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Synthetic Visual Data Generation and Analysis of

Rosacea from Limited Data

Anwesha Mohanty

Abstract

Skin diseases, encompassing approximately one-third of global human ailments,
remain the fourth leading cause of global disease burden. Specifically, Rosacea,
despite its significant prevalence, suffers from a marked scarcity in clinical visual
data. Data scarcity, impedes the effective utilisation of deep learning models in
computer-aided skin disease diagnosis, especially for conditions often overlooked in
clinical visual/image data acquisition.

This study meticulously addresses Rosacea’s data scarcity issue. An exhaus-
tive literature survey spotlighted Synthetic Visual Data Generation as a potential
solution to this data deficit. The central aim is to innovatively acquire and pro-
cess data, mitigating the ramifications of visual data inadequacy by producing high
fidelity synthetic visual data across three Rosacea subtypes.

To the best of our knowledge, this constitutes the first attempt to employ Gen-
erative Adversarial Networks (GANs) with such a limited dataset of 300 images—a
scenario in which GAN models typically struggle to converge. However, leveraging
the theoretical principles of GANs enabled successful model convergence and the
generation of high-fidelity Rosacea images using a variant of StyleGAN2. Further-
more, we have, for the first time, innovatively employed the concept of 3D Parametric
Modelling and computer graphics, facilitating the construction of 3D head models
for subtype-3 using only 268 images.

The application of these techniques successfully generated synthetic data for
Rosacea Subtypes-1, 2, and 3. For subtype-1 and 2, Board-certified expert der-
matologists and lay participants validated the synthesised images. For Subtype-3,
the efficacy of synthetic data was further corroborated by classification models, em-
phasising the viability of synthetic data when juxtaposed with real-world images.
Grad-CAM visualisations provided additional validation of these models’ robustness.
The resultant high-fidelity datasets for Rosacea Subtypes-1, 2, and 3, now publicly
accessible, affirm the proficiency of synthetic image generation in addressing the
challenges of data scarcity inherent to conditions like Rosacea.

xiii



Chapter 1

Introduction

Artificial Intelligence (AI), frequently proclaimed as the digital era’s steam engine

for its unparalleled potential to reshape every sector and stimulate significant eco-

nomic growth, continues to leave a mark. While AI encompasses a wide array of

technologies, it is Deep Learning [1], a subfield of Machine Learning [2] that is partic-

ularly revolutionary for its thorough development in modelling and comprehending

intricate patterns. Deep Learning, by addressing numerous tasks in the fields of

natural language, speech, and computer vision, stands as a foundational pillar and

key driver of the ongoing advancements in AI. Nevertheless, the power of today’s

Deep Learning algorithms is contingent on the availability of extensive datasets that

have been used for their development. Therefore, the production of data and the

advancement of deep learning models are fundamentally interconnected.

Particularly in the field of computer vision, the availability of large datasets

has been a significant driving force behind the success of deep learning. ImageNet

[3], one of the largest publicly available vision datasets, was introduced in 2009

initially containing around 3.2 million images. Over the years, it has significantly

expanded. As of the latest figures on the ImageNet homepage, the dataset has grown

to contain more than 14 million images, encompassing over 21 thousand synsets

(groups/classes). The initial 3.2 million images provided a substantial base, and

the continuous growth to over 14 million images demonstrates its ever-increasing

scale. ImageNet contains both everyday and obscure objects and specific items
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including various species of animals (like ‘cat’, ‘elephant’), types of vehicles (like

‘car’, ‘airplane’), everyday objects (like ‘chair’, ‘table’), and even abstract concepts

or events (like ‘birthday party’, ‘flash mob’) etc. Thus, the ImageNet dataset has

served as the basis for approximately 55,000 research articles (using citations as

a metric) and has been a major contributor to the AI revolution in the field of

computer vision.

While ImageNet alone does not solve all global problems, having access to such

an expansive dataset has indeed ignited a wealth of ideas for addressing various

vision tasks, not just in machine learning but also in other fields dealing with visual

data e.g. medicine, automobiles, astronomy etc. The medical field is one of the

many fields that extensively relies on visual data in day-to-day decision making [4].

The spectrum of visual data in this field encompasses areas such as medical imaging,

pathology, ophthalmology, surgical planning and navigation, and dermatology, all

of which greatly influence diagnostic decisions.

With the advent of large labelled datasets such as ImageNet [3], that involve

millions of images, complex image recognition and classification tasks have become

feasible. Therefore, there is a general expectation to improve medical diagnosis with

the aid of advanced deep learning and computer vision algorithms. Nevertheless,

medical datasets are usually smaller, ranging in the hundreds or thousands [5]. While

it may seem like the solution is simply to gather more data within the medical vision

field, unfortunately, the process is not as straightforward as collecting images of

everyday objects. The main obstacle in acquiring large datasets within the medical

or clinical domain arises from the complex nature of the data acquisition itself.

This process is heavily influenced by an array of factors such as the type of disease,

geographic location, the type and settings of imaging equipment, time constraints,

patient privacy concerns, and copyright restrictions of the institution, to name just

a few. As a result, from a statistical perspective, various medical image datasets

are susceptible to exhibiting a long-tailed distribution i.e. many disease classes may

have only a small number of examples. The long-tailed distribution observed in the
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medical vision field can pose difficulties for machine learning algorithms and models.

This is because these models might be biased towards the disease categories, e.g.

cancer, where there is a large amount of data available covering all the possible

disease classes within the category and leading to suboptimal performance on the

disease categories with lower occurrences of patterns.

Similar to the challenges in data acquisition, deep learning algorithms based on

vision data also present notable limitations [6, 7]. These include the requirement for

extensive volumes of labelled data, sensitivity to long-tailed distribution of datasets

and out-of-distribution data, and a lack of interpretability. Further limitations en-

compass a lack of robustness and an intensive demand on resources - including time,

space, and cost [8, 9, 10]. These factors contribute to the ongoing challenges in

effectively deploying deep learning algorithms in medical applications.

While the intersection of medical vision data, deep learning, and computer vision

algorithms has led to significant advancements in disease detection and diagnosis,

these achievements are often concentrated on specific, high-profile diseases. These

diseases, which I refer to as ‘prominent diseases’, are generally well-known, have

severe consequences, and have benefited from extensive data accumulated over years

by leading institutions and medical professionals. In contrast, there remains a vast

array of disease categories, known as ‘tail classes’, that lack this level of attention

and data acquisition. Often, these conditions are only addressed by a handful of

organizations and healthcare professionals, which results in a starkly lower amount

of data compared to the more popular diseases. Despite this, these ‘tail classes’

diseases are equally deserving of attention and diligent diagnosis care. Therefore,

finding ways to improve the data situation for these less-studied conditions remains

a significant challenge in the field.

A viable method to start addressing the long-tailed and out-of-distribution na-

ture of ’tail-class/rare class’ of disease categories in the medical imaging domain is

to focus on one disease class at a time. This strategy facilitates the development

of specialized models, optimized to make accurate predictions for individual disease
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classes. By concentrating on specific diseases, we can identify their unique char-

acteristics and tailor the data or models to better comprehend their traits more

accurately.

Obtaining images in substantial quantities can prove to be a daunting task, espe-

cially for those that represent rare and critical events. The complication heightens

when the objective is to train a detector for an entirely new category. The assem-

bly and annotation of an exhaustive training set, inclusive of that category and its

intra-class variations, could be resource-intensive. A similar obstacle arises in the

absence of an existing dataset suitable for the intended task, leading to the necessity

of creating and labelling a new dataset from the beginning. In fact, the majority

of AI and deep learning projects, the tasks of data preparation and engineering

consume over 80% of the time [11, 12], with this proportion escalating further as

tasks become increasingly specific. However, the advent of synthetic data offers a

potential paradigm shift in this landscape. Synthetic data is artificially generated

data that can replicate the statistical properties of real-world data, allowing for the

creation of large, diverse, and detailed datasets without the need for extensive col-

lection and labelling efforts. By using techniques like computer graphics, generative

models, and simulation, synthetic data can be produced to match specific require-

ments, including rare or critical event representation, thereby potentially reducing

the time and resources needed for data preparation and engineering significantly.

While synthetic data can indeed streamline the process, the extent of its impact

is contingent upon the quality, realism, and relevance of the generated data to the

task at hand. Effective use of synthetic data also requires validation against real-

world data to ensure accuracy and performance, which can introduce new challenges

and considerations. Thus, while synthetic data holds promise for reducing the pro-

portion of time spent on data tasks, the actual impact would depend on various

factors including the task complexity, data generation methods, and the necessity

for validation and refinement.

Even when focusing on one disease class at a time, addressing the problem of data
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scarcity through further data collection may not be practical given the time it takes

for such collection. Indeed, data acquisition in the medical field for the creation of

datasets suitable for computer vision applications is a time-consuming and expensive

process. It typically involves seeking patient approval, collecting data, annotating or

labelling the data, and adhering to ethical guidelines, among other tasks, all of which

vary depending on the nature of the data. For instance, collecting natural images like

those in ImageNet took about three years of initial data collection and annotation by

non-expert annotators. In contrast, medical data needs to be annotated by doctors,

a task made difficult by their often busy schedules. While data collection is certainly

not discouraged, the focus of this discussion is on exploring what can be done with

the data that is already available, particularly for datasets that are underrepresented

in both the medical and vision research communities, even for common diseases.

1.1 Motivation

A vast number of diseases, despite their common occurrence, are not sufficiently

represented in available medical vision datasets. This reality presents a clear and

compelling motivation for this research study. With the rapidly increasing preva-

lence of numerous health conditions globally, it becomes paramount to ensure that

medical and vision research caters to a broader spectrum of diseases, rather than

being limited to only those that are currently well-documented in terms of data

collection.

Among these underrepresented diseases, skin diseases, in particular, pose a signif-

icant challenge in the field of medical diagnosis due to their intricate observational

and analytical requirements. Skin diseases are ubiquitous and have an enormous

impact on people’s lives, from the general population to all ages and ethnicities

worldwide. Diagnosing skin diseases necessitates extensive experience and exper-

tise, as the process often involves initial visual screening, subsequent dermoscopic

analysis, biopsy, and histopathological evaluation. This conventional diagnostic pro-

cess is both time-intensive and costly. A solution to this could be computer-aided
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diagnosis. However, the relative scarcity of visual data for many of these diseases,

particularly in the context of computer vision applications, makes them a challenging

yet crucial area for research.

These complications are further exacerbated in cases of chronic skin conditions,

which typically demand continuous engagement with a dermatologist over a pa-

tient’s lifetime. Early detection of such chronic skin conditions can facilitate timely

intervention, potentially averting more severe complications. Yet, the wise saying

‘prevention is better than cure’ is often unattainable for most patients due to the

extensive wait times for medical appointments, rendering early-stage diagnosis chal-

lenging [13]. An in-depth exploration of the related statistics will be discussed in

chapter 2 of this thesis.

1.1.1 Rosacea

Rosacea is a chronic facial skin condition characterized by cyclical periods of re-

mission and relapse [14]. It is also identified as a cutaneous vascular disorder [15].

This skin condition is particularly prevalent among individuals hailing from north-

ern countries with fair or Celtic complexions [16]. According to a study published

by the British Journal of Dermatology, there are nearly 415 million people affected

by Rosacea worldwide [17]. Rosacea is typically marked by symptoms such as facial

flushing and redness, inflammatory papules and pustules, telangiectasias, and fa-

cial edema. Notably, the severity of these symptoms exhibits considerable variation

among different individuals[18].

In the realm of medical diagnostics, Rosacea is segregated into four distinct sub-

types: Subtype 1 (Erythematotelangiectatic Rosacea aka ETR), Subtype 2 (Papu-

lopustular Rosacea aka PPR), Subtype 3 (Phymatous Rosacea aka Rhinophyma),

and Subtype 4 (Ocular Rosacea)[19]. The diagnosis of each subtype hinges upon

the severity of the condition, classified as mild, moderate, or severe [14, 20]. This

classification enables a more nuanced understanding of the disease and facilitates

the formulation of a targeted treatment approach. This study is focused on the
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Subtype 1 (ETR), Subtype 2 (PPR) and Subtype 3 (Rhinophyma). These three

subtypes are illustrated in Fig.1.1.

Erythematotelangiectatic Rosacea (ETR) and Papulopustular Rosacea (PPR)

are distinctive subtypes of Rosacea that, nevertheless, share a range of visual man-

ifestations, a commonality that arises from their shared classification within the

Rosacea family [19]. Each subtype tends to display persistent facial erythema, lo-

calized particularly to areas such as the cheeks, nose, forehead, and chin. Both ETR

and PPR can also lead to the development of visible, small blood vessels, known as

telangiectasias, on the face. These features are less common in the transient redness

experienced by healthy individuals. The persistent nature of redness, specific facial

patterns, visible blood vessels and associated symptoms such as burning or stinging

sensations are key differentiators. Transient episodes of flushing, a symptom defined

by a brief period of heightened redness in the skin, is a phenomenon present in both

ETR and PPR. Furthermore, these conditions share a progressive nature, denoting

a gradual worsening of symptoms over time if left untreated. There is a noted ten-

dency for ETR, when deteriorating, to evolve into PPR, marking a transition from

one subtype to another. Given the severity and progression of these conditions,

early diagnosis, proper management, and appropriate medication are of paramount

importance. In the absence of such measures, these subtypes may worsen rapidly,

developing into chronic conditions that persist over extended periods and become

resistant to complete resolution. Thus, the early management of these conditions is

critical in preventing their transition to a chronic and potentially incurable state. It

is crucial to understand the Erythematotelangiectatic Rosacea, is characterized not

only by persistent central facial erythema but also by flushing and visible blood ves-

sels, which are less common in transient redness experienced by healthy individuals.

The persistent nature of redness, specific facial patterns, and associated symptoms

like burning or stinging are key differentiators.

Rhinophyma, a subtype of Rosacea, is less prevalent compared to its counter-

parts, yet it manifests with drastic physical alterations to the skin [14, 19]. These
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Figure 1.1: The illustration shows the full faces of Rosacea subtypes at the top,
with their localized regions displayed at the bottom. Subtype 1 is characterized by
persistent central facial erythema and frequent flushing with redness on the cheeks.
Subtype 2 exhibits erythematous dome-shaped papules, some with surmounting
pustulation in a centrofacial distribution (forehead, cheeks, and chin) against a
background of persistent erythema (subtype1). Subtype 3 displays persistent facial
swelling accompanied by hypertrophy of nasal tissue causing anatomical deforma-
tion, commonly known as Rhinophyma.

alterations are typically characterized by skin thickening and enlargement, predom-

inantly around the nasal area. Addressing the symptoms often involves medicinal

interventions, while in severe instances, surgical or laser procedures may be ne-

cessitated to alleviate skin thickening and ameliorate the pronounced anatomical

transformations [21]. It is evident that the efficacious management of symptoms

can be achieved more effectively with timely detection and treatment. The early

diagnosis not only helps in mitigating the symptoms but could also decelerate the

progression of the condition.

Despite its widespread prevalence, Rosacea frequently remains underdiagnosed.

Characteristic signs of Rosacea, such as facial redness and flushing, often result in

misdiagnosis as seborrheic dermatitis, despite the two conditions being unrelated
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[22]. Further, Rosacea is frequently mistaken for other dermatological conditions,

including psoriasis, lupus, acne, and eczema [22, 23], thereby highlighting the chal-

lenges faced in its accurate and timely diagnosis. The reasons behind the continued

growth of Rosacea cases in recent years are: lack of awareness in dermatologists,

misdiagnosis, and the cost of treatment etc. [23]. In a recent article published by

US News Health, “Rosacea is often misdiagnosed, and many do not seek treatment

because they do not realize it is Rosacea,” says Jeffrey Fromowitz, MD, FAAD, a der-

matologist based in Boca Raton, Florida [24]. Therefore, it is evident that Rosacea is

often misdiagnosed due to factors such as insufficient knowledge about the condition

among both dermatologists and patients. Given that Rosacea is primarily diagnosed

visually in its early stages, there is undoubtedly a scarcity of available data for study

and increased awareness. Details about Rosacea statistics – including global demo-

graphics of the disease, availability of expert dermatologists, average waiting times

to consult a dermatologist, instances of misdiagnosis, the extent of publicly available

datasets for research, the existing computer vision and deep learning based research

conducted on Rosacea images – are thoroughly discussed in chapter 2 of this thesis.

1.1.2 Data Scarcity

In the previous subsection, we discussed the challenges related to acquiring medical

vision data and the underrepresentation of certain diseases in the computer vision

community. Given these circumstances, the amount of data available for underrep-

resented conditions, such as Rosacea, is significantly low, with available datasets

often only numbering in the few hundreds. Therefore, it would be highly desirable

to enhance learning strategies with the limited amount of available data, aiming to

address the overarching challenge of data scarcity in the medical vision field. In this

study, strategies are investigated to optimize the use of existing methods for learning

from sparse data, with an aim to address the pervasive issue of data scarcity of the

vision data in the medical domain. The main motivation to deal with the limited

data in this research is the limited availability of datasets for Rosacea.
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This study primarily addresses the issue of limited data by employing Rosacea

as a representative case study. We have conducted a thorough literature review

exploring numerous methodologies, focusing on those best suited to handle limited

data in the context of deep learning. More specifically, this research explores the

application of Generative Modeling techniques tailored to Synthetic Data Generation

[12] for 3 subtypes of Rosacea skin condition. This comprehensive approach serves

to increase the available visual data for Rosacea and enhances the capacity for more

robust and reliable computer-aided diagnosis.

1.2 Synthetic Visual Data

Synthetic data refers to a category of data that is created artificially via computer

algorithms and simulations, setting it apart from real data that is collected directly

from the world around us. Synthetic visual data has played a pivotal role in the

development and evolution of computer vision related tasks. Various methods exist

to generate an array of synthetic data [12]. These methods include Reconstruction

Techniques, Physics-based Simulators, 3D Modelling, Graphics-based Techniques

and Deep Generative Models. Synthetic data generation and utilization are gar-

nering significant attention, particularly due to its ability to generate data that

closely mirrors the realism of actual data. This convincingly realistic synthetic data

has demonstrated immense usefulness in numerous studies. The proliferation of

synthetic data parallels the evolution of Deep Learning methodologies. However,

the exploration into synthetic visual data predates the contemporary surge of deep

learning. These foundational investigations have undeniably informed and influ-

enced subsequent advancements.

In early computer vision history (1960s-70s), synthetic data was crucial for prob-

lems like line labelling. David Huffman’s classic research on “Impossible Objects as

Nonsense Sentences” [25] presented the challenge of identifying concave and con-

vex edges from images of embedded parallelepipeds. One image depicted all edges,

including invisible ones, while another showed only the visible. The task was to
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label such visible edges with ”+” for convex and ”-” for concave. Similarly, Maxwell

Clowes, in “On Seeing Things” [26], introduced a related problem, discerning poly-

hedron shapes based on projected edges on a plane. Clowes focused on categorizing

corners based on the type of their constituent edges. Intriguingly, both abstracted

the problem of constructing these graphs, analogous to ‘edge detection’ in modern

computer vision, and operated under the assumption of a pre-constructed line graph.

However, this abstraction led to missing information in real images, pointing to a

deficiency in edge detection. This highlighted the importance of synthetic data in

their work to derive more accurate interpretations of real-world images. The ne-

cessity was addressed using 2D line drawings corresponding to feasible 3D objects.

Notably, the algorithms in both papers did not require training sets; instead, they

were tested solely on artificially produced line drawings, marking some of the earliest

and simplest uses of synthetic data/images in computer vision.

Robotics, emerging shortly after artificial intelligence, took on the complex chal-

lenge of creating physical entities for real-world operations. Early in AI’s period

in the 1970s, robotics became a central focus, leading to creations like “Stanford

Cart” [27]. The Cart was equipped with a vision system, utilising an onboard TV.

It was navigated using a ‘super-stereo’ vision algorithm. Designing such technology

was costly, and validating their ideas in the real world was often entirely impossible.

Before the 1990s, computer vision and robotics largely relied on hardcoded algo-

rithms. Real-world validations were cumbersome and often unrealistic. The value

of computer simulations was soon realized, given their efficiency and the capability

to eliminate real-world noise and errors. This understanding initiated the “simulate

first, build second” approach in robotics - a philosophy that now extends beyond

robotics and has become regularly adapted in many other domains within AI.

Given this philosophy in robotics, in the 1980s - 1990s, with the rise of com-

puter graphics, researchers started to understand the potential of synthetic data.

The fundamental idea was simple; if real-world data was hard to acquire, why not

generate artificial data. Thus, synthetic images began to be used as data points for
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various vision tasks. In the 1980s, the use of computer-generated images primarily

focused on fields like entertainment, simulations, and gaming. The value of these

images and purposes quickly became noteworthy. Computer graphics and 3D mod-

elling played an important role in generating synthetic data through methods like

statistical shape modeling-analysis, procedural generation, voxel-based modeling,

physics-based rendering methods were common techniques used for a broad range

of real-world replications and further applications.

In the 1990s, building upon this trajectory in computational modelling, one tech-

nique that gained prominence, especially for medical imaging connected with com-

puter vision, is Statistical Shape Modelling (SSMs) [28, 29]. It became particularly

vital in areas that require a detailed understanding of shapes and their variations,

such as medical imaging [30]. This methodology evolved into Active Appearance

Models [29], which subsequently gave rise to 3D Morphable Models [31]. During the

1990s, these 3D models gained popularity for designing facial shape variations and

were extensively used for human face modelling. The 3D Morphable Face Model is a

generative model that represents both face shape and appearance. Designing these

models often involves intricate steps and presents numerous challenges. Although

these 3D Morphable Face Models were widely used for various applications, they

were not adapted for any medical conditions on the face anatomy [32].

The 2010s marked a surge in the popularity and efficacy of deep learning tech-

niques. Particularly, models based on neural networks introduced in early 1990s, like

convolutional neural networks (CNNs) [33], demonstrated exceptional accuracy in

image recognition. However, their optimal performance hinged on access to massive

training datasets. In situations where gathering real-world data posed challenges or

ethical concerns—such as medical imaging or surveillance—synthetic data emerged

as a solution. Additionally, synthetic images enabled to be curated diverse datasets,

thereby mitigating issues related to bias or under-representation.

While the use of synthetic data can address challenges related to time, cost,

and efficiency of cutting-edge algorithms, it also poses certain issues. Reflecting on
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earlier applications in robotics and self-driving vehicles, one of the major challenges

was the domain gap between synthetic and real-world data. The question arises:

how can we ensure that algorithms trained on synthetic data function effectively in

real-world settings? To bridge this gap, the concepts of Transfer Learning [34, 35,

36] and Data Augmentation [37, 38] have become popular. Through these methods,

researchers have devised techniques to transition models from synthetic to real-

world domains. This approach harnesses the advantages of synthetic data without

undermining performance in real-life scenarios.

Building on this momentum, in the 2010s, the introduction of Variational Au-

toEncoders (VAEs) [39] and Generative Adversarial Networks (GANs) [40] as Deep

Generative Models marked a significant advancement in synthetic image generation.

While VAEs excelled in faster generation and diversity, GANs could produce pho-

torealistic high-resolution images that surpassed those of VAEs, blurring the lines

between synthetic and real images. These generated images found various applica-

tions, from art and face generation to the creation of training datasets.

Over the last five years, GANs[40] have gained prominence across a multitude of

applications [41, 42, 43, 44, 45, 46, 47]. Likewise, another commonly adopted ap-

proach for synthetic data generation involves the use of graphics-based simulations,

such as 3D modeling, which have found extensive use in fields like object recognition

[48, 49, 50, 51], scene understanding [52, 53, 54, 55, 56], and other applications [57,

58, 59, 60, 61].

Despite the broad application of synthetic data generation, only a handful of

studies [61, 62] have ventured into generating full-face synthetics using computer

graphics, where aspects such as identity, expression, texture, hair, clothing, and

background environment were modeled. Nevertheless, the modeling of skin diseases

has not been explored, largely due to the intricate nature and complexity of repre-

senting skin conditions at a granular level.

In this research, the generation of synthetic data for Rosacea subtypes is achieved

using two approaches such as Deep Generative Modeling like GANs, 3D Model-
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ing techniques like 3D Parametric models, and Computer Graphics, particularly in

limited-data settings.

1.3 Usage and Benefits of Synthetic Visual Data

While real data usually provides the most insightful observations, it can often be

costly, unevenly distributed, biased, inaccessible, or restricted due to privacy rea-

sons. Synthetic data can effectively be used by offering more thoroughly annotated

data for developing precise, adaptable models that frequently helps to overcome

the shortcomings of the real data. Synthetic data can be employed for testing new

ideas when real-world data is unavailable or when existing real-world data is skewed.

Moreover, synthetic data can be used to enhance small datasets that might be cur-

rently overlooked. In cases where real data is unusable, non-shareable, or immovable,

synthetic data presents a viable option. Thus, synthetic data plays a significant role

in enabling further advancements.

Nowadays, several companies such as Microsoft, NVIDIA, Google, Meta, and

to name but a few have been placing greatest importance on the use of synthetic

data for training models. Moreover, the trend in industry solutions is increasingly

leaning towards synthetic data generation, as dealing with real-world data can be

messy and time-consuming. Additionally, to support the labelling process, numerous

companies have begun to offer services related to synthetic medical data annotation

and labelling. These services contribute to accelerating the medical decision-making

process by leveraging the combined expertise of medical professionals and computer

scientists within their teams.

Utilizing synthetic data for the training of medical/clinical visual data-driven

decision-making models can potentially circumvent the substantial costs, restric-

tions, risks, and time associated with acquiring and labelling large quantities of real

data. Given the medical system’s constraints in many countries, obtaining visual

data for various common disease categories can often be impossible. The concept of

synthetic data generation paves the way for creating extensive examples of long-tail,
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rare, high-risk, and safety-critical scenarios. However, it is essential to acknowledge

that the quality and diversity of synthetic images are contingent upon the variety

and representativeness of the source data. While synthetic data techniques can sig-

nificantly augment a dataset, there are practical limits to the variability and realism

that can be achieved, particularly when starting with a small set of real images.

For instance, generating 1 million high-quality, diverse rosacea images from a few

hundred real ones would face challenges in ensuring each synthetic image is unique,

accurately represents the condition, and maintains high quality. The effectiveness

of augmentation depends on factors like the algorithm’s sophistication, the quality

of the original dataset, and the specific requirements of the task at hand. Therefore,

while synthetic data generation allows for substantial expansion beyond the original

dataset size, it is more accurate to view it as a way to enhance and diversify data

within certain bounds. Whether in a randomized class conditioning process such as

Deep Generative Models or controllable such as a 3D modeling environment, this

method enables the generation of even the rarest events with the same ease as more

common ones. Furthermore, an extensive number of perfectly labelled data points

can be generated quickly compared to the manual data gathering process. Once

the data is generated, it can further be verified by medical professionals, human

labellers, or through testing against a small set of available real-world data for the

specific medical condition. Additionally, it would be beneficial to conduct a de-

tailed analysis of the performance of models trained with various synthetic data.

This involves experimenting with different characteristics of synthetic images, such

as variations in lighting, angles, and levels of detail of specific disease patterns, as

well as the types of synthetic augmentations used (e.g., geometric transformations,

texture changes). By evaluating the model’s accuracy, recall, precision and other

relevant metrics in scenarios using different sets of synthetic images, we can identify

patterns and characteristics that lead to improved or diminished performance. This

empirical approach will provide valuable insights into the effective use of synthetic

data in enhancing machine learning models, particularly in the domain of clinical
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image analysis such as diagnosing Rosacea.

1.4 Challenges and Objectives

Diagnosing skin diseases using medical/clinical images with computer-aided deci-

sion making, especially in resource-limited conditions, inherently presents signifi-

cant challenges. Addressing data scarcity in the medical field poses a formidable

task, especially when trying to generate synthetic data using generative modeling

approaches with only a handful of input data. Additionally, the usefulness of the

generated synthetic data can vary, potentially rendering it advantageous or disad-

vantageous. The primary anticipated challenges in this research study include:

• Predominantly, advancements in computer vision techniques and deep learning

algorithms are fueled by the availability of large datasets, leaving techniques

that leverage small amounts of visual data less explored. This scenario prompts

the question of which potential methodologies, models, and techniques could

be effectively employed when only limited data is accessible.

• GANs typically achieve more stable convergence when provided with extensive

input datasets. While numerous studies have demonstrated GANs’ ability to

process large datasets (in thousands) and achieve stable convergence, their

capacity to converge with a more limited amount of data (specifically in the

hundreds) is not as extensively documented. Although the foundation for this

work on GANs stems from state-of-the-art research, the targeted exploration

of their efficiency with such minimal data sets represents a niche yet to be

thoroughly investigated. The primary challenge is to identify a GAN model

configuration optimized for smaller datasets. While the model used in the

research was adapted from existing work, the first contribution in this thesis

will be to investigate its adaptation and efficiency in scenarios with limited

image availability.
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• A critical evaluation criterion for the study is the realism of the generated

Rosacea images. It has not been determined up to now whether these synthe-

sized images will meet the rigorous standards set by medical professionals in

the field in terms of fidelity.

• The process of 3D modeling and synthetic data generation for a Rhinophyma

nose from a limited collection of two-dimensional images presents an intriguing

research problem. Exploring potential strategies and techniques to effectively

achieve this transformation is a significant aspect of this study. A key question

is whether it is feasible to design fine-grained deformations of Rhinophyma

using 3D modeling techniques, a prospect that is as challenging as it is risky,

given the necessity for subsequent design validation.

• The role of synthetic data generated through a 3D modeling approach in en-

hancing the performance of classification models is a subject of active research.

The final challenge of this study is to investigate whether synthetic data gen-

erated in this study can improve classification models’ ability to learn disease

features more effectively by validating against a small number of real-world

data instances.

The objectives of this research are the specific goals we aim to achieve to address

the identified challenges in synthetic data generation for medical applications, par-

ticularly for dermatology cases. These objectives represent concrete steps we plan

to undertake to overcome these challenges and advance the field of medical visual

data in the computer vision research community. By achieving these objectives,

we aim to contribute to the development and application of synthetic data in med-

ical decision-making processes, particularly for conditions like Rosacea where the

availability of visual data is limited. The main objectives of this research are:

• The primary objective of this research study is to address the crucial challenge

posed by limited datasets for research. This entails identifying and investigat-

ing deep learning methodologies that have not been extensively studied or
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surveyed for small data scenarios.

• A significant approach involves the use of Generative Adversarial Networks

(GANs) to synthesize facial images exhibiting Rosacea characteristics from

just 300 images. The main objective here is to find the optimal GAN con-

figuration that allows convergence with this limited dataset.After synthetic

image generation, it is crucial to validate these images with the help of do-

main experts. A qualitative method of verification would lend credibility to

the generated images and ensure their suitability for further research.

• A key aspect of the proposed research is the conceptualization and realization

of a Rhinophyma nose using a 3D modeling approach. This strategy facilitates

the incorporation of fine-grained details characteristic of Rhinophyma, making

the model highly representative of actual manifestations of the condition.

• The final objective is the verification of classification using synthetic images

generated by the 3D modeling technique. This serves to investigate the po-

tential of these artificially created visual data in enhancing the performance

and benefits of the synthetic data under consideration.

1.5 Hypothesis and Research Questions

We hypothesize that certain GANs and 3D modeling techniques can effectively gen-

erate high-fidelity synthetic medical images from limited datasets of skin conditions

like Rosacea and its sub-category Rhinophyma.

According to above hypothesis, the following research questions are formu-

lated to guide the hypothesis:

RQ1 What potential approaches exist in current literature to address the issue of

limited data for skin disease analysis?

RQ2 Can GANs be effectively utilised to generate synthetic images from a limited

dataset, enhancing the dataset’s volume and diversity for improved skin disease
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analysis?

RQ3 How can synthetic Rosacea images be validated qualitatively by expert der-

matologists?

RQ4 Is it feasible to generate synthetic data from a limited number of samples using

3D modeling, with precise control over the granular deformations caused by

Rhinophyma?

RQ5 Can the classification models trained using synthetic images, derived from a

3D environment perform well when tested on real-world data?

1.6 Contributions

In this thesis, we tackle the issue of limited data availability for machine learning

and deep learning applications, particularly in the computer vision domain. This

limitation has considerable implications for both academic research and practical

applications. Our proposed solution involves utilizing synthetic visual data to sup-

plement available resources, thus bolstering the efficacy of deep learning algorithms.

Specifically, we delve into two distinct image synthesis methodologies, namely Deep

Generative Modelling and 3D Parametric Modelling, applied to the clinical real-

world images of Rosacea skin condition.

Given the scarce nature of Rosacea datasets, this study’s primary objective is

to explore and contribute to strategies for working with limited data in the con-

text of state-of-the-art deep learning and computer vision algorithms. The detailed

contributions are enumerated below:

C1 A comprehensive and critical examination of the literature has been under-

taken, wherein we investigate strategies to manage limited data. The primary

goal of this review is to uncover potential methodologies that could mitigate

the issues surrounding data scarcity and enhance diagnostic capabilities using

small datasets. Given the challenge of data scarcity, various techniques such
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as Generative Adversarial Networks, Meta-Learning, Few-Shot Classification,

Federated Learning and 3D Face Modelling are explored and discussed. Ad-

ditionally, we delve into the existing research based on the skin conditions

studied, the volume of data used, and the choices made in implementation.

This comprehensive review acted as a fundamental resource and provided sig-

nificant inspiration for the subsequent research contributions made in this

thesis.

C2 In what we believe to be a novel contribution, a limited dataset comprising 300

full-face images of Rosacea is leveraged for synthetic image generation. The

study demonstrates the impact of fine-tuning a state-of-the-art model and

varying experimental settings on the fidelity of Rosacea features. Extensive

experimentations illustrated that the choice of Regularization strength plays a

crucial role in achieving high-fidelity representations in limited data conditions.

This approach facilitated the generation of 300 high-fidelity synthetic full-face

images, marked by Rosacea features, which can potentially be employed to

enhance the available Rosacea face dataset. We have made the Synthetic

Rosacea dataset, named “synth-rff-300”, publicly available on GitHub link

provided in chapter 3.

C3 Part of “synth-rff-300” was utilized for qualitative evaluations by three expert

dermatologists and twenty-three non-specialist participants. These qualitative

evaluations indicate how realistic the characteristics of Rosacea in the gener-

ated images are. The results of the qualitative evaluations sometimes con-

tradict the results of the quantitative evaluations using metrics such as KID

and FID. We critically analyse the quantitative evaluations and the validation

metrics(s) used based on 10 conducted experiments and we emphasize that

relying solely on these quantitative validation metrics may not be sufficient

for evaluations in the computer-aided medical image diagnosis field.

C4 For the first time, we have successfully generated synthetic data by leveraging
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a limited dataset of 268 clinical images, each representing various stages of

Rhinophyma. To achieve this, we utilized a parametric 3D face model which

played a crucial role in the synthetic data generation process. The 3D models

are carefully designed to represent various deformations through a large range

of stages representing realistic patterns of Rhinophyma which may exist but

have not been photographed in the real-world. Utilizing rendering techniques,

we successfully generated 2000 distinct deformations of a Rhinophyma-affected

nose. Subsequently, images of each of these Rhinophyma noses were captured

from ten perspectives, leading to a comprehensive collection of 20,000 im-

ages. To encourage further research in this field, we have made both the

synthetic dataset and the associated 3D models publicly accessible on Zenodo

and GitHub links provided in chapter 4.

C5 The synthetic Rhinophyma dataset has been employed to train deep learning-

based classification models. These models were subsequently tested on a real

dataset consisting of 220 curated and rigorously preprocessed Rhinophyma

images, with a particular focus on accentuating important Rhinophyma nose

features for model training. Following this, GradCAM [64], was utilized, en-

abling us to determine the specific image regions the model concentrated on

during the decision-making process. This approach effectively showcased the

crucial role of the synthetic dataset during the validation process.

In forthcoming research endeavours, the strategies and methodologies discussed

herein may serve as foundational frameworks, particularly when confronting the chal-

lenge of limited visual data availability for specific disease cases. This can facilitate

the advancement of investigation and development processes in disease diagnostics,

paving the way for more efficient and effective solutions.

1.7 Thesis Structure

The following chapters of this thesis are structured as follows.
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1. Chapter 2 offers a comprehensive review of the existing literature on computer-

aided skin disease analysis. This analysis predominantly leverages image

datasets and employs sophisticated machine learning and computer vision

techniques. A substantial portion of the content within this chapter has been

previously published in IEEE Access.

2. Chapter 3 elucidates the process of synthetic data generation for Rosacea sub-

type 1 and 2, accomplished using GANs models. This chapter comprises an

in-depth account of the data collection, data preparation, conducted exper-

iments, their corresponding quantitative results, analysis, and high fidelity

data generation. In the second part of this chapter, a qualitative analysis by

human evaluators is conducted on synthetic Rosacea images, followed by a

critical discussion, and future directions.

3. Chapter 4 presents the procedure for synthetic data generation for Rosacea

subtype 3, Rhinophyma. It covers the data collection, design choices of 3D

models, rendering set up of 3D models, synthetic data generation, dissemina-

tion, and value. Furthermore, this chapter presents the application of deep

learning models for Rhinophyma classification. It describes the preparation of

synthetic data obtained from the 3D models, along with the methodology for

both synthetic and real data preparation. This demonstrates the practical use

of synthetic data in real-world scenarios, using the limited set of real-world

Rhinophyma data available for the study.

4. Chapter 5 discusses the implications of the research findings by concisely sum-

marizing the salient points and suggesting possible avenues for future research,

aligned with the thematic focus of the conducted research.
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Chapter 2

Background and Related Work

Skin is the largest organ of the human body which plays an important role in pro-

tecting the body from harsh chemical and environmental conditions. Skin diseases

affect one third of the world’s population [63]. According to a report published by

the National Centre for Biotechnology Information (NCBI) in 2017, skin diseases

are the fourth leading cause of non-fatal diseases worldwide [64]. Skin diseases cause

discomfort in day-to-day life. They get worse with time, reduce productivity in the

daily regime and, if not treated at the early stage, can be deadly. Skin diseases are

not only a problem for individuals but for the world population posing an increasing

economic threat to national healthcare systems worldwide [65]. According to one of

the latest survey report published in 2013 by European Dermatology Health Care,

the 10 countries with longest waiting times for regular dermatological visits from 40

days to 133 days are: Germany, Malta, Austria, Luxembourg, Sweden, Poland, Nor-

way, UK, Slovenia and Ireland [66]. Likewise, there are only a few dermatologists

per 100,000 population in many countries. Table 2.1 highlights the limited number

of dermatologists in six different countries gathered from the official sources. Given

the low number of dermatologists and long waiting times, it is essential to expand

the scope of skin treatment through computer-aided diagnosis.

To complement the work of qualified dermatologists, skin disease diagnosis using

Computer Vision and Machine Learning is important in contributing to the early

diagnosis process performed by healthcare professionals such as General Practition-
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Table 2.1: Number of dermatologists in six different countries. This table quantifies
and compares the number of dermatologists available in six different countries, ex-
pressed per 100,000 population.

Country No. of Der-
matologists per
100,000 popula-
tion

Source

United
Kingdom

1.4 British Association of Dermatology, 2013
[67]

Ireland 1 Health Service Executive
(HSE), Ireland, 2014 [68]

Canada 0.47 (rural)
1.96 (urban)

Royal College of Physicians and Surgeons
of Canada, 2019 [69]

USA 3.4 Journal of American Medical
Association (JAMA), American
Academy of Dermatology (AAD), 2016 [70]

Australia 1.9 Australian Government,
Department of Health, 2016 [71]

China 1 Chinese Medical Journal,
2019 [72]

ers and Dermatologists. From the early 90s, dermatologists have been collectively

working via digital platforms to communicate and diagnose skin diseases of patients

by utilising skin disease images and additional health data. In medical literature,

this technique of collecting, monitoring, storing, and sharing data in order to help

diagnose skin conditions is termed “Teledermatology” [73].

There are various ways of diagnosing skin diseases through imaging. The three

most common kinds of skin image data are: histopathological, dermoscopic, and

clinical images. A few existing studies on skin disease diagnosis using traditional

machine learning algorithms have been done using histopathological images for can-

cerous skin conditions. Most of the work on skin diseases has been done using

dermoscopic images, primarily cancerous skin lesions. However, only a few stud-

ies have been done on clinical images of common and chronic skin conditions such

as acne, rosacea, eczema, lupus, seborrheic dermatitis, and a few other conditions.

Hence, there is a need for attention to these diseases in medical image analysis

using advanced machine learning and computer vision techniques. However, there

are specific challenges to be dealt with due to the nature of these diseases and the
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availability of datasets. For example, a specific skin condition called rosacea will

be looked at in this review. In the case of rosacea (as for the other conditions),

there is only a limited amount of image data available. For Machine Learning and

Computer Vision techniques, especially when applied to skin diseases and conditions

like rosacea, having a substantial amount of diverse data is crucial for training mod-

els that can accurately detect and diagnose these conditions. However, obtaining

comprehensive datasets for such specific medical conditions can be challenging. In

this review, we delve into various existing approaches that have utilized datasets

from different skin diseases. Specifically, the following approaches are examined

to address the challenges posed by limited data availability in the context of skin

diseases.

1. Data Augmentation, i.e. generating synthetic data with slight modifications

to complement the real data.

2. Transfer learning and fine-tuning i.e. adapting a neural network model, which

has been pre-trained on another much larger dataset, to classify rosacea.

3. Generative Adversarial Networks (GANs) i.e. generating high quality syn-

thetic faces with rosacea.

4. Meta-Learning and Few-Shot classification i.e. learning faster with fewer ex-

amples.

5. Federated Learning i.e. employing a collaborative model training approach

where multiple entities contribute to learning a shared model while keeping

their data localized, enhancing privacy and data utilization.

6. 3D Morphable Face Models i.e. creating a 3D model of human face with

various subtypes of rosacea from a set of 2D images.

In this literature review, we are investigating skin diseases, especially the impor-

tance of rosacea diagnosis using machine learning and computer vision. In Section

2.1., skin diseases, types of medical diagnosis, types of images used in computer
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vision and machine learning tasks for diagnosis of skin conditions are discussed. In

Section 2.1.1., the motivation for rosacea image analysis is discussed. Section 2.2

is focused on a few existing studies carried out on rosacea using machine learning

and computer vision. In Section 2.3, we discuss how the amalgamation of big data,

deep learning and computer vision has brought some breakthroughs in the field of

medical diagnosis. This discussion is followed by the challenges of having a smaller

dataset in the field of medical diagnosis and how to leverage a smaller dataset using

various techniques of machine learning and computer vision. Hence, in section 2.4,

we discussed various publicly available datasets.

Section 2.5 provides a brief overview of skin disease analysis from traditional

machine learning and computer vision techniques to the modern deep learning al-

gorithms. Section 2.5 contains four subsections in which four techniques in machine

learning and computer vision are discussed, a few existing studies using Data Aug-

mentation and Transfer Learning in Section 2.5.1, Generative Adversarial Networks

in Section 2.5.2, Meta-Learning and Few-Shot Classification in Section 2.5.3, Fed-

erated Learning in 2.5.4, and 3D Face Modelling in Section 2.5.5. The challenges

and major takeaways are mentioned in each sub section of these four techniques.

Furthermore, based on a few key points from the literature review, the implemen-

tation possibilities of GANs, Meta-learning, and 3D Face Modelling in the limited

data scenario are discussed in Section 2.6. Based on the options for implementation,

some future directions are recommended in Section 2.7.

2.1 Digital Imaging in Dermatology

Skin diseases are one of the most challenging fields in medical diagnosis due to their

observational and analytical complexities. Diagnosis of skin diseases requires years

of experience and expertise. Skin diseases are diagnosed visually, with an initial

screening followed by dermoscopic analysis, biopsy and histopathological analysis.

However, this process of diagnosis is time-consuming and costly. Chronic inflamma-

tory skin diseases which may not be fatal in most situations, may still need lifelong
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engagement with dermatologists. Chronic skin conditions need regular check-ups,

up to date medications, surgical or laser treatments, if required. This way of treat-

ment requires a significant amount of time and are often costly. However, detecting

chronic skin conditions at the early stages allows for an intervention and prevention

of further complications. Several technically advanced hospitals in the world follow

a dynamic process for treating skin diseases. This requires patient record-keeping,

including images of the skin diseases and basic information about the patients, which

helps monitor the progress of the treatment over time.

One of the traditional and common techniques to collect patient data for di-

agnosing skin diseases is dermoscopic imaging. Dermoscopic images are collected

through high quality magnifying lenses (mainly through a dermatoscope) with pow-

erful lighting. The most common types of images captured by the dermatoscopes

are micro and macro images of individual lesions which lack the anatomical details

of the body. In the context of dermoscopic imaging, ’micro’ images refer to highly

magnified photographs of the skin, capturing detailed views of individual skin le-

sions at a close range. These images provide a close-up view of the skin’s surface,

revealing textures, colors, and patterns that are not visible to the naked eye. Micro

images are particularly useful for examining the fine details of skin lesions, aiding in

the identification of specific features indicative of various conditions like malignant

or benign lesions. On the other hand, ’macro’ images capture a broader view of the

skin area, including multiple lesions or larger segments of skin with less magnifi-

cation compared to micro images. While they provide less detailed information on

a per-lesion basis, macro images are useful for understanding the broader context

of the skin’s condition, including the distribution and general appearance of lesions

over a larger area.

Further, these dermoscopic images are captured and examined by specialist der-

matologists. Hence, dermoscopic images are very useful when diagnosing individual

skin lesions such as malignant and benign lesions on the body. However, it is not

possible to capture dermoscopic images for every skin condition at the initial stage
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Figure 2.1: Clinical images vs. Dermoscopic images. The images used in this figure
are taken from DermnetNZ [75].

of the disease. For this purpose, using a good quality digital camera or smartphone

can facilitate capturing images of common skin diseases making smart phones or

other digital photographic devices an accessible alternative for capturing skin con-

ditions at the early stage of the diagnosis. The skin images captured by smartphone

or other photographic devices are referred to as “clinical” images in the world of

medical science research. As a result, clinical images are gaining popularity in skin

disease diagnosis [74] and there are many medical research platforms that encour-

age collecting clinical images. Fig. 2.1, illustrates a few samples of clinical and

dermoscopic images.

2.1.1 Motivation for Rosacea image analysis

Rosacea is a chronic facial skin condition that goes through a cycle of fading and

relapse [14]. The frequency of fading (remission) and relapse (exacerbation) varies

widely among individuals and is influenced by several factors including environ-

mental triggers, stress, lifestyle, and individual skin type. Generally, patients may

experience flare-ups lasting weeks to months followed by periods of remission where

symptoms significantly lessen or disappear. On average, individuals with rosacea

may experience varying degrees of flare-ups several times a year, with some report-

ing more frequent or prolonged episodes. The specific pattern and frequency are

highly individualized, making regular monitoring and personalized treatment essen-
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tial. It is also a cutaneous vascular disorder [15]. It is a common skin condition in

native people from northern countries with fair skin or Celtic origins [16]. Rosacea

is often characterized by signs of facial flushing and redness, inflammatory papules

and pustules, telangiectasias, and facial edema. Rosacea’s symptom severity varies

greatly among individuals [18]. In the medical diagnostic approach, rosacea is clas-

sified into four subtypes – Subtype 1 (Erythematotelangiectatic rosacea), Subtype

2 (Papulopustular rosacea), Subtype 3 (Phymatous rosacea) and Subtype 4 (Oc-

ular rosacea). Each subtype is diagnosed based on the severity of condition e.g.

mild, moderate, or severe [14][20]. This variability in the cycle of rosacea symptoms

and subtypes underscores the importance of early diagnosis and ongoing monitoring

through computer-aided methods. Advanced imaging and analysis techniques can

help identify and predict flare-up patterns, enabling timely interventions.

Besides the clinical complications, rosacea can affect patients’ overall wellbeing,

social life and work life. According to a survey carried out by National Rosacea

Society of Canada, among 700 patients with rosacea in the working group, 66% were

affected in their professional interactions, 33% had cancelled or postponed business

meetings, 28% had missed work, 28% felt rosacea may have negatively influenced

their chances of a promotion. In another survey with 660 patients with severe cases

of rosacea, 86% of participants reported that they had to limit their social lives due

to rosacea [76].

‘British Association of Dermatologists’ reported that rosacea is a facial dermato-

sis and therefore easily visible. It can cause extreme discomfort to those who suffer

from it[20]. According to another study conducted by Spoendlin et al.[77] based on

data collected in the period of 1995-2009, rosacea was diagnosed in 80% of cases

after the age of 30 years, in which 61.5% patients were women.

According to the ‘Acne and Rosacea Society of Canada’ more than 3 million

Canadians suffer from rosacea[78]. It is anticipated to become one of the most com-

mon health problems in Canada. One study in Sweden found that women with

rosacea are more likely to experience migraine headaches than those with healthy
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skin conditions[79]. In 2019, according to a Market Analysis Report published by

Grand View Research[80], the rosacea treatment market will be worth $2.6 billion

by 2025, proving one of the fastest growing drug classes. In April 2021, a report

published by the National Rosacea Society[23], states, “New treatments continue to

expand therapy options, but a cure remains elusive”. The reasons behind the contin-

ued growth of rosacea cases in recent years are: lack of awareness in dermatologists,

misdiagnosis, cost of treatment etc.[23].

In a recent article published by US News Health, “rosacea is often misdiagnosed,

and many don’t seek treatment because they don’t realize it’s rosacea,” says Jeffrey

Fromowitz, MD, FAAD, a dermatologist based in Boca Raton, Florida[24]. Frequent

news on rosacea awareness and treatment appears regularly in the Irish Times[81],

Irish Examiner, and a few other newspaper organisations in Ireland. This indicates

the global scale of the problem of rosacea. As the concern rises, the treatment of

rosacea is not only the responsibility of expert dermatologists, but Machine Learning

can also be a potential pathway towards the early diagnosis of rosacea with state-

of-the-art methodologies. A fast, accurate and low-cost assistive diagnostic system

could significantly contribute to medical treatment plans, particularly in developing

countries. Early and accurate detection of skin lesions, inflammation and facial skin

conditions, such as rosacea, is vital for developing precise and effective treatment and

medication. In this review we provide a critical literature review and an analysis on

skin disease diagnosis using various methodologies of machine learning and computer

vision.

2.2 Related work on Rosacea

In recent years, medical image diagnosis has progressed rapidly due to the advance-

ment of Artificial Intelligence (AI) models and the availability of a large amount of

data provided by medical professionals. Thanks to the advanced machine learning

and deep learning techniques in computer vision, different types of disease diagnosis

have become very widespread in the scientific and medical research community. An
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extensive amount of work has been done on skin cancer diagnosis. According to a

study published by Stanford University in 2017[82], Dermatological (dermoscopic)

images play an important role in diagnosing skin cancer using Deep Convolutional

Neural Networks (DCNNs)[83]. The work by Esteva et al.[82]suggests that the diag-

nosis technique could be used outside the clinic as an initial screening step for cancer

to a level of competence comparable to 21 board-certified dermatologists. Since then,

computer vision and deep learning research has attracted a lot of attention for skin

cancer lesion classifications by proposing various kinds of state-of-the-art method-

ologies and techniques. However, most of the work on skin disease analysis and

classification so far has been done is on dermoscopic images, in which a particular

region of interest of the skin is focused on, as shown in Fig. 2.1; while there are very

few studies on facial skin conditions such as rosacea, rosacea acne, eczema, psoriasis

lupin and other related skin conditions. Table 2.2 presents an overview of studies

conducted on rosacea along with other skin conditions.

As it can be seen from Table 2.2, most of the studies which have been carried

out on rosacea and related skin conditions using machine learning and computer

vision/deep learning algorithms date from the year 2019 and onwards. Most of the

works which have shown great results using deep learning have used at least nearly

10,000 images. A few studies conducted by Thomsen et al.[84], Zhao et al.[85], Wu

et al.[86] and Zhu et al.[87], employ a significant quantity of data. However, the

datasets used in these studies are entirely confidential. Hence these studies are not

entirely reproducible and therefore there is a motivation for other researchers to try

to deal with the skin disease problem using limited data. Most of the work done

so far using transfer learning and data augmentation has used weights pre-trained

on ImageNet[3], which is considered a non-medical dataset. However, these studies

provide a useful insight into a few common techniques which can be applied in this

research. A few studies have shared their GitHub repository, which may provide

references for publicly available datasets.

Goceri [88] presented a novel modified Mobile-Net architecture [89] along with
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a mobile app with user-friendly interface. In this work, 725 images of seborrheic

dermatitis, rosacea, hemangioma, psoriasis and acne vulgaris were used for classifi-

cation tasks. There were 145 images in each disease class. The modified Mobile-Net

model was developed based on the original Mobile-Net architecture but with the

receptive field expanded, with dilated convolution and combined hybrid loss func-

tions. The experimental results in this study have shown that the proposed modified

Mobile-Net[88] has outperformed other network architectures for each disease class.

Thomsen et al.[84] presented a dataset and a classification task with 5 cate-

gories of skin conditions i.e. Psoriasis, Eczema, cutaneous t-cell lymphoma, acne

and rosacea. As part of the pre-processing before the classification task, K-means

clustering was used to remove the noise and unnecessary details from the images.

Four types of modified VGG-16 CNN architectures [90], either incorporating or not

incorporating the Spatial Transformer Network (STN), are depicted in Table 2.2.

According to the results discussed in this study, these 4 types of VGG-16 architec-

ture performed differently in terms of Area Under the Curve (AUC) and accuracy

scores for each disease class. However, VGG-16P is proven to be the best perform-

ing model after the performance measured through specificity, sensitivity, Positive

Predictive Value (PPV), and Negative Predictive Value (NPV). Additionally, the

overfitting due to the small datasets and selection bias for acne and rosacea is an

issue and was discussed in this study.

Goceri [91] proposed a segmentation method called Fully Automated Detection of

Facial Disorders (F-ADFD). This method has shown better segmentation accuracy,

specificity, and precision due to active contouring which is set automatically using

a binary image that is obtained with a K-means clustering after denoising and

intensity normalization steps. Among 10 Deep Neural Net (DNN) architectures

that were used in this work, DenseNet201[92] with modified loss function (cross-

entropy and Tversky similarity) was claimed to have shown results with maximum

accuracy (95.24%) and minimum loss (0.5). The second highest performance was

obtained by InceptionResNet-v2 [93]. This study suggests that DNN techniques can
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extract features automatically at low, middle and, high levels by increasing depth

and by performing classification for skin lesions. All the DNN architectures used in

this work were pretrained on ImageNet [3].

Zhao et al.[85] carried out a study on three subtypes of rosacea lesions i.e. Ery-

thematotelangiectatic rosacea (ETR), papulopustular rosacea (PPR), and phyma-

tous rosacea (PhR). The study reported classification accuracies of 83.9%, 74.3%,

and 80.0% for ETR, PPR, and PhR, respectively, when distinguishing each subtype

from the others. Beyond rosacea, the study encompassed additional skin condi-

tions resembling rosacea, including acne, facial eczema, seborrheic dermatitis, lupus

erythematosus, chronic solar dermatitis, corticosteroid-dependent dermatitis, and

lupus miliaris disseminatus faciei. A total of 24,736 images were utilized for the

analysis, though the study did not disclose the source of these images, nor is the

dataset publicly accessible. Furthermore, the authors highlighted the necessity of

investigating deep CNN decision-making processes. Understanding these processes

is crucial for enhancing the models’ accuracy and specificity in disease detection,

ultimately improving diagnostic capabilities in dermatological conditions.

Wu et al.[86] performed a classification among psoriasis (Pso), eczema (Ecz),

Atopic dermatitis (AD) and Healthy skin. This work did not use any rosacea im-

ages, and instead relies on hand and facial images. The study involved 4,740 im-

ages collected from the Department of Dermatology, The Second Xiangya Hospital,

Central South University, China. However, this dataset is confidential. Google’s

EfficientNet-b4 [94] was used with an extra 7 auxiliary classifiers at the end of each

intermediate layer to make the model learn classification information from different

levels of features. This work was built as a smart phone mobile application.

Zhu et al.[87] performed a classification among 14 skin diseases with 13,603

images labeled by two dermatologists with a minimum of 5 years of experience.

This data was collected from the Department of Dermatology, Peking Union Medical

College Hospital, China, from April 2016 to April 2020. In this work, EfficientNet-b4

[94] was used with pre-trained weights from ImageNet. There were 14 classifiers with
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14 output neurons used instead of the final fully connected classification layer of the

network. This modified model of EfficientNet-b4 is compared with Inception-v3 [95],

ResNet-101 [96] and the original EfficientNet-b4 [94]. The comparative outcomes

are measured by AUC, ROC, Sensitivity, Specificity and Accuracy. The modified

EfficientNet-b4 has outperformed other CNN models with an AUC of 0.985 and with

the highest ROC. The performance of modified(proposed) EfficientNet-b4 was also

compared with dermatologists, in which performance is measured using the Kappa

coefficient [97]. This performance measure comparison showed that the diagnosis

of Rosacea by dermatologists is significantly better than the proposed model. In

comparison, the diagnosis of viral warts by the proposed model was significantly

better than the dermatologists.

Aggarwal [98] looked at 5 skin conditions: acne, atopic dermatitis, impetigo,

psoriasis, and rosacea. A total of 938 images were considered for classification us-

ing Inception-v3 with pre-trained weights of ImageNet [3]. Data Augmentation

was incorporated during the training process to reduce the possibility of overfitting.

The performance of the model was measured through sensitivity, specificity, posi-

tive predictive value (PPV), negative predictive value (NPV), Mathew’s correlation

coefficient (MCC), and F1 score. A comparative result illustrated how each model

performed with and without data augmentation. From the confusion matrix, the

performance scores for rosacea are relatively low (0.60 with data augmentation) com-

pared to the other four skin conditions. The number of images of rosacea considered

in this study was 90.

Binol et al.[99] presented a study using rosacea images collected from the Division

of Dermatology at Ohio State University. There were 41 images collected using a

DSLR camera, in which images were taken from left, right, front and upsides of

the faces. There were two CNN models considered for classification i.e. Inception-

ResNet-v2 [93] and ResNet-101 [96] with the pre-trained weights from ImageNet [3].

A few pre-processing tasks were performed, such as creating labelled patches on the

facial images. These patches were labelled by expert dermatologists based on the
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anatomical details of the face. The anatomical parts of the face regions more than

75% affected by rosacea were labelled as positive rosacea patches and less than 25%

rosacea affected regions were labelled as negative rosacea patches. The patches with

various resolutions such as 64×64, 128×128, 256×256 were obtained for the data

augmentation and transfer learning process. Hence there were nearly 65,649 tiles

with different resolutions crafted on the 41 images. The accuracy of the models

was measured using Dice Coefficient and false-positive rate. A specific kind of post-

processing was proposed in this work called Anthropometric Post-Processing (APP)

with a landmarks-based Region of Interest (ROI) mask. The Inception-ResNet-v2

[93] with APP provided a higher performance score compared to other models such

as ResNet101 [96] and Bag of Features with Support Vector Machine (SVM).

Xie et al.[100] presented a dataset and classification task for 541 skin conditions.

The image dataset was collected using 4 types of digital cameras, and these im-

ages were annotated by 20 professional dermatologists from the Xiangya Hospital

of Central South University, China. However, in this study, 80 categories of skin

conditions were considered for classification. The disease categories considered had

more than 100 images and the categories with more than 1000 images were discarded

to keep a balance during the classification process. There were 4 types of CNN ar-

chitectures considered for the task i.e. InceptionResNet-v2 [93], Inception-v3 [95],

Densenet121 [92] and Xception [101]. According to the results drawn from the con-

fusion matrix, InceptionResNet-v2 outperformed the other three CNN architectures

with 0.764 accuracy.

2.3 Learning - from “Big Data” to “Small Data”

The concept of visual data – ‘image datasets’ started gaining popularity in 1999

through the release of an official standard database i.e. the MNIST database (Mod-

ified National Institute of Standards and Technology database) by Yann Le Cun and

his colleagues[102][103]. The MNIST database is a collection of handwritten digits.

It has a training set of 60,000 example images and a test set of 10,000 images.
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In 2009, Deng et al.[3] introduced ImageNet, one of the largest image datasets

available containing around 3.2 million images. Based on the numbers recorded on

the ImageNet homepage, there are more than 14 million images in the dataset with

just over 21 thousand synsets (groups/classes).

The real-world artefacts which humans can recognise have now become recognis-

able by computers through efficient algorithms and large sets of images, which was a

difficult task a decade earlier. These advancements have become possible due to the

availability of large volume datasets like ImageNet [3], which can be fundamentally

called ‘Big Data’. Having bigger datasets is one of the key prerequisites for Deep

Learning models to perform well.

2.3.1 Big Data in computer-aided medical diagnosis

Medical image analysis using deep learning has become popular among research

communities due to the collective concept of ‘Big Data’. According to the studies

reviewed in this work, the volume of the data used for medical diagnosis is three to

four times smaller than the number of images in ImageNet [3].

One of the influential works by Esteva et al.[82] on skin disease analysis with

dermoscopic images for diagnosing skin cancer created a new trend for skin disease

analysis using deep learning and computer vision. In total 129,450 clinical images

were used in [82] to train a deep convolutional neural network to classify the most

common deadliest skin cancer. Advances in medical image analysis techniques have

also been used for other conditions. For instance, Ting et al.[104] utilised a dataset

of 494,661 retinal images to diagnose Diabetic Retinopathy and related eye diseases

from visual scans. In order to detect bone fractures in radiographs, a deep learning

model trained on 135,845 radiographs of a variety of body parts was proposed with

a diagnostic accuracy similar to that of senior subspecialized orthopedic surgeons

[105]. This work claims that, given enough training data and a suitably designed

model, it is possible to detect any condition on radiographs that a human clinician

could identify. A deep learning model, DeepSeeNet [106] was developed to classify

36



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

patients with Age-related Macular Degeneration (AMD). DeepSeeNet was trained

on 58,402 training images and 900 testing images collected from 4549 participants.

In another attempt, a deep learning model was trained for automatic Magnetic

Resonance Imaging (MRI) cardiac multi-structure segmentation and diagnosis[107].

It used the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest

publicly available and fully annotated dataset for Cardiac MRI (CMRI) assessment.

The dataset contains CMRI recordings obtained from 150 devices, with reference

measurements and classification from two medical experts.

2.3.2 Importance of the ‘small datasets’ in medical diagnosis

Although deep learning models have exhibited prodigious performance in computer

vision tasks such as automated diagnosis of medical conditions (diabetes, retinopa-

thy, bone fractures, age-related macular degeneration, cardiac MRI and skin cancer,

etc.), they heavily rely on a large volume of the labelled dataset [108]. While these

models are helping to achieve breakthrough state-of-the-art performance, their ac-

curacy downgrades severely on datasets with only a few labelled instances [109]. In

various cases of rare diseases, it is difficult to acquire and annotate an adequate

number of samples for large-scale training assignments. As a consequence, these

models end up with poor generalization for novel classes given the low number of

instances per class. Training a deep learning model in a low-data scenario results

in a long-tailed and imbalanced classification, which is a challenging task in both

computer vision and medical imaging [8] [9] [10].

Acquiring a large amount of labelled data for real-world problems including med-

ical imaging and clinical diagnosis, is an exhaustive and expensive task. Therefore, it

would be highly desirable to improve the learning strategies with the limited amount

of available data. In this work, we explore the strategies to leverage the existing ap-

proaches for learning from limited data and build generalised models from relatively

small samples. The main motivation to deal with the limited data in this research

is the limited availability of datasets for rosacea.
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Table 2.2: Comprehensive Summary of Research Studies on Rosacea and Associated
Skin Conditions. This table encapsulates a detailed survey of research efforts under-
taken to understand and classify Rosacea alongside various other skin conditions.
It outlines each study by the author(s), publication year, the specific skin diseases
addressed, dataset details including source and availability, volume of data used,
the approaches taken to address the problem, methodologies applied, performance
metrics attained, and deployment strategies.

Author/

Index/

Year

Skin

Disease

Dataset/

Source/

Availability

Dataset

Volume

Problem

Approach

Methodology Performance

Measures

Deployment

Evgin

Goceri

[88],

2021

seborrheic

dermatitis,

rosacea,

hemangioma,

psoriasis

and

acne vul-

garis.

DermWeb,

DermNet Der-

matoweb,

DermQuest

Total no.

of Images

= 725, No.

of images

for each

class =

145

Segmentation,

Classifica-

tion prob-

lem, Mobile

App

Pretrained on Ima-

geNet weights:

SqueezeNet, Shuf-

fleNet, MobileNet,

RMNv2, MobileNet-

V2, Light Weight

Efficient Network

(LWEN), Look-

Behind Fully-CNN

(LB-FCN), Light

CustomNet2, Modi-

fied MobileNet-V2

Accuracy,

Specificity,

Sensitivity,

Precision,

F1 Score,

Matthew’s

correlation

coefficient

(MCC)

32 GB

RAM, Intel

i9-9900 pro-

cessor unit

(3.10 GHz)

and 64-bit

Windows-

10. Python

3.6, Java,

Android

Studio (ver-

sion 3.6.1),

TensorFlow

Thomsen

et

al.[84],

2020

acne (581)

rosacea

(1606),

psoriasis

(6,545),

eczema

(5,350)

and cuta-

neous t-cell

(2,461)

Department of

Dermatology,

Aarhus Univer-

sity Hospital

(AUH), Den-

mark (Confi-

dential Dataset)

Total im-

ages =

16,543

Total

number of

patients

included

in the

study =

2,342

Classification

problem,

Region of

interest

using STN

Pre-trained on Ima-

geNet weights with

VGG-16 (VGG-

16P), No pretrained

VGG-16 (VGG-16N),

Spatial Transforma-

tion Network (STN)

with a Pre-trained

VGG-16 Model

(VGG-16PS), No

pretrained VGG-16

with STN (VGG-16

NS)

AUC, sen-

sitivity,

specificity,

negative

predictive

value (NPV),

and positive

predictive

value (PPV),

Accuracy

N/A

Evgin

Go-

ceri[91],

2021

seborrheic

dermatitis,

rosacea, he-

mangioma,

psoriasis

and acne

vulgaris.

DermWeb,

DermNet Der-

matoweb,

DermQuest.

N/A Segmentation,

Denoising,

Intensity

normaliza-

tion, Fully

Automated

Detection

of Facial

Disorders

(F-ADFD)

method,

Classifica-

tion

Pretrained on

ImageNet, VG-

GNet16, VGGNet19,

Google-Net, Incep-

tionV3, Xception,

ResNet18, ResNet50,

ResNet101, In-

ceptionResNetV2,

DenseNet201with

modified loss func-

tion (Cross-entropy

and Tversky (Tv)

similarity)

For

segmentation-

Area Er-

ror Rate

(AER), For

classification-

Accuracy,

Precision,

Specificity,

F1 score,

MCC

Intel Core

i7, 8GB

DDR4

RAM,

3.6 GHz

CPU, All

networks

have been

trained

using

MATLAB

(R2019b)

on the same

computer
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Continuation of Table 2.2

Author/

Index/

Year

Skin

Disease

Dataset/

Source/

Availability

Dataset

Volume

Problem

Approach

Methodology Performance

Measures

Deployment

Zhao et

al.[85],

2021

3 rosacea

subtypes

(erythe-

matote-

langiectatic

rosacea,

papulo-

pustular

rosacea,

and phy-

matous

rosacea)

acne, se-

borrheic

dermatitis,

and eczema

NA, Confiden-

tial Dataset,

Data collection

devices: iPhone

X, Huawei P20

and digital

camera Canon

Rebel 550 from

3 different

angles.

Total =

24,736,

rosacea

= 18,647;

Acne,

Seborrheic

Dermati-

tis, eczema

= 6089

Feature

extraction,

Classifica-

tion

Pretrained on Ima-

geNet, ResNet-50,

mini-batch gradient

descent witha mo-

mentum = 0.9, batch

size = 32, Training

epochs=100, Ini-

tial learning rate =

0.0001. (If validation

loss did not decrease

in continuous 10

epochs, the learning

rate was divided by

5), minimum learning

rate = 0.000001.

Accuracy,

precision,

Area Under

the Receiver

Operating

Character-

istic Curve

(AUROC)

N/A

Wu et

al.[86],

2020

psoriasis

(Pso),

eczema

(Ecz),

atopic

dermati-

tis (AD),

healthy skin

Department of

Dermatology,

The Second

Xiangya Hos-

pital, Central

South Univer-

sity, China,

Confidential

dataset

Total

= 4,740

clinical

images

Classification,

Mobile

App.

Five-fold cross-

validation to validate

the effectiveness, pre-

trained weights on

ImageNet, Efficient-

Net-b4 (380×380)

The final fully con-

nected classification

layer was replaced

with 3 output neu-

rons. Also, added 7

auxiliary classifiers

at the end of each

intermediate layer to

make the model learn

classification infor-

mation from different

levels of features.

Positive rate

(TPR), false

positive rate

(FPR), ROC,

AUC, T-SNE

analysis,

Confusion

matrix.

Pytorch 1.1.

CPU - 18

Core Intel

Xeon E5-

2697, GPUs

- 4 RTX

2080Ti

NVIDIA.
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Continuation of Table 2.2

Author/

Index/

Year

Skin

Disease

Dataset/

Source/

Availability

Dataset

Volume

Problem

Approach

Methodology Performance

Measures

Deployment

Zhu et

al.[87],

2021

14 diseases-

lichen

planus

(LP),

rosacea

(Rosa),

viral warts

(VW), acne

vulgaris

(AV), keloid

and hyper-

trophic scar

(KAHS),

eczema and

dermatitis

(EAD),

dermatofi-

broma

(DF), se-

borrheic

dermati-

tis (SD),

seborrheic

kerato-

sis (SK),

melanocytic

nevus

(MN), he-

mangioma

(Hem),

psoriasis

(Pso), port

wine stain

(PWS),

basal cell

carcinoma

(BCC).

Department

of Dermatol-

ogy, Peking

Union Medical

College Hos-

pital, China,

Collected from

October 2016

to April 2020,

Confidential

dataset The

annotation

process was

performed by

2 dermatolo-

gists with more

than 5-years’

experience.

Data collection

device- Mole-

Max HD 1.0

dermoscope,

Digital Image

Systems, Vi-

enna, Austria.

Total =

13,603

derma-

tologist

- labeled

dermo-

scopic

Images,

Rosacea

= 597

images

Classification

and Clus-

tering

Pre-trained weights

on ImageNet,

Google’s Efficient-

Net-b4 (380×380)

The final fully con-

nected classification

layer was replaced

with 14 output neu-

rons. Also, with

added 7 auxiliary

classifiers to each

of the intermedi-

ate layer groups.

t-SNE (t-distributed

Stochastic Neighbor

Embedding)

Area under

curve (AUC),

Accuracy,

Sensitivity,

Specificity,

ROC, com-

pared this

model with

280 board-

certificated

dermatolo-

gists.

Pytorch

Scikit-learn

0.22.2 and

Numpy

1.16.4.
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Continuation of Table 2.2

Author/

Index/

Year

Skin

Disease

Dataset/

Source/

Availability

Dataset

Volume

Problem

Approach

Methodology Performance

Measures

Deployment

Pushkar

Aggar-

wal[98],

2019

acne (332),

atopic

dermati-

tis (92),

impetigo

(138), pso-

riasis (280),

rosacea

(96).

DermNet NZ,

Dermatology

Atlas, Hellenic

Dermatological

Atlas and down-

loaded images

from the Google

search results.

Total =

938

Classification Pretrained on Ima-

geNet -Inception v3

Sensitivity,

specificity,

positive

predictive

value (PPV),

negative

predictive

value (NPV),

Matthew’s

correlation

coefficient

(MCC), and

F1 score.

TensorFlow.

Binol et

al.[99],

2019

rosacea

lesions

Ohio State Uni-

versity (OSU)

Division of

Dermatology

(Using DSLR

camera), Confi-

dential dataset

Total =

41 facial

images,

The size

of each

image is

4608×3072

Image clas-

sification

problem for

rosacea and

non rosacea

lesions.

Pre-trained on Im-

ageNet DCNNs:

Inception-ResNet-

v2, ResNet-101,

Data Augmenta-

tion. Anatomi-

cally directed post-

processing (APP)

(Anthropometric

model)

Dice co-

efficient,

False positive

rate.

MATLAB

R2018b

using the

Deep Learn-

ing Tool-

box, (HPC)

with 128

GB RAM

and 16 GB

NVIDIA

Tesla P100

PCI-E GPU

Xie et

al.[100],

2019

80 skin

diseases

with each

class have

more than

100 images.

(Includes

rosacea).

Xiangya Hospi-

tal of Central

South Univer-

sity Dataset is

annotated by

20 professional

dermatologists,

Confiden-

tial Dataset,

Data collec-

tion device:

SONY DSC-

HX50 (350dpi),

CANON IXUS

50 (180dpi),

NIKON D40

(300dpi),

NIKON

COOLPIX

L340 (300dpi).

Total =

47,075 im-

ages were

obtained

using 4

types of

digital

cameras.

Classification. Pretrained on Im-

ageNet. Inception-

ResNet-v2 (for 80

skin diseases classifi-

cation) (Max training

epochs=5000, ba-

sic learning rates

= 0.001, batch

size = 25, opti-

mizer=Adam, and

the loss function=

categorical cross en-

tropy). Inception V3,

DenseNet121, Xcep-

tion for comparative

analysis.

Top-1 and

Top-3 accu-

racies can

reach 0.588

and 0.764.

4-fold cross

validation.

3X NVIDIA

TITAN Xp.

End of Table

41



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

Table 2.3: Comprehensive catalog of accessible skin disease datasets. This table
provides an extensive overview of publicly accessible datasets pertinent to skin dis-
ease research, including Rosacea. It enumerates each dataset, detailing its name,
covered disease categories or specific conditions, imaging modality employed, total
volume of data, number of classes featured, specific mention of Rosacea images if
applicable, accessibility status, and originating country or region.

Index Dataset
Name

Disease
Categories/

Names

Imaging
modality

Volume Classes Rosacea
images

Accessibility Country/
Region

1 7-point
criteria
(aka

derm7pt)[110]
2019

Melanoma and
non-Melanoma
skin lesions

Clinical and
Dermo-
scopic

>2000 ∼20 0 Public Canada,
Italy

2 Asan and
Hallym
Dataset

[111] 2018

12 types of Skin
Cancerous lesions

Dermoscopic 17,125 12 0 Partially South
Korea

3 Dermatology
ATLAS

[112] 1999

All kinds of skin
diseases (including

rosacea)

Clinical ∼11,000 ∼550 38 Public Brazil

4 DanDerm
[113] 1995

All kinds of skin
diseases (including

rosacea)

Clinical >3,000 ∼100 17 Public Denmark

5 DermIS
[114]

All kinds of skin
diseases (including

rosacea)

Clinical ∼7,000 ∼700 49 Public Germany

6 Dermnet
Skin

Disease
Atlas

[115]1998

All kinds of skin
diseases (including

rosacea)

Miscellaneous ∼23,000 N/A 0 Public United
States

7 Dermofit
Image
Library
(aka

Edinburgh
Dataset)[116]

Cancerous skin
lesions

Dermoscopic 1,300 10 0 Under
License
Agree-
ment

Scotland,
UK

8 DermNetNZ
[75] 2016

All kinds of skin
diseases (including

rosacea)

Clinical and
Dermo-
scopic

>25,000 >2,500 ∼50 Public New
Zealand

9 Dermatoweb.
net [117]
2002

All kinds of skin
diseases (including

rosacea)

Clinical and
Dermo-
scopic

>7,300 0 45 Public Spain

10 HAM10000
[118] 2018

Pigmented
malignant and

benign skin lesions

Dermoscopic 10,015 7 0 Public Austria

11 Hellenic
Dermato-
logical

Atlas [119]
2011

Common disease
categories
(including
rosacea)

Miscellaneous 2,663 N/A 9 Public Greece

12 ISIC [120]
[121] 2016

Melanoma,
seborrheic

keratosis, benign
nevi

Dermoscopic >33,000 N/A 0 Public Miscella -
neous

13 MED-
NODE

[122] 2015

Melanoma and
benign nevi

Microscopic 170 2 0 Public Netherlands

14 MoleMap
[123] [124]
2003-2015

Malignant and
benign lesions

Clinical and
Dermo-
scopic

>32,000 N/A 0 NA New
Zealand

15 PH2
Dataset

[125] 2013

common nevi,
atypical nevi, and

melanomas

Dermoscopic 200 (80
+ 80 +
40)

3 0 Public Portugal

16 SD-128
[126] 2016

128 disease
categories
(Including
rosacea)

Clinical 5,619 128
(>20
sam-
ples
per

class)

N/A On
request
only

China

17 SD-198
[127]

198 disease
categories
(Including
rosacea)

Clinical 6,584 198
(10-20
sam-
ples
per

class)

N/A On
request
only

China
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2.4 Availability of Skin Disease Datasets and Chal-

lenges

As deep learning models require a large amount of data for training, it is essential to

benchmark the available datasets for skin disease analysis. In this study, we utilise

datasets containing various skin disease images. These 17 datasets are also used in

further sections where different types of deep Learning architectures and models are

discussed in detail. The main purpose of this section is to provide an overview of the

available skin image datasets, categorised by name, data source, disease category,

imaging modality, dataset volume, number of classes, data accessibility, and the

frequency of rosacea in existing datasets.

The Table 2.3 presents a compilation of accessible skin disease datasets that

vary widely in their scope and characteristics. Notably, the datasets encompass a

range of skin conditions, from common diseases to more specialised subtypes like

melanoma and rosacea. The diversity of conditions covered allows for the poten-

tial development of comprehensive diagnostic models that can differentiate between

various skin diseases.

The volume of images across these datasets varies significantly, from as few as 170

in the MED-NODE dataset to over 33,000 in the ISIC 2016 collection. The number

of classes represented also varies, affecting the specificity of potential classification

models. It is important to note that while larger datasets provide a broad scope

for training, they require careful handling to prevent overfitting and to ensure that

models remain generalizable.

The predominance of cancer-related images in the accessible datasets, as high-

lighted by the table, reflects the intensive research focus on skin cancer due to its

severity and higher incidence rates. These datasets often feature a well-established,

standardised collection of images, particularly for melanoma, which facilitates the

development of automated diagnostic tools. The accessibility of these images sup-

ports widespread research efforts aimed at early detection and treatment, which are

critical in cancer care.

In contrast, images of rosacea are less commonly included and are not as stan-

dardised or accessible. This disparity likely stems from rosacea being a non-fatal

condition and therefore possibly less prioritised in research funding and data collec-

tion initiatives. A critical observation from the table is the inconsistent represen-

tation of rosacea images across the datasets. Some datasets, such as DERMIS and
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Dermatology Atlas, include a notable number of rosacea cases, which is crucial for

studies like ours focusing on this condition. The variability in rosacea representa-

tion highlights the challenge in sourcing sufficient data and underscores the need for

targeted data collection efforts. Consequently, the limited representation of rosacea

in these datasets can impede the development of specialised diagnostic models for

this condition.

For researchers and medical professionals focusing on rosacea, this imbalance

necessitates seeking out specific datasets that contain a sufficient number of rosacea

images or investing in the creation of new, comprehensive collections. Ensuring the

inclusion of a diverse range of rosacea presentations in such datasets is crucial for

developing effective diagnostic models that are robust and generalizable across the

spectrum of the condition’s manifestations.

The imaging modalities used, including clinical, dermoscopic, and microscopic

images, offer different insights into skin conditions. Clinical images provide a general

view, while dermoscopic images allow for the examination of skin lesions in greater

detail, which can be particularly useful for conditions like skin cancer images that

have distinct visual patterns. The diagnosis of rosacea typically requires examination

of full-face images or images where substantial portions or specific localities of the

face are visible. This approach is necessary due to the nature of rosacea, which

often presents with symptoms such as redness, visible blood vessels, and swelling

across different areas of the face. Unlike some skin cancers that may be identified

by analysing individual lesions, rosacea’s diagnosis depends on assessing the pattern

and extent of these symptoms over larger facial regions.

As shown in Table 2.3, there are only about 200 images of rosacea in publicly

available datasets. Among the available images of rosacea, there is only a small

number of images with the full-face visibility. Compared to the studies published

based on skin cancer images, there is a very limited number of annotated rosacea

images and that introduces a significant challenge in dataset split (train, validation

and test) for training deep learning models.

Accessibility is another key factor; while many datasets are publicly available,

facilitating open research and collaboration, others are restricted or require specific

agreements to access. This can limit the utility of the datasets for widespread

research purposes.

Geographical representation is also a point of discussion, with datasets originat-

ing from various regions such as Canada, Italy, South Korea, and China. The geo-

44



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

graphic diversity can help in developing diagnostic models that are effective across

different populations, addressing the issue of dataset bias that can arise from a

narrow geographic focus.

Lastly, legal and ethical considerations are implicit in the accessibility column.

Datasets like the Edinburgh Dermatology Image Library require a license agree-

ment for access, which may include ethical considerations such as patient consent

and privacy protection, particularly relevant when dealing with identifiable human

images.

In summary, the datasets listed in the table offer a rich resource for the develop-

ment of skin disease classification models. However, the varying volume, class rep-

resentation, modality, accessibility, and geographical origin of the datasets present

both opportunities and challenges. For our study on rosacea, the selection of datasets

with adequate Rosacea images and the appropriate imaging modality will be crucial

for developing accurate and reliable diagnostic models. Hence, this chapter is fo-

cused on examining various deep learning techniques which may be applied for skin

disease diagnosis and potentially suitable for dealing with a limited dataset.

2.5 A brief Overview of Skin Disease Analysis us-

ing Machine Learning and Computer Vision

methods

Considerable amounts of work on skin disease classification tasks have focused on

computer-aided skin cancer diagnosis and classification support systems [128, 129,

130, 131, 132]. These non-invasive [130, 131] [133] methods, such as traditional

image processing techniques, have been very popular and achieved notable results

for skin disease diagnosis, particularly for skin cancer. The image processing tech-

niques have been used to perform a broad range of image pre-processing, e.g. lesion

segmentation and domain-specific feature extraction followed by classification tasks.

Such diagnosis tasks use a small number of datasets [131, 132, 133]. Generally, these

datasets contain less than a thousand sample images. Image classification problems

that utilise small datasets, do not generalise well to new images i.e. a novel category

of diseases or the classes with very small datasets.

Over the past few years, medical image classification has entered a new era thanks
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to the advancements of deep convolutional neural networks[83] [134], machine learn-

ing [135, 136, 137] and deep learning techniques [138, 139, 1]. These techniques do

not require any hand-crafted features, but they heavily rely on high computational

power [3] [140, 141, 142]. They are trained end-to-end directly from the image la-

bels and raw pixels, with a single convolutional neural network for dermoscopic and

clinical images [82].

Another principle that has attracted a lot of attention recently in the medical

image analysis domain is transfer learning. The core idea behind Transfer Learning

is to deal with fewer samples and is discussed in Section 2.5.1.

Another approach is GANs. There have been a few studies on using GANs [143,

40] on medical image analysis [144] which are discussed in Section 2.5.2. While

exploring GANs has shown notable results, they come with a few limitations such

as (1) mode collapse: when the generator collapses to map all latent space inputs

to the same data and (2) instability: refers to the training process where the adver-

sarial nature between the generator and discriminator can lead to unstable training

dynamics. This might result in oscillating or diverging loss during training, leading

to poor quality of generated images or failure of the model to converge on a solution.

The principal causes for these phenomena are related to vanishing gradients through

the optimization procedure [145]. However, when it comes to synthetic image gen-

eration of faces, a few types of GAN architectures have become successful as further

discussed in Section 2.5.2.

Given that GANs come with a few limitations and advantages, there is a scope

to explore other subfields of machine learning to deal with limited datasets, such

as meta-learning and few-shot learning [146, 147, 148]. Meta learning approaches

differ from many standard machine learning algorithms. Meta learning systems are

trained by being exposed to many tasks and are tested in their ability to learn new

tasks. An example of a task might be classifying a new image within 7 possible

classes, given one example of each class [147]. There has been a small number of

studies based on meta learning and few-shot learning applied to medical images and

skin disease diagnosis which are further discussed in Section 2.5.3.

An increasingly pertinent approach in the realm of medical imaging, particularly

when confronting the challenges of data scarcity and privacy concerns, is Federated

Learning (FL). This method involves a collaborative, decentralized machine learning

approach where multiple clients, such as hospitals or research institutions, train

algorithms collaboratively while keeping the patient data localized. This approach

46



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

is particularly beneficial for skin disease classification tasks, where data may be

sparse, sensitive, and unevenly distributed across sources. Federated Learning’s

unique approach offers a promising solution to harness the power of collective data

while adhering to strict privacy regulations and is discussed in Section 2.5.4.

Advanced machine learning have been gaining popularity in the field of computer

vision due to their advantages. Nevertheless, some of the traditional approaches

in computer vision can be utilised when there is only a limited amount of data

available. One of these approaches leverages the technique of 3D modeling. 3D face

modelling is a computer graphics technique. By using an intuitive user interface

several 3D face models can be created from one or more photographs[31]. Over the

years various methodologies have been developed to reconstruct 3D faces, such as

3D Morphable Models[32], Active Shape Models [149, 150, 151], Gaussian Process

Morphable Models [152], deep learning based reconstructions[153, 154, 155] and 3D

modeling using GANs[156, 45]. However, there is only a small amount of literature

available on medical image diagnosis and facial skin image diagnosis which will be

discussed in Section 2.5.5.

2.5.1 Data Augmentation and Transfer Learning

Data augmentation is a technique to artificially create a new set of training data

from the existing ones by a slight modification. This is a process of modifying and

expanding the data through various geometric transformations and image processing

tasks such as such as rotations, flips, and zooms, we can simulate the variability

that a model would encounter in a real-world scenario. For images like those of

faces with rosacea, the geometry of the faces and the positions of affected regions

on the faces are different in each image. These are known as positional biases. Data

augmentation can work well with the positional biases present in images, in order

to increase the size and quality of training datasets, especially with a facial dataset

[157].

Humans learn from their experience, which helps them understand and solve

new but similar tasks quickly. A similar kind of hypothesis is applied in a handful

of algorithms and techniques [158]. Transfer learning is one of the deep learning

approaches in which a new task, which is in a different but related category, can be

learned and improved by acquiring experience from a previously learned task. Thus,

the acquired learning experience comes from different constraints such as extracting

features and fine tuning the model. These constraints play an important role along
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with monitoring the parameters of the model to obtain the desirable output.

Transfer learning and data augmentation are indeed distinct techniques, each

with its own role in the development of computer vision models. The reason they

are discussed together in this section is due to their synergistic application in many

studies within the field of computer-aided diagnosis and classification. In practice,

when applying transfer learning to a new problem, especially in cases where the

available data is limited, it is often beneficial to augment the dataset to prevent

overfitting and improve the model’s ability to generalize from the learned features.

Conversely, when employing data augmentation strategies, using a model that has

been pre-trained on a larger, diverse dataset can provide a more robust starting

point for learning the new task.

Therefore, while transfer learning and data augmentation serve different pur-

poses, their combined use is a common and effective strategy in computer vision

problems. This combined approach allows for the efficient adaptation of models

to new tasks with improved performance, which is why they are frequently imple-

mented together in the studies discussed. This integration is particularly pertinent

in medical/clinical imaging, where data is often scarce and models must be highly

accurate and generalizable. Hence, they are presented in this section to reflect their

interconnected roles in enhancing model performance in the classification of skin

diseases.

These principles are used by Esteva et al. [82] to demonstrate a generalizable

classification of a dermatologist-labelled dataset of 129,450 images including 3,374

dermoscopy images. A GoogleNet Inception version 3 CNN architecture [95] was

pretrained on approximately 1.28 million images with 1,000 categories of real world

objects from the 2014 ImageNet Large Scale Visual Recognition Challenge [141].

This model was fine-tuned on a skin cancer image dataset using transfer learning

[158] to achieve 93.33% accuracy.

Table 2.4 presents an overview of the state-of-the-art studies which have utilised

transfer learning and data augmentation principles for skin disease analysis.

The main points that can be drawn from the Table 2.4 are:

• Most of the work done using transfer learning for skin diseases analysis starts

from 2016 onwards.

• Most of the studies were conducted on subtypes of skin cancer such as ma-

lignant melanoma and benign nevi. However, only a few studies related to
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rosacea were conducted so far. As seen in the Section 2.2., most of the works

on rosacea and facial skin conditions are conducted from 2019 onwards.

• Most studies used a minimum data volume of 1000 images. A small number

of studies have been conducted with less than 1000 images.

• The studies by Esteva et al.[82], Liu et al.[159] obtained an accuracy of 93.33%

and 93% respectively with a large number of images and used InceptionNet-

v3[95] and v4[93] respectively. The studies by Goceri [160], MAA [161], Cui

et al.[162] used a small number of images to train an Inception Net[95] model.

There are a few studies with a small number of datasets that obtained results

by using different versions of the VGG16 [90] and ResNet[96] architectures

with transfer learning, data augmentation and some pre-processing work.

Similarly, Yu et al.[163] , Kwasigroch et al.[164], Lopez et al.[165], Kassani et

al.[166] presented studies on cancerous dermoscopic skin lesions classifications using

DCNNs with transfer learning. Some of these works are done using InceptionNet-

v3[95] and VGG-Net[90].

Shorten et al.[157] discussed a few limitations on data augmentations such as:

• Finding the optimum final post-augmented dataset size to produce the best

performing model. There is a possibility that the augmented dataset can be

heavily biased.

• There are no existing augmentation techniques that can correct a training

dataset with very poor diversity with respect to the testing data. All the

augmentation algorithms perform best under the assumption that the training

data and testing data are both drawn from the same distribution. Hence,

these limitations in data augmentation could be a potential problem for small

medical image datasets because of class imbalance and diversity.

Morid et al.[167] systematically reviewed the literature on approaches to transfer

learning in medical image analysis that are based on CNN models trained on the

non-medical ImageNet dataset for medical image analysis. A vital research gap

discussed in this review is finding the optimal dataset size that can support medical

image analysis tasks, as a large dataset may not always be available.

An extensive survey published by Pan et al.[158] discusses a few limitations

of transfer learning that may apply to medical image analysis, such as negative

transfer, which is an open problem in transfer learning. For example, when using
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the ImageNet[3] dataset for medical/clinical image analysis, there is no similarity

between the source and target domains. ImageNet contains real-world objects, ani-

mals, fruits, balloons etc. Hence there is a high possibility of performance intrusion

in the target domain; which is known as negative transfer [168]. Negative transfer

is made more likely by the fact that well performing CNN models are pre-trained

on a non-medical dataset [167]. In simple words, it is not yet established,

• Which characteristics facilitate an effective transfer of features and weights in

the transfer learning and fine-tuning process?

• Whether the features that are transferred from ImageNet are plausible or not?

• Whether the transferred features and weights are plausible, how we can quan-

tify that?

• At what level is it adequate to incorporate the features of a non-medical dataset

during the training process?

Table 2.4: Comprehensive Summary of Research on Data Augmentation and Trans-
fer Learning in Skin Disease Classification. This table delineates a curated list of
studies that have leveraged both data augmentation and transfer learning techniques
to enhance the accuracy and reliability of skin disease classification models. It de-
tails the authors, publication year, specific skin conditions targeted, types of data
augmentation and transfer learning methods used, datasets employed, and the per-
formance metrics achieved. The table further illustrates how the combination of
data augmentation and transfer learning contributes to overcoming challenges such
as data scarcity and model generalizability in dermatological imaging, reflecting the
synergy between these two methods in advancing the field of medical diagnostics.

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source

Dataset

volume in

total/per class

Methodology Best results and Per-

formance measures

Esteva

et

al.[82],

2017

2,032 skin diseases for

Training the model

and Tested for ma-

lignant melanomas,

benign nevi, malignant

basal, squamous cell

carcinomas, intraep-

ithelial carcinomas,

pre-malignant actinic

keratosis, benign

seborrheic keratosis.

ISIC Der-

moscopic

Archive,

Edinburgh

Dermofit

Library

and data

from the

Stanford

Hospital.

1,29,450 im-

ages. 2,032

disease classes

for Training

and 7 types

of cancerous

lesion classes

for Testing.

Pre-trained on ImageNet

dataset Transfer Learn-

ing, Data Augmentation,

InceptionNet-v3.

Accuracy =93.33%,

Confusion matrix

Saliency Maps,

Sensitivity-specificity

curves.

50



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

Continuation of Table 2.4

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source

Dataset

volume in

total/per class

Methodology Best results and Per-

formance measures

Sourav

Mishra

et

al.[169],

2018

9 common skin condi-

tions: Acne, Alopecia,

Crust, Erythema,

Leukoderma, Pig-

mented Maculae,

Pustule Ulcers and

Wheal.

N/A Each class

comprises of

approximately

4600 images in

which the di-

vision between

training and

test ratio of

90:10

Pre-trained on ImageNet DC-

NNs such as: ResNet18,

ResNet50, ResNet152,

DenseNet161.

Classification ac-

curacy: 82.30%(by

ResNet152)NVIDIA

Titan XP and CUDA

v8

Binol

et al.

(Ros-

Net)

[99],

2019

Rosacea lesions Ohio State

University

(OSU)

Division of

Dermatol-

ogy (using

DSLR

camera)

41 facial im-

ages. The size

of each image

is 4608×3072

Pre-trained on ImageNet DC-

NNs: Inception-ResNet-v2,

ResNet-101, Image classifi-

cation problem for rosacea

and non-rosacea lesions, Data

Augmentation, Anatomically

directed post-processing (an-

thropometric model)

Dice co-efficient:

92.9% False posi-

tive rate, MATLAB

R2018b using the

Deep Learning Tool-

box, (HPC) with 128

GB RAM and 16 GB

NVIDIA Tesla P100

PCI-E GPU.

Goceri

[160],

2019

5 common skin dis-

eases; (1) Acne

vulgaris, (2) Heman-

gioma, (3) Psoriasis,

(4) rosacea, and (5)

Seborrheic dermatitis.

N/A Total = 800,

Per class= 160

Pre-trained on ImageNet: U-

net, InceptionNetV3, Incep-

tionResNetV2, VGGNet and

ResNet.

Classification Ac-

curacy: 80% (by

ResNet50). GeForce

GTX 980Ti GPU,

Intel Core i7-4930

K processor, 6GB

memory and 16GB

RAM

Sun et

al.[126],

2016

198 Common

skin diseases:

eczema,psoriasis,

acnevulgaris, pruritus,

alopecia areata, decu-

bitus ulcer, urticaria,

scabies,impetigo, ab-

scess,bacterial skin

diseases, viral warts,

molluscum, melanoma

and non-melanoma

skin cancer

SD-198

and SD-

128

total= 6,584;

for some

classes-10 to

20 samples.

Pre-trained on ImageNet DC-

NNs such as: CaffeNet, Caf-

feNet+ finetuning, VGG Net,

VGG Net + finetuning

Classification accu-

racy: 50.27% (by

VGGNet + fine-

tuning)

Yang et

al.[170],

2018

198 common skin dis-

eases.

SD-198 6,584; for some

classes-10 to

20 samples.

Pre-trained on ImageNet DC-

NNs such as: GoogleNet,

GoogleNet + fine tuning,

ResNet, ResNet + fine tuning

Classification accu-

racy: 53.35 % (by

ResNet +fine tuning)
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Continuation of Table 2.4

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source

Dataset

volume in

total/per class

Methodology Best results and Per-

formance measures

MAA[161],

2019

Seven skin diseases-

Melanoma (1113),

Melanocytic nevus

(6705), Basal cell car-

cinoma (514), Actinic

keratosis (327), Be-

nign keratosis (1099),

Dermatofibroma (115)

and Vascular (142).

ISIC 2018

Melanoma

Detection

Challe-

nege and

Dataset

Training set

= 10015 skin

lesion images.

The validation

dataset = 193

skin lesion

images.

Data Augmentation. Rep-

resentation learning. Pre-

trained on ImageNet DCNNs

with fine tuning such as:

PNASNet-5-Large, Inception-

ResNetV2, SENet154, Incep-

tionV4, An Ensemble of all

models.

Validation score: 76%

(by PNASNet-5-Large)

W.Sae-

Lim et

al.[171],

2019

Seven skin diseases:

Cancerous

Human

Against

Machine

10,000

(HAM10,000)

10,015 images Pre-trained on ImageNet

Modified Mobile-Net with

Data Augmentation Data

up-sampling.

Accuracy: 83.23%,

Specificity: 87%,

Sensitivity: 85%, F1

score:82%

Kemal

et al.

[172],

2020

Seven skin diseases:

Cancerous

HAM10,000 10,015 images A CNN architecture + One

verses all which 1,243,463 pa-

rameters in total. Data Aug-

mentation.

Average precision:

92.90%

Hosny

KM et

al.[173],

2019

Melanoma skin lesions. 2017 ISIC

challenge

dataset,

MED-

NODE,

DermIS+

Der-

mQuest.

2000, 170, 206 Data Augmentation Pre-

trained on ImageNet for

transfer learning on AlexNet

Average Accuracy:

95.91%, 96.68%,

97.07%.

Mahbod

et

al.[174],

2019

411 malignant

melanoma (MM),

254 seborrheic ker-

atosis (SK) and 1372

benign nevi (BN)

ISIC 2016,

ISIC 2017

Total= 2037,

Training=

1887, Valida-

tion set=150

multi-class non-linear support

vector machine (SVM) clas-

sifiers. Fusion of DCNNs

such as AlexNet+ VGG16+

ResNet18)

Average AUC:90.69%

Mendes

et

al.[175],

2018

11 distinct lesions with

4 malignant illness.

MED-

NODE,

Edinburgh

Dermofit

library,

Atlas

170, 1300,

3816

Data Augmentation, Pre-

trained on ImageNet DCNNs:

ResNet-152

Total accuracy: 78%

(by ResNet-152)

Cui et

al.[162],

2019

Melanoma (295) and

non-melanomas (311)

International

Society for

Digital

Imaging of

the Skin

(ISIC).

Total= 606 Image pre-processing seg-

mentations, feature extrac-

tions, Machine Learning

classifications- using SVM,

Regression tree, K-nearest

neighbour, Logistic regres-

sion, Transfer Learning

using-AlexNet, VGG16,

VGG19, Google Inception v3.

Average accuracy,

Sensitivity, Specificity.

(Accuracy, Sensitivity,

Specificity=93.70%,

95.30%, 92.10% re-

spectively by Inception

v3), Windows 7

system, MATLAB

R2018b, TensorFlow

1.3, GTX1080Ti

(Nvidia).
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Continuation of Table 2.4

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source

Dataset

volume in

total/per class

Methodology Best results and Per-

formance measures

Liu et

al.[159],

2020

26 most common skin

conditions in adult, by

making it 419 cate-

gories of skin condi-

tions (Rosacea is not

included), Labeled by

a cohort of 37 US

board-certified and 5

Indian board-certified

dermatologists.

Tele Der-

matology

consul-

tation

dataset

(Confiden-

tial)

Training=64,837,

Valida-

tion=11,268,

clinical meta-

data (de-

mographic

information

and medical

history)

Transfer Learning pretrained

on ImageNet, Fine tuning, In-

ception v4, Data Augmenta-

tion

top-3 accuracy=93% -

top-k sensitivity=83%

-95% confidence inter-

vals, -validated by 18

board certified derma-

tologists who did not

participate in labelling

the input images.

End of Table

2.5.2 Generating synthetic images using GANs

As discussed in the previous Section 2.5.1., data augmentation techniques are used in

various studies, but there are a few notable limitations. Although data augmentation

techniques help in transforming the images by zooming, cropping, flipping, rotating,

it does not radically improve results when there is only a handful of data available for

some specific skin conditions. However, GANs can be explored in creating synthetic

data from an existing limited dataset without splitting the dataset into training,

validation, and test sets.

Generative models are inspired by the unsupervised learning model approach.

They can generate new examples that are similar to the training images. The GAN

framework [40] consists of a pair of adversarial networks – a Generator Network G

and Discriminator Network D. The Generator Network G tries to transform random

noise from the prior distribution over the input variables (usually a standard normal

distribution/gaussian distribution) to generate fake/synthetic images which look as

realistic as possible. The input variables to G are drawn from a normal distribution

and the output is a synthetic image. Generally, the dimension of the output image

is much greater than the dimension of the input variables.

Simultaneously, a Discriminator Network D attempts to discriminate between

the sample images obtained from the real training data and the fake/synthetic im-

ages obtained from the generator function G. By utilizing the feedback from the

discriminator D, the parameters of the generator G can be adjusted such that its

samples are more likely to fool the discriminator network in its classification task.

Ultimately, it is desired that the distribution of the fake images has as much in com-
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mon as possible with the real images. In the Discriminator Network D, the input is

an image, and the output is a real number between 0 and 1, which represents the

probability that the input image is real. Ideally if D is working properly, the output

will be close to 1 for a real image and close to 0 for a synthetic one.

The equation below represents the function V which GANs optimise during

training. xreal represents a real image. z represents the random input values for G.

In this equation, the first term only applies to real data and the second term only

applies to the synthetic data.

Ex∼pdata(x) indicates the expected value of log(D(xreal)) where pdata(x) is the

probability distribution over the real data and Ez∼pz(z) is the expected value of

log(1−D(G(z))) where pz(z) is the probability distribution over the input values to

G. The parameters of G and D are optimized by playing a minimax game, which

involves varying the parameters of G to minimise V in an outer loop and varying

the parameters of D to maximise V in an inner loop. The value function V (G,D)

is defined as:

(2.1)min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(xreal))] + Ez∼pz(z)[log(1 −D(G(z)))]

At the early stages of the learning process, G will not be generating any realistic

looking images and D can reject samples with high confidence because they are

clearly different from the training data. In this case, log(1 − D(G(z))) should be

close to zero because D(G(z)) will be close to zero [143, 40].

In skin disease classification and analysis, there have been a few impactful studies,

which support generating synthetic images from existing datasets of real images to

increase the training samples and improve the classification accuracy. These studies

will be considered as a part of a critical analysis and are listed in Table 2.5.

The main points that can be drawn from Table 2.5 are:

• Most of the work on GANs for skin diseases classification is from 2018 onwards.

• Most of the diseases considered for generating the synthetic image dataset are

melanoma or cancerous skin lesions. There is no work related to rosacea or

any facial skin conditions.

• Minimum of 2,000 input real images are considered for generating synthetic

images.

• Majority of the works use the ISIC 2017 and 2018 datasets.
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• DCGAN, PGAN and LAPGAN appear to be popular architectures used in

these studies.

Qin et al.[176] states that the generation of synthetic samples for vascular lesions

(142 input images) makes the lesion region look realistic. However, the skin texture

around the lesion is still fuzzy and lacks contrast in some samples. The same effect

appears in melanoma images. For melanocytic nevus (6705 images), the most repre-

sentative images are with concentrated colour, clear edge and regular shape. Hence,

more training samples lead to generating better quality synthetic ones. In Rashid et

al. [177], the highest F1 score was obtained in the melanocytic nevus (6705 images)

category because of the high number of samples available.

Major takeaways on DCGAN, LAPGAN and PGAN

DCGAN [178] and LAPGAN [179] have proven to work well for generating synthetic

images from the input noise, albeit at lower resolutions such as 64 × 64 pixels.

While these methods have been foundational, they are typically characterized by

limitations such as checkerboard artifacts in DCGAN and high-frequency artifacts

in LAPGAN images, as discussed by Baur et al. [180, 181]. These limitations

underscore the need for improved resolution and texture quality in synthetic image

generation.

Conditional GAN approaches [182] have been suggested to improve upon these

limitations by providing additional, relevant information to both the generator and

discriminator, especially useful in cases of imbalanced datasets. On the other hand,

Progressive Growing of GANs (PGAN) [183] has made significant strides in realistic

image synthesis, achieving high resolutions up to 1024 × 1024 pixels, and showing

promise in generating highly realistic images without the need for conditioning.

Despite these advancements, challenges such as the accurate rendering of complex

features like hair in medical images remain, indicating the need for further research

and methodological enhancements.

Baur et al. [180, 181] also highlight several research gaps critical to advancing

the field of synthetic image generation using GANs:

• Whether there is an information gain in the synthetic samples over the actual

training dataset?

• Whether the gain is higher than using conventional data augmentation?
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• How many training images are required to obtain reliable generative models?

• Whether there is still a need to enhance the methodology to account for fila-

mentary structures?

Table 2.5: Detailed Analysis of Studies Utilizing Generative Adversarial Networks
(GANs) in Skin Disease Classification. This table provides an in-depth overview of
significant research where GANs have been applied to the field of dermatological
imaging. It includes essential details such as the authors, publication year, specific
skin diseases studied, names and sources of datasets used, dataset volumes both in
total and per class, and the methodologies or benchmarks employed in each study.
Additionally, the table highlights the best results achieved in terms of evaluation
metrics, the number of samples generated, deployment strategies, and hardware
used. This comprehensive summary offers insights into how GANs have been effec-
tively utilized to generate synthetic data for skin disease classification.

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results Evaluation

Metrics /Samples Gen-

erated, Deployment

and H/W

Qin et

al.[176],

2020

Seven skin diseases-

Melanoma (1113),

Melanocytic nevus

(6705), Basal cell car-

cinoma (514), Actinic

keratosis (327), Be-

nign keratosis (1099),

Dermatofibroma (115)

and Vascular (142)

International

Skin Imag-

ing Col-

laboration

(ISIC)

2018

10,015 der-

moscopic

images.

600×400

pixels and

96dpi.

Transfer learning and fine

tuning on Transfer-ResNet50,

GAN, DCGAN, StyleGAN,

SL-StyleGAN(proposed work),

Non-linear mapping network,

Adaptive Instance Normaliza-

tion (AdaIN)operations, Style

Mixing, Stochastic variation

Inception Score,

Fréchet Inception Dis-

tance (FID), Precision

and Recall. Best

result obtained by SL-

StyleGAN proposed

method. H/W: Intel

Xeon Gold 6144 with

192 GB RAM, GPU of

NVIDIA Quadro P40

0 0.

Lei

et al.

[184],

2020

Melanoma skin lesions International

Skin Imag-

ing Col-

laboration

(ISIC)

Skin

Lesion

Challenge

Datasets

2016, 2017

and 2018

ISIC2016:

Training-

900,

Test-379;

ISIC2017:

Training-

2000,

Testing-

600;

ISIC2018:

Training-

2296,

Testing-

300

Segmentation task, A deep

encoder-decoder module UNet-

SCDC (skip connection and

dilated convolution) (proposed

work), Dual discrimination

module.

Accuracy, Sensitivity,

Specificity, Jaccard In-

dex, Dice coefficient,

H/W: Two NVIDIA

TITAN XP GPUs.
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Continuation of Table 2.5

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results Evaluation

Metrics /Samples Gen-

erated, Deployment

and H/W

Baur et

al.[180],

2018.

Benign and malignant

skin cancerous lesions

ISIC2017 2000

(256×256px)

DCGAN, LAPGAN, deeply

discriminated GAN (DDGAN)

(proposed work), Tranfer learn-

ing: pretrained ResNet-50

Earth mover’s distance

(MD) (Wasserstein-

Distance), JS Diver-

gence, 2000 random

samples generated.

H/W: NVidia 1080Ti

Rashid

et

al.[177],

2019

Melanoma (MEL);

Melanocytic Nevus

(NV); Basal Cell Car-

cinoma (BCC); Actinic

Keratosis (AKIEC);

Benign Keratosis

(BKL); Dermatofi-

broma (DF); Vascular

Lesion (VASC)

ISIC2018 8,000 train-

ing images,

2,000 test-

ing images.

Transfer learning, Finetuning,

DenseNet, ResNet50, GAN

based augmentation

Precision and Recall,

F1 score, Balance accu-

racy score: 0.86 using

GAN based augmenta-

tion, Highest F1 score

for Melanocytic Nevus

(NV).

Baur et

al.[181],

2018

Benign and malignant

skin lesions of 7 cate-

gories.

ISIC2018 10,000

labelled

training

samples

PGAN, DCGAN, LAPGAN, Vi-

sual Turing Test

Sliced Wasserstein

Distance (SWD):

20.0197 (closest to the

lower bound, 10,000

synthetic images gen-

eration per model,

User study amoung 3

expert dermatologists

and 5 Deep Learning

experts; showing ex-

perts had a hard time

distinguishing real and

fake image

Bisla et

al.[185],

2019

Three classes:

melanoma, nevus,

and seborrheic kerato-

sis.

ISIC 2017

(3 classes)

PH2 (2

classes),

Edinburgh

Dataset,

Test

dataset:

ISIC 2017

and ISIC

2018

803+40+76

cases of

melanoma,

2107+ 80+

331 cases

of nevus,

and 288+

257 cases of

seborrheic

Kerato-

sis from

ISIC2017,

PH2 and

Edinburgh

Dataset

respectively

Segmentation using U-Net ar-

chitecture, de-coupled DCGANs

for data generation, Pre-trained

ResNet-50 for final classification.

MSE for GANs, 350

synthetic images for

melanoma and 750

synthetic images for

seborrheic keratosis

(26% artificially gener-

ated data for training)

ROC and AUC for

classification.

57



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

Continuation of Table 2.5

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results Evaluation

Metrics /Samples Gen-

erated, Deployment

and H/W

Bissoto

et

al.[186],

2019

Melanoma skin lesions ISIC 2017

Challenge,

ISIC

Archive,

Dermofit

Image

Library,

PH2

Dataset,

For Test:

Interac-

tive Atlas

of Der-

moscopy

2,000,

13,000,

1,300, 200,

900 der-

moscopic

images

of 270

melanomas

categories.

SLIC algorithm, DCGAN,

Conditional PGAN, pix2pixHD

GAN (a conditional image-

to-image translation GAN)

using only semantic map,

Real+Instance+PGAN

AUC, p-value

Pollastri

et

al.[187],

2019

Melanoma Skin lesions ISIC 2017 1882 (As

Authors

wished to

remove 118

images from

the dataset

Segmentation task using Base-

line CNN architecture and U-

Net, DCGAN, LAPGAN

Jaccard Index

Ghorbani

et

al.[44],

2020

26 skin conditions (no

rosacea) Melanocytic

nevus, Melanoma and

Seborrheic Kerato-

sis/Irritated Sebor-

rheic Keratosis, Scar

condition, Basel cell

Carcinoma etc.

Tele-

dermatology

service

dataset:

collected

in 17 clin-

ical sites

in two

U.S. states

from 2010

to 2018

9,897 cases

and 49,920

images;

each case

contains

one or more

high resolu-

tion images

(resolu-

tion range:

600×800 to

960×1280).

Pix2pix GAN architecture, Hu-

man Turing Test, DermGAN,

MobileNet

20,000 synthetic im-

ages are generated

using the 8-class Der-

mGAN model and

added them to the

existing training Data

to train MobileNet.

Romsaas

et

al.[188],

2020

Benign and Malignant

cancer lesions

ISIC 2019 Total=

25,331 im-

ages. With

7 classes.

ACGAN (128×128), CycleGAN

(256×256), Path-Rank-Filter (to

generate class specific synthetic

images)

Upto 24,000 synthetic

images are generated

using ACGAN and

CycleGAN, Preci-

sion/recall, Maximum

Accuracy = 86%

Bissoto

et

al.[189],

2021

Benign and malignant

cancer lesions

ISIC 2019,

ISIC 2020,

Derm-7pt-

dermoscopic,

Derm-7pt-

clinical,

Dermofit.

3,863,

1,743, 872,

839, 973

PGAN and StyleGAN2 (to

generate from random noise),

pix2pixHD and SPADE (for

semantic segmentation masks

to guide the generation),

Inception-v4 for classification,

Data Augmentation.

Fréchet inception

distance (FID) ”Style-

GAN2 performed

ahead of all other

GANs”.

End of Table
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Style-based Generative Adversarial Networks

To examine a specific facial skin condition such as rosacea, it is necessary to access

full face images with anatomical details. Therefore, a GAN model should be trained

to generate full facial synthetic images rather than partial facial images. The Style-

based GAN [190] is an improvement of PGAN, which supports generating higher-

quality images via the incremental expansion of both generator and discriminator

models for low quality to high quality images. Looking at the state of the art,

Bissoto et al.[189] show promising results with StyleGAN2 [43].

Noise-based GANs, such as StyleGAN2 [43], use a random noise vector as input

to generate new images from scratch. This approach is particularly effective for

creating diverse and detailed images that do not need to correspond to any specific

input image, relying on the model’s learned distribution of the data.

In contrast, translation-based GANs, exemplified by Pix2pixHD [191] and SPADE

[192], focus on translating one possible representation of an image to another, such

as converting a segmentation map to a photorealistic image. These models are

typically conditioned on an input image, making them suitable for tasks where a

direct correspondence between the input and output images is necessary, such as

photo editing or image-to-image translation. Bissoto et al.’s [189] study suggests

that noise-based GANs work better than translation based GANs.

Chai et al.[193] looked at one of the open questions on GANs which aims to look

at how to convert unstructured latent code to a high quality output while maintain-

ing global consistency. They show that StyleGAN [190] performs better in separating

faces from background artifacts. Subsequently, StyleGAN2 [43] was introduced as

an improved version of StyleGAN, hence StyleGAN2 can be considered for obtaining

relatively high-quality synthetic facial images with global consistency of anatomical

details and affected regions of the face. StyleGAN2 works better in comparison

to PGAN. However, StyleGAN2 takes up to one month of GPU time for a single

course of training. Additionally, StyleGAN2 also produces high quality facial images

[43], which can be useful for generating synthetic face images with facial diseases.

Recently, StyleGAN2 with adaptive discriminator augmentation (StyleGAN2-ada)

[194] has been introduced, which claims to help with relatively limited data (a few

thousand training images) regime due to an adaptive discriminator augmentation

mechanism which does not require changes to the network architecture or defined

loss functions. This may help in generating images with a few hundred samples. As

StyleGAN2-ada has acquired optimal results with Flicker Faces-HQ dataset [190],
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which is basically a facial dataset, it may help in generating synthetic images of

facial skin conditions e.g. rosacea.

2.5.3 Meta-Learning and Few-Shot Classification

The concept of meta-learning and few-shot classification can help deal with the lim-

ited amount of data without any transfer learning techniques, and without any aug-

mentation process (such as synthetic image generation) of the dataset, but through

hyperparameter optimization.

Meta-learning, often described as ‘learning to learn,’ involves designing models

that can quickly adapt to new tasks with minimal data by leveraging prior knowl-

edge and learning experiences. This approach optimizes the learning process itself

through hyperparameter optimization and model architectures that are inherently

flexible. Meta-learning enables the model to generalize from a small number of

examples in a new context, a process that is crucial for tasks with limited data

availability.

Few-shot classification, on the other hand, is a specific application of meta-

learning where the model is designed to learn from only a few examples—often as

little as one or a handful—per class. The challenge in few-shot classification is to

make accurate predictions in settings where traditional models would struggle due

to the scarcity of data.

While both meta-learning and few-shot classification are related in their aim to

make efficient use of small datasets, they are not the same. Meta-learning encom-

passes a broader set of techniques for improving the learning algorithms, which can

include, but is not limited to, few-shot classification scenarios. Few-shot classifica-

tion is a specific problem setup that meta-learning techniques can address.

In a meta-learning problem, we have a meta-training set and a meta-test set,

each of which contains a number of “tasks”. Each task is associated with a training

set and a test set containing both feature vectors and correct labels. It is similar

to a standard machine learning problem but each task is considered as one data

sample [146]. The goal of meta-learning is to acquire generic knowledge of different

tasks. The knowledge can then be transferred to the base level learning to provide

generalisation in the context of a single task [195].

Meta-learning assumes that all the tasks in both the meta-training set and the

meta-test set, have some degree of similarity. For example, in the case of skin diseases

the meta-training tasks might represent different, well-studied skin conditions and
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the meta-test set might represent a rarer skin condition, for which there is limited

data.

Regular machine learning involves the minimisation of a loss function L.

(2.2)θ∗C = arg min
θ

L(θC , D
tr)

where θC is a vector of the parameters of a classifier (e.g. the weights of a neural

network). The classifier takes an input x which represents the feature values of an

example and outputs a label y.

Meta-learning involves estimating the parameters θ of a “learning function” fθ.

The learning function takes as input a training set Dtr
i and outputs a vector ϕi as

in Equation. 2.3 below.

(2.3)ϕi = fθ(D
tr
i )

ϕi can be used to generate a classifier, which can classify examples from the corre-

sponding test set Dts
i for task i.

Meta-learning involves minimising the function in Equation. 2.4 with respect to

θ,

(2.4)θ∗ = arg min
θ

n∑
i=1

L(ϕi, D
ts
i )

where n is the number of tasks in the meta-training set. For each task i a vector

ϕi is generated using the learning function fθ as in Equation. 2.3 above. The same

learning function (with the same values for θ) is used for all tasks.

Then ϕi is used to generate a classifier, which can then applied to the test set Dts
i

to generate labels for each example in the test set. The loss function L is calculated

by comparing the generated labels with the true labels. The loss functions for all

the tasks in the meta-training set are then summed. An optimisation algorithm is

then used to find the values of θ which minimises the function in Equation. 2.4.

Fig. 2.2 is an example of a meta-learning setup. The figure represents the meta-

training set and the meta-test set, where each grey rectangle is a separate task that

consists of a training set and a test set separated by the dotted lines. The training

sets are also called support sets. The test sets are also called query sets. Each

image is taken as one example within the dataset. Each training/support set has 5

different example images, and each test/query set has 2 additional example images.

The meta-learning model can be trained on the tasks in meta-training set and then

tested on entirely new tasks in the meta-test set. The whole dataset is divided and

structured as shots/iteration/episodes.
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Figure 2.2: An example of Meta-Learning set up in 1-shot-5-way classification.

Few-shot classification is a subset or specific application of meta-learning. “Few-

shot learning” means learning a large number of tasks using datasets containing only

a few examples known as ‘shots’, e.g. training five different classes where each class

has just one example is called 1-shot-5-way classification. Fig. 2.2 is an example

of a 1-shot-5-way classification task (the word ‘way’ indicates a class). However,

the ‘5-way’ aspect is not a fixed requirement; it simply indicates the number of

classes involved in the classification task. The model can be configured for ‘N-way’

classification, where ‘N’ can be any number representing the diversity of classes to

be identified, such as ‘1-shot-10-way’ or ‘5-shot-20-way’.

The main idea of few-shot meta-learning is to train a few iterations/shots from

the whole dataset, so the model can quickly adapt to the new task with only fewer

examples. In order to attain this idea, the meta-learner is trained over a large set

of different tasks, such that for the new unseen tasks, the model can learn quickly

with only a limited number of examples. In effect, the meta-learning problem treats

an entire dataset as training examples [147, 148]. The whole dataset is divided and

structured as shots/iteration/episodes.

There are three general meta-learning categories including: Model-based (Black-

Box) Meta-Learning, Metric-based (Non-parametric) Meta Learning, Gradient-based

(Optimization-based) Meta Learning. Typical architectures that are model-based

meta learning are Memory Augmented Neural Network (MTNN) [196], Meta-Net
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[195], Simple Neural AttentIve Learner (SNAIL) [197]. Typical architectures that

are metric-based meta learning are: MatchingNets [198], RelationNet [199], FSL

with Graph Neural Networks [200], Prototypical Networks [201]. Typical archi-

tectures that are gradient-based meta learning are: MAML [148], Reptile [202],

Auto-Meta [203], GIMLI [204], ALFA [205]. The Model-based meta-learning is con-

ceptually very simple, but it has minimal inductive bias, meaning everything must

be meta-learned. However, metric-based meta-learning can work very effectively by

combining some inductive bias with easy end-to-end optimization and is restricted

to classification models. On the other hand, optimization-based meta-learning is

convenient to apply any architecture and good at generalizing a wide range of do-

mains. An overview of the state-of-the-art studies on skin disease analysis using

meta-learning and few-shot learning is presented in Table 2.6.

Since meta-learners often face a wide variety of tasks during training, augmen-

tations can ensure that the model does not learn to overfit the idiosyncrasies of

the training tasks and instead develops a more generalized learning strategy. A few

other studies on meta learning and few-shot learning for other domains of medi-

cal image analysis shown promising results. Zhao et al.[206] proposed a novel ap-

proach for automating data augmentation for synthesizing labelled MRI brain scans.

The proposed method only requires a single segmented scan. This approach uses

a semi-supervised method for dealing with unlabelled scans that results in a major

improvement over bio-medical image segmentation state-of-the-art methods.

Guo et al.[207] and Zhao et al.[109] showed a comparative study among different

CNN architectures using meta-learning and few-shot learning algorithms in vari-

ous medical image analyses. Patacchiola et al.[208] proposed Deep Kernel Transfer

(DKT) which is a Bayesian treatment for the inner loop through deep kernels in

the meta-learning algorithm. This approach has many advantages such as, (a) it is

simple to implement as a single optimizer, (b) it offers uncertainty quantification,

and (c) it does not need estimation of task-specific parameters.

Cai et al.[209] proposed a novel score-based meta transfer-learning to address

the cross-domain few-shot learning problem. This work claims to achieve an average

accuracy of 74.06%, which significantly outperforms previous best-performing meta-

learning and transfer-learning methods by 14.28% and 5.93%. Sun et al.[210] have

proposed a novel few-shot learning method called Meta-Transfer Learning (MTL)

which learns to adapt a DNN for few-shot learning tasks.

The datasets used in the study by Zhao et al. [109] are miniImageNet (100

63



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

classes with 600 samples per class) and Fewshot-CIFAR100 (100 classes with 600

samples per class). Compared to other few-shot learning methods, MTL has shown

remarkable results in low data settings. In a few-shot learning pipeline, Gidaris

et al.[211] used self-supervision as an auxiliary task, that allows feature extractors

to learn richer and more transferable visual representations while using few anno-

tated samples. Hospedales et al. [212] reviewed many existing works in various

domains. They claim that there is still a gap in understanding which kinds of meta-

representations tend to generalize better under certain types of domain shifts. Wang

et al.[213] looked at various studies on a few-shot learning approach in which it is

said that real-world computer vision tasks with low data situations are the first test-

bed for few-shot learning algorithms. It is also seen in various works that transfer

learning methods are used in a few-shot learning approach as part of the domain

adaption, which might be beneficial in case of limited data availability across the

medical image analysis domain.

Table 2.6: Comprehensive Review of Studies Utilizing Meta Learning and Few-Shot
Classification in Skin Disease Diagnosis. This table collates a selection of significant
research efforts that have applied meta-learning and few-shot classification strate-
gies to tackle skin disease diagnosis challenges. It catalogs the studies by author,
publication year, the specific skin diseases investigated, and the datasets utilized,
including the names, sources, and volumes both in total and per class. Moreover, it
details the methodologies and benchmarks used in each study along with the best
results achieved, outlining the evaluation metrics, as well as deployment strategies
and hardware requirements.

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results/ Evalua-

tion Metrics/ Deploy-

ment and H/W

Li et

al.[214],

2020

Melanocytic nevus

(6705), melanoma

(1113), benign ker-

atosis (1099), basal

cell carcinoma (514),

actinic keratosis (327),

vascular lesion (142)

and dermatofibroma

(115). squamous cell

carcinoma, haeman-

gioma, and pyogenic

granuloma

ISIC2018

Skin

Lesion

Dataset,

Dermofit

Image Li-

brary (for

validation)

10,015 First

four dis-

eases for

training

and the

remaining

3 are for

testing

Difficulty aware meta learning

(DAML) framework, Transfer

learning.

AUC: 83.3% (for 5

samples per class).
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Continuation of Table 2.6

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results Evalua-

tion Metrics/ Deploy-

ment and H/W

K. Ma-

hajan et

al.[215],

2020

Dermoscopy images

eczema, acne, and

various cancerous

conditions.

ISIC 2018,

Derm7pt,

SD-198

10,015 (7

classes),

2,000 (20

classes),

198

Reptile (Gradient based meta

learning),Prototypical networks

(Distance metric based meta

learning technique which com-

putes a prototype vector as the

representation of each class), G-

convolutions (group equivalent

convolutions), 2-way classifica-

tion.

For ISIC2018: AUC:

86.8 (using Rep-

tile, G-conv, 5-shot)

For Derm7pt:AUC:

77.2 (using Reptile,

G-conv, 5-shot)For

SD-198:AUC: 89.5

(using Reptile, 2-way

G-conv, 5-shot)

Zhang

et

al.[216],

2020

Melanocytic nevus

(6705), melanoma

(1113), benign ker-

atosis (1099), basal

cell carcinoma (514),

actinic keratosis (327),

vascular lesion (142)

and dermatofibroma

(115)

ISIC2018 10,015(7

classes) 4

classes with

the largest

number of

samples for

training

and the

remaining

3 classes

with rela-

tively fewer

number of

samples for

testing.

Fine tuning and data augmen-

tation, MAML (Model Agnostic

Meta Learning), ST-Meta Diag-

nosis Network, A few shot set-

tings (3ways1shot, 3ways3shot

and 3ways5shot) with different

STN (Spatial Transform Net-

work) modules stacked up into

different layers.

Average Accuracy:

81.38%.

Fayjie

et

al.[108],

2020

Miscellaneous FSS-1000

(Base

Training

set), ISIC

2018, PH2

dataset

1000 classes

where each

class con-

tains 10

images,

2594 der-

moscopic

images

with their

respective

masks 200

RGB der-

moscopic

images of

melanocytic

lesions.

Segmentation task, Pretrained

VGG network on ImageNet is

used as Encoder, A few shot

learning with ‘support’ and

‘query’ set, The pretrained VGG

network architecture from Im-

ageNet is used as an encoder,

Atrous convolutions with dila-

tion rate 2 are incorporated with

episodic training.

DSC (Sørensen–Dice

coefficient)score, The

proposed approach

outperforms the few-

shot baseline by a

margin between 6-7%,

H/W: Keras with

Tensorflow using the

Nvidia Titan X GPU.
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Continuation of Table 2.6

Author/

Index/

Year

Skin Disease Names Dataset

Name/

Source/

Dataset

volume in

total/per

class

Methodology/Benchmark Best results Evalua-

tion Metrics/ Deploy-

ment and H/W

Zhao et

al.[109],

2020

Miscellaneous (no

rosacea)

miniImagenet

(source

domain)

Crop

Diseases

dataset,

EuroSAT,

ChestX

and ISIC

2018

(target

domain

datasets)

N/A Few-shot learning, Baseline fine

tuning method, BSR (Batch

Spectral Regularization) with

data blending, BSR with LP

(Label Propagation), BSR with

data blending in Ensemble, BSR

with data blending and with LP

in the Ensemble network

Best-Average Per-

formance results are

obtained by BSR with

data blending and

with LP in Ensemble

network architecture

using 5-way 50-shot.

End of Table

2.5.4 Federated Learning

Building upon the critical discussion on data scarcity, transfer learning, GANs,

meta-learning, and few-shot classification, in this section we delve into Federated

Learning (FL) [217] as a synergistic approach. FL enhances the collective intel-

ligence in skin disease diagnosis by enabling a decentralized, collaborative model

training that respects data privacy and overcomes the inherent limitations of small

datasets, promising a significant leap forward in medical imaging and in machine

learning driven skin disease classification. We explore the application of FL in the

context of skin disease analysis, its potential in enhancing the diagnosis accuracy

with limited datasets, and how it aligns with the current technological advancements

and challenges outlined in the field.

Federated learning (FL) is a machine learning approach where multiple parties

collaboratively train a model while keeping their individual data localized and pri-

vate. Instead of sharing data, participants share model updates, which are then

aggregated to improve a central model. This method addresses data privacy, secu-

rity, and access issues, allowing for robust model development without compromising

sensitive information.

Federated Learning works by allowing multiple devices or servers (participants)

to collaboratively train a machine learning model while keeping the data localized.

Each participant trains a shared model using their own data, calculates updates (like
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gradients), and sends these updates to a central server or aggregator. The aggregator

combines these updates to improve the model and then sends the updated model

back to participants. This process iterates, improving the model with each round,

without ever sharing the raw data itself, thus preserving privacy and reducing data

transfer needs.

In Federated Learning, where the goal is to minimize a global loss function,

representing the model’s performance across all clients, without sharing the local

data. The loss is calculated as a weighted sum of local losses computed on each

client’s data [218]. This ensures that learning is collaborative and privacy-preserving.

min
ϕ

L(X;ϕ) with L(X;ϕ) =
K∑
k=1

wkLk(Xk;ϕ) (2.5)

Where,

• L(X;ϕ): The global loss function measuring the model’s performance across

all clients.

• K: The number of local clients participating in the federated learning process.

• Lk: The local loss function for the k-th client, computed using their private

data Xk.

• wk: Weight coefficients reflecting the contribution of the k-th client’s local loss

to the global loss function.

• minϕ: Represents the optimization goal to find the model parameters ϕ that

minimize the global loss function.

There are commonly used strategies and algorithms used for federated learning.

These include Centralized Federated Learning, Decentralized Federated Learning,

and Heterogeneous Federated Learning (HeteroFL), each offering unique approaches

to model training and collaboration among diverse data sources. Understanding

these types provides a comprehensive overview of how federated learning can be

adapted and implemented for various scenarios, particularly in handling limited

datasets in skin diseases.

Centralized Federated Learning: In centralized federated learning, a central

server is the linchpin of the network, coordinating the training process across differ-

ent clients. Each client device, or node, trains a model on its local data and then

sends only the model updates—not the data itself—to the central server. The server
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aggregates these updates to improve the global model, which is then sent back to

the clients for further training. This cycle continues until the model is adequately

trained. While this method can produce highly accurate models due to the central-

ized aggregation, it is susceptible to bottlenecks and potential points of failure if the

central server goes down or if there are network issues, leading to a complete halt

in the training process.

Decentralized Federated Learning: Decentralized federated learning re-

moves the need for a central server, thus mitigating the risk of a single point of

failure and potential bottlenecks. In this setup, nodes communicate and share model

updates directly with each other in a peer-to-peer fashion. Each node aggregates

updates from its neighbors to update its local model. This method promotes ro-

bustness and can lead to a more resilient network, as there’s no central server that,

if failed, would stop the entire process. However, the accuracy and efficiency of

the model can heavily depend on the network topology and how well connected the

nodes are.

Heterogeneous Federated Learning (HeteroFL): Recognizing the diversity

in client devices and data, Heterogeneous Federated Learning, or HeteroFL, accom-

modates a wide array of devices varying in computational capabilities, storage, and

data types, such as mobile phones, computers, and IoT (Internet of Things) devices.

Traditional federated learning assumes homogeneity in the devices and data, which

is rarely the case in real-world applications. HeteroFL addresses this by allowing

these diverse devices to contribute to a global model, acknowledging and utilizing

their differences. The goal is to create a robust, inclusive, and adaptable model that

performs well across various data distributions and device types. This approach,

while complex, provides a pathway to more universally applicable models.

The study by Agbley et al. [219] presents a methodology that employs feder-

ated learning (FL) to ensure privacy in training diagnostic models for melanoma,

using both skin lesion images and clinical data. They compare the performance

of a global federated model with a centralized learning (CL) model, finding that

the FL model nearly matches the CL model’s F1-Score and accuracy, with slightly

higher sensitivity. The study utilized a dataset provided by the Society for Imaging

Informatics in Medicine (SIIM) and the International Skin Imaging Collaboration

(ISIC). The dataset was divided among five clients, with a combined test set of 412

images, out of a total of 4558 images used for the experiment. The results showed

that the Centralized Learning (CL) model had a 5.04% higher specificity in clas-
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sifying negatives compared to the Federated Learning (FL) model. However, the

FL model outperformed the CL model by 3.27% in sensitivity, correctly classifying

more positives. The accuracy and F1 score of the FL model were very close to the

CL model, differing by only 0.73% and 0.39%, respectively.

Hossen et al. [220], explore the classification of skin diseases, specifically Acne,

Psoriasis, Eczema, and Rosacea, using a dataset of 849 images collected from Atlas-

Derm, Derm101, and Dermnet. The methodology centers around employing Convo-

lutional Neural Networks (CNN) with particular emphasis on VGG16 and AlexNet

models, integrated with a federated learning framework to enhance privacy and ef-

ficiency. The performance of the proposed model indicates an average test accuracy

of 83% on federated learning framework. The values for Rosacea are 0% due to

the small number of images. While AlexNet and VGG16 did not outperform the

proposed model for Acne, Eczema, and Psoriasis, they showed slightly better results

for Rosacea.

Lee et al. [221] introduce an Adaptive Personalized Diagnosis Network (APD-

Net) was developed to achieve superior skin disease diagnosis. The study utilized

three public datasets, 7pt, HAM, and ISIC, alongside a custom dataset comprising

2490 images across Eczema, Dermatitis, Rosacea, and Normal skin. The methodol-

ogy integrated a Genetic Algorithm (GA)-based fine-tuning method with a dual-

pipeline (DP) architecture for deep learning models, enabling personalized and

adaptable diagnostics. The GA-based fine-tuning method adaptively customizes the

optimized DL model on each edge device, while the DP architecture allows for effi-

cient extraction of feature maps using both generalized and personalized parameters.

The APD-Net demonstrated a notable 9.9% improvement in accuracy compared to

other models, achieving 88.51% accuracy in federated learning settings.

The study by Wu et al. [222] introduces an on-device FCL framework that

facilitates effective learning with limited labels specifically for dermatological dis-

ease diagnosis. The FCL framework pre-trains the model on distributed unlabeled

data, providing a good initialization, and subsequently fine-tunes with a limited

number of labeled data. To enhance data diversity and improve the quality of lo-

cal contrastive learning without compromising privacy, a feature sharing method is

proposed. This method allows diverse features to be shared and contrasted during

local learning, leading to better representations. The study presents experimental

results showing that the proposed methods outperform state-of-the-art techniques

in terms of diagnostic accuracy and label efficiency, using dermatological disease
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datasets with various skin colors. The methods were evaluated on four datasets of

different skin colors, namely the ISIC 2019 challenge dataset, AtlasDerm, Dermnet,

and DarkDerm. These datasets include various types of skin conditions and are used

to form a unified classification task across five diseases: basal cell carcinoma (BCC),

dermatofibroma (DF), melanoma (MEL), melanocytic nevus (NV), and squamous

cell carcinoma (SCC). The total dataset includes about 25k dermoscopic images

from ISIC, 11k images from AtlasDerm, 276 images from Dermnet, and 216 images

from DarkDerm. The proposed FCL method is evaluated using two settings: local

fine-tuning and federated fine-tuning, with various fractions of labels (10%, 20%,

40%, 80%). The mean recall and precision of each class are reported as perfor-

mance metrics. The pre-training is conducted for 100 communication rounds using

FedAvg as the model aggregation algorithm, with the fine-tuning stage involving ei-

ther 20 epochs in local fine-tuning or 100 rounds in federated fine-tuning. The study

claims superior diagnostic accuracy and label efficiency over other state-of-the-art

techniques.

Yaqoob et al. [223] propose a privacy-aware machine learning approach for skin

cancer detection utilizing asynchronous federated learning and convolutional neural

networks (Async-FL-CNN). The method optimizes communication rounds by divid-

ing CNN layers into shallow and deep layers with shallow layers being updated more

frequently. A temporally weighted aggregation approach is introduced to enhance

accuracy and convergence of the central model. The proposed approach is evaluated

on a skin cancer dataset, showing higher accuracy and requiring fewer communica-

tion rounds compared to existing methods. The key contributions include improved

communication efficiency, leveraging CNNs for clients, and asynchronous federated

learning for model aggregation at the global center server. The study used the

ISIC-2019 dataset of dermoscopy skin lesion images containing images from eight

different classes of skin cancers. The ISIC-2019 dataset contains 25331 dermoscopy

images, with 21491 for training, 1930 for testing, and 1910 for validation. The per-

formance of the proposed method was compared with existing baseline federated

learning methods in terms of accuracy, loss, precision, communication size, local

epoch effects, and convergence rate. The proposed Async-FL-CNN achieves bet-

ter performance compared with existing and baseline models, as it allows the local

clients to asynchronously train their local datasets using CNN. Specific performance

metrics such as F1 score, recall, sensitivity, specificity, precision, and loss were used

to measure the accuracy of the proposed method, showing that it achieves higher
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accuracy rates while requiring fewer communication rounds.

The study by Shi et al. [224] proposes a federated contrastive learning (FCL)

framework to enhance the generalizability of diagnostic models for skin lesions in

edge computing networks. It introduces a dual encoder network leveraging unla-

beled samples for performance improvement and devises a Maximum Mean Discrep-

ancy (MMD)-based supervised contrastive loss function to explore intra-class and

inter-class variances of samples. The major contributions include constructing an

edge computing-based intelligent skin lesion diagnosis network, an FCL framework

with collaborative loss calculation and gradient aggregation, and a new contrastive

loss function to efficiently explore complex variances of samples. The proposed

FCL framework is verified on the ISIC 2020 dataset, which consists of eight ex-

clusive classes: melanoma (MEL), nevus (NV), seborrheic keratosis, lentigo NOS,

lichenoid keratosis, solar lentigo, café-au-lait macule, and atypical melanocytic pro-

liferation. The dataset also includes a substantial amount of unlabeled but benign

images. The class distribution is modified to address extreme imbalance, result-

ing in four classes. The scheme is trained using the ResNet-50 architecture, with

the feature vector of the final pooling layer used as the representation vector. The

FCL framework was compared with several federated learning schemes such as Fed-

erated Averaging (FedAvg), Federated Proximal (FedProx), Momentum Contrast

for Unsupervised Visual Representation Learning (MOON), Federated Momentum

Contrast (FedMoCo), Federated Semi-Supervised Learning with Inter-Client Consis-

tency and Disjoint Learning (FedMatch), and Federated Exponential Moving Aver-

age (FedEMA). The results showed that the presented method exceeded all baselines

in different amounts of edge nodes based on the prediction accuracy, forming more

representative feature extraction by leveraging massive unlabeled data. The feature

sharing mechanism in FCL enlarges the negative sample set in the loss function

calculations, thereby strengthening the diagnostic performance

The study by Moon et al. [225] proposes a federated learning approach with

a masked attention model to improve the severity classification performance. The

model uses masking modeling to overcome data deformation and damage and ex-

tracts discriminative severity features from the masked image. The best classification

performance was achieved with an F1-score of 0.88 when the masking ratio was set

to 0.5. The study used 792 disease images from 44 Korean patients with psoriasis.

The images were classified into five severity levels based on the PASI score (Psoriasis

Area and Severity Index). Due to class imbalance, the number of images was dif-
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ferent for each severity group. The FL-based classification performance confirmed

that as the masking ratio increased, classification performance improved up to a

certain point. The best performance was observed with an F1-score of 0.88 when

the masking ratio was 0.5. Beyond a masking ratio of 0.7, the performance degra-

dation of the model was notable. The results indicate that even with partially lost

disease areas, the severity classification performance was satisfactory, with potential

for extracting more distinct and differentiated severity features by learning partial

disease areas. An ablation study of the masking attention model showed that using

fusion attention features made the classification performance more robust.

Furthermore, Adnan et al. [226] proposed differentially private federated learn-

ing as a potential method for learning from decentralized medical data, such as

histopathology images. Differential privacy enhances this approach by providing

quantitative bounds on the privacy level offered. Private federated learning achieves

results comparable to conventional centralized training, suggesting its potential for

distributed training on clinical data for disease conditions when limited samples

available for study. Sheller et al. [227] demonstrated that federated learning across

ten institutions yields models that achieve 99% of the quality of those trained with

centralized data, also assessing the models’ generalizability on data from institu-

tions not part of the federation. Further investigations were made into the impact

of data distribution across collaborating institutions on model quality and learning

patterns. It was found that the expansion of data access through privacy-conscious,

multi-institutional collaborations enhances model quality more significantly than

any errors introduced by the collaborative method itself. Additionally, to mitigate

bias stemming from local validation set selection, a process termed “collaborative

cross validation” was employed. This method ensures a more equitable and accurate

validation process across the different participating institutions.

Some key take-aways from the aforementioned studies are:

• While the majority of studies have concentrated on cancerous lesions, Hossen

et al. [220] and Lee et al. [221] have extended their research to include clinical

images of non-cancerous skin conditions, incorporating Rosacea among others.

However, both studies found that the analysis and classification of Rosacea

using federated learning were less effective compared to other skin conditions.

This underscores the need for proper standardization of Rosacea images to

improve their recognition and classification in future federated learning-based

studies.
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• Wu et al. [222] and Shi et al. [224] have made significant contributions by

focusing on Federated Contrastive Learning (FCL), specifically targeting im-

provements in medical diagnostics and skin disease classification. While both

studies aim to advance FCL in medical imaging, Wu et al. focus on the label

efficiency and data quality in a distributed setting, whereas Shi et al. empha-

size leveraging unlabeled limited data and a unique loss function to improve

model generalizability.

• A few studies [219] [226] explored centralized and decentralized architectures

to find the most effective strategies for specific scenarios. While some studies

emphasize on the centralized approach due to its straightforward coordination

and model aggregation process, others highlight the benefits of decentralized

Federated Learning.

2.5.5 3D face modelling

For many years, visual computing research has primarily focused on face recognition

and representation. The Eigenfaces approach, introduced by Sirovich et al.[228] in

1987 and Turk et al.[229] in 1991, marked significant progress in this field. This

method learned face representations from examples and exclusively dealt with grey

levels in the image domain. Although the Eigenfaces method was a significant

paradigm shift in face recognition, it had some limitations. For instance, it was

confined to a particular pose and lighting condition and could not represent shape

variations effectively. As a result, when the coefficients in linear combinations of

eigenvectors were altered continuously, the model could not find a single parameter

for features such as the distance between the eyes, and structures would fade in and

out instead of shifting along the image plane.

There have been a few preliminary studies on 3D modelling of faces and other

biomedical images using Statistical Shape Models (SSMs) which include Active

Shape Models (ASMs) [149] [151] and Active Appearance Models (AAMs) [150].

These have been utilised in preliminary studies for the 3D modeling of faces and

biomedical images. Mainly, MRIs of the brain and knees have been considered in

depth in these works while other medical applications were also mentioned. The

ASM essentially matches a model to boundaries in an image. The AAM finds model

parameters that synthesize a complete image similar to the target image by using a

set of target feature points. The combination of shape and appearance has turned
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out to be very impactful [32]. The better the model represents the structure of the

objects to be analyzed, the easier it becomes to fit the model. Due to the linear and

parametric nature of SSMs, they are mathematically convenient and easy to work

with image analysis algorithms. For this reason, SSMs have become very popular

[152]. However, SSMs come with various drawbacks such as (a) the shape variation

in SSMs is restricted to the linear span of the training data, (b) hence, a lot of

training data is needed.

The application of computer vision for face modeling has focused on the direction

of a new face representation using analysis-by-synthesis [230]. This seeks to explain

an image by synthesizing its content using both 2D and 3D modelling. One technique

which does this is 3D Morphable Models (3DMMs)[31].

A 3D Morphable face model is based on the two fundamental ideas (a) all faces

are in dense point-to-point correspondence (which is usually established on a set of

example faces in a registration procedure), (b) this correspondence can be main-

tained throughout any further processing steps[32]. A 3DMM is a generative model

which applies to the entire shape of the face and the appearance of the face. The

3DMMs were derived from textured 3D scans of 100 females and 100 males. Subse-

quently, fitting was carried out using 6,428 publicly accessible facial datasets (from

the CMU-PIE and FERET database), with an emphasis on capturing multi-pose, il-

lumination, expressions, and full-frontal face views. This study facilitated modeling

of various ages, ethnic groups, and facial expressions.

2D morphable models and 3D morphable models rely on dense correspondence

rather than only a set of facial feature points[32]. Determining the dense corre-

spondence is only possible by assigning every point on the reference object that

is semantically meaningful to the corresponding point on the target object. This

process is called image registration. The same anatomy of an object can be ex-

plained using any other object of the same class perturbed with deformation or

slight structural variation[231].

To encourage research in parametric models that are generative in nature, in

2009, Paysan et al.[232] introduced Basel Face Models (BFMs), which offers a higher

shape and texture accuracy than the previous 3DMMs due to a better scanning

device and fewer correspondence artefacts. They are a variant of 3DMMs and are

publicly available.

Despite the significant advancements in 3DMMs, there is still room for research

on extending them to models that do not have regular faces. Applying 3DMMs to
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Figure 2.3: Standard reference shape. This image is taken from the work by Lüthi
et al.[152]

issues requiring a large aggregate of details and complexity often results in a less

efficient representation. This makes it challenging to determine the precise number

of parameters necessary to represent both the facial appearance and geometry at

different levels of detail in facial aesthetics. Although 3DMMs have shown promis-

ing results in various applications, the limitations in fitting mean that they do not

offer enough freedom for designing deformations beyond the regular facial struc-

tures/aesthetics. Overcoming this problem requires a non-rigid approach to image

registration.

The generalization of SSMs is called Gaussian Process Morphable Models (GP-

MMs)[152]. The application is based on the Principal Component Analysis (PCA)

concept with a covariance function computed from the training data. The GPMMs

start with standard reference shapes such as shown in Fig. 2.3.

Later, in order to incorporate a specific family of deformations with a dataset,

a framework is needed which can assign the probability to all possible deformations

for the given input feature. The desired deformations can be modelled by defining

a covariance function as shown in Fig. 2.4.

According to Luthi et al. [152] GPMMs come with many advantages over SSMs

such as:

• With GPMMs, there is much more freedom in defining the covariance func-

tion, by combining different covariance functions (or kernels) to mimic more

sophisticated registration schemes. This helps to extend the model beyond

the linear span of example data (training data), hence GPMMs work well

with little training data.

• GPMMs are generative; therefore, the validity of prior assumptions can be
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Figure 2.4: Generated face models using a Gaussian Covariance function with dif-
ferent standard deviations. This image is taken from the work by Lüthi et al.[152].
The model parameters include the scale factor s and the bandwidth σ, where s
determines the variance (i.e., scale) of a deformation vector. Choosing a large σ
leads to smooth, global deformations of the face, whereas a smaller σ yields more
localized deformations.

assessed by sampling from the model.

• Shape variations can be well approximated using only a moderate number of

leading basis functions (eigenvectors).

• For most anatomical shapes, finely detailed deformations only occur in parts

of the shape, and GPMMs give more power to model these slight deformations

only where they are needed.

• The above advantages may help in incorporating the medical expert knowledge

into the model in order to shape slight deformations.

Hence, GPMMs can be incorporated to deal with the significant and minor de-

formations that occur on human faces along with various subtypes of rosacea (i.e.

phymatous rosacea or Rhinophyma) by creating a 3D model of faces with possible

deformations from the set of 2D images. GPMMs may give the modelling power

to model these fine deformations only where they are needed. This autonomy may
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help in incorporating medical expert knowledge in order to model slight, local defor-

mations e.g. lesions, enlargement of nose etc. As the effective treatments of rosacea

are broadly advancing, a laser and light-based treatment approach to the rosacea

diagnosis is recommended[233], [234]. Thus, reconstructing local deformations on

the face for specific subtype-3 of rosacea may help diagnose and support light and

laser treatment of the disease condition.

As GPMMs are generative, recently there have been a few applications developed

using CNNs and GANs. The image registration experiments are generally conducted

using Statismo [235, 152]. Scalismo [152], on the other hand, was employed for

tasks such as model construction, surface registration, and Active Shape Model

fitting. Primarily, Scalismo is devised to generate and analyze statistical models

concerning shape and appearance, finding applications in fields like medical imaging

and computer vision.

Parametric models have also succeeded in generating 3D faces [154], [236], [153],

[237], [45], [238], [156], [239]. Therefore, if local deformations of rosacea are success-

fully generated using Parametric Modelling, then it may help in generating more

synthetic datasets of rosacea using GAN models.

2.6 Discussion and outlook

The majority of the research done in the field of skin disease diagnosis is focused

on skin cancer. The lack of publicly available visual data for a skin condition such

as rosacea often leads to poor performance in classification and automated diagno-

sis models. However, the recent advancement in the field of AI and particularly

data generation has prompted many opportunities in the future of computer-aided

diagnosis for Teledermatology[240] including rosacea.

Although data augmentation and transfer learning have been very successful

with medical and clinical image analysis with large datasets, they may not perform

as accurately with limited data. Hence, using a classification approach for a limited

data problem may not be a good idea at present. However, there is an opportunity

to explore techniques to overcome this central problem which may improve the scope

of research.

In the field of skin disease analysis, generating synthetic samples that may look

as real as certain skin conditions, such as rosacea, can mitigate the problem of data

scarcity. As discussed in Section 2.5.2., a few variants of StyleGAN can be utilised
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to explore the possibility of generating synthetic faces with rosacea. Nevertheless,

the accuracy of the generated data must be examined. For such examinations, it is

important to rely on the subjective evaluation methods for image quality, such as

the Mean Opinion Score (MOS) of a group of experts.

As discussed in Section 2.5.3, GANs have a few common limitations, which may

lead to unsatisfactory outcomes. Therefore, it is essential to investigate additional

methods to deal with limited data without modification, i.e. by keeping the data

volume constant and still performing classification. This can be achieved with hy-

perparameter optimization by adapting the Meta-Learning concept. Nevertheless,

meta-learning, few-shot classification and federated learning are new approaches in

medical and clinical image analysis that offer a solid motivation to explore the data

scarcity problem. There are a few studies on meta-learning and federated learning

for clinical skin disease image analysis, which may provide limited scope for explo-

ration. Further, we discussed 3D modelling as an approach to generate synthetic

facial data through GPMMs. By leveraging the concept of GPMMs, unlike GANs,

we can handcraft the particular types of appearances on the skin caused by rosacea.

This may help identify a few subtypes of rosacea that cause significant deformation

on the face.

2.7 Conclusion and Future scope

This chapter has provided a comprehensive overview of the current state of AI and

computer vision in the context of skin disease diagnosis, specifically focusing on

the challenges and opportunities in handling skin disease image data. The discus-

sion particularly centered on addressing the limited data challenges associated with

Rosacea skin condition. We have delved into the effectiveness of deep learning and

its remarkable achievements in health data analysis, while also highlighting the crit-

ical gaps and challenges that remain, particularly in the context of limited data

availability.

The exploration of advanced techniques such as Data Augmentation, Transfer

Learning, GANs, Meta-Learning, and Few-shot classification, Federated Learning as

well as 3D face modelling using GPMMs, has laid a foundation for understanding

the varied approaches available to leverage limited data in the field of dermatology.

These techniques have been discussed not only for their potential but also in light

of the significant research gaps and noteworthy advantages they present, offering a
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balanced view of the current landscape.

As this review serves as a background and literature review for the thesis, it sets

the stage for the subsequent research and analysis presented in later chapters. It

contextualizes the importance of each technique within the broader aim of improv-

ing computer-aided diagnosis for skin conditions and establishes a clear direction for

future research endeavors. The recognition of the fundamental challenge of draw-

ing valid inferences from small datasets in machine learning and computer vision

underscores the importance of continued innovation and exploration in these areas.

Moving forward, Chapter 3 and 4 will focus on further exploring and refining

methodologies of synthetic data generation for skin disease analysis, particularly

for conditions like rosacea subtypes. This will include a detailed assessment of the

techniques such as GANs and 3D face modelling and their potential to enhance the

quality and effectiveness of AI models. By advancing these synthetic data generation

technique, we aim to contribute to the development of more robust, accurate, and

accessible data and diagnostic tools, ultimately improving patient care and outcomes

in dermatology.
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Chapter 3

High-Fidelity Synthetic Rosacea

Data Generation

3.1 Introduction

As explored in the earlier chapters of this thesis, the diagnosis and understanding of

skin diseases through computer vision and machine learning techniques have taken

a significant leap forward with the advent of computer-aided diagnosis systems.

This chapter builds upon the foundation laid in the previous discussions, focusing

specifically on the challenges and innovations in the field of Generative Adversarial

Networks (GANs) for skin disease image generation, with a particular emphasis on

Rosacea.

The introduction of deep learning architectures like Inception v3 [95] has revolu-

tionized the accuracy of skin cancer classification, utilizing large datasets to achieve

remarkable precision [82, 241]. However, as noted in the literature review, the lim-

ited availability of extensive datasets is a significant barrier, especially for non-fatal

chronic skin conditions such as Rosacea. While the focus and data accumulation

for skin cancer are extensive due to its severity, there exists a stark contrast in the

data availability for conditions like Rosacea, which, despite their impact on patients’

quality of life, have not seen comparable data collection efforts.

The generation of synthetic data by deep generative algorithms, mirroring the

characteristics of authentic data is an innovative approach to circumvent data scarcity

[242]. This chapter aims to address these disparities by investigating the potential

of GANs to augment the limited datasets available for such conditions. Specifically,
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it will delve into the use of synthetic data generation to expand the small existing

datasets for Rosacea, employing a variant of the StyleGAN architecture [190, 194]

trained on only 300 images. By generating high-quality, diverse synthetic images,

this approach seeks to enhance the training and subsequent performance of Deep

Convolutional Neural Networks (DCNNs) in the future, even when real-world data

is scarce.

Moreover, while prior studies [180, 186, 187, 44, 188, 189] have successfully gen-

erated synthetic images of skin cancer lesions using various GAN architectures, the

focus has predominantly been on localised regions captured through dermatoscopes

or similar devices. This research contrasts with previous studies by utilising full-face

images to comprehensively capture the manifestation of Rosacea. This distinction

is crucial, as Rosacea affects various facial regions and understanding its subtype-

specific impact requires a broader, more inclusive imaging approach. In this chap-

ter, the focus will be on generating and analysing synthetic images for Subtypes

1 (Erythematotelangiectatic Rosacea) and 2 (Papulopustular Rosacea), noting the

progressive nature and potential transitions between these subtypes [14].

The subsequent sections of this chapter will detail the methodologies employed,

the challenges encountered, the results obtained, quantitative and qualitative eval-

uations of the generated images and the implications of these findings for future

research and clinical practice. By the end of this chapter, the reader will have a com-

prehensive understanding of the role of GANs in generating high-fidelity synthetic

images, particularly for Rosacea, setting the stage for the continued advancement of

synthetic data generation, effective validation and computer-aided diagnosis systems

in dermatology.

3.1.1 Importance of studying full-face images of Rosacea

Generally, prolonged redness is one of the common early symptoms (pre-Rosacea)

that usually appears over the cheeks, chin, nose, or forehead. Eventually, certain

patients develop some swelling (‘edema’ in medical terminology), which is noticeable

at the very early stage of the disease. Particularly, the locality and the visible

regions of blood vessels (‘telangiectasia’ in medical terminology), prolonged redness

and edema may give the impression of the severity of the disease.

Full-face images of patients have proved very useful in diagnosing the condition

and predicting the timeline of growth for future diagnosis and treatment. Hence,

in this research, we are considering full-face images of Rosacea, while most of the
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previous studies mentioned in Chapter 2 have considered only partial images of the

face.

To summarize, our contributions are as follows:

1. In this chapter, to the best of our knowledge, a small dataset consisting of 300

full-face Rosacea images is utilized for the first time as a basis for generating

synthetic images.

2. We show how fine-tuning the model (StyleGAN2-ADA) and varying experi-

mental settings significantly affect the fidelity of Rosacea features.

3. We demonstrate that R1 Regularization strength ’γ’ helps achieve high-fidelity

characteristics of Rosacea condition.

4. We generate 300 high-fidelity synthetic full-face images with Rosacea, which

can be further utilized to expand the Rosacea face dataset for computer-aided

clinical diagnosis.

5. We present qualitative evaluations of synthetic/generated faces by expert der-

matologists and non-specialist participants. These show the realistic charac-

teristics of Rosacea in generated images.

6. We critically analyse the quantitative evaluation such as validation metrics(s)

from the list of conducted experiments and point out the limitations of usage of

validation metric(s) alone as evaluation criteria in the computer-aided medical

image diagnosis field.

3.2 Developments in Synthetic Face Generation

Followed by GANs, the introduction of Deep Convolutional GANs (DCGANs) marked

significant advancements in the field, setting a foundation for the evolution of more

sophisticated models in synthetic face generation. The limitations of DCGANs,

such as model instability, mode collapse, filter leakage after prolonged training time,

and the generation of images at smaller resolutions, highlighted essential areas for

further research and development in GANs. These limitations and the quest for

higher quality and resolution in generated synthetic faces paved the way for the

development of Progressive Generative Adversarial Networks (Progressive GANs).
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Figure 3.1: Progress of synthetic face generation using various GAN models with
the maximum volume of dataset available.

The Progressive Growing of GANs (ProGANs) introduced by Karras et al.[183],

improved the resolution of the generated images with a stable and swifter training

process. The main idea of ProGANs is to start from a low resolution i.e. 4 × 4

and then progressively increase the resolution, e.g. up to 1024 × 1024, by adding

layers to the networks. The training time is 2-6 times faster depending on the de-

sired output resolution. ProGANs can generate 1024× 1024 facial images using the

CelebA-HQ[183] dataset with 30,000 selected real images in total. The idea of Pro-

GAN emerged from one of the GANs architectures introduced by Wang et al.[191].

Although ProGAN successfully generated facial images with large resolution, it did

not work adequately in generating realistic features and microstructures.

Although the generation of high-resolution images was achieved by GANs, there

were still indispensable research gaps that needed to be addressed. Thus, the in-

troduction of StyleGAN [190] came with further improvements which helped in un-

derstanding various characteristics and phases in synthetic image generation/image

synthesis. Important improvements in the StyleGAN architecture include:

• Upgrading the number of trainable parameters in style-based generators; this

is now 26.2 million, compared to 23.1 million parameters in the ProGAN[183]

architecture.

• Upgrading the baseline using upsampling and downsampling operations, in-

creasing training time and tuning the hyperparameters.

• Adding a mapping network and adaptive instance normalization (AdaIN) op-

erations.

• Removing the traditional input layer and starting from a learned constant

tensor which is 4 × 4 × 512.

• Adding explicit uncorrelated Gaussian noise inputs, which improves the gen-

erator by generating stochastic details.
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• Mixing regularization which helps in decorrelating the neighbouring styles and

taking control of fine-grained details in the synthetic images.

In addition to the improvements in generating high-fidelity images, StyleGAN

introduced a new dataset of human faces called Flickr Faces HQ (FFHQ). FFHQ has

70,000 images at 1024 × 1024 resolution and is of a diverse range of ethnicity, age,

background artifacts, make-up, lighting, image viewpoint and various accessories

such as eyeglasses, hats, sunglasses etc. Based on these improvements, comparative

outcomes are evaluated using a metric called Fréchet Inception Distance (FID)[243]

on two datasets i.e. CelebA-HQ[183] and FFHQ. The recommended future investi-

gations include separating high-level attributes and stochastic effects while achieving

linearity of the intermediate latent space.

Successively, another variant of StyleGAN was introduced by Karras et al. called

StyleGAN2 [43], in which the key focus was exclusively on the analysis of the latent

space denoted as W . The latent space W represents a more disentangled and inter-

mediate latent space that allows for more controlled and interpretable variations of

generated images, compared to the direct noise input space typically used in GANs.

This refined latent space enables StyleGAN2 to produce higher quality and more di-

verse synthetic images by manipulating attributes more precisely. As the generated

output images from StyleGAN contained some unnecessary and common blob-like

artifacts, StyleGAN2 addressed the causes of these artifacts and eliminated them

by defining some changes in the generator network architecture and in the training

methods. Hence the generator normalization is redesigned, and the generator reg-

ularization is redefined to boost conditioning and to improve output image quality.

The notable improvements in the StyleGAN2 architecture include:

• The presence of blob-like artifacts such as those in Fig. 3.2 was addressed by

removing the normalization step from the generator in the network architec-

ture. This modification to the generator’s structure mitigates the formation

of such artifacts, contributing to a cleaner and more accurate image genera-

tion. The removal of normalization helps in stabilizing the feature scale across

different layers, effectively reducing the likelihood of these unwanted visual

anomalies. (Generator redesign).

• Grouped convolutions are employed as a part of Weight demodulation, in

which weights and activation functions are temporarily reshaped. In this set-

ting, one convolution sees one sample with N groups, instead of N samples
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with one group.

• Adaption of Lazy Regularization in which R1 regularization is performed only

once in 16 mini-batches. This reduces computational costs and memory usage

in total.

• Adding a path length regularization aids in model reliability and performance.

This offers a wide scope for exploring the architecture at the further stage.

Path length regularization helps in creating denser distributions without mode

collapse problems.

• Revisiting the ProGAN architecture to adapt benefits and remove the draw-

backs e.g. progressive growing in the residual block of the discriminator net-

work.

The datasets LSUN[244] and FFHQ were used with StyleGAN2 to obtain quanti-

tative results through metrics such as FID[243], Perceptual Path Length (PPL)[190],

Precision and Recall[245].

Figure 3.2: An example of blob-like artifacts in the generated images. This image
is taken from Karras et al.[43]

Another set of GAN architectures called BigGAN and BigGAN-deep[246] ex-

panded the variety and fidelity of the generated images. These improvements in-

cluded making architectural changes which improved scalability, a regularization

scheme to recuperate conditioning as well as to boost performance. The above

modifications gave a lot of freedom to apply the “truncation trick”, a sampling

method that aids in controlling sample variety and fidelity in the image genera-

tion stage. Even though different GAN architectures produced improved results

over a period, model instability during training was a common problem in large-

scale GAN architectures[247]. This problem was investigated and analysed through

the introduction of BigGAN by leveraging the existing techniques and by present-

ing novel techniques. The ImageNet ILSVRC 2012 dataset[141] with the resolutions

128×128, 256×256, 512×512 was used in BigGAN and BigGAN-deep architectures
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for demonstrating quantitative results through metrics such as FID and Inception

Score (IS)[248].

The aforementioned GAN architectures were trained on a large amount of data

and can generate high-resolution outputs with variety and a fine-grained texture.

Therefore, it is important to expand the potential of GAN architectures to perform

well and produce high-fidelity synthetic images, even if there are limited images

available.

However, the key problem with a small number of images is the overfitting of

training examples in the discriminator network. Hence the training process starts

to diverge, and the generator does not generate anything meaningful because of

overfitting. The most common strategy to tackle overfitting in deep learning models

is “data augmentation”. There are instances in which augmentation functions learn

to generate the augmented distribution, which results in “leaking augmentations”

in the generated samples. The leaking augmentations are the features which are

learned from the augmentation style rather than the features which are originally

present in the real dataset.

Hence to prevent the discriminator from overfitting when there is only limited

data available, a variant of StyleGAN2 called StyleGAN2-ADA[194] has been in-

troduced with a wide range of augmentations. An adaptive control scheme was

presented in order to prevent such augmentations from leaking in the generated

images. This work produced promising results in generating high resolution syn-

thetic images obtained with a few thousand images. The significant improvements

in StyleGAN2-ADA include:

• Stochastic Discriminator Augmentation is a flexible method for augmentation

that prevents the discriminator from becoming overly confident by showing

all the applied augmentation to the discriminator. This assists in generating

desired outcomes.

• Addition of Adaptive Discriminator Augmentation (ADA) by which the strength

of augmentation ‘p’ can be adjusted at every interval of 4 mini-batches N .

This technique helps in achieving convergence during training without any

occurrence of overfitting irrespective of the volume of the input dataset.

• Invertible transformations are applied to leverage the full benefit of the aug-

mentation. The proposed augmentation pipeline contains 18 transformations

grouped in 6 categories viz. pixel blitting, more general geometric transfor-
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mations, colour transforms, image-space filtering, additive noise, and cutout.

• Capability to handle small-volume datasets such as, 1000 and 2000 images from

FFHQ dataset, 1336 images of METFACES [249], 1994 overlapping cropped

images from 162 breast cancer histopathology images called BRECAHAD[250],

nearly 5,000 images of AFHQ and 50,000 images of CIFAR-10 [251].

• Although the small volume of the dataset is the main feature in the StyleGAN2-

ADA, some high-volume datasets are broken down into different sizes for mon-

itoring the model performance. The FFHQ dataset is used for training the

model. Various subsets of the dataset such as 140,000, 70,000, 30,000, 10,000,

5000, 2000 and 1000 are used to test the performance. Similarly, dataset LSUN

CAT is considered with the volume starting from 200k to 1k for model evalu-

ation. The FID is used as an evaluation metric for comparative analysis and

demonstration of StyleGAN2-ADA model performance.

Amongst the studies and related work regarding face generation using GANs as

discussed above and represented in Fig. 3.1, StyleGAN2-ADA appeared to work

adequately with a small volume of data. Particularly in the case of small volumes

of medical/clinical images, StyleGAN2-ADA is a useful method for investigation.

Considering the advantages of StyleGAN2-ADA, in this research, we implemented

and trained the model with 300 images of Rosacea, to be discussed in section 3.4.

3.3 Methodology

3.3.1 StyleGAN2 with Adaptive Discriminator Augmenta-

tion

The above analysis of the state-of-the-art techniques indicates that StyleGAN2-

ADA can potentially be used to address the data scarcity of Rosacea by generating

synthetic samples.

The most attractive point of StyleGAN2-ADA is its ability to handle a small

amount of data, in fact a minimum of 1000 images. This is achieved by utilizing the

concept of Adaptive Discriminator Augmentation (ADA).

The concept of ADA is motivated by three well-known limitations of GAN

models [252][253]:
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1. Difficulty in handling small amounts of data.

2. Discriminator overfitting which leads to mode collapse.

3. Sensitivity to the selection of hyperparameters.

Generally, when condition 1 exists, it is more probable for condition 2 to occur,

and when both exist, it leads to catastrophic failure in most GAN models. Never-

theless, when limited data is available, one possible solution for overfitting is “Data

Augmentation”. Data Augmentation helps in expanding the input images by ap-

plying temporary alterations such as geometric transformations and preprocessing

tasks. This practice helps in increasing input feature space during the training.

However, the employment of augmentations can pose challenges. Many of the

existing GANs models augment the real images during training, leading the discrim-

inator to learn these augmentations as part of the real image distribution. The crux

of the challenge is ensuring the generator accurately discerns the inherent distribu-

tion of the actual data and does not assimilate the specific distortions introduced

by the augmentations. If the discriminator never observes the true distribution of

the training images, its capability to adequately guide the generator becomes ques-

tionable. The aim is to navigate the generator towards comprehending the intrinsic

patterns and variations inherent in the real data, avoiding the characteristics im-

printed by the augmentations [254]. Hence the generator learns to produce images

with undesired augmentation artifacts such as noise, colour, cutout, and geometric

operations. This learning practice and producing images with undesired augmenta-

tion artifacts are called “leaky augmentations”.

A wide range of augmentations may be used to stop the discriminator from

overfitting while ensuring that applied augmentations do not leak into the resulting

generated images. In addition, an Adaptive control procedure may enable the model

to function effectively irrespective of the volume of training data, the dataset’s

nature/characteristics, and the training approach.

Overfitting in various GAN models, especially in the variants of StyleGANs, can

be observed when the value of the Fréchet Inception Distance (FID)[243] metric

starts to escalate without any decline, leading to leakage in the augmentations. The

phrase ‘escalate without any decline’ refers to the observed trend of the FID metric

continuously increasing, indicating a deterioration in the quality of generated im-

ages. Typically, a stable or decreasing FID score suggests improving or stable model

performance. However, in the context of overfitting, the FID begins to rise, reflect-
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ing that the generated images are diverging from the desired distribution of real

images. This ‘escalation’ of the FID metric, particularly without any subsequent

decrease, signals that the model is beginning to memorize the training data rather

than learning to generalize, leading to poorer performance on unseen data. To pre-

vent such behaviour, a pipeline known as “Stochastic Discriminator Augmentation”

is introduced. This approach is inspired by the balanced consistency regularization

(bCR) approach by Zhao et al.[255], designed to prevent leaking of the augmen-

tations. Stochastic Discriminator Augmentation is a flexible type of augmentation

that prevents the discriminator from becoming overly confident by showing all the

applied augmentation to the discriminator. The discriminator is evaluated based on

the augmented images, using the same augmentation as was applied when training

the generator. In this practice, the discriminator can see the training images, which

assists the generator in generating the desired outcome. Fig. 3.3 shows the workflow

of Stochastic Discriminator Augmentation.

Similarly, in order to regulate the distribution in the generated images, the idea

of invertible transformation is used. Invertible transformations are beneficial when

applying a wide range of augmentations; for example, 18 types (clustered into 6 cat-

egories) of augmentations are used. Invertible transformation in the augmentation

can be defined as, “for a target distribution y and an augmentation operator T ,

the generated distribution x is trained such that the augmented distributions match

with the target distribution y” [194]. If a transformation is non-invertible there

will be leakage but if all the transformations are invertible there will be no leakage.

Invertible transformations can be reversed by the generator and removed from the

distribution while non-invertible ones cannot be removed and can result in leak-

age. The generator network learns to generate the images in the correct underlying

distribution by undoing the augmentation that does not fit the right kind of distri-

bution. Hence, applying this concept of invertible transformation in augmentation

[256] helps with finding the correct target distribution of the data.

Another trick used to prevent leaking is to apply different augmentations in a

particular fixed order ; for example, blitting, geometry and colour. Therefore, a

sequential composition of augmentations that do not leak will ensure no leakage to

the generated images.

Although the Invertible Transformation process prevents the augmentation from

leaking at least at the very early stages of training, which is desirable, a few con-

straints still require to be addressed. Augmentation leaking is highly dependent on
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Figure 3.3: The flow diagram of Stochastic Discriminator Augmentation [194], where
G is the generator and D is the discriminator. The red boxes represent the 18
augmentation operations. The set of selected augmentation are controlled by the
augmentation probability ’p’ and these augmentation can be visible to the discrim-
inator D in the green box. The blue boxes represent the networks that get trained
during the training process and yellow boxes represent the loss calculated after the
training. In this set up, the non-saturating logistic loss is accommodated to calculate
the final probability of the images being predicted as fake.
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a probability value, ‘p’. Higher values of ‘p’ may confuse the generator by picking

one of the random possibilities of the augmentation and image distribution; this

phenomenon makes the chosen augmentations leak. If ‘p’ is under a safety limit, it

is less likely to produce leaking augmentation on generated images. To keep track

of the safety limit value, an adaptive approach was introduced.

The concept of Adaptive Discriminator Augmentation was supported by con-

trolling the augmentation strength ‘p’ by which the augmentation is applied as the

training progresses. The initial value of ‘p’ starts from 0 and gets regulated in every

4 mini-batches as training progresses. If overfitting occurs during the training, the

p-value can be adjusted by a fixed rate. A given target value can control the strength

of the p-value. This concept of setting a target value, aka “ADA target”, came from

observing the training process and the safety limit of value ‘p’. For example, In

the study by Karras et al. [194] it was observed that the FID value declined after

‘p’ became close to 0.5. Hence the ADA target was set as 0.6. Regardless of the

dataset volume, discriminator overfitting was avoided by implementing this strategy,

and convergence was achieved during the training.

Despite the fact that GAN models are very sensitive to hyperparameter selection,

StyleGAN2-ADA supports reasonable quality of results without major changes in

the hyperparameters and loss functions while training from scratch or performing

transfer learning.

3.3.2 The impact of R1 Regularization γ for 300 images

As discussed in section 3.3.1., one of the limitations of GANs is that small data may

lead to overfitting, divergence or mode collapse. These grounds motivate our work

to adapt StyleGAN2-ADA, which uses a minimum of 1000 images for experimental

purposes. In this work, we used a limited amount of input images i.e. 300 images, but

with fine-grained vital features i.e. Rosacea condition. Given the limited number

of images, it might be hard to retain the most important features while training

the networks and generating synthetic images. Hence, it is necessary to explore

the strategies which may help obtain better results along with the adaptation of

StyleGAN2-ADA.

The StyleGAN2-ADA architecture functions very well even without changing

network architectures, loss functions or other key parameters. As GANs are sensitive

to hyperparameters, in this work most of the hyperparameters are kept unchanged

except for the R1 Regularization weight/strength ′γ′. According to a few studies,
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regularization has a significant impact on stabilizing GAN training. Regularization

helps produce high-quality images by stabilizing the broad range of noise levels

[257]. During the training of GANs, the generator takes random noise as input and

produces synthetic images. However, without proper control, this random noise can

lead to high variance in the generated images, manifesting as unrealistic or highly

varied outputs. Regularization techniques like R1 Regularization impose constraints

on the model’s parameters, encouraging smoother, more stable learning. In the case

of StyleGAN2-ADA, R1 Regularization helps in managing the influence of noise by

penalizing large, erratic shifts in the model weights, leading to more consistent and

controlled image generation. It effectively reduces the model’s sensitivity to the

specific noise patterns in the input, resulting in higher quality images that are less

prone to artifacts or distortions commonly associated with unstable GAN training.

In the instances of images with a high number of features, R1 Regularization

(aka L1 norm Regularization) performs satisfactorily in feature selection by removing

some unimportant features. It helps in shrinking the coefficient of the less important

features to 0. R1 Regularization helps to prevent overfitting. To prevent overfitting

due to the small volume of data, regularization extensively reduces the variance

of the model without losing important attributes in the input image features and

without a significant rise of bias in the model. On the contrary, if the strength value

′γ′ is set too high, the model can miss important details from the input images.

In this work, those particular numerical values of ′γ′ are explored, with the aim of

retaining vital details of the input images.

As the GANs concept is based on the Zero-sum game, it is expected to attain

a Nash Equilibrium in which each player cannot reduce their cost function with-

out changing the parameters of the other player[258]. As defined, equilibrium is a

situation in which no player could improve its position by choosing an alternative

available strategy(‘cost function’ in this case), without implying that each player’s

privately held best choice will lead to a collectively optimal result [259].

The cost/loss/value function is affected by the integrated R1 Regularization. It

is necessary to achieve the lowest divergence between the training distribution and

the model distribution that obtains minimum loss at equilibrium. Despite this, it is

hard to reach the closest point towards the equilibrium when the input images are

short in supply. Hence it is essential to leverage the advantage of R1 regularization

strength to achieve minimum loss. The study by Mescheder et al.[260] stated that

using R1 regularization helps in stable training as well as high-resolution image
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distribution for CelebA and LSUN datasets. Under suitable assumptions the R1

regularization strength has an impact on obtaining notably better results in the

generated image quality.

L1 regularization (or R1 Regularization) is added to the cost function of GANs

(in Equation 2.1) as:

R1 = γ
n∑

i=1

|wi| (3.1)

Where,

• γ is the regularization strength that decides the amount of regularization to

be applied.

• |wi| is the absolute value of each weight in the model, which forces the smaller

weights towards zero and hence reduces model complexity.

• n represents the number of parameters in the model.

When the R1 regularization term is integrated into the original cost function,

the new cost function becomes:

Jreg = J +R1 (3.2)

To minimize this, we need to consider both terms. When taking the derivative

with respect to the parameters (for Gradient Descent), it will involve the derivatives

of both the original cost function and the regularization term. The regularization

term’s derivative will have a component from the sign of the weight, enforcing the

sparsity.

Using gradient descent methodologies, each parameter wi is iteratively adjusted

using:

wi(t+ 1) = wi(t) − α

(
∂J

∂wi

+ γ · sign(wi)

)
(3.3)

Where:

• α is the learning rate determining the step size in the direction opposite to the

gradient.

• ∂J
∂wi

is the partial derivative of the original cost function with respect to the

weight wi.
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The optimal regularization strength γ and learning rate α need to be tuned

carefully via techniques like cross-validation to achieve a trade-off between model

fit and model complexity, ensuring generalized and stable models. This nuanced

interplay of mathematical operations and strategic integration of regularization in

the cost function helps in achieving balanced, robust, and efficient GAN models. It

is this intricate math that empowers the model to learn and generalize effectively,

producing high-quality synthetic images that are nearly indistinguishable from real

ones.

Hence this work examines the effects of R1 regularization to find the most

favourable strength ′γ′ that suits the nature of our dataset, since choosing the value

of ′γ′ is highly dependent on the dataset size and its nature. However, a few studies

have proposed a mathematical formulation to initiate the value of ′γ′ as an initial

guess in Equation 3.4; Where N = w × h (in this case 512 × 512) and M is the

size of minibatch, w and h are the number of pixels[194, 257]. In the study by

Mescheder et al.[261] on the impact of regularization, even though only a handful

of images were used, the authors proved that an appropriate choice of γ leads to

better convergence properties near local Nash-equilibrium, which further leads to

the generation of high-fidelity images while preserving fine-grained details learned

from the input images.

γ0 = 0.0002 ·N/M (3.4)

3.3.3 Rosacea Data

GANs have produced impressive results due to the availability of the enormous vol-

ume of images on various web sources, which have relaxed terms of privacy and

copyright. Most of the large datasets used in the improvement and study of GANs

contain objects, animals, paintings or faces of celebrities. StyleGAN2-ADA uses

histopathological images of breast cancer, which do not disclose patients’ identities.

Similarly, some other imaging modalities such as dermoscopic imaging, X-Ray imag-

ing, and MRI scans may not disclose the person’s identity. Especially when a skin

condition is captured directly, focusing on the affected region of the body, a person’s

identity is hardly identifiable. However, in the case of full facial images with skin

conditions such as Rosacea, capturing the entire face can result in identifying the

patient.
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Publicly Available Data

A few teledermatology web sources support computer-aided skin disease diagnosis

research and development. The available Rosacea images in various web sources

are listed in the Chapter 2 of this thesis (same has been mentioned in Mohanty

et al.[262]). There are about 208 Rosacea images in total. Among these there are

only a few images with full-face visibility and a few others are watermarked, which

may affect the features in the generated images. In order to examine the nature

of Rosacea in the facial region, it is essential to access high-quality full face images

which are rarely found in online teledermatology sources. Hence, acquiring full-face

images of Rosacea is a difficult task.

Rosacea Dataset- ‘rff-300’

In this chapter, we have access to a small dataset, which is referred to as the “Irish

Dataset” in the rest of the study. The “Irish Dataset” is provided by The Powell

Lab, Charles Institute of Dermatology, University College Dublin[263, 264]. The

dataset contains 70 high-quality full-face images of Rosacea. The original images

were present in various resolutions ranging from 800 × 1000 to 900 × 1200. These

were later resized for the experiments. Among the 70 images in the Irish Dataset,

67 images were selected for experiments conducted in this research.

Given the low number of images in the Irish dataset, it was essential to collect

more data from various web sources, i.e. the teledermatology web sources and other

Google search results. Thus, another 67 full-face images have been taken from

SD-260 [126]. A few more images were obtained from Google search results and

teledermatology websites in accordance with the following criteria/standards:

• The resolution is a minimum of 250 × 250.

• visibility of full face including forehead to chin and both cheeks.

• The images are labelled/captioned/described under subtypes 1 and 2.

Given these standards/criteria, many Rosacea labelled images with partially vis-

ible faces are not considered in this research study. This data gathering results in

a total number of 300 real-world images for the experiments to generate synthetic

full-face images with Rosacea. These 300 images are full front-view facial images

with Rosacea subtype 1 or subtype 2.
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All 300 images are centre-cropped manually while preserving the visibility of the

face and eliminating unnecessary background details and accessories around the ears

and heads. The images are resized to 512 × 512 pixels to keep the optimum details

of the disease. The preferred file format type “.png” was chosen to preserve the best

possible sharpness of the original images. For ease of understanding and usage, the

entire dataset used in the experiments is referred to as “rff-300 (Rosacea-full-

face-300)”.

Implementation Specifications

A system equipped with an Nvidia Geforce RTX 3090 (24GB) GPU, an AMD Ryzen

9 5900X 12 core CPU, and 32 GB RAM are used to carry out the experiments. The

complete implementation was carried out on Pytorch 1.7.1. with CUDA version 11.1

on Linux.

3.4 Experiments and Results

The implementation choices in this work are the same as in the original work on

StyleGAN2-ADA with some minor changes in the configuration. As the original

work claims to have chosen the ideal configuration in network architecture and loss

functions, these units are kept unaltered in these experimental implementations.

The learning rate of 0.0025 is kept unchanged to examine the effect of augmentation

and other existing hyperparameters on the output. All the 300 input images with

resolution 512× 512 are x-flipped, which brings the number of input images to 600.

In most cases, the augmentation choices are limited to pixel-blitting and geo-

metric augmentation, because other augmentations such as colour, filter, noise and

cutout may affect the desired features of the disease. Diseases, especially those

manifesting on the skin or other organs, have specific visual features critical for di-

agnosis. Color changes, texture, shape, and size of lesions or abnormalities are key

identifiers. Augmentations like color, noise, or filter changes might obscure these

critical features, leading to a loss of essential diagnostic information. For instance,

color augmentations might alter the perceived severity or type of a skin lesion, while

excessive noise could mask subtle textural details. Pixel blitting is a technique that

involves transferring blocks of pixels from one part of an image to another or modi-

fying them to simulate variations like occlusions or distortions. This process allows

for local changes to the image without altering global features, helping preserve the
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important visual cues needed for diagnosis while still introducing variability. Ge-

ometric augmentations refer to transformations that alter the spatial properties of

the entire image or parts of it, such as rotation, scaling, flipping, or cropping. These

transformations change the image’s orientation or size but do not directly affect the

pixel intensity values like color augmentations would. Geometric transformations

help in creating a model that is invariant to the position, orientation, and scale of

the disease features, enhancing the model’s ability to recognize these features under

various conditions. Together, pixel blitting and geometric augmentations allow for

the creation of varied training examples without significantly altering the intrinsic

properties of the disease features. They help simulate realistic variations in how

diseases might appear in different scenarios without compromising the integrity of

the critical diagnostic information. This approach is particularly beneficial in med-

ical/clinical imaging where maintaining accuracy and detail of disease indicators is

crucial for effective diagnosis.

Furthermore, Pixel blitting and geometric augmentations offer a more controlled

approach to augmenting images, reducing the risk of “leakage” or overfitting during

training. Leakage refers to the phenomenon where augmentations become too iden-

tifiable, and the model starts recognizing the augmentation itself rather than the

underlying patterns it’s supposed to learn. By carefully manipulating the image’s

spatial orientation or specific regions via pixel blitting, model architecture maintains

a stable and diverse training environment. This stability is crucial for ensuring that

the model learns to generalize from the augmented data without becoming overly

reliant on augmentation-specific features.

In Transfer Learning setups, where a model is adapted from one task to another,

it’s essential to maintain some consistency in how the images are presented. Sudden,

drastic changes in image properties can derail the transfer process. Pixel blitting

and geometric augmentations provide a gentle yet effective way to augment images.

They ensure that the core visual features remain intact and recognizable, aligning

with the pre-trained model’s learned features and facilitating a smoother adaptation

to the new task.

For instance, in the Transfer Learning set-up, the augmentations were applied

too quickly at the early stages of the training. At the very beginning stage of our

implementations and setup, a few experiments were carried out with all the given

augmentations offered by StyleGAN2-ADA. However, a set of augmentations such

as colour, filters, noise and cutout started to leak at the later stages of the training.
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One of the augmentations which had shown frequent leaking was the colour augmen-

tation. This problem was also encountered in the work by Karras et al.[194]. Hence

those experiments and results are not included in this experimental configurations.

The further experiments were set up with a limited set of augmentations and those

experiments are listed in Table 3.1.

As in this work a 24 GB GPU was used for the experiments, and several con-

figuration choices required adjustment and recalculation during the experiments.

The minibatch size, mini-batch standard deviation, exponential moving average,

R1 regularization γ were altered according to the nature of the input and GPU

configuration. The alterations on these hyperparameters are dependent on image

resolution and GPU model. The numeric value of these hyperparameters helps in

reducing computational space, time, and cost by leading to smoother progress dur-

ing the training. As the input images resolution 512×512 and the number of GPUs

used is 1, the following configurations were used during the training

• the minibatch size = max (min (1 · min (4096 // 512, 32), 64), 1) = 8,

• mini-batch standard deviation = min (minibatch size // GPUs, 4) = 4,

• Exponential Moving Average = minibatch size · 10 / 32= 2.5

Among the various implementation choices, R1 Regularization weight was given ut-

most importance during the experiments, which will be discussed in further sections.

It is important to measure the quality of image generation for synthetic images.

The majority of experiments using StyleGAN2-ADA [194] in the literature have

been evaluated using the Frechet Inception Distance (FID). The FID measures the

distance between real samples x and generated samples g and is given by:

FID(x, g) = ∥µx − µg∥2 + Tr
(
Σx + Σg − 2(ΣxΣg)

0.5
)

(3.5)

Where:

• µx and µg are the means of the real and generated samples, respectively.

• Σx and Σg are the covariances of the real and generated samples, respectively.

• Tr stands for the trace of a matrix.

In this chapter, the experimental results were assessed using Kernel Inception

Distance (KID)[265]. The KID is based on the concept of Maximum Mean Dis-

crepancy (MMD) to compute the distance between two distributions. Specifically,
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for the context of evaluating GANs, the distance between the distributions of real

images P and generated images Q.

Given samples x1, x2, ..., xm drawn from P and samples y1, y2, ..., yn drawn from

Q, the MMD squared with a certain kernel k is given by:

MMD2(P,Q) =
1

m2

m∑
i=1

m∑
j=1

k(xi, xj) −
2

mn

m∑
i=1

n∑
j=1

k(xi, yj) +
1

n2

n∑
i=1

n∑
j=1

k(yi, yj)

(3.6)

Where:

• k(x, y) is the kernel function, often chosen as the Radial Basis Function (RBF)

or Gaussian kernel:

k(x, y) = exp

(
−||x− y||2

2σ2

)
with σ as a bandwidth parameter.

The KID is then the empirical estimate of this MMD2. A smaller KID value

implies that the two distributions (real and generated images) are closer, indicating

better performance of the Deep Generative Models.

Lower values of KID indicate better performance. The main reasons to consider

KID for the experiments are listed below:

• KID functions outperform FID in case of limited samples i.e., a small number

of images.

• KID has a simple, unbiased, and asymptotically normal estimator, in contrast

to FID.

• KID compares skewness as well as mean and variance.

As listed in Table 3.1, there are various experimental set-ups explored to obtain

high-quality synthetic faces with Rosacea. The rationale for chosen parameter values

and main findings are outlined below:

• Training from scratch in Exps 1 and 2 does not provide any advantage with

the limited data i.e., 300 input images. However, these experiments show

that the γ value has a significant impact in terms of image generation and

convergence during the training. As shown in Fig. 3.4, Exp 1 achieved the

lowest KID at training step 2640 with γ =6.5, whilst Exp 2 achieved the lowest
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Table 3.1: List of experiments and results detailing the training setups, augmenta-
tion methods, regularization strengths (denoted by γ), and the corresponding perfor-
mance metrics. The table showcases different training strategies, including training
from scratch and Transfer Learning (TL) from the Flickr-Faces-HQ (FFHQ) dataset,
with varying degrees of augmentation choices and freeze-D technique. Performance
is evaluated using the Kernel Inception Distance (KID) metric ↓ , with the best
KID score achieved noted for each experiment, along with the training step number
at which this score was recorded. This comprehensive overview allows for a direct
comparison of the impact of training methodologies and augmentation techniques
on the quality of synthetic image generation.

Exp
no.

Training
set-up

Freeze-
D

Augmentation
Choice

γ Best
KID×103

achieved

At
step
no.

1 From scratch NA
blitting, geometry,

colour, filter,
noise, cutout

6.5 6.8 2640

2 From scratch NA blitting, geometry 10 11.8 720
3 TL from

FFHQ
NA blitting, geometry 6.5 3.6 120

4 TL from
FFHQ

4 blitting, geometry 6.5 3.5 80

5 TL from
FFHQ

13 blitting, geometry 6.5 3.3 680

6 TL from
FFHQ

13 blitting, geometry 10 104.6 840

7 TL from
FFHQ

13 blitting, geometry 3 3.1 80

8 TL from
FFHQ

13 blitting, geometry 2 4.2 360

9 TL from
FFHQ

17 blitting, geometry 6.5 3.3 800

10 TL from
FFHQ

10 blitting, geometry 6.5 2.5 160

KID at training step 720 with γ =10. As shown in the Fig. 3.5(a)(b), The

distribution of Rosacea artefacts on the generated images from Exp 1 are better

compared to the generated images from Exp 2. Hence, it can be concluded

that Exp 1 has the best achieved KID and better-quality generated images

when training from scratch; conversely, Exp 2 converged faster but generated

lower quality images. A lower strength of γ performed better for training from

scratch.

• In contrast, Transfer Learning from FFHQ[190] in Exp 3 performed approxi-

mately 33 times better with the improvement in training time/cost and nearly
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twice better at the training step 120 with the lowest recorded KID value during

the training with the γ=6.5. As the FFHQ dataset is fundamentally a facial

dataset, it was expected to have a wide range of facial features in the resulting

generated images. In the Fig. 3.5(c) the generated images have shown a great

level of improvement, although image generation quality can be further im-

proved by freezing the top layers of the discriminator to preserve the smaller

features of the disease.

• In Exp 4, along with Transfer Learning from FFHQ dataset, the Freeze-

Discriminator (Freeze-D)[266] technique was studied to improve the fine-grained

details of Rosaceain the synthetic faces. In this experiment, the top 4 layers of

the Discriminator were frozen, which improved the result faster, compared to

the Transfer Learning without Freeze-D technique. The augmentation choice

was kept unchanged to the previous experiment i.e. pixel blitting and geo-

metric transformations. The R1 regularization weight is set to 6.5. Figure

3.4 represents the obtained KID values during the training process, in which

the best value of KID = 3.5 is achieved at the step 80. Hence, it is observed

that the training process improves relatively faster when the top layers of the

discriminator are frozen. As Transfer Learning with Freeze-D presented better

results in Fig 3.5(d), that offered motivation to explore various arrangements

of Freeze-D.

• Further the Freeze-D technique with Transfer Learning was applied by freezing

13, 10 and 17 layers of Discriminator. In Exp 5, the 13 top layers of Discrimi-

nator were frozen during the training with the same settings for augmentations

i.e., pixel blitting, geometric transformation and γ =6.5. The outcome of this

experiment is inferior compared to the previous experiment, based on the in-

consistency in training and the lowest KID achieved at the later stage of the

training i.e. 3.3 is achieved at training step 680. The generated images as

shown in Fig. 3.5(e) from this experiment were lower in quality, e.g. most of

the facial features are deformed, blurred with leaky background details. To

improve this condition, further experiments were carried out with higher and

lower strengths of γ while keeping other hyperparameters unchanged.

• Although some higher values of γ were tested while training from scratch in

exp 2, they were not used with Transfer Learning, hence γ =10 was tested

in Exp 6. It can be observed from Fig. 3.4 and Table 3.1, that it took
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longer to achieve a minimum KID at step 840. The lowest obtained KID in

this experiment was the highest KID value recorded among other experiments,

proving it the worst KID value recorded. The generated images in Fig. 3.5(f)

were highly distorted and unusable in quality. However, it demonstrated the

significance of R1 regularization strength γ. Regardless of training set up,

higher values of γ performed worse in terms of convergence and quality of

generated images.

• Hence in the next experiments, the lower values of γ were explored. In Exp

7, γ =3 was examined, while other hyperparameters were kept unchanged

as in the previous Exp 6. As was observed in Fig. 3.4, KID drops at the

very beginning stage of training i.e. step 80 and then becomes inconsistent.

However, this is one of the second lowest KID values achieved among all the

experiments resulting in high quality images generated at step 80 with the KID

value 3.1. The generated images in Fig. 3.5(g)were with fine-grained details

of Rosacea and disease patterns and resembled the real-life cases of Rosacea.

• To exploit the performance with lower values of γ, Exp 8 was carried out

with γ =2. In this experiment, the lowest KID = 4.2 was recorded at training

step 360. It was observed from Fig.3.5(h) that the generated samples are

deformed at the left bottom portion with the blurred edges. The distribution

of the disease feature was inadequate. It was observable that a low value of

γ produces such a strong sort of deformity which was not encountered in the

previous experiments.

• Furthermore, experiments Exps 9 and 10 were carried out by freezing 17 and

10 layers respectively with γ =6.5 to observe changes due to freezing the layer

of Discriminator. Exp 9 shows inconsistency throughout the training process

from the beginning. The minimum KID=3.3 is obtained at training step 800.

In Fig. 3.5(i), it is observed that the generated images tend to be blurred

around the edges and the center. Some samples are negatively affected by the

geometric augmentation.

• In Exp 10, generated sample images at the best value of KID =2.5 were

obtained at the training step no.160. Although Exp 10 has obtained the lowest

KID among all the experiments, the generated images are blurred at the edges

and center as depicted in Fig.3.5(j). The details of Rosacea are absent.
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• As the Freeze-D technique with freezing 4, 10, 13, 17 layers of Discriminator

were experimented; the results showed that freezing 10 layers helps achieve the

lowest value of KID amongst other training setups. However, it is observed

that freezing 10 layers leads to too much smoothing which does not help in

preserving the details of the disease. Freezing 4,13,17 layers of Discriminator

achieved comparatively better results in terms of the value of KID.

• Along with freezing the layers, we have experimented with various strength of

R1 regularization. Adapting various γ values illustrates its significant impact

on the training process, the metric (KID) and the generation of synthetic

images.

• The impact of γ value can be observed in both settings such as training from

scratch and in Transfer learning. Exps 2 and 6 were carried out with higher

strength of gamma and they have demonstrated the significance of the value

very distinctly. The lower value of γ leads to better results in training, given

other implementation choices kept unchanged.

• The choice of R1 regularization weight/strength γ value depends on the input

data. There is a heuristic formula in 3.4 for choosing the numerical value of

γ as an initial guess, which calculates the γ value as 6.5. However, tweak-

ing/adjusting this numerical value leads to better results in generating syn-

thetic images with fine-grained details and improved fidelity. It can be ac-

knowledged that the choice of γ value is sensitive when the number of images

are short in supply. Lower values of γ perform better compared to the value

obtained by applying the heuristic formulae. However, there is a risk in choos-

ing very low values or very high values.

3.4.1 Truncation Trick

The Truncation trick was introduced by BigGAN [246]. The truncation trick acts

as a boosting strategy for the quality of images. By applying the truncation trick,

we can expand the span in the variety of images. The quality of these individual

images is comparatively high, and the distribution of disease artefacts is precise.

Transforming the images to latent space provides an opportunity to generate 1000

high-quality synthetic images at a time. This is possible with the Truncation trick

introduced by BigGAN architecture.
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Figure 3.4: Kernel Inception Distance (KID) Progression for 10 Experiments Over
Training Period. This graph tracks the KID metric’s changes across different train-
ing steps for ten distinct experiments. Each coloured line corresponds to an experi-
ment number as indexed in Table 3.1, allowing for a visual comparison of how each
experimental setup impacts the KID over time.
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Figure 3.5: Generated Faces from Diverse Training Strategies. This figure presents a
visual representation of the synthetic faces generated across 10 different experiments
as outlined in Table 3.1. Each sub-figure (a-j) corresponds to a unique combination
of training setups, augmentation methods, freeze-D and regularization strengths γ
detailed in the table. The images showcase the variation in quality and features of the
generated faces. This figure, in conjunction with Table 3.1, provides a comprehensive
comparison of how each methodology impacts the quality and realism of synthetic
image generation.
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The truncation trick is a sampling technique that aims at truncating the noise

vector z by resampling the values to improve individual sample quality. The trunca-

tion trick is regulated by a value called the ‘truncation threshold’ ψ. The truncation

threshold can lie in the range between 0.5 to 1. As per [43, 246], we have used a

truncation threshold ψ of 0.7 to obtain the best observed/most favourable results

under the specific conditions and objectives of our study. Choosing the truncation

value of 1 indicates that there is no truncation. Different truncation thresholds help

in truncating the latent values so that they fall close to the mean. The smaller the

truncation threshold, the better the samples will appear in terms of variety.

Although Exp 10 has achieved the lowest value of KID, the images generated

from this experiment are not useful due to a few factors made, such as:

• A few images were not properly distributed and they are distorted and blurred

with leaked geometric augmentations,

• While exploiting the latent space, most of the samples generated from this

experiment lacked variation in regards to common facial features as well as

Rosacea features,

• As a result, out of 1000 generated images, only 30 high quality images were

picked for further analysis.

On the other hand, Exp 7 achieved the second lowest value of KID, the generated

images from this experiment were useful due for a few reasons, such as:

• All 1000 sample generated (from training step/epoch 80 with the best KID)

were correctly distributed,

• The span of variation was greater than Exp 10, meaning that there was more

variety in facial features and Rosacea features,

• There were no deformations in the facial and Rosacea disease features,

• The samples were not highly smooth in the forehead or cheeks region,

• More distinctive facial and Rosacea disease features obtained compared to Exp

10,

• As a result, the best 300 high quality images were picked through visual

scrutiny from Exp 7.
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Figure 3.6 and Figure 3.7 are the generated images through truncation from Exps

7 and 10 respectively. The images presented in Figure 3.6 and Figure 3.7, the ob-

served blurring of eyes in some images is a direct consequence of the de-identification

procedures applied to the underlying real-world dataset of rosacea images. These

300 synthetic images selected from Exp 7 were used for further qualitative anal-

ysis discussed in Section 3.5. These 300 images are named as synthetic rosacea

full faces (synth-rff-300) are available on: https://github.com/thinkercache/

synth-rff-300

Figure 3.6: Generated faces from the best KID value (3.1) of Exp 7 with the trun-
cation ψ=0.7
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Figure 3.7: Generated faces from the best KID value (2.5) of exp 10 with the
truncation ψ=0.7
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3.5 Qualitative Evaluation of Synthetic Images

Although the best 300 high quality images with resolution 512 × 512 were selected

from the Exp 7, it is important to get them verified by dermatologists to validate the

feature and distribution (location/colour/nature) of the Rosacea. However, inspect-

ing all the 300 synthetic images is a time-consuming task. Hence out of 300 images,

about 50 images were randomly picked for the inspection by the expert derma-

tologists. The images were organised in a Google form. The dermatologists were

requested to rate the images from a medical perspective as to how well the artefacts

on the generated faces represented Rosacea on a linear scale from 1 (not realistic

Rosacea) to 10 (very realistic Rosacea). In total, three dermatologists participated

in this research. The scatter plot in Fig. 3.8 illustrates the average rating over the

three dermatologists per image. The dots in this 3D plot represent the synthetic

images. The darkest colours represent the images with higher ratings followed by

the lighter shades for the lower ratings. Fig. 3.9. presents the mean score for each

image averaged over the three dermatologists. 73% of the images had a mean score

of over 60%.

D
erm

atologist 3 (z)

Dermatologist 2 (y)

Dermatologist 1 (x)

Figure 3.8: A 3D representation of Dermatologists opinion on synthetic images.

Out of 73.07% of images (with more than 60% mean score), 25% of images were

rated greater than 80% mean score, 32.7% images were rated greater than 70% to
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79% mean score and 15.3% were rated greater than 60% to 69% mean score values

as depicted in Fig. 3.10.

To summarize, according to the dermatologists’ opinions (in medical perspec-

tive), 73% of images present a realistic pattern of Rosacea on the generated faces

and additional comments provided by the dermatologists are listed on the Table 3.2.

Table 3.2 concludes that the experts’ overall impression of the generated Rosacea

images is very positive. The feedback from experts reinforces the value of devel-

oping synthetic images, highlighting their potential to mitigate the data scarcity

issue for Rosacea and other facial skin conditions in medical imaging. This positive

endorsement from medical professionals underscores the synthetic images’ realism

and utility, indicating a promising direction for future research and application in

the field.

The amalgamation of methodology for synthetic face generation, and from the

quantitative and qualitative data, shows an optimistic direction for synthetic data

generation for rare skin conditions and other diseases that involves medical imaging.

This strategy will help deal with data scarcity problems in many disease domains

and facilitate early and faster diagnosis.

Figure 3.9: Mean scores from the Dermatologists for generated images

The second part of the qualitative evaluation was based on non-specialist par-

ticipants’ opinions. In this analysis, a total of 50 images were provided for analysis

in which 40 images were generated and 10 images were real. The intention of in-
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Table 3.2: Qualitative Evaluation: Dermatologists’ Comments on Generated
Rosacea Faces. This table presents a collection of feedback and insights from derma-
tologists regarding the synthetic Rosacea faces generated as part of this study. Each
entry lists the comments provided by individual dermatologists, reflecting on the
realism, potential utility, and overall impression of the generated facial images with
Rosacea patterns. These comments are instrumental in understanding the clinical
relevance and educational value of the synthetic images, as well as guiding future
improvements and applications in dermatological training and diagnosis.

Dermatologists Comments
1 “Diagnosing Rosacea in some patients requires running a

lab examination. But, essentially the images in this re-
search created using an artificial intelligence can widely
impact the performance of the technologies currently avail-
able to dermatologists. I believe these images could also
be used for educational purposes if provided with a set of
controls to create more variations of the disease. Best of
luck.”

2 “I am surprised to see what AI can do. I think this work
may help in Rosacea screening later on.” “A few images
had a strange form of distortion on the face region but, in
general, I am very surprised by the quality of the images
and varying intensity of Rosacea in each image.”

3 “Please note, I have only examined the Rosacea and with-
out taking notice of the other characteristics of the faces.
I can say ETR is very realistic indeed. Great work, all the
best.”
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Figure 3.10: Representation of mean scores (in %) for percentage of given images in
the study by Dermatologists

cluding 10 real images was to analyse if non-specialist participants could see the

difference between the real and fake images. The non-specialist participants were

requested to rate the images in the range from 1 (not a realistic face) to 10 (a very

realistic face). Fig. 3.11 depicts the mean score range of each image, where gener-

ated and real images were labelled in different colours. Out of 50 images, 40 images

got the mean score equal to and greater than 60%. Among the top 10 images with

highest mean score, 5 images (29, 4, 9, 33, 50) are real and 5 images (6, 3, 5, 1, 23)

are generated.

3.6 Limitations and Discussion

Quantitative evaluation of generated images by GAN models particularly in med-

ical imaging is an open-ended problems. Thus, various quantitative and qualita-

tive methods have been adapted and are still in the development stage [267]. The

quantitative evaluations are often performed using various metrics such as Incep-

tion Score (IS), Fréchet Inception Distance (FID), Kernel Inception Distance (KID),

Precision-Recall, and Perceptual Path Length. These metrics are proven to func-

tion adequately with certain types of popular datasets which are large in quantity.

Although such methods are designed to assess the quality of images or evaluate the
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Figure 3.11: Mean scores from the non-specialist participants for miscellaneous im-
ages

distribution of the generated images, they may not be a reliable measure for appli-

cations in the field of dermatology. These metrics fail to provide any information

regarding the “quality” of the generated artifacts on the skin which is vital in di-

agnosing skin conditions. In the field of dermatology, a minor change on the skin

could be meaningful. The existing numerical methods are not capable of measuring

the realism of the generated artifacts on the skin and whether they represent a skin

condition or not.

As discussed in Section 3.3.3., this research utilises a limited dataset with 300 im-

ages to train a generative model. Following the state of the art studies, we deployed

a quantitative evaluations pipeline using KID metric to compare the generated im-

ages with the real ones. The best value recorded from this evaluation is presented

in Table 3.1.

Although Exp 10 achieved the lowest value (the best) in quantitative evaluation

with the metric KID, and Exp 7 obtained the second lowest (second best) KID; the

images in Exp 7 appear visually more realistic than those in Exp 10. To explore this

further, FID metric is calculated, to cross-validate the results by two experiments.

The results are reported in Table3.3. As shown in Table 3.3, the best KID and FID

values are obtained from Exp 7 and Exp 10 at different stages of the training process.

In Exp 7, the best value obtained by both metrics are at the training step 80; on the
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Table 3.3: The FID values are calculated and compared with the top two experi-
ments, selected based on having the lowest KID values.

Exp
no.

Top KID value
achieved

at step
no.

Top FID value
achieved

at step
no.

7 3.1 80 31.67 80
10 2.5 160 31.40 80

other hand, in Exp 10, the best value obtained by KID is at the training step 160

and the best value obtained by FID is at the step 80. Therefore, it is challenging

to measure the realism of Rosacea artifact generated on the images based on these

quantitative evaluations, specifically for Exp 10. Hence, the images obtained from

both experiments needed visual scrutiny to check the fidelity of Rosacea.

From visual scrutiny, the generated images from Exp 7 were evaluated of higher

fidelity than the images obtained from Exp 10. As discussed in Section 3.4.1, and

shown in Figure 3.7, the generated images from Exp 10 are blurred and lack variation

in Rosacea features. As a result, the images generated from Exp 10 were not included

in the further analysis.

As mentioned in Section 3.5, the images obtained from Exp 7 were verified by

the experts (dermatologists). Based on to the dermatologists’ opinions, 73% of

the images got more than 60% mean score, and the dermatologists remarks are

provided in Table 3.2. Based on the non-specialist participants’ opinions, 80% of

the images got more than 60% mean score. In a nutshell, the StyleGAN2-ADA with

the experimental fine-tuning described earlier in the study produced high-quality

realistic results as confirmed by experts and non-specialists participants.

Based on these quantitative and qualitative evaluations, it is conceivable that

metrics such as KID and FID are not sufficient by themselves as evaluation crite-

ria when working with a limited dataset of medical images. Both quantitative and

qualitative evaluations of the synthetic images demonstrate that, although the eval-

uation metrics such as FID, IS, and KID are used widely, they have many limitations

to be aware of while working with medical images. Along with the quantitative eval-

uation, the qualitative assessment, such as expert opinion, may well be requisite in

the computer-aided medical diagnosis community.
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3.7 Future work

Given the importance of the hyperparameter γ as discussed earlier, it would be

desirable to design an Adaptive Regularization Technique [268] for the weight matrix

to be experimentally tested for StyleGAN2 architectures. Designing an adaptive γ

value would not only help in generating high fidelity synthetic images but can help

achieve the equilibrium at the early stages during the training with limited samples.

Reaching the equilibrium point at the earlier stages may help in reducing training

time and cost without compromising the quality in the output.

Adding this adaptive technique for γ may also help in optimizing the model by

introducing an automated early stopping point to the training process as it starts

to overfit. This may save unnecessary time and cost, while the training is still under

progress even after overfitting.

As discussed in section 3.6, popular metrics such as IS, FID, KID, Perpetual

Path Length, Precision and Recall should not be considered as the only metrics

in the assessment pipeline of synthetic medical images. However, it is necessary

to have a quantitative evaluation to navigate the results/outputs by GAN models;

hence it is essential to explore and improve the quantitative evaluation methods

that may be deemed appropriate for the medical imaging domain. To achieve this,

it is crucial to understand the nature of medical imaging with respect to imag-

ing modality, fidelity and how to retain domain-specific information in synthetic

images. Addressing the inconsistency between subjective expert evaluations and

quantitative metrics like FID and others is a critical challenge, especially prevalent

in the medical field. In future, it is necessary to include the development of new

algorithms or expert-centric metrics specifically designed to assess the fine-grained

details crucial in clinical images. These metrics will aim to capture the subtleties

and complexities that are often pivotal in medical diagnosis but may be overlooked

by current quantitative methods. By incorporating domain-specific knowledge and

diagnostic criteria directly into the evaluation process, these new metrics can provide

a more nuanced and clinically relevant assessment of image quality. Furthermore,

they could be designed to incorporate direct input from medical experts, potentially

using machine learning techniques to learn from expert evaluations and better align

with professional standards. The development of such metrics will involve rigorous

validation against clinical outcomes and expert opinions to ensure their accuracy

and reliability.

The generated images could be used to expand the dataset for the classifica-
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tion of Rosacea as part of a Deep Learning System (DLS) for skin disease diagnosis

[159], which could eventually be utilized in primary care settings [269]. Along with

Rosacea, additional facial diseases could be included to differentiate the unique fea-

tures among various facial skin conditions. This method provides an innovative

means to address data limitations, thus enhancing the capabilities of these sophis-

ticated systems. Such advanced, deep learning-enabled systems have the potential

to augment the decision-making process of physicians by providing corroborative

consultations and highlighting areas of concern in clinical/medical images [270]. In

future, the application of synthetic images, thereby, might serve as an effective tool

in optimizing the diagnostic performance of these systems [242], warranting the

need for extensive research in this promising intersection of artificial intelligence

and dermatology.

As the quality of the generated synthetic images continues to advance, they could

be repurposed beyond their initial intent, proving valuable for increasing Rosacea

awareness, educational initiatives, and promotional campaigns aimed at disease un-

derstanding. Moreover, this methodology could be extended to other facial diseases,

thereby broadening its application in dermatological disease awareness and educa-

tion.

3.8 Conclusion

In this research, we have demonstrated the effectiveness of using StyleGAN2-ADA to

generate high-quality synthetic images of Rosacea from a small dataset of only 300

real images. By controlling the R1 regularization weight, we were able to achieve this

result, which serves as foundational work for investigating the use of advanced gen-

erative models in synthetic data generation for medical imaging with limited data.

The conducted experiments also revealed that granular details of the skin disease can

be generated by working with hyperparameters such as R1 regularization, applying

a limited set of augmentation techniques such as ‘pixel blitting’ and ’colour’ and the

Freeze-D technique with Transfer Learning. A qualitative analysis was conducted,

in which expert dermatologists evaluated the generated images of Rosacea, and the

mean opinion score indicated that 73% of the generated images present a realistic

pattern of Rosacea. Additionally, this research suggests that metrics such as KID

and FID may have limitations in evaluating synthetic images generated from small

datasets in the medical and clinical imaging field. The generated images were also
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evaluated by non-expert participants, which shows the synthetic Rosacea faces look

realistic as 80% of the images in the analysis have achieved the mean score 60% and

more.

3.9 Data and Code Availability Statement

The input data in these experiments are obtained from 3 sources as following:

1. SD-260 [126]: This dataset has been benchmarked by the study published

with the cited reference. The authors Sun et al. [126] have shared the data

upon signing the ‘Datasets Request Form’. Hence it is recommended that the

interested researchers can access the SD-260 dataset by requesting the first

author Xiaoxiao Sun, who kindly shared the dataset with us.

2. Irish Dataset[263, 264]: This dataset, used for our research, has been pro-

cured with permission from the Charles Institute of Dermatology, Univer-

sity College Dublin. Researchers interested in accessing this dataset can con-

tact the Charles Institute of Dermatology, University college Dublin https:

//www.ucd.ie/charles/.

3. Images from Google Search results and tele-dermatology websites[112, 113,

114, 75, 117, 119]: The datasets were obtained by performing search queries

such as, ’rosacea subtype 1 ETR rosacea’ and ’rosacea subtype 2 PPR rosacea’

on Google, as well as looking under the ’rosacea’ disease section on cited tele-

dermatology websites. Only images labelled as ETR and PPR types of rosacea

were considered for this research. The data gathering and processing frame-

work was discussed with the Data Protection Unit in Dublin City University

and the process is aligned with data protection principles approved by the

university.

To support further reproducibility of the work, the code is available: https:

//github.com/thinkercache/stylegan2-ada-pytorch

1. The Exp1-10 experiment configurations (.json) are added to the ‘/Config-

Exp1-10’ folder on the https://github.com/thinkercache/stylegan2-ada-pytorch

repository.

2. The Qualitative Evaluation on Dermatologists and non-specialists partici-

pants are shared in the ‘/DermQualitative’ and ‘/NonspecQualitative’ folder
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in the https://github.com/thinkercache/stylegan2-ada-pytorch repos-

itory. These folders contain both qualitative data (.csv) and code (.ipynb).

3. The 300 synthetic Rosacea dataset generated in this research/chapter is shared

on GitHub repository: https://github.com/thinkercache/synth-rff-300.
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Chapter 4

3D Modelling of Rhinophyma

A viable method of addressing small classes in the medical imaging domain is to focus

on one disease class or subtype at a time. This strategy facilitates the development

of specialized models, optimized to make accurate predictions for individual classes

of disease or disease subtypes. In addition, it helps balance the dataset by ensuring a

sufficient number of samples for each class. By concentrating on specific diseases, we

can identify their unique characteristics and tailor our models to better comprehend

these features.

This chapter focuses on Rhinophyma, a subtype of Rosacea skin condition [14].

Rhinophyma is a chronic condition characterized by the gradual enlargement and

deformation of the nose. The condition initially appears with mild signs of pore

enlargement and acne in the nose region, progressing to moderate symptoms that

feature some degree of nose enlargement, and eventually leading to severe cases with

significant nose deformities [21]. The details of Rhinophyma are discussed in section

4.1. In our research, we have gathered and utilized 268 images of Rhinophyma,

with further details and information on data acquisition and availability discussed

in section 4.2.

Given the limited number of available images for Rhinophyma, a challenging but

essential skin condition to study, our research focuses on creating sophisticated 3D

models of the Rhinophyma-affected nose. These models are designed in line with

medical literature, reflecting various severity levels of Rhinophyma as identified in

diagnosis and classification protocols. Our approach involves rendering these 3D

models to produce both 2D images and 3D meshes, showcasing a wide range of

Rhinophyma deformations. The resulting 2D images are intended for two primary

purposes. First, they will be used to develop a classification model that aims to
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recognize Rhinophyma based on the various deformations depicted in the synthetic

images. Once the model is developed, its effectiveness will be tested against real-

world Rhinophyma images to validate its practical utility and accuracy in a clinical

setting.

Parametric models are generative in nature, meaning they create or generate

new data or models based on the parameters provided. These models are a notably

influential practice in 3D modelling. These models leverage a set of parameters and

design constraints, thereby facilitating the creation of complex objects that are not

only manipulable but also customizable, catering to a diverse array of needs.

Recent advances in synthetic visual data generation, notably 3DGANs [271, 156]

and NeRF [272], have highlighted their potency in creating lifelike 3D models. De-

spite their growing popularity, these methodologies encounter challenges in capturing

intricate details with a high degree of control, predictability, and interpretability.

Especially for computer vision and graphics applications in the medical field, a well-

thought-out design and control of deformations are required, which is not achievable

with 3DGAN and NeRF based models. Alternatively, the 3D parametric modelling

framework provides significant control over the model by allowing manipulation of

individual vertices, edges, and faces to generate specific and detailed features. These

models are inherently deterministic and predictable, as the parameters set by the

user directly influence model creation. In comparison to generative models, 3D

parametric models often offer greater interpretability due to their explicit geometric

definitions. Moreover, their ability to render and manipulate in real-time proves

essential in areas like surgical planning and tracking. As these models adhere to

well-established principles and methodologies for creation and manipulation, they

demonstrate significant advantage over advanced generative models such as 3DGAN

and NeRF, which require considerable training data to generate high-quality results.

This can pose problems, especially when dealing with rare diseases or specific con-

ditions, where sufficient data may be scarce. In such instances, parametric models

offer a solution to these limitations, thereby highlighting their indispensable role in

visual data generation.

Parametric modelling also offers a significant advantage, in that it facilitates

easy alterations to a 3D geometric model’s shape by tweaking parameters such as

dimensions or curvatures. This approach eliminates the requirement to repeatedly

redraw or redesign the model and its elements whenever changes are necessary,

leading to considerable time savings. They can be managed through a script that
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uses an algorithm to define the dimensions, shape, and various attributes of the 3D

object or model [273]. Considering the above advantages, various parametric models

are discussed in section 4.3.

Parametric models are incredibly beneficial in medical and clinical imaging fields

as they can furnish quantitative information about anatomical structures of inter-

est. These models can assist in the diagnosis and treatment of diseases, planning

of surgical procedures, and evaluating the effectiveness of treatments [274]. There

are various methods which are used to help with diagnosis and treatment, such as

segmentation, registration, and virtual 3D model of the affected part of patients

that requires treatment. Medical professionals are increasingly relying on medical

imaging such as CT, MRI, ultrasound etc. with additional computer-aided applica-

tions, such 3D modelling which has the ability to detect a wide range of anatomical

abnormalities. Having access to a 3D model of an anatomical region provides the

perspective of realistic height and depth of the deformities. By providing a more

personalized and thorough approach to patient care, 3D imaging and modelling have

been transforming the medical field [275, 276].

The underrepresentation of certain medical conditions in datasets, a recurring

theme in this thesis, results in what is known as a long-tailed distribution. Such

distributions are characterized by a few categories containing a large number of

instances and many other categories containing very few instances - for example,

within our Rhinophyma dataset, images belonging to the ‘medium’ severity type are

most abundant. Conversely, images representing ‘mild’ severity are less numerous,

and those of ’major’ severity are least frequent, forming the “long tail”. This pattern

is a common feature of real-world medical or clinical imaging datasets. To address

this imbalance, synthetic data generation can be used to replicate the realistic at-

tributes of diseases that have either manifested or have the potential to, but have

yet to be collected or included in existing datasets.

The main purpose of this study is to propose and adopt a 3D modelling pipeline

to generate synthetic images of Rhinophyma with various possible deformities that

are not present in the existing dataset, to capture the 2D images in various angles

(perspective) of the face, as well as to generate 3D meshes which can be helpful for

further research, development and eventually an aid for healthcare professionals.

In this chapter, we aim to address the data acquisition challenges associated with

this disease category, making the following contributions:

1. For the first time, synthetic data generation has been demonstrated using only
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268 clinical images that cover various stages of Rhinophyma.

2. The achievement of synthetic data generation has been facilitated by a para-

metric 3D face model, designed to encapsulate all possible stages and various

patterns of Rhinophyma.

3. Through rendering, we generated 2000 possible deformations of a Rhinophyma

nose. For each of these Rhinophyma noses with deformations, images are

captured from 10 different perspectives, leading to a total of 20,000 images.

4. To support further research, the synthetic dataset and the related 3D models

are made available on an open-source platform.

5. This synthetic Rhinophyma dataset has been utilised in the training of a deep

learning-based classification model and tested on a real dataset, illustrating

the importance of the synthetic dataset through this validation process.

4.1 Rhinophyma Diagnosis

Rhinophyma is one of the four subtypes of rosacea [14], a skin condition charac-

terized by various symptoms and signs including transient and non-transient ery-

thema, papules, pustules, and telangiectasias localized on the cheeks, chin, forehead,

glabella, around the eyes, and nose. Each subtype of rosacea is associated with dis-

tinct skin features, with Rhinophyma being linked to the phymatous feature of skin,

which presents as benign thickening, surface irregularities, and enlargement, often

accompanied by patulous, expressive follicles and telangiectasias; for this reason

Rhinophyma is also called Phymatous Rosacea. As a late-stage manifestation of

rosacea, Rhinophyma affects the nasal soft tissues, which results in a gradual break-

down of nasal structure, causing airway obstruction, and deformations of nasal aes-

thetics [277]. In a nutshell, a Rhinophyma affected nose progressively enlarges and

becomes distorted [19].

As a common clinical practice, according to el-Azhary et al. [278], the severity

of Rhinophyma is categorized into three categories such as minor (mild), moderate,

major (severe). Later, the Rhinophyma Severity Scale (RHISI) was introduced by

Wetzig et al. [279]. Currently, the RHISI is a common measure of diagnosis [277].

In this chapter, we consider all the three categories of the el-Azhary [278] scale and

scale and all the levels of the RHISI scale[279].
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Surgical intervention is necessary for treating advanced Rhinophyma, as it in-

volves the removal of excess tissue. The primary objective of surgery is to reduce

the overgrown sebaceous glands and reshape the nose, while also promoting the re-

generation of the skin on the nose. However, due to the prominent location of Rhino-

phyma on the central part of the face, surgical procedures must be carried out with

utmost care [280]. According to the study by Chauhan et al. [277], post-therapy pa-

tient satisfaction is frequently reported, regardless of the treatment approach. More

than 89% of patients would endorse undergoing Rhinophyma treatment, irrespec-

tive of the specific method used. Various treatment options exist, with the choice

often influenced by both the practitioner’s preference and the patient’s treatment

objectives.

3D scanning and modelling is a common approach in diagnosis and treatment

for many disease categories [281]. The study by Hollander et al. [282] has discussed

the importance of 3D measurements for the surgical treatments in the area around

the eye. Similarly, having access to the 3D model of a Rhinophyma nose could aid

the disease monitoring, and surgical procedures for clinicians.

4.2 Rhinophyma Data

Since Rhinophyma affects the facial skin, the available dataset for this disease cate-

gory is limited. Computer-aided diagnosis studies typically rely on tele-dermatology

repositories/websites, which also lack Rhinophyma datasets. Our previous work[262]

lists the most popular teledermatology websites, among which DermnetNZ [75], Der-

mIS [114], dermatoweb.net [283] contain 9, 28, 9 images, respectively. However,

SD-260 [126] contains 178 images, which can be obtained upon request from the

main authors. In this chapter, 224 images were collected from these sources, but

most of the cases are limited to mild and moderate categories of Rhinophyma. To

supplement the dataset, the additional 44 images were collected from the Google

search queries, resulting in a total of 268 images. Nonetheless, the dataset does

not encompass every potential deformation caused by Rhinophyma. These images

served as crucial references and have contributed to the development of the 3D mod-

els, discussed in the Section 4.4. Among these, only 220 images are suitable to be

used for classification discussed in the Section 4.5. Out of 220 images, there are 77

mild, 118 moderate, and 25 major/severe cases of Rhinophyma.

Having access to all possible cases of deformations is crucial for constructing
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a statistically accurate computer-aided diagnosis pipeline. This ensures that the

dataset has enough diversity and represents the overall population, thus bridging

the statistical gap in the data availability.

4.3 Towards 3D Face Modelling Approach

To the best of our knowledge, there is currently no existing work on Rhinophyma,

specifically in the field of computer-aided analysis of the diseases. However, the

extensive review of the literature in Chapter 2 reveals various studies conducted

on the broader condition of Rosacea skin. The use of 3D data offers substantial

potential in practical applications because it aligns more closely with the physical

world, thanks to the additional detailed depiction of object characteristics. This

section aims to broadly discuss the implementation and benefits of a parametric

approach to 3D modelling and reconstruction, particularly in facial and medical

applications.

As discussed in Chapter 2, the paramteric modelling frameworks such as Statismo

[235, 152] and Scalismo [152] were employed for tasks such as model construction,

surface registration, and Active Shape Model fitting. Primarily, Scalismo is devised

to generate and analyze statistical models concerning shape and appearance, finding

applications in fields like medical imaging and computer vision. However, Scalismo

can be demanding in terms of resources, especially during the creation and analysis

of large, intricate 3D models. It does not offer extensive options for exporting or

converting models into other formats. While Scalismo does provide a handful of

pre-existing 3D models that users can alter to generate deformities, it also allows

users to export their personalized 3D models. Nonetheless, it does not provide the

functionality to construct a 3D face from a single image or a series of 2D images.

Furthermore, the basic 3D face model incorporated in the Scalismo software lacks a

significant number of vertices for manipulation. During the design of deformations

in the nasal region, unintended alterations to other facial features can occur, lead-

ing to undesirable stretching of these areas. In situations where extensive vertex

manipulation is required, such as in the case of Rhinophyma deformities, having in-

creased control over the nose’s deformations is crucial. Moreover, Scalismo does not

offer direct support for texture mapping or synthesis. However, it can be utilized

alongside other software tools for texture mapping and rendering, thus enabling the

generation of realistic 3D models with human-like textures. Given these limitations,
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Scalismo may not be seen as an ideal solution for our problem.

On the other hand, there are various open-source 3D software options that of-

fer greater flexibility in modelling and can better accommodate deformations with

more intricate details. Blender[284] is a popular choice among software options for

3D modelling. It excels in producing high-quality renderings and animations, pro-

viding significant flexibility for creative design and experimentation. In addition

to its robust graphical capabilities, Blender also supports interactive scripting in

Python, which opens avenues for further engineering and customization. Blender

is also equipped with a variety of add-on tools or extensions tailored for medical

and clinical use, including but not limited to DICOM importer [285], Slicer [286],

and Brain3D[287]. For the purpose of our research, we have focused on creating our

parametric 3D model from scratch, with the assistance of an artist using Blender.

Subsequently, we have modeled the deformities induced by the disease.

4.4 Methodology

4.4.1 3D Models Design Approach

Severity
level

Severity
score

Description of skin features Range of
severity scores

Mild 0 No evidence of Rhinophyma 0.0 to 0.4
1 Mild skin thickening 0.5 to 0.9

Moderate 2 Moderate skin thickening 1.0 to 1.4
3 Strong skin thickening, small lob-

ules
1.5 to 1.9

Major/Severe 4 Lobules with fissures 2.0 to 2.4
6 Giant Rhinophyma 2.5 to 3.0

Table 4.1: Rhinophyma classification by el AZHARY et al. [278], score and range
of severity by Wetzig et al. [279] scores (RHISI- Rhinophyma Severity Index) along
with skin features as a design reference for 3D modelling.

In the creation of 3D head models, several key elements were taken into account:

1. According to the medical literature, Rhinophyma predominantly affects indi-

viduals with fair skin of Celtic origin and the Caucasian race, most commonly

between the ages between 50 to 70 and Rhinophyma skin condition is rare

among African American populations and in Asia [277]. Evidence support-

ing this observation can be found in various datasets, including SD-260 [126],
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Figure 4.1: Illustration of 3D head models for both female and male, with severity
level 0 (no deformations), representing typical facial features unaffected by Rhino-
phyma.

DermnetNZ [75] from New Zealand, DermIS [114] from Germany, and Derma-

toweb.net [283] from Spain. These factors were integral to the decision-making

process when determining the 3D design choices. Hence, we have considered

these constraints in designing the head models, ensuring that they resemble

individuals of Caucasian and Celtic race, specifically within the age group of

the 50s. This approach aligns with our objective to create a ‘proof-of-concept’

for the early diagnosis of Rhinophyma. The design of the models to mirror

individuals in their early 50s is an intentional choice, allowing for the simula-

tion of the particular appearance and texture of the skin commonly observed

in this age group.

2. Furthermore, the latest study shows that among 31 people affected by Rhino-

phyma, there are 30 males for every 1 female [277]. In the existing dataset

of 220 images, there are only 5 females compared to 215 males, revealing a

pronounced gender disparity in the data acquisition process. Although this

imbalance is beyond our control, we can address it by generating synthetic

data. To bridge this gender gap, we have taken the initiative to design both

male and female head models, a step that aligns with our commitment to

equitable representation of gender.
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3. The severity of Rhinophyma, classified into mild, moderate, and severe (major)

categories [278], was an initial consideration. Following this classification,

we incorporated all available images and analyzed the deformation patterns

associated with Rhinophyma to ensure a comprehensive assessment that spans

the full spectrum of severity observed in the condition.

4. The data was then organized according to the Rhinophyma Severity Index

(RHISI) [279] measure, a diagnostic tool where severity levels are scored from

0 to 6, as outlined in Table 4.1.

5. Images were further arranged based on this severity score, aiding in the precise

modelling of nose vertices. To encapsulate all potential real-world deformation

features, a numerical range of scores was defined within the design parameters,

also detailed in Table 4.1.

6. As shown in Figure 4.1, the deformation is part of a set of variants, labelled

as ‘nose variant 1’. In an effort to generate a broad array of deformations,

three sets of nose variants were created for both female and male head models.

These variants were labelled ‘nose variant 1’, ‘nose variant 2’, and ‘nose variant

3’. Each gender’s nose variants differed from the other, resulting in a total of

six unique variants.

7. These nose variants can be adjusted according to the range of severity scores

employed in the design (as listed in Table 4.1), with nose variant names selected

at random.

8. Given the real-world implications of Rhinophyma, it was vital for the 3D

models to accurately portray the typical texture of Rhinophyma-affected skin.

Therefore, textures matching the description of skin features on and around

the nasal structure were also incorporated.

4.4.2 Rhinophyma 3D Models

Within a 3D space, two entities are defined as follows:

1. Female head model, denoted as X1

2. Male head model, denoted as X2
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The entities X1 and X2 possess a static set of points, termed as C. This im-

mutability is due to the constant overall spatial distribution of each model. Changes

to the points in the nose region transpire only when a deformation is applied. The

vertices within the nose area are divided into separate sets. These sets, specific to

each model, are denoted as a for the female model X1 and b for the male model X2.

For each entity, there exist three nose variant sets. For entity X1, these are

represented as a1, a2, a3:

a1, a2, a3 ∈ X1

For entity X2, the nose variants are denoted as b1, b2, b3:

b1, b2, b3 ∈ X2

The quantity of vertex points in each nose variant range a1, a2, a3, b1, b2, b3 from

1 to a fixed number of points. The illustration of various 3D head models and

various nose variants are illustrated in the Fig 4.2. Both female and male head

models embody geometric sophistication with 191,857 vertices, linked together by

383,600 edges. These vertices and edges combine to create 191,744 faces, which are

subsequently segmented into 383,488 triangular elements.

4.4.3 Rendering Set-up

The process of rendering involves intricate procedures to create a 2D image or an-

imation from a 3D model or scene. The goal of rendering is to create realistic

and visually appealing images that accurately represent the scene or object being

rendered. Once the 3D object is created, then the rendering process starts that

comprises various series of steps.

The first step of rendering is to position and adjust the 3D model to create the

desired composition. Once the model is in place, cameras and lighting are added to

the scene to create a realistic appearance. Then rendering settings are applied that

include setting the 2D image resolution, choosing the output file format, and camera

intrinsics. During or after this process an optional background scene can also be

added. Once the rendering starts, the objects/scenes are manipulated according to

the prearranged settings which produces animations or 2D images. Similarly, our

rendering set-up involves the following steps:
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Figure 4.2: An illustration of female and male head models with 6 nose variants at
3 levels of Rhinophyma severity.

1. This process commenced with the rendering of two three-dimensional (3D)

objects, designated as X1 and X2, utilizing an identical protocol.

2. The rendering process initiates with the placement of object X1 at the core of

the 3D coordinate system, specifically at the coordinates (0, 0, 0). Following

its positioning, X1 undergoes a rotation in Euler mode, precisely 90 degrees

around the x-axis, no rotation around the y-axis, and an additional 90 degrees

around the z-axis.

3. Each object is constituted by three distinct nose variants (groups of vertices)

labeled as a1, a2, and a3. The primary objective was to randomly assign

these groups of vertices during each rendering iteration. Moreover, every nose

variant had a value range set between 0.5 and 3.0. Values ranging from 0.5 to

1 were classified as mild, values between 1 to 2 as moderate, and those within

the range of 2 to 3 as severe.

4. In our experiment, each object underwent the generation of 1,000 random

deformations. The selection of the nose variant and the corresponding nose

deformation severity level was randomly performed for each deformation. After

the generation of Rhinophyma nose deformities, a configuration of 10 cameras
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was established in a semi-circular arrangement around the object, with a radius

of 60 units and a height of 10 units. Each camera was situated at an interval

of 18 degrees from the adjacent one. The rationale behind the configuration

of ten cameras was to capture the object from varied perspectives, resulting

in ten 2D images for each Rhinophyma category. This setup is illustrated in

Fig. 4.3.

5. Subsequently, the rendering process commenced using Blender’s built-in ren-

dering engine, CYCLES. The output was generated in the form of 2D images

of each object, totaling 10,000 images per object and thereby amassing a sum

of 20,000 images. The dimension of each output image was set to 960 × 540

pixels, saved in .png format. Simultaneously, pertinent details related to the

rendering process, such as the total number of cameras, active camera name,

camera focal length, camera location and rotation details, nose deformation

severity, severity label, and active nose variant, were documented in .json for-

mat as shown in Fig. ??. The resultant meshes corresponding to each nose

deformation severity were archived in .ply format.

6. To optimize the rendering process, each head model underwent rendering in

three separate batches to maximize GPU utilization, outputting 350 itera-

tions per model. As the equipped GPU reaches the processing threshold,

it exceeds the memory constraints, leading to an automated termination of

Blender. Thus, segregating the process into three batches facilitates efficient

use of resources while preventing system failures due to memory overflows.

The comprehensive rendering process for the male and female head models

required approximately 303 hours and 43 minutes, which is equivalent to 12

days, 15 hours, and 43 minutes. The volume of the produced content accumu-

lated to 31.7 GB. The experimental procedures were conducted on a system

outfitted with an AMD Ryzen 9 5900X 12 core CPU, an Nvidia Geforce RTX

3060 (12 GB) GPU, and 32 GB RAM, operating on a Linux-based operating

system.

7. As a result, we have obtained 395 mild, 809 moderate, and 796 ma-

jor/severe cases of Rhinophyma in the synthetic dataset.
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(a)


(b)


Figure 4.3: An illustration of female and male 3D head models with added deforma-
tions that present patterns of Rhinophyma. Sub-figure (a) displays the female head
model with a deformation applied to nose variant 1 at severity level 2.90. Similarly,
sub-figure (b) presents the male head model with a deformation applied to nose
variant 1 at the same severity level.

4.5 Synthetic Rhinophyma images for Classifica-

tion

The role of classification is paramount in the realm of computer-aided or deep

learning-assisted medical diagnosis. This process enables accurate identification

and sorting of diseases or irregularities, thereby guiding the selection of appropriate

therapeutic approaches or interventions. Consequently, the verification of syntheti-

cally generated images becomes a necessity to confirm their capability to adequately

represent features and perform optimally when used with real datasets. The com-

parative phase of the classification process juxtaposes these synthetically produced

Rhinophyma images with genuine, normal nose images, which were sourced and

readied using the FFHQ dataset [194].
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In the context of this research, the binary classification task, distinguishing be-

tween Rhinophyma and normal nose images, is designed to establish a foundational

understanding of the model’s capability to discern distinct features. While binary

classification might seem straightforward, its application to medical imaging, par-

ticularly with synthetic images, presents unique challenges. These include ensuring

the synthetic images are sufficiently detailed and representative of the condition’s

variability. Furthermore, in medical diagnosis, even binary classification tasks can

be complex due to the subtle and varied manifestations of many conditions. There-

fore, the simplicity of the task should not undermine its importance, as it provides

an essential step towards more complex, multi-class classification in future studies.

Additionally, binary classification serves as a realistic starting point for testing and

validating the effectiveness of synthetically generated images before proceeding to

more nuanced tasks. It lays the groundwork for more complex analyses and is a

common practice in the field to validate new methodologies or technologies.

4.5.1 Synthetic Data Preparation

As discussed in the Section 4.4.1, the head models X1 and X2 were rendered through

10 cameras, resulting in 20,000 images. Among these, the frontal view of the faces

captured through 3 cameras are considered for the classification, resulting 6000

images (X1: 3000 and X2: 3000) in total. Nonetheless, as depicted in Fig.4.4, these

images incorporate some background elements during the rendering process. In

order for a model to learn Rhinophyma patterns, the background information is not

necessary. Consequently, the face parsing technique, which employs 68 landmark

points [288] as illustrated in Fig.4.5, was applied to the synthetically generated

Rhinophyma images.

The face parsing mechanism follows as below:

• A facial landmark detector was constructed using a pre-trained model from

Dlib [289]. This model has the capability to identify the coordinates of 68

critical points on a human face. This method demonstrates its effectiveness

particularly when the whole face is visible without any artifacts or obstructions

in the facial region.

• Four landmark points were manually identified to form a Region of Interest

(ROI) to capture the nose region.
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Figure 4.4: Generated images of the female (left) and male(right) images after ren-
dering through the camera no. 5 (on the top), 6 (middle) and 7 (bottom).

• These four points were used to create a mask and extract the aforementioned

region surrounding the nose from the rendered images.

• However, this parsing technique could not be applied to some extreme cases

of Rhinophyma due to the inability to detect the nose and lip regions. Conse-

quently, 37 images remained unparsed, despite attempts with various landmark

points.

• Following the application of the optimal parsing technique, the resulting num-

ber of synthetic Rhinophyma samples is 5963 in total, which are used for

classification. The images after applying the parsing are shown in Fig. 4.6.

133



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

Figure 4.5: Demonstration of 68-landmark points on the top subfigures illustrated
in Fig.4.4

4.5.2 Normal Nose for Classification task

As elucidated in section 4.5.1, the synthetically generated Rhinophyma images con-

stitute one class, while the normal nose forms another class, sourced from the FFHQ

dataset [194]. The same parsing technique and parameters applied to the synthetic

Rhinophyma images were also utilized for the FFHQ dataset, resulting in 6000 pre-

pared images for the classification task. The primary objective of this classification

process is to differentiate between the normal nose and the Rhinophyma nose, neces-

sitating a binary classification. The dataset was partitioned for training, validation,

and testing in a ratio of 70:20:10.

4.5.3 Real-world Rhinophyma data preparation

As elaborated in Section 4.5.3, a total of 268 authentic/real-life Rhinophyma images

were amassed from diverse sources, 178 images are from SD-260 dataset[126, 170],

and 90 images were gathered from Teledermatology websites [75, 114, 283] and

Google Search results.

Of the total 268 images, successful parsing was achieved for 74 images, while

parsing was unsuccessful for the remaining 194. The cause of this parsing failure

can be traced back to difficulties in facial landmark detection when the full face is

not visible or when the eyes appear blurred. Detailed scrutiny of the unparsed 194

images indicated that 48 of them collected from Google search results were unfit

for cropping due to the existence of artifacts, such as oversized eyeglasses, reduced

resolution, or partial nose visibility. As a result, these 48 images were eliminated,

and the remaining 146 images were cropped, focusing on the nasal region.

It is crucial to note that given only partial regions of the faces or noses were

visible, the same 48 images were also presented to a 3D artist. The artist was
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Figure 4.6: Example images of the female (left) and male(right) images through the
camera no. 5 (on the top), 6 (middle) and 7 (bottom) after the Parsing technique
has been applied.

tasked with understanding and replicating the various stages of Rhinophyma (mild,

moderate, severe) to accurately create 3D models.

Following this, the 146 cropped images were amalgamated with the 74 images

to which parsing was successfully applied, and resized to 224 × 224 pixels to fit

the specifications of the chosen classification models. This yielded a total of 220

processed images, all categorized under the real Rhinophyma class. As a result, the

most valuable data for the final test set of the real Rhinophyma class came from the

SD-260 [126, 170] and tele-dermatology websites [75, 114, 283].

135



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

To balance this dataset, a supplementary batch of 220 unseen images were pre-

pared from the FFHQ dataset [194], and classified as real normal nose samples.

Thus, the final dataset comprises 220 real Rhinophyma images labeled ‘rhi’ and 220

real normal nose images labeled ‘norm’. This batch serves as the genuine test set,

as it encompasses real-world Rhinophyma nose images.

To sum up, the classification task leverages a training set, which includes syn-

thetic Rhinophyma images and real nose images, complemented by a validation set

and test set constituted of similar categories of images. This is then followed by

a test set containing real-world Rhinophyma images and real-world normal nose

images. Consequently, two test sets are employed: one encompassing synthetic

Rhinophyma images and the other containing real-world Rhinophyma images. The

rationale behind the implementation of two separate test sets is to enable a com-

parative evaluation of the performance of the classification models. This dual test

set strategy provides a more robust and comprehensive analysis.

4.5.4 Classification Models

Given the constrained size of our dataset, our exploration is confined to those archi-

tectural frameworks that have demonstrated effective performance within resource-

limited scenarios such as input data, computational resources, memory, by leading to

limited power consumption. The MobileNet family consists of a series of lightweight

Convolutional Neural Networks architectures designed and optimized to perform ef-

ficiently for limited-resource applications. For this reason, the family of MobileNet

is suitable for deployment on mobile and embedded devices. The MobileNet family

includes MobileNet-V1 [89], MobileNet-V2 [290], and MobileNet-V3 [291].

MobileNets are efficient neural networks designed for mobile vision applications.

The initial version, MobileNet-V1 [89], uses Depthwise Separable Convolutions [292]

to create lightweight architectures. It reduces overfitting due to its smaller size and

allows fine-grained feature extraction. Knowledge distillation [293] provides facial

attribute classification with comparable performance to larger models. MobileNet-

V2 [290] surpasses its predecessor in accuracy while maintaining computational ef-

ficiency. It introduces inverted residuals and linear bottlenecks that enhance in-

formation flow. Innovative features such as linear up sampling and an expansion

layer preceding each depthwise convolution enables broader feature extraction and

information propagation. MobileNet-V3 [291] employs platform-aware Neural Ar-

chitecture Search (NAS) for globally optimized network structure. It introduces
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Hard-swish, a new activation function, and integrates Squeeze-and-Excitation (SE)

[294] blocks into its architecture, enhancing pattern representation. It utilizes effi-

cient layers in its final stage and provides two different variants for different resource

constraints and use-cases. In this work, we have experimented on our dataset with

MobileNet-V2, and MobileNet-V3-Large.

4.5.5 Results and Discussion

The results using classification models MobileNetV2 [290], MobileNetV3-Large [291]

are given in Table 2.

Table 4.2: The classification results. The scores calculated using various metrics on
the real test set are highlighted in orange.

Exp. Model Test accuracy Precision Recall F1 score
Synth Real Synth Real Synth Real Synth Real

1 MobileNet-

V3-Large

1.00 0.89 1.00 1.00 1.00 0.80 1.00 0.89

2 MobileNet-

V2

1.00 0.97 1.00 1.00 1.00 0.95 1.00 0.98

Across all three experiments, input images for training, validation, and test sets

were subjected to normalization. Augmentation procedures entailing rotation, width

and height shifts, zooming, shearing, and both horizontal and vertical flipping were

employed.

In our study, we employed transfer learning techniques for both experiments, uti-

lizing pre-trained MobileNet architectures as the foundational base for our models,

allowing us to leverage their powerful feature extraction capabilities.

Experiment 1 utilized the pre-trained MobileNet-V3-Large model as a base, en-

hanced with custom layers: Global AveragePooling2D, two BatchNormalization lay-

ers, a Dense layer with 256 neurons (ReLU activation and L2 regularization of 0.01),

and a Dropout layer with a rate of 0.5. An output layer was appended, comprising

a Dense layer with a single neuron utilizing a sigmoid activation function. Weights

of the MobileNet-V3-Large base model were frozen to conserve learned features. An

early stopping mechanism, monitoring validation loss with a patience of 3 epochs,

was incorporated, alongside a Model Checkpoint to store the best performing model

during training. The model underwent training for 20 epochs with a batch size

of 32. The model compilation involved binary cross-entropy loss with the Nadam
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optimizer, maintaining a learning rate of 1e-5 and an L2 regularization factor of

0.01.

For Experiment 2, the pre-trained MobileNet-V2 model, supplemented with cus-

tom layers: GlobalAveragePooling2D, BatchNormalization, a Dropout layer with a

0.5 rate, a Dense layer with 128 neurons (ReLU activation and L2 regularization of

0.01), and another BatchNormalization layer. The output layer was a Dense layer

with a single neuron employing a sigmoid activation function. The MobileNet-V2

base model weights were frozen, allowing only the custom top layers to be updated.

Adam optimizer was used with a learning rate of 1e-4. Early stopping monitored

validation loss with a patience of 4 epochs, and Model Checkpoint was used to save

the best model. The model underwent training for 50 epochs with a batch size of

32.

Despite the multitude of experiments carried out in this investigation, only the

most impactful two results have been presented to maintain conciseness and rele-

vance to the research. The post-training evaluation of our models involves assess-

ments of the evaluation metrics such as test accuracy, precision, recall (sensitivity),

F1 score and confusion matrix. Experiment no. 2 performed with the highest test

accuracy. Upon thorough assessment, it can be determined that the ‘Recall’ serves

as the most effective metric for gauging the model’s performance, as its outcomes

align seamlessly with the computations derived from the confusion matrix shown in

Table 4.3.

Table 4.3: Confusion matrices for each classification model based on the Second Test
Set. The Positive Class is “Normal Nose” and the Negative Class is “Rhinophyma”.

Model Class labels
Confusion Matrix

Normal Rhinophyma

MobileNet-V3-Large
Normal 220 (TP) 0 (FP)

Rhinophyma 44 (FN) 176 (TN)

MobileNet-V2
Normal 220 (TP) 0 (FP)

Rhinophyma 10 (FN) 210 (TN)

4.5.6 Class Activation Maps

To delve further into this phenomenon, Gradient-weighted Class Activation Mapping

(Grad-CAM) [295] was leveraged as an instrumental tool to reveal the underlying

decision-making mechanisms within the classification models. Grad-CAM assists

in highlighting the regions within the test image that have the most substantial
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influence on the final classification decision. Given that the study was centered

around the classification of images conditioned on the presence of Rhinophyma, the

resulting Grad-CAM heatmaps vividly indicated an emphasis on the nasal regions,

as demonstrated in Fig.4.7.

In Fig.4.7, a thorough comparison between the masked and manually cropped

images for both models reveals substantial adeptness in picking up the features

within the masked category of real-world Rhinophyma images, as the classification

models were trained on masked images. Intriguingly, the model further displayed

its competence in identifying Rhinophyma characteristics within manually cropped

images, thereby substantiating the efficacy of the image masking approach. This

approach encourages the models to concentrate on key features, thus enhancing its

capacity to accurately detect real-world instances of Rhinophyma in both masked

and manually cropped images.

In addition to the quantitative/statistical comparison presented in Table 4.2

and Table4.3, visual comparisons are presented through GradCAM visualizations

for both the MobileNet-V3-Large and MobileNet-V2 models, as well as for both

masked and manually cropped images. Upon detailed inspection of Fig.4.7, profi-

ciency in identifying features within the nasal anatomy of the face is exhibited by

the MobileNet-V3-Large model, independent of whether the images are masked or

manually cropped. However, through comparative analysis, it is revealed that the

MobileNet-V2 model performs in a superior manner, covering a broader region of

the nasal anatomy with a distinctive focus on key features on the masked images.

When the performance on manually cropped images is compared, it becomes ap-

parent that MobileNet-V2 excels in localizing its focus on the nasal region, whereas

MobileNet-V3-Large demonstrates difficulty in achieving precise localization.

To summarize, while competency in identifying Rhinophyma features is displayed

by both models, superior performance in feature detection for both masked and un-

masked images, particularly localizing Rhinophyma, is demonstrated by MobileNet-

V2. This observable pattern robustly substantiates the models’ ability in accurately

identifying salient features of Rhinophyma, thereby validating the comprehensive-

ness of the proposed/implemented approach.
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Figure 4.7: Visualisation of feature maps produced by the classification models using
GradCAM[295]. Images used in this visualization are taken from SD-260 [126]. The
top two rows consist of images that are parsed according to the parsing technique
discussed in Section 4.5.1. On the other hand, the bottom two rows feature manually
cropped images with an emphasis on the nose region, as discussed in Section 4.5.3.

4.6 Limitations and Discussion

In this chapter, the 3D modelling of Rhinophyma-affected noses and the genera-

tion of synthetic data were presented through rendering 3D models for both males

and females, resulting in 1000 rhinophyma patterns for each gender. A notable

limitation emerged from the scarcity of real-world rhinophyma data for testing the

classification models. Within the custom-prepared dataset of 220 real-world Rhino-

phyma images, only 5 are female, and 215 are male. This gender bias is reflective

of what is found in publicly available datasets, such as SD-260 and images from

teledermatology websites available for research. According to the latest study on

prevalence of Rhinophyma [277], the imbalance may be explained by the observed

1:5 female-to-male ratio affected by Rhinophyma. However, this issue needs careful

consideration in future data acquisition for this disease.

The employed masking technique encountered difficulties in identifying synthetic
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Rhinophyma instances, especially where notable nasal enlargement toward the lips

was present in major or severe cases. These challenges stemmed from the inherent

traits of the 68-landmarks algorithm [289], a conventional facial feature recognition

method that pinpoints specific features like corners of the eyes, nose tip, and facial

contour. For optimal performance, this technique generally necessitates a full or

nearly full facial view, and its precision diminishes with obstructed or partial views.

In synthetic Rhinophyma images with major or severe conditions, the expansion

of the nose towards, or overlapping the lips, posed significant detection challenges.

Consequently, successful masking of 37 images, including 12 depicting the most

severe synthetic Rhinophyma cases, could not be achieved. These images, hence,

were omitted from the classification task. Alternative algorithms like Haar cascades

[296] were also explored, but the standard Haar cascade, typically tailored for full-

face contexts, proved unsuitable for nose detection in this instance.

The challenges described above were significantly more pronounced when prepar-

ing the real-world Rhinophyma dataset for testing the trained classification models.

These difficulties were compounded by the inherent photo capturing style, cropping,

and anonymization methods used in the SD-260 [126] and teledermatology datasets

[75, 114, 283]. These methods concealed other key facial features, focusing on the

Rhinophyma affected nose. Working with this data proved to be a daunting as

well as time-consuming task and the preparation phase necessitated careful manual

cropping.

This issue also arose when attempting to mask the background and unnecessary

facial anatomy in the FFHQ dataset [194]. The presence of sunglasses and other

accessories on the faces in the dataset posed challenges. However, this obstacle

actually assisted in filtering the appropriate images for this research, where only the

full nose was required to be clearly visible. Since the FFHQ dataset is extensive,

accessing and preparing more images with clearly visible noses was not a problem.

Given these challenges, the development of masking algorithms for partially visi-

ble patient images is emphasized as crucial. Such algorithms would aid in efficiently

masking irrelevant anatomical details and ensure robust anonymization, thereby

enhancing the prospects for advanced deep learning-based diagnosis models and

expanding the range of potential applications in human face detection and segmen-

tation.

The challenge escalates when images obtained lack adherence to a consistent,

systematic protocol. Complications arose during dataset preparation due to the
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absence of standardization in clinical digital image capturing; images were often

acquired from extreme angles, highlighting the necessity for standardized proce-

dures, attuned to the disease’s specific characteristics, to ensure the procurement

of qualitative, accurate, and usable data. While this study predominantly aimed at

mitigating the medical domain’s visual data scarcity through synthetic data, having

access to more real-world data could enhance disease understanding. This may en-

able the generation of higher quality synthetic data in the future, aiding diagnosis

and potentially hastening the identification and treatment of Rhinophyma and other

facial skin diseases.

4.7 Utility of 3D Modelling and Synthetic Data

Generation of Rhinophyma

In this chapter, we have proposed and developed a ‘proof of concept’ which will

benefit the computer vision and medical research communities in the following ways:

• The main goal of this chapter is to generate data for Rhinophyma that can

help in combatting the data scarcity problem in deep learning models while

training for automated classification of Rhinophyma. During this study, we

have generated 20,000 images of Rhinophyma with 2000 possible deformations

for 3 levels of severity, and 2000 polygon (.ply) files.

• The generated images and the 3D models can be used for advertising and

education purposes while mitigating the hindrance of any privacy and licensing

issues while showcasing usage of the images in public.

• The obtained 3D point cloud of the nose can aid in visualising the nasal

anatomy in significant details. This visualisation can help in planning the

treatment and surgery.

• Followed by the visualisation, the treatment planning can be done with the

input of multiple experts for the complex cases, that will help them develop

the procedure in a way that will achieve the best possible outcome.

• These models can be manipulated and dissected virtually, providing an effec-

tive learning, designing, simulations of surgical procedures, allowing doctors to
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practice and refine their planning in a virtual environment before performing

surgery on actual patients.

• Further, these can be referred for post-surgery visualisation and record keep-

ing, further consultation and disease condition tracking in the future by en-

hancing personalized patient care facilities.

4.8 Conclusion and Future Scope

This study has aimed to make contributions towards addressing the data acquisition

challenges associated with Rhinophyma, a disease category that historically lacked

sufficient datasets for robust analysis. This research demonstrates the first successful

generation of synthetic data using only 268 clinical images covering various stages of

Rhinophyma, achieved through specially designed parametric 3D face models. These

models facilitated the rendering of 2000 potential deformations of a Rhinophyma

nose, with each deformation captured from 10 different perspectives, culminating in

a dataset of 20,000 images.

The utility and significance of the synthetic Rhinophyma dataset was validated

through its application in training deep learning-based classification models. Fur-

ther, testing on a real-world Rhinophyma dataset illustrated the value of synthetic

Rhinophyma data and highlighted the potential of our synthetic data generation

method through parametric modelling approach. This method helped in improving

the statistical imbalances of the disease, by reducing the long-tailed distribution

problem in medical data. This enhances classification accuracy, all of which were

possible even with a limited availability of real-world images with long-tailed distri-

bution.

In essence, the innovative approach to synthetic data generation demonstrated

in this study offers promising strides towards addressing data scarcity issues. It

provides a strong foundation for future research, not only in the study of Rhinophyma

but potentially for other disease categories as well. It emphasizes the importance of

the parametric modelling approach to producing high-quality synthetic data where

disease related fine-grained deformations were carefully designed, contributing to

more effective disease recognition and treatment strategies.

The developed 3D models can assist in visualizing the nasal anatomy in de-

tail, facilitating treatment planning, surgical simulations, and record keeping for

post-surgery consultations and disease tracking. The models offer potential for ma-
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nipulation and virtual dissection, providing a safe and effective platform for doctors

to refine their treatment strategies.

This study presents a ‘proof-of-concept’ for the computer vision and medical

research communities. It also showcases the potential for similar modelling and syn-

thetic data generation approaches for various other diseases that affect anatomical

features of the face and other parts of the human body. This can pave the way

for advancements in personalized patient care and the development of computer-

aided diagnostic models. Furthermore, the results reinforce the efficacy of synthetic

data in advancing medical research and the development of more effective deep

learning-based diagnostic models, highlighting the potential of such frameworks.

Through the combined efforts of 3D artists, computer scientists, and medical ex-

perts, methodologies such as 3D parametric models can be significantly valuable in

computer-aided medical diagnostic research and application. In an effort to advance

further research, these synthetic datasets and corresponding 3D models have been

made publicly available.

From a broad perspective, though the creation of 3D models still predominantly

requires manual effort, it is important to consider it as a one-time investment. Post

this initial investment, it is possible to generate an essentially unlimited volume of

impeccably labeled data. This data includes not only RGB images and segmentation

maps, but also depth images, stereo pairs from varying viewpoints, point clouds,

synthetic video clips, and other modalities.

4.9 Data and Code Availability Statement

The real-world Rhinophyma data for this study are obtained from the sources

as following:

1. SD-260 [126]: This dataset has been benchmarked by the study published

with the cited reference. The authors Sun et al. [126] have shared the data

upon signing the ‘Datasets Request Form’. Hence it is recommended that the

interested researchers can access the SD-260 dataset by requesting the first

author Xiaoxiao Sun, who kindly shared the dataset with us.

2. Teledermatology websites: We have obtained the additional data from three

teledermatology websites such as DermNet NewZealand (DermnetNZ) [75],

Dermatology Information Systsem (DermIS)[114], and Dermatoweb.net [283],
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which are available publicly and free to download from respective websites.

The generated Synthetic Dataset named “3D-rhi-synth-2000” in this study

is publicly made available at Zenodo with doi:10.5281/zenodo.8228258 [297].

The code and output are made available at: https://github.com/thinkercache/

Rhi-3D-Gen
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Chapter 5

Conclusion

It is important to underscore the significance of research outcomes within both

academic and real-world applied research & development contexts. The driving mo-

tivation behind this investigation was to explore new research avenues in addressing

the data acquisition challenges associated with diseases like Rosacea and its subtypes.

The principal goal was to overcome the hurdle of limited data by developing

synthetic data generation. To achieve this, we proposed innovative approaches,

leveraging Deep Generative Models (specifically, StyleGAN2-ADA) and harnessing

parametric modeling concept to custom-designed 3D Face Models.

This chapter delineates the primary methodologies employed, framing them

within the context of the individual Research Questions posited in this

thesis to highlight the contributions made through these outcomes. By revisiting

the RQs, we aim to succinctly discuss the rationale behind each methodological

choice, the concepts they are anchored in, and the major findings they yielded.

Subsequent sections will delve into the identified limitations of this research, paving

the way for a discussion on future prospects and a broader outlook.

5.1 Dissertation Overview by Revisiting Research

Questions

In Chapter 1, we formulated five research questions, which are addressed in the

subsequent chapters (2, 3, and 4) of this thesis. The central motivations behind this

research work revolve around exploring strategies to combat data scarcity in the

medical domain, emphasising Rosacea—a prevalent condition notably impacted by
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the limited availability of data.

These motivations form the foundation for the principal objective of this study:

to confront and navigate the significant challenges posed by data scarcity and the

restricted availability of visual data on Rosacea, by providing comprehensive answers

to the aforementioned research questions.

5.1.1 Revisiting Research Question- 1

For RQ1, which asked, “What potential approaches exist in current liter-

ature to address the issue of limited data for skin disease analysis?”, we

conducted a comprehensive literature review for the first time which is elaborated

in Chapter 2 of this thesis. No prior studies deeply explored this theme. Through

our research, it was discovered that the fundamental challenge in diagnosing skin

diseases lies in the lack of dermatologists in various countries, a fact sourced from

numerous departmental survey reports provided by public healthcare entities. The

scarcity of dermatologists and the consequent long waiting times underscore the

need to broaden the horizon of skin treatments through computer-aided diagnosis.

While it is essential to explore approaches for computer-aided diagnoses, another im-

pediment to its widespread adoption is the limited number of images and datasets

available for many prevalent skin conditions. Given that machine learning and deep

learning models power most modern computer-aided diagnoses, and these models

thrive on vast amounts of data, this shortage is concerning. Our examination of

17 publicly available datasets for skin conditions revealed many diseases, some as

prevalent as cancer, are underrepresented. Interestingly, while still limited, skin

cancer images are more abundant compared to other skin conditions. There are

only about 200 images of Rosacea in publicly available datasets. Publicly accessible

datasets contain roughly 200 images of Rosacea. Of these, only a few offer a clear

full-face view. When contrasted with research based on skin cancer images, the an-

notated Rosacea images are significantly fewer. This poses a considerable challenge

in dividing the dataset for training, validation, and testing of deep learning models..

Additionally, we analyzed several major studies in other medical imaging domains,

only to find that datasets are generally scarce for deep learning applications in med-

ical imaging. In this age dominated by ‘big data’, we emphasize the importance of

smaller datasets, especially in fields like dermatology that rely on visual inspection

for diagnosis.

In addition to these overarching issues, we reviewed numerous studies on Rosacea

147



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

and their methodologies. Many Rosacea studies utilized confidential data, making

it difficult to obtain and reproduce their results. This limitation further empha-

sized the importance of leveraging publicly available datasets, regardless of their

size. Consequently, we investigated deep learning and computer vision techniques

known to yield satisfactory outcomes even with limited data, such as Data Augmen-

tation, Transfer Learning, Generative Adversarial Networks, Meta-Learning, and 3D

modeling phenomena.

From our examination of existing studies on data augmentation and transfer

learning, several key observations emerge:

• The majority of work using transfer learning for skin disease analysis began

around 2016.

• The focus of most studies was on subtypes of skin cancer, such as malignant

melanoma and benign nevi.

• While many studies utilized datasets comprising over 1,000 images, only a few

worked with datasets smaller than this threshold.

• Although data augmentation and transfer learning techniques have been em-

ployed in several studies, they come with certain limitations. While these

techniques can transform images by zooming, cropping, flipping, and rotating,

they don’t always significantly improve results when only a sparse set of data

is available for specific skin conditions.

• Implementing these techniques when training a deep learning model requires

partitioning the existing dataset into training, validation, and testing subsets.

This process can further limit the data’s utility, especially in cases where the

initial dataset is already small.

To address the challenges of limited data, Generative Adversarial Networks

(GANs) have been investigated to produce synthetic data. By generating high-

quality, diverse synthetic samples, GANs enable significant augmentation of datasets.

This augmentation can alleviate some of the typical constraints faced when divid-

ing limited datasets into separate segments for training, validation, and testing in

classification problems. A review of studies centered on GANs reveals:

• The bulk of GAN-related research in the domain of skin disease classification

commenced around 2018.
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• The diseases predominantly used for creating synthetic image datasets are

melanoma or cancerous skin lesions.

• There appears to be no research specifically targeting Rosacea or any other

facial skin conditions.

• A minimum of 2,000 real-world images is typically utilized as the starting point

for producing synthetic images.

• The ISIC 2017 and 2018 datasets are frequently employed across various stud-

ies.

• In terms of architecture, DCGAN, ProGAN/PGAN, and LAPGAN are the

most common models applied to generate synthetic images.

For an accurate study of a facial skin condition like Rosacea, there is a pressing

need for full-face images that capture detailed anatomy. As a result, the objective for

a GAN in this context should be to generate comprehensive facial synthetic images,

rather than segments of the face.

Considering contemporary progress in the field, studies by Bissoto et al. [189]

and Chai et al. [150] underscore the superior capabilities of noise-based GANs like

StyleGAN2 [43] in generating high-quality facial images and distinguishing faces

from background noise. These advancements, primarily evaluated using CelebA

and FFHQ datasets, suggest promising applications in synthesizing images of facial

skin conditions such as Rosacea.

While not a primary focus of this research, we did examine the potential of Meta-

Learning and the few-shot classification approach for such applications. However,

very limited work has been done in this domain, with most studies beginning around

2020. Insights into the application of this approach for skin diseases are scarce. The

motivation to explore Meta-Learning stemmed from its advantages in training and

hyperparameter optimization, especially when dealing with limited samples. It can

be viewed as an advanced form of classification modeling approach, involving a

higher level of optimization. However, given the paucity of studies and insights, we

decided not to delve further into this approach within the scope of this thesis. Meta-

learning aims to gather knowledge across various tasks to enhance base-level learning

and task-specific generalization. While promising, it’s still an evolving research area,

lacking the maturity of established machine learning methods. Meta-learning models

are sensitive to hyperparameters, needing careful tuning, and accurately evaluating
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performance in few-shot scenarios is complex, often requiring multiple test runs for

reliable results.

We further delved into a variety of 3D face modeling techniques, examining

both parametric and statistical models currently in practice. These modeling meth-

ods have been a mainstay in medical imaging applications since their inception.

Among them, 3D Morphable Face Models and Gaussian Process Morphable Models

(GPMMs) stand out as the prevailing approaches for facial modeling. Reasons for

choosing 3D modeling for our study include:

• Extension Beyond Linear Span: GPMMs can extend beyond the linear span

of the training data, making them especially suited for scenarios with limited

training data.

• Generative Nature: GPMMs are generative, meaning they can capture and

reproduce various facial features.

• Efficient Approximation: They can approximate shape variations using only a

moderate number of leading basis functions or eigenvectors.

• Precision in Detail: For many anatomical shapes, detailed deformations often

occur only in specific parts of the face. GPMMs excel in capturing these

nuanced deformations precisely where they manifest.

• These modeling methods, while widely used in medical imaging applications,

have surprisingly never been employed for modeling facial deformations. This

unique gap presented a compelling rationale to the use of 3D modeling for

such deformations in our research, especially for a condition like Rhinophyma.

Intriguingly, this precision holds promise, especially when it comes to integrat-

ing expert medical knowledge into the model to accurately represent fine-grained

real-world disease deformations. Given that GPMMs combine parametric modeling

with a generative approach, we further studied them with the aim of modeling the

anatomical changes caused by Rhinophyma. Our goal was to generate synthetic

data that encapsulates fine-grained details, closely resembling real-world examples.

In summary, a comprehensive review of existing data on skin diseases, especially

Rosacea, coupled with insights from computer vision and deep learning techniques,

provides clear guidance for addressing subsequent research questions in the ensuing

pages. This in-depth literature exploration offers invaluable insights and charts a
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strategic course, enabling the crafting of research methodologies that adeptly con-

front the challenge of data scarcity through a clearly defined roadmap.

5.1.2 Revisiting Research Question- 2

For RQ2, which posed the question “Can GANs be effectively utilised to gen-

erate synthetic images from a limited dataset, enhancing the dataset’s

volume and diversity for improved skin disease analysis?”, we undertook

a study to generate high-fidelity synthetic faces for Rosacea subtypes 1 and 2

from limited data, as detailed in Chapter 3 of this thesis. As discussed in our

revisit to RQ1, there are approximately 200 images of Rosacea in publicly available

datasets/repositories. Of these, only a handful provide a clear full-face view. To

address RQ2, we curated a unique dataset from three distinct sources: the Irish

Dataset [263], SD-260 [126], and Google search results. This compilation is referred

to as “rff-300 (Rosacea-full-face-300)”.

In Chapter 3, we delved into prominent works on noise-based GANs, with a focus

on synthetic face generation. We scrutinized their strengths and weaknesses as they

evolved from the original GANs in 2014 to the state-of-the-art StyleGAN2-ADA in

2021. This examination deepened our comprehension of issues like convergence and

mode collapse inherent in these models. Given that StyleGAN2-ADA is designed

to address challenges with limited data, it emerged as a suitable candidate for our

research question. However, it’s noteworthy that StyleGAN2-ADA was typically

trained, developed, and evaluated using a minimum of 1,000 images for experimental

validation. In contrast, our study utilized a more constrained dataset of only 300

images, albeit ones with fine-grained and crucial features representing the Rosacea

condition. With such a limited dataset, retaining the most salient features during

network training and subsequent synthetic image generation becomes challenging.

This underscored the need to explore strategies that would complement and enhance

the results obtained with the adaptation of StyleGAN2-ADA.

Fundamentally, GANs engage in a Minimax zero-sum game, aiming to learn the

data’s distribution—a pattern of pixel values rendering images coherent. The gen-

erator’s objective is to craft synthetic images mimicking this distribution so closely

that differentiating between real and synthetic visuals becomes a challenge. Given

GAN’s foundation on the Zero-sum game principle, the expected outcome is a Nash

Equilibrium, where neither component can further optimize without altering the

other’s parameters. Central to this is the cost or loss function, influenced by in-

151



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

tegrated R1 Regularization. Achieving minimal divergence between training and

model distribution is paramount, targeting the lowest loss at equilibrium. It’s rec-

ognized that the strength of R1 regularization plays a pivotal role in elevating the

quality of generated images. Thus, this study investigates R1 regularization’s im-

pact, aiming to pinpoint the optimal strength of R1 Regularization γ tailored for

the rff-300 dataset.

To synthesize faces representing Rosacea using a dataset of merely 300 images,

a series of 10 experiments were executed. Initial experiments incorporated vary-

ing experimental settings, encompassing both training from scratch and employing

transfer learning from the FFHQ dataset. Notably, the discriminator’s lower layers

are oriented towards recognizing generic image features. In contrast, its upper layers

are tasked with classifying images based on these features, determining if they are

real or generated. The ’Freezing the Discriminator’ technique, denoted as Freeze-D,

offers incremental yet consistent enhancement when combined with ADA. However,

on its own, Freeze-D is not potent enough to stave off divergence.

Consequently, the assumption about the parameter gamma became instrumental

in the experimental design. Alongside employing the Freeze-D technique, where the

discriminator layers were frozen, the impact of different R1 regularization strengths,

represented by the parameter γ was investigated. Adjusting the γ values revealed a

notable influence on the training dynamics, the KID metric, and the quality of the

generated synthetic images. This influence of γ was evident in both experimental

conditions: training from scratch and transfer learning. Specifically, experiments

utilizing a higher gamma strength unequivocally underscored its importance. Con-

trary to the value determined by the conventional formula, a smaller γ yielded

superior outcomes, particularly when working with limited data sets (in hundreds).

In the course of the experiments, 1000 images were generated from each result,

utilizing Truncation Trick[246]. The top-performing experiments, as indicated by

the KID metric, were then subjected to qualitative evaluation. From this assess-

ment, Experiment 7 stood out, yielding the highest fidelity images of rosacea. After

meticulous visual inspection, 300 high-quality images from this experiment were se-

lected for public release and further validation. These 300 high-fidelity synthetic

full-face Rosacea images have been named “synth-rff-300” and made available in

a public repository for further research and usage by the community.
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5.1.3 Revisiting Research Question- 3

In addressing RQ3, “How can synthetic Rosacea images be validated qual-

itatively by expert dermatologists?”, approximately 50 images were randomly

extracted from the “synth-rff-300” dataset and subjected to qualitative analysis.

This was undertaken by three dermatologists and further scrutinized by 23 non-

specialist participants.

The rationale behind the dermatologist’s verification was to affirm the synthetic

images’ authenticity concerning the features, distribution (location, colour, nature),

and overall representation of Rosacea. Yet, while thorough examination is essential,

meticulously analyzing all 300 synthetic images was deemed impractical due to the

time-intensive nature of such a process. Therefore, a more feasible subset of 50 im-

ages was presented to the expert dermatologists for assessment. These professionals

were then tasked with rating the synthetic images based on their medical proficiency,

gauging the authenticity of Rosacea manifestations depicted therein. They evalu-

ated the images on a linear scale ranging from 1, indicating “not realistic Rosacea”,

to 10, symbolizing “very realistic Rosacea”. The cumulative feedback from the der-

matologists suggested that 73% of the images showcased a genuine Rosacea pattern.

Additionally, specific remarks from the dermatologists further affirmed the positive

and authentic representation of the condition in the synthetic images.

The subsequent phase of the qualitative evaluation was steered by the perceptions

of non-specialist participants. In this segment, participants were presented with a

set of 50 images for assessment. This collection comprised 40 synthetically generated

images and 10 real ones. The inclusion of the real images aimed to discern whether

non-specialist participants could differentiate between the genuine and the generated

photographs. From the evaluation, 40 out of the 50 images received an average

score of 60% or higher, signifying that for these 40 images, equivalent to 80%, the

representations were perceived as genuine by the participants.

5.1.4 Revisiting Research Question- 4

The fourth research question, RQ4, posed the inquiry: “Is it feasible to generate

synthetic data from a limited number of samples using 3D modeling, with

precise control over the granular deformations caused by Rhinophyma?”.

To address this, Chapter 4 delves into the use of the parametric modeling approach.

This method was employed to model the nasal deformations characteristic of Rhino-
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phyma, a subtype-3 manifestation of Rosacea.

The primary objective of this study is to introduce and implement a 3D modeling

pipeline. This pipeline aims to generate synthetic images of Rhinophyma that show-

case potential deformities absent in existing datasets. Additionally, it captures 2D

images from various facial perspectives and creates 3D meshes, benefiting further

research, development, and healthcare professionals. Drawing from the literature

review in Chapter 2, thorough hands-on experimentation revealed that GPMMs

fall short in capturing fine-grained details. Consequently, the decision was made to

custom design 3D face models. These models follow the principles of parametric

modeling with generative approach and accurately represent Rhinophyma.

To achieve this, Rhinophyma images were first gathered from various sources

such as SD-260[126], DermnetNZ [75], DermIS [114], dermatoweb.net [283], and

Google search results, totaling 268 images. Out of these, 220 images were used for

final testing purposes in the classification models as discussed in 5.1.5, and the rest

48 images served as reference showcasing mild, moderate and severe conditions of

Rhinophyma. While these images were not used directly to create 3D models, these

images acted as essential references showcasing the real-world appearance of the

disease, playing a pivotal role in the development of the 3D models.

In Chapter 4, we delve deeply into the implementation and advantages of the

parametric approach to 3D modeling and reconstruction, focusing on its application

in facial and medical domains. To the best of our knowledge, no current work exists

on Rhinophyma, especially in the domain of computer-aided analysis of the disease.

Given that Rhinophyma is a medical condition, it was imperative to embed medical

insights derived from well-referenced studies.

Recognizing the demographic prevalence of this condition, our head models were

designed to predominantly represent individuals of Caucasian and Celtic descent,

specifically in their 50s. Two key aspects were pivotal in designing the 3D models:

the Rhinophyma diagnosis classification measures [278] and severity measures [279].

These informed the creation of one female and one male head model, allowing for

accurate modeling of nose vertices. To comprehensively capture all conceivable real-

world deformation characteristics, a numerical range of scores was integrated into the

design parameters. This deformation is associated with a set of vertex group termed

‘nose variant’. To ensure diverse representation of deformations, three distinct sets

of nose variants were crafted for both the female and male head models, labeled as

‘nose variant 1’, ‘nose variant 2’, and ‘nose variant 3’. Adjustments to these vertex
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groups can be made in alignment with the severity scores employed in the design.

Following the creation of the models, the next step involved rendering them

to generate synthetic visual representations of Rhinophyma showcasing a range of

deformations. For this purpose, we established 10 camera positions for each of the

3D models, both female and male. Each head model underwent the generation of

1,000 unique deformations. Through the rendering process, we produced a total

of 10,000 images for each model. This resulted in an aggregate of 20,000 images,

capturing 10 distinct viewpoints for each of the two models across their 2,000 random

Rhinophyma deformations. The rendering procedure for both the male and female

head models spanned 12 days, 15 hours, and 43 minutes. Within the synthetic

dataset, the distribution was such that we obtained 395 mild cases, 809 of moderate

severity, and 796 cases classified as major/severe Rhinophyma. The images, the

resultant meshes, details related to the rendering process as a dataset have been

named “3D-rhi-synth-2000-Synthetic Rhinophyma Visual Dataset” and are

made available in a public respository on Zenodo.

5.1.5 Revisiting Research Question- 5

To address RQ5, which inquires “Can the classification models trained us-

ing synthetic images, derived from a 3D environment perform well when

tested on real-world data?”, we turned to real-world Rhinophyma images to

gauge the validity of our synthetic creations. Classification plays an indispens-

able role in the sphere of computer-aided or deep learning-driven medical diagnosis.

Through classification, we achieve precise identification and categorization of dis-

eases or anomalies, subsequently informing the choice of the most fitting treatment

methods or interventions. Given this importance, validating the authenticity and

reliability of synthetically generated images becomes imperative. It’s essential to as-

certain their ability to effectively represent relevant features and deliver satisfactory

results when integrated with genuine datasets. For the comparative evaluation in the

classification process, our synthetic Rhinophyma images were set against authentic,

standard nose images extracted and pre-processed from the FFHQ dataset.

As elaborated in the review of RQ4, the 3D head models were rendered, re-

sulting in images captured from 10 different cameras. From these, only the frontal

views taken by 3 cameras were deemed suitable for classification, yielding a to-

tal of 6,000 images. These images underwent rigorous data processing, which in-

cluded face parsing utilizing 68-landmark detection[289]. This process emphasized
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the Rhinophyma-affected nose while eliminating any extraneous background infor-

mation inadvertently captured during the rendering phase. For the purpose of clas-

sification, the synthetically generated Rhinophyma images were grouped into one

class. In contrast, images of normal noses, extracted from the FFHQ dataset[194],

formed a separate class. A total of 6,000 images from the FFHQ dataset were sub-

jected to the same data processing methods as the synthetic images. Subsets of

the combined datasets of 3D-rhi-synth-2000 and FFHQ were then partitioned into

training, validation, and test sets to train the classification models.

Conversely, the 268 images that initially served as reference points in designing

the 3D models also underwent several data processing steps to adapt them for clas-

sification models. This resulted in a total of 220 processed images, all of which

were categorized under the real Rhinophyma class. Notably, the most crucial data

for the final test set of the real Rhinophyma class was sourced from the SD-260 [126,

170] and various tele-dermatology websites [75, 114, 283]. To ensure balance in this

dataset, an additional set of 220 unseen images was curated from the FFHQ dataset

[194] and designated as real normal nose samples. Therefore, the final dataset con-

sists of 220 real Rhinophyma images labeled ’rhi’ and 220 real normal nose images

labeled ’norm’. This collection is especially significant as the true test set, given its

inclusion of authentic Rhinophyma nose images.

In summary, the classification task employs a training set comprised of synthetic

Rhinophyma images and real nose images. This is complemented by both a vali-

dation set and a test set that contain similar categories of images. Subsequently,

there’s another test set which features real-world Rhinophyma images juxtaposed

with real-world normal nose images. This results in the creation of two distinct test

sets: one featuring synthetic Rhinophyma images and another with genuine Rhino-

phyma images. The motivation for employing two discrete test sets is to facilitate

a nuanced comparative evaluation of the classification models’ performance. This

bifurcated test set approach ensures a richer and more comprehensive analysis.

Given the limited size of our dataset, our exploration is restricted to architec-

tural frameworks that have proven to perform well in resource-constrained environ-

ments, such as limited input data, computational resources, memory, and energy

consumption. The MobileNet family encompasses a range of lightweight Convolu-

tional Neural Networks architectures tailored and optimized for such constrained

applications. As a result, we chose MobileNet-V2 [290] and MobileNet-V3 [291] for

our experimentation. Through training, MobileNetV2 demonstrated a commend-
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able 95% accuracy in detecting Rhinophyma when tested on the dataset comprising

real-world Rhinophyma images. To further validate this outcome, we employed

Gradient-weighted Class Activation Mapping (Grad-CAM) [295] as a pivotal tool to

elucidate the decision-making processes inherent to our classification models.

To summarize the findings from RQ5: although both models show proficiency

in identifying Rhinophyma features, MobileNet-V2 demonstrates superior perfor-

mance in detecting features, especially in localizing Rhinophyma, for both masked

and unmasked images. This consistent trend strongly underscores the models’ ca-

pability to accurately pinpoint the key features of Rhinophyma, thereby affirming

the effectiveness and comprehensiveness of the proposed approach.

5.2 Limitations

In this thesis, the primary focus is on overcoming challenges associated with limited

data in medical or dermatology cases by implementing various strategies to generate

synthetic visual data. This task is particularly challenging since most deep learn-

ing models designed for computer vision problems typically require large datasets,

whereas our available data comprises only a few hundred samples.

When evaluating the results of the StyleGAN2-ADA experiments quantitatively,

we observed that relying solely on quantitative evaluations is not sufficiently reliable.

Without the validation and opinions of experts, using synthetic images for medical

or clinical purposes becomes questionable. The issue of quantitatively evaluating im-

ages generated by GAN models, especially in medical imaging, remains unresolved

and is an open-ended challenge. We managed to secure validations from three der-

matologists, but obtaining their feedback took approximately two months. This

delay is understandable, given that healthcare professionals are often busy. Con-

sequently, securing their time for such evaluations proved to be a time-consuming

endeavor. Ideally, the top two experimental results from the GAN would have un-

dergone more thorough scrutiny by dermatologists. However, the extensive time

requirements made this impractical. Based on both the quantitative and qualita-

tive evaluations, we concluded that metrics like KID and FID may not be adequate

as standalone evaluation criteria, especially when dealing with a limited dataset of

medical images.

While developing 3D models for Rhinophyma faces, we encountered several limi-

tations. Within our custom-prepared dataset of 220 real-world Rhinophyma images,
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a notable disparity was observed: only 5 images represented females, while a stag-

gering 215 represented males. This gender bias is inherent in the publicly available

datasets we utilized for our research. Ideally, a more balanced representation of

genders would have potentially offered a more comprehensive design influence. A

significant limitation in processing both synthetic and real-world Rhinophyma data

was the facial feature detection. Our approach relied on the 68 landmarks algo-

rithm[39], a standard facial feature detection scheme. This algorithm demands a full

or near-complete view of the face. Its accuracy wanes in cases of partial or obscured

facial views. With synthetic images depicting severe Rhinophyma, the pronounced

nasal enlargement, occasionally extending over the lips, impeded accurate detec-

tion. Similar detection limitations manifested with real-world Rhinophyma images.

Many images lacked a full-view of the patient’s face, complicating the processing.

Managing this data turned out to be both intricate and time-consuming, requiring

painstaking manual cropping for accuracy.

While a considerable amount of historical research has focused on the occur-

rence of Rosacea in individuals with fair skin, recent studies have begun to explore

its manifestation in people with colored skin. These more recent explorations have

highlighted distinct variations in clinical presentations, exacerbating factors, poten-

tial triggers, and the consequences of Rosacea in individuals with skin of color (SOC)

[298, 299, 300].

Even though Rosacea is less frequently reported in SOC, this might be attributed

to delayed diagnoses or late presentations. This delay often arises due to the chal-

lenge in identifying the classical features of Subtype-1 in darker skin tones [299]. As

a result, many individuals with SOC who have Rosacea might experience delayed

diagnosis, which can lead to inappropriate or inadequate treatment, increased mor-

bidity, and uncontrolled, progressive disease with disfiguring manifestations, such as

Rhinophyma [301].

The majority of images available in the dataset of Rosacea subtypes 1, 2, and 3

predominantly feature individuals with fair skin. Consequently, this predominance

influenced the design choices for the 3D models, and colored skin was not incorpo-

rated, due to the lack of visual reference materials depicting the manifestation of

Rosacea on colored skin.
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5.3 Future Work

In this study, we have applied the two-stage validation approach for the generated

data. Even though quantitative evaluations are essential to interpret GAN model

results, there is an acute need to refine these methods for the medical imaging sector.

Achieving this requires a deep understanding of medical imaging’s nuances, consid-

ering imaging modality, fidelity, and the preservation of domain-specific information

in synthetic images.

Any future data collection for Rosacea and its subtypes i.e specially Rhino-

phyma should consciously strive to address the gender imbalance observed in cur-

rent datasets. Future studies must consider incorporating diverse skin colors during

the data acquisition process, representing a wide range of skin colors and genders.

Such inclusivity is crucial as it would not only aid in diagnosing people in specific

demographic regions but also render the findings scalable and globally applicable,

ensuring a more universally beneficial impact.

The challenges encountered in our study underscore the need for advanced mask-

ing algorithms tailored for partially visible patient images. Such solutions can

enhance the accuracy of masking unwanted anatomical details, ensuring rigorous

anonymization. This progression will not only boost the capabilities of deep learn-

ing diagnosis models but will also widen their utility in facial detection and seg-

mentation tasks for partial visible/captured faces, including the ones which were

anatomised during the data acquisition.

The dataset preparation highlighted the complications arising from the lack of a

standardized approach to clinical image capturing. Many images were sourced from

non-standard angles, underscoring the necessity for capturing protocols tailored for

diseases like Rhinophyma and other facial skin conditions.

Although our primary focus was addressing data scarcity through synthetic im-

age generation, acquiring more real-world images is indispensable. Having access to

the real-world dataset would deepen our understanding of Rhinophyma and other

similar conditions. Consequently, this could set the stage for creating higher fidelity

synthetic data in the future, elevating the diagnostic procedure and possibly accel-

erating the recognition and intervention for Rhinophyma and other related facial

ailments.

The efficacy of state-of-the-art deep learning models is inherently dependent on

the volume and quality of data available for training. Yet, there remains ambiguity

around the ideal volume of data required for these models to achieve optimal per-
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formance. This ambiguity is further complicated by factors such as the diversity of

image features and the specificities of the dataset in question. As such, emphasizing

the collection of a diverse range of disease features becomes imperative, particularly

when considering various disease categories and their corresponding subtypes.

Through the course of this research, a clear distinction emerged within the sphere

of dermatology. While skin cancer diagnoses are anchored in the medical imaging do-

main, primarily because related conditions are captured using dermatoscopes, other

skin ailments do not necessarily adhere to this convention. Often, these conditions

are documented using conventional digital photography in clinical settings, rather

than specialized medical imaging equipment. This distinction underscores the need

to standardize, or perhaps introduce, a domain specifically focused on these clinical

images. By doing so, the quality and specificity of data in this segment could be

elevated, leading to more robust and accurate diagnostic models in the future.

As we look toward expanding the capabilities of computer-aided diagnosis in

dermatology, a particularly promising avenue involves the adaptation of healthy hu-

man face images to include features of rosacea. Neural style transfer [302] could

be adapted to apply the ‘style’ or characteristic appearance of Rosacea onto images

of faces without the condition, effectively blending the texture and color patterns

associated with the disease onto otherwise healthy-looking faces. Concurrently, at-

tribute manipulation techniques (image-to-image-based GAN models) such as fa-

cial attribute editing GAN (AttGAN) [303] or Selective Transfer Network GAN

(STGAN) [304] provide a focused approach, allowing specific features or regions of

the face to be altered to simulate Rosacea, ensuring that changes are both localized

and realistic. Semantic image synthesis could further refine this process by using

semantic segmentation maps to guide the model on where rosacea features should

appear, ensuring an accurate and contextually appropriate application of the con-

dition’s visual markers. Lastly, Deep Feature Interpolation (DFI) [305, 306] offers

a subtler method, enabling a gradual transition between healthy and affected skin

by interpolating between the deep features of images with and without Rosacea.

By integrating these methods, a robust and nuanced approach can be developed,

offering realistic and varied representations of Rosacea on human faces, enhancing

both the understanding of the disease’s visual impact and the development of more

effective diagnostic tools.

Looking ahead, the utilization of foundation models, especially large-scale Trans-

former models [307], presents an exciting frontier for computer vision in medical
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diagnosis. These models have already demonstrated remarkable success in various

domains of artificial intelligence due to their ability to learn rich, transferrable fea-

tures from large and diverse datasets. In the medical/clinical imaging sector, such

models could revolutionize the way we understand and analyze complex patterns in

clinical data, offering enhanced accuracy, adaptability, and efficiency. Future work

will explore the integration of these powerful models into Rosacea and skin disease

diagnostic frameworks, focusing on customizing and fine-tuning them to recognize

and classify a wide range of skin conditions with high precision. This will involve

not only technical adaptations of the models to suit specific medical imaging tasks

but also rigorous validation against clinical outcomes to ensure their reliability and

effectiveness in real-world settings. Moreover, as these models require substantial

computational resources and data, we will investigate strategies for efficient training

and deployment, ensuring they are accessible and practical for medical professionals.

The rise of vision-based transformer [308] models in computer vision holds promis-

ing implications for medical diagnosis, particularly in enhancing generalization ca-

pabilities across traditional computer vision tasks, it is acknowledged that their

application is still at an early stage. These models treat image patches as sequential

data, similar to how original transformers process words, allowing them to cap-

ture intricate patterns and relationships within medical images. Their ability to

understand both the local and global context of an image enables a more compre-

hensive and nuanced feature representation, crucial for identifying subtle anomalies

in medical diagnostics. Furthermore, vision transformers are scalable and exhibit

improved performance with larger datasets, a significant advantage given the grow-

ing size of medical image repositories. The inherent flexibility of these models in

handling various input sizes and their reduced reliance on extensive data augmen-

tation can streamline the diagnostic process, making it more efficient and less prone

to errors, limited features and lack of standarization as we observe in medical im-

ages. Notably, the attention mechanisms integral to transformers offer a level of

interpretability that is vital in clinical settings, providing insights into the model’s

decision-making process and highlighting critical areas in the images.

In addition to enhancing traditional computer vision tasks, the adaptation of

vision-based foundation models also opens avenues for multimodal integration, com-

bining semantic and geometric understanding with other modalities such as natural

language. This integration is particularly evident in applications like visual question

answering, image captioning, and instruction following, where the model leverages
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both visual and textual data to perform complex tasks. In the realm of medical

imaging, integrating clinical NLP-related information can provide a more compre-

hensive understanding of patient data. For instance, combining diagnostic images

with patient histories or clinical notes could enable models to learn better patterns

and provide more accurate diagnoses. Luo et al. [309] discusses unimodal models

typically struggle to achieve high accuracy in dermatology due to the vast variability

in skin appearances across different patients and are further hampered by privacy

concerns and the shortage of adequately labeled data. However, recent developments

in Transformer architectures and large-scale pre-training models based on unlabeled

data offer new opportunities for improving AI diagnostic models. Multimodal neural

networks, such as CLIP [308], that leverage both text and image information can

potentially increase diagnostic accuracy significantly with the integration of Feder-

ated Learning. As these models continue to evolve, their integration into medical

imaging workflows promises to enhance diagnostic accuracy, aid in treatment plan-

ning, and ultimately improve patient outcomes, marking a significant leap forward

in the application of AI in healthcare.
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[21] Yalçın Tüzün et al. “Rosacea and rhinophyma”. In: Clinics in dermatology

32.1 (2014), pp. 35–46.

[22] National Rosacea Society. Red Skin & Rashes Are Not Always The Result Of

Rosacea. url: https://www.rosacea.org/blog/2016/june/red-skin-

rashes-are-not-always-the-result-of-rosacea.

[23] Dermatologytimes. 2021 Rosacea Report. 2021. url: https://www.dermatologytimes.

com/view/top-20-trending-stories-of-2020.

[24] USnewshealth. Treatments for Rosacea. 2021. url: https://health.usnews.

com/health-care/patient-advice/articles/treatments-for-rosacea.

[25] David A Huffman. “Impossible objects as nonsense sentences”. In: Machine

intelligence 6 (1971), pp. 295–323.

[26] Maxwell B Clowes. “On seeing things”. In: Artificial intelligence 2.1 (1971),

pp. 79–116.

[27] Hans P Moravec. “The Stanford cart and the CMU rover”. In: Proceedings

of the IEEE 71.7 (1983), pp. 872–884.

[28] Timothy F Cootes et al. “Active shape models-their training and applica-

tion”. In: Computer vision and image understanding 61.1 (1995), pp. 38–59.

[29] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. “Active

appearance models”. In: Computer Vision—ECCV’98: 5th European Confer-

ence on Computer Vision Freiburg, Germany, June 2–6, 1998 Proceedings,

Volume II 5. Springer. 1998, pp. 484–498.

[30] Timothy F. Cootes, Gareth J. Edwards, and Christopher J Taylor. “Active

appearance models”. In: IEEE Transactions on pattern analysis and machine

intelligence 23.6 (2001), pp. 681–685.

[31] Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D

faces”. In: Proceedings of the 26th annual conference on Computer graphics

and interactive techniques. 1999, pp. 187–194.

165



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

[32] Bernhard Egger et al. “3d morphable face models—past, present, and future”.

In: ACM Transactions on Graphics (TOG) 39.5 (2020), pp. 1–38.

[33] Yann LeCun et al. “Handwritten digit recognition with a back-propagation

network”. In: Advances in neural information processing systems 2 (1989).

[34] Lorien Pratt. “Reuse of neural networks through transfer”. In: Connection

Science (Print) 8.2 (1996).

[35] Jeremy West, Dan Ventura, and Sean Warnick. “Spring research presenta-

tion: A theoretical foundation for inductive transfer”. In: Brigham Young

University, College of Physical and Mathematical Sciences 1.08 (2007).

[36] Andrew Ng. “Nuts and bolts of building AI applications using Deep Learn-

ing”. In: NIPS Keynote Talk (2016).

[37] Yann LeCun et al. “Learning algorithms for classification: A comparison on

handwritten digit recognition”. In: Neural networks: the statistical mechanics

perspective 261.276 (1995), p. 2.

[38] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation

of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[39] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:

arXiv preprint arXiv:1312.6114 (2013).

[40] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural

information processing systems 27 (2014).

[41] Anton Osokin et al. “GANs for biological image synthesis”. In: Proceedings

of the IEEE International Conference on Computer Vision. 2017, pp. 2233–

2242.

[42] Ashish Shrivastava et al. “Learning from simulated and unsupervised im-

ages through adversarial training”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2017, pp. 2107–2116.

166



Synthetic Visual Data Generation and Analysis of Rosacea from Limited Data

[43] Tero Karras et al. “Analyzing and improving the image quality of stylegan”.

In: Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2020, pp. 8110–8119.

[44] Amirata Ghorbani et al. “Dermgan: Synthetic generation of clinical skin im-

ages with pathology”. In: Machine learning for health workshop. PMLR. 2020,

pp. 155–170.

[45] Jingkuan Song et al. “AgeGAN++: Face aging and rejuvenation with dual

conditional GANs”. In: IEEE Transactions on Multimedia 24 (2021), pp. 791–

804.

[46] Guillaume Le Moing et al. “Semantic palette: Guiding scene generation with

class proportions”. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2021, pp. 9342–9350.

[47] Danfeng Hong et al. “Multimodal GANs: Toward crossmodal hyperspectral–

multispectral image segmentation”. In: IEEE Transactions on Geoscience

and Remote Sensing 59.6 (2020), pp. 5103–5113.
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