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An Examination of Meta-Learning for Algorithm
Selection in Unsupervised Anomaly Detection

Malgorzata Gutowska

Abstract

Detecting anomalies is crucial for a range of applications, including network secu-
rity and healthcare. A primary challenge in anomaly detection (AD) is its unsupervised
nature, prevalent in most real-world scenarios. Despite a multitude of existing AD al-
gorithms, no single approach succeeds across all anomaly detection tasks. While the
Algorithm Selection Problem (ASP) has been extensively studied in supervised learn-
ing through meta-learning and AutoML techniques, it has received little attention in the
unsupervised domain. The absence of efficient strategies for algorithm selection and
evaluation is a matter that requires attention. This dissertation employs meta-learning
techniques tailored to unsupervised anomaly detection in an effort to bridge this gap.

The study introduces a new meta-learner designed to select the most suitable unsu-
pervised AD algorithm for unlabelled datasets. The proposed meta-learner outperforms
the current state-of-the-art solution. Furthermore, this research includes an analysis of
the individual components of the meta-learner, such as the meta-model, meta-features,
and the base set of AD algorithms. It reveals that the design of the meta-model is essen-
tial for effective meta-learning. In evaluating the meta-learner’s recommendations, the
research provides a framework for assessing both the risk of inaccurate responses and
the potential errors in individual predictions. Moreover, this study employs a compre-
hensive collection of over 10,000 datasets, providing a robust foundation for its findings.

This research addresses a crucial gap in existing literature by offering a systematic
methodology for algorithm selection in unsupervised AD, a particularly urgent problem
given the exponential growth of data and the corresponding demand for reliable AD
mechanisms. As such, this work enhances data management capabilities in increasingly
data-saturated environments.
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Chapter 1

Introduction

This thesis presents a meta-learning approach to addressing the Algorithm Selection

Problem (ASP) in the context of unsupervisedAnomalyDetection (AD). Detecting anoma-

lies is essential in almost every industry or domain due to the abundance of collected

data. The primary challenge in effective anomaly detection is its intrinsic unsupervised

character, which is common for most practical scenarios. Despite its importance, the

field of systematic methods for unsupervised anomaly detection remains largely unex-

plored, resulting in a lack of efficient tools for selecting the best algorithm for a specific

task and assessing the trustworthiness of such a selection. This thesis aims to address

the existing research gap.

1.1 Anomaly Detection

Anomalies are instances of data that deviate unexpectedly from other instances. They

are also referred to as outliers in the context of data analytics. The detection of these

outlier data points is gaining increasing attention in a variety of business sectors and

other everyday aspects, owing primarily to the growing number of systems that collect

and utilise data generated by a variety of daily activities.

Outlier detection has evolved throughout time in response to changing needs. His-

torically, outliers were most commonly identified by data cleaning, a primarily manual

process. Many data analysis techniques assume that the input data contains only inliers;

13



Chapter 1. Introduction

thus, removing outliers is a critical data preprocessing step. As data-driven systems be-

come more prevalent in everyday life, the necessity for AD grows. Detecting anomalies

in sophisticated systems not only helps them to run smoothly, but in many domains, the

identified anomaly is a true value by itself. These outliers may contain critical informa-

tion about the system, the data, or the environment in which the data was collected. An

outlier can be a potentially harmful event that should be avoided, or an early indicator

of a new trend that should not go unnoticed. Insurance, banking, monitoring network

traffic, or health are a few examples of the broad range of domains where anomaly de-

tection is critical. The existing literature gives an extensive review of applications for

anomaly detection (Campos et al. 2016; Chalapathy et al. 2019; Ruff et al. 2021; H. Wang

et al. 2019).

Detecting anomalies from a series of observations can be considered as a type of

classification task in which classes are significantly imbalanced. However, there are

other factors that make this type of problem more distinct. Unlike in many classifica-

tion problems, the most common techniques in AD are based on either unsupervised

or semi-supervised learning rather than supervised learning. This is because in real

AD problems, labelled anomalous data is rarely available. In unsupervised learning, the

identification of anomalies is purely based on the patterns within the data, which are

identifiable to the algorithm, whereas, in semi-supervised learning, the model is trained

in advance and only exposed to normal data during training (Chalapathy et al. 2019;

Goldstein and Uchida 2016).

Typically, AD algorithms seek to estimate the likelihood of every data point be-

ing an anomaly in an unsupervised manner (Goldstein and Uchida 2016), considering

the anomaly characteristics. These algorithms return anomaly scores (usually not nor-

malised), where a higher score indicates an increased likelihood that a given data point

is an anomaly (Chandola et al. 2009; Goldstein and Uchida 2016). Based solely on the

anomaly scores it is not possible to measure an algorithm’s performance in a form of

a single metric such as accuracy, recall or precision. A detailed study of the results is

usually necessary to assess the algorithm performance on a new task.
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1.2 Algorithm Selection Problem

Numerous techniques have been proposed for AD, but multiple studies support the con-

sensus that no single technique is optimal for all AD problems (Campos et al. 2016; H.

Wang et al. 2019). The problem of selecting the best algorithm for a given task is referred

to as theAlgorithm Selection Problem (ASP) (Ali et al. 2017; Bischl et al. 2016; I. Khan et al.

2020), a challenge that is prevalent in both supervised and unsupervised contexts.

Traditional solutions to the ASP, such as trial-and-error or consultation with domain

experts, are not always practical. The trial-and-error approach is often time-consuming

and lacks guarantees of finding the optimal solution. On the other hand, engaging hu-

man expertise can be prohibitively costly and still offers no assurance of success.

To address these shortcomings, automated selection of the best performing algorithm

has been regarded to be a more effective strategy. The concept of building a model ca-

pable of learning from previous evaluations to predict the performance of algorithms on

new tasks, referred to as meta-learning, is well-established within the ASP context (Hut-

ter et al. 2019; I. Khan et al. 2020; Lemke et al. 2015; Muñoz et al. 2015). Meta-learning,

as a key component of Automated Machine Learning (AutoML), is a fast-growing area

within the machine learning discipline (Hutter et al. 2019).

One of the prevalent strategies in meta-learning involves analysing the characteris-

tics of datasets, which can then be mapped to the performance of specific algorithm con-

figurations based on historical evaluations (Hutter et al. 2019; Smith-Miles 2009). This

idea of mapping the task attributes to algorithm performance was first conceptualized

in Rice’s seminal paper (Rice 1976) and has since been expanded upon by researchers

such as Smith-Miles 2009. This expanded framework for algorithm selection is depicted

in Figure 1.1.

There are four essential components of the framework (Smith-Miles 2009):

• problem space P – a set of dataset instances of a problem,

• feature space F – a set of characteristics (meta-features) generated from each

dataset instance x,
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Chapter 1. Introduction

Figure 1.1: Rice’s framework, as presented by Smith-Miles 2009.

• algorithm space A – a set of algorithms (possibly including variations incorporat-

ing hyperparameters),

• performance space Y – a set of performance metrics of the algorithms from A

evaluated over the problem space P .

The ASP can be defined as “For a given problem instance x ∈ P with features f(x) ∈

F , find the selection mapping S(f(x)) into algorithm space A, such that the selected

algorithm α ∈ A maximises the performance mapping y(α(x)) ∈ Y ” (Smith-Miles

2009).

The ASP is even more challenging when faced with an unsupervised task. Apply-

ing a trial-and-error approach or maximisation of performance mapping is problematic

without a single performance metric. A meta-learner that indicates the best algorithm

for a new unsupervised task is thus a necessary tool, particularly in scenarios with high

up-front uncertainty and high variability.

Currently, the ASP for unsupervised settings remains largely unexplored. A few

studies have examined the meta-features’ potential in AD scenarios (Campos et al. 2016;

Kandanaarachchi et al. 2020; Kotlar et al. 2021), but their limitations are mainly due to

the required knowledge of data labels or its structure.

The concurrent approach to algorithm selection for handling unsupervised AD tasks
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often involves using an ensemble technique or a “voting” approach to identify anoma-

lies (Le Clei et al. 2022; Papastefanopoulos et al. 2021). However, the scalability of this

approach is limited. Every new dataset or an inclusion of another algorithm requires

multiple evaluations. This can be particularly challenging when timely responses are

crucial, such as in near-real-time anomaly detection. On the contrary, utilising histori-

cal evaluations and applying knowledge transfer via meta-learning has the potential to

offer an efficient and effective method for managing unsupervised AD tasks.

MetaOD (Meta-learning-based Outlier Detection), the approach presented by Zhao,

Rossi, et al. 2021, represents the current state-of-the-art solution in the ASP problem

for unsupervised AD. It leverages the knowledge from previous algorithm evaluations

to obtain the recommended algorithm for a new task. MetaOD utilises a base set of

eight “classic” AD algorithms, combined with various hyperparameters, to create 302

distinct models. The training of the original MetaOD meta-learner was based on 162

AD benchmark datasets, characterised by 200 meta-features. The approach is inspired

by recommender systems and employs collaborative filtering with a matrix factorisation

technique at its core. Further details on this approach are provided in Chapters 2 and 4.

1.3 Problem Statement and ResearchQuestions

This section discusses the open research areas in the field of ASP for unsupervised AD

and encapsulates the research questions. It also summarises the contributions made by

the current study to the explored subject.

ResearchQuestion 1. Meta-learner for unsupervised AD

As mentioned in Section 1.1, the unsupervised nature of AD introduces a range of chal-

lenges rarely encountered in supervised tasks. Evaluating a specific AD method is chal-

lenging due to the inability to apply straightforward performance metrics. Such evalu-

ations typically require significant time, effort, and often expert supervision. Moreover,

there is an established consensus in the field, supported by multiple studies (Campos

et al. 2016; Emmott et al. 2015; Goldstein and Uchida 2016; Kandanaarachchi et al. 2020;

17



Chapter 1. Introduction

Zhao, Rossi, et al. 2021), that no single algorithm consistently outperforms others for

all AD tasks. This phenomenon is not exclusive to AD and is a well-known concept

called the “No Free Lunch” theorem (Wolpert et al. 1997). As highlighted in Section 1.2,

approaches that employ ensemble techniques fall short in delivering time-efficient so-

lutions or practical applications when a larger pool of algorithms is deemed essential.

Automated Machine Learning (AutoML), a field that guides users in algorithm and hy-

perparameter selection, is primarily concentrated on providing solutions for supervised

problems. This highlights a critical gap in the field: the need for tools that can recom-

mend appropriate unsupervised AD techniques for an unseen task with unknown labels.

The above, in conjunction with the current study’s preliminary investigation, motivates

the first research question.

RQ1 Can an efficient meta-learner for unsupervised anomaly detection recommend

the best algorithm for an unseen and unlabelled dataset?

This question is addressed in Chapter 4, Sections 4.1 and 4.2.

ResearchQuestion 2. Contribution of meta-learner’s components to its success

The construction of a meta-learner involves numerous design decisions. Firstly, it is es-

sential to describe the datasets in a manner that is independent of ground-truth labels

and also ensures that potential anomalies within the dataset are captured by the meta-

features. Secondly, the meta-learner needs to be trained on existing and known prob-

lems, necessitating the selection of suitable base AD algorithms for this training process.

The choices made in these areas can significantly influence the final performance of the

meta-learner. Finally, the meta-learner’s design and architecture are inevitably signif-

icant factors influencing its overall effectiveness. However, existing research studies

often focus on comparing the end results with a baseline or state-of-the-art solutions,

neglecting to analyze the underlying components or factors that contribute to the suc-

cess of a particular solution. This leads to the second research question of this study.
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RQ2 Which components and design decisions of the meta-learner influence its overall

performance?

This study seeks to address the RQ2 in Chapter 4, Section 4.3.

ResearchQuestion 3. Local reliability and risk

The development of a meta-learner and the evaluation of factors influencing its per-

formance represent only one aspect of the overall solution. A subsequent question that

arises is regarding the quality of the recommendations provided by themeta-learner. For

unsupervised tasks, the assessment of the recommended algorithm’s efficacy remains a

challenging task due to the lack of a straightforward performance metric. Evaluating the

aggregate performance of a meta-learner can be of limited utility, given that individual

datasets reside in a highly non-linear space. As a result, the reliability of a meta-learner’s

response in one area may differ significantly from that in another area. The assessment

of the reliability of individual responses becomes particularly crucial, as a single point in

themeta-feature space corresponds to an entire AD problemwith unique characteristics.

This leads to the next research question of this study.

RQ3 Can the reliability of individual meta-learner responses be evaluated and high-

risk areas within the meta-feature space be identified?

The research addressing this question is discussed in Chapter 5.

ResearchQuestion 4. Datasets

One key consideration in conducting a meta-analysis leading to the creation of a meta-

learner, and the subsequent study of its characteristics, is the need for a large and varied

collection of datasets. To date, research addressing the algorithm selection problem for

unsupervised tasks has typically relied on a limited scope of datasets to validate their

hypotheses. This observation prompts the final research question that this thesis seeks

to explore:
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RQ4 How does utilising a large set of benchmark datasets influence the findings and

conclusions of a meta-learner investigation?

As this work makes use of the largest publicly available collection of AD benchmark

datasets, the implications of its size are discussed throughout the thesis and through all

presented experiments. In addition, Section 3.1 examines the chosen dataset collection

in detail and explores its properties.

1.3.1 Contributions

In an effort to address the discussed research questions, this study offers the following

contributions:

• Creation of an alternative meta-learner superior to the state-of-the-art solution,

• Identifying the elements with the highest contribution to the meta-learner perfor-

mance,

• Risk assessment strategy of incorrect individual meta-learner responses,

• Meta-learning experiments performed on a large set of variable AD benchmark

datasets allowing for deeper insights and understanding of the problem.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 provides a literature re-

view encompassing the areas of anomaly detection, AutoML, the algorithm selection

problem, and local evaluation of machine learning models. Chapter 3 introduces the

datasets utilised in the experiments performed in this research, the selected metrics for

AD, and an overview of the preliminary experiments conducted. In Chapter 4, the pro-

posed meta-learner is described, detailing its evaluation and characteristics. Chapter 5

presents a proposed framework for risk assessment and local reliability. Lastly, Chapter 6

concludes the thesis by summarizing the key findings.
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Related Work

This section starts by showing the literature on Anomaly Detection (AD) and its relevant

key aspects (Section 2.1); it later presents the literature on AutoML in relation to both

areas – supervised (Section 2.2) and unsupervised (Section 2.3). In the final section, the

research on local evaluation of machine learning models is discussed, especially in the

context of regression models, as it is a foundation to the research presented in Chapter 5

(Section 2.4).

2.1 Anomaly Detection

2.1.1 Defining an Anomaly

One of the first descriptions of an outlier was given in 1969 by Grubbs: “An outlying

observation, or outlier, is one that appears to deviate markedly from other members

of the sample in which it occurs” (Grubbs 1969). Another highly cited definition of

an anomaly has been given by Hawkins as “an observation which deviates so much

from other observations as to arouse suspicions that it was generated by a different

mechanism” (Hawkins 1980). Ruff et al. 2021 provide a formal definition of an anomaly

based on the probability theory. They define the set of anomalies A as:

A =
{
x ∈ X

∣∣ p+(x) ≤ τ
}
, τ ≥ 0 (2.1)
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where x is a data point in the data space X , p+(x) is a density probability function and

τ is a “sufficiently small” probability threshold.

The above definitions, as well as multiple other attempts made throughout the liter-

ature to define an anomaly, allow for the inference of the following high-level features,

which are applicable in most scenarios (Goldstein and Uchida 2016):

• anomalies differ significantly from other data points,

• they are rare compared to normal instances.

In addition to capturing essential real-world qualities, the above characteristics have

been the determining factors in the generation of synthetic datasets for anomaly detec-

tion purposes (Emmott et al. 2013, 2015; Goldstein and Uchida 2016).

2.1.2 Classification of Anomalies

Another challenge that goes hand in handwith the lack of a widely accepted definition of

anomaly is the difficulty of providing a systematic classification of anomalies. Despite

numerous attempts (Bulusu et al. 2020; Chalapathy et al. 2019; Chandola et al. 2009;

Goldstein and Uchida 2016; H. Wang et al. 2019), there is no single commonly accepted

classification method. One of the most often cited anomaly classifications was presented

by Chandola et al. 2009:

1. Point anomaly, when an individual data instance deviates from other data,

2. Collective anomaly, when a collection of data instances is anomalous with respect

to the entire dataset,

3. Contextual anomaly, when a data instance is anomalous only in a specific context

but not otherwise.

An illustration of the first scenario is a single fraudulent bank transaction within a

sequence of normal operations. This is also the most studied case, with many methods,

particularly older ones, focusing on the detection of point anomalies. The malicious

behaviour of a device or a server, when a sequence of requests or actions comprises an

anomaly, is an example of the second case, a collective anomaly. In the third scenario,

a credit card transaction for a large sum that may be expected during a specific period,
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such as the end of the year, but occurs outside of that period, could be considered a

contextual anomaly.

An alternative way of looking at anomaly categories, linked to the previous classi-

fication, distinguishes between global and local anomalies (Goldstein and Uchida 2016;

Schubert et al. 2014; C. Wang et al. 2018). Global anomalies, meaning the data instances

that can be viewed as anomalies when looking at the entire population, are equivalent to

point anomalies. Contextual anomalies are regarded as local anomalies, as they exhibit

abnormal properties within their local neighbourhoods but not necessarily at a global

level (C. Wang et al. 2018). The above characteristics are reflected in the landscape of

anomaly detection methods; for example, a popular AD algorithm, Local Outlier Factor

(LOF) (Breunig et al. 2000), is designed to focus on detecting local anomalies.

Ruff et al. 2021 introduce a new classification aspect resulting in two additional types

of anomalies: low-level sensory anomalies and high-level semantic anomalies (Ahmed

et al. 2020a). This categorisation reflects high and low-level features, and it is therefore

relevant in the context of deep learning-based AD methods. The low-level features re-

fer to pixel-level anomalies in image recognition, whereas the high-level ones refer to

whole anomalous objects. Low-level and high-level anomalies in the linguistic environ-

ment can be expressed by typographic errors and bigger anomalous language constructs,

respectively.

Other authors identify factors, such as the intention of anomaly inclusion, besides

the classification types mentioned above. The following are examples of abnormalities

in this regard:

• intentional anomalies – introduced by an adversarial process, such as network

intrusions; they are also called adversarial examples,

• unintentional anomalies – often called novelty or out-of-distribution instances (Bu-

lusu et al. 2020; Ruff et al. 2021).

Table 2.1 illustrates the variety of anomaly classification aspects found in the litera-

ture on anomaly detection. Identifying anomalies in all their manifestations places high

demands on algorithms that are expected to address the complexity of the AD problem.
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Table 2.1: Anomaly classification aspects existing in the literature.

Classification aspect Anomaly types

Spatial scope Global, point Local, contextual
Cardinality Single Collective
Data complexity Low-level, sensory High-level, semantic
Intentionality Intentional Unintentional

2.1.3 Anomaly Detection Algorithms

To date, a plethora of algorithms have been proposed to tackle the challenge of anomaly

detection. These algorithms vary significantly in complexity, ranging from basic statisti-

cal methods to sophisticated deep neural network-based architectures. This section pro-

vides an overview of several popular anomaly detection algorithms. The meta-learning

experiments conducted in this study utilised all the algorithms discussed here, along

with a few others.

k-Nearest Neighbours / kth-Nearest Neighbour (kNN/kthNN)

kNN and kthNN introduced in 2000 (Ramaswamy et al. 2000) belong to a popular nearest

neighbours-based family of methods. They require the calculation of distances between

all data instances, whichmakes them computationally intensive for large datasets. There

are two common variants of this method – either the distance between the point and its

kth nearest neighbour is calculated (kthNN) or an average distance between the point of

interest and all its k nearest neighbours (kNN).The distance is used as an anomaly score.

Similar to many others, this method requires the parameter k, which must be given to

the algorithm in advance.

Local Outlier Factor (LOF)

This density-based method, introduced in 2000 (Breunig et al. 2000), is one of the most

popular outlier detection methods, though it mostly focuses on finding local anomalies.

It considers k nearest neighbours of an instance and calculates local densities for all of

them. The LOF is then obtained as an average ratio of local densities.
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One-Class Support Vector Machines (OC-SVM)

This classification-based method can be seen as one of the best-performing methods

in many domains (Emmott et al. 2015; Goldstein and Uchida 2016). The method called

SVM originating from Vapnik’s theory (Vapnik 2013) has been adopted for discovering

outliers (Schölkopf et al. 2000) to result in One-class SVM. The goal of this method is

to establish a possibly small region (e.g. a hypersphere), which encapsulates all normal

instances. The instances falling outside of this region are considered outliers, and the

distance from the established region can be used as an anomaly score.

Isolation Forest (IForest)

Isolation Forest (F. T. Liu et al. 2008) has been demonstrated to be one of themost effective

AD techniques (Emmott et al. 2015). The algorithm isolates data points at random, and

the instances that are easier to isolate are considered more likely outliers.

Histogram-based Outlier Score (HBOS)

This method from a statistical/probability-based family has been proven as one of the

fastest AD methods, outperforming many other methods by orders of magnitude in

terms of time required (Goldstein and Dengel 2012). The anomaly score is assessed from

the size of the histogram bin that a given data point falls into; the smaller the bin, the

higher the anomaly score. The number of bins into which the data is split has to be

specified in advance.

Copula-based Outlier Detection (COPOD)

COPOD is another probability-based method, which has been recently introduced (Z. Li

et al. 2020). This method first constructs an empirical copula and then uses it to predict

the tail probabilities of each given data point to determine its level of “extremeness”.

Similarly to HBOS, it is very computationally efficient.
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Autoencoder (AE)

Autoencoders are used inmany deep learningmethods, either alone or as part of a model

architecture (Generative Adversarial Networks – GAN, or Variational Autoencoders –

VAE) (An et al. 2015; Di Mattia et al. 2019; Han et al. 2021; Kaplan et al. 2020; Sakurada

et al. 2014; Zhou et al. 2017). Autoencoders are neural networks that encode the input

to a latent space and then attempt to reconstruct the input from the encoded features.

Its potential in discovering anomalies lies in the expectation of reproduced anomalous

instances differing largely from actual input data compared to normal data. The recon-

struction error is used as the anomaly score. A plain autoencoder architecture has been

chosen for this study as one of the deep learning-based techniques.

Single-Objective Generative Adversarial Active Learning (SO-GAAL)

The architecture proposed by Y. Liu et al. 2019 utilises a GAN-like adversarial network

involving the generator and the discriminator. The creators advocate the method can

directly generate informative potential outliers based on the min-max game between

adversarial elements of the architecture.

2.1.4 Classification of Anomaly Detection Algorithms

The existence of a diverse array of algorithms has prompted numerous attempts to cate-

gorise these methods into broader families, thereby providing a clearer overview of the

landscape of these techniques. However, there is a lack of consensus regarding the clas-

sification of AD methods, as different authors employ various criteria to organise this

vast diversity of techniques. One comprehensive survey (H. Wang et al. 2019) groups

AD algorithms into:

• Statistical-based methods, e.g., Gaussian Mixture Model-based (GMM) (Yang et

al. 2009), where identification of an anomaly depends on its relationship to the

distribution pattern of other data instances.
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• Distance-based methods, e.g., k-Nearest Neighbours (kNN) (Ramaswamy et al.

2000), where a data point is classified as an anomaly based on its distance to neigh-

bourhood points.

• Density-based methods, e.g., Local Outlier Factor (LOF) (Breunig et al. 2000) or

Connective-based Outlier Factor (COF) (Tang et al. 2002), for which anomalies are

identified as instances occurring in low-density regions, as opposed to regular data

instances.

• Clustering-based methods, e.g., Cluster-Based Local Outlier Factor (CBLOF) (He

et al. 2003), where anomalies are identified as those that occur outside of the de-

termined data clusters.

• Graph-basedmethods that capture the dependencies of linkages between instances

in order to discover those with fewer interconnections.

• Learning-based methods including deep-learning techniques that learn a model to

identify anomalies.

• Ensemble-based methods that combine the results of different techniques to iden-

tify anomalies.

Aside from the groupings outlined above, further categories have been proposed in

studies that have mostly focused on classic methods:

• Nearest neighbour-based (Chandola et al. 2009; Emmott et al. 2015; Goldstein and

Uchida 2016), e.g., kNN, Angle-Based Outlier Detection (ABOD) (Kriegel et al.

2008),

• Classifier-based (Chandola et al. 2009; Goldstein and Uchida 2016), also referred

to as model-based (Emmott et al. 2015), or learning-based methods (H. Wang et al.

2019),

• Subspace-based or spectral approaches, in which anomalies are easily discovered

following dimensionality reduction or identification of a specific low-dimensional

subspace (Chandola et al. 2009; Goldstein and Uchida 2016),

• Projection-based, e.g., Isolation Forest (IForest) (F. T. Liu et al. 2008) or Lightweight

On-line Detector of Anomalies (LODA) (Pevnỳ 2016) – methods using information
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Table 2.2: Examples of AD methods arranged according to two-dimensional classifi-
cation, proposed by Ruff et al. 2021. Acronym dictionary: OC-SVM—One-class sup-
port vector machine, SVDD—Support vector data description, SSAD—Semisupervised
AD, GMM—Gaussian mixture model, PCA—Principal component analysis, rPCA—
Robust PCA, k-NN—k-nearest neighbours, LOF—Local outlier factor, IForest—Isolation
forest, OC-NN—One-class neural network, DSVDD—Deep support vector data de-
scription, GT—Geometric transformation, EBM—Energy-based model, AAE/CAE—
Adversarial/Contrastive autoencoder, GAN—Generative adversarial network.

Model

Classification Probabilistic Reconstruction Distance

Feature map

Shallow
OC-SVM Histogram PCA k-NN
SVDD Mahalanobis rPCA LOF
SSAD GMM k-Means IForest

Deep
OC-NN EBMs AAEs
DSVDD Flows CAEs
GT GAN

from random projections of the data (Emmott et al. 2015),

• Information Theoretic techniques – methods that make use of information theo-

retic measures, such as entropy or Kolomogorov Complexity metric (Chandola et al.

2009).

An alternative approach to categorising ADmethods has been proposed by Ruff et al.

2021. These researchers suggest a two-dimensional classification framework based on

the model and the feature map, as shown in Table 2.2. Distinguishing between shallow

and deep feature maps while retaining the classification based on model characteristics

makes this categorisation particularly successful in communicating the multifaceted na-

ture of the problem.

2.1.5 Benchmark Datasets

The distinction between a “real-life dataset” and a “synthetic dataset” that is commonly

used in literature is insufficient for the AD context. For AD purposes, many researchers

focus on a more nuanced differentiation that better suits AD challenges. This involves

distinguishing between datasets repurposed from classification tasks and “semantically

meaningful” datasets (Campos et al. 2016; Ruff et al. 2021; H. Wang et al. 2019).
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In cases of data repurposing, even though the dataset might originate from real data,

the classes designated to represent anomalies do not necessarily reflect real-life anoma-

lies; they are merely different classes. The process of dataset creation is typically struc-

tured in a way that the classes intended to represent anomalies differ markedly, and their

instances occur less frequently compared to “normal” class instances. However, such

data may not fulfill the criterion of diversity (Campos et al. 2016). Additionally, it may

fail to exhibit other characteristics of anomalies, such as those arising from anomalies’

unpredictable nature. An example of a repurposed dataset could be one containing hand-

written letters in which instances of selected characters are down-sampled to form a mi-

nority class. Although some researchers have criticised this practice (Campos et al. 2016),

it remains one of the most widely used techniques for generating benchmark datasets

for evaluating new AD algorithms (Goldstein and Uchida 2016; Kandanaarachchi et al.

2020). The methodologies of creating AD benchmark datasets have been studied and

proposed by Emmott (Emmott et al. 2013, 2015).

In semantically meaningful datasets, the instances of minority class are expected

to happen rarely in real-life situations, for example, people with specific medical issues

among healthy individuals or fraud transactions among routine bank transactions (Cam-

pos et al. 2016).

Several AD benchmark datasets, including repurposed and semantically meaningful

datasets can be obtained from public repositories: Outlier Detection Data Sets (Campos

et al. 2016), Outlier Detection DataSets (ODDS) (Rayana 2016), Unsupervised Anomaly

Detection Benchmark (Goldstein 2015; Goldstein and Uchida 2016), Anomaly Detection

Meta-Analysis Benchmarks (Emmott et al. 2015).

2.1.6 Evaluation Metrics

The output of an AD method is usually given by an anomaly score, which indicates

how likely it is that an observation is anomalous (Campos et al. 2016; Goldstein and

Uchida 2016). Generally, the scores generated by various methods are not normalised;

they can take any real number as their value, including negative ones. As a result, they
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cannot be easily read as probabilities or directly compared across methods. To facilitate

comparison of individual results, ranking techniques are essential. To assist with the

comparison of performance of several algorithms on a dataset, additional metrics are

required.

When assessing an algorithm’s performance on datasets with known ground-truth

labels, common evaluation metrics for classification problems – such as precision, recall,

and F1 score – are also employed in AD tasks. Nonetheless, these metrics require the

predicted scores to be translated into binary labels. This translation necessitates the

use of a threshold value that is task-specific. A popular technique for estimating this

threshold is the utilization of the number of ground-truth outliers, n, which enables the

computation of these metrics.

Another metric often utilised in AD scenarios is Precision at n (P@n), which is mea-

sured as the percentage of correctly identified outliers among the top n ranks (Campos

et al. 2016).

Weighted correlation coefficient, such as Spearman’s rank similarity or Pearson cor-

relation, is another performance metric utilised in AD research (H. Wang et al. 2019).

These metrics leverage the correlation between predicted anomaly scores and the or-

dered sequence of actual outlier and inlier instances. In the calculation of this metric,

greater weight is given to instances assigned higher outlier scores. Consequently, the

method imposes a more severe penalty for errors made on observations that were at-

tributed the highest scores.

The Area under the Receiver Operating Characteristic (ROC) curve (AUC) and the

Average Precision (AP) are widely used evaluation measures in anomaly detection since

they provide the integral result for all thresholds from 0 to 1, making them threshold-

independent.

A ROC curve is obtained by plotting the True Positive Rate (TPR) versus False Posi-

tive Rate (FPR) for the full range of thresholds. TPR and FPR are defined as TPR = TP
TP+FN ,

FPR = FP
FP+TN , where TP – true positives, FP – false positives, TN – true negatives, and FN

– false negatives. The area under the ROC curve serves as a single performance metric.
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Figure 2.1: ROC and Precision-Recall (PR) curves.

For a non-skilled classifier, the value of AUC is expected to be about 0.5; for the ideal

classifier, it is a value of 1.

A Precision-Recall curve is created by plotting precision versus recall for the entire

range of thresholds. These two measures are defined as Precision = TP
TP+FP , Recall =

TPR. The area under this curve is known as the Average Precision (AP) and can be

expressed as:

AP =
∑
k

Pk∆Rk (2.2)

wherePk is the precision at the kth threshold and∆Rk is the change in recall between

thresholds k−1 and k. While for the ideal classifier the AP value equals 1, the non-skilled

classifier reports a value close to the proportion of the anomalies within the dataset. The

examples of a ROC curve and a Precision-Recall curve are presented in Figure 2.1.

These twometrics are commonly used in AD research because they effectively gauge

the performance of individual AD algorithms. Unlike metrics that rely solely on fixed

binary labels, AUC and AP consider the entire range of possible thresholds, providing a

more comprehensive assessment of the predictive capabilities of an algorithm.

In summary, this section has offered a thorough investigation of anomaly detection,

shedding light on the aspects required for presenting the primary goal of the research.

The provision of such a rich context will aid in the subsequent presentation of the work,

of which the AD is a foundational pillar.
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2.2 AutoML in Supervised Learning

To address theAlgorithm Selection Problem inAD, it is critical to explore existing knowl-

edge on AutoML and meta-learning, which serve as the second foundation of this re-

search. This section, and the following (Section 2.3), provide the overview of the AutoML

research in both supervised and unsupervised aspects, respectively.

Since the formalisation of the ASP framework by Rice (Rice 1976), meta-learning has

received increased attention in the research community. Studies have focused on spe-

cific areas of meta-learning, such as hyperparameter optimisation (HO) (Feurer, Sprin-

genberg, et al. 2015; Horváth et al. 2016; Komer et al. 2014; Rafael G Mantovani et al.

2015, 2019; Rafael Gomes Mantovani et al. 2020; Sanders et al. 2017; Wistuba et al. 2016)

or meta-features development (Abdrashitova et al. 2018; Gutierrez-Rodríguez et al. 2019;

Kanda et al. 2016). Several survey studies have presented a large-scale overview of the

research (I. Khan et al. 2020; Lemke et al. 2015; Muñoz et al. 2015; Smith-Miles 2009;

Vilalta et al. 2002). In particular, a comprehensive compilation of the research and ac-

complishments in AutoML with a focus on meta-learning is presented by Hutter et al.

2019. Current AutoML systems are not only capable of performing model or hyperpa-

rameter selection tasks, but are also fully functional automated pipelines of processes

that include training and testing without the need for human intervention (Guyon et

al. 2019). To date, several automated AutoML systems have been developed, includ-

ing Auto-WEKA (Kotthoff et al. 2019), Auto-Sklearn (Feurer, Klein, et al. 2015), Auto-

Sklearn 2.0 (Feurer, Eggensperger, et al. 2022), Hyperopt-Sklearn (Komer et al. 2014),

Auto-Net (Mendoza et al. 2019) and others (Olson et al. 2016; Steinruecken et al. 2019).

These systems were designed to address supervised problems, but the ASP for un-

supervised settings remains largely unexplored. The approaches common to supervised

AutoML, such as Bayesian optimisation, population-based search used in evolutionary

techniques, grid or random search (Bahri et al. 2022; Hutter et al. 2019), cannot be easily

utilised in unsupervised scenarios due to the lack of a simplistic performance metric.
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2.3 AutoML in Unsupervised Anomaly Detection

To comprehensively present the current research on automated approaches to unsuper-

vised AD, this section reviews the literature on AutoML in AD, not necessarily unsu-

pervised, and also in other unsupervised scenarios, not necessarily related exclusively

to AD.

A comprehensive end-to-end system similar to those mentioned in the previous sec-

tion has been proposed by Y. Li et al. 2020. It provides an automated pipeline for anomaly

detection, including algorithm search, hyperparameter search, and data visualisation. It

has support for stationary and time-series data. However, even though the algorithm

search space is built upon unsupervised AD algorithms, the algorithm and hyperparam-

eter selection is performed using the F1 score metric, which requires the ground truth

labels for its calculation. As a result, it more closely resembles the methodology used in

supervised systems rather than employing techniques tailored for unsupervised scenar-

ios.

The subsequent review focuses on the approaches intended to address the unsuper-

vised aspect of AD problems. It is conducted by reviewing the meta-learning framework

adapted by individual studies, followed by the review ofmeta-characteristics, which con-

stitute one of the essential components of a meta-learner framework.

2.3.1 Meta-Learning Frameworks for Algorithm Selection in AD

According to I. Khan et al. 2020, the important dimensions of the meta-learning frame-

work are: meta-features, meta-model and a meta-target, where for any given problem,

the meta-learner receives meta-features as input and recommends appropriate algo-

rithms according to the learned meta-model. However, the approaches to algorithm

selection for AD do not always include all the elements of the indicated framework.

The approaches proposed by Ferdosi et al. 2019 and Gudur et al. 2022 do not offer

any particular meta-model. Ferdosi et al. 2019 performs the algorithm search over the

labelled training dataset to find the best performing AD algorithm. This algorithm is

then applied to the unlabelled test dataset, and the outlier scores are obtained. The out-
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lier visualisation and the feedback from a human expert is utilised as a deciding factor

whether a given algorithm performed well, and to refine the result of the proposed algo-

rithm, which in turn obtains better outlier ranking. Similarly, Gudur et al. 2022 use the

feedback from a human expert obtained on a subset of datasets. That subset is chosen

using the pre-designed acquisition function and then employed in a grid search-based

technique to determine the optimal algorithms. Both studies are primarily concerned

with reducing the amount of data supplied to the human expert for labelling. However,

they keep humans in the loop, which is a significant constraint for process automation.

Meta-AAD (Zha et al. 2020) leverages reinforcement learning to develop a meta-

policy using labelled AD data. The meta-policy is then applied to a new, unlabeled

dataset, and human feedback is used to confirm the expected anomalies and to further

refine the meta-policy.

A different approach to addressing the ASP in AD to that mentioned above is pro-

posed by Papastefanopoulos et al. 2021 and Le Clei et al. 2022. These works propose

automated approaches while taking into consideration the unsupervised nature of AD

problems, but they do not perform offline meta-training. Instead, the proposed systems

assess the performance of a predefined set of algorithms “online”, using “voting” pro-

cedures, during an algorithm evaluation over a new task. The primary shortcoming of

these systems is non-scalability. They require evaluation (or even multiple evaluations)

of a number of algorithms when confronted with a new problem without taking advan-

tage of transfer learning from historically evaluated algorithms.

Kandanaarachchi et al. 2020 proposed an SVM-based meta-model trained on dataset

meta-features, with the target variable being a binary label of good (AUC >= 0.8) and bad

algorithm performance. They feed two meta-features into the meta-model. These fea-

tureswere subsequently used to generate a two-dimensionalmap identifying the optimal

regions for each algorithm. However, the final output from the SVM does not correlate

well with the original performance data. This suggests that the binary classifier based on

two-feature input is overly simplistic in capturing the complicated relationship between

dataset attributes and algorithm performance.
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Table 2.3: Overview of the approaches proposed by MetaOD and FMMS.

MetaOD FMMS

Meta-features 200 features 46 features
Meta-model Matrix Factorisation Factorisation Machine
Meta-target AP Rank and TopNK
Dataset count 162 553
Model count in a
base set

302 200

The study by Zhao, Rossi, et al. 2021 (MetaOD) and the Factorisation Machine-based

Model Selection (FMMS) approach (Zhang et al. 2022) both utilise the framework out-

lined by I. Khan et al. 2020, incorporating a set of meta-features, a meta-model, and a

meta-target. In terms of meta-features, both studies employ statistical and “landmark-

ing” features. Statistical features, such as minimum, maximum, or variance, are used to

characterise the underlying data distributions. The landmarking features are designed to

reveal the internal structure of the datasets (Zhang et al. 2022). Both MetaOD and FMMS

adhere to the underlying assumption that the algorithm selection problem is conceptu-

ally similar to recommender systems and collaborative filtering. MetaOD’s meta-model

is based on matrix factorisation, whereas FMMS employs a factorisation machine. The

metrics used by these approaches include AP (as detailed in Equation 2.2), Rank, and

TopNK. The Rank metric is quantified as a subsequent value for each recommended al-

gorithm, expressed as a fraction of the total number of algorithms. TopNK represents

the likelihood that a model ranked within the top N algorithms will be predicted among

the top K algorithms. The overview of both techniques are presented in Table 2.3.

Both studies are designed for unsupervised scenarios and represent state-of-the-art

solutions in this field. Nonetheless, they exhibit certain limitations. A primary limita-

tion is the relatively limited dataset collections, particularly in light of the meta-analytic

character of this research. Another shortcoming pertains to the choice of evaluation

metrics. Notably, neither study employs the AUC metric, which is among the most

prevalent metrics in AD research (Campos et al. 2016; Goldstein and Uchida 2016; H.

Wang et al. 2019). The ranking-related metrics used in the FMMS study additionally

suffer from a constraint, offering limited insight into the actual distribution of various
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algorithms’ performance. For instance, the third-ranked algorithm could exhibit per-

formance closely similar to the first-ranked one, yet this nuance is not visible through

ranking metrics alone.

2.3.2 Meta-Characteristics of Datasets

The ability to characterise datasets using a common set of meta-features is one of the

key components of all automated algorithm selection methods. A key early exploration

of this challenge by Campos et al. 2016 examined how well the selected AD meth-

ods handled anomalies across datasets. The authors defined two dataset properties –

difficulty (Diff) and diversity (Diver). For a dataset x and a set of AD algorithms

αj ∈ {α1, ..., αL}, with the algorithm performance y and the standard deviation of

performance across algorithms σj(y), the characteristics are described by Equations 2.3

and 2.4.

Diff(x) = 1− 1

L

L∑
j

y(x, αj) (2.3)

Diver(x) = σj

(
y(x, αj)

)
(2.4)

The difficulty score indicates the degree of difficulty for an AD algorithm to detect

outliers in a given dataset. The diversity score reflects the agreement between the al-

gorithms on the difficulty score. The researchers created a feature map based on these

two scores and positioned datasets accordingly. As these characteristics were derived

from algorithm evaluations, they would not qualify for use in a meta-learner; however,

this meta-analysis of the algorithm’s performance across datasets is seen as a first step

towards inferring dataset meta-features and developing a system to aid in algorithm

selection.

Many common attempts to construct dataset meta-features specifically for anomaly

detection tasks rely on labelled data nonetheless. Kandanaarachchi et al. 2020 created

the feature set with 362 features, which was subsequently reduced to two features and

adapted to a two-dimensional feature map. Because labelled data is required for a sig-

nificant part of the initial set, it is inadequate for an unsupervised AD problem. Kotlar
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et al. 2021 proposed an alternative set of meta-features. Their study centred on seman-

tic features specifically developed for AD, such as global, local, or collective anomaly

types, as well as other characteristics, such as anomaly space, anomaly ratio, data type,

or data domain. To create these features, prior knowledge of anomalous instances, such

as their ratio or distribution, is required. These characteristics must also be provided by

a human expert rather than being retrieved automatically from datasets. As a result, this

technique cannot be immediately applied to an automated unsupervised meta-learning

problem.

Zhang et al. 2022 adopted the set of meta-features initially proposed by Fusi et al.

2018, which are commonly used in classification tasks. These features are label-independent,

making themwell-suited for unsupervisedmodel selection techniques. Label-independent

meta-features were also proposed by Zhao, Rossi, et al. 2021 in their unsupervised AD

algorithm selection system. In addition to the statistical meta-features commonly used

in classification tasks, this feature set also incorporates “landmarking” features that are

specifically tailored for AD problems. The proposed set contains 200 meta-features in

total.

As mentioned in Section 2.3.1, one of the main limitations among the reviewed stud-

ies is the narrow scope of datasets employed in their experimental work. While most of

these studies relied on a very limited set of datasets, the most extensive studies included

either 553 (Zhang et al. 2022) or 162 (Zhao, Rossi, et al. 2021) datasets. Notably, one

study that published a collection of 12,000 datasets (Kandanaarachchi et al. 2020) failed

to fully leverage its potential by severely limiting the feature space and oversimplifying

the results from a binary classifier.

In summary, a persistent challenge in the field of AD is the lack of comprehensive

research on automated algorithm selection. To date, the most promising approaches for

addressing this challenge are the MetaOD (Zhao, Rossi, et al. 2021), and the conceptually

comparable FMMS (Zhang et al. 2022) framework. In the current study, the MetaOD is

investigated further and used as a baseline as the first attempt to algorithm selection in

truly unsupervised anomaly detection.
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2.4 Evaluation of Local Reliability

Traditional metrics used in evaluating the efficacy of machine learning models often

focus on the model’s global performance. This is commonly done by averaging er-

rors across all data points, exemplified by metrics such as mean squared error (MSE)

or mean absolute error (MAE), or by calculating the overall accuracy over an entire

dataset. Contrary to assessing global performance of models, the term “reliability” is

used by some researchers to refer to the quality of individual predictions, or localised

performance (Bosnić et al. 2009). Measuring localised performance is particularly rele-

vant for meta-learners, where the main focus is on determining the reliability and trust-

worthiness of specific responses provided by the meta-learner.

Research into techniques for assessing the local reliability of predictions remains

relatively unexplored, particularly in the realm of meta-learning. Several studies have

investigated and compared methods for determining local reliability in traditional ma-

chine learning algorithms, including linear regression, regression trees, random forests,

or SVM (Bosnić et al. 2008a,b, 2009, 2010). Preliminary findings from these studies sug-

gest that variance-based techniques exhibit strong potential in evaluating prediction re-

liability (Bosnić et al. 2008a).

An alternative methodology presented by Prudêncio et al. 2022 attempted to model

the quality of responses using decision trees. This approach utilized two-feature sub-

spaces as input and categorized the responses into ’good’ or ’bad’ classes. While the

simplicity of this technique aligns with certain requirements, especially in data presen-

tation, solely focusing on feature pairs may ignore the complexity inherent in many

problems.

Research studies that employ selective classification or selective regression approaches

are valuable resources for investigating the reliability of particular responses (Fisch et al.

2022; Jain et al. 2022; Park et al. 2023; Shah et al. 2022; Wiener et al. 2012; Zaoui et al.

2020). Although the majority of this literature addresses classification problems, there

are notable studies that apply relevant techniques to regression models (Shah et al. 2022;

Zaoui et al. 2020). These studies used the conditional variance function as a measure of
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uncertainty of individual predictions (Zaoui et al. 2020). They proposed to use the local

sample variance of the model’s residuals as an estimator for the conditional variance

function and utilise this as a measure of uncertainty for particular data instance:

σ2(x) = E
[
(Y − f ∗(X))2 |X = x

]
(2.5)

with X being a feature vector and Y its corresponding output, and f ∗(x) the mod-

elled regression function. Given that the meta-model employed in the current work is a

supervised regression model, these investigations are considered relevant.

2.5 Summary

In a review of the existing literature relevant to the subject matter, several notable

gaps and opportunities for further investigation can be observed. The problem of al-

gorithm selection for unsupervised AD remains largely underexplored. While a handful

of methodologies have been proposed, there is an absence of research focused on iden-

tifying the most influential and promising components of a meta-learner with respect

to its performance. Additionally, the domain of meta-learning lacks studies aimed at es-

timating the reliability of task-specific predictions, as well as evaluating the associated

risks within the feature space where such tasks are situated. Finally, studies concerning

meta-learning for unsupervised problems have been constrained to a narrow range of

datasets. All the above findings highlight the importance of delving deeper into this field

and developing adequate methodologies.
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Datasets, Metrics, and Preliminary

Experiments

Understanding and evaluating the challenges and the potential of AutoML for optimal

selection of algorithms for anomaly detection requires both benchmark datasets and a

suitable experimental framework. The AD benchmark datasets utilised in this study are

presented and evaluated in this chapter and themetrics used to evaluate the performance

of AD algorithms are discussed. Central to this research are the preliminary experiments

that informed the direction of subsequent investigations. Insights from these tests pro-

vided a basis for the hypotheses explored in this research and facilitated the generation

of data that was used for the meta-learners’ training. These preliminary experiments are

described in the final section of this chapter.

3.1 Datasets

The meta-learning experiments carried out in this study involved a few collections of

AD benchmark datasets. The term dataset is used throughout this thesis to refer to data

specific to a particular AD task. To refer to the entire dataset collection, either the term

set or collection is used.

Current research employs the following sets:

• Kandanaarachchi set (Kandanaarachchi et al. 2020)
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• Goldstein set (Goldstein and Uchida 2016)

• IoT botnet attacks (N-BaIoT ) (Meidan et al. 2018)

Kandanaarachchi is the largest set created to date, containing over 12,000 datasets (Kan-

danaarachchi et al. 2020). It has been combined from public repositories and repurposed

from existing classification datasets by down-sampling certain categories. In this study,

this set is used in the main meta-learner experiments.

Similarly to the Kandanaarachchi set, the Goldstein set has been created mainly by

re-purposing classification datasets using a variety of data formats, including images,

speech recordings, and numerical data. Several datasets from this collection have been

used in the current research for illustrative purposes.

Unlike the two sets above, the N-BaIoT data was generated specifically for anomaly

detection purposes (Meidan et al. 2018). Because the nature of the data resembles a

potential real-life scenario (of a hacker’s attack), the data with such characteristics is

referred to as semantically meaningful data in the context of anomaly detection (Campos

et al. 2016). In the current work, this dataset has also been used for auxiliary experiments

and illustrative purposes.

Subsequent sections provide a more comprehensive description of the chosen sets,

including the motivation for selecting these datasets. Specifically, the Kandanaarachchi

set is discussed in greater detail, considering various aspects. This in-depth analysis is

crucial, as this set forms the basis of themainmeta-learning experiments. Understanding

its detailed characteristics is essential to justify its application in such research.

3.1.1 Kandanaarachchi Benchmark Set

Over 12,000 datasets make up the largest AD benchmark dataset yet released (Kan-

danaarachchi et al. 2020). The main motivation for selecting this set for the experiments

was its size. As highlighted earlier, all of the experiments within the meta-learning stud-

ies used significantly smaller numbers of datasets, which was insufficient for making

any statistical observations on the performance. The Kandanaarachchi collection was

created with the intention of approaching the ASP for unsupervised tasks, however, the

41



Chapter 3. Datasets, Metrics, and Preliminary Experiments

Table 3.1: Statistics of the Kandanaarachchi set of datasets.

Statistic Observations Features Anomalies %

Min 44 2 1.34
Median 622 16 4.21
Max 10,460 1,556 5.33

creators have not yet utilised this collection to its full potential for AD and, in particular,

AutoML applications.

In addition to the size of the set, an important consideration is the diversity of the

datasets it contains, including characteristics such as coverage and variation according to

meta-features. Table 3.1 presents the statistics of the datasets used in Kandanaarachchi

according to the number of observations, number of features and percentage of anoma-

lies contained in the datasets.

The creators of the datasets examined them using characteristics introduced by Cam-

pos et al. 2016, such as difficulty (Diff) and diversity (Diver), as described by Equa-

tions 2.3 and 2.4 in Chapter 2:

Diff(x) = 1− 1

L

L∑
j

y(x, αj)

Diver(x) = σj

(
y(x, αj)

)
where x is a single dataset, and the characteristics are calculated across a set of AD

algorithms αj ∈ {α1, ..., αL}, with y being an algorithm performance and σj(y) its

standard deviation across algorithms.

These characteristics are the algorithms’ responses on each of the datasets. The dif-

ficulty score describes how difficult it is for a given AD method to identify the outliers

in a given dataset. Higher scores indicate a better blend of outliers and inliers, and thus

higher difficulty. Diversity describes the agreement on the difficulty score amongst the

AD algorithms. The details of AD algorithms used for obtaining these characteristics are

included in the publication by Kandanaarachchi et al. 2020, and the results are shown in

Figure 3.1. The individual colours are related to the original source of the datasets.
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Anomalies from the datasets in the bottom-left quadrant of the figure are straightfor-

ward to recognise for the majority of algorithms since the difficulty and diversity scores

are low. The spread of diversity increases considerably as difficulty increases, indicating

that while many datasets are relatively easy to interpret for all algorithms, there is also

an abundance of datasets on which different algorithms exhibit diverse performance.

Lastly, the datasets in the bottom-right corner of the picture are tough for the major-

ity of algorithms. Overall, two key observations emerge from this analysis: first, that

the Kandanaarachchi set includes datasets that span a wide range of difficulty levels;

and second, that there exists a substantial number of datasets where the performance of

various algorithms differs significantly.

Figure 3.1: Diversity and difficulty as defined by Campos et al. 2016, visualised for the
Kandanaarachchi set. The image from (Kandanaarachchi et al. 2020).

In addition to the dataset inspection in prior works, this study looked at additional

aspects describing the collection’s heterogeneity. To achieve this, the dataset collection

was arranged inside the meta-feature space constructed from features proposed in the

meta-learner experiment presented in this research. The specificmeta-features used here

are further described in Section 4.1.1.
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To illustrate the concept of the population of meta-feature space, the term coverage

is introduced. A dataset is represented as a single point in a k-dimensional space, with k

denoting the number ofmeta-features. It is assumed that each dataset point encompasses

a finite, small area. In this context, the focus is on the space each point covers. When

these spaces are projected onto individual meta-features, coverage can be defined as the

collective area encompassed by all dataset points along each feature.

Figure 3.2 illustrates the coverage of the datasets across eachmeta-feature normalised

to the [0, 1] range. Each small bar along a given feature represents a single dataset.

Visual inspection suggests that most of the features have a decent representation across

the value ranges with the involved datasets.

Figure 3.2: Visualisation of dataset coverage in the meta-feature space of normalised
features.

Apart from visual inspection of Figure 3.2, the evenness measure obtained from the

Shannon entropy measure (Shannon 1948) was used to quantify the sparsity of the meta-

feature space, following the methodology used by Pham et al. 2010 and Bahrpeyma et

al. 2021. Equation 3.1 expresses the entropy of a discrete random variable X , where
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X1, ..., XS denotes the set of possible states of X and p(Xi) represents the probability

thatX = Xi. The entropy of the variable increases with the evenness of its distribution:

H(X) = −
S∑

i=1

p(Xi) log p(Xi) (3.1)

To apply Shannon entropy, which relies on discrete variables, the meta-features were

separated into 5 even buckets. Consequently, in this case, Xi ∈ {X1, ..., X5} reflects a

meta-feature belonging to the bucket i. Following the work mentioned earlier (Pham

et al. 2010), the entropy was further normalised to its maximum value to facilitate easier

interpretation. This normalised value is also known as the evenness measure.

The maximum entropy of any given feature can be expressed as:

Hmax(X) = −
S∑

i=1

1

S
log

1

S
= logS (3.2)

Consequently, the evenness measure of a given feature can be written as:

HE(X) =
H(X)

Hmax(X)
= − 1

logS

S∑
i=1

p(Xi) log p(Xi) (3.3)

The outcomes of applying the Equation 3.3 on the meta-features are presented in

Table 3.2. These metrics reveal how evenly the dataset points are distributed within the

meta-feature space when they are projected onto individual meta-features. The greater

the value, the more uniform the distribution along a particular meta-feature, and hence

the better the dataset population or representation. Out of 19 meta-features, 14 exhibit

an evenness measure of more than 0.75, with an overall average of 0.715. This indicates

that the meta-feature ranges are adequately represented.

After examining the statistics and metrics of the datasets in Kandanaarachchi, it has

been concluded that this collection is well-suited for advanced meta-learning analysis

and evaluation of potential approaches for AutoML.
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Table 3.2: Evenness measure of meta-features.

Meta-feature HE Meta-feature HE

total_range 0.375 l2_total_range 0.983
central_weight 0.789 l2_central_weight 0.758
tail_range 0.870 l2_tail_range 0.833
tail_quarter 0.896 l2_tail_quarter 0.825
locality_1 0.424 locality_3 0.068
l1_total_range 0.888 l3_total_range 0.978
l1_central_weight 0.756 l3_central_weight 0.674
l1_tail_range 0.892 l3_tail_range 0.829
l1_tail_quarter 0.839 l3_tail_quarter 0.825
locality_2 0.082

Average 0.715

3.1.2 Goldstein Benchmark Set

The Goldstein set, originally derived from publicly available classification datasets, was

specially processed for benchmarking unsupervised AD algorithms, as detailed by Gold-

stein and Uchida 2016. This set comprises 10 diverse datasets, including Breast Cancer,

Handwritten Digits Recognition, Letter Recognition, Speech Accent, Statlog (Landsat Satel-

lite), Statlog (Shuttle), Thyroid Disease, ALOI (Object Images), and KDD Cup 1999.

In creating this benchmark collection, the authors downsampled selected classes to

form minority classes, as described by Goldstein and Uchida 2016. Several of the result-

ing datasets contain minority classes that represent real-world anomalies. The examples

of such include disease data amidst healthy patient data, or instances of network attacks

within regular traffic data.

The Goldstein set has established itself as one of a benchmarking standards in AD,

widely utilised in numerous research studies (Bauder et al. 2017; Guo et al. 2019; S. S.

Khan et al. 2018; H. Wang et al. 2019; Yao et al. 2019). Due to this reason it was leveraged

in the current research for benchmarking selected AD algorithms and for illustrative

purposes.
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3.1.3 N-BaIoT Benchmark Set

The N-BaIoT set has been collected by measuring the traffic sent by commercial IoT

devices before and after the deployment of two popular botnets (BASHLITE and Mirai).

The details on the botnet deployment, measurement, and data collection are given by

Meidan et al. 2018. The key rationale for choosing this set in the experiments was that

it is “semantically meaningful,” which means that these types of anomalies are possible

in real life.

The dataset contains data from nine IoT devices: two doorbells, a thermostat, a baby

monitor, four security cameras, and a webcam. The data from each device comprises be-

nign traffic and two types of botnet attacks: BASHLITE andMirai. Each botnet produced

five types of malicious behaviour.

Originally, the published data contained separate files with benign traffic for each

device and additional files with two types of traffic from infected devices. The sample

datasets for the current study were created in the following way: for each device and

each type of traffic, the random samples of benign and malicious data were collected

and merged together. The benign traffic sample size varied randomly between 5,000

and 20,000, and the amount of malicious traffic varied from 1% to 10% for each dataset

size. This preprocessing allowed for exploiting this set in AD algorithm benchmarking

studies while considering this data to be “semantically meaningful”, because it reflects a

potential real-life scenario of an attack on an existing commercial IoT device.

3.2 Anomaly Detection Metrics

Area Under the Receiver operating characteristic (ROC) Curve (AUC) and Average Pre-

cision (AP) were chosen to evaluate the performance of AD algorithms in this work

since they are the most extensively used evaluation measures in anomaly detection lit-

erature (Campos et al. 2016; H. Wang et al. 2019). As mentioned in Section 2.1, the

output of an AD method is typically an anomaly score, which indicates the likelihood

that the given observation is anomalous. The translation of anomaly scores into binary
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labels that are required in common performance metrics, such as accuracy or precision,

involves using a threshold, which in many practical AD cases is unknown without ad-

ditional data exploration. The AUC and AP measures provide the integral result for all

thresholds from 0 to 1, making them threshold-independent.

Both metrics capture different aspects of an algorithm’s ability to separate normal

and anomalous data points; therefore, in many cases is not sufficient to interpret the

performance results with the use of a single metric only. Figure 3.3 depicts two examples

of datasets in which these metrics appear to contradict one another. The figure presents

the ROC and Recall-Precision curves together with a histogram of true anomalies and

“normal” instances distributed along predicted anomaly scores. The desired outcome is

the greatest divergence between the anomaly scores of anomalous and the normal data.

Figure 3.3a presents a very poor AUC value (less than 0.5), however, the moderate

AP indicates that the algorithm performed effectively to some extent. This assumption is

confirmed by the profile of anomaly scores, showing that roughly half of the anomalies

are separated very well, whereas the other half is blended with normal data. In contrast,

Figure 3.3b presents results where the AUC is reasonably good (higher than 0.75), but

the AP value is very poor. The histogram of the scores reveals that the fairly high AUC

value is driven by a large number of true negatives rather than the well-performing

algorithm. The algorithm performs poorly by assigning the range of the highest anomaly

scores (250-450) to normal instances, whereas anomalous data are blended with normal

instances.

A commonly highlighted disadvantage of the AUC is that it can produce overly

optimistic results for severely unbalanced classes due to the dominance of true nega-

tives (Ahmed et al. 2020b; Davis et al. 2006; Ruff et al. 2021), as seen in Figure 3.3b. The

AP, in contrast to the AUC, only examines the positive class, hence it provides more

information regarding performance over unbalanced classes. The direct comparison of

the AP measures across various datasets is limited, however, because the lower bound

is not normalised and is tied to the ratio of anomalies within the dataset. Both metrics

have been chosen in this research to compensate for their respective limitations.
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(a) Very poor AUC and relatively good AP.

(b) Relatively high AUC and very poor AP.

Figure 3.3: Characteristics of AP and ROC AUC.

3.3 Performance of Anomaly Detection Algorithms

In addition to the complexity of measuring and comparing the performance of anomaly

detection algorithms, another challenge is that a single algorithm may perform well on

one dataset but poorly on another. As previously stated (Section 1.2), the research com-

munity agrees that no single algorithm outperforms others on all AD tasks (Campos et

al. 2016; Emmott et al. 2015; Goldstein and Uchida 2016; Kandanaarachchi et al. 2020;

Zhao, Rossi, et al. 2021). Furthermore, the “difficulty-diversity” plot (Figure 3.1) demon-

strates that the performance of many algorithms varies significantly across datasets.

This is also supported by the current study’s experiments. Tables 3.3 and 3.4 contain the

results of algorithm benchmarking against sample datasets. The datasets for this illus-

tration have been sourced from the Goldstein set (Goldstein and Uchida 2016) and the

N-BaIoT set (Meidan et al. 2018). The algorithms used in this experiment are described

in Section 2.1.3.

The striking observation fromdata in Tables 3.3 and 3.4 is that there is no clearwinner

among the tested algorithms. Several methods achieve very good separation of anoma-
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Table 3.3: Results from the comparative analysis: AUC. Highlighted in bold are the top
two best values for each dataset. The upper section contains datasets from the Goldstein
set, the lower one from the N-BaIoT set.

Dataset IForest OCSVM kNN kthNN LOF HBOS COPOD AE Hybrid SOGAAL

breast-cancer 0.988 0.991 0.980 0.983 0.984 0.975 0.990 0.981 0.858 0.000
pen-global 0.922 0.996 0.978 0.900 0.817 0.676 0.785 0.903 0.623 0.324
letter 0.612 0.528 0.835 0.777 0.831 0.571 0.560 0.572 0.479 0.347
aloi 0.538 0.546 0.619 0.589 0.726 0.493 0.514 0.556 0.494 0.535
pen-local 0.746 0.606 0.973 0.953 0.976 0.718 0.525 0.641 0.437 0.162
annthyroid 0.639 0.583 0.672 0.645 0.738 0.827 0.705 0.591 0.415 0.516
satellite 0.949 0.884 0.973 0.970 0.973 0.903 0.904 0.938 0.746 0.857
kdd99 0.965 1.000 0.967 0.978 0.603 0.974 0.998 1.000 0.985 0.795
shuttle 0.998 0.999 0.974 0.975 0.467 0.992 0.996 0.995 0.882 0.017
speech 0.500 0.428 0.486 0.479 0.482 0.471 0.491 0.436 0.625 0.364

b-doorbell 0.971 0.998 0.997 0.998 0.754 0.972 0.935 0.997 0.999 0.889
b-thermostat 0.965 0.996 0.998 0.998 0.999 0.432 0.801 0.999 0.998 0.349
b-baby-monitor 0.957 0.989 0.973 0.985 0.444 0.861 0.905 0.997 0.999 0.871
b-security-camera 0.812 0.998 0.963 0.975 0.485 0.631 0.758 1.000 1.000 0.886
b-webcam 0.965 0.988 0.982 0.989 0.458 0.912 0.953 0.997 0.998 0.755
m-doorbell 0.995 0.999 1.000 1.000 1.000 0.993 0.989 1.000 1.000 0.894
m-thermostat 0.992 0.999 1.000 1.000 1.000 0.739 0.945 1.000 1.000 0.881
m-baby-monitor 0.974 1.000 1.000 1.000 1.000 0.951 0.964 1.000 1.000 0.883
m-security-camera 0.920 1.000 1.000 1.000 0.999 0.776 0.882 1.000 1.000 0.889

Table 3.4: Results from the comparative analysis: Average Precision. Highlighted in bold
are the top two best values for each dataset. The upper section contains datasets from
the Goldstein set, the lower one from the N-BaIoT set.

Dataset IForest OCSVM kNN kthNN LOF HBOS COPOD AE Hybrid SOGAAL

breast-cancer 0.733 0.861 0.595 0.618 0.675 0.520 0.715 0.817 0.108 0.017
pen-global 0.591 0.970 0.833 0.457 0.598 0.212 0.258 0.435 0.161 0.120
letter 0.085 0.160 0.229 0.175 0.293 0.077 0.068 0.120 0.066 0.047
aloi 0.033 0.058 0.049 0.043 0.075 0.028 0.031 0.036 0.043 0.034
pen-local 0.003 0.004 0.046 0.018 0.110 0.003 0.002 0.003 0.002 0.001
annthyroid 0.073 0.127 0.094 0.083 0.165 0.140 0.071 0.096 0.029 0.042
satellite 0.630 0.688 0.628 0.614 0.568 0.542 0.524 0.675 0.271 0.223
kdd99 0.526 0.915 0.203 0.226 0.004 0.335 0.706 0.666 0.184 0.004
shuttle 0.979 0.881 0.314 0.333 0.038 0.956 0.888 0.805 0.173 0.010
speech 0.017 0.016 0.019 0.019 0.020 0.026 0.019 0.016 0.032 0.012

b-doorbell 0.524 0.921 0.932 0.936 0.428 0.562 0.363 0.922 0.967 0.191
b-thermostat 0.475 0.860 0.947 0.950 0.967 0.057 0.118 0.966 0.958 0.084
b-baby-monitor 0.408 0.782 0.657 0.748 0.399 0.194 0.201 0.926 0.977 0.170
b-security-camera 0.152 0.939 0.615 0.672 0.412 0.083 0.089 0.987 0.996 0.189
b-webcam 0.474 0.744 0.712 0.779 0.336 0.274 0.328 0.915 0.947 0.097
m-doorbell 0.852 0.975 1.000 1.000 1.000 0.786 0.809 1.000 1.000 0.198
m-thermostat 0.759 0.958 1.000 0.995 1.000 0.092 0.363 1.000 1.000 0.181
m-baby-monitor 0.477 0.985 1.000 1.000 1.000 0.340 0.386 1.000 1.000 0.184
m-security-camera 0.361 0.998 0.999 1.000 0.999 0.098 0.395 1.000 1.000 0.192

50



Chapter 3. Datasets, Metrics, and Preliminary Experiments

lies from non-anomalous instances for datasets such as m-doorbell or m-thermostat.

While the autoencoder or the hybrid method consistently produces excellent results for

IoT attack data, the performance of other methods varies greatly across datasets. For

example, the IForest algorithm, which works well with shuttle data, does not work so

well with b-thermostat data. At the same time, though, LOF performs impressively on

the b-thermostat dataset but fails to distinguish outliers in the shuttle data.

Figure 3.4 shows an additional illustration of selected algorithms performing differ-

ently on the same data. Whilst the IForest (F. T. Liu et al. 2008) method works very

well for the shuttle dataset (very good separation of normal and anomalous data), the

LOF (Breunig et al. 2000) method performs poorly over the same dataset. In contrast,

on the thermostat dataset, LOF achieves clear separation of anomalies, whereas IForest

blends the anomalous data with the normal instances. Although the high AUC value in

the last case may suggest that the algorithm performed well, the high score is actually

due to the large number of true negatives. The relatively poor precision reveals that the

algorithm assigns the highest anomaly scores to normal data points, which is confirmed

by the histogram of anomaly scores.

This observation, made on multiple datasets and confirmed by numerous evalua-

tions throughout this study, is crucial to the research on selecting the best performing

algorithm for a specific AD task. The methodology to address this problem, as out-

lined in RQ1, required data on the performance of various AD algorithms across diverse

datasets. The remainder of this section describes how the performance data across all

chosen datasets and algorithms was obtained.

Using the expanded framework for the algorithm selection problem presented in

Section 1.2 and illustrated in Figure 1.1, the dataset space P was built on N = 10, 000

datasets randomly chosen from the Kandanaarachchi set (Kandanaarachchi et al. 2020).

Each dataset is defined as xi where i = 1, . . . , N . To generate the performance space

Y , a selection of AD algorithms αj ∈ A were evaluated over all the datasets in P . Two

performance metrics, AUC and AP, were captured during the algorithm evaluation.
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(a) Method – IForest, dataset – shuttle

(b) Method – LOF, dataset – shuttle, (log scale used for quantities)

(c) Method – LOF, dataset – thermostat, (log scale used for quantities)

(d) Method – IForest, dataset – thermostat

Figure 3.4: Examples of good and poor methods’ performance of two selected methods:
IForest and LOF with two datasets: shuttle and thermostat.
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This experiment resulted in two matrices of the performance values Yν ∈ RN×L,

with ν ∈ {AUC,AP}, where N and L denote the number of the datasets and the AD

algorithms, respectively.

Procedure 1 AD algorithms performance data generation
Input:

A = {αj | j = 1, . . . , L}
P = {xi | i = 1, . . . , N}

Output:

YAUC ∈ RN×L

YAP ∈ RN×L

1: for j = 1 to L do

2: for i = 1 to N do

3:
yAUC ij

yAP ij

}
← αj(xi) { Run algorithm αj over dataset xi }

4: end for

5: end for

6: return YAUC, YAP

Procedure 1 outlines the steps taken to generate the evaluation values YAUC and YAP

for the AD algorithm set A and the set of datasets P . The performance metrics obtained

at this stage were made available via the IEEE public data repository (IEEEDataPort)1 at

http://ieee-dataport.org/10491. The AD algorithm selection, as one of the meta-learner

components, is discussed in detail in Section 4.1.2.

3.4 Summary

The foundational elements of this study’s experimental methodology – datasets, evalu-

ation metrics, and generation of the algorithm performance data – lay the groundwork

for the core experiments of this thesis, namely, the development and analysis of a meta-

learner, as addressed in the research questions RQ1, RQ2, and RQ3. The next chapter

builds upon this framework to propose and evaluate a meta-learner that can identify a

suitable AD algorithm given a specific dataset.
1M. Gutowska, January 17, 2023, ”Anomaly Detection Algorithms Performance”, IEEE Dataport
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The lack of a single algorithm that works well across variable AD problems has been

acknowledged by the academic community and is further confirmed by the results of the

experiments presented in the previous chapter involving numerous AD algorithms and

datasets. This gapmotivates the development of ameta-learner capable of suggesting the

appropriate algorithm. Themotivation has been reinforced by the fact that the algorithm

selection problem for unsupervised ADhas, up to now, received very little attention from

the research community. This problem has been captured within the research question:

“Can an efficient meta-learner for unsupervised anomaly detection recommend the best

algorithm for an unseen and unlabelled dataset?” (RQ1).

Two sections of this chapter, Section 4.1 and 4.2, refer to this problem. Section 4.1

presents the framework of the meta-learner developed in this study, and Section 4.2

outlines the evaluation methodology and discusses the obtained results.

The final section of this chapter (Section 4.3) analyses the influence of individual

meta-learner components (i.e., meta-model, meta-features, set of base algorithms) on its

final performance. This analysis responds to the research question: “Which components

and design decisions of the meta-learner influence its overall performance?” (RQ2).
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Figure 4.1: Proposed meta-learner framework.

4.1 Meta-Learner Framework

The meta-learner proposed in this study adheres to Rice’s concept (Rice 1976) of ap-

proaching the ASP. Figure 4.1 depicts its representation. In addition to the problem space

P , described in Section 3.1, the meta-learner consists of three component parts: meta-

features (F ), a set of base AD algorithms (A), and the base learner – the meta-model (m).

The following subsections elaborate on each component.

4.1.1 Meta-Features

The set F is comprised of 19 meta-features that were specifically designed to accommo-

date a broad range of anomaly characteristics. The overall design criteria for the features

were as follows:

• to be independent of the data labels and therefore suitable for unsupervised sce-

narios,

• to capture the main types of anomalies, such as global, local, and collective,

• to describe multivariate characteristics of the data, i.e., mutual relations between

the data points and their neighbourhood.

There were two steps involved in the process of feature generation:

1. calculation of distances between data points;

2. calculating the feature descriptors as statistical measures of the distance distribu-

tions.
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In step 1, an approach inspired by Moran scatterplots depicting the relationship be-

tween global and local z-scores (Schubert et al. 2014) has been proposed to express char-

acteristics related to local and global anomalies. The approach has been generalised to

multivariate datasets by substituting the Mahalanobis distance for z-scores. Global and

local Mahalanobis distances, H l
G and H l

Ls, were calculated for each data point, l, as ex-

pressed in Equations 4.1 and 4.2:

H l
G(
−→zl ) =

√
(−→zl −−→µ )TS−1(−→zl −−→µ ) (4.1)

H l
Ls(
−→zl ) =

√
(−→zl −−→µs)TSs−1(−→zl −−→µs) (4.2)

where −→zl = (z1l, ..., zKl) represents a single observation, l, (a data point) with K fea-

tures, −→µ = (µ1, µ2, ..., µK) represents the mean of all other observations in the dataset,

and S is the covariance matrix. In Equation 4.2, −→µs and Ss represent the mean and co-

variance matrix of the s nearest neighbours of −→zl , and H l
Ls defines the Mahalanobis

distance to the respective s nearest neighbours. The number of nearest neighbours has

been chosen using a grid search approach and defined as s ∈ {20, 60, 80}. After this

step, each data point, l, has been represented by four distances to the rest of the data:{
H l

G, H
l
L20, H

l
L60, H

l
L80

}
.

In step 2, the statistical characteristics of each of the distance profiles have been

obtained. For each set of HLs and HG the features such as TotalRange (TR), Center-

Mass (CM), TailHalf (TH), and TailQuarter (TQ) have been calculated as expressed

in Equations 4.3–4.6:

TRH∗ = max(H l
∗)−min(H l

∗) (4.3)

CMH∗ =
1

TR
(
P 75(H l

∗)− P 25(H l
∗)
)

(4.4)

THH∗ =
1

TR
(
max(H l

∗)− P 50(H l
∗)
)

(4.5)

TQH∗ =
1

TR
(
max(H l

∗)− P 75(H l
∗)
)

(4.6)
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where H∗ is one of HG, HL20, HL60, HL80 and P 25, P 75, and P 50 are the 25th and 75th

percentiles and the median, respectively.

Procedure 2 Generation of distances for a dataset xi (step 1)
Input:

Dataset xi with observations {zl = (z1l, . . . , zKl)}
Output:

Distances for each zl: H =
{
H l

G,H
l
L20,H

l
L60,H

l
L80 : l = 1, . . . , n

}
1: for l = 1 to n do

2: H l
G ←

√
(−→zl −−→µ )T S−1(−→zl −−→µ ) { Calculate global Mahalanobis

distances }

3: for all s ∈ {20, 60, 80} do
4: H l

Ls ←
√

(−→zl −−→µs)T S−1
s (−→zl −−→µs) { Calculate local Mahalanobis

distances }

5: end for

6: end for

7: return H

Procedure 3 Generation of meta-features for a dataset xi (step 2)
Input:

H =
{
H l

G,H
l
L20,H

l
L60,H

l
L80 : l = 1, . . . , n

}
Output:

Meta-feature vector f = (f1, . . . , f19)

1: f← empty() { Initiate an empty feature vector }

2: for all H l
∗ ∈

{
H l

G,H
l
L20,H

l
L60,H

l
L80

}
do

3: { Calculate statistics for distance distributions }

4: TRH∗ ← max(H l
∗)−min(H l

∗)

5: CMH∗ ← 1
TR

(
P 75(H l

∗)− P 25(H l
∗)
)

6: THH∗ ← 1
TR

(
max(H l

∗)− P 50(H l
∗)
)

7: TQH∗ ← 1
TR

(
max(H l

∗)− P 75(H l
∗)
)

8: Append
(
H l

G,H
l
L20,H

l
L60,H

l
L80

)
to f

9: end for

10: for all s ∈ {20, 60, 80} do
11: Ls ← 1

n

∑n
l H

l
Ls/H

l
G { Calculate anomalies “locality” }

12: Append Ls to f

13: end for

14: return f
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In addition, a property aiming to describe dataset “locality”, Ls, for each neighbour-

hood, s, was calculated using Equation 4.7:

Ls =
1

n

n∑
l

H l
Ls

H l
G

(4.7)

with n representing the total number of data instances within the dataset.

The steps of the meta-feature generation process for each dataset, xi, are described in

Procedure 2 (step #1) and Procedure 3 (step #2). These two procedures were performed

for all the datasets from the problem space, P . The resulting features are summarised in

Table 4.1.

Table 4.1: Meta-features proposed in this study.

Meta-feature Instances Feature Count

TRH∗ (TotalRange)

H∗: {HG, HL20, HL60, HL80}

4
CMH∗ (CenterMass) 4
THH∗ (TailHalf) 4
TQH∗ (TailQuarter) 4
Ls (Locality) s: {20, 60, 80} 3

Total: 19

The meta-feature set described aims to capture the characteristics of the primary

anomaly types, namely global, local, and collective. This is achieved by including both

global and local meta-features, the “locality” meta-feature, and by considering the near-

est neighborhoods of each data point. Capturing of these characteristics was one of the

initial design criteria. Additionally, another key design requirement involved capturing

multivariate characteristics. This was addressed by treating the data points as objects

in a multidimensional space, which contrasts with other common techniques that treat

each data feature separately. Lastly, the creation of these meta-features did not require

any labels, making this set fully suitable for unsupervised tasks.

4.1.2 Set of Anomaly Detection Algorithms

The base set of meta-learner algorithms, A, was selected to ensure representation from

diverse families of methods, by including conventional or “classic” algorithms and mod-
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ern deep learning-based techniques. In addition, the selected set contains the most

widely used AD algorithms as implemented in practical applications or chosen by re-

searchers (Campos et al. 2016; Emmott et al. 2013; Goldstein and Uchida 2016; Kan-

danaarachchi et al. 2020; H. Wang et al. 2019). It also incorporates the algorithms em-

ployed by the state-of-the-art, MetaOD (Zhao, Rossi, et al. 2021). The set includes ten

conventional and three neural network-based AD algorithms as listed in Table 4.2.

Table 4.2: AD models and their parameters comprising the set used in this study.

AD algorithm Parameter 1 Parameter 2

LOF n_neighbors = 60 distance = ‘euclidean’
kNN n_neighbors = 60 method = ‘mean’
kthNN n_neighbors = 60 method = ‘largest’
OCSVM nu = 0.008 kernel = ‘rbf’
COF n_neighbors = 60 N/A
ABOD n_neighbors = 60 N/A
IForest n_estimators = 100 max_features = 1.0
HBOS n_bins = 90 tolerance = 0.5
COPOD N/A N/A
PCA n_components = ‘mle’ svd_solver = ‘full’
VAE epochs = 500 hidden layers, as described in

Eq. 4.8
SO-GAAL epochs = 25 N/A
MO-GAAL epochs = 25 N/A

To cover a diverse range of algorithm families, the “classic bucket” involved algo-

rithms from the following categories:

• Density-basedmethods – Local Outlier Factor (LOF) (Breunig et al. 2000), Connectivity-

Based Outlier Factor (COF) (Tang et al. 2002),

• Distance-based methods – k-Nearest Neighbours (kNN) (Ramaswamy et al. 2000),

Angle-based Outlier Detector (ABOD) (Kriegel et al. 2008),

• Classification-basedmethods –One-Class Support VectorMachines (OCSVM) (Schölkopf

et al. 2000),

• Projection-based methods – Isolation Forest (IForest) (F. T. Liu et al. 2008),

• Statistical-basedmethods – Histogram-based Outlier Score (HBOS) (Goldstein and

Dengel 2012), Copula-based Outlier Detection (COPOD) (Z. Li et al. 2020),
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• Subspace-based methods – Principal Component Analysis-based anomaly detec-

tion (PCA) (Shyu et al. 2003).

Deep learning-based approaches included Variational Autoencoder (VAE) (Kingma and

Welling 2013), Single-Objective Generative Adversarial Active Learning (SO-GAAL), and

Multi-Objective Generative Adversarial Active Learning (MO-GAAL) (Y. Liu et al. 2019).

Table 4.2 presents the chosen algorithms and their parameters. The optimal param-

eters were chosen as the best ones by averaging across numerous datasets. The VAE’s

architecture was designed individually for each dataset. The number and dimensions

of the hidden layers were determined by the number of features in each dataset. Given

thatK represents the number of features in a given dataset, the number of nodes in each

hidden layer was set as described in Equation 4.8.



K × [0.75, 0.5, 0.33, 0.25] if K ≥ 100

K × [0.75, 0.5, 0.25] if 100 > K ≥ 50

K × [0.5, 0.25] if 50 > K ≥ 6

2 if K < 6

(4.8)

The implementation of these algorithms from the Python PyOD package (Zhao, Nas-

rullah, et al. 2019) was used to perform their evaluation.

4.1.3 Meta-Model

A key part of a meta-learner is a meta-model, whose goal is to select the AD algorithm

that performs best on an unseen and unlabelled AD dataset. The meta-model, m, pro-

posed in this study is based on a neural network architecture. Neural networks have

proven successful in a variety of tasks and are relatively time-efficient when training for

small-size problems. The capability to efficiently perform a multi-factor regression is an

additional benefit, particularly when a simultaneous response for an array of algorithms

is expected.

The architecture proposed in this work features three hidden layers (64, 64, and 32

nodes), a dropout of 0.2 after each layer, and the predictive regression layer that out-
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puts the predicted performance values ŷ for each algorithm α1, . . . , αL, with L being

the number of algorithms used in the meta-training. Figure 4.2 depicts the meta-model

framework, including the multi-factor response.

Figure 4.2: Regression meta-model framework with its multi-factor response.

Themeta-model trainingwas conducted using a typical supervisedmachine-learning

pipeline, where the datasets, xi, were split in a 60:15:25 ratio into the train, validation,

and test sets. The meta-model was trained to find a mapping between the meta-features

and the AD algorithm performance metrics. The validation set was used to inform the

decision on when to end the training process. The learnt mapping was then applied to

the set of test datasets, xtest
i , where the performance values of each AD algorithm, ŷij ,

were predicted.

Batches of 32 samples were used in training, and the Adam optimiser (Kingma and

Ba 2014) was employed to minimise the mean squared error. The network architecture

parameters, such as the number of hidden layers, the number of nodes, dropout level,

epoch count, and batch size, were optimised with the Weights and Biases tool (Biewald

2020).

4.2 Meta-Learner Evaluation

The evaluation of the meta-learner is performed as follows. The meta-model predicts

performance values, ŷij , for each dataset, xi, and each algorithm, αj . Following this,

an algorithm, αSEL, is selected from the set of algorithms, αj ∈ A, for each dataset,

xi, to maximise the predicted performance, ŷij . The actual performance, ySELi , of the

algorithm, αSEL, obtained on dataset, xi, serves as the performance metric for evaluating

the efficacy of the meta-learner on the given dataset. The formulation of this approach
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can be expressed using the equations:

ŷij := ŷi(αj) = m
(
F (xi)

)
(4.9)

ySELi := yi(α
SEL) : αSEL = argmax(ŷij) (4.10)

Since the meta-learner was assessed on the AUC and AP metrics, the y variable in

the above equations can be either a value of AUC or an AP. The choice of ySELi as a

meta-learner performance measure can be justified by the fact that such a metric is pro-

portionally greater as the selection gets closer to the real best performing method.

Another metric used in this study to evaluate a meta-learner performance was its

error, Di, which, for the dataset xi, has been defined as the Distance from the Top, the

difference between the best measured performance, yTOPi , and themeasured performance

of the algorithm selected by meta-learner, ySELi , as shown in Equation 4.11:

Di = yTOPi − ySELi . (4.11)

This metric assists in determining how much the method suggested by the meta-learner

differs from the highest performing algorithm for a particular dataset. It is noteworthy to

mention that this error provides insight into the “virtual best” performance on a given

dataset through quantifying the discrepancy between the suggested and the optimal

algorithm performance.

To support the selection of these metrics, it should be noted that both ySELi andDi are

rank-independent and easily interpretable because they are on the same scale as actual

AUC or AP values.

4.2.1 Evaluation Methodology

The performance of the proposed meta-learner has been compared with the present

state-of-the-art solution, MetaOD, as proposed by Zhao, Rossi, et al. 2021. The authors

of MetaOD did not explicitly reference Rice’s framework, but their method is similar in
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that it includes a set of meta-features, a set of base AD algorithms, and a meta-model.

As previously stated in Chapter 2, their algorithm selection strategy was based on col-

laborative filtering (CF) and made use of the matrix factorisation method.

The subsequent sections of this chapter make extensive use of both methodologies,

so the indices 1 and 2 are introduced when referring to the meta-learner components

(meta-model, meta-features, algorithms) proposed in this work (m1, F1, A1) andMetaOD

(m2, F2, A2), respectively. Table 4.3 briefly compares the settings of the two approaches.

The indexes, p, q, and r have been introduced for effective iteration on these components

and are leveraged mainly in Section 4.3.

Table 4.3: Summary of the components of meta-learners compared in this study.

Current work (p, q, r = 1) MetaOD (p, q, r = 2)

Meta-model mp Neural Network (NN) Collaborative Filtering (CF)

Meta-features Fq 19 features specific to AD
problems

200 features, combined: statistical
and landmarking features

Set of AD algo-
rithms Ar

13 distinct algorithms 298models: 8 algorithms combined
with sets of hyperparameters

The mean meta-learner performance ySEL measured as AUC and AP over the set of

test datasets, and the meta-learners’ mean error D have been compared. The statistical

significance has been measured using the Paired t-Test (paired difference test). In addi-

tion to statistical significance, the practical significance (effect size) has been assessed

using Cohen’s d (Cohen 2013) as outlined in Equations 4.12 and 4.13:

dy =
ySEL1 − ySEL2

s∗y
(4.12)

dD =
D1 −D2

s∗D
, (4.13)

where subscripts 1 and 2 indicate approaches from this study and MetaOD, respectively,

and s∗y and s∗D are the pooled standard deviation of 1 and 2 distributions of performance

values and errors, respectively. The use of the effect size was motivated by the large

sample sizes. The number of observations in such cases makes the variables appear
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Table 4.4: Comparison of the mean performance and the mean error with standard devia-
tions across test datasets of two analysed meta-learners.

Current study MetaOD D.f. T-stat. p-value Effect size

AUC ySEL 0.6703 ± 0.1820 0.6464 ± 0.1940 2317 7.882 <0.001 0.126
D 0.1567 ± 0.1315 0.1804 ± 0.1558 2317 -7.882 <0.001 0.162

AP ySEL 0.1413 ± 0.1955 0.1369 ± 0.1905 2302 2.193 0.028 0.009
D 0.1685 ± 0.1466 0.1749 ± 0.1543 2302 -2.193 0.028 0.042

D.f. – degrees of freedom, T-stat. – t-test statistic

statistically significant. As a result, practical significance is a more useful statistic to

recognise. The strength of an effect can be categorized as follows (Cohen 2013):

small effect ≤ 0.2 < medium effect ≤ 0.5 < large effect.

4.2.2 Results and Discussion

The performance comparison of the two solutions for the AUC and AP-based experi-

ments is presented in Table 4.4. The mean values of performance ySEL and the error D

are obtained over the test set of datasets xtest
i . Better performing solutions are highlighted

with bold font. In both cases, AUC and AP, the difference in the mean performance and

the mean error between the solution proposed in the current research and MetaOD is

statistically significant (p < 0.001 for AUC, p = 0.028 for AP).

The results, however, demonstrate that while there was a statistically significant im-

provement with the proposed method, there was a negligible effect (practical difference)

when comparing the AP mean error (Cohen’s d = 0.042) and a small effect when com-

paring the AUC mean error (Cohen’s d = 0.162) between the two approaches. Therefore,

while an improvement was observed, it is important to note that its magnitude is not

substantial. The proposed method in this study demonstrates, however, that equivalent

results can be obtained from a substantially reduced feature set and the omission of hy-

perparameter optimisation (HO) in the meta-learning configurations. Previous works

have assumed that HO was the main characteristic in meta-learning (Feurer, Springen-

berg, et al. 2015; Horváth et al. 2016; Komer et al. 2014).
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While the above early findings are only a direct comparison of the approach de-

scribed in the current study with the MetaOD, the analysis offered in Section 4.3 helps

to understand the meta-learner characteristics that contribute to its success.

4.2.3 Time Efficiency Analysis

Aside from the accuracy performance assessment, the time efficiency of both strate-

gies was compared. The time analysis was performed on a subset of 20 datasets chosen

at random from the entire set used in the current study. The datasets ranged in size

from 68 to 5,186 observations and 5 to 147 features. This analysis has been restricted

to the end-user perspective, which includes the generation of dataset meta-features and

the prediction of the best-suited algorithm. The time summary of both approaches to

generate meta-features and perform prediction is presented in Table 4.5 and Table 4.6,

respectively.

Table 4.5: Time in seconds to generate dataset meta-features summarised for a random
sample set of 20 datasets.

Statistic (time, s) MetaOD Current study

Mean 0.886 2.265
St. dev. 0.777 3.627
Min 0.351 0.044
Max 3.103 10.517

Cases with shorter time 8 12

Table 4.6: Time in seconds to predict the best performing algorithm summarised for a
random sample set of 20 datasets.

Statistic (time, s) CF NN

Mean 1.376 0.492
St. dev. 0.574 0.114
Min 0.914 0.400
Max 4.537 0.956

Although it takes less time on average for the MetaOD to generate the meta-feature

set, the number of datasets for which the generation takes less time is greater for the cur-

rently presented approach. The current approach is more time-consuming for datasets
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with a relatively higher number of observations because it involves calculating the dis-

tances between all instances within a dataset. Ultimately, the time difference between

MetaOD and the current approachwas not statistically significant for themeasured sam-

ple set (t19 = 1.835, p = 0.082). When compared to the CF meta-model, the prediction

times are shorter on average andmore consistent with the use of NN. Furthermore, train-

ing times for CF models were significantly longer than for NN-based models (approx. 20

hours versus approx. 10 minutes per meta-learner variant). The exact measures are not

included because themeta-learners’ trainingwas conducted in parallel onmachineswith

varying capabilities, so a precise comparison of the training times was not possible.

The presented results were obtained on the machine with the following subcompo-

nents: 1.6 GHz Dual-Core Intel Core i5 processor and 8 GB of 2133 MHz RAM.

Overall, the results of the time analysis demonstrate that using ameta-learner within

an AD pipeline outweighs the costs in terms of time and computing resources. For a

dataset with 1,000 observations and 45 features, the extra time of 1-2 seconds for meta-

feature generation and 0.5 seconds for finding the best suited algorithm could potentially

save hours on a trial-and-error process of finding the best performing algorithm and

evaluating the results.

4.3 Contribution of Meta-Learner Components

Section 4.1, which details the components involved in constructing the meta-learner

for unsupervised AD, illustrates the importance of the decision-making process. The

design choices made during the development of the meta-learner considerably influence

its ultimate performance. In light of the absence of research examining the impact of

such design decisions, the present study has been undertaken aiming to address this

gap. This problem is captured in the research question RQ2 (“Which components and

design decisions of the meta-learner influence its overall performance?”).

The current section presents the approach taken to address the RQ2. Section 4.3.1 in-

troduces the experimental design employed, Section 4.3.2 presents the analyticalmethod-
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Figure 4.3: Experimental design including the meta-learner framework with reference
to Rice’s representation (outlined with a purple line) and factor components used in
comparative evaluation (blue stickers).

ology, and Section 4.3.3 concludes this research problem by presenting and discussing

the results.

4.3.1 Experimental Design

This stage of the experiment employs a 23-factorial design. The factor components se-

lected for the analysis – including the meta-feature generation strategies Fq, the base set

of AD algorithms Ar, and the meta-model mp – are drawn from the methodology pro-

posed in the present study and the MetaOD (Zhao, Rossi, et al. 2021). These components

have been described in Table 4.3, in Section 4.2. The experimental design, an extended

version of the meta-learner framework (from Figure 4.1), is illustrated in Figure 4.3.

To perform the experiment, eight meta-learners Ml := Mpqr, were designed, where

l = 1, . . . , 8, and p, q, r ∈ {1, 2}, which incorporated two variants of mentioned fac-

tors Fq, Ar, and mp. Indices 1 and 2 have been used to denote factors from the current

study and MetaOD, respectively. Each combination of the 23-factorial design was imple-

mented on each candidate dataset xi producing the predicted performance metrics ŷij
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for each algorithm αj . The performance metrics of meta-learners’ selected algorithms

αSEL ∈ A were then analysed using a mixed model analysis, where xi was considered

to be the subject. Similarly to the approach described in Section 4.2, the algorithm αSEL

was selected from αj ∈ A for each xi to maximise the predicted performance ŷij . The

steps performed are described in Procedure 4 and 5. The Equations 4.9 and 4.10 from

Section 4.2 remain applicable, but they at this point apply to all p, q, r ∈ {1, 2}, where:


m = mp

F = Fq

αj ∈ Ar

The architecture of all NN-based variants followed the one described in Section 4.1.3.

The training of each variant has been started from random weights and run through up

to 1000 epochs. The Early Stopping functionality from Keras library (Chollet et al. 2015)

has been implemented to cease further training when no improvement was observed,

as measured by the loss on the validation data. Subsequently, the optimal weights have

been obtained based on the validation loss. The resulting training length ranged for dif-

ferent meta-learner variants from 300 to 1000 epochs. The batches of 32 samples were

used in training, and the Adam optimiser (Kingma and Ba 2014) was employed to min-

imise the mean squared error.

Figure 4.4: Training loss (loss) and validation loss (val_loss) versus epochs in training
one of the NN-based meta-model variants.
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Figure 4.4 presents an example of the training process picturing the training and

validation loss in subsequent epochs. As expected, both training and validation loss are

lowering. The fluctuations in the validation curve are due to a relatively small amount

of validation data, but the overall trend is diminishing, implying a stable minimum on

the loss surface.

All architecture and training hyperparameters, such as the number of hidden layers,

the number of nodes, dropout level, epoch count, and batch size, were chosen using the

grid search approach and optimised with theWeights and Biases tool (Biewald 2020). The

search for the optimal architecture ranged from 2-layered networks of 4 + 4 nodes to 3-

layered networks of 64 + 64 + 64 nodes. More complex architectures were not considered

to avoid the risk of model overfitting.

Procedure 4 Training of meta-learners Mprq

Input:

Fq ∈ RN×Kq

Yr AUC, Yr AP ∈ RN×Lr , where Yr = Y (Ar)

Output:

Y SEL
AUC , Y SEL

AP ∈ RNtest

1: for all ν ∈ {AUC,AP} do
2: for all Fq : q ∈ {1, 2} do
3: for all Yr : r ∈ {1, 2} do
4: for all mp : p ∈ {1, 2} do
5: { Split the input and output data }

6: (F train
q , F test

q )← Fq

7: (Y train
r , Y test

r )← Yr

8: mp ← train(F train
q , Y train

r ) { Train the meta-model in a super-

vised manner }

9: Ŷtest
r ← mp(F

test
q ) { Predict }

10: Procedure 5 { Select the best algorithm and obtain its perfor-

mance }

11: end for

12: end for

13: end for

14: end for

15: return Y SEL
AUC , Y SEL

AP
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Procedure 5 Find performance of the best predicted algorithm
Input:

Ŷ
test ∈ RN test×L

Output:

Y SEL ∈ RNtest

1: for i = 1 to N test do

2: ySELi ← yi(α
SEL) : αSEL = argmax(ŷij)

3: end for

4: return Y SEL

The training of the CF-based meta-models has been done according to the methodol-

ogy described in the work by Zhao, Rossi, et al. 2021 and the instructions from the code

library (Zhao, Rossi, et al. 2020).

4.3.2 Statistical Analysis

This section presents the mixed-model analysis (Demidenko 2013; McCulloch et al. 2004;

Stroup 2012) that was carried out to examine the factors Zc ∈ {mp, Fq, Ar} with c =

1, . . . , 3, contributing to the error of the meta-learners in choosing the best-performing

algorithm.

The error of the meta-learner used in this analysis is the one defined in Equation 4.11,

however, it ranges now through all meta-learner variants Ml : l = 1, . . . , 8 and datasets

xi : i = 1, . . . , N as outlined in Equation 4.14:

Dil = ln
(
yTOPi − ySELil

)
. (4.14)

The ln(·) operation has been used to normalise the error distribution.

Thirty principal components V1i, . . . , Vni (which explain 93 % of the variance) were

generated from concatenated sets of meta-features F1 and F2 and used as covariates to

adjust for variability due to the differences between datasets.
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The model used is expressed in Equations 4.15–4.17:

Dil = β0 + β1Z1 + β2Z2 + β3Z3 + β1′V1i + · · ·+ βn′Vni + γ0i + εil (4.15)

with

γ0i ∼ N
(
0, σ2

γ

)
(4.16)

εil ∼ N
(
0, σ2

ε

)
(4.17)

where β0, . . . , βn′ describe the fixed effects (Stroup 2012), and γ0i expresses the random

effects’ intercepts. Fixed coefficients β0, . . . , β3 were assessed for significance using the

F -test with statistical significance set at p < 0.05. The effect size (Cohen’s d) of the

three components Zc was calculated using the following:

dc =
βc√

σ2
x + σ2

ε

, (4.18)

where c = 1, . . . , 3 and βc represents the fixed parameters estimates of Zc, as in Equa-

tion 4.15, and σ2
x and σ2

ε represent the variance of the random components and the error

term, respectively, as expressed in Equations 4.16 and 4.17.

4.3.3 Results and Discussion

Table 4.7 displays a performance summary of eight meta-learners using mean perfor-

mance across test datasets, xtest
i . It’s worth noting that the hybrid technique of F2, A2,

and m1 yields the greatest performance results for both meta-learner series, AUC, and

AP-based. Another interesting finding is that meta-learners that employ the m1 meta-

model outperform all CF-based learners. The subsequent component analysis provides

a more in-depth understanding of these observations.

The mixed model analysis, summarised in Table 4.8, shows that whereas the choice

of each component, Zc, is statistically significant for AUC (p < 0.001), the larger meta-

feature set, F2, provides only a marginal benefit over the smaller set of meta-features, F1,

(Cohen’s d = 0.082). It is worth noting that while F2 makes extensive use of generic sta-
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Table 4.7: Mean performance ySEL with standard deviations across test datasets of eight
meta-learners for AUC and AP.

Meta-model AD alg. set Meta-features ySEL, AUC ySEL, AP

m1 (NN) A2 F2 0.692 ± 0.177 0.154 ± 0.215
m1 (NN) A2 F1 0.679 ± 0.179 0.150 ± 0.209
m1 (NN) A1 F2 0.678 ± 0.183 0.146 ± 0.200
m1 (NN) A1 F1 0.670 ± 0.182 0.141 ± 0.195
m2 (CF) A2 F2 0.646 ± 0.194 0.137 ± 0.191
m2 (CF) A2 F1 0.630 ± 0.202 0.136 ± 0.192
m2 (CF) A1 F2 0.630 ± 0.191 0.127 ± 0.176
m2 (CF) A1 F1 0.616 ± 0.193 0.120 ± 0.169

tistical features, the compact set, F1, is crafted to reflect anomaly characteristics. When

comparing differences in the performance between the two sets of AD algorithms, the

large set with HO (A2) outperforms the small set without HO (A1). However, given the

number of models in both groups (298 versus 13), the effect size is not as compelling as

one would expect (Cohen’s d = 0.130). The largest effect size associated with the choice

of meta-model reveals that it has the greatest impact on the meta-learner’s ultimate per-

formance, with the NN-based meta-model, m1, outperforming the state-of-the-art CF

approach, m2 (Cohen’s d = 0.300).

This outcome is an important consideration given that current AutoML or meta-

learning studies frequently direct their attention to other aspects, such as meta-features

development (Kanda et al. 2016; Kotlar et al. 2021) or HO (Feurer, Springenberg, et al.

2015; Horváth et al. 2016; Komer et al. 2014). The findings of this analysis reveal that,

given the cost of pre-evaluating a large number of algorithms, the comprehensive grid

search strategy over feasible algorithms and hyperparameters is not very beneficial in

the examined context. This work highlights the significance of underexplored aspects in

meta-learning, particularly in the context of unsupervised AD, which play a crucial role

in influencing the overall results. The research demonstrates that putting time and effort

into developing an adequate meta-model that can effectively utilise data from previous

evaluations is the most promising way of improving meta-learners for unsupervised AD.

The contributions measured on AP follow an analogous pattern, but the impacts are

more subtle. Because of the AP metric’s “lower resolution” (highly skewed distribu-
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Table 4.8: Type III analysis of the main effects of the meta-learner components.

Component D.f. F-stat. p-value Effect size

AUC

Intercept 1,2291 13382.78 <0.001
Meta-features Fq 1,16244 51.457 <0.001 0.082
AD models Ar 1,16244 127.648 <0.001 0.130
Meta-model mp 1,16244 678.938 <0.001 0.300

AP

Intercept 1,2294 14091.410 <0.001
Meta-features Fq 1,16009 0.139 0.710 0.004
AD models Ar 1,16025 69.087 <0.001 0.095
Meta-model mp 1,16016 111.051 <0.001 0.121

D.f. – degrees of freedom, F-stat. – F-test statistic

tions: skewness – 2.647, kurtosis – 7.064), the discrepancy is less apparent. The skewed

distribution of AP values is to be expected because unbalanced datasets often exhibit

this behaviour (Haibo et al. 2013; Viola et al. 2022). The influence of the meta-features

is not statistically significant at 0.05 significance level. Consequently, the effect size is

negligible. The other two components contribute more, but their effect sizes on the AP

metric are also minimal. Nonetheless, the NN meta-learner demonstrated a favourable

performance in comparison to the CF group (Table 4.7).

The interaction terms between the main effects outlined in Equation 4.15 were ini-

tially examined but had no statistical significance and were subsequently excluded from

the final statistical model.

The observations and findings presented above addressed the research question RQ2,

which concerned the impact of meta-learner components on its overall performance. It

is worth noting that the statistical analysis and formulation of a fresh perspective were

made possible by the use of a large range of AD benchmark datasets. Such an approach

would not be possible with usual sets, which are commonly utilised in other studies

addressing the ASP problem. As such, this section also extends to the research question

RQ4 addressing the use of the largest AD benchmark dataset currently available.
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Risk Assessment Strategy

The preceding chapter described the architecture of a meta-learner developed in the cur-

rent study, inspecting the influence of its distinct components on overall performance.

In contrast, this chapter shifts its focus towards assessing the quality and reliability of

individual responses given by the meta-learner.

As highlighted in Sections 1.3 and 2.4, the evaluation of the reliability of individ-

ual predictions generated by machine learning (ML) models remains an underexplored

area of study. While there are several studies on this topic discussing ML models in

general, there is a notable lack of studies on localised evaluation in the context of meta-

learning. The emphasis on individual predictions is considerably more important for

meta-learning, where each meta-learner’s output corresponds to a distinct problem. For

practitioners, the reliability of a response relevant to their case is more insightful and

actionable than a meta-learner’s collective performance across multiple tasks and do-

mains.

Recognising both the importance of this subject and the existing research gap, the

research presented in this chapter aims to make a substantive contribution by examining

themeta-feature space – the space formed on themeta-learner’s input features. It specif-

ically seeks to identify areas where the likelihood of erroneous meta-learner outputs is

higher than in other regions and to quantify that likelihood. This problem is encapsu-

lated in the research question: “Can the reliability of individual meta-learner responses

be evaluated and high-risk areas within the meta-feature space be identified?” (RQ3), as
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outlined in Section 1.3.

The term risk, as employed in this research, describes the likelihood of receiving

suboptimal responses from the meta-learner. Given that this likelihood is localised, per-

taining specifically to individual responses of the meta-learner, the concept of risk also

applies to particular regions within the meta-feature space that demonstrate less sta-

bility and are, consequently, considered high-risk. To address the presented problem

comprehensively, this research adopts an approach that consists of two phases:

• quantification of the risk of the meta-learner’s algorithm recommendations being

less than optimal, using the proposed Risk metric,

• probabilistic estimation of the upper bound of the meta-learner errors for individ-

ual responses.

The remainder of this chapter is organised as follows: Section 5.1 formulates the

problem and introduces the essential terminology, the approach adopted to tackle the

given problem is described in Section 5.2, and the findings along with the accompanying

discussion are presented in Section 5.3.

5.1 Problem Formulation

The two-fold objective of this research entails splitting the problem into two distinct

parts:

1. Given a new, unlabelled dataset and the AD algorithm then recommended by the

meta-learner, can we quantitatively determine the risk that the suggested algo-

rithm will not be the optimal choice for this particular dataset?

2. Given the risk, corresponding to the region of the meta-feature space in which the

dataset is located, can we determine the maximum amount by which the recom-

mended algorithm will underperform compared to the true best algorithm for the

dataset?

Let the Riskxi
be defined as a measure of the likelihood that the meta-learner re-

sponse for the dataset xi results in performance that is less than that of the optimal

algorithm. It is postulated that Risk can be calculated as a function of the dataset’s
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meta-features:

Risk = g(f1, . . . , fK) (5.1)

For each dataset, xi, consider the meta-learner’s associated error, Di, defined in

Chapter 4 with Equation 4.11, and referred to as the Distance from the Top – the differ-

ence between the best measured AD algorithm performance, yTOPi , and the performance

of the algorithm selected by themeta-learner, ySELi : Di = yTOPi −ySELi . As noted in Chap-

ter 4, the errorDi can also be interpreted as a distance to the “virtual best” performance

for a given dataset, xi.

Using the identified meta-features to generate a multidimensional feature space pop-

ulated by datasets, the local variation ofDi can be quantified using the n nearest neigh-

bours of the dataset, xi, as s(Dl)i, where l = 1, . . . , n and s(Dl) denotes the standard

deviation of Dl.

The literature examining the reliability and uncertainty of individual predictions of

machine learning models, in particular of regression models (Shah et al. 2022; Zaoui et

al. 2020), proposed the use of a conditional variance, which represents the variance of

the model’s residuals, given a certain input. Inspired by this approach, the Riskxi
for the

dataset xi is defined as a local variation s(Dl)i of the meta-learner’s error Di:

Riskxi
= s(Dl)i (5.2)

To assess the Riskx′
i
for a new dataset, x′

i, it is proposed to identify a region defined by

this new dataset’s neighbourhood, comprised of the regions where original datasets xi

are located. Given the nature of the measure, such that the risk represents the potential

worst-case scenario for a specific location, the Riskx′
i
for a new dataset is defined as the

maximal Riskxi
measure of the new dataset’s neighbourhood:

Riskx′
i
= max

{
Riskl

xi
: l = 1, . . . , n′} , (5.3)

wheren′ denotes the number of the nearest neighbours of the dataset x′
i from the original

set of datasets xi.
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The above enables the first question posed in this chapter to be addressed. The ter-

minology required to tackle the second question is defined in the following part of this

section.

Consider the probability PC that the meta-learner’s error Di would not exceed a

certain value, denoted as DPC. This error value is later referred to as the upper-bound

error for a given probability PC. According to the second question formulated in this

chapter, the goal is to assess the upper-bound error DPC for the accepted confidence

level (probability) PC, and for the Risk value estimated for a specific dataset.

It is assumed that the probability distribution of errors Di is a function of Risk:

P (Di) = h (Riskxi
) (5.4)

where h denotes an experimentally obtained mapping function between Risk values and

P (Di). Estimating the mapping h enables a determination of the upper-bound errors

DPC for a given Risk:

DPC = h∗ (Risk, PC) , (5.5)

where h∗ denotes a function mapping derived from h. Therefore for a new dataset x′
i and

the estimated value of Riskx′
i
(Equation 5.3), the upper-bound error can be established

using the same mapping h∗:

DPC |x′
i
= h∗ (Riskx′

i
, PC

)
, (5.6)

The above addresses the second question of the formulated problem. The methodol-

ogy employed to estimate both the Risk and the upper-bound error DPC is presented in

the following section.

5.2 Methodology

In the present study, two variants of the meta-learner, denoted asM1 := M(m1, F1, A1)

and M2 := M(m1, F1, A2), were investigated. The components mp, Fq, and Ar are
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elucidated in Table 4.3 of Chapter 4. The choice to employ feature set F1 was pragmat-

ically motivated by a preference for a lower-dimensional space as opposed to a sparser,

high-dimensional space. This decision was further justified by the observation that the

performance of the meta-learner was relatively invariant to the particular feature set

utilised. The NN-based meta-models were selected over the alternative approach due to

their superior performance and computational efficiency during training, which enabled

the execution of multiple experiments. The AUC metric was employed in this experi-

ment to produce meta-learners’ performance measures. This metric was preferred over

the AP because it is more appropriate for comparing datasets together and has a less

skewed distribution across all datasets.

Procedure 6 Processing original set of datasets
Input:

F ∈ RN×K , YAUC ∈ RN×L, where:

N – number of datasets,

K – number of meta-features,

L – number of base AD algorithms

Output:

Meta-learner errors {Di : i = 1, . . . , N}
1: Create six complementary subsets from N datasets

2: for iteration it = 1 to 6 do

3: { Use 5:1 subset split, with test corresponding to it }

4: (F train
it , F test

it )← F

5: (Y train
it , Y test

it )← Y

6: mit ← train(F train
it , Y train

it ) { Meta-model supervised training }

7: Ŷ test
it ← mit(F

test
it ) { Predict }

8: end for

9: Ŷ ← concatenate
{
Ŷ test
it

}
10: Obtain ySELi with Eq. 4.10

11: Obtain Di with Eq. 4.11

12: return {Di}

To acquire the errorsDi over a wide range of datasets, the meta-models were trained

in a 6-fold manner, with a model trained on five dataset folds for each iteration, and
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the predictions, along with the errors Di, obtained using the sixth fold. Procedure 6

illustrates the steps taken to obtain the meta-learners’ errors.

(a) Meta-learner M1

(b) Meta-learner M2

Figure 5.1: Histogram of meta-learner errors Di.

Figure 5.1 shows the distribution of errors obtained across datasets xi. The error

counts for the meta-learner M1, which was trained on 13 base AD algorithms, show a

very steep decline for error values slightly greater than zero. This is a highly desirable

behaviour because it demonstrates that the meta-model selects the best possible solution
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for a large proportion of datasets. The second meta-learner, M2, which used 298 algo-

rithms, exhibits a much slower decrease in the number of errors as their value rises. The

difference is not surprising, given that the second meta-learner had a larger collection to

choose from. It is worth noting that, while its efficiency appears to be lower, the average

performance of this meta-learner was still higher than the M1’s performance.

Neighbourhood areas of n = 30 datasets have been formed around each dataset, xi,

by measuring the Euclidean distance on the space of scaled meta-features. Scaling was

performed using the mean and standard deviation for normalisation. The size of n was

chosen to strike a balance between ensuring enough samples in each neighbourhood and

reducing its size to allow for local fluctuations to be captured. The standard deviations

of error Di were calculated for each neighbourhood. The Riskxi
around the dataset xi

has been computed as the standard deviation of the errors from n nearest neighbours of

xi, as shown in Equation 5.2.

The arrangement of datasets according to their error Di and their Riskxi
values,

for one of the meta-learners, M1, is shown in Figure 5.2a. Another perspective on the

same data, which closer illustrates the Equation 5.4, is presented in Figure 5.2b. In the

observed data, errors of lower magnitude are dispersed across the entire spectrum of

considered Risk levels. This is advantageous as it implies that themeta-learner is capable

of generating accurate predictions even inmore unstable regions characterised by higher

Risk. Importantly, the data also reveals an absence of large errors in the lower-risk

regions. While this result is consistent with expectations, it serves as an empirical base

to formulate the hypothesis that the likelihood of encountering high-magnitude errors

increases as a function of Risk.

When interpreting values of errorsDi, it is essential to note that the scale of this error

metric is comparable to that of the AUC metric – it represents the difference between

two AUC values. Given that the range of possible AUC values lies between 0 and 1, and

taking into account that Di is non-negative by definition, it follows that the range of

Di is also [0, 1]. Nonetheless, it should be highlighted that, in practice, reasonable AUC

values typically fall within the [0.5, 1] interval. Consequently, any Di value exceeding
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(a) Arrangements of individual datasets xi.

(b) Variable distributions P (Di) versus increasing risk levels.

Figure 5.2: Distribution of the datasets according to their Di and Riskxi
.
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0.2 may be considered as representing a medium-to-large error magnitude.

Assuming that shapes of the distribution P (Di)Riski for any Riskxi
are similar and

proportionally stretched to the Risk value, the mapping function h was formulated as

outlined in Equation 5.4. This was achieved by constructing lines of the form: Risk =

aPCD for a predefined set of coefficient values aPC, followed by computing the propor-

tion of the datasets situated above each corresponding line. Hence, a mapping between

percentage values and the coefficients aPC = Riski/Di was established. This mapping

was then interpolated to produce the relationship ϕ depicted in Figure 5.3. The proce-

dural steps are outlined in Procedure 7. The derived relationship serves as a basis for

evaluating the upper-bound error DPC for new datasets x′
i, for which Riskx′

i
, had been

previously estimated.

Procedure 7 Creation of mapping h∗

Input:

Predefined coefficients {aPC}
Di, Riski, where i = 1, . . . , N

Output:

Mapping h∗

1: for all aPC do

2: count = 0

3: for i = 1 to N do

4: if Riski > aPCDi then

5: count ++ { Count all the datasets above the line }

6: end if

7: end for

8: PC← count/N { Calculate the datasets proportion }

9: end for

10: ϕ(PC) = a ← interpolate (PC 7→ aPC)

11: h∗ (Risk, PC)← Risk/ϕ(PC)

12: return h∗

To evaluate the proposed methodology, a validation set comprising 1,000 datasets,

initially withheld during the experimental setup, was utilised. Preliminary procedures,

including the generation of meta-features, predictions with the meta-learner, and the
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Figure 5.3: The interpolated relationshipϕ between the percentage PC and the coefficient
aPC.

computation of the Di error metrics, were executed on this validation set. For the nor-

malisation of meta-features, the scaling transformation developed on the original set of

datasets was applied. For each dataset x′
i in the validation set, the risk level Riskx′

i
was

determined by identifying n′ = 10 closest neighbours from the original set and apply-

ing the maximal value, as delineated by Equation 5.3. The rationale behind selecting

n′ = 10 is elaborated upon in Section 5.3. Further, based on the relationship h∗, upper-

bound errors D0.5 and D0.95, representing the 50th and 95th percentiles, for arbitrarily

chosen percentiles, were calculated for each dataset x′
i, as specified in Equation 5.6.

The findings from the above analysis, along with an interpretation and discussion,

are presented in the following section.

5.3 Results and Discussion

To visualise the relation between the assigned Riskx′
i
and the actual meta-learner er-

rors, Di, the validation datasets, x′
i, were organised as illustrated in Figure 5.4, for both

meta-learners,M1 andM2. The figure additionally shows the histograms of both charac-

teristics for the validation set. An initial observation is that the bottom-right quadrants

of both images contain no or a minimal number of datasets, given the allocated Risk
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levels. This observation is important as it provides encouragement for the hypothesis

that datasets located in low-risk regions are less prone to exhibiting high error values.

To strengthen the above illustration, a cross-check was conducted between the as-

signed levels of Riskx′
i
and the actual errors Di within the validation set of datasets x′

i.

For ease of interpretation, the assigned risks were segmented into three categories: low,

medium, and high. The demarcation thresholds were established by splitting the Risk

range into three equal intervals, and they were chosen for illustration only. Figure 5.5

provides a box-plot representation of the actual errors, classified by the specified risk

level. The figure incorporates data processed with both meta-learners M1 and M2.

The analysis reveals that across both meta-learners, the median error, the upper

fence, and the spread of errors exhibit an increasing trend from the low-risk to the high-

risk categories. While numerous datasets with low errors Di have fallen into the high-

risk category, it is noteworthy that the maximum error for datasets in the low-risk cate-

gory does not exceed 0.3. Furthermore, datasets with the highest errors predominantly

fall into the high-risk category, apart from a few outliers categorised as medium-risk –

particularly in the case of the M2 meta-learner. These findings are significant as they

lend empirical support to the hypothesis that datasets situated in regions categorised as

low-risk are less likely to have greater error values. While it is acceptable for datasets in

high-risk areas to manifest lower errors, it is essential that datasets in low-risk regions

do not exhibit high error values.

The results of estimating upper-bound errors DPC within a given probability range

are presented in the following part of this section.

For each validation dataset x′
i, the values of DPC have been calculated using the as-

signed Riskx′
i
, for two percentiles: 0.95 and 0.5. Figure 5.6 shows the charts with the

datasets organised according to their corresponding actual errors Di and the associated

Risk levels, with colours representing the probability ranges. Specifically, red markers

correspond to instances where the error exceeds the 95th percentile, occurring with a

probability less than 0.05 for any given Risk. Orange markers signify instances where

the error is greater than the median but remains below the 95th percentile across all
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(a) Meta-learner M1

(b) Meta-learner M2

Figure 5.4: Validation datasets distributed according to their actual Di and assigned
Riskx′

i
.
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(a) Meta-learner M1 (b) Meta-learner M2

Figure 5.5: The distributions of the actual errors Di within low, medium, and high cate-
gories of the assigned Risk for validation datasets.

Table 5.1: Proportions of datasets with errors below the upper-bound error DPC for two
meta-learners.

M1 M2

Di 6 D0.5 0.551 0.548
Di 6 D0.95 0.962 0.969

risk levels. Similarly, green markers represent cases where the error does not surpass

the median. The layout of the validation datasets, consistent with the box-plot analysis,

reveals that low-risk zones are free of occurrences with high errors.

To verify the obtained upper-bound errors DPC, the proportion of datasets with er-

rorsDi below theD0.5 andD0.95 were calculated. Table 5.1 presents the proportions for

both investigated meta-learners,M1 andM2. The results for both meta-learners demon-

strate that the fraction of datasets associated with errors smaller thanDPC surpassed the

estimated proportion. This suggests that the actual meta-learners’ performance was rel-

atively good more frequently than the expectations set by the initial probability thresh-

olds. Consequently, the data provides evidence that the estimated probability boundaries

possess predictive potential. New datasets tend to conform to similar distributions and

reside within the probabilistic ranges established with the proposed procedure.

Eventually, an assessmentwas conducted to ascertain the influence of the neighbour-

hood size parameter n′ on the results. The value of n′ inherently impacts the assigned

Risk metric and, as a result, the error boundary estimates. Upon varying n′ within
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(a) Meta-learner M1

(b) Meta-learner M2

Figure 5.6: Validation datasets according to their error probability boundaries.
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the range of 1, . . . , 13, the data suggested that its impact on the proportion of datasets

within the examined range appeared to be stochastic. However, the parameter exhib-

ited a pronounced influence on the outlier datasets. Specifically, for n′ 6 5, there was

a noticeable migration of outlier datasets characterised by low Risk and elevated errors

Di to the lower-right quadrant of the graphical representation. The presence of datasets

in this quadrant is highly undesirable for the intended outcome of this study. Based on

the analysis, an optimal value of n′ = 10 was identified as the most suitable for both

meta-learners.

The above analysis demonstrates that for a given meta-learner, it is feasible to iden-

tify regions of instability indicating decreased reliability of the meta-learner’s predic-

tions. Additionally, this study provides the framework for quantifying the risk of an

inaccurate prediction across the meta-feature space. Consequently, this facilitates an

assessment concerning the reliability of the meta-learner’s predictions on previously

unseen and unlabeled datasets.

The analysis also demonstrates that it is possible to estimate the probability bound-

aries for meta-learner errors. In practical terms, this offers a statistical basis for approxi-

mating both the frequency and magnitude of errors the meta-learner is likely to commit

within different regions of the meta-feature space. When applying the estimated prob-

ability boundaries to a novel problem, the errors made by the meta-learner are likely to

fall within the estimated range with the expected frequency.

The observation that regions of instability can be identified during meta-learning ex-

aminations revives the discussion around the “No Free Lunch” theorem, which initially

inspired this study. This theorem appears to extend to the level of meta-learning, sug-

gesting that an ideal meta-learner capable of solving all issues with high accuracy may

not exist.

In light of this theorem, it is recommended to enhance the construction of a meta-

learner, particularly in the context of unsupervised AD, by incorporating information

about regions prone to high error rates. This additional layer of information could serve

as a valuable tool for practitioners to gauge the reliability of specific predictions tailored
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to their individual problems. This is especially pertinent when taking into account the

relatively early stages of research in the domains of algorithm selection in unsupervised

settings and local reliability estimates.

This section addressed the research question RQ3, which focuses on the identification

of high-risk regions within the input space and the assessment of the reliability of indi-

vidual meta-learner responses. Additionally, it responds to the research question RQ4,

which examines the impact of the dataset size on meta-learner analysis. The outcomes

of this study heavily rely on the large volume of datasets utilised in the analysis. The

substantial dataset volume is critical, as it enables the derivation of statistical estimates

and the validation of formulated hypotheses. Without such volume, neither statistical

inference nor their verification would be feasible.
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Conclusions

In thiswork, themeta-learning approach to algorithm selection for unsupervised anomaly

detection (AD) was explored. Two aspects highlight the importance of this research area.

The first is the escalating significance of anomaly detection techniques due to the signif-

icant increase in data gathered from a diverse array of devices used in various activities

of daily life. The second is an absence of systematic methods for tackling unsupervised

AD tasks, including techniques for automatically selecting the appropriate algorithm for

a given task.

The current researchwas carried out by considering the following research problems:

1. Development of a meta-learner suited to unsupervised AD.

2. Examination of the impact of individual meta-learner components (meta-model,

meta-features and base set of algorithms) on its overall performance.

3. Providing a strategy for assessing the reliability of particular meta-learner predic-

tions.

4. Conducting experiments using a comprehensive collection of benchmark datasets,

which represents the largest dataset compilation to date in the field of algorithm

selection for unsupervised AD.

The above aspects have been encapsulated in the respective research questions outlined

in this study. The subsequent sections of this chapter provide a structured conclusion and

future outlook. Specifically, Section 6.1 concludes the experimental work conducted and
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the results obtained from each study. Following this, Section 6.2 identifies limitations in

the current work and recommends future research directions to address these challenges.

6.1 Contributions of this Thesis

6.1.1 Meta-Learner for Unsupervised AD

A novel meta-learner was introduced, designed to facilitate the selection of an optimal

unsupervised algorithm for AD tasks. Compared to the existing state-of-the-art solution,

MetaOD (Zhao, Rossi, et al. 2021), a statistically significant improvement was observed

in the proposed method based on two critical performance metrics: Area Under the Re-

ceiver Operating Characteristic Curve (AUC) and Average Precision (AP). Additionally,

substantial savings in training time were achieved by the newly presented meta-learner

in comparison to the matrix-factorisation-based MetaOD. While the reduced time frame

for training has no impact on the prediction phase, it holds implications for the offline

training stage, as well as for potential redesign, retraining, or fine-tuning with additional

data.

Overall, this study demonstrates that the benefits of integrating a meta-learner into

an AD pipeline could easily outweigh the associated costs. Assuming the dataset size

to be 1,000 observations and 45 features, adding an extra 1–2 seconds on meta-feature

generation and 0.5 seconds on identifying the appropriate algorithmwill potentially save

hours of iterative or exhaustive testing and assessing of algorithm candidates.

6.1.2 Contribution of Meta-Learner Components

In the second problem, a 23 experimental design was employed to investigate the in-

dividual impact of component parts – namely the meta-model, meta-features, and base

algorithm set – on the overall performance of the meta-learner in both the MetaOD and

the proposed approach. The findings indicate that while the selection of meta-features

and the base set of AD algorithms exerted a relatively minor influence, the choice of

meta-model emerged as the most significant factor affecting meta-learner performance.
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Moreover, the analysis unveiled that a hybrid approach, incorporating elements from

both MetaOD and the method proposed in this study, yielded the most favourable per-

formance outcomes.

The current emphasis in AutoML and meta-learning literature is primarily on meta-

feature generation and hyperparameter optimisation. However, the current research

suggests that investing in significant pre-evaluation of a wide range of algorithms via

comprehensive grid search approaches delivers only modest benefits in terms of feasible

algorithms and hyperparameters. Instead, this study argues that the most efficient way

to create effective meta-learners in the domain of unsupervised AD is to concentrate on

designing a meta-model that can efficiently leverage data from previous evaluations.

The work on the development of the meta-learner and its characteristics has been

published in IEEE Access (Gutowska et al. 2023).

6.1.3 Local Reliability and Risk

Further to the development of the meta-learner, a strategy for evaluating the reliabil-

ity of individual meta-learner predictions was introduced. This framework is based on

analysing the meta-feature space to locate areas with a greater likelihood of generat-

ing unreliable predictions. It also delivers probabilistic estimates indicating the likeli-

hood that the suggested algorithm would diverge from the optimal selection by a cer-

tain amount in terms of the performance metric used. Empirical results demonstrate the

framework’s capabilities in providing the upper bound on the potential error.

This study emphasises the necessity of equipping a meta-learner with additional

meta-data on the reliability of individual predictions when constructing such a meta-

learner. The need for such contextual data becomes particularly relevant in algorithm

selection for unsupervised AD for several reasons. First, the unsupervised nature of the

problem limits an immediate validation of the algorithm’s performance, making a reli-

ability assessment tool invaluable. Second, the feature space in AD tasks often exhibits

high non-linearity, making some tasks inherently more challenging for the meta-learner

to accurately address. Finally, meta-learning is natively case-specific; each observation
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in the meta-feature space corresponds to a separate AD problem with unique character-

istics, therefore, a general measure of efficiency is not particularly informative.

By providing insights into the potential risk of inaccuracy for specific cases, the

framework empowers practitioners to make informed decisions. They can gauge the

criticality of the task at hand and assess the risk associated with the algorithm’s poten-

tial error, thus tailoring their approach accordingly.

6.1.4 Dataset Collection

The experimental work in this study was conducted using the most extensive collection

of datasets used to date in meta-learning experiments focused on unsupervised AD.This

substantial size enabled some unique accomplishments that would not be possible with

smaller dataset collections. These include:

• Establishing a well-populated meta-feature space,

• Conducting a thorough comparison between the proposed meta-learner and the

existing state-of-the-art solution,

• Identifying new insights into how different components of the meta-learner con-

tribute to its overall performance,

• Analysing the meta-feature space to pinpoint high-risk areas and provide esti-

mates of the meta-learner’s error rates.

In summary, the expansive scale of this study significantly enhanced the capacity to

uncover novel insights, exceeding what is typically achievable with the more limited

dataset sizes used in other meta-learning research.

6.2 Future Work

6.2.1 Development of Robust Datasets

In the evolving landscape ofmeta-learning systems for unsupervisedAD, there is a press-

ing need for the development of dataset benchmarks that serve as a truly robust test for

these systems. The inclusion of cross-domain data, data of diverse types, and semanti-
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cally meaningful data, along with sophisticated diversity measures, should all be at the

core of future directions.

Although the dataset collection used in this work is large, it was derived from a rel-

atively narrow base set that was augmented using iterative sampling techniques. While

this methodology is effective at producing large numbers of datasets, it might restrict

their diversity, limiting meta-learner adaptability and generalisability. To overcome this

limitation, future research should prioritise the creation of datasets that are inherently

diverse and drawn from a variety of domains. Extending on this theme, meta-learning

research will benefit from datasets derived from a variety of data types, including time

series data.

A truly robust dataset also needs to address specific real-world problems typical for

anomaly detection. The dataset collection used in this study is missing datasets with

semantically meaningful attributes, potentially making meta-learners less effective in

practical applications.

The pursuit of diversity, however, does not end with mere inclusion. The metrics

used to assess this diversity must be tailored to specific needs. These could be built upon

entropy-based metrics or topological features to capture the nuanced characteristics re-

quired for a rigorous test of meta-learner capabilities for anomaly detection.

6.2.2 Finding a Threshold Between Normal and Anomalous Data

Anomaly detection techniques do not inherently offer the ability to establish a bound-

ary between normal and anomalous data but instead, compute such a boundary based

on a required input parameter describing the proportion of anomalies in a given dataset.

Threshold-independentmetrics like AUC andAP provide valuable insights into the effec-

tiveness of AD algorithms, but similarly, they are limited in assisting in the establishment

of such a boundary.

The combination of original dataset features and associated meta-features could offer

an innovative approach to this boundary specification problem. Meta-features tailored

to anomaly detection needs can encapsulate useful underlying patterns of the data. By
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incorporating meta-features, a richer feature space is created, allowing for a more nu-

anced analysis of the boundary conditions between normal and anomalous points.

This opens up an intriguing avenue for future meta-learner development: the de-

sign of specialised systems aimed not only at optimising algorithm selection, but also at

defining the intricate boundary separating normal data from anomalies. Such research

would help to improve the effectiveness of existing anomaly detection methods as well

as provide a more comprehensive understanding of the fundamental characteristics that

define anomalous behaviour in complex datasets.

6.2.3 Boundary Parameter Refinement

In the analysis of the reliability and risk of individual meta-learner responses, the Risk

metric was introduced. The metric values were categorised into three buckets – low,

medium, and high. While the categorisation has provided a structured framework for

evaluating the risk of inaccurate predictions, it has merely served as an initial concept

for illustration rather than a sophisticated representation.

The current division fails to offer detailed insights that could be invaluable for prac-

titioners implementing the Risk metric in real-world settings. As a result, another po-

tential future path would be to delve deeper into defining these categories, ensuring that

each category bears substantive meaning for those applying the tool.

Additionally, a one-size-fits-all approach to risk categorisation is unlikely to serve

the variety of needs present in diverse domains. Different sectors – finance, healthcare,

or manufacturing – may have unique requirements that a universal classification could

not properly encapsulate. Consequently, any future work dedicated to refining bound-

ary parameters should consider adapting the risk categories based on domain-specific

characteristics. Such an approach would result in a more responsive and insightful met-

ric, offering better utility across a broader range of applications.
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6.2.4 Explaining Meta-Learners

One of the most fundamental observations made during this research was the disparity

in performance between different AD algorithms when applied to identical AD prob-

lems. This observation highlights the importance of an in-depth understanding of the

mechanisms underlying these algorithms in order to facilitate their effective deployment

in a variety of scenarios.

While the use of meta-learners has shown promise in closing performance gaps by

selecting optimal algorithms based on dataset features, these meta-learners are not with-

out limitations. Typical of complex machine learning methods, they lack the ability to

provide transparent rationales for their decisions. This is, however, a significant dis-

advantage because it makes the meta-learner’s recommendations difficult to interpret,

limiting trust and possible adoption of these tools in real-world applications.

Another avenue for future work could therefore be the exploration of the meta-

learner’s decision-making processes, potentially through examining the complex land-

scape of its loss function. The additional quantity that can be insightful in such analysis

is the meta-learner error, Di, introduced in Chapter 4 and leveraged in both Chapters 4

and 5. This error represents the distance between the recommended and the “virtual

best” algorithm. Deeper insight into the meta-learner decision-making process can be

obtained by examining the factors driving these errors.

By gaining these insights, it could be possible to create a set of human-interpretable

rules. Such a rule set would serve dual purposes. First, it could act as a substitute for

a meta-learner in scenarios where deploying such advanced tools is not feasible. Sec-

ondly, it could serve as a verification mechanism to validate the meta-learner’s choices,

providing reassurance that the suggestions are based on logical and empirically sup-

ported criteria.
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6.3 Final Summary

The current research work presents substantial advancements in the domain of meta-

learning, specifically focusing on its application to algorithm selection in unsupervised

anomaly detection (AD). The study offers the following primary contributions: the cre-

ation of the meta-learner designed for unsupervised AD tasks, the demonstration that

the architecture and design of the meta-model are crucial for effective meta-learning,

and the introduction of a framework for evaluating errors a meta-learner may commit

in its individual predictions. Moreover, this investigation employs a comprehensive col-

lection of datasets, providing a robust foundation for its findings.

Thework addresses a significant gap in the existing literature by offering a systematic

methodology for algorithm selection in unsupervised anomaly detection. This is partic-

ularly pertinent given the rapid expansion of data volumes and the corresponding need

for effective anomaly detection mechanisms. The research thus not only contributes to

the academic discourse but it provides a comprehensive and actionable set of tools for

both researchers and practitioners. As such, this work facilitates more effective data

management in an increasingly data-rich world.
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