity of real

data utilised during the training of the model will also be conducted.

3.7.1 Metrics

Two common metrics are used for evaluation. The mean Dice score, given by:

mDice =
2× tp

2× tp+ fp+ fn
, (3.1)
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and the mean intersection over union (IoU):

mIoU =
tp

tp+ fp+ fn
, (3.2)

where in both forumlae, tp is the number of true positives, fp the number of false

positives, and fn the number of false negatives.

Both metrics measure the similarity between the model’s predictions and the

actual polyp with a range of 0 to 1. A score of 1 indicates that the prediction and

the ground truth are identical. The main difference between these two measures is

that IoU places a heavier emphasis on penalising errors in the form of false positives

and false negatives, as compared to DICE, which assigns equal weight to these errors.

This is because both of these errors affect not just the numerator (intersection) but

also significantly enlarge the denominator (union), thereby reducing the overall IoU

score.

3.7.2 Evaluation on real polyp segmentation datasets

Domain adaptation is evaluated on five real polyp segmentation datasets. Table 3.2

shows the results obtained when training HarDNeT-MSEG [78] using synthetic data

as described in Figure 3.7. Training the CycleGAN with only the images from the

target dataset performs better than training the CycleGAN with all the datasets

combined, indicating a domain gap among the real-world datasets.

The performance of the proposed approach, which has an average mDice of 0.55

across all five datasets, is far from HarDNet-MSEG [78] 0.82 mDice. It is worth

noting that the proposed approach achieved a better performance than U-Net [75] on

ColonDB. Note that U-Net is using labels while the proposed algorithm is entirely

based on synthetic annotations.

On ETIS-LaribPolypDB, the performance dropped significantly to 0.25, demon-

strating that the proposed approach doesn’t generalise as good as the other models.
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Table 3.2: Evaluation of domain adaptation on real-world datasets.

CVC-T ColonDB ClinicDB ETIS Kvasir
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net [75] 0.710 0.627 0.512 0.444 0.823 0.755 0.398 0.335 0.818 0.746
SFA [76] 0.467 0.329 0.469 0.347 0.700 0.607 0.297 0.217 0.723 0.611
PraNet [77] 0.871 0.797 0.709 0.640 0.899 0.849 0.628 0.567 0.898 0.840
HarDNet-MSEG [78] 0.887 0.821 0.731 0.660 0.932 0.882 0.677 0.613 0.912 0.857
Proposed Approach 0.703 0.635 0.521 0.452 0.551 0.475 0.257 0.214 0.759 0.527

Table 3.3: Evaluation of the proposed approach on the Kvasir dataset when few real
images are available. The performance is measured using the mean Dice metric. Note
that zero images here means there is no domain adaptation via the CycleGAN. The
table doesn’t include results between 50 and 900 images because HarDNeT-MSEG
obtains a better performance in all of those cases.

Proposed Approach HarDNeT-MSEG [78]

0 images 0.356 -
5 images 0.642 0.361
10 images 0.681 0.512
25 images 0.721 0.718
50 images 0.735 0.781
900 (all) images 0.759 0.912

3.7.3 Study with limited real data

In this section domain adaptation is compared with the fully supervised state-of-

the-art HarDNeT-MSEG network when there are fewer training examples available.

CycleGAN is trained without ground truth segmentation labels, on progressively

larger sets of imagery, and this is compared with the supervised method trained on the

same amount of labelled imagery. Table 3.3 shows the results of the experiment, which

demonstrates that synthetic data is extremely useful for domains where annotations

are very scarce. While CycleGAN can produce realistic images with a small sample

of only five real images, supervised methods require many images and annotations

to achieve good performance. Table 3.3 indicates that unsupervised approaches are

useful when there are less than 50 real images and annotations.
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3.8 Conclusions

This chapter demonstrates that domain adaptation can be effective in improving the

performance of machine learning models on polyp segmentation when no annotations

from doctors are used. 3D rendering is used to generate the structure of the colon

and generative adversarial networks to make the images realistic and demonstrated

that it can perform well in several datasets, even outperforming some fully supervised

methods in some cases.

However, there is still significant potential for enhancement and improvement

in this field. One major limitation of this approach is that it does not make use

of the segmentation masks to translate the images. This implies that the model

is unable to utilise the unique attributes of the polyp in the learning process and

may potentially result in the displacement of the polyp’s position in the transformed

image. This limitation acknowledges Research Question 2 (RQ2) which concerns the

use of groundtruth in the image translation process. In addition, this approach can

be time-consuming because it requires two steps: training CycleGAN (8 hours) and

training an image segmentation model (3 hours). This can be a significant drawback

if the target domain is very large or if the model needs to be updated frequently

with new data. These limitations are addressed in the next chapter.
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Label-aware domain adaptation

In this chapter, an improvement for domain adaptation is presented to address

Research Question 2 (RQ2). The improved method, referred to as “CUT-seg”,

incorporates the use of ground truth information during the image translation

process, improving the baseline used in the previous chapter by generating synthetic

images that are more realistic and accurate. The work reported in this chapter has

been presented in Expert Systems [85] and the code to replicate the experiments is

available in the online repository of the paper.

4.1 Introduction

In contrast to the traditional approach of adapting the synthetic data in a separate

step before training the machine learning model, CUT-seg involves training both

the image translation model and the segmentation model concurrently. CUT-seg

jointly trains a HarDNeT-based [64] segmentation model and a Contrastive Unpaired

Translation (CUT) [86] image translation model. It transforms synthetic images

to the real domain while, at the same time, learning to segment the polyps. As

a result, even with only a single real image, CUT-seg performs better than the

CycleGAN-based baseline.

Additionally, using the synthetic ground truth data during the image translation

serves as a safeguard against the introduction of artefacts and the hallucinatory ten-
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dencies often observed in generative networks [87]. In conventional image translation

methodologies, generative algorithms can modify the polyp, thus yielding a label

that is incongruent with the actual polyp location. These hallucinations significantly

undermine the utility of such synthetic images. However, these problems can be

prevented by incorporating ground truth data into the translation algorithm. This

ensures that the generative model is aware of them and the resultant images not

only contain a polyp but also position it accurately, in strict alignment with the

label provided by the synthetic ground truth.

4.2 Related work

Given two sets of images from two domains, unpaired image translation is used to

transform images from one domain to the other. Ideally, the content of the images

is preserved while their style is transformed to the new domain. Image translation

models are divided into two main groups: two-sided and one-sided.

Two-sided translation models [35, 88, 89] are bijective, i.e. they transform data

from the source domain to the target domain and vice versa thanks to a cycle

consistency loss that helps both generative models to converge [35]. These models are

memory-intensive because they have to learn both translations. In general, they have

at least four models (two generators and two discriminators), which also increases

the training time.

One-sided translation models [86, 90] only learn one transformation. As a

consequence, they are lighter than the two-sided models. CUT [86] extracts patches

from the source image and learns the relationships between them in a self-supervised

fashion. It uses a contrastive loss to maximise the mutual information between

patches from the same region while minimising the similarity between negative

patches from the same image. This loss helps preserve the spatial context of the

image. CUT [86] is one of the faster and lighter unpaired image translation models

because it is trained with patches from the same image, rather than from the rest

of the dataset, thereby obviating the need to store negative samples from other
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images in memory. Figure 4.1 shows how the patch-based contrastive loss works:

the generator encoder learns that the head of the horse and the head of the zebra

belong to the same “content”, while the encoder increases the dissimilarity of other

patches (horsehair, leg, grass). The generator encoder produces encodings, which

are numerical representations of each patch, also known as embeddings. One of

the advantages of learning from the encodings is that they are very lightweight and

inexpensive to process, contributing to the speed and efficiency of CUT. In addition,

CUT includes a discriminator that helps the generator to produce realistic content

according to the target domain.

CUT uses a contrastive term to encourage spatial consistency in the generated

image. The resulting model does not need a secondary set of generator-discriminator

models to regularise the training. The CUT loss function is given by:

LGAN(G,D,X, Y ) + λXLPatchNCE(G,H,X) + λYLPatchNCE(G,H, Y ), (4.1)

where LPatchNCE(G ,H ,X ) is the contrastive term that encourages spatial consistency

with the source image in X (synthetic image in this case). This term encourages

input-output patches from a particular location in an image to be close to the feature

space, and far apart from other patches in the image. G , and D are the weights of the

generator and discriminator, respectively. H are the weights of a two-layer perceptron

that projects the patches to the feature space and λX and λY are hyperparameters

that control the contribution of the corresponding contrastive terms.

In general, it offers better results than CycleGAN. Figure 4.2 shows how CUT can

map the zebra patterns successfully, particularly in the head, neck, and torso, thanks

to its patch-based contrastive loss. CycleGAN struggles to maintain a coherent

stripes pattern because it uses a global loss that tries to focus on the whole image.

Throughout the remainder of the thesis, CUT is utilisedutilized as a backbone for

conducting image translation.
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Figure 4.1: CUT diagram by Park et al. [86]. The model operates on patches from
the images. It gathers negative examples from within the input image itself. The
generator is composed by an encoder and a decoder that work together to translate
images between domains while keeping its contents.

Figure 4.2: Qualitative analysis by Park et al. [86] of various image translation
models applied to the horse-zebra transformation: CUT [35, 88]
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4.3 Label-aware Domain Adaptation

CUT-seg attaches a HarDNeT-MSEG polyp segmentation architecture to a CUT

generator [86]. The segmentation and generative models are jointly trained to

generate realistic images with a polyp in a specific position matching the annotation

mask.

The initial phase of CUT-Seg involves converting the synthetic image to a repre-

sentation more similar to real-world polyps, achieved through learning a translation

process between the two domains. Then, this transformed image is processed by

a segmentation model, which identifies the pixels belonging to the polyp. The

segmentation model benefits from the fact that the image, while not entirely real,

has undergone modification to resemble real-world scenarios. The concluding step

entails a comparison of the predicted segmentation mask with the original synthetic

one. Utilising backpropagation, the error between these two masks serves as a means

to update the parameters of both models. Consequently, the translation model

progressively improves its ability to generate images with a more realistic appearance,

while the segmentation model improves its proficiency in accurately identifying real

polyps.

If the translation model fails to produce images that closely mimic real-world

scenarios, the segmentation model’s performance on actual real-world images will be

reduced. This is because the segmentation model’s training depends on the realism

of the images generated by the translation model. Moreover, if the translation model

creates images where the polyps do not align with the positions indicated in the

synthetic mask, the segmentation model will learn incorrect information. In essence,

the accuracy of the segmentation model in identifying polyps is heavily dependent on

the translation model’s capacity to generate realistic images with accurately placed

polyps, mirroring the characteristics of the synthetic masks.

It is important to note that when evaluating the model’s effectiveness with actual

real-world images, only the segmentation algorithm is employed, as these images

do not require conversion into the real-world domain. For this purpose, a distinct
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Synthetic

(a) (b) (c)

CycleGAN

(d) (e) (f)

CUT

(g) (h) (i)

CUT-seg

(j) (k) (l)

CUT-seg
single

(m) (n) (o)

Figure 4.3: Synthetic images (first row), CycleGAN generated images (second row),
CUT generated images (third row), CUT-seg generated images (fourth row), and
CUT-seg generated images with only one real sample as reference (fifth row).
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Figure 4.4: CUT-Seg uses a common loss that combines a translation and a segmen-
tation task: generating realistic images while maintaining their coherence with the
segmentation mask.

set of images, which were not part of the model’s training dataset, is utilised. This

approach ensures that the model’s performance is tested on entirely new and unseen

data, providing a more accurate measure of its capability to generalize and accurately

detect polyps in real-world scenarios.

Figure 4.4 illustrates the multiple image sources that are used. Synthetic masks

are used as a ground truth, while real masks are not used. The translation model

uses a combination of synthetic and real images to produce adapted images, which

are sent to the segmentation model.

Combining both models is possible when GPU availability is limited because,

unlike CycleGAN, CUT is more memory-efficient, leaving considerable memory

on the GPU for the segmentation model. Figure 4.3 shows examples of image

translation using CUT alone (third row) and CUT-seg, jointly training CUT and the

segmentation model (fourth row) and using only one real sample as reference (fifth

row).

In particular, the term LGAN(G,D,X, Y ) is substituted in Eq. (4.1) with:

LGAN(G,D,X, Y ) + λSLSeg(S), (4.2)

where LSeg(S ) is the mean Dice loss on the segmentation masks inferred from the

images generated by D , S is the segmentation model, and λS a hyperparameter that
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controls the weight of the segmentation term.

The Adam optimiser is set with the default momentum values β1 = 0.9 and

β2 = 0.999, a constant value for the learning rate of 1× 10−5, the optimal values are

obtained using a grid-search.. The other hyperparameters configuration used is the

same as in the original CUT paper [86]. The new hyperparameter introduced in this

chapter λS is set to 0.1. Finding the optimum value for this parameter is particularly

important because it regulates the balance between realism and consistency with the

synthetic ground truth.

Further refinement of the remaining hyperparameters could potentially enhance

the outcomes, although this aspect is not explored in this thesis.

4.4 Experiments

This section presents an evaluation of the proposed approach on real-world datasets

and compares its performance to the original method described in Chapter 3. It

also investigates the number of synthetic images required for the CUT-seg algorithm

to perform effectively. Furthermore, the section presents results obtained when the

algorithm is trained using only a single reference image. Experiments are evaluated

using the same metrics as in Chapter 3: mean Dice (mDICE) and mean intersection

over union (mIoU).

4.4.1 Evaluation on real polyp segmentation datasets

Table 4.1 shows the results obtained with the CycleGAN-based baseline and CUT-seg

model. Neither the CycleGAN-based model nor the CUT-seg model uses any real

human annotation, unlike the other approaches that are compared in the table. The

models are evaluated on five real polyp segmentation datasets in a transductive

setup. This is a common setup in zero-shot learning [91, 92, 93, 94] that explores

the performance of a model when the unlabeled target data, the test set in this case,

is available during training. Unlike the zero-shot setup, in this case, the source data
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is also unlabeled, except for the synthetic images that come with free annotations.

Transductive evaluation is a valuable setup to bypass the domain gap between target

and source data, and better understand the performance of the algorithm in a specific

target domain. In this case, this addresses an inherent challenge in the training

dataset: the samples from all the datasets are mixed in a single training set. Note

that in inductive evaluation, only the labelled source data is available.

CUT-seg displays not only superior performance compared with the CycleGAN

baseline but also trains in 3 hours, which is significantly faster than the 11 hours

of the CycleGAN approach. CUT-seg average mDIce results are +9% higher than

CycleGAN, and the improvement on ClinicDB (+14%) and ETIS (+29%) shows

the capabilities of CUT-seg on challenging datasets. It is worth noting that the

performance is more stable across datasets since all the mDice results are above 0.5,

and also the fact that the synthetic annotations have been generated automatically.

However, not all datasets benefit from CUT-seg. For instance, Kvasir, which is the

largest dataset, shows a reduced mDice by 5%. It is postulated that CUT-seg doesn’t

scale in performance when adding more real images to the training, while CycleGAN

benefits from a large number of real images. Results in Section 4.4.3 support this

hypothesis. Training CUT-seg with only the images from the target dataset performs

better than training it with all the datasets combined, indicating a domain gap

among the real-world datasets. In this setup, CUT-seg outperforms the CycleGAN

baseline in most of the datasets despite requiring less computation. These results

are not as good as the fully supervised state-of-the-art HarDNet-MSEG [78] model

but considerably reduce the performance gap between methods that use manual

annotations and methods that do not.

4.4.2 Synthetic dataset size

In this experiment, the number of synthetic images required for successful training of

the CUT-seg algorithm is investigated. For this, the model is trained using 100 real

images from the Kvasir dataset and a varying number of synthetic images. Figure 4.5
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CVC-T ColonDB ClinicDB ETIS Kvasir
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net [75] 0.710 0.627 0.512 0.444 0.823 0.755 0.398 0.335 0.818 0.746
SFA [76] 0.467 0.329 0.469 0.347 0.700 0.607 0.297 0.217 0.723 0.611
PraNet [77] 0.871 0.797 0.709 0.640 0.899 0.849 0.628 0.567 0.898 0.840
HarDNet-MSEG [78] 0.887 0.821 0.731 0.660 0.932 0.882 0.677 0.613 0.912 0.857

CycleGAN-based 0.703 0.635 0.521 0.452 0.551 0.475 0.257 0.214 0.759 0.527
CUT-seg 0.700 0.613 0.546 0.396 0.719 0.573 0.540 0.384 0.702 0.621

Table 4.1: Evaluation of the synthetic approach on real-world datasets. The metrics
used are the mean Dice similarity index (mDice) and mean intersection over union
(mIoU). The best results are highlighted in bold and the best results without human
supervision are underlined.
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Figure 4.5: Evaluation of CUT-seg with varying amounts of synthetic data on
the Kvasir dataset. The performance is measured using the mDice metric, each
experiment reports the average mDice across three runs and the error bars indicate
the standard deviation.

demonstrates that CUT-seg benefits from a large number of synthetic samples. While

the best results are obtained with the largest amounts of samples, CUT-seg reaches

near-peak performance when training with 100 or more synthetic images.

4.4.3 Single reference image

Using only a single real image (without ground truth) is sufficient to successfully

translate images from the synthetic domain to the real world as shown in Figure 4.3

(fifth row). Table 4.2 shows that the performance improves in some datasets when

using only a single real image instead of the full real dataset.
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CVC-T ColonDB ClinicDB ETIS Kvasir
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

All real images 0.700 0.613 0.546 0.396 0.719 0.573 0.540 0.384 0.702 0.621
One real image 0.754 0.617 0.569 0.422 0.636 0.563 0.412 0.334 0.732 0.640

Table 4.2: Comparison between training CUT-seg using the full dataset or a single
real image. The metrics used are the mean Dice similarity index (mDice) and mean
Intersection over Union (mIoU). The best results are highlighted in bold.

One reason for this phenomenon is due to the algorithm’s ability to generate 256

distinct patches from the single reference image, effectively increasing the diversity

of the training data. Another reason is that real datasets contain images that

are more representative than others. Training with all images in the dataset will

inevitably use samples that do not characterise the dataset. When training with an

image that represents the style of the target domain, the performance will improve.

However, if the selected single image is too different from the typical polyp image,

the performance will be lower than training with the entire dataset.

It is worth mentioning, however, that the results depend strongly on which real

image is used as reference and the initialisation of the model. Training N = 10 runs

on the Kvasir dataset with different reference images produce a mean of 0.70 mDice

and a standard deviation of 0.02. When training with all the images, the mean

is 0.71 and the standard deviation is 0.01. Future work should explore why some

images improve the performance, and how to identify these images.

4.5 Conclusions

In this chapter, an end-to-end model for polyp segmentation is proposed. It jointly

learns to generate realistic images and segment polyps and demonstrates that joint

training allows for faster learning and provides better results than the two-stage

counterpart, i.e. training a generative model and segmentation model separately.

CUT-Seg demonstrates consistent results over various domains, exceeding a 0.5

mDice score in all five datasets. This indicates that the model typically identifies

half of the significant polyp area accurately, which is a level of accuracy that will
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ensure robustness. Consequently, this shows that the algorithm is more resilient

and has superior generalisation capabilities compared to CycleGAN, which is not as

robust. In addition, this chapter addresses RQ2 by demonstrating that attaching

a segmentation model to a translation model, and optimising them together, is

an effective way to introduce ground truth information into the training loop. In

addition, results show that CUT-Seg can learn a domain with a single reference image.

The performance of single-image CUT-Seg depends strongly on how representative

the image is.

However, despite these advancements, there remains potential for further im-

provement in the algorithm’s performance. One potential area for improvement is in

the exposure of the model to real-world images. Currently, the model is only trained

on synthetic data that has been adapted to resemble the target domain. While

this approach is effective in improving performance, exposure to real-world images

may further enhance the model’s ability to generalise in the target domain. This is

explored in the following chapter.
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Chapter 5

Semi-supervised domain adaptation

In this chapter, an improvement to the approach presented in the previous chapter is

introduced by incorporating real-world images and labels into the polyp segmentation

training process using semi-supervised learning techniques. This aims to address

Research Question 3 (RQ3) by offering guidance on how to effectively incorporate

real data in training. The work reported in this chapter has been published at the

International Joint Conference on Neural Networks 2023 (IJCNN) [95].

In this chapter, the ideas and design are created by both the author of this thesis

and Eric Arazo, who is a co-author of the above-mentioned paper. The author of

this thesis is responsible for collecting and analysing the data. Although the paper

is mainly written by the author of this thesis, Eric Arazo provided valuable feedback

and guidance to improve the work.

5.1 Introduction

While synthetic data has already been shown to be useful in the self-supervised

setup in Chapters 3 and 4, its application to the semi-supervised setup is yet to

be explored. This setup allows the segmentation model to be exposed to both real

images and real segmentation masks during training, which narrows the gap between

the training and test distributions.

An end-to-end approach to polyp segmentation, referred to as Pseudo-Label CUT-
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Figure 5.1: Schematic of PL-CUT-Seg in the self-supervised scenario: two-stage ar-
chitecture for polyp segmentation that leverages real-world data without annotations.
PL-CUT-Seg utilises synthetic images, which are translated to the real-world domain,
and incorporates pseudo-labeled real-world images within each mini-batch to narrow
the gap between the training and testing distributions. This forces the segmentation
model, U , to learn features that better generalise to real-world images.

Seg (PL-CUT-Seg), is described in this chapter that learns to adapt synthetic images

to the realistic domain and generate segmentation masks that locate the polyps in

an image. In particular, PL-CUT-Seg addresses the main weaknesses of Chapter 4

by narrowing the distribution gap between the training domain, i.e. synthetic images,

and the test domain, i.e. colonoscopy images. Conversely, as shown in Figure 5.1, the

segmentation stage is exposed to both the translated images with the synthetic masks

and the real images with model predictions as masks, i.e. pseudo-labels. Additionally,

an enhanced version of the model is proposed, PL-CUT-Seg+, and we also introduce

an interpolation-based regularisation technique that aims to reduce the domain gap

between the real and the synthetic images, which results in improved polyp detection

accuracy. Inspired by previous work on pseudo-label approaches [96], a confidence

mask is introduced that indicates which regions of the mask should be considered,

i.e. the most confident predictions.

This chapter explores the application of synthetic data to polyp segmentation
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under different levels of label availability. This approach is based on a careful design

of the training batches and regularisation to improve the integration of synthetic

data for polyp segmentation in self-supervised and semi-supervised learning, which

highlights the potential for exploiting synthetic data as a solution to the data scarcity

challenge in medical imaging. Pseudo-labels substantially reduce the domain gap

between real and synthetic data by exposing the segmentation model to real images.

As a result, the proposed model PL-CUT-Seg reaches state-of-the-art performance

in most of the semi-supervised and self-supervised setups in the standard datasets

used in polyp segmentation. Additionally, a semi-supervised learning setup is used

for polyp segmentation as a valuable benchmark for evaluating the generalisation of

the approaches when the availability of data is reduced.

This chapter provides several key contributions to the field of domain adaptation

for polyp segmentation. First, an end-to-end model is proposed. It effectively

integrates synthetic and real data under different levels of supervision such as semi-

and self-supervised learning. Second, a novel semi-supervised approach is presented.

It combines pseudo-labels, confidence masks, and mixup in a unified framework

to address the main challenges encountered when training with real and synthetic

images. Finally, a thorough analysis is conducted on the components of the model

and their impact on the generalisation of the model across various datasets for polyp

segmentation.

5.2 Related work

Recent research has substantially improved the capacity of neural networks to

learn when the labelled data is scarce (semi-supervised learning) or unavailable

(self-supervised learning). Semi-supervised learning approaches can be divided into

two categories: consistency regularisation and pseudo-labeling approaches. The

former leverage the unlabeled data by encouraging the model to produce similar

outputs for a single image under different perturbations [97, 98, 99]; the latter uses

the predictions of the model as labels for the unlabeled samples [100, 101, 102].
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Current state-of-the-art methods combine both alternatives in a holistic approach

to semi-supervised learning [96, 103, 104]. Self-supervised learning, on the other

hand, initially addressed the lack of labels by using proxy tasks as a supervisory

signal, e.g. predicting image rotations [105], inferring colour [106], or predicting

the relative position of image patches [107]. Later methods, however, show a shift

towards instance-based learning: these guide the training by encouraging features

from patches of one image to be closer together while “pushing away” the features

from patches from different images [108, 109, 110].

Advances in semi-supervised learning approaches have permeated the semantic

segmentation task [111, 112, 113] resulting in methods that propagate the information

from a few annotated masks to the rest of the unlabeled samples. Despite the existence

of some works applying these techniques to medical imaging [114, 115, 116], few have

explored the polyp segmentation task under label scarcity. Only one work explores this

paradigm [117], which proposes a non-synthetic approach that can leverage unlabeled

data alongside labelled data and investigates the behaviours of this approach with

different levels of labelled samples. It utilises focused and dispersive extraction

modules to manage the diversity in the location and shape of polyps. Additionally,

the model leverages unlabeled data through a discriminator in an adversarial training

framework, enhancing the segmentation network’s performance. The approach

includes consistent regularization to optimize the segmentation networks and an

auxiliary adversarial learning method to improve semantic segmentation accuracy.

The approach presented here includes synthetic data in the semi-supervised learning

process.

5.3 Method

Available datasets for colorectal polyp segmentation are limited in size and fully

labelled, and each image xi has an associated ground truth mask yi. As a result,

semi-supervised and self-supervised learning for this domain are under-explored, and

the techniques to exploit additional unlabeled data are underdeveloped. Since the
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main characteristic of these setups is the lack of ground truth labels, i.e. segmentation

masks, Dl is defined as the set of labelled samples where each sample xi has an

associated mask yi and Du as the set of unlabeled samples where the corresponding

masks are unavailable.

In particular, an additional set Ds of synthetic image-masks pairs (xi, yi) is

leveraged. This includes computer-generated data that do not require colonoscopies

or annotation, which are invasive, laborious and time-consuming processes. The

main challenge when using this data is the domain disparity between synthetic and

real images. To address this, PL-CUT-Seg is proposed, a model that leverages the

predictions from the segmentation network as pseudo-labels along with the available

ground truth masks yi ∈ Dl. This model is inspired by the CUT-Seg approach

described in the previous chapter, which consists of an unpaired image-to-image

translation stage [86] that addresses the image-to-image translation part of the

problem and a segmentation stage that generates the masks from adapted synthetic

images. By introducing pseudo-labels into the pipeline, PL-CUT-Seg can better

integrate the unlabeled samples from the real set Du with the synthetic data in Ds.

The process begins with training the generative model using both real and syn-

thetic images. During its training phase, the model produces adapted colonoscopy

images that appear more realistic. These images are then forwarded to the segmen-

tation model, which also processes a combination of annotated images and images

with pseudo-labels.

Figure 5.2 provides an overview of the model structure. See below a comprehensive

list with the precise meaning of the annotations used in the diagram:

• xi: Colonoscopy image.

• yi: Segmentation mask indicating the pixels that belong to the polyp.

• zi: Adapted image from the synthetic domain to the real domain using domain

adaptation.

• ŷi: Segmentation mask that is used as a pseudo-label.
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Figure 5.2: Self- and semi-supervised model architecture that utilises a combination
of adapted synthetic images, real-world images with annotations, and real-world
images with pseudo-labels in each mini-batch. This approach exposes the model to
both real-world data and synthetic data and enables it to learn features that are
better suited for real colonoscopy images. The blue and red dashed lines encapsulate
the labeled and unlabeled samples respectively, the green dashed lines encapsulate
the domain adaptation stage, and the orange ones indicate the segmentation stage.

• D: Real domain, includes labeled data Dl and unlabeled data Du. Each data

sample has an image xi and an annotation yi, except Du that is unlabeled.

• Ds: Synthetic domain, includes synthetically labeled data. Each data sample

has an image xi and a synthetic annotation yi.

• G: Generator model.

• Disc: Discriminator model.

• U: Segmentation model.

• LGAN: Generative loss, includes the loss of the generator and the discriminator.

• LPatchNCE: Contrastive loss.

• LSeg: Segmentation loss.
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The segmentation stage of PL-CUT-Seg consists of a segmentation network U that

generates the binary masks ŷi that highlight polyps in colonoscopy images xi. Unlike

common approaches to polyp segmentation, PL-CUT-Seg trains on combinations

of real labelled and unlabelled images, and synthetic images. Inspired by CUT-Seg

in Chapter 4, the transformed synthetic images zi are used to train U and reduce

the need for manual annotation of the real images obtained from colonoscopies:

U(zi) = ŷi. Refer to Section 4.2 for the general loss function. The domain gap

between the transformed images zi and the real images is addressed in two ways:

by introducing pseudo-labels and by exposing the segmentation network U to real

images and through additional regularisation in the form of interpolation training.

The introduction of pseudo-labels ŷi as annotations for the unlabeled samples

xi ∈ Du is the main contributor to the improved performance of PL-CUT-Seg. Model

predictions are used as segmentation masks and combine the unlabeled samples with

the labelled real samples and the synthetic samples in the segmentation stage. The

pseudo-labels are initially defined as all-background masks and are updated with

model predictions pi = U(xi) where xi ∈ Du through an additional forward pass at

the end of every training epoch. The improved loss function corresponding to the

segmentation stage is:

LSeg =
∑
xi∈D

LDICE(yi, pi), (5.1)

where D = Dl ∪ Du ∪ DS, pi are the model predictions for xi, and yi correspond

to the available label for the labelled samples, i.e. xi ∈ Dl or xi ∈ DS, and to the

pseudo-label ŷi for the unlabeled, i.e. xi ∈ Du. Then LDICE is the DICE loss widely

used in semantic segmentation [118]. The generative and segmentation losses are

described in Chapter 4.

The domain gap between real and synthetic samples is addressed by using samples

from both domains as inputs for the segmentation stage and create each batch B

with half of the samples from the real domain and half of them from the synthetic

domain: B = {s1, · · · , sM
2
, t1, · · · , tM

2
}, where si ∈ Dl ∪ Du, ti ∈ DS, and M is the

batch size. In the case of self-supervised learning, all real images are associated with
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a pseudo-label ŷi, and in the case of semi-supervised learning half of the real samples

come from the labelled subset Dl with the corresponding manual annotations and

the other half from the unlabeled set Du with the corresponding pseudo-label.

Additionally, for improved results, PL-CUT-Seg+ is proposed, which incorpo-

rates interpolation training as a regularisation technique to reduce the domain

gap and a pseudo-labeling masking step to reduce the effect of incorrect predic-

tions. Interpolation-based techniques have shown to be an effective solution in

semi-supervised learning to reduce the gap between labelled and unlabeled distribu-

tions in the training set [99] and to avoid overfitting the labelled samples [100]. The

interpolation strategy is inspired by MixUp data augmentation [119], where the model

is trained on convex combinations of samples and the corresponding labels, and by

previous research boosting semi-supervised learning with interpolation training [100,

96]. Concretely, batch B is extended with the random interpolation of the images in

B, which results in {s1, · · · , sM
2
, t1, · · · , tM

2
, i1, · · · , iM}, where in = λsp + (1− λ)sp,

λ is randomly drawn from a beta distribution as introduced in [119] (see Section

5.4 for details on the parameters used in the beta distribution), and sp and sq are

randomly selected from B. The masks are interpolated following the same strat-

egy. Unlike [120], which applied interpolation training in polyp segmentation, soft

segmentation masks are used where each pixel is the interpolated value of the two

corresponding masks. This avoids the need to set up a threshold to obtain binary

masks after the interpolation.

Finally, following recent methods on semi-supervised learning [96, 103], the model

training is guided only with the most confident predictions, thus avoiding the use of

incorrect predictions. This is often implemented as a filtering step where samples

associated with lower confidence model outputs are discarded. This is adapted

to the semantic segmentation step to mask out the pixels with lower confidence

during the computation of the loss. As a result, the DICE loss only considers the

pixels of the unlabeled samples that are associated with higher confidence values.

Concretely, PL-CUT-Seg+ only considers the pixels associated with predictions with
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over 0.999 confidence, for the background and polyps. The optimal threshold value

is determined after conducting a logarithmic grid search within the range of 0.9

to 0.999999. It is observed that thresholds higher than 0.999 are too restrictive,

preventing the model from learning, while lower thresholds allow too many incorrect

pseudo-labels. To prevent the introduction of noise during training, it is necessary to

have high confidence values. On the other hand, lower confidence values may have

detrimental effects on the performance of the model, as they can result in forwarding

incorrect masks to the segmentation model.

End-to-end trained models tend to outperform those that are trained in several

stages. This is often attributed to better cooperation between features from different

layers and additional freedom from the end-to-end model to learn better-suited

features to the end task. As demonstrated in the previous chapter, this also applies

to colorectal polyp segmentation and synthetic data. Hence, the two stages of PL-

CUT-Seg are integrated into a single backpropagation loop and trained end-to-end.

The overall end-to-end model loss function integrates both the image-to-image

translation and the segmentation loss terms. Figure 5.3 shows how the image

translation step benefits from real-world data by producing realistic images. Then

it trains in an adversarial two-step fashion: on the first step, a binary loss function

is employed to optimise the discriminator D from the CUT model to distinguish

between real images (from D or DS) and images generated by the generator (z);

and in the second step, this same binary loss is used to optimise the generator G to

generate images that would be classified as real by the discriminator. In this last

step, the segmentation term, LSeg, is also included in the optimisation step, as well

as the contrastive terms, LPatchNCE(G,D,X) and LPatchNCE(G,D, Y ), where X is

the set of synthetic domain images, and Y the set of real domain images. Given the

design of the approach, the translation loss only updates the parameters from G and

D, while the segmentation loss updates both the parameters in the segmentation

network U and in the discriminator and generator G and D from the translation

stage. Note that the segmentation loss is weighted with a hyperparameter λS to
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Figure 5.3: Synthetic images (first row) converted to the real-world domain (second
row).

control the influence that the segmentation loss has on the overall training of the

model.

5.4 Experiments

This section describes the proposed semi- and self-supervised paradigms, the design

of the different ablation studies, and the hyperparameters used throughout all the

experiments. It provides a thorough analysis of the different elements involved in

PL-CUT-Seg and PL-CUT-Seg+ and their role in training the model, exploring

their robustness to different levels of label availability, and comparing the model

performance to state-of-the-art approaches.

5.4.1 Setup

The experiments in this section explore different levels of supervision by varying the

percentage of labelled real samples (size of Dl with respect to Du) in the dataset.

For the self-supervised setup, it is assumed that all the labels in the real dataset

are unavailable (Dl = 0) and train the model with Du. For the semi-supervised

setup, β is defined as the percentage of labelled data in the training set: Dl

Dl+Du
× 100.
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Following the work in [117], values of β = 15% and β = 30% are used.

The most widely adopted benchmark for colorectal polyp segmentation consists

of a combination of five datasets for the testing stage and a larger set of non-

overlapping samples from two of these datasets for the training stage [77, 121,

122]. The testing sets consist of the following datasets: CVC-300 [66] with 60

samples, CVC-ClinicDB [65] with 62 samples, CVC-ColonDB [123] with 380 samples,

ETIS [68] with 196 samples, and Kvasir [69] with 100 samples. The training set is

constituted of 1450 samples: 550 samples from CVC-ClinicDB and 900 from Kvasir.

For the bulk of the experiments, the training set is split into two sets, one for each

dataset, with an evaluation of the corresponding testing sets. The performance of

the model is evaluated in all the datasets as well as the effects of training with

both datasets combined. The amount of synthetic samples is maintained across

experiments following the procedure from Chapters 3 and 4: 19,917 samples from a

3D model.

Training

Following the setup in Chapter 4, both networks are trained end-to-end in PL-

CUT-Seg: the CUT [86] model followed by the HarDNet-MSEG [78] segmentation

network initialised with ImageNet-trained weights on the encoder. The number

of epochs is higher than in the original CUT paper because pseudo-labels require

more time to converge due to their noisy nature. It is observed that the model

converges at epoch 300. Each batch comprises 2 real images and 2 fake images in

the translation stage as an input for the CUT model G and D, and 2 translated

images and 2 real images in the input of the segmentation model U . When training

in the semi-supervised setup, half of the real images are from the labelled set Dl and

half the unlabeled set Du. The batch size at the input of the segmentation model

doubles when applying mixup since the non-interpolated samples are kept. The

optimal value of the mixup alpha parameter should change for different datasets and

use 2.0 for Kvasir, 0.5 for CVC-ClinicDB, and 0.5 when training with both datasets.
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In all the cases the data augmentation and preprocessing techniques applied in the

previous chapter are maintained: the 320×320 input images are randomly cropped

to 256×256, horizontally and vertically flipped 50% of the times, and randomly

rotated between 0 and 360 degrees. All samples are normalised with a (0.5, 0.5, 0.5)

per channel mean and standard deviation. Finally, the hyperparameters λX and

λY , described in Chapter 4, are set to 1 as suggested by Park et al. [86]. Enabling

these hyperparameters helps the model maintain the spatial location in the synthetic

images. This is necessary to leverage the masks in the synthetic set Ds generated

from the 3D model. The optimal value for λX and λY is verified to be optimal by

conducting a grid search within the range of 0.001 to 10.

The average duration of the training is 4 hours, which is higher than in previous

chapters because the computation of the pseudo-labels requires an extra inference

step.

5.4.2 Ablation study

An ablation study is conducted to investigate the effect of the techniques employed

in PL-CUT-Seg+. Table 5.1 compares CUT-Seg with the approach proposed in this

chapter and provides evidence of the effect of each of the elements introduced. In

particular, it presents the results on the Kvasir dataset for self-supervised and semi-

supervised setups with 15% and 30% labelled data, which corresponds to the setup

used in the benchmarks. These results indicate that the utilisation of pseudo-labels

(“+ Pseudo-labels”) greatly improves the performance of the framework, in particular

by providing the model with exposure to real-world images. Furthermore, the use

of Mixup and confidence masks results in further enhancement of the performance

achieved with pseudo-labels. The last two rows in Table 5.1, corresponding to

PL-CUT-Seg and PL-CUT-Seg+, show improved performance across the different

levels of labelled samples.
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Labeled samples: 0% 15% 30%

mDICE IoU mDICE IoU mDICE IoU

CUT-Seg 63.82 55.24 77.91 70.58 80.31 73.18
+ PL (Pseudo-labels) 77.41 68.54 84.08 76.61 85.39 78.32
+ PL + MixUp 77.72 68.72 84.32 77.07 85.87 78.71
+ PL + MixUp + Conf. Mask 78.08 68.77 85.52 78.19 86.94 79.58

Table 5.1: Results for Kavasir validation set for the self-supervised setup and the
semi-supervised setup with 30% of labelled samples. Best mDICE and IoU scores
are reported. The best results are highlighted using bold text.

5.4.3 Comparison with other self- and semi-supervised ap-

proaches

Here we present a comparison of PL-CUT-Seg and PL-CUT-Seg+ with other state-

of-the-art algorithms using the Kvasir and CVC-ClinicDB datasets. Table 5.2 shows

that the proposed methods achieve improved performance in semi-supervised and self-

supervised setups and includes two state-of-the-art approaches for the fully supervised

setup (100% labelled samples) as a reference. The performance of PL-CUT-Seg

and PL-CUT-Seg+ surpasses other approaches when trained and evaluated on the

Kvasir dataset and reduces the performance gap between CUT-Seg and CAL on

CVC-ClinicDB. This shows the potential of introducing synthetic data in the training

of polyp segmentation approaches. This is especially noticeable as the number of

labels decreases.

Additionally, the generalisation ability of the proposed method is evaluated by

training on a larger set constituted by both Kvasir and CVC-ClinicDB training sets,

and evaluating on the five test sets: Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB,

and CVC-300. Table 5.3 shows that the proposed approach surpasses CUT-Seg, the

previous attempt to introduce synthetic data in the pipeline, across all the datasets.

Both PL-CUT-Seg and PL-CUT-Seg+ reach competitive results across all levels

of annotations and datasets while CUT-Seg fails to generalise to certain datasets,

especially in the setup with 15% of labelled samples. The additional regularisation in

PL-CUT-Seg+ provides a considerable improvement in most of the cases but seems
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Figure 5.4: CVC-ClinicDB segmentation sample with PL-CUT-Seg+ with 30% of
annotations.

to degrade model performance when no labels are available in the dataset, i.e. the

self-supervised setup. This suggests that the increased difficulty of training only with

unlabeled samples might require weaker regularisation techniques.

Figure 5.4 shows qualitative results on the CVC-ClinicDB dataset with 30% of

labels.

5.5 Conclusion

In conclusion, this chapter presented a novel framework for self- and semi-supervised

polyp segmentation that achieves excellent results in low data regimes, as seen in

Tables 5.3 and 5.2. As proposed in Hypothesis 3 (H3), exposing the segmentation

model to both real and synthetic images is crucial for achieving improved performance.

This was achieved through the use of pseudo-labels, which allow the model to be

exposed to real images in addition to synthetic images.

In the case of CVC-ClinicDB, adding less than 100 annotated images almost

obtains state-of-the-art performance, as seen in Table 5.2. In other words, with a

minimal amount of annotation combined with synthetic data, it is possible to locate

polyps with similar performance to the fully supervised approach that requires 600

annotated colonoscopy images.
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Kvasir CVC-ClinicDB

Labels mDICE IoU mDICE IoU

HarDNet-MSEG [78] 100% 87.50 79.08 94.05 89.67
UACANet [121] 100% 91.20 85.90 92.60 88.00

CAL∗ [117] 30% 80.95 71.63 89.29 82.57
CUT-Seg 30% 80.31 73.18 75.43 67.20
PL-CUT-Seg 30% 85.87 78.71 83.99 76.92
PL-CUT-Seg+ 30% 86.94 79.58 85.10 78.08

CAL∗ [117] 15% 76.76 67.23 82.18 74.98
CUT-Seg 15% 77.91 70.58 73.93 66.59
PL-CUT-Seg 15% 84.32 77.07 81.48 74.40
PL-CUT-Seg+ 15% 85.52 78.19 81.22 73.90

CUT-Seg 0% 63.82 55.24 52.25 44.17
PL-CUT-Seg 0% 77.72 68.72 64.61 55.83
PL-CUT-Seg+ 0% 78.08 68.77 56.84 46.70

Table 5.2: Results from training on Kavasir and CVC separately and testing on
individual validation sets for the self-sup and semi-supervised setups for Kvasir and
CVC. Best mDICE and IoU scores are reported. The best results are highlighted
using bold text. Note that the results from CAL (marked with a star *), come from
the original paper and the semi-supervised setup might differ slightly.

Labels Kvasir CVC-Cl. ETIS CVC-Co. CVC-300

HarDNet-MSEG [78] 100% 91.29 93.20 67.70 73.10 88.70
UACANet [121] 100% 91.20 92.60 76.60 75.10 91.00

CUT-Seg 30% 64.08 49.33 24.09 31.61 36.27
PL-CUT-Seg 30% 86.82 75.82 42.35 67.59 84.04
PL-CUT-Seg+ 30% 86.54 77.97 46.02 63.89 79.40

CUT-Seg 15% 62.70 34.71 10.31 12.50 5.88
PL-CUT-Seg 15% 85.03 74.71 36.18 61.79 85.44
PL-CUT-Seg+ 15% 85.71 75.95 43.68 58.05 70.93

CUT-Seg 0% 67.23 54.40 31.06 31.45 36.09
PL-CUT-Seg 0% 78.82 66.35 33.05 52.83 56.31
PL-CUT-Seg+ 0% 74.00 57.15 29.82 43.96 44.78

Table 5.3: Results from training on the Kavasir and CVC-ClinicDB training sets
merged and tested on individual validation sets for the self-sup and semi-supervised
setups. Best mDICE scores are reported. The best results are highlighted using bold
text.
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Furthermore, the results indicate that synthetic data is particularly useful in

scarce label setups, where the availability of data is limited. PL-CUT-Seg was

demonstrated to be effective for the task of polyp segmentation. However, it is

important to note that further research is needed to evaluate the robustness and

generalisability of this approach across other tasks and real-world datasets.
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Chapter 6

Domain adaptation for fashion

pattern classification

In this chapter, we move away from medical image processing and investigate how

synthetic data can be utilised for a different computer vision task in a domain that

utilises a large real-world dataset, as opposed to previous studies which employed

smaller curated datasets only for research purposes. The domain adaptation tech-

niques from Chapters 4 and 5 are now applied to a different task and domain: fashion

pattern classification. This chapter provides evidence that Research Question 3

(RQ3) holds true for other domains that have access to an abundance of real-world

data. The work reported in this chapter has been developed in collaboration with

Zalando and has been published at the 22nd Scandinavian Conference on Image

Analysis (SCIA) [124].

6.1 Introduction

In 2021, 75% of EU internet users bought goods or services online [125]. One of the

main drivers of increased e-commerce engagement has been convenience, allowing

customers to browse and purchase a wide variety of categories and brands in a single

site. If important product metadata is either missing or incorrect, it becomes difficult

for customers to find products as the number of available products on e-commerce
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sites grows. Online stores typically offer a set of filters (e.g. pattern, colour, size, or

sleeve length) that make use of such metadata and help customers to find specific

products. If such critical information is missing or incorrect then the product cannot

be effectively merchandised. Machine learning has been used for fashion e-commerce

in recent works to analyse product images, e.g. clothes retrieval [126], detecting the

outline [127], or to find clothes that match an outfit [128]. This chapter is focused

on the visual classification task which consists of classifying patterns in catalogue

images of clothing. Patterns describe the decorative design of clothes, and they are

important because they are widely used by customers to find products online.

Fashion pattern classification is challenging. Fashion images often include models

in different poses with complex backgrounds. Achieving high performance requires

large annotated datasets [129, 130, 131]. However, public datasets are only available

for non-commercial use or do not cover the specific attributes required, while gener-

ating private datasets with fine-grained and balanced annotations is expensive. In

addition, publicly available fashion datasets typically have underrepresented classes

with only a few samples. For example, in the Deep Fashion dataset [129] there are

6633 images with the “solid” pattern while only 242 images contain the “lattice”

pattern. Categories that are underrepresented during training achieve a lower per-

formance, thus reducing the overall performance. These problems are addressed by

generating Zalando SDG (Zalando Synthetic Data Generation), a synthetic dataset

for fashion pattern classification composed of 31,840 annotated images. Figure 6.1

shows fashion visual pattern examples in the synthetic and real-world domains.

However, as seen in previous chapters, synthetic images are not a precise reflection

of the real-world domain in which the model will operate. The classification task is

not an exception. Even if the synthetic images use realistic lighting and textures

that look realistic to humans, the classification model will tend to over-optimise

against the traits of the synthetic domain and will fail to generalise well to real-world

patterns.

This problem is tackled by using the technique described in Chapter 5. Similar to
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Synthetic samples from Zalando SDG dataset (a,b,c) and real samples
from the DeepFashion dataset [129] (d,e,f) representing the striped, floral, and plain
categories.

PL-CUT-Seg, this chapter introduces Fashion CUT, a domain adaptation approach

for classification that does not require ground truth labels. This approach can be

used in situations where there is availability of abundant annotated data in the

source domain (synthetic images) but a target domain (real images) where no labels

are available.

Fashion CUT prevents the patterns from being distorted during the translation

step. This problem can appear when complex patterns are shifted to a different

domain, they can be distorted to a level that they no longer adhere to the original

pattern label for the synthetic image. For example, when an image with the “camou-

flage” pattern is translated from the synthetic to the real domain, the pattern could

be accidentally distorted to “floral”.

Fashion CUT provides an end-to-end unsupervised framework to train clas-

sification models on unbalanced datasets that outperforms other state-of-the-art

unsupervised domain adaptation algorithms, achieving higher accuracy and improved
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results. The contribution of this Chapter is the design of an architecture with

a generative model and a classifier that is trained to make synthetic images look

realistic while preserving the class patterns. In the final stage of the training, inspired

by the work described in Chapter 5 real-world pseudo-labelled images are used to

improve the model generalisation to real images. The novel architecture performs the

image translation task while jointly training a classification model. This approach

allows for more efficient and effective training as the translation and classification

tasks work together to improve overall performance.

The remainder of the chapter is organised as follows: Section 2 explains the

domain adaptation approach; Section 3 presents the Zalando SDG synthetic dataset

and experiments, and Section 4 concludes the chapter.

6.2 Related work

In the context of unsupervised domain adaptation for classification, non-adversarial

approaches consist of matching feature distributions in the source and the target

domain by transforming the feature space to map the target distribution. A relevant

Gong et al. [132] found that gradually shifting the domains during training improved

the method’s stability.

Recent methods are based on generative adversarial networks [36] because of their

unsupervised and unpaired nature. Generative domain adaptation approaches rely

on a domain discriminator that distinguishes the source and target domains [133]

and updates the generator to produce better images. Our approach improves existing

adversarial approaches by optimizing a classifier alongside the generator, producing

realistic data that retrain the source category.

In this chapter, the proposed Fashion CUT is compared with the top state-of-

the-art algorithms on the unsupervised domain adaptation task, which are widely

used. To ensure a comprehensive analysis, relevant algorithms from each category

are selected, both non-adversarial and adversarial, based on their prominence and

performance:
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• Xu et al. [134] proposes (Fourier Domain Adaptation) FDA that uses a Fourier-

based transformation in the frequency domain to perform the adaptation in a

very inexpensive and efficient manner. It doesn’t require training any neural

network and its adaptation capabilities outperform most other non-trainable

methods.

• Chen et al. [135] achieves state-of-the-art accuracy in most domain adaptation

benchmark datasets with an adversarial approach. The authors discover that

eigenvectors with the largest singular values dominate feature transferability

between domains, often at the expense of other eigenvectors crucial for discrim-

inability. To address this issue, they introduce Batch Spectral Penalisation

(BSP), a method designed to penalise the largest singular values, thus boosting

feature discriminability.

• Zhang et al. [136] introduces another adversarial technique that uses a new

metric called Margin Disparity Discrepancy (MDD) that is used to compare the

distribution of two domains. The authors successfully bridge the gap between

domain adaptation theory and algorithms, offering a more robust approach

that achieves state-of-the-art accuracy in domain adaptation tasks.

6.3 Fashion CUT

Fashion CUT has two components: 1) an image translation network that generates

realistic images; and 2) a classifier that enforces the generated images to keep the

class patterns. The overall architecture is shown in Figure 6.2.

Acquiring paired images from both domains can be difficult to achieve in the

fashion domain since image pairs have to occupy precisely the same pixels in the image

and have the same pattern. As such, CUT [86] is used for the image translation step,

as in Chapters 4 and 5. Synthetic images do not have to match the exact position or

texture of real images in the dataset because CUT is an unpaired translation method.

CUT learns a mapping that translates unpaired images from the source domain to
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Figure 6.2: The proposed architecture includes a translation model (CUT) and a
classifier model (ResNet50), which are optimised together via a common loss that
ensures realistic images with reliable annotations. Pseudo-labeled real images are
included in each mini-batch to improve the classifier generalisation.

the target domain. It operates on patches that are mapped to a similar point in

learned feature space using an InfoNCE [137] contrastive loss. In addition, CUT uses

less GPU memory than other two-sided image translation models (e.g. CycleGAN)

because it only requires one generator and one discriminator. By reducing memory

usage, the joint training of an additional classifier becomes tractable on low-cost

GPU setups with less than 16GB of memory.

While CUT produces realistic images, the class patterns can be lost or mixed

with other classes since CUT does not enforce that these category features are

consistent across the image translation. The generator’s only objective is to produce

realistic images that resemble the real-world domain, but it ignores the nature of each

pattern. Any pattern distorted during the translation will impact the performance of

a classifier trained on this synthetic data. Figure 6.3 showcases unsuccessful examples

of mixed patterns by the generator. For example, the “herringbone” pattern in

Figure 6.3(a) is lost during the image translation, becoming a blurry pattern in

Figure 6.3(d). Figure 6.4 shows successful translations using Fashion CUT.

To enforce stability in the generated patterns, a ResNet50 model pre-trained on

ImageNet is added to predict the category of the images generated by CUT. The

classifier is optimized alongside the CUT generator to fulfil both classification and

translation tasks.

Figure 6.4 shows how the classifier preserves the pattern features in comparison
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Synthetic images (a,b,c) and unsuccessfully adapted images using CUT
(d,e,f) due to shifted patterns by the generator when not imposing class constraints.

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Synthetic images (a,b,c) and adapted domain images using Fashion CUT
(d,e,f).
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to vanilla CUT. Training both models simultaneously is faster and provides better

results than training them separately. The loss function of the proposed architecture

is given by:

λgLGAN (G ,D ,X ,Y ) + λcLclassifier(C )+

λXLPatchNCE (G ,D ,X ) + λYLPatchNCE (G ,D ,Y )

(6.1)

where LGAN (G ,D ,X ,Y ) is the generator loss, Lclassifier (C ) is the cross-entropy loss

of the classifier inferred from the images generated by the generator. LPatchNCE (G ,D ,X )

and LPatchNCE (G ,D ,Y ) are the contrastive losses that encourage spatial consistency

for the synthetic and real images, respectively. G is the generator model, D the

discriminator model, X the synthetic domain images, Y the real domain images,

and C the classification model. λg, λc, λX, and λY are hyperparameters that control

the weight of the generator, the classifier, and both contrastive losses, respectively.

In the experiments, half of the synthetic mini-batch is replaced with images from

the target domain. As real-world annotations are not available for generated images,

pseudo-labels are predicted by the classifier as in Chapter 5. The model suffers

from the cold start problem when introducing pseudo-labels in the early epochs

because the classifier struggles to converge. The classifier requires at least 1 epoch of

synthetic samples to generate reliable pseudo-labels for real-world images. The best

results are obtained when enabling pseudo-labels at the end of epoch 2, which takes

approximately 5 hours due to the size of the datasets.

6.4 Experiments

This section describes the synthetic dataset generation process and the two experi-

mental setups used to evaluate Fashion CUT.
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Figure 6.5: For each render the scene contains the provided 3D object, added
environment and spotlights, and a process applied to the materials to randomise
their properties (e.g. colours, scale).

6.4.1 Zalando SDG dataset

The Zalando SDG dataset is composed of 31,840 images of 7 classes: plain, floral,

striped, dotted, camouflage, gradient, and herringbone. As with all synthetic datasets

in this thesis, it was generated using the framework described in Chapter 7.4. A

basic set of professionally modelled 3D objects from CGTrader marketplace is

used, representing a variety of fashion silhouettes (e.g. shirt, dress, trousers) and

implemented a procedural material for each of the 7 target classes, the properties of

the patterns are defined using code. Each procedural material is implemented as a

Blender shader node, where multiple properties can be exposed and controlled via

Blender Python API. Examples of such properties include pattern scale, colour or

colour pairing, orientation and image-texture. This setup allows an arbitrary amount

of different images for each 3D object and class pair to be generated programmatically.

The background, lighting, and camera position are randomised, as seen in Figure

6.5. It was decided not to use physically based renderers, as they are more resource-

intensive. Instead, a trade-off was made in terms of rendering accuracy for speed

and the real-time Blender Eevee render engine [138] was adopted as an alternative.

The procedural materials can be applied to any new 3D object. As such they

provide a powerful generalised approach to data creation, and the generated images

do not require any manual human validation as long as the procedural randomisation

guarantees that each possible output belongs to the expected target domain class.
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Method Accuracy

No adaptation 0.441
BSP [135] 0.499
MDD [136] 0.540
AFN [134] 0.578
Fashion CUT 0.613
Fashion CUT with pseudo-labels 0.628

Table 6.1: Comparison of unsupervised domain adaptation algorithms on Zalando
SDG dataset. The metric used is accuracy.

6.4.2 Evaluation on Zalando SDG dataset

An end-user pattern classification mode is trained using datasets from both 31,840

synthetic fashion imagery (the source domain, which includes ground truth labels),

and 334,165 real-world fashion images (the target domain, which has no ground

truth labels and is used solely to learn the domain adaptation transformation). The

performance of the algorithms is evaluated using a validation set and a test set

composed of 41,667 annotated real images each. The metric used is accuracy and all

algorithms use a ResNet50 [15] as the classifier. Fashion CUT is optimised using

Adam with learning rate 10−5. Both λncex, and λncey are set to 1.0. λg = 0.1 and

λclassifier = 0.1 for N = 5 epochs. The number of epochs used has been determined

empirically based on when the classification model ceased to improve. It is worth

noting that results are very sensitive to the value of λg because it regulates the level

of realism in the generated images. Optimal hyperparameters are identified through

a grid search.

Table 6.1 compares the performance of domain adaptation algorithms trained

only on 31,840 synthetically generated images and evaluated on the 41,667 real

fashion images.

First, the performance of training without domain adaptation is measured. In

other words, the classifier is trained only on synthetic images. The performance is

poor because the model had insufficient information about real-world images.

Second, Zalando SDG is evaluated on other domain adaptation algorithms in

the fashion domain. All experiments are performed in the environment provided by
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Figure 6.6: Evaluation of Fashion Cut with varying amounts of the Zalando SDG
dataset and 10,000 unlabeled real images. The accuracy metric is used in the chart.

Jiang et al. [139]. The Fashion CUT approach outperforms the other algorithms for

the pattern classification task. Finally, pseudo-labels are used to improve the results

with minor changes in the training.

6.4.3 Synthetic dataset size

This experiment explores the number of synthetic images required to successfully

train the proposed domain adaptation algorithm. For this experiment, the model is

trained using 10,000 unlabeled real images and changing the number of synthetic

images. Figure 6.6 shows that Fashion CUT’s performance benefits from large

synthetic datasets. Results show that at least 5,000 synthetic images are required to

outperform other algorithms in visual pattern classification.

6.5 Conclusions

This chapter demonstrates that the approach from Chapters 4 and 5 can be applied

to other tasks (classification) and other domains (fashion). Combining synthetic

data generation with domain adaptation can successfully classify patterns in clothes

without real-world annotations. Experiments confirm that Fashion CUT outperforms

other domain adaptation algorithms in the fashion domain. In addition, pseudo-labels
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proved to be beneficial for domain adaptation in the advanced stages of the training.

A key conclusion from this work is that there is no one-size-fits-all technique for

using synthetic data to train deep learning models. It is always necessary to adapt to

the specific requirements of the task and domain. In this case, annotations were not

available, and a self-supervised approach was chosen. In other cases, where labels

are available, semi-supervised techniques may be used.
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Chapter 7

Conclusions

This concluding chapter is divided into three sections. The first section revisits

the hypotheses and research questions outlined in Chapter 1. The second section

summarises the key findings of the thesis and possible future work. Lastly, the

third section offers final thoughts and recommendations for researchers interested in

working with synthetic data in the context of computer vision.

7.1 Hypothesis and research questions

In this section, the hypotheses presented in Chapter 1 are revisited in relation to

the research discussed in the subsequent chapters. The research questions related

to each hypothesis are also discussed to give a clear understanding of the overall

contributions of the thesis.

Hypothesis 1: It is possible to train a computer vision model exclusively using

low-poly synthetic data and without requiring experienced 3D artists and advanced

rendering engines.

Research Question 1: Can domain randomisation compensate for the lack

of realism in synthetic images and successfully train a computer vision

model using low-quality 3D assets?

The experiments presented in Chapter 2 demonstrate that it is feasible to train a
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computer vision model using synthetic data that is not realistic. The key to achieving

success with this approach is to generate synthetic data that encompasses a wide

range of possibilities, even if they appear unrealistic. This can be accomplished by

randomising factors such as lighting, textures, backgrounds, and object geometry.

Rather than prioritising high-quality lighting, textures, and 3D models, the focus

should shift to increasing the variety of data. Figure 2.3 demonstrates that is possible

to train an object counting system via randomisation by replacing the position of

the objects accordingly (Section 2.3.1) and applying the right 3D transformations

to the meshes (Section 2.4). Additionally, another crucial finding on Section 2.4.2

is that the capacity of the model should be substantial, as it is required to learn a

larger domain.

Hypothesis 2: The incorporation of real-world annotations may enhance the realism

of images produced through domain adaptation techniques.

Research Question 2: What are some ways that domain adaptation can

leverage information from segmentation labels to generate images that

are more realistic and that are consistent with the segmentation labels?

The studies presented in Chapter 3 and Chapter 4 illustrate that the incorporation

of label information can be achieved through the attachment of a task-specific model,

which functions on the outputs of the adaptation model. Specifically, Table 4.1

shows how the segmentation accuracy improves in most datasets (29% on ETIS

dataset) compared to non-guided models. This task-specific model ensures that a

correlation is maintained between the adapted images and the ground truth. It is

essential to optimise both models simultaneously. Additionally, manually tunning

the ratio between the adaptation and task performance is crucial to attaining optimal

results, as discussed in Section 4.3. Lastly, to guarantee efficient implementation, it is

necessary to utilise lightweight models like CUT [86] (Section 4.2), as the utilisation

of heavy models may lead to a shortage of GPU memory.
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Hypothesis 3: Models trained using domain adaptation are exposed only to a

“transformed” version of the data distribution and never encounter genuine real-world

images. Assigning soft labels to images from the real world may help the model to

better understand the target domain.

Research Question 3: How can real-world data be incorporated into a

domain adaptation process to improve the generalisation capabilities of

the model?

Chapters 4, 5, and 6 extensively investigate these questions. It is demonstrated

that incorporating real-world data into machine learning models can be achieved

through either a semi-supervised approach when some annotations are available

for the real-world data (Chapter 4), or by using pseudo-labels (Chapter 5), when

a large amount of non-annotated real-world data is available (Chapter 6). The

ability to generalise is investigated by applying the techniques in two very different

domains - polyp segmentation and fashion classification. The use of synthetic data

in semi-supervised learning can greatly benefit from techniques such as mixup, which

improves the model’s generalisation capabilities As seen in Table 5.3. On the other

hand, the use of pseudo-labels is more effective when they are introduced at advanced

stages of the training process (Section 6.3).

7.2 Research contributions and future work

This thesis investigated all three research questions comprehensively, yielding new

insights but also novel deep-learning models for a variety of tasks that benefit from

using synthetic data. The key findings of this research and opportunities for future

research are summarised in the following list:

• A significant contribution of this research is the demonstration that altering the

geometry of 3D objects in the domain randomisation process can improve the

results. A collection of 3D transformations is proposed, with recommendations

for their usage depending on the domain. Table 2.4 shows how the object
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counting performance is altered by each transformation, subject to the domain.

In addition, the code for generating the domain randomisation datasets for

counting tasks is also made available for public use (Chapter 7.4) (RQ1).

• One of the primary contributions of this research is the release of the Synth-

Colon dataset (utilised in Chapters 3, 4, and 5), which is publicly accessible.

There is still potential for improvement in terms of enhancing non-synthetic su-

pervised results for colorectal cancer detection. As the first 3D-based synthetic

dataset for polyp segmentation, Synth-Colon can also be employed for future

domain adaptation studies. Furthermore, the dataset also includes information

about the depth of each image, which was not utilised in this research but was

generated as it was straightforward, this data may be used in the field of depth

estimation in colonoscopies [83] (RQ2).

• Another key contribution of this research is the ability to train a polyp segmen-

tation model without the use of real-world annotations as seen in Tables 3.2,

4.1, and 5.3. This finding is promising for other fields where synthetic data can

be utilised and, with the appropriate domain adaptation techniques to enhance

the performance on real-world data. It is recommended to investigate polyp

segmentation applied to real videos, as videos are highly challenging to label

due to the high number of frames (∼30/s) (RQ2).

• The final contribution of this research is a novel semi-supervised approach that

combines pseudo-labels, confidence masks, and mixup in a unified framework to

address the main challenges encountered when training with real and synthetic

images. Table 5.3 shows how training with 15% of annotations boosts the

performance of the polyp segmentation model, reaching values close to the

fully-supervised approach. In addition, Table 5.2 proves that adding confidence

masks and mixup (PL-CUT-Seg+) further improves the performance of the

Kvasir dataset. This approach allows the model to effectively use non-annotated

real-world images in synthetic training, by utilising pseudo-labels, which are
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generated by the model itself. As future work, it would be valuable to investigate

the potential of improving the state-of-the-art supervised algorithms using

synthetic data and domain adaptation techniques (RQ3).

7.3 Recommendations

In this section, key recommendations about the utilisation of synthetic data in the

field of computer vision are presented:

• Utilising techniques such as domain randomisation are beneficial for synthetic

datasets that lack realism. This is supported by the object counting results

presented in Chapter 2. Efforts to generate synthetic images that closely

resemble real-world images may be futile, as the model may simply memorise

the synthetic traits.

• The utilisation of 3D-based synthetic images is only beneficial in scenarios

where there is a scarcity of real images. The presence or absence of annotations

is insignificant as they can be artificially generated. Table 3.3 shows that

synthetic data only performs better when the segmentation model is trained

with less than 50 real images.

• It is crucial to approach the use of synthetic data with flexibility and adaptability

to the conditions of the task. The conditions of the task such as high variability

or sensitivity to augmentations should be taken into account when determining

the appropriate use of synthetic data. Additionally, the availability of real-world

images and annotations should also be considered. Tables 5.3 and 6.1 show how

pseudo-labels have a beneficial effect when combined with synthetic data in

cases where the number of real images or annotations is limited. In such cases,

the combination of synthetic data with real-world images and annotations can

be considered to enhance the training process.

103



BIBLIOGRAPHY

7.4 Final reflections

This thesis has successfully highlighted the significant role of synthetically generated

images from 3D models in advancing the field of computer vision. A key insight

from this research is that the realism of 3D models isn’t always necessary. Simplistic

models, when enhanced through domain randomisation, prove to be quite effective.

This approach opens new avenues in the utilization of simple 3D models for image

generation.

In addition, it has been demonstrated that concurrent training of the model

for the main task and the image translation model yields advantageous outcomes,

particularly when there is a shared ground truth between the models. This synergy

enhances the model’s performance and applicability.

Another significant finding is the beneficial impact of pseudo-labels when used with

synthetic images. The integration of pseudo-labels improves the results, emphasising

their utility in this domain. This thesis does not explore synthetic videos, leaving

a potential area for future research. Although a video dataset is provided, its

application remains unexplored in this study.

The insights gained from this research have broader implications, particularly

in scenarios characterised by a scarcity of images, such as in the diagnosis of rare

diseases. The application of 3D-based synthetic data and the understanding of the

domain gap are pivotal in these contexts. This thesis sets the foundation for more

research in these topics, opening up possibilities for innovative uses in computer

vision and other fields.
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Appendix A: Technical framework

for 3D synthetic image generation

A.1. Introduction

This appendix serves as an introduction for those interested in creating their synthetic

datasets. It covers topics such as installing computer graphics software, creating

a 3D scene, configuring lighting, and exporting images efficiently. In addition to

technical details, this chapter also provides specific recommendations on the best

way to create synthetic datasets for training computer vision models. It should be

noted that it is not necessary to be a 3D artist to create synthetic images. As seen

in previous chapters, highly detailed images are not required, as machine learning

techniques can adapt the images so that they are useful for training purposes.

It is also important to note that generating synthetic data is only one aspect

of the training process. Synthetic data alone is insufficient for successfully training

a computer vision model. The use of synthetic data needs careful consideration

and adaptation of existing models and training regimes. This forms the basis for

the various investigations detailed throughout this thesis. All the datasets used in

this thesis were generated according to the general principles and considerations

presented in this appendix. All the code and resources presented in this technical

framework can be found in an online repository [140].
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A.2. Installing a computer graphics software en-

gine

There is a wide range of computer graphics software available for generating synthetic

data. Most of these programs offer basic functions such as importing 3D models

and applying various types of lighting effects. Computer graphics software differs

in terms of the specific types of rendering engines used, which is beyond the scope

of this thesis, and whether they are more oriented towards creating video games or

realistic scenes. Another important difference is the programming language used. In

general, it is possible to control the software through a graphical interface; however,

for our purpose, it is crucial to use code directly as we want to automate the creation

of datasets that will have thousands of images.

The computer graphics software used for the generation of 3D synthetic image

data is Blender [138]. Blender is an open-source project with a large community

supporting its use. One of the main reasons why Blender is used in this thesis is that

it has a Python API. This means that the code used to generate synthetic data is

consistent with the code that trains computer vision models ensuring a streamlined

end-to-end software pipeline.

New versions of Blender are released every few months, whereas new versions

typically include updated render engines. In the context of this research, and as can

be seen in the next chapter, the level of realism does not necessarily have a strong

effect on the performance of the synthetically trained computer vision model. That

is why an older version (Blender 2.79b) is used for this research. It includes the basic

functionalities we need and a simple render engine that prioritises speed over realism.

The software is free and can be downloaded online [21].

A.3. Blender setup

After installing and launching Blender version 2.79b it is important to confirm that

the correct version is being used, which can be checked on the splash screen.
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Figure 1: Enable scripting mode to automate Blender using Python.

Figure 2: Enable render preview to see precisely what will be rendered.

The default Blender scene includes a cube, a light, and a camera. It is necessary to

activate “Scripting mode” to control Blender with Python. To do this, it is necessary

to click on “Default” and select “Scripting” as in Figure 1. This will display a new

panel on the left where the code can be edited. Additionally, a command line interface

will be displayed at the bottom, which can be useful when trying out commands.

Next, it is necessary to enable the camera view to see precisely what will be

rendered. This can be done by clicking “View” and then “Camera”. In order to

display exactly what is going to be rendered, click on the “Viewport Shading” button,

which is next to “Object Mode” and then select “Rendered” as in Figure 2.
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Since the cube that was loaded by default after initialising Blender will not be

used, run the following command in the command line to hide it.

bpy.data.objects["Cube"].hide = True

After typing this into the command line and pressing Enter, the cube should

disappear.

A.4. Importing 3D models

One option when using synthetic data is to create 3D objects from scratch. Designing

objects in Blender is relatively easy, especially if the focus is not on realism. Creating

a car, a person, or a tree can be achieved easily and with little practice as long as

only low-detailed versions are required. The second option is to import 3D objects

from files with stadardised formats such as OBJ/STL/FBX, which can be freely

downloaded from the internet. For example, Shapenet [24] is a public dataset that

offers 51,300 unique 3D models.

One important consideration is the number of faces of the 3D models to be used.

Models with many faces (more than 2,000) will increase the memory used by Blender

and, memory may be an issue if it is desired to load many objects with many faces.

Again, as demonstrated in this thesis, the level of realism is not necessarily important.

The number of faces of a model can be checked via the stats that appear at the top

right of the Blender interface after clicking on a model.

For illustration purposes, the 3D model “pr2 head tilt.stl” provided in the online

repository [140] is used as an example.

In order to import the model in the scene, the following code should be executed

on the command line, remembering to modify the path with the location of the 3D

model to be downloaded.

bpy.ops.import_mesh.stl(filepath="/path/to/pr2_head_tilt.stl")

Note that the 3D model does not include any textures and that it is too small

and needs to be scaled. It can be called by a factor of 10 in all three axes with the

127



APPENDIX A

Figure 3: 3D model loaded and re-scaled.

following command:

model=bpy.data.objects["Pr2 Head Tilt"]

model.scale=(10,10,10)

After running the commands, the Blender interface should display a 3D model

(see Figure 3).

A.5. Lighting

Lighting is another aspect that is important to consider in order not to compro-

mise on performance. Some lights, particularly those that create shadows, can be

computationally expensive. When adding a light, it is important to consider that it

will interact with all objects in the scene. If the aim is to generate datasets within

relatively short timeframes, it is crucial to use only two or three light sources. The

following command will add a static light and a directional light to the scene. The

directional light will be tilted at a 45-degree angle across all three axes. Note that

the 3D model in Figure 3 doesn’t have any visible illumination because the Blender

default viewport doesn’t display lights. The final rendered version will include these

lights.
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bpy.ops.object.lamp_add(type="SUN")

bpy.ops.object.lamp_add(type="HEMI")

bpy.data.objects["Hemi"].rotation_euler = (0.78 , 0.78 , 0.78)

A.6. Textures

The loaded 3D model has no texture. A simple and inexpensive way to add colour to

3D models is to map images onto the 3D model. Datasets such as the freely available

Describable Textures Dataset [55] offer a wide variety of textures that can be used

to make 3D models more closely resemble the real world.

The following script creates a material, an image, and a texture and assigns them

to the 3D model. Before executing the code, it is important to download the image

“4.2.03.tiff” from the online repository [140].

mat = bpy.data.materials.new(name="material")

model.data.materials.append(mat)

tex = bpy.data.textures.new("texture", "IMAGE")

slot = mat.texture_slots.add()

slot.texture = tex

bpy.data.images.new("image", 0, 0)

bpy.data.images["image"].source = "FILE"

tex.image = bpy.data.images["image"]

tex.image.filepath = "/path/to/4.2.03.tiff"

mat.texture_slots[0].texture_coords = "ORCO"

bpy.ops.image.reload ()

The resulting image will be displayed as illustrated in Figure 4. It is important not to

load images with a very high resolution as this will slow down the rendering process.

A.7. Scene background

Sometimes it is important to be able to provide a background for the scene. To

illustrate how to do this, we make the cube that was hidden in the first step visible
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Figure 4: 3D model with an image texture

again, and then position it behind the 3D model and assign a texture. The example

background image “4.1.05.tiff” is available in the online repository [140]. Then, the

following code should be executed on the command line:

cube = bpy.data.objects["Cube"]

cube.hide = False

cube.scale = (8, 8, 0.1)

cube.location = (-2.5, 2, -1)

cube.rotation_euler = (1.22 , 0, 0.78)

mat_bg = bpy.data.materials.new(name="material_bg")

cube.material_slots[0].material = mat_bg

tex_bg = bpy.data.textures.new("texture_bg", "IMAGE")

slot = mat_bg.texture_slots.add()

slot.texture = tex_bg

bpy.data.images.new("image_bg", 0, 0)

bpy.data.images["image_bg"].source = "FILE"

tex_bg.image = bpy.data.images["image_bg"]

tex_bg.image.filepath = "/path/to/4.1.05.tiff"

mat_bg.texture_slots[0].texture_coords = "ORCO"

bpy.ops.image.reload ()

It is important to carefully consider the backgrounds to be used. In the research

reported in this thesis, they must be sourced from the real world. Real backgrounds
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and textures will help the model learn the properties of the real-world domain.

Therefore, it may be advisable to avoid hand-drawn or synthetic images. The Places

dataset [57] is an excellent source of real-world backgrounds. However, it is necessary

to ensure that there are no images containing objects that are similar to those that

the computer vision model is designed to address. For example, if generating a

dataset for semantic segmentation on vehicles, backgrounds that feature cars or

bicycles should be avoided as they cannot be properly annotated.

A.8. Rendering

This section outlines the procedure for creating a 2D image from a 3D scene. For

extensive computer-generated datasets, it is crucial to use a cost-effective method to

generate images to avoid excessive dataset creation time. Producing high-quality

images is unnecessary since they will be downscaled before being input into the

neural network. For instance, the image resolution used in this research is always

below 512×512 pixels, limited by the computational resources available. However,

various rendering options in Blender, such as motion blur or anti-aliasing, may

prove beneficial for certain datasets. The script below renders the current scene in

512×512-pixel resolution using the Blender default configuration:

bpy.data.scenes["Scene"].render.resolution_percentage = 100

bpy.data.scenes["Scene"].render.resolution_x = 512

bpy.data.scenes["Scene"].render.resolution_y = 512

bpy.context.scene.render.filepath = "/path/to/first_render.png"

bpy.ops.render.render(write_still=True)

The rendered image should look as in Figure 5.

A.9. Annotations

An important aspect of synthetic data is that it implicitly includes annotations,

the format of which depends on the type of dataset being generated. For object
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Figure 5: Rendered synthetic image.

counting datasets, the annotations can simply be the count of objects in the scene,

which can be stored in the image file name (e.g. crowdcounting.01.24.png). For

object classification datasets, the annotations should indicate the object that has

been loaded as the label. For image segmentation datasets, a second image must be

rendered corresponding to a segmentation mask.

The most effective approach for generating segmentation masks involves hiding

the background, modifying the horizon colour to black and subsequently assigning a

new white material with the “shadeless” attribute to the 3D model. The following

code renders the segmentation mask, where white corresponds to the 3D object and

black corresponds to the background.

cube.hide = True

cube.hide_render = True

bpy.data.worlds["World"].horizon_color = (0,0,0)

mat_mask = bpy.data.materials.new(name="material_mask")

mat_mask.diffuse_color = (1,1,1)

mat_mask.use_shadeless = True

model.material_slots[0].material = mat_mask
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Figure 6: Rendered synthetic mask.

bpy.context.scene.render.filepath = "/path/to/mask.png"

bpy.ops.render.render(write_still=True)

The rendered mask should look as in Figure 6.

A.10. Randomisation

Given the technical framework outlined so far, it is a very simple matter to implement

a loop that generates thousands of images. However, one of the benefits of synthetic

data is that it is possible to design the distribution of images, i.e., it is possible to

control variations in rotation, position, colour, and even deformations of the 3D

models. It is essential to apply these small variations to prevent the model from

learning that objects are always in the centre of the screen or facing a particular

direction. Another consideration is the sampling of these variables, e.g., if most cars

are grey by default, the random colour distribution programmed for car generation

should better match the real world with a variety of colourful cars.

The following code applies a rotation, translation, and new size to the 3D model
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(in this case, we use a fixed value, but it is recommended to randomise the values for

each image).

model.rotation_euler = (1.5, 2, -1)

model.location = (2, 0.5, 2)

model.scale = (7, 12, 8)

Blender also allows to modify the geometry of 3D models. Using “Modifiers,”

it is possible to deform the vertices that form the model. This is a very useful

tool that enables many variations of the same model. The computer vision model

benefits greatly from these alterations because real-world instances (e.g., people in a

crowd-counting dataset) will not always be in the same position and will not have a

similar appearance.

The following code applies the “Cast” transformation to the 3D model and

modifies the geometry of the vertices:

bpy.context.scene.objects.active = model

bpy.ops.object.modifier_add(type="CAST")

model.modifiers["Cast"].factor = 1

In this case the “Cast” is of spherical type, meaning that the 3D model vertices

are displaced to resemble the shape of a sphere.

Lastly, it is also essential to alter the camera parameters, such as the field of

view, since generally, datasets in the real world are captured with different types

of hardware. The following code alters the camera’s field of view (see Figure 7 for

result).

bpy.data.cameras["Camera"].lens = 40

A.11. Closing remarks

Blender is a very powerful tool for computer graphics generation that can be used to

produce training datasets for computer vision. With the necessary assets (3D models,

textures, backgrounds), it is possible to generate annotated datasets for almost
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Figure 7: Lens parameter comparison. The left image is set to 40, right image is set
to 50.

any task. It is important to find a balance between performance and real-world

representation while keeping in mind that the computer vision model will typically

learn the most general traits from synthetic images. As mentioned, all the datasets

used in this thesis were generated following the principles outlined in this appendix.
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