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The monitoring, modelling and chemical interactions of pollen 
Emma Markey 

Ireland had one of the highest incident rates of asthma worldwide, with 80% of Irish asthmatics also 

possessing pollen allergies. These figures are expected to further increase due to climate change and 

urbanisation. Despite concerns pollen monitoring has largely gone undocumented in Ireland for many 

years, while much of Europe continued to advance monitoring/modelling approaches. Therefore, the 

aim of the thesis is to bridge this gap and establish a functioning pollen network in Ireland. Chapters 

1-2 introduce the theory and instrumentation used in the project. Chapter 3 focuses on the traditional 

monitoring of airborne pollen, primarily in Dublin city. Prevalent pollen types and seasonal trends 

were noted – highlighting a bimodal season, dominated by the allergenic Betula and Poaceae pollen. 

The first pollen calendar for Dublin was created, indicating potentially high exposure periods for 

allergy sufferers. Prediction efforts were further explored in Chapter 4 which explored the use of 

regression and classification models for forecasting Betula and Poaceae pollen. Due to the lack of 

extensive monitoring data, classification models were found to be more reliable, with accuracies 

ranging from 61-67%. Chapter 5 investigates the potential of utilising real-time devices for pollen 

monitoring (WIBS), promising results were found for total/Urticaceae pollen (r=0.73). However, 

influencing interferences were noted. The synergy between pollen and pollutants has been linked to 

increasing pollen allergenicity. In Chapter 6 IR spectroscopy was used to examine compositional 

changes to pollen samples during exposure to hydration, particulate, and gaseous pollutants (O3 and 

exhaust fumes). Differences were observed in protein, lipid and carbohydrate composition. Confocal 

microscopy was used to determine if these changes could lead to difficulties in identification when 

using real-time fluorescence sensors. Changes in fluorescence intensity were observed for hydration 

and particulate matter exposure but not gaseous exposure. Additional work is required to determine 

any changes in emission maxima.  

Overall, this thesis addresses the need for pollen monitoring in Ireland, presenting valuable insights 

into pollen types, seasonality, forecasting, real-time monitoring, and the potential impact of pollution 

on composition and fluorescence detection. 
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Chapter 1: Introduction 
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The objective of this chapter is to offer a comprehensive introduction to the concepts/methodologies 

employed in this project, with the intention of establishing a foundation for the subsequent chapters. 

An adaption of this review has previously been published in the EPA POMMEL report (O’Connor 

et al., 2022). 

 

1.1 Pollen structure and composition  

Pollen is the male gametophyte generated by flowering plants and trees (Dahl et al., 2013) as part of 

their sexual reproduction. The pollen grain itself acts as a vessel that protects gametes from the time 

it is released from the anther until it reaches the stigma of a corresponding plant. Pollen is dispersed 

through various mechanisms; however, the aerobiological nature of this thesis will focus on 

anemophilous pollen which is transported via wind. It is this fraction of pollen that is responsible for 

the onslaught of seasonal allergies experienced by many.  

Pollen grains are produced by both angiosperms and gymnosperms. In angiosperms pollen 

develops within the anthers of the plant whereas in gymnosperms it develops in microsporangia 

(Breygina et al., 2021; Dahl et al., 2013). While the pollen is developing and maturing within the 

anther (angiosperms) or cone (gymnosperms) it is continuously nourished by the tapetum. This is a 

secretory tissue that provides the grains with nutrients through the locular fluid (Pacini, 2010). This 

layer disintegrates shortly before anthesis (release of pollen from anther), however before doing so 

it can excrete viscous components on to the surface of the maturing pollen grain wall such as tryphine 

and pollenkitt. These coatings can have various protective and practical functions eg. to protect 

pollen grains from water loss and UV damage during pollination and aid in adhesion to the receiving 

stigma (Dickinson and Lewis, 1973; Pacini and Hesse, 2005). The adhesive properties of these pollen 

components are therefore popular among entomophilous mediated pollen but are also found on 

anemophilous pollen. 

Following adequate maturation and dehydration, pollen grains are then released from the 

anther/cone. The final pollen grain structure is generally composed of an external wall called the 

exine and an internal wall called the intine as shown in Figure 1.1. However, a great degree of 

variation can exist between pollen grains on a family, genus and even species level. This is so 

apparent that for decade the identification of pollen in aerobiological studies has largely been based 

on the visual differences in intricate surface features such as pores, furrows, striations, textures, and 

general pollen grain size. This indicates that during development different species of pollen grains 

evolve morphological, cytological and physiological differences (Pacini and Franchi, 2020).  
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Figure 1.1: General structure of pollen grain (inspired by (Burkart et al., 2021; Katifori et al., 2010)) 

The external layer of a pollen grain (exine) is developed first and is largely composed of a 

biopolymer known as sporopollenin which is made of various lipids and polyphonic compounds 

(Scott, 1994). The exine is composed of an outer portion that is sculptured and ornate called the 

sexine and a simple inner portion known as the nexine (Scott, 1994). Varying types and number of 

apertures can be seen on the exine of a pollen grain. These apertures, be they furrows (colpi), pores 

or a combination of the two (colpori), function as the sites of origin of pollen tube growth during 

germination. Depending on the species, these can vary is shape, size and number. The type of aperture 

present can be linked to the degree of pollen hydration of the released grains as well as changes in 

hydration expected during pollen release and transport, allowing for changes in pollen grain shape 

(Pacini and Franchi, 2020). These apertures are generally covered by the nexine or intine (Scott, 

1994). In the case of gymnosperms, pollen exine can further extend to encompass large air-sac 

structures used to promote the transport of these larger pollen grains (Pacini and Franchi, 2020).  

 The composition of the exine, although largely composed of similar building blocks, is not 

uniform across different species which can be seen as variations in chemical resistance, 

autofluorescence, staining efficiency etc. (Driessen et al., 1989; Wiermann and Gubatz, 1992). The 

exine can also contain various components originally introduced by the tapetum/pollenkitt which can 

be reabsorbed or left as a coating (Pacini and Hesse, 2005). The composition of such layers/coatings 

has also been found to vary depending on species but generally is composed of lipids as well as 

phenolic compounds such as carotenoids and flavonoids with the additional presence of carbohydrate 
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and proteinaceous components (Hesse, 1993; Lunau, 1995; Pacini and Hesse, 2005; Wang and 

Dobritsa, 2018).  

The intine resides below the exine and is mainly composed of polysaccharides such as 

cellulose and pectin and surrounds the protoplast of the male gametophyte (Nakamura and Suzuki, 

1981; Wiermann and Gubatz, 1992). The protoplast of the pollen grain contains various structures 

such as the vegetive nucleus, generative nucleus and vesicle. Internal carbohydrate reserves are also 

known to be present within the pollen grain – derived from starch which is stored within the 

vegetative cell during pollen development (Franchi et al., 1996). Polysaccharides such as starch can 

be found either in amyloplasts or in cytoplasmic vesicles. Polysaccharides can also undergo 

hydrolysation, depending on the metabolism and water content of the cell, to disaccharides like 

sucrose and monosaccharides such as glucose and fructose (Pacini, 1996; Pacini et al., 2006; 

Speranza et al., 1997).  

 

1.2 Pollen in the atmosphere  

Bioaerosols are a type of aerosols derived from biological sources including bacteria, viruses, fungal 

spores, and pollen grains. Pollen grains can exist in sizes ranging from 10-100 µm, thus representing 

the coarser fraction of the bioaerosol class (Dahl et al., 2013).  Initially, atmospheric pollen 

concentrations were considered unimportant compared to other bioaerosols (Penner et al., 2011). 

However, researchers have argued that measurements and contributions of pollen within the 

atmosphere have been underestimated (Cariñanos et al., 2021; Núñez et al., 2016). Bioaerosols 

account for approximately 16.5% and 16.3% of PM2.5 and PM10 atmospheric concentrations, 

respectively (Hyde and Mahalov, 2019), with slightly lower contributions observed for the indoor 

environment (Marcovecchio and Perrino, 2021). Pollen derived particles (and fungal spores) account 

for ~7.5% of the biological fraction of these particulate matter (PM) measurements. This might be 

surprising due to the coarse nature of pollen grains, however, under the correct conditions pollen 

grains can swell and burst – releasing particles within the range of 0.03 – 5 µm (Knox and Suphioglu, 

1996; Mampage et al., 2022; Miguel et al., 2006; Taylor et al., 2004). In conclusion, pollen 

contributions to varying fractions of atmospheric bioaerosols warrant additional exploration and 

consideration in air quality assessments. 

 

1.2.1 Pollen dispersion and transport 

By design, dispersal and transport are integral parts of the anemophilous pollen life cycle. 

Atmospheric transport of varying distances is required for plant/tree pollen to arrive at the stigma of 

receptor plants. Although the dispersion of pollen through atmospheric pathways is essential for 

pollination and increasing genetic diversity, it can also lead to the spread of invasive plant species 
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and pathogens as well as exposing humans to increased allergen concentrations (discussed further in 

section 1.2.2. 

The degree of dispersion and transport of individual pollen taxa depends on a variety of 

factors (morphological features, meteorological conditions etc.) (Després et al., 2012; Myszkowska 

et al., 2021; Sofiev et al., 2013, 2006)  leading to varying scales of transport being possible. These 

include microscale processes which take places within several metres from the point of pollen 

release, local-scale processes which extend slightly further to encompass several kilometres from the 

source, regional (or meso) scale processes that include distances of up to 100 kilometres from the 

source, and long-range transport that encompass pollen transport at much higher distances (1,000-

5000 km or higher) (Sofiev et al., 2013). The extent of pollen transport is also dependent on the 

atmospheric lifetime of the particle. This is reliant on the deposition intensity of the particle, for 

coarse particles like pollen, the most important means of deposition in gravitational settling (Skjøth 

et al., 2013; Wörl et al., 2022). Therefore, the deciding factor of a pollen grain’s atmospheric lifetime 

is its sedimentation velocity. Several studies have calculated the sedimentation velocity of different 

pollen taxa such as for birch pollen (1.2 cm sec-1) (Sofiev et al., 2006) and grass pollen (Skjøth et 

al., 2013). Wet deposition by rain can also result in the further removal of pollen grains from the 

atmosphere (Sofiev et al., 2006), however, following deposition pollen can experience resuspension 

and can be involved in further airborne transport (Williams, 2008).  

Despite the influence of deposition processes, released pollen can be transported by 

prevailing winds as a result of turbulent vertical mixing (D’Amato et al., 2007) and can be found 

within the atmospheric boundary layer (Gregory, 1973; Raynor et al., 1974). It is this turbulent 

vertical mixing process that determines the fraction of the released pollen that will undergo larger-

scale dispersion (Gregory, 1973). Following this, pollen can remain suspended from anywhere from 

several hours to several days, depending on the meteorological conditions, particles size etc.(Sofiev 

et al., 2013). Removal of the pollen from the atmosphere can take several days if purely reliant on 

gravitational settling, this means that some pollen can be transported long distances in this time 

(Skjøth et al., 2007). Other factors such the height at which pollen is released from the source as well 

as the paticles’s aerodynamic properties are also important factors that influences the degree of 

dispersion/transport experienced (Skjøth et al., 2013). An increased release height is typically 

associated with a resulting decrease in near-source concentration and increased dispersion area, these 

trends have been documented for various air pollutants and bioaerosols (Zhang and Wang, 2022). 

Therefore, smaller pollen grains released above ground level such as Betula pollen generally 

experience longer suspension time than larger pollen grains emitted closer to the ground such as 

Poaceae pollen, the dispersal of which has been shown to be limited to several hundred metres 

(Skjøth et al., 2013).  

Although the majority of pollen released is dispersed locally without travelling considerable 

distances, regional and long-range transport of pollen has been documented since the 1930’s 
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(Edwards and Östensson, 2023; Erdtman, 1937). The transport of pollen to aerobiological sampling 

sites from varying distances has been well documented throughout literature (Sofiev et al., 2013). 

These studies have largely focused on the detection of allergenic pollen concentration and are often 

first noticed when ambient concentrations peak devoid of comparable local sources or phenological 

changes, indicating pollen transport from elsewhere (Ranta et al., 2006). Many studies have 

investigated the transport of Betula (Alarcón et al., 2022; Mahura et al., 2007; J.M. Maya-Manzano 

et al., 2021; Myszkowska et al., 2021; Šauliene and Veriankaite, 2006; Skjøth et al., 2007; Wörl et 

al., 2022), Ambrosia (Šikoparija et al., 2013; Smith et al., 2008; Stępalska et al., 2020; de Weger et 

al., 2016) and even Poaceae (Frisk et al., 2022; Skjøth et al., 2013) pollen using various transport 

modelling approaches and back trajectory analyses. These studies have identified pollen transport 

ranging from nearby regions (Skjøth et al., 2009) to regions over 1,400-1,700 km apart (Myszkowska 

et al., 2021; Stępalska et al., 2020), once again illustrating that smaller pollen grains favour increasing 

long-range transport compared to larger pollen grains (Skjøth et al., 2013; Williams, 2008).  

 

1.2.2 Health effects 

Pollen is notorious for triggering health issues like hay-fever and exacerbating conditions such as 

COPD, eczema, and asthma (Brzezińska-Pawłowska et al., 2016; Cirera et al., 2012; Davies et al., 

2018; Fölster-Holst et al., 2015; Jantunen et al., 2012). More worryingly, pollen allergies have 

increased considerably in recent years (Asam et al., 2015; Biedermann et al., 2019; D’Amato et al., 

2007; Davies et al., 1998; Lee et al., 2021) with  30-40% of the current European population being 

affected and figures predicted to double by 2060 (Lake et al., 2017). This is largely related to the 

synergistic impacts of pollution and climate change on the allergenic and phenological trends of 

pollen (Beggs et al., 2017; D’Amato et al., 2010; Lake et al., 2017; Subiza et al., 2021). Changes 

induced through increasing urbanisation and greenhouse gas emissions have been shown to promote 

pollen production and allergen potency while also extending the length of pollen seasons (D’Amato 

et al., 2015; El Kelish et al., 2014; Oh, 2018; Paudel et al., 2021). This is also likely to increase the 

financial burden associated with treating such conditions. Currently, the effects of seasonal allergies 

puts substantial strain on the European health system, with direct and indirect health costs equating 

to an estimated €50 billion/year and €50–150 billion/year, respectively (Clot et al., 2020; Zuberbier 

et al., 2014). Direct and indirect costs for an individual (within the EU) are estimated to be in the 

range of €2,400 per year (Zuberbier et al., 2014). The medical and financial implications of seasonal 

allergies are likely even more severe for Ireland due to the remarkably high asthma prevalence. 

Asthma rates within Ireland are currently ranked fourth globally (Asthma Society of Ireland, 2022a), 

impacting approximately 890,000 individuals (over the course of their lifetimes), resulting in an 

annual healthcare cost estimated at €472 million (Asthma Society of Ireland, 2022b). 

Exposure to ambient pollen has also been shown to enhance the susceptibility of respiratory 

viral infections such as rhinovirus (Gilles et al., 2020), even in those who do not possess pollen 
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allergies. Exposure to pollen can suppress the body’s innate antiviral immunity. During the midst of 

the COVID-19 pandemic, pollen exposure was linked to increased SARS-CoV-2 infection rates 

(Damialis et al., 2021). The study concluded that infection rates increased after higher pollen 

concentrations, suggesting that high‐risk population groups should avoid extensive outdoor activities 

when periods of high pollen and respiratory virus exposure coincide. In addition to its impact on 

human health, pollen has also been shown to impact the health of animals by triggering allergic 

reactions. These allergies generally take the form of atopic dermatitis or other inflammatory skin 

symptoms, however, some animals can also experience allergic rhinitis, conjunctivitis and asthma 

like their human counterparts (Jensen-Jarolim et al., 2015). Furthermore, pollen release and transport 

can impact plant health through the spread of plant pathogens (Card et al., 2007). A review by Card 

et al., (2007) outlined a prospective 39 viruses that are pollen-transmitted, including pathogens 

derived from bacterial and fungal sources. 

Pollen monitoring and forecasting networks thus offer a range of health and agricultural 

benefits to the people of Ireland; providing suitable warnings to allergy sufferers and valuable 

information on plant pathology, plant distributions and presence of invasive species (Bastl et al., 

2016).  

 

1.2.3 Climate effects  

Historical records of fossilised pollen can provide a great deal of information regarding past climates 

and biodiversity (Von Post, 1946). However, current ambient concentrations of pollen and other 

primary biological aerosol particles (PBAP) can impact the climate by influencing cloud formation 

and  radiative forcing through the absorption and scattering of light (Conen et al., 2017). Given 

enough relative humidity, clouds can form when water condenses on the surfaces of soluble particles. 

These particles are called Cloud condensation nuclei (CCN). Clouds also occur in cooler air at 

temperatures between 0 and -36°C due to particles acting as Ice Nuclei (IN), resulting in the freezing 

of droplets (Phillips et al., 2009). PBAP may include soluble coatings that enable them to function 

as CCN while also containing insoluble components that contribute to IN potential (Möhler et al., 

2007; Phillips et al., 2009). The increased interest in cloud forming PBAP in recent times, has 

stemmed from non-biological IN (mineral dust and combustion aerosols) losing their IN ability at 

temperatures warmer than -15°C and -20°C. As such, these aerosols cannot account for cloud 

formation above this temperature, which has been witnessed (DeMott and Prenni, 2010).  

The only particles found that are capable of serving as IN in these warmer conditions have 

been biological in nature and were found to catalyse the freezing of cloud droplets at temperatures 

between −1 and −15 ◦C (Després et al., 2012; Murray et al., 2012). The first biological IN 

(Pseudomonas syringae bacteria) were discovered in the early 1970’s (Maki et al., 1974; Schnell and 

Vali, 1972). Since then, many biological components have been identified as potentially important 
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CCN and IN (Bauer et al., 2002; Christner et al., 2008; Pratt et al., 2009; Prenni et al., 2009), 

including pollen (von Blohn et al., 2005; Diehl et al., 2002, 2001; Mikhailov et al., 2019; Möhler et 

al., 2007; Pope, 2010; Pummer et al., 2012; Steiner et al., 2015). To date, a number of laboratory 

studies have illustrated the CNN and IN capabilities of pollen grains. Pope, (2010) investigated the 

CNN abilities of four different pollen taxa and concluded that whilst pollen is only moderately 

hygroscopic; it will still act as effective CCN under very low supersaturations and that during pollen 

seasons when concentrations exceed ∼10−3 cm−3 this extra source of giant CCN is likely important 

for cloud processes (Levin and Cotton, 2009; Pope, 2010).  

Several laboratory studies have also investigated the IN ability of pollen (Casans et al., 

2023). Ice nucleation occurs according to one of four main mechanisms/modes: deposition 

nucleation, condensation freezing, immersion freezing and contact freezing (Paramonov et al., 2020). 

The temperature dependent IN behaviour of pollen in these four modes has been examined in several 

studies (von Blohn et al., 2005; Diehl et al., 2002, 2001). Although, no significant deposition 

nucleation was recorded for the investigated pollen types, at temperatures as low as −32.5◦C and ice 

supersaturation of up to 35% (Diehl et al., 2001), different pollen types were shown to possess 

increasing ice activity in the condensation and immersion modes for temperatures between −8 and 

−18◦C (Diehl et al., 2001). Contact nucleation occurred at even warmer temperatures of up to −5◦C 

(Diehl et al., 2002). In a follow-up study immersion and contact freezing modes were investigated 

for additional pollen types and similar trends were observed with increasing ice activity in the 

immersion mode at temperatures typically below −10 to −16◦C (von Blohn et al., 2005). 

In the past, pollen was dismissed as important atmospheric IN (or CCN), due to low 

atmospheric concentrations compared to bacteria or mineral dust and their inability to reach higher 

altitudes. However, a study by Pummer et al., (2012) illustrated that full pollen grains are not required 

to act as IN (Pummer et al., 2012).  Some macromolecules within the pollen grain can be separated 

during rupturing. These submicron particles released from pollen grains are often termed sub-pollen 

particles (SPP) and can act as IN (Dreischmeier et al., 2017; Gute and Abbatt, 2020; Pummer et al., 

2012) and CNN (Casans et al., 2023; Mikhailov et al., 2019; Steiner et al., 2015; Steiner and Solmon, 

2018). SPPs are present at higher concentrations and higher altitudes than whole pollen grains. A 

recent study has suggested that chemical processing, especially UV exposure, can alters SPPs such 

that ice nucleation is no longer effectively promoted. These findings imply that the role SPPs play in 

cloud formation may be reduced the longer they are exposed to atmospheric processing (Gute et al., 

2020). 

Although many of these investigations have highlighted the potential importance of pollen 

as effective IN/CNN on a regional and seasonal scale, a significant contrast is observed when 

compared to larger/global studies. Several studies have highlighted the contributions of SPPs and 

other PBAP to the total number concentrations of particles activated in clouds is only minor (Hader 

et al., 2014; Haga et al., 2014; Hummel et al., 2018; Sesartic et al., 2013; Spracklen and Heald, 2014). 
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In two distinct research investigations (C Hoose et al., 2010; C. Hoose et al., 2010), it was determined 

that the simulated impact of PBAP on cloud formation was insignificant compared to the influence 

of mineral dust and soot, which accounted for 93% of the IN composition. Even with abnormally 

heightened freezing efficiency, the global contribution of PBAP to IN was not greater than 1% (C. 

Hoose et al., 2010). However, this does not negate the influence of pollen and other PBAP as IN/CNN 

on a regional/seasonal basis, especially at lower altitudes where warmer temperatures inhibit the 

nucleation of other particles (Prenni et al., 2009; Spracklen and Heald, 2014). These contrasting 

results indicate that the true IN/CNN activity of pollen/PBAP remains somewhat uncertain.  

 

1.3 Airborne Pollen monitoring methods  

1.3.1 Traditional volumetric methods 

Given the increased interest in pollen monitoring over the last few decades, it is somewhat surprising 

that the vast majority (80%) of all documented sampling sites still use the traditional volumetric 

methods developed in the 1950s (Buters et al., 2018; Sodeau and O’Connor, 2016). These methods 

have endured the test of time for several reasons: affordability, operational simplicity, and resilience 

to outdoor conditions (Beggs et al., 2017) and is a standardised method (EN 16868) (CEN, 2019). 

The Hirst volumetric trap (Hirst, 1952) is the most widely used sampler for pollen monitoring, 

recommended by the EAN and EAS (Oteros et al., 2015a). It operates continuously, using a pump to 

impact aerosols onto a rotating drum with a silica substrate coated onto plastic tape. Following the 

microscopic identification of pollen, daily results are generated.  

This off-line technique is notoriously time-consuming and suffers from low time resolution 

(usually daily averages), extrapolation to hourly or bi-hourly resolution is possible but is affected by 

larger uncertainties (Clot et al., 2020). A highly skilled operator is also required to optically identify 

pollen types correctly. The precision of results therefore heavily relies on the skills of the operator. 

Overall, this method is incredibly impractical, labour intensive and can take up to a week to circulate 

results. Due to this slow process, only a portion of the mounted slides are analysed with the overall 

count determined by extrapolation (Jose María Maya-Manzano et al., 2021). Therefore, the biggest 

problem that pollen monitoring networks face is the time delay from sample analysis to result 

dissemination. Therefore, novel pollen monitoring technologies are currently the focus of 

aerobiological research. 

 

1.3.2 Real-time methods 

Real-time methods provide a practical alternative to traditional Hirst-type approaches. They were 

initially developed to address public health and national defence concerns related to aeroallergens 

and bioterrorism (Huffman et al., 2020). Commercially available real-time pollen monitoring 
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devices, which examine the physical/chemical properties of bioaerosols, have emerged in recent 

years and have since been extensively reviewed (Fennelly et al., 2017; Huffman et al., 2020; 

Martinez-Bracero et al., 2022; Jose María Maya-Manzano et al., 2021). The majority of these 

instruments utilise either image recognition and/or air-flow cytometry (Clot et al., 2020; Huffman et 

al., 2020). A range of instruments employed for real-time pollen monitoring can be classified as using 

air-flow cytometry, although the overall operating principles of each instrument can differ, including 

light-induced fluorescence (LIF), light scatter and holographic imaging. These instruments include 

the KH-3000-01, the Wideband Integrated Bioaerosol Sensor (WIBS), the Plair Rapid-E and the 

Swisens Poleno.  

The KH-3000-01 Japanese pollen sensor by Yamatronics uses light scattering to collect and 

process air samples, providing immediate real-time results (Kawashima et al., 2007). It has been 

deployed in Japan for the monitoring of Japanese Cedar pollen since 2002 (Kawashima et al., 2017). 

While it is effective for distinguishing the large and distinct allergenic Japanese Cedar species, 

several studies have also tested a range of different pollen types like Urticaceae, Poaceae, Ambrosia, 

Cupressaceae, Fraxinus, Betula, and Quercus by comparing scattered light intensity and degree of 

polarization (Kawashima et al., 2007; Huffman et al., 2020). However, its capability for analysing a 

complex mixture of pollen types remains uncertain. 

Fluorescence spectroscopy, particularly LIF is one of the most documented and freely 

available real-time techniques for the detection of pollen/PBAP (Huffman et al., 2020). The operating 

principle behind LIF focuses on exploiting the presence of naturally occurring fluorophores found in 

many biological particles. The prominent fluorescent components of PBAP have been well 

documented in literature and include a vast array of compounds such as amino acids and structural 

carbohydrates (Fennelly et al., 2017; Manninen et al., 2014). Therefore, fluorescence spectroscopy 

can be used to discern aerosols of biological origin from other non-fluorescent aerosols. The WIBS 

is one such instrument which utilises a 635 nm laser, 2 excitation wavelengths (280 nm and 370 nm) 

and 2 detection bands (310–400 nm and 420–650 nm) to determine the size, shape and fluorescent 

characteristics of atmospheric particles. The emission wavebands are specifically selected for the 

detection of two common bio-fluorophores: tryptophan and NAD(P)H. Sampled particles can then 

be categorised according to their fluorescent properties.  

The WIBS has been deployed at a myriad of different sites to monitor ambient bioaerosol 

variations, including in rainforests (Gabey et al., 2010; Whitehead et al., 2010), urban (Gabey et al., 

2011; Markey et al., 2022b), biowaste (Feeney et al., 2018), green-waste (O’Connor et al., 2015), 

coastal (Daly et al., 2019) and indoor environments (Li et al., 2020), including several Irish 

campaigns (Healy et al. 2012a, b, 2014; O’Connor et al. 2013, 2014) and lab studies (Healy et al., 

2012b, 2012a; O’Connor et al., 2013; Robinson et al., 2017; Toprak and Schnaiter, 2013).  Field 

studies have highlighted the proficiency of the WIBS to identify ambient bioaerosols compared to 

volumetric sampling (R2 >0.9) (O’Connor et al., 2014). However, only a select few have specifically 
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attempted to use the WIBS as a means to monitor and differentiate between pollen types (Healy et 

al., 2012a; Markey et al., 2022b; O’Connor et al., 2014). Laboratory studies using the WIBS-4 (now 

surpassed by the WIBS-NEO) also illustrated the potential for the WIBS to discriminate pollen grains 

from other bioaerosols and aerosols of non-biological origin (Healy et al., 2012a). 

The Plair Rapid-E (formerly the PA-300) instrument utilises both fluorescence and optical 

scatter to differentiate between aerosols (Kiselev et al., 2013, 2011). The sampled particle passes 

through a 405 nm laser - providing time-resolved data of the scattered light. The scattered light 

provides information on the size, shape and surface characteristics of the particle (Crouzy et al., 

2016). The particle is then exposed to a laser of 337 nm, inducing fluorescence which is recorded 

using 32 photodetectors covering a range from 350-800 nm (Tummon et al., 2021). Fluorescence 

lifetime is also recorded for four bands at nanosecond resolution (Tummon et al., 2021). The resulting 

signals produce a spectrum for each particle. Field tests have shown the potential of the Rapid-E and 

the PA-300 for pollen monitoring (Crouzy et al., 2016; Šauliene et al., 2019). Studies have also 

highlighted the use of mathematical algorithms for pollen identification using data obtained from the 

Rapid-E (Crouzy et al., 2016; Šauliene et al., 2019; Tešendić et al., 2020). Using a combination of 

algorithms Šauliene et al., (2019) attempted to differentiate between a range of different pollen taxa, 

exceeding 80% accuracy for 5 out of 11 species.  

The Swisens Poleno also utilises LIF for particle detection, it differs from previous examples 

by the addition of holographic imaging. Laser scattering provides information on the particle shape, 

size, velocity, and alignment. Two images are then taken at 90°  from each other using digital 

holography (Sauvageat et al., 2020). UV-induced fluorescence provides additional information 

regarding particle composition. Fluorescence lifetime and spectra are measured using excitation 

wavelengths at 280, 365 and 405 nm at detection windows between 320-720 nm (Sauvageat et al., 

2020). However, the majority of studies have focussed on analysing pollen based on holographic 

imaging, the true potential of the LIF functioning is yet to be fully realised, although early studies 

suggest the promising influence on pollen differentiation/identification (Erb et al., 2023). 

Other methods of detection have also seen promising results in recent times. One such 

method, with the suitability for taxon-level identification of ambient pollen, is image recognition-

based approaches. The BAA 500 by Hund-Wetzlar is one such instrument (Oteros et al., 2015; Plaza 

et al., 2022). This method mimics the microscopic identification process carried out in traditional 

monitoring methods and is restricted to pollen and some spores >10 μm (Huffman et al., 2020). The 

pollen sample enters the instrument and is examined under a microscope system that measures 

images of the pollen at 8 different focal positions. While the images are being analysed the next 

sample is loaded etc. Identification is dependent on training the device with known samples. An 

initial study by Oteros et al., 2015a, in which over 480,000 particles were analysed, showed that the 

BAA500 was capable of differentiating between different pollen taxa, yielding a total accuracy of 

over 93%. Another sensor utilising an image recognition system is the PollenSense Airborne 
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Particulate Sensor (APS) (Lucas et al., 2016). The PollenSense examines particles present in ambient 

air by acquiring microscopic images. The images are then processed to determine particle 

identification within a time frame of several hours (Huffman et al., 2020) but this has yet to be fully 

discussed in literature.  

Although the incorporation of real-time instruments into bioaerosol monitoring networks 

offers the potential for rapid retrieval and subsequent dissemination of data, only 2 real-time 

monitoring networks are currently in operation in Europe. This includes networks in Bavaria, 

Germany currently using the BAA500 instrument utilising the principle of image recognition (Oteros 

et al., 2015) and in Switzerland, which employs the Poleno air-flow cytometry system which uses 

optical discrimination, based on fluorescence and holography (Crouzy et al., 2016; Sauvageat et al., 

2020).  In addition, the Plair Rapid-E has been used in a preliminary network study between Serbia 

and Croatia, under the RealforAll project (Clot et al., 2020; Tešendić et al., 2020).  In total, only 4 

European countries (France, Germany, Luxemburg and Switzerland) utilise real-time monitoring 

instruments regularly but not at all sampling locations (Buters et al., 2018). Outside of Europe, there 

are an additional two sampling sites in the US and 120 in Japan that also regularly employ real-time 

instruments (Kawashima et al., 2007).  

Real-time monitoring also has the potential to be integrated directly into forecasting models, 

further improving the accuracy of regional forecasts (Adamov and Pauling, 2023; Clot et al., 2020). 

At this crucial moment in monitoring development, it is important that any networks developed are 

standardised and validated accordingly. This rationale has led to the development of Europe-wide 

projects such as the EUMETNET AutoPollen programme, which aimed to develop a prototype 

automatic pollen monitoring network across Europe (Clot et al., 2020). One aspect involved the 

intercomparison of real-time instrumentation to the Hirst (Maya-Manzano et al., 2023; Tummon et 

al., 2021). This was done to compare how different instruments function under different ambient 

conditions and to better understand their limits of detection, accuracy levels and establish necessary 

minimum acceptance criteria  (Clot et al., 2020). 

 

1.3.3 Pollen monitoring in Ireland 

Many European countries have been routinely monitoring pollen for decades, leading to the 

establishment of the European Aeroallergen Network (EAN) in 1986 (Nilsson, 1988). Although 

Ireland was one of the original countries to initially join the EAN, the monitoring efforts were 

prematurely adjourned in the early 1980’s. A recent study documented and mapped all the active 

pollen and fungal spore monitoring sites around the globe, thus excluding the original Irish 

monitoring site (Buters et al., 2018; Nilsson, 1988). By the end of 2016 over 525 sampling sites 

existed across Europe with an additional 182 and 151 sampling sites in Asia and the US (Buters et 
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al., 2018). However, since the 1980’s Ireland has largely refrained from carrying out any extensive 

monitoring campaigns.  

Excluding the work carried out during this PhD project, there exists only two other traditional 

(Hirst based) aerobiological monitoring studies conducted in Ireland (McDonald, 1980; McDonald 

and O’Driscoll, 1980). These studies, although decades old, provide some insight into the 

aerobiology surrounding a former site in Galway. The studies covered two summer periods (May-

September) in 1977 and 1978. The first study aimed at assessing general pollen and fungal spore 

trends over these summer months and equating changes in ambient concentration to meteorological 

conditions. It was found that this period was mainly dominated by Poaceae pollen with mention of 

several other herbaceous pollen taxa such as Chenopodium, Rumex and Urtica. Changes in pollen 

concentrations were shown to positively correlate with wind speed and negatively correlate with 

rainfall, mirroring similar trends established throughout literature. Any notable disparities between 

the sampling years was also attributed to changes in wind direction, with low concentrations equating 

to prevailing winds coming from the ocean (McDonald and O’Driscoll, 1980).The second of these 

studies reiterated many of the same findings and correlations to meteorological factors, instead 

focussing specifically on grass pollen (McDonald, 1980). Although these studies offer a promising 

start to Irish aerobiological work and provide key fundamental findings (especially for the selected 

summer months), they provide little information on the full pollen season and spectrum encountered 

at this site with no indication of what arboreal pollens were present. It was not until 2021 that any 

other traditional pollen monitoring study using Irish data was published again (Markey et al., 2022a; 

J.M. Maya-Manzano et al., 2021), illustrating a clear disparity in long-term monitoring efforts since 

these original studies.   

Other recent Irish aerobiological research has instead focused on assessing the suitability of 

real-time methods such as the WIBS in monitoring PBAP such as fungal spores and pollen (Healy et 

al. 2012a, b, 2014; O’Connor et al. 2013, 2014). Several field monitoring campaigns were conducted 

around Ireland using the WIBS but the durations of the campaigns were relatively short, offering 

little information on the seasonal concentrations and trends of PBAP. Likewise, the inability of the 

WIBS to discriminate between a large range of pollen types provided little detail on the prevalent 

pollen types. Overall, the understanding of allergenic bioaerosols within the historical Irish context 

has been severely limited with little known about the species and seasonality of different pollen types 

throughout the year. 

 

1.4 Pollen modelling and forecasting methods  

There are three general categories of models commonly used to forecast ambient pollen 

concentrations/trends. These categories encompass observational models, process-based models, and 
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source-oriented models. Detailed and extensive reviews of which have received much attention in 

recent years (Jose María Maya-Manzano et al., 2021; Vélez-Pereira et al., 2022, 2021). 

 

1.4.1 Observational based models 

Observational models use mathematical and statistical algorithms to predict dependent variables like 

pollen concentrations, using independent variables like meteorological and phenological parameters. 

However, these predictions are limited to a specific location, making them difficult to apply 

elsewhere. Techniques like traditional regression, time-series methods, and modern machine learning 

are used to forecast daily airborne pollen variations. 

Regression models are currently the most documented modelling techniques used for pollen 

forecasting. However, more recently, these simple techniques have been overtaken in popularity by 

more sophisticated machine learning methods (Vélez-Pereira et al., 2021). This does not negate the 

vast array of literature available detailing the use of these models. One of the simplest iterations is 

linear regression, where a straight line is used to establish a relationship between two variables (one 

dependent and one independent), which has been widely used in pollen forecasting (Frenguelli et al., 

2016; García-Mozo et al., 2014; Piotrowska-Weryszko, 2013a). However, many factors affect pollen 

release and as such multiple and polynomial regression analyses are also used (Jarlan et al., 2014; 

Novara et al., 2016; Sabariego et al., 2012; Tseng et al., 2018). These include methods like backward 

elimination, stepwise multiple regression (Howard and Levetin, 2014; Janati et al., 2017; Sicard et 

al., 2012), logistic regression (Katz and Batterman, 2019; Myszkowska, 2014a; Myszkowska and 

Majewska, 2014), and partial least squares (Brighetti et al., 2014; Lara et al., 2019).  

Regression models have been used to predict daily pollen concentrations (Janati et al., 2017; 

Smith and Emberlin, 2005), season start/peak (García-Mozo et al., 2009; Myszkowska, 2014a, 

2014b; Zhang et al., 2015), season duration (Zhang et al., 2015), and season intensity (Bonini et al., 

2015). Regression models have primarily targeted pollen taxa of known allergenic or invasive 

importance, including Alnus (Myszkowska, 2014a; Novara et al., 2016), Betula (Robichaud and 

Comtois, 2017; Zhang et al., 2015), Corylus (Myszkowska, 2014a; Novara et al., 2016), Poaceae 

(Janati et al., 2017; Piotrowska, 2012; de Weger et al., 2014), Quercus (Myszkowska et al., 2011; 

Picornell et al., 2019), Cupressaceae (Picornell et al., 2019; Sabariego et al., 2012), Artemisia 

(Piotrowska-Weryszko, 2013b; Zhang et al., 2015) and Ambrosia (Howard and Levetin, 2014; Zhang 

et al., 2015). 

Despite their ease of use, regression models frequently rely on linear/normal assumptions, 

failing to capture the seasonality in aerobiological data, resulting in poor predictability (Astray et al., 

2010; Damialis and Gioulekas, 2006). This limitation can be addressed through time-series analysis, 

which forecasts future values based on past data, considering components like general and seasonal 

trends, unknown cycles, and random variations (Maya-Manzano et al., 2021). Time-series methods 
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aim to separate various patterns and disturbances in the dataset caused by ordinary seasonal 

behaviours like weather conditions. These methods, such as ARIMA (García-Mozo et al., 2014; 

Muzalyova et al., 2021) and LOESS based models (Rojo et al., 2017) have been used to predict many 

different pollen types, including Alnus (Nowosad, 2016; Siniscalco et al., 2015), Ambrosia (Puc and 

Wolski, 2013), Betula, Corylus (Nowosad et al., 2016), Poaceae (Fernández-Rodríguez et al., 2018; 

Rojo et al., 2017; Tassan-Mazzocco et al., 2015), Quercus (Fernández-Rodríguez et al., 2016), and 

Urticaceae (Tassan-Mazzocco et al., 2015; Valencia et al., 2019).  

While traditional models are still widely used, they frequently struggle to capture the 

intricate relationship between pollen concentrations and explanatory variables. Consequently, 

advanced machine learning methods have gained popularity in atmospheric and aerobiological 

research including Artificial Neural Networks (ANN) (Astray et al., 2016; Burki et al., 2019; Liu et 

al., 2017; Puc, 2012), Support Vector Machines (SVM) (Bogawski et al., 2019; Du et al., 2017; Liu 

et al., 2017) and ensemble techniques like Random Forests (RF) (Navares and Aznarte, 2019; Zewdie 

et al., 2019b, 2019a). However, these algorithms require a lot of training data to develop suitably 

accurate and robust models. Machine learning models frequently aim to replicate the functionality of 

biological information processing systems (Recknagel, 2001) to simulate the intricate relationships 

between variables. ANNs are one such method – designed to mimic the thought process of the human 

brain and have gained popularity in aerobiology due to their ability to easily analyse non-linear and 

discontinuous data (Jedryczka et al., 2015). ANNs have recently been applied to predict Ambrosia 

(Csépe et al., 2019, 2014), Betula (Puc, 2012), Quercus (González-Naharro et al., 2019), Olea 

(Iglesias-Otero et al., 2015) and Poaceae (Lops et al., 2020; Muzalyova et al., 2021; Sánchez-Mesa 

et al., 2002; Sánchez Mesa et al., 2005) pollen concentrations. RF is another popular model type used 

for forecasting pollen, this method involves constructing multiple decision trees and combining their 

results to make more accurate predictions. RF models have been developed for a range of different 

pollen types, such as Alnus, Betula, Corylus (Novo-Lourés et al., 2023; Nowosad, 2016), Quercus, 

Cupressaceae, Ambrosia (Lo et al., 2021) and Poaceae (Navares and Aznarte, 2019). SVMs have 

also been used to forecast daily concentrations and flowering periods  (Bogawski et al., 2019; Zewdie 

et al., 2019c; Zhao et al., 2018) but are often outperformed by ANN and RF. While these advanced 

methods have not received as much attention in the literature as traditional deterministic models, 

their high accuracy and robustness hold promise. 

 

1.4.2 Phenological models 

Phenological data has proven to be valuable in enhancing aerobiological research and constructing 

effective models for forecasting crucial stages in plant growth, particularly flowering periods for 

pollen forecasting (Grundström et al., 2019; Tormo et al., 2011). These models establish the timing 

of phenological phases based on environmental conditions and are commonly integrated into 

atmospheric transport models (Jose María Maya-Manzano et al., 2021). Phenological models have 
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been developed for a range of pollen including Alnus (Pauling et al., 2014; Siniscalco et al., 2015), 

Betula (Pauling et al., 2014), Corylus (Novara et al., 2016; Pauling et al., 2014), Olea (Achmakh et 

al., 2015) and Poaceae (Pauling et al., 2014).  

 

1.4.3 Source – orientated models 

Pollen levels can be predicted spatially and temporally using source-oriented and transport models 

(Verstraeten et al., 2019). Transport models can address the data-intensive limitations of 

observational models but do require knowledge of specific aerosol features such as diffusion as well 

as pollen emission sources. These models are based on chemical transport models that were later 

modified to account for pollen dispersal. SILAM, COSMO-ART (Adamov and Pauling, 2023; Zink 

et al., 2017, 2012), ENVIRO-HIRLAM (Mahura et al., 2009), CMAQ-pollen (Efstathiou et al., 

2011), and the WRF-CHEM model (Skjøth et al., 2015) are among several transport models capable 

of modelling pollen dispersion. Recent studies have investigated the dispersion of several different 

pollen types, including Alnus (Prank et al., 2016), Ambrosia (Prank et al., 2013; Zink et al., 2012), 

Artemisia (Prank et al., 2016), Betula (Sofiev et al., 2015; Verstraeten et al., 2019; Werner et al., 

2021; Zhang et al., 2014), Poaceae (Sofiev et al., 2017) and Quercus (Zhang et al., 2014).  

 

1.4.4 Pollen calendar 

Despite the advantages of previously discussed modelling techniques, they require a great deal of 

site-specific data. This is not always available, especially in areas that do not have a long history of 

pollen monitoring, such as Ireland. Pollen calendars may offer a suitable alternative. Pollen calendars 

are the most rudimentary form of pollen forecasting tool and consists of a graphical representation 

of the average annual/seasonal trends of selected pollen types (Pecero-Casimiro et al., 2020). Pollen 

calendars have been used for decades and help to understand the distribution and concentration of 

varying pollen taxa at different locations (Elvira-Rendueles et al., 2019; Emberlin et al., 1990; 

Katotomichelakis et al., 2015; Lo et al., 2019; Markey et al., 2022a; Martínez-Bracero et al., 2015; 

O’Rourke, 1990; Pecero-Casimiro et al., 2020; Šikoparija et al., 2018; Werchan et al., 2018). It is 

recommended that a minimum of 5 years of data is used in construction, to fully capture reoccurring 

trends and account for annual fluctuations (Galán et al., 2017). Several different methods have been 

suggested for developing pollen calendars over the years (D’amato and Spieksma, 1992; Lo et al., 

2019; O’Rourke, 1990; Rojo et al., 2019; Werchan et al., 2018). Most studies tend to use methods 

based on Spieksma’s model, originally developed in 1992 (Rojo et al., 2019). The temporal 

resolution of these models tends to be in the order of several days which makes these models limited 

with regards to daily predictions (Šikoparija et al., 2018). 
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1.5 Chemical interactions of pollen grains 

Numerous studies have showcased the growing trend in allergic diseases in recent decades (D’Amato 

et al., 2015), particularly in urbanised areas (D’Amato et al., 2010; Nicolaou et al., 2005). The exact 

cause of this upward trend is still a subject of debate among immunologists, however, the effect of 

air pollution is among one of the leading hypotheses (Berger et al., 2020). A number of studies have 

already highlighted the direct effect pollution can have on human health alone (Bernstein et al., 2004; 

Haahtela et al., 2013). Pollutants can also exacerbate symptoms associated with allergen exposure. 

This is due to the direct effect pollutants have on epithelial cells, provoking oxidative stress that 

disrupts the protective barrier (Bernstein et al., 2004; Reinmuth-Selzle et al., 2017). This allows 

allergens to access immune cells more easily, leading to more acute allergic symptoms (Sénéchal et 

al., 2015). This has led to increased interest in the interactions between air pollutants and 

aeroallergens (mainly pollen) in urban environments, including several detailed reviews (Sedghy et 

al., 2018; Sénéchal et al., 2015; Visez et al., 2020). Exposure to anthropogenic pollution can induce 

numerous changes in pollen. To date, various studies have identified several physiochemical 

alterations, including modifications to pollen grain surfaces, elemental composition, allergen, and 

protein composition/content, as well as effects on the reproductive functions of pollen and plants 

(Sénéchal et al., 2015). 

 

1.5.1 Changes to pollen surface 

Pollution can damage the external surface of pollen grains, making them more fragile and causing 

breaks and ruptures to the cell wall (Ouyang et al., 2016; Rezanejad, 2009). This can increase allergen 

release and absorption by mucus membranes, allowing these allergen-containing components and 

SPPs to penetrate deeper into the respiratory tract than intact pollen grains. Studies have compared 

the outer surface of pollen (known as the exine) collected from polluted and unpolluted sites (Azzazy, 

2016; Ouyang et al., 2016; Rezanejad, 2009; Shahali et al., 2009a, 2009b), with several focussing on 

Cupressaceae pollen, which has a thinner exine. Pollen exposed to chemical pollution has been 

shown to increase the release of pollen cytoplasmic granules (PCGs), which can penetrate deep into 

the airways. Pollen, such as Phleum pratense, can spontaneously release allergen-containing PCGs, 

which can penetrate deep into the airways following exposure to NOx and O3 (Motta et al., 2006). 

Exposure to PM pollution can also result in the adhesion and accumulation of particles to 

the exine surface resulting in changes to its shape and appearance (Azzazy, 2016; Choël et al., 2022a, 

2022b, 2020; Guedes et al., 2009; Lu et al., 2014; Ribeiro et al., 2015; Visez et al., 2020).  Guedes 

et al., (2009) compared Chenopodium alba L. pollen samples collected from rural and urban sites in 

Portugal and found that the urban pollen was covered with a fine layer of diesel exhaust particles. 

These results were further corroborated by Amjad and Shafighi, (2012) who noted similar particle 

coverage on Chenopodium album  pollen exposed to traffic-related pollution. To further investigate 

the origin of such adsorbed particles, Ribeiro et al., (2015) examined particle matter adhered to the 
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surface of pollen using a field emission probe microanalyzer. The size of adhered particles on the 

pollen surface ranged from 0.1-2.8 um and were identified as Si, organic, SO, metal, oxides, and Cl 

rich particles.  

Laboratory studies have shown that pollen grains artificially exposed to gaseous (Cerceau-

Larrival et al., 1991; Cuinica et al., 2013; Pereira et al., 2021; Ribeiro et al., 2017)  and particulate 

pollution (Chehregani and Kouhkan, 2008; Choël et al., 2020; Lu et al., 2014) undergo changes to 

their exine surface. Another study found that pollen types like Platanus x acerifolia (Aiton) Willd., 

Betula pendula Roth, Corylus avellana L., Acer negundo L., and Quercus robur L. (Pereira et al., 

2021) showed different degrees of modification, indicating that while exposure to pollutants 

increases exine fragility, the magnitude of modification can vary depending on pollutant type and 

pollen species. Exine coverage was observed for Lilium (Chehregani and Kouhkan, 2008) and 

Platanus (Lu et al., 2014) pollen after exposure to PM, but co-current exposure to gaseous pollutants 

resulted in swelling of the pollen grain. 

 

1.5.2 Changes in elemental/chemical composition 

Pollutant exposure can affect the external surface of pollen grains and alter the elemental/chemical 

composition of the pollen. The compositional changes induced in pollen grains by exposure to 

pollutant has been investigated in literature for decades. In the early 1980’s Williams et al., (1983) 

conducted a laboratory study in which they exposed Ulmus pumila L., Quercus rubra L., Pinus taeda 

L., and Festuca elatior L. pollen to gaseous pollutants (NO2, SO2, and CO). Analysis of pollen 

extracts following exposure indicated changes in the composition of structural proteins. Since then a 

range of other studies have also investigated the compositional analysis of pollen extracts following 

exposure to different pollutants (Farah et al., 2020a; Kalbande et al., 2008; Okuyama et al., 2007; 

Rezanejad, 2009; Roshchina and Karnaukhov, 1999; Roshchina and Mel’nikova, 2001; Temizer et 

al., 2018; Wang et al., 2009; Zhu et al., 2018). 

Pollen's ability to bioaccumulate certain metals following heavy metal exposure has also 

been a topic of interest for years (Kalbande et al., 2008; Oleksyn et al., 1999; Temizer et al., 2018; 

Yousefi et al., 2011). Although current studies focus on pollinators and their products, an early study 

by Oleksyn et al., (1999) examined the changes in the elemental composition of pine pollen and 

needles collected near a phosphate fertilizer factory compared to pine pollen collected from a site 

devoid of acute air pollution. The study found that pollen from the polluted site had significantly 

higher concentrations of S, Mn, Al, Na, Cu, Ni, and Cd, and lower Zn. However, concentrations of 

P, K, Ca, Fe, Mg, and B remained relatively unchanged between the two sites. A more recent 

laboratory study exposed pollen to metal pollution to test their ability to bioaccumulate several trace 

metals (Kalbande et al., 2008). Pollen samples exposed to pollution had higher concentrations of Ca, 

Al, and Fe compared to the unexposed pollen. It was also possible to rank the pollen types based on 
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their ability to accumulate metal pollution. The different results from these two studies may indicate 

that certain pollen types might be more prone to accumulating certain metal pollutants. 

Exposure to chemical pollution has also been shown to increase the presence of ionic 

components originating from both particulate (NO3
−, SO4 2−, and NH4 +) and gaseous pollutants (NO2, 

SO2, and NH3) (Okuyama et al., 2007; Wang et al., 2009). It has been found that pollen grains from 

urban areas have higher concentrations of such compounds and anthropogenic PM, while those from 

unpolluted areas have lower concentrations (Okuyama et al., 2007; Wang et al., 2009). Acid gases 

can also acidify the surface of pollen grains and dissolve into the inner portion of the pollen grain. 

Exposure experiments to nitric acid gas suggest that the concentration of the gas adsorbed by pollen 

outweighs the adsorption capabilities of other natural particles like humic acid or sand (Okuyama et 

al., 2007).  

Exposure to air pollution can alter the composition of certain pollen components and induce 

a defence mechanism in pollinating plants through increased production of secondary metabolites. 

Flavonoid compounds, which are phenolic compounds found in plants, play a crucial role in various 

processes such as plant growth, fertility, pollen germination, cell cycle regulation, and protection 

against UV radiation. These compounds also indicate how plants respond to environmental stress, 

such as lack of nutrients, UV radiation, and air pollution. Several studies have highlighted the 

increased production of flavonoid compounds in plants and pollen exposed to pollution in urban 

areas, mainly SO2, NO2, CO and PM (Dixon and Paiva, 1995; Giertych and Karolewski, 1993; Nandi 

et al., 1990; Rezanejad, 2012, 2009). In two studies by Rezanejad (2012, 2009), pollen from polluted 

areas was found to accumulate significantly higher concentrations of flavonoids than their unpolluted 

counterparts. This increase in flavonoid production could be due to the importance of flavonoid 

content for successful pollination, specifically for pollen germination and pollen tube growth, which 

are inhibited by air pollution exposure (Rezanejad, 2007; Rezanejad et al., 2003). To limit potential 

pollen abnormalities introduced by air pollutants, plants and pollen exposed to reactive oxygen 

species (ROS) can produce higher amounts of flavonoids, which have been shown to scavenge ROS 

(Bors et al., 1994). 

Research on the allergenic potential of different pollen taxa has historically focused on 

protein and allergens. However, in the last few years, research has expanded to include adjuvant 

mediators including lipids (Dahl, 2018; Farah et al., 2020a, 2020b; Gilles et al., 2009; Naas et al., 

2016; Roldán et al., 2019; Smith et al., 1992; Traidl-Hoffmann et al., 2002; Zhu et al., 2018). Studies 

have shown that exposure to anthropogenic pollution can alter these lipids. Naas et al., (2016) 

investigated the changes in the coating of Pinus halepensis Mill. pollen when exposed to ozone, 

revealing an increase in dicarboxylic acids, short-chain fatty acids, and aldehydes after extraction in 

organic solvent. Similarly, Betula pendula (Zhu et al., 2018) and Phleum pratense L. (Farah et al., 

2020b) pollen exposed to ozone showed notable changes in their lipid fractions, including the 

consumption of alkenes and formation of aldehydes, nonanoic acid, and octadecanoic acid (Zhu et 
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al., 2018). These findings highlight the chemical changes induced in the lipid fraction of different 

pollen upon exposure to ozone pollution, even for very short durations. Further study is needed to 

determine whether these modified lipid fractions also undergo changes in their ability to act as 

inflammatory/allergenic stimulants. 

Previous studies have also used techniques to analyse the "intact" pollen grain. Techniques 

such as SEM-EDX (Chehregani and Kouhkan, 2008; Heredia Rivera and Gerardo Rodriguez, 2016; 

Okuyama et al., 2007; Ribeiro et al., 2015), electron probe microanalyzer (Duque et al., 2013; 

Guimarães et al., 2012; Ribeiro et al., 2015), and vibrational spectroscopic methods such as Raman 

and Infrared spectroscopy (Depciuch et al., 2017; Guedes et al., 2009; Kanter et al., 2013; Pereira et 

al., 2021; Zhao et al., 2016) have been used to examine compositional changes. Almost all methods 

were able to note changes induced by differences in pollen type, environment and/or anthropogenic 

exposure. In the case of Corylus pollen from unpolluted and urbanised locations a notable 

increase/changes were observed in protein content from the urban site (Depciuch et al., 2017), using 

vibrational spectroscopy. These changes can lead to more potent allergenic proteins and worsen 

allergic responses. 

 

1.5.3 Allergen modification 

The main concern with exposing pollen to pollution is whether it can enhance the allergenicity of the 

pollen. However, the results remain inconsistent. Some studies have found that exposure to pollutants 

increases the allergenicity of pollen through different mechanisms (Aina et al., 2010; Armentia et al., 

2002; Chehregani and Kouhkan, 2008; Cortegano et al., 2004; Cuinica et al., 2015, 2014; Ferreira et 

al., 2016; Ghiani et al., 2012; Lu et al., 2014; Motta et al., 2006; Sedghy et al., 2017). Many 

investigations have demonstrated increased expression of particular pollen-specific allergens such as 

in Lolium perenne L. (Lol p 5) (Armentia et al., 2002), Cupressus arizonica Greene (Cup a 3) 

(Cortegano et al., 2004), Betula pendula, Ostrya carpinifolia Scop. and Carpinus betulus L. (Bet v 

1) (Cuinica et al., 2015, 2014) pollen. Conversely, some studies have also concluded the opposite 

findings (Helander et al., 1997; Pasqualini et al., 2011; Rezanejad, 2009; Ribeiro et al., 2014; 

Rogerieux et al., 2007; Shahali et al., 2009b), highlighting the potentially complex relationship 

between pollen and pollutants. For example, a study by Helander et al., (1997) found that distance 

from the pollution source did not affect the levels of allergens within the pollen. A similar decrease 

in allergen expression and IgE recognition for grass pollen allergens was also observed in a 

laboratory study examining modifications of allergens following O3, NO2, and SO2 exposure 

(Rogerieux et al., 2007). 

Interestingly, an investigation by Ribeiro et al., (2014) noted increased IgE reactivity for O3 

exposed Acer negundo and Quercus robur protein but the opposite was observed for Platanus x 

acerifolia. Such conflicting studies suggest that the modifications seen in pollen allergenicity may 
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be species dependent. Overall, while these findings suggest that exposure to pollutants can enhance 

the allergenic potential of pollen proteins, they also highlight the need for further research and 

understanding of the complex relationship between pollen and pollutants. 

 

1.5.4 Changes in reproductive function 

Pollen exposure to various forms of pollution can significantly impact plant and pollen functions, 

particularly reproductive functions. Pollen viability and germination can be altered by pollution, with 

various plant species experiencing these effects (Chehregani et al., 2011; Cuinica et al., 2014; Keller 

and Beda, 1984; Mohsenzadeh et al., 2011; Ouyang et al., 2016; Wolters and Martens, 1987; Yousefi 

et al., 2011). Studies have shown that pollen viability is typically inversely proportional to pollution 

exposure, with conflicting results seen for some pollen types (Iannotti et al., 2000; Kaur et al., 2016). 

For instance, in a study by Iannotti et al., (2000), Parietaria diffusa Mert. & W.D.J.Koch pollen 

showed higher viability when collected from polluted areas, while Quercus ilex L. pollen showed no 

difference in viability between sites. Another study by Kaur et al., (2016) again found that pollen 

viability was inversely proportional to the degree of traffic pollution. This suggests that the viability 

implications following pollen exposure could be plant dependent. Overall, studies on pollen exposed 

to pollution have shown that atmospheric pollution affects the physical, chemical, and biological 

properties of pollen (Sénéchal et al., 2015). Although the degree of modification varies depending 

on pollution and pollen type, exposure has been shown to induce several harmful effects on pollen. 

 

1.6 Aims and Objectives 

The aims of this project are threefold: 

(i) To determine the concentration and species of ambient pollen at several Irish locations 

via novel real-time and traditional instrumentation. 

(ii) Development of pollen models for Ireland using collected data, with a particular focus 

on potentially allergenic pollen types. 

(iii) Investigate the impact that anthropogenic/environmental conditions have on pollen 

characteristics and composition.  

 

The research objectives are as follows: 

• Maintain the pollen monitoring network in Ireland (Hirst) for the duration of the project, 

primarily at the Dublin site. Thus, seasonal ambient concentrations of pollen will be 

determined, and a pollen calendar developed (seasonality of pollen).  
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• Enhance the traditional network via the use of novel spectroscopic instrumentation such as 

the WIBS-NEO. 

• Create several preliminary pollen forecast models for Dublin – focusing on Poaceae and 

Betula pollen.  

• Determine the effect anthropogenic pollution/environmental conditions have on the 

surface/chemical composition of pollen using various spectroscopic methods. 
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Chapter 2: Methods & Instrumentation 
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This chapter is composed of a series of general introductions regarding the specific instrumentation 

used throughout this project, as well as a summary of operating procedures and theoretical principles. 

The traditional volumetric Hirst method was used to monitor ambient pollen concentrations as well 

to act as a standard method to compare real-time devices to. The WIBS-NEO device was deployed 

to evaluate the possibility of its use for the real-time detection of pollen. Infrared spectroscopy and 

fluorescent confocal microscopy were employed to study the chemical composition of pollen grain 

surfaces of differing pollen taxa as well as changes induced as a result of varying exposure scenarios.   

 

2.1 Traditional volumetric method – pollen sampling 

2.1.1 Irish pollen network - sampling sites 

The majority of work presented in this thesis is largely dedicated to sampling conducted at the Dublin 

sampling site(s) however, as of 2023 there are currently 3 active pollen sampling sites located across 

Ireland. These sites are located in Dublin, Cork and Sligo and are illustrated graphically in Figure 

2.1 below. Sampling was conducted at a site in Carlow from 2018-2021 (also shown) but was then 

discontinued due to operational issues. These sampling sites were originally established as part of 

the EPA-funded POMMEL and FONTANA projects (O’Connor et al., 2022b, 2022a). Sampling is 

carried out in accordance with requirements/standards previously established by the EAN (Galán et 

al., 2014, 2007). Monitoring efforts at sites in Dublin have been operating continuously since 2017. 

Originally, the Dublin site was located at the former Kevin Street campus of TU Dublin. However, 

following campus closure and relocation, the sampling position was moved to the Met Éireann 

facilities in 2022. The sampling station at Cork (University College Cork) also commenced operation 

in 2018, however, this site has experienced several periods of interruption to sampling. In addition 

to these existing sampling sites, a new site was established in Sligo in March 2021. All established 

sampling stations in Ireland currently use the volumetric suction sampler, initially designed by Hirst, 

(1952).  



 

61 

 

 

Figure 2.1: Irish pollen monitoring network (blue=current sites, red=retired sites) 

 

2.1.2 Hirst operation 

There are two Hirst-type samplers commercially available, these include the Lanzoni and Burkard 7-

day samplers. An example of the Hirst-Lanzoni instrument used at the Dublin site is displayed below 

(Figure 2.2).  

 

Figure 2.2: Hirst sampler deployed at Dublin sampling site 

 

 

 
 

Irish Pollen Monitoring Network 

Stations in Operation as of 2021 
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The Hirst sampler operates on the basis of volumetric impaction and is composed of three 

main instrumental components: an impact unit, a wind vane and a vacuum pump (Galán et al., 2007). 

The different components can be seen in Figure 2.3.  

 

Figure 2.3: Schematic of (A) Hirst-Volumetric sampler and (B) Impact Unit, adapted from (Galán et 

al., 2007)  

The impact unit is comprised of the sample inlet (14 x 2 mm) and sample drum. The drum 

operates using a clockwork mechanism which rotates at a rate of 2 mm per hour allowing for the 

determination of both hourly/bi-hourly and daily data. Particles entering the sampler are impacted 

onto a suitable substrate such as a silicone-coated tape (obtained from Lanzoni). The tape is attached 

to the outer circumference of the drum, which can later be removed and prepared accordingly for 

microscopic analysis. The second component of the Hirst system is the wind vane. The addition of a 

wind vane to the outer metal casing of the Hirst ensures that the sample inlet is always facing the 

prevailing wind direction to efficiently capture airborne particles (Galán et al., 2007). The final 

component of the Hirst instrument is the vacuum pump which is used to regulate the air flow entering 

the sampler. The flow rate of the Hirst is set to 10 L/min which mimics the rate of the human 

respiratory system.  

 

2.1.3 Establishing suitable site - requirements  

When choosing sampling sites and installing the samplers for monitoring there are several 

requirements that need to be met (Galán et al., 2007): 

1. The sampler should be positioned on a flat, easily accessible surface. 
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2. The sampler should be positioned at a suitable location such that adjacent buildings etc. do 

not hinder air flow. In Dublin and Cork, this meant positioning the Hirst samplers at 

appropriate sampling points on roof, whereas in Carlow and Sligo, samplers were positioned 

atop constructed platforms due to the lack of surrounding infrastructure.  

3. The sampler itself should be elevated accordingly using a small tripod which is used to 

reduce the impact of air turbulence. 

4. Avoid placing the sampler in the direct vicinity of known sources of biological and non-

biological particulate matter. In the case of known sources of pollen, this could result in the 

over-representation of some pollen types.  

5. The sampling location must have access to electrical sockets as the vacuum pump requires a 

constant supply of electricity to function 

6. Once a suitable location is selected, the sampler should be anchored securely in place  

 

2.1.4 Preparing sampling drum 

Apparatus Required: 

- Hirst sample drum 

- Drum case 

- Lanzoni silicone tape 

- Tweezers 

- Double sided tape 

- Flowmeter 

- Turning key for Hirst clock mechanism 

 

The initial step in preparing the Hirst samplers is to prepare the internal drum containing the silicone 

tape substrate, on which the ambient pollen/fungal spores will be impacted upon. The internal drum 

is removable and can function continuously for one week. The drums are marked with several lines 

indicating the start/end of the sampling period and how to position the drum inside the Hirst’s inner 

cavity, illustrated below. 
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Figure 2.4: Hirst drum 

The Lanzoni silicone tape is secured to the outside of the drum with a small piece of double-sided 

sticky tape placed between the black lines (Figure 2.5). Tweezers are used to avoid contaminating 

the tape or damaging the silicone coating. The two ends of the tape should meet at the middle black 

line without any gaps as shown below. 

 

 Figure 2.5: Hirst Drum: Tape Positioning 
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Once the drum has been prepared it is important to place it into a drum case, to avoid any 

possible contamination when transporting the drum to the Hirst device. When changing/installing 

the Hirst drum, there is a latch on the outer casing of the Hirst that prevents the wind vane from 

moving/rotating during set up. Once the sampler is secured, the locking arm of the sampler can be 

rotated 180° and the head of the Hirst can then be removed from inside the impact unit. This contains 

the clock mechanism and drum (from the previous week). If there is a drum already attached to the 

clock mechanism it is removed and placed in a drum case. It is important that prepared/collected 

drums are only handled by the outer knuckled rim, as shown in Figure 2.4, to avoid any 

contamination, sample removal or dislodging the secured tape.  

The new (unexposed) drum can then be connected to the clockwork mechanism shown in 

Figure 2.6. When positioning the drum on the clock within the head of the Hirst, it is important that 

the red line on the drum is lined up with the red line or metal arrow of the Hirst since this marks the 

sequence of sample collection over the whole sampling period. The clock is then wound manually in 

an anti-clockwise direction using a turning key until it cannot be turned any further (without applying 

too much force). Once wound appropriately, the clock will be heard ticking and should last the full 

7-day duration until the next drum changing.  

 

Figure 2.6: Correct positioning of the drum, and clockwork mechanism. 

The head containing the new drum and wound clock is then placed inside the internal Hirst 

casing. A wooden guide is attached to the inside of the Hirst to ensure correct positioning. Once 
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placed correctly inside the hirst the locking arm can be repositioned to lock the head in place. While 

the wind vane is still locked in place, the sampling orifice is examined and cleaned (if needed) and 

the flow rate is checked using a flowmeter and adjusted if required (to 10 L/min) using the bolt 

positioned on the outside of the Hirst in Lanzoni model. 

The wind vane can then be released. This method is repeated weekly, ideally at the same hour (±20 

mins). The used drum (collected) containing the sampling tape, can then be prepared for microscopic 

analysis.  

 

2.1.5 Slide preparation 

Apparatus Required: 

- Perspex mounting ruler 

- Scalpel 

- Tweezers 

- Microscope slides 

- Coverslips 

- Labels 

- Fine tip permanent marker/pen 

- Pasteur pipette 

- Wash bottle 

 

Reagents Required: 

- Prepared slide media (see the following section for preparation instructions) 

- Distilled water 

- Ethanol 

- Clear nail varnish 

 

Label each microscope slide to be prepared with the corresponding date and time using a permanent 

marker. The drum containing exposed tape is first removed from the drum case. Using tweezers 

and/or dissecting needle the end of the tape attached to the double-sided tape is lifted, making sure 

to only handle the edge with tweezers. The tape is carefully removed from the drum and transferred 

to the Perspex cutting ruler. A holder can be used to hold the drum when doing this. A few drops of 
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water are placed on the Perspex ruler prior to using a Pasteur pipette or wash bottle; this allows for 

suction between the tape and ruler when cut, making the process easier.  

 

Figure 2.7: Experimental set-up for preparing slides 

The Perspex ruler, shown in Figure 2.8, makes it possible to cut the tape into daily sections. 

The start of sampling it lined up with the first notch. A sharp scalpel is then used to cut the tape at 

each of the segments (48 mm apart) – signifying a 24-hour period. Each segment is transferred to the 

corresponding labelled slide using tweezers.  

 

Figure 2.8: Schematic of tape over Perspex ruler showing daily segments  

The slides are then mounted using a glycerine jelly media containing fuchsin stain, the 

preparation of which is described in the following section. The media is heated on a heating mantle 

until the consistency is sufficiently thin (glycerine gelatine is solid at room temperature). A Pasteur 

pipette is then used to apply thin beads of the colourant directly onto the tape (Figure 2.9A). A 

coverslip is then quickly applied, taking care to spread the media evenly by applying gentle pressure 

to the coverslip. Any air bubbles should be removed using gentle pressure to the coverslip. The slides 

are then placed upside-down to dry on some tissue paper. This is done to absorb any excess gelatine.  

 

 

Labelled slides 

Perspex ruler 

Sample drum 
Drum holder 
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Figure 2.9: (A) Colorant media addition to coverslip, and (B) Final prepared slides 

Once dry, any excess gelatine that has not been removed is done using a scalpel and the 

slides are cleaned using an ethanol solution. Cleaning the slides with ethanol will also remove labels 

made with a permanent marker so new sticker labels containing details of the sample date, time and 

location are added to the slides (Figure 2.9B). Transparent nail varnish is then used to seal along the 

edges of the coverslip. Once dry the prepared slides can be stored in a slide box until counted. 

 

2.1.6 Colourant preparation 

Apparatus Required: 

- 250 ml beaker 

- Stirring rod 

- Spatula 

 

Reagents Required: 

- 50 ml Glycerine 

- 7 g Gelatine 

- Fuchsin 
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- 42 ml Distilled water 

 

Generally, the mounting media is made from a fuchsin containing glycerine gelatine. Powdered 

reagents (Gelatine) are weighed accurately using an electronic balance and liquid reagents (Glycerine 

and water) are measured to appropriate volumes using graduated cylinders. Suggested 

masses/volumes are provided in the reagents section above. 

Gelatine is first dissolved in warm water in a beaker using a stirring rod. Glycerine is then 

added and incorporated into the solution by stirring. A small amount of fuchsin is added and mixed 

to colour the media. The media should be a distinct pink colour but not too dark. Adding too much 

fuchsin can make the media too dark and make pollen identification more challenging. Fuchsin is 

added as it acts as a selective stain for plant material and aids in pollen observation and identification 

by staining pollen grains a notable pink colour. The mounting media is then stored in a sealed vessel 

or beaker, that can be heated for subsequent use of media. The media is solid when cooled and should 

be heated until a liquefied state is reached using a heating mantle before slide preparation. After use 

the media can be allowed to cool before storing. 

 

2.1.7 Sample analysis 

Prepared slides are analysed via light microscopy at a magnification of 400X (X40 objective lens). 

According to the EAN guidelines, at least 10% of the total slide surface (Galán et al., 2014) is 

required to be counted, since counting the entire slide surface would be too time-consuming. As such 

the utilised counting method is based on the procedure used by the Spanish Aerobiology Network 

and consists of counting 4 horizontal transects. This provides a subsample of approximately 12-13% 

of the total surface area. Each transect is marked with a permanent marker as shown in Figure 2.10. 

 

Figure 2.10: Sample Slide 

 

4 Transects to be counted 

Slide label (Date, Time and Location Identifier) 

Hourly template 
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During the examination of each transect, the number and specific identity of each pollen is 

recorded. Pollen can be identified to various taxonomic levels based on their physical features such 

as size, shape, type of pores, number of pores, surface features/texture, time of year etc. To record 

hourly pollen values, a custom clear plastic template is used which is divided into 24 X 2 mm 

sections. The template is attached to the back of the slide using sticky tape. The pollen per hour can 

now be recorded. Hourly results are recorded using an electronic form (Figure 2.11) which can be 

used co-currently during microscopic analysis and identification.  

Figure 2.11: Pollen Counting Template 

Once all data for a single transect has been recorded it can be logged as the FIRST, 

SECOND, THIRD or FORTH sweep (Figure 2.11) data is converted into a combined template for 

all 4 transects. Data can then be exported using the export function within the macro file. Hourly 

results can be summed to get daily pollen counts for each pollen type identified. Daily pollen counts 

are expressed per cubic metre of air sampled.  To convert between counts daily observed counts and 

daily counts per cubic meter, the observed counts are multiplied by a calculated correction factor that 

considers both the volume sampled and the size of the field of vision observed through the 

microscope. The correction factor will vary depending on the objective lens and microscope used, 

an example calculation is provided below. The correction factor is applied automatically to data using 

a generated R script – the same script is used to determine hourly and daily datasets. 

 

An example calculation is provided below for a field diameter of 0.55 mm: 

Air sampling rate: 10 L/min = 600 L/hour = 14400 L/day = 14.4 m3  

The mean diameter of the microscope field of vision: 0.55 mm  

 

State which 
transect (of 4) has 
been counted 
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Area of one horizontal sweep = 48 mm x 0.55 mm = 26.4 mm2  

Surface analysed = 26.4 x 4 sweeps = 105.6 mm2  

Total surface sampled = 48 mm length x 14 mm width = 672 mm2 

Particle content per cubic metre of air = (672 mm2/105.6 mm2) x (1/14.4 m3) x N  

N = number of pollen grains in four sweeps  

Particle content per cubic metre of air = N x 0.442 

 

2.2 Real-time WIBS method – bioaerosol sampling  

The WIBS is a single aerosol particle fluorescence monitor that uses LIF to detect fluorescent aerosol 

particles (FAPs). The original instrument was invented by Professor Paul Kaye and co-workers at 

the University of Hertfordshire. It is now commercially available from Droplet Measurement 

Technologies (DMT) and is one of the most widely used instruments for monitoring PBAP in real 

time. It offers detailed information on the size and asymmetry (shape) of individual fluorescent and 

non-fluorescent particles allowing for the potential characterisation of bioaerosols. Several 

publications have extensively discussed the internal works of the WIBS instrument while thoroughly 

discussing the underpinning principles of its operation and potential application (Healy et al., 2012b, 

2012a; Perring et al., 2015; Savage et al., 2017), a summary of which is provided below. The work 

presented in this thesis was acquired using the WIBS-NEO model (Figure 2.12). 

 

Figure 2.12: WIBS-NEO (DMT, 2021) 

 

2.2.1 WIBS operation 

The WIBS utilises a central optical chamber to characterise aerosols entering the instrument. The 

central optical chamber (shown in Figure 2.13) can be subdivided into 4 separate components (DMT, 

2020): 

1. A 635 nm laser used for particle sizing and shape detection 
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2. A quadrant photomultiplier tube used to detect forward light scatter for shape determination 

3. Two pulsed Xenon lamps set to emit UV light at 280 nm and 370 nm and 

4. Two detector channels: 

• FL1 channel which detects particle fluorescence in the range of 310-400 nm 

• FL2 channel which detects particle fluorescence in the range of 420-650 nm, particle 

count and particle size 

.  

 

Figure 2.13: Central Optical Chamber of WIBS Instrument (DMT, 2021) 

When an aerosol particle is drawn into the central optical chamber it first passes through the 

635 nm continuous diode laser. When the particle is irradiated by the laser, elastic light scatter is 

produced (forward and side scatter). This side scatter is detected and used to count and size the 

incoming particle. The process of determining particle size employs a calibration methodology that 

relies on a curve, assuming the particles possess a spherical shape and exhibit a particular refractive 

index as per Mie theory (Healy et al., 2012b). Two high numerical-aperture mirrors are used to collect 

the size scattered light, as the light passes through the aperture it is focussed onto a dichroic beam-

splitter before detection using a Photomultiplier tube (PMT) at 90° from the laser beam (FL2 channel) 

(DMT, 2020). The detected light is converted into an electrical signal which is used to size and count 

the particles. Size is determined by the magnitude of the electrical pulse detected (Savage et al., 

2017). Forward-scattered laser light is used to provide information on particle shape. Forward scatter 

is detected by a quadrant PMT which is used to calculate the asymmetry factor (AF) of each particle 

(Perring et al., 2015; Savage et al., 2017). The equation used to calculate AF is shown below 

(equation 2.1) (Gabey et al., 2010; Savage et al., 2017). 
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Equation 2.1: AF Calculation 

 

Where: 

k= instrument defined constant 

E= mean intensity measured over the entire PMT  

Ei= Ei is the intensity measured at the ith quadrant (Gabey et al., 2010; Savage et al., 2017) 

A particle that exhibits an AF value of 0 would be considered a perfect sphere, whereas a 

particle with a larger AF value (greater than 0 and less than 100) would be rod-like in shape (Gabey 

et al., 2010; Kaye et al., 2007; Savage et al., 2017) 

This scatter signal then sequentially triggers the two xenon flashlamps filtered to emit light at 

280 nm and 370 nm, respectively. Fluorescence emitted by the incident particle following each 

excitation wavelength is detected co-currently using two PMT detectors. The first detector (FL1) is 

filtered to detect fluorescence in the range of 310-400 nm whereas the second detector (FL2) is 

filtered to detect fluorescence in the range of 420-650 nm. In total, three pieces of fluorescent 

information can be inferred for each particle: 

- Fluorescence detected by FL1 PMT following excitation at 280 nm and/or 

- Fluorescence detected by FL2 PMT following excitation at 280 nm and/or 

- Fluorescence detected by FL2 PMT following excitation at 370 nm 

The excitation of the 370 nm lamp saturates the FL1 PMT, hence no fluorescence can be detected 

in FL1 at excitation at 370 nm. Therefore, the WIBS provides details on the size, shape and 

fluorescent properties of particles allowing for differentiation and determination of different 

bioaerosol classes.  

 

2.2.2 Data analysis 

All data analysis steps were carried out using scripts written and run in R studio. Particles are 

considered to be fluorescent if the emission intensity exceeds the determined baseline threshold in 

any one of the 3 fluorescent channels (FL1, FL2 or FL3). The fluorescent baseline is determined by 

measuring the observed fluorescence in each channel when the WIBS is fired when the central optical 

chamber is devoid of any particles. This is known as “forced trigger” since the xenon lamps are not 
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triggered by the presence of and resulting light scatter of a particle. During the chosen Dublin 

campaign covered within this thesis (07/08/2019 – 16/09/2019 ), force trigger values were recorded 

daily to ensure no extreme deviations were experienced. The baseline in each channel is calculated 

as the average fluorescence during force trigger mode plus 3 standard deviations (3σ). However, this 

can occasionally be raised to 6σ (mean + 6 standard deviations) and 9σ (mean + 9 standard 

deviations). Upon determination of the fluorescent fraction, the particles can be further categorised 

utilising the Perring nomenclature (Perring et al., 2015).  This annotation system was developed 

whereby particle fluorescence is categorised into one of seven types, depending on the three forms 

of fluorescence signals detected by the WIBS, shown in Figure 2.14 (Perring et al., 2015).  

 

 

Figure 2.14: WIBS Particle Classification (inspired by Savage et al., 2017) 

These categories consider each channel individually (FL1, FL2 and FL3) but also include all 

the possible combinations as shown in Table 2.1. Such cataloguing nomenclature allows for a more 

individual classification of each particle and a more detailed understanding of ambient particles' 

fluorescent characteristics.  
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Table 2.1: WIBS channel annotation classifications 

Channel 
Excitation 

(nm) 
Emission (nm) 

A 280 310-400 

B 280 420-650 

C 370 420-650 

AB 280 

310-400 

420-650 

AC 

280 310-400 

370 420-650 

BC 

280 

420-650 

370 

ABC 

280 

310-400 

420-650 

370 420-650 

 

This system denotes particles that fluoresce in only one channel (classified as A, B or C ), 

any of two channels (classified as AB, AC or BC) or all channels (classified as ABC) (Perring et al., 

2015). Using this method of classification, it is hoped that more complex environments can be better 

characterised by reference to the many different types of FAPs which are observed.  

Details regarding any additional specific data analytics used during the included WIBS 

campaign are further covered in the designated chapter methodology section (Chapter 5). 

 

2.3 Pollen sample collection  

Reagents/Apparatus Required: 

- Paper collection bag 

- Scissors 

- Sample tray 

- Sieves 
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- Sample vials 

 

To carry out several of the chemical analyses during this project, both purchased and collected pollen 

samples were required. Pollen samples sourced from around Dublin were initially collected into 

paper bags before catkins (for tree pollen) were dried slightly and then sieved to remove pollen. 

Samples were then stored in clean sample tubes. In the case of Urtica dioica L. and Poaceae pollen, 

samples were collected and transported to the lab where they were supplied with water and enclosed 

in individual storage chambers/boxes. Once pollen was released from the anthers, samples were 

collected and transferred to sample vials. All pollen samples were refrigerated at 4°C prior to 

analysis. A more detailed step-by-step guide (for tree pollen) with photographs is summarised below. 

1. Ripe catkins are sampled using scissors/cutting tools from the desired tree (Figure 2.15) 

 

Figure 2.15: (A) Sampled Betula trees and (B) catkins 

2. Store collected catkins in a paper bag 

3. Once in the lab, remove the catkins from the sample bag and place them on a drying tray  

4. Leave the collected catkins in a clean fume hood (at low flow otherwise the pollen will be 

disrupted) for several hours 

5. Once dried, pollen can be seen deposited at the bottom of the tray (Figure 2.16). Steps 4 and 

5 are only required if catkins do not easily release pollen.  
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Figure 2.16: Catkin having shed pollen after drying 

  

6. The catkins and pollen can then be sieved (using increasingly smaller mesh size) to aid in 

separating the pollen from the catkin and other plant materials (Figure 2.17) 

 

Figure 2.17: Sieved pollen sample 

7. The sieved pollen can then be transferred to a clean & labelled sample vial and refrigerated 

until its use 
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2.4 IR analysis of pollen samples 

Instrument: 

- Nicolet summit FTIR spectrometer by Thermo Scientific 

 

Reagents/Apparatus Required: 

- Pollen samples 

- Spatula 

- Isopropyl alcohol 

 

2.4.1 Acquisition of IR spectra for individual pollen samples 

Fourier transform infrared spectroscopy (IR) has been used as a non-destructive method to 

successfully differentiate between different pollen samples (Dell’Anna et al., 2009; Gottardini et al., 

2007; Mularczyk-Oliwa et al., 2012; Pappas et al., 2003; Zimmermann et al., 2015a, 2015b). IR 

analysis of intact pollen grains provides detailed information about the chemical structure of the 

pollen grain. IR analysis operates on the basis that different chemical functional groups undergo 

vibration (bending or stretching) when exposed to certain wavelengths of light. Different chemical 

bonds and functional groups within the molecules vibrate at distinct frequencies, resulting in unique 

absorption patterns which can be detected by measuring the absorption of IR radiation as it interacts 

with a sample. Attenuated Total Reflection (ATR) spectral acquisition was used in conjunction with 

IR spectroscopy. ATR is based on total internal reflection which means when the sample is in contact 

with the crystal surface, the IR light and sample interact at the point where the IR light is totally 

internally reflected as a result of the different refractive indices of the crystal and sample. However, 

because a portion of the IR light will be absorbed by the sample, the emerging reflected light will be 

slightly reduced or attenuated.  

 IR spectra were acquired using an ATR IR spectrometer (Figure 2.18). A total of 32 scans 

between the spectral ranges of 400–4000 cm-1 with a spectral resolution of 4 cm-1 were generated for 

each sample using a similar method to Baʇcioʇlu, Zimmermann and Kohler, 2015. Background 

spectra and contamination checks were acquired first, before sample measurements. A small amount 

(half a spatula tip) of each sample was then placed upon the ATR crystal and the pressure tip was 

engaged. Three replicate measurements were obtained for each sample. The crystal surface and 

pressure tip were cleaned after every sample using isopropyl alcohol until a clear background was 

obtained. These tests operated as a quality control check between samples to ensure no carryover or 

contamination from previous samples. 
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Figure 2.18: IR-ATR Instrument set-up 

 

2.4.2 Spectral processing and data analysis  

“Fingerprint” spectral regions were selected for data analysis (1900-800 cm-1) of IR spectra. Prior to 

this, these spectra were pre-processed using two methods: Savitzky–Golay and extended 

multiplicative signal correction (EMSC). Both non-derivatised and second-derivative spectra were 

used. Initially, spectra were smoothed using the Savitzky–Golay algorithm (Zimmermann and 

Kohler, 2013) using a polynomial of degree two and a window size of 11 points for non-derivatised 

spectra (Kenđel and Zimmermann, 2020) and a window size of 15 for second derivative spectra 

(Zimmermann, 2018). The SG smoothing algorithm involves fitting a polynomial function to the 

data within a moving window. Therefore, the window size parameter refers to the number of 

neighbouring data points considered when doing this. Larger window sizes result in more extensive 

smoothing or filtering, while smaller window sizes preserve finer details but might not remove as 

much noise.  Following this, the resulting spectra were normalised using EMSC (Guo et al., 2018).  

The Savitzky–Golay algorithm is initially used to enhance spectral features while EMSC is used to 

normalise spectra, enhance variations between spectra and apply a baseline correction (Zimmermann, 

2018; Zimmermann and Kohler, 2013). An example of Savitzky–Golay algorithm EMSC analysis 
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and resulting spectra (using recorded spectral data obtained during this project) are highlighted in 

Figures 2.19 and 2.20. All processing and data analytic steps were carried out using a self-made R 

script and the EMSC package (Hovde, 2021) 

 

Figure 2.19: Example 2nd derivatization using Savitzky–Golay algorithm using multiple pollen 

samples collected from around Dublin and purchased from Bonapol 
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Figure 2.20: Example EMSC processing of spectra using multiple pollen samples collected from 

around Dublin and purchased from Bonapol 

 

2.5 Confocal fluorescent microscopic analysis of pollen samples 

Instrument: 

Leica TCS SP8 SMD confocal microscope 

Reagents/Apparatus Required: 

- Pollen samples 
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- Spatula 

- Ibidi 8-well sample holder 

- Immersion oil 

 

2.5.1 Sample analysis and image recognition 

Confocal microscopy utilises the principle of fluorescence to record images where brightness and 

contrast are directly proportional to the fluorescence detected for that sample. This involves the 

utilisation of laser light sent through the objective lens of a conventional light microscope to excite 

a specimen within a restricted focal plane. The pinhole (confocal aperture) effectively filters out any 

light emissions originating from planes that are not in focus (Practices, 2020). Enhancing the image 

quality beyond the capabilities of conventional fluorescence microscopy. Emission photons are then 

recorded by the detector, which can include PMTs or hybrid detectors. In this case, second-generation 

hybrid detectors were used (often termed as HyD detectors). Hybrid detectors can be characterised 

as a combination of conventional PMTs with the addition of an avalanche photodiode, which is a 

semiconductor device known for its high sensitivity (Practices, 2020). This results in several 

advantages over traditional detectors, such as possessing a wide dynamic range, minimal noise levels, 

and high operational speeds (Practices, 2020). Confocal microscopy has been used several times to 

study and compare pollen grain fluorescence (Castro et al., 2010; Roshchina, 2003; Roshchina et al., 

2015, 2009, 2022). Although spectral data can be achieved through confocal microscopy and has 

been shown previously for pollen analysis (Roshchina et al., 2015), this was not possible with the 

available setup and software. 
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Figure 2.21: Confocal Microscope set-up 

Pollen samples were placed into a well within an Ibidi 8-well sample slide (Figure 2.22) 

using a clean spatula. Following this, immersion oil (refractive index of 1.518) was placed on the 

coverslip side of the sample holder. The sample slide was then positioned within the stage of the 

microscope and the X40 oil immersion objective was used. Samples are viewed and focused initially 

using a white-light source at the microscope section of the set-up. Pollen samples are then analysed 

using the fluorescence portion of the confocal microscope, operated remotely from the computer unit 

and Leica LASX software. Fluorescent image analysis was conducted using a 405nm excitation laser 

and detected between 410-750 nm using a HyD detector. Images were recorded using “counting” 

mode which refers to the direct measurement of the emitted photons that have undergone 

fluorescence and are expressed as pixel intensity. Any remaining acquisition features such as pinhole, 

objective magnification and laser intensity were kept constant between samples to enable 

comparisons of the recorded autofluorescence.  
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Figure 2.22: Ibidi 8-well sample slide (containing pollen and ash samples) 

In each case, Z-stack images were captured for a sample and later transformed into 

maximum-intensity projections (single plane image). The z-stack image collection is a technique 

used to capture a series of two-dimensional images at different focal planes along the Z-axis (vertical 

axis) of a three-dimensional specimen or sample, in this case pollen. The number of stacks (2D 

images taken at different focal points) used was automatically determined by LASX software 

estimates, having manually specified the start and end points of the analysis. The result is a stack of 

images that represent the specimen at various depths or slices within the 3D space and allows for the 

reconstruction of 2D and 3D images. Image acquisition was performed using the LAS X software 

(Figure 2.23) and was saved in “.lif ” format for analysis using ImageJ software.  
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Figure 2.23: LASX image acquisition controls 

 

2.5.2 Image processing using ImageJ 

Once completed, sample files can be opened using the free image analysis software ImageJ. In this 

case, the Fiji adaption of ImageJ was used for image analysis (Schindelin et al., 2012). Firstly, the 

image series containing all individual slices of the Z-stack array needs to be rendered to produce one 

single 2D image – this was done by combining the individual stacks to generate the maximum 

intensity projection. Maximum Intensity projection (an example of which is provided in Figure 2.24) 

refers to selecting the highest intensity pixels from every slice throughout the Z-stack to construct a 

final 2D image. Since the counting method was used – this refers to the number of photons emitted 

by the sample (recorded as pixel intensity).  
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Figure 2.24: Example confocal image of maximum Z-stack projection obtained for the analysis of 

Betula pendula pollen 

To get the average fluorescence intensity of each pollen grain examined, the total 

fluorescence intensity of the grain is divided by the area examined – having selected the pollen area 

and measuring function within ImageJ (Figure 2.25). This was repeated for 40 grains per sample to 

get a representative population, previous studies have used fewer repeats (n=20) (Castro et al., 2010) 

but efforts were made here to further reduce any uncertainties associated with a small sample size. 

Background readings were also taken (n=40) for each sample in order to ensure no dramatic 

increase/decrease was observed as well as to act as a baseline for fluorescence intensity. Further 

examination of fluorescence values was carried out in RStudio using created scripts for statistical 

and graphical analysis. 
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Figure 2.25: Fluorescent intensity analysis using ImageJ, average fluorescent intensity per unit area 

is shown in red box 
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Chapter 3: Traditional Pollen Monitoring in 

Ireland  
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3.1 Introduction 

This chapter describes the findings from a traditional pollen monitoring campaign conducted in 

Dublin from 2017 to 2020. While some of this work has been previously published (Markey et al., 

2022a), this chapter expands upon those findings by incorporating subsequent data and additional 

analyses. 

Despite significant health, agricultural and climate implications, bioaerosol monitoring has 

largely been overlooked in Ireland, often overshadowed by the monitoring of anthropogenic 

pollutants. The few pollen monitoring studies (traditional and real-time) that have been conducted in 

Ireland are decades old and/or provide little detail on the various pollen types and annual seasonal 

trends (reviewed in Chapter 1). In recent years, pollen monitoring efforts have recommenced at 

several sites in Ireland initiated by the EPA-funded POMMEL project (O’Connor et al., 2022). Since 

then several Irish aerobiological studies have been conducted, including a comprehensive assessment 

of long-term pollen data from multiple sites (Markey et al., 2022a), a study covering the 

spatiotemporal variations in the distribution of birch trees and Betula pollen (Maya-Manzano et al., 

2021) and several other fungal spore studies (Martinez-Bracero et al., 2022; Martínez-Bracero et al., 

2022). However, despite these pivotal first steps, there remains a clear disparity between the Irish 

network and that of the rest of Europe (Markey et al., 2022a).  

  

3.2 Methods 

3.2.1 Sampling locations 

Pollen monitoring data was primarily carried out in the capital city of Dublin, located on the east 

coast of Ireland. Sampling was continuously carried out from May 2017 until October 2020 at the 

former TU Dublin Kevin Street campus (53°20'12.1"N, 6°16'04.0") – before the campus relocated in 

2021. Comparisons were also drawn from a rural site established in Carlow (52°43'23.6"N, 

6°39'36.0" W) for the 2018 and 2019 seasons. Both locations are depicted in Figure 3.1.   
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Figure 3.1:  Map of sampling locations in Ireland (Dublin urban site - Red, Carlow rural site– Blue) 

The Dublin site was located on the roof of the Technical University Dublin Kevin Street building (20 

m high), located in the heart of Dublin city centre - covering approximately 318km2 (CSO, 2012) 

with a population density of 4,811/km2 (CSO, 2016). The rural site was located on a private rural 

farm in Carlow which has a population density of 63/km2 (CSO, 2016). In this case, due to no nearby 

infrastructure, the Hirst pollen trap was positioned atop a 2-3m pedestal. 

 

3.2.2 Pollen monitoring and analysis 

Pollen monitoring was conducted from the 22nd of May 2017 continuously until the 1st  of October 

2020 in Dublin using a Hirst-Lanzoni 7-day pollen sampler (Hirst, 1952). Detail of this method is 

provided in Chapter 2. The annual pollen integral (APIn) was calculated for each pollen type by 

multiplying the average daily concentration of the annual sampling period by the season duration, 

using the recommended aerobiological method (Galán et al. 2017). The term “pollen type” refers to 

pollen grains sharing the same morphological characteristics observed under microscopic analysis. 

This includes pollen grains belonging to different taxonomical categories - either a specific genus or 
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family of plants, with all respective species included within (Markey et al., 2022a). In this case, the 

major pollen types were defined as the most prominent, re-occurring pollen types that represented 

approximately 87% of the total Dublin pollen concentrations recorded over the entire sampling 

campaign.  

The Main Pollen Season (MPS) for each major pollen type was calculated as the start and 

end dates where the annual pollen concentration sum reached 5% and 95% of the total for the year 

(Cristofori et al., 2010; Nilsson and Persson, 1981). Several methods can be used to calculate the 

MPS (Jato et al., 2006). The 90% method of determining the MPS was selected due to its capability 

to suit plants/trees that pollinate early in the year (Kasprzyk, 2003; Nilsson and Persson, 1981), as 

well as allowing the MPS to be determined while excluding low concentrations that could be 

transported from other regions (Kasprzyk et al., 2004) such as the UK.  

The relationship between pollen concentrations and meteorological factors tends to fluctuate 

throughout the MP. To further investigate this the MPS for each selected pollen type was further 

subdivided into two periods: the pre-peak and the post-peak. The pre-peak period (PRP) was defined 

as the time between the start of the pollen season and the peak day, while the post-peak period (PSP) 

was defined as the time between the peak day and the conclusion of the pollen season.  

For comparison purposes, pollen monitoring in Carlow took place from the 18th of April until 

the 10th of December 2018 and recommenced from the 1st of February until the 30th of September 

2019, using the same volumetric method specified above.  

 

3.2.3 Meteorological data  

Meteorological data was obtained from the Met Éireann website (“The Irish National Meteorological 

Service,” 2023). The weather station in Dublin (Dublin Airport, 53°25'40.0"N 6°14'27.0"W, 11 km 

from the sampling site,74 masl), provided the following daily datasets of meteorological parameters 

(parameters represent daily means, unless otherwise stated): mean temperature [ºC] (Tmed), 

maximum temperature [ºC] (Tmax) and Minimum Temperature [ºC] (Tmin), average mean 

temperature [ºC] over the previous 10 days (Tmed_10), grass minimum temperature [ºC], 2 cm above 

the ground (Gmin), mean 10cm soil temperature [ºC] (Soil), precipitation amount [mm] (Rain), 

average precipitation amount [mm] over the previous 10 days (Rain_10), mean cbl pressure [hpa] 

(Pres), mean wind speed [kt] (Wind_s) and wind direction at max 10 min mean [deg] (Wind_d), 

global radiation [J/cm2] (G_rad), Sunshine duration [hours] (Day_L), cloud amount [arbitrary unit 

between 1-10] (Cld_Amt), potential evapotranspiration [mm] (Pe), evaporation [mm]  (Evap) and 

relative humidity [%] (Rh).  
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3.2.4 Land cover data  

A land cover map was generated of the immediate 30 km radius encompassing the Dublin sampling 

site using CORINE Land cover data (Basu, 2021; Büttner et al., 2004) and was graphically 

constructed using GIS software. This 30km range is considered to be representative of the overall 

variety and distribution of pollen recorded when using a volumetric Hirst trap (Skjøth et al., 2010).  

 

3.2.5 Statistical analysis 

Shapiro-Wilk and Lilliefors tests (a version of the Kolmogorov-Smirnov test) were used to determine 

whether the recorded daily pollen/meteorological data had a normal distribution. Both of these tests 

are frequently employed in aerobiology (Galán et al., 2014; Grinn-Gofroń et al., 2015; Helfman-

Hertzog et al., 2023; Maya-Manzano et al., 2021; O’Connor et al., 2014; Orlandi et al., 2014; 

Picornell et al., 2020). It was revealed that the daily data did not exhibit a normal distribution. 

Subsequently, a Spearman correlation test was used to determine the degree and significance of 

correlation existing between the selected meteorological and pollen parameters. The statistical 

analysis included only days within the MPS, PRP and PSP and was performed using the nortest 

(Gross and Ligges, 2015) and corrplot (Wei et al., 2021) packages available in R (R Development 

Core Team, 2020).  

 

3.2.6 Geographical origins of major airborne pollen types 

The geographical origin of ambient bioaerosols was examined using a source receptor approach 

available through the ZeFir-v3.7 package (Petit et al., 2017). Two-dimensional Non-parametric Wind 

Regression (NWR) was used to establish the potential geographical origin of selected pollen 

concentrations throughout the sampling campaign. This method has been previously used in similar 

Irish fungal spore (Martínez-Bracero et al., 2022) and air quality (Donnelly et al., 2015) studies. The 

NWR method, originally proposed by Henry et al., 2009 combines co-located measurements of wind 

speed and direction with ambient aerosol concentrations. The general idea is to give weight to 

concentration values associated with wind direction and speed with the weighing coefficients being 

determined through Gaussian-like functions  (Petit et al., 2017). 
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3.2.7 Pollen calendar 

Data from unpublished pollen monitoring campaigns from 1978-1980 (sampled at Trinity College 

Dublin), 2010-2011 (sampled at Baldonnel aerodrome) and from this monitoring campaign 

(2017-2020) were combined to construct an updated/simplified pollen calendar for Dublin, with the 

previous rendition published in (Markey et al., 2022a). The mean daily pollen levels (Pollen 

grains/m3) were calculated for the 15 most common pollen types that were present for all sampling 

years. Early, late and main flowering periods were calculated using the method suggested by 

Werchan et al. (2018).  

The main flowering period was defined as the 10-90% interval, beginning once the pollen 

interval reached 10% of the APIn and ending once 90% was reached. Early and late flowering 

periods, outside the main flowering period, were determined in a similar manner. The early flowering 

period is defined as the period within the interval where the pollen integral exceeds 0.5% of the APIn 

but is less than 10%. Similarly, the late flowering period corresponded to the period within the 

interval where the pollen integral exceeded 90% of the APIn but less than 99.5%. Finally, possible 

occurrence times were determined as any time outside of the 0.5-99.5 % range where pollen was 

observed. The earliest possible occurrence of a pollen type was limited to no more than 30 days 

before the earliest possible start of early flowering, and the latest possible occurrence to no more than 

30 days after the latest flowering end, since theoretically individual pollens can occur all year round 

as a result of resuspension (Werchan et al., 2018). The pollen calendar was then constructed and 

coloured according to the level of allergenicity posed by each pollen type and shaded according to 

possible, early/late, and main flowering periods.  

 

3.3 Results 

3.3.1 Overview of major pollen types and seasonal features  

Throughout the Dublin sampling campaign, a total of 65 pollen types were identified with varying 

degrees of prevalence and severity. Several dominant pollen types were identified based on their re-

occurring annual prevalence, as shown in Figure 3.2, including Urticaceae (29%), Poaceae (28%), 

Betula (9%), Cupressaceae (9%), Fraxinus (4%), Quercus (4%), Pinus (2%) and Alnus (2%), which 

represent a combined 87% of the pollen recorded. In this case, the Cupressaceae classification refers 

to pollen grains from both the Cupressaceae and Taxaceae families that show similar optical features.  
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Figure 3.2: Percentage distribution of major pollen recorded in Dublin (2017-2020) 

A time-series of the total annual pollen concentrations is depicted in Figure 3.3 highlighting 

the pollen season progression in Dublin as well as annual variations in intensity. Generally, the pollen 

season in Ireland commences in late January with the release of arboreal pollen, firstly with Corylus, 

followed by Alnus, Cupressaceae and Fraxinus. Other tree pollen types were also present during later 

spring months such as Betula, Pinus, Salix, Platanus, Populus and Quercus. The end of spring saw 

the commencement of the Poaceae pollen season, which is shortly accompanied by other herbaceous 

pollen types such as Rumex, Plantago and Urticaceae and several arboreal pollens such as Tilia and 

Castanea. The pollen season starts to decline in late summer until late September/October when it 

finally ceases until the return of early season Corylus pollen in December. Several pollen types were 

found to have a persistent presence throughout the year. This was particularly true for Cupressaceae, 

and Pinus with Mercurialis pollen exhibiting a heightened pervasiveness in 2020.  

Overall, a bi-modal distribution is apparent with the first spring peak arising in March-April 

followed by a more intense summer peak from June to August. A more detailed monthly distribution 

of total pollen concentrations is given in Figure 3.4. The spring-time peak period during April is 

dominated by high concentrations of Betula (49%), Fraxinus (23%) and Cupressaceae (14%) pollen. 

Following a decrease in pollen concentrations during May, a sharp increase dominated by Poaceae 

(53%) and Urticaceae (33%) concentrations is then seen for June.  
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Figure 3.3: Time-series of total pollen concentrations from 2017 -2020 (Dublin) 

 

 

Figure 3.4: Monthly distribution of total pollen concentrations from 2017-2020 (Dublin) 

Although these general seasonal trends were repeated annually, the analysis of total pollen 

concentrations between years reveals several notable deviations. 2018 had the lowest APIn for total 

pollen (16,233 Pollen * day/m3), followed by 2020 concentrations which yielded an APIn of 34,010 
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Pollen * day/m3, with 2019 possessing the highest APIn of 52,496 Pollen * day/m3. The 2017 season 

was excluded from this comparison since sampling commenced in mid-May and thus, failed to record 

the spring peak period. Over the sampling campaign, eight major pollen types were identified, as 

shown in Figure 3.2. These pollen types are representative of the overall Dublin pollen season, further 

analysis of these pollen types was carried out with seasonal statistics depicted in Table 3.1, below. 

Due to the late sampling start of 2017, only Poaceae and Urticaceae pollen from this year will be 

examined.  
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Table 3.1 Major Pollen Types and Main Pollen Season Parameters for Dublin 2017-2020 

2017  

Pollen type Start 

Date 

End 

Date 

Length 

(Days) 

APIn 

(Pollen 

* 

day/m3) 

Peak value 

(grains/ 

m3) 

Peak 

date 

% 

Total 

Pollen 

Poaceae 06/06/17 01/08/17 57 4438 547 17/06/17 43.3 

Urticaceae 02/06/17 03/09/17 94 4584 285 17/06/17 44.7 

2018 

Pollen type Start 

Date 

End 

Date 

Length 

(Days) 

APIn 

(Pollen 

* 

day/m3) 

Peak value 

(grains/m3) 

Peak 

date 

% 

Total 

Pollen 

Alnus 03/02/18 31/03/18 57 244 17 12/02/18 1.5 

Betula 06/04/18 25/04/18 20 2623 346 11/04/18 16.1 

Cupressaceae 14/02/18 09/07/18 146 3063 208 10/04/18 18.9 

Fraxinus 31/03/18 23/04/18 24 1549 218 11/04/18 9.5 

Pinus 06/04/18 08/06/18 64 304 43 20/05/18 1.9 

Poaceae 20/05/18 05/07/18 47 3588 410 17/06/18 22.1 

Quercus 22/04/18 29/07/18 99 331 18 10/05/18 2 

Urticaceae 01/06/18 03/09/18 95 3535 257 19/06/18 21.7 

2019 

Pollen type Start 

Date 

End 

Date 

Length 

(Days) 

APIn 

(Pollen 

* 

day/m3) 

Peak value 

(grains/m3) 

Peak 

date 

% 

Total 

Pollen 

Alnus 27/01/19 02/03/19 35 1501 168 15/02/19 2.9 

Betula 28/03/19 11/05/19 45 4905 553 18/04/19 9.3 

Cupressaceae 14/02/19 11/07/19 148 5164 243 25/02/19 9.8 

Fraxinus 19/03/19 17/05/19 60 168 14 18/04/19 0.32 

Pinus 05/05/19 29/06/19 56 1621 125 22/05/19 3.1 

Poaceae 07/06/19 01/08/19 56 17401 1057 15/06/19 33.1 

Quercus 22/04/19 05/07/19 75 2696 152 11/06/19 5.1 

Urticaceae 10/06/19 08/09/19 91 14819 534 26/08/19 28.2 
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Overall, the majority of pollen types experienced an increase in APIn from 2018-2019, followed by 

a decrease in 2020, with the exception of Fraxinus. Having said that, notable fluctuations and 

deviations were seen for many pollen types over the sampling period. This is particularly apparent 

for pollen taxa that exhibit starkly differing APIn concentrations, peak dates, season durations etc. 

between seasons. This is most clearly seen for Alnus pollen and Fraxinus pollen. 

Alnus pollen experienced high peak value and APIn concentrations in 2019 with significantly 

lower concentrations recorded for the preceding season and even more so for the successive 2020 

season. Although the 2019 season recorded peak Alnus concentrations, the season length was 

significantly shorter and commenced later than the 2020 season. The peak date also fluctuated, with 

the 2020 season exhibiting a notable deviation from Alnus peak dates recorded for the other years 

which only differed by 3 days. 

Fraxinus pollen exhibited a unique behaviour over the sampling period. Unlike the other 

pollen types examined, Fraxinus pollen showed a significant decline in APIn in 2019, reaching peak 

daily concentrations of only 14 pollen grains/m3. This is very different from the peak daily 

concentrations recorded in 2018 (218 grains/m3), with an even further increase in peak concentrations 

seen in 2020 (704 grains/m3). The pollen season for Fraxinus is more comparable for 2018 and 2020, 

having the same duration with an overall 6-day shift in start and end dates and a 10-day difference 

in peak days. The Fraxinus season began slightly earlier in 2018 than in 2020 and showed the earliest 

start date, longest duration in season length and overall muted concentrations 

Both Betula and Quercus pollen exhibit similar trends from 2018 to 2020. Both pollen types 

exhibit similar seasonal statistics in terms of start and end date, and duration when comparing their 

2018 to 2020 seasons. Betula pollen seasons differed slightly between 2018 and 2020 – ending 

2020 

Pollen type Start 

Date 

End 

Date 

Length 

(Days) 

APIn 

(Pollen 

* 

day/m3) 

Peak value 

(grains/m3) 

Peak 

date 

% 

Total 

Pollen 

Alnus 09/01/20 12/04/20 95 90 8 30/01/20 0.3 

Betula 05/04/20 29/04/20 25 3082 669 20/04/20 9.1 

Cupressaceae 26/01/20 26/08/20 214 2105 206 25/08/20 6.2 

Fraxinus 06/04/20 29/04/20 24 3149 704 21/04/20 9.3 

Pinus 01/05/20 12/06/20 43 535 80 20/05/20 1.6 

Poaceae 31/05/20 25/08/20 87 6546 325 07/06/20 19.2 

Quercus 20/04/20 28/07/20 100 1496 94 10/05/20 4.4 

Urticaceae 07/06/20 31/08/20 86 9439 761 12/08/20 27.8 
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slightly later in 2020 with an additional 5-day length to the season. The peak day of Betula in 2018 

occurred 1 week earlier than in 2019 and 9 days earlier than in 2020.  In the case of Quercus, both 

the 2018 and 2020 seasons possessed the same peak day and a seasonal duration with a 1-day 

difference. In both cases, the 2018 season of Betula/Quercus had lower APIn concentration when 

compared to 2020. Both pollen types illustrated heightened APIn and peak day concentrations in 

2019. Whereas the season length of Betula in 2019 increased from 20-25 days to 45, the Quercus 

season length decreased from 99-100 days to 75. Quercus pollen also exhibited a much later peak 

day, 1 month later than those seen in 2018 and 2020.  

Pinus also exhibited several changes throughout the sampling seasons. Akin to the majority 

of the other major pollen types, Pinus APIn was considerably lower in 2018 than in the other seasons, 

with 2019 exhibiting the highest APIn. The duration of the Pinus pollen season appeared to gradually 

decrease in duration, while the start and end dates also fluctuated. In 2018 the Pinus season 

commenced almost a month earlier than in the following years and ended in the second week of June. 

A similar end date was seen for the 2020 season although the season started later at the start of May. 

Although the 2018 and 2019 Cupressaceae pollen seasons exhibit similar start and end dates, 

both peak dates differ substantially. Cupressaceae pollen concentrations peaked in early April 2018 

and in late February 2019. This is further contrasted with the 2020 peak date in late August. The 

2020 season also commenced very early at the end of January and lasted until late August with a 

combined seasonal duration of 214 days, up substantially from the 2018 and 2019 seasons. The 2020 

season was also accompanied by lower APIn concentrations, with comparable peak day 

concentrations to 2018. Once again, the highest APIn and peak day concentrations were recorded in 

2019.  

The 2017 season extended the data for both Poaceae and Urticaceae pollen types. The 2017 

and 2019 Poaceae seasons had similar characteristics in terms of start date, end date, duration, and 

peak date. However, 2019 had higher concentrations than any other season. Peak day dates remained 

consistent from 2017-2019. However, the 2020 Poaceae peak date occurred 8-10 days earlier and the 

season lasted longer with a seasonal duration of 87 days. The Poaceae seasons of 2017 and 2019 

lasted 57 and 56 days, respectively. The 2018 season commenced the earliest on the 20th of May and 

finished the earliest at the start of July. In comparison, both the 2017 and 2019 seasons started in 

early June and ended on the first of August. The 2020 season on the other hand started on the 31st of 

May and continued until the end of August.  

Many parallels and comparisons can also be made between the different Urticaceae seasons. 

The 2017 and 2018 seasons held several similar characteristics, including start and end dates, season 

duration, peak date, and peak concentrations. Both seasons began within 1 day of each other and 

finished on the same day, with peak dates only differing by 2 days. The later 2019 and 2020 seasons 

are much more changeable in comparison. The 2019 season started the latest and had the highest 
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APIn and the latest peak date (end of August). The 2020 season began slightly earlier than that of 

2019 and approximately a week later than the 2017-2018 seasons. Despite lower APIn, the peak day 

concentration in 2020 was the highest seen throughout the campaign at 761 pollen grains/m3, over 

200 grains/m3 higher than the peak day concentration in 2019. 

To find the bi-hourly peak distributions of pollen concentrations, bi-hourly resolution pollen 

data was also studied, as shown in Figure 3.5. In order to reduce the influence of days with high 

pollen concentrations each 24-hour period was standardised prior to analysis.  

 

Figure 3.5: Average bi-hourly diurnal trend of total pollen concentrations (Dublin) 

Overall, the total pollen concentrations in Dublin were shown to peak at midday with the 

beginning of the crest commencing at 06:00 and descending steadily throughout the afternoon-

evening. The average daily distributions of the 8 prevailing pollen types were also investigated and 

illustrated in Figure 3.6. Many of the pollen types showcase a similar single peak in daily 

distributions such as Cupressaceae and Pinus which peaked at midday, and Poaceae and Urticaceae 

which peaked slightly later in the day at 16:00 and 14:00, respectively. Others showcased multi-peak 

distributions such as Fraxinus pollen, which experienced an early-day peak concentration at 08:00 

and an evening peak at 18:00. Alnus pollen also experienced a multi-peak distribution with a slight 

early morning peak at 06:00 and two afternoon peaks at 12:00 and 15:00. Prolonged peak periods 

were also witnessed for Betula and Quercus. Betula pollen concentrations illustrated a weak forked 

distribution at 8:00 with concentration remaining high until another slight increase at 12:00, followed 
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by a successive decline. Similarly, Fraxinus pollen experiences an early peak at 08:00. However, 

this was followed by a slightly lower peak at 14:00 and a higher peak at 18:00.  

 

Figure 3.6: Average bi-hourly diurnal trends of (A) Alnus, (B) Betula, (C) Cupressaceae, (D) 

Fraxinus, (E) Quercus, (F) Pinus, (G) Poaceae and (H) Urticaceae pollen concentrations 

 

3.3.2 Pollen calendar 

A pollen calendar is a graphical representation of the average annual/seasonal trends of major pollen 

types, typically those of allergenic concern, for a particular location. Although an approximation of 

the seasonal trends in Ireland has been presented above, variations exist between each year. A start 

date for the MPS of one year could differ substantially from the next. Therefore, it is recommended 

that at least 5-7 years of data is incorporated into the construction of a pollen calendar (Galán et al. 

2017). For this reason, the data obtained solely from this monitoring campaign is insufficient for the 

construction of a pollen calendar for Dublin (2017-2020). As a result, previously unpublished pollen 
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data from 1978-1980, and 2010-2011 were incorporated in creating an updated and simplified pollen 

calendar for Dublin (Figure 3.7). This is an adapted of the original first Dublin pollen calendar 

published by (Markey et al., 2022a).   

 The pollen calendar depicted in Figure 3.7, shows the average annual trends for the 15 most 

frequent and recurrent pollen taxa identified in the Dublin environment. In addition to being colour-

coded according to the stages of the flowering period and their allergenic potential as described in 

the literature (Aerts et al., 2021; Bousquet et al., 2007; D’Amato et al., 2007; Gadermaier et al., 2014; 

Heinzerling et al., 2005; Pablos et al., 2016; Skjøth et al., 2013b; Solomon, 1969; Vallverdú et al., 

1998; de Weger et al., 2013), the taxa were arranged in order of their appearance within the calendar 

year. As a factor of proportional exposure to the Irish population, general ambient concentrations 

observed during the sampling years were also considered. 

 

Figure 3.7: Dublin pollen calendar (periods of 1978-1980, 2010-2011 and 2017-2020). 

 

3.3.3 Meteorological influence on pollen production and release 

Association between seasonal pollen concentrations and individual meteorological factors were 

investigated for Dublin by calculating Spearman’s rank coefficients between daily pollen 

concentrations and individual meteorological parameters (Table 3.2). Once again, due to the late 

sampling start of 2017, only Poaceae and Urticaceae pollen from this year was analysed for 

correlation with meteorological parameters. 
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 It was observed that correlations between pollen types and meteorological parameters 

produced varying results depending on the year. Although a more detailed summary is provided, it 

was found generally that temperature and relative humidity were the most consistently influential 

meteorological parameters on pollen concentrations. Typically, increasing temperature led to 

increased concentrations of many of the analysed pollen taxa, whereas, increasing relative humidity 

led to the decline of ambient pollen concentrations. However, on occasion, there were periods for 

certain pollen taxa where the opposite was observed – indicating that the relationship is more 

complex and dependent on other environmental conditions.  

During 2017, both Poaceae and Urticaceae pollen illustrated strong positive correlations with 

temperature, pressure, sun/global radiation, and evaporation variables, while strong negative 

correlations were seen for rain, relative humidity and cloud amount. In 2018, Poaceae concentrations 

illustrated differing relationships, now presenting a strong positive correlation with wind speed while 

correlations to sun duration and pressure were shown to have a negative impact. Urticaceae also 

showed a slightly positive significant correlation to wind speed and a strong negative correlation 

with the mean temperature over the previous 10 days. More changeable correlations were seen for 

the 2019 and 2020 seasons – with positive associations with pressure and global radiation seen, 

accompanied by negative associations with relative humidity and rain returning in 2019. 

Interestingly, in 2020, little significant correlation was seen for many of the pollen types – including 

Poaceae which now only showed a positive correlation with the mean temperature of the preceding 

10 days. Urticaceae on the other hand once again shows positive correlations to temperature variables 

and negative associations with wind speed.  

 Similar unsettled behaviour was also witnessed for many of the arboreal pollen types. Many 

of the early season pollen types such as Alnus, Betula and Cupressaceae, showed very little 

significant correlation with meteorological parameters during 2018. Alnus exhibited a positive 

correlation with wind speed and Betula showed a positive correlation with average rainfall over the 

previous 10 days. In comparison, 2019 showed much stronger associations between these pollen 

types and weather. In the case of Alnus and Betula pollen, strong positive correlations were seen for 

many temperature, pressure and sun parameters and a negative correlation was seen for relative 

humidity. Conversely, Cupressaceae pollen showed notable negative correlations with temperature, 

sun and rain variables. Once again, the 2020 season showed very few significant correlations between 

these pollen taxa and weather.   

 The remaining tree pollen types (Fraxinus, Quercus and Pinus) appeared to be subject to 

more meteorological influence in 2018 than Alnus, Betula and Cupressaceae pollen. Both Fraxinus 

and Quercus pollen illustrated significant positive correlations with relative humidity and rain 

variables and negative correlations with temperature and global radiation. Pinus pollen showed 

significant positive correlations with pressure and soil temperature and a negative association with 

relative humidity. In comparison, Fraxinus showed significantly stronger positive correlations with 
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sun, global radiation and evaporation parameters in 2019, with little meteorological influence 

illustrated for Quercus pollen and a notable negative correlation seen for Pinus with the average 

temperature and rainfall over the previous 10 days. Once again, in 2020 different associations were 

witnessed, with Fraxinus showing no correlation with weather, Quercus showing a positive 

correlation with wind speed and negative correlations with sun and global radiation. Pinus on the 

other hand showed significant correlations with temperature variables, cloud amount and average 

rain concentrations over the previous 10 days.   
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Table 3.2: Spearman´s rank correlation coefficients between daily MPS 2017-2020 Dublin pollen 

data and meteorological parameters. 

2017 
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Tmax - - - - - - 0.55** 0.53** 

Tmin - - - - - - 0.24 0.22* 

Tmin - - - - - - 0.46** 0.43** 

Gmin - - - - - - 0.11 0.12 

Rain - - - - - - -0.63* -0.55* 

Pres - - - - - - 0.62** 0.43** 

Wind_s - - - - - - -0.20 -0.12 

Wind_d - - - - - - -0.05 0.03 

Day_L - - - - - - 0.32** 0.29** 

G_rad - - - - - - 0.38** 0.33** 

Soil - - - - - - 0.44** 0.37** 

Pe - - - - - - 0.44** 0.42** 

Evap - - - - - - 0.40** 0.38** 

RH - - - - - - -0.27** -

0.36** 

CldAmt - - - - - - -0.27** -

0.29** 

Tmed_10 - - - - - - -0.21 -0.12 

Rain_10 - - - - - - 0.17 0.16 
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Tmax -0.13 -0.15 0.02 -0.44* -0.52** 0.21 -0.05 -0.23 

Tmin -0.05 0.24 0.12 -0.03 -0.63** -0.24 0.23 -0.05 

Tmin -0.10 -0.02 0.06 -0.36 -0.65** 0.10 -0.07 -0.21 

Gmin 0.09 0.15 0.12 0.04 -0.53** -0.21 0.25 0.01 

Rain -0.06 0.11 0.03 0.16 0.15 -0.19 0.15 -0.03 
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Pres 0.11 -0.25 -0.03 -0.29 -0.11 0.43** -0.34** -0.07 

Wind_s 0.37* 0.21 -0.02 -0.19 0.15 -0.32 0.26** 0.15** 

Wind_d -0.21 -0.35 0.10 -0.66** -0.05 -0.50* 0.44** -0.02 

Day_L -0.12 -0.18 -0.19 -0.57* -0.02 0.13 -0.24* -0.03 

G_rad -0.04 -0.17 -0.07 -0.64** -0.07 0.21 -0.21 0.04 

Soil -0.14 -0.16 0.05 -0.44 -0.66** 0.40* -0.15 -0.11 

Pe 0.19 -0.12 0.00 -0.52* -0.26* 0.25 -0.07 -0.02 

Evap 0.24 -0.06 0.00 -0.55** -0.21 0.20 0.00 0.03 

RH -0.23 0.11 0.05 0.53** 0.18 -

0.11** 

-0.15 0.15 

CldAmt 0.07 0.15 0.14 0.46* -0.04 -0.10 0.23 0.09 

Tmed_10 0.04 -0.32 0.05 -0.38 -0.71** 0.28 0.04 -

0.60** 

Rain_10 -0.05 0.40*

* 

0.04** 0.48* 0.65** -0.26 -0.01 -0.17* 

2019 
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Tmax 0.73** 0.29*

* 

-0.02 0.34** -0.15 0.05 0.19 0.01 

Tmin 0.45 -0.05 -

0.21** 

-0.02 -0.14 -0.18 -0.02 -0.25 

Tmin 0.66** 0.21*

* 

-0.13 0.21* -0.16 -0.06 0.10 -0.15 

Gmin 0.39 -0.17 -

0.30** 

-0.16 -0.14 -0.18 -0.04 -0.25* 

Rain -0.33 -0.30 -0.25* -0.14 -0.01 -0.27 -0.21 -0.48* 

Pres 0.62** 0.25* 0.16** -0.10 -0.26 0.32* 0.42* 0.43** 

Wind_s -0.03 -0.03 -0.04 -0.19 0.06* -0.17 -0.33* -

0.35** 

Wind_d -0.51* 0.08 -0.09 -0.12 0.00 0.14 0.06 -0.11 

Day_L 0.02 0.40*

* 

0.05 0.21* 0.00 0.05 0.26 0.17 

G_rad 0.26* 0.30* -0.14* 0.28* 0.03 0.06 0.32 0.30** 
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*significance at the 95% level, **significance at the 99% level 

 

Soil 0.62** -0.02 -

0.22** 

0.21* -0.25 0.01 0.17 0.17 

Pe 0.56** 0.31*

* 

-0.15* 0.34** -0.01 0.02 0.28 0.20 

Evap 0.61** 0.32* -

0.17** 

0.34** 0.03 0.03 0.28 0.26* 

RH -

0.54** 

-0.35* -0.09 -0.18 -0.16 -0.17 -0.31* -0.25* 

CldAmt 0.02 -0.20 -0.09* -0.09 0.03 -0.09 -0.12 -0.11 

Tmed_10 0.42* -0.36 -

0.34** 

-0.22 -0.33 -

0.47** 

-0.22* -

0.49** 

Rain_10 -0.06 -0.11 -

0.29** 

-0.22 0.00 -

0.68** 

-0.24 -0.23* 

2020 
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Tmax -0.07 -0.06 -0.04 -0.05 -0.54* 0.21** 0.50 0.42** 

Tmin -0.49 0.22 -0.19 0.16 0.04 0.35* 0.54 0.15 

Tmin -0.37 0.18 -0.12 0.13 -0.27 0.26** 0.62 0.37** 

Gmin -0.15 0.12 -0.21 0.09 0.01 0.32 -0.07 0.03 

Rain 0.02 0.26 -0.25 0.22 0.24 -0.17 -0.37 -0.09 

Pres -0.35 -0.12 0.16 -0.14 -0.35 0.36 0.62 -0.05 

Wind_s 0.26 0.06 -0.07 0.19 0.35* -0.04 -0.67 -0.33* 

Wind_d -0.12 -0.12 -0.21 -0.37 0.02 0.17 0.07 -0.06 

Day_L 0.27 -0.15 0.17 0.03 -0.34* -0.46 0.52 0.13 

G_rad 0.28 -0.20 0.10 0.07 -0.34* -0.20 0.60 0.03 

Soil -0.23 -0.10 -0.06 0.06 -0.18 0.31* 0.44 0.53** 

Pe 0.12 -0.14 0.04* -0.10 -0.49* -0.15 0.55 0.07 

Evap 0.17 -0.05 0.05* 0.02 -0.36 -0.12 0.55 0.00 

RH -0.25 0.25 -0.22 0.29 0.44 -0.12 -0.59 -0.01 

CldAmt -0.15 0.26 -0.15 0.07 0.26 0.55* -0.52 -0.26 

Tmed_10 0.10 -0.63 -0.22 -0.65 0.47** 0.20 -0.31* 0.49** 

Rain_10 -0.42* 0.48 -0.40 0.47 -0.27 -0.79* 0.07 -0.20 
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A summary of monthly meteorological conditions is also provided in Table 3.3, illustrating 

the varying weather experienced between the sampling years. Two meteorological extremes were 

experienced during 2018. A significant cold-spell was experienced during February-March with 

daily temperatures plummeting to as low as -5 °C. Conversely, in June of the same year, very dry 

and hot weather was experienced for the location, with daily temperatures reaching highs of 26.5 °C 

and cumulative rainfall amounts not exceeding 5 mm. In comparison, the weather conditions 

experienced during 2017, 2019 and 2020 were more stable. 

2019 experienced periods of heavy rainfall particularly in May and Autumn from August-

November and a mild February with max temperatures reaching an average of 15.6 °C, the highest 

of all the sampling years.  Above-average levels of rainfall were recorded in February 2020 which 

was later followed by a very dry April and May and then significant amounts of rain in July.  
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Table 3.3: Descriptive monthly summary of meteorological parameters 

2017 
 

Tmax Tmin Tmed Rain Day_L Soil 

Jan 11.9 -4.8 5.7 21.9 1.9 5.4 

Feb 12.9 -3.9 6.2 41.6 1.8 5.8 

Mar 16.3 -1.7 7.7 67.2 4.1 8.0 

Apr 16.5 -1.2 8.0 10.0 3.3 10.2 

May 23.2 -1.5 11.6 43.5 7.2 14.8 

Jun 26.3 3.7 14.4 86.4 5.4 16.9 

Jul 24.2 6.0 15.0 42.2 5.4 17.3 

Aug 21.8 4.9 14.6 73.2 3.9 15.8 

Sep 18.9 4.5 12.4 82.3 4.3 13.1 

Oct 19.5 0.8 11.2 47.8 2.4 11.4 

Nov 14.1 -0.5 6.5 81.5 2.9 6.9 

Dec 13.6 -4.8 5.3 63.1 1.9 4.8 

2018 
 

Tmax Tmin Tmed Rain Day_L Soil 

Jan 13.1 -3.2 5.3 93.1 2.4 4.4 

Feb 12.0 -4.9 3.4 28.5 3.9 3.5 

Mar 11.9 -5.1 4.3 94.8 2.6 3.8 

Apr 18.8 -2.1 8.1 68.9 4.8 8.8 

May 22.2 0.4 11.4 19.1 7.2 14.6 

Jun 26.5 3.8 14.5 4.8 9.0 19.8 

Jul 26.7 5.2 16.1 40.0 5.9 20.2 

Aug 25.1 3.9 15.3 48.0 3.9 16.9 

Sep 23.0 0.4 12.2 43.8 4.5 13.4 

Oct 19.2 -4.7 9.3 42.6 3.9 9.8 

Nov 15.3 1.1 8.2 131.2 1.7 7.3 

Dec 13.4 0.8 7.7 81.0 1.0 6.6 

2019 
 

Tmax Tmin Tmed Rain Day_L Soil 

Jan 11.3 -5.8 5.1 26.8 1.5 5.2 

Feb 15.6 -3.8 7.0 30.5 4.0 6.1 

Mar 16.8 -2.1 7.3 92.5 4.3 7.3 

Apr 21.7 -2.0 8.0 74.6 4.1 9.4 

May 20.9 -0.8 10.2 33.4 4.5 12.8 
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Jun 22.7 2.0 12.5 82.9 5.3 15.0 

Jul 24.9 4.4 15.9 41.0 5.4 18.9 

Aug 22.3 7.8 15.4 91.9 5.6 16.7 

Sep 20.9 3.4 13.0 104.6 4.8 14.2 

Oct 16.4 -1.4 9.1 77.2 3.7 9.3 

Nov 13.4 -2.4 6.0 173.0 1.4 6.2 

Dec 13.8 -2.9 5.9 57.7 1.9 4.8 

2020 
 

Tmax Tmin Tmed Rain Day_L Soil 

Jan 14.2 -2.5 6.3 36.0 2.1 5.0 

Feb 13.4 -2.3 5.8 130.4 3.6 4.8 

Mar 15.0 -3.9 5.8 31.8 4.5 6.2 

Apr 19.4 -2.5 8.5 12.8 6.3 11.2 

May 21.5 -2.6 10.9 9.3 9.5 15.6 

Jun 25.0 3.8 13.4 69.6 4.3 16.0 

Jul 23.1 5.0 14.4 98.9 3.4 16.0 

Aug 24.0 3.8 14.7 87.1 3.1 16.4 

Sep 22.7 0.9 12.8 60.9 4.8 13.8 

Oct 15.2 0.3 9.5 80.6 3.9 9.5 

Nov 16.0 -1.2 8.2 48.1 2.4 7.9 

Dec 14.2 -4.4 4.9 83.1 2.1 4.4 

 

In efforts to provide a more detailed meteorological comparison with the pollen data collected during 

the campaign (especially for the years where little correlation was observed), the main pollen seasons 

of each major pollen type were further divided into PRP and PSP and compared to meteorological 

conditions. And are illustrated in Tables 3.4 and 3.5. Although varying degrees of correlation were 

seen depending on the pollen type and year in question, several general trends were observed. 
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Table 3.4: Spearman´s rank correlation coefficients between daily PRP 2017-2020 Dublin pollen 

data and meteorological parameters. 

2017 
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Tmax - - - - - - 0.83** 0.75* 

Tmin - - - - - - 0.59* 0.66* 

Tmed - - - - - - 0.82** 0.77** 

Gmin - - - - - - 0.57 0.57 

Rain - - - - - - -0.64 -0.75 

Pres - - - - - - 0.60** 0.62** 

Wind_s - - - - - - -0.40 -0.04 

Wind_d - - - - - - -0.08 -0.21 

Day_L - - - - - - 0.19* 0.16** 

G_rad - - - - - - 0.49** 0.48** 

Soil - - - - - - 0.80** 0.64** 

Pe - - - - - - 0.59** 0.70** 

Evap - - - - - - 0.39* 0.64** 

RH - - - - - - -0.46* -0.40* 

CldAmt - - - - - - 0.07* 0.04** 

Tmed_10 - - - - - - 0.75* 0.48* 

Rain_10 - - - - - - -0.04 0.43 

2018 
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Tmax 0.22 -0.31 0.13 0.17 -0.44 0.07 0.34 0.02 

Tmin -0.19 0.49* 0.32** 0.64 -0.39 -0.30 0.34 0.06 

Tmed -0.14 0.09 0.25* 0.29 -0.50 -0.05 0.34 0.08 

Gmin -0.13 0.52 0.24 0.78* -0.16 -0.27 0.29 0.02 

Rain -0.25 -0.64 -0.02 -0.29 0.01 -0.02 0.00 0.32 

Pres -0.09 0.71 0.20 0.16 -0.12 0.22* -0.45** 0.19 

Wind_s -0.08 0.14 0.02 0.07 0.38 -0.26 0.21* -0.14 
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Wind_d -0.24* -0.43 -0.03 -0.73* 0.10 -0.30 0.54** 0.11 

Day_L -0.26 0.14 0.01 -0.42 0.07 0.04 -0.03 -0.21 

G_rad -0.18 -0.09 0.04 -0.56 0.00 0.09 0.01 -0.35 

Soil -0.40 0.12 0.39** 0.19 -0.52 0.24* 0.26 -0.41* 

Pe -0.30 -0.03 0.24 -0.23 -0.20 0.16 0.31 -0.45 

Evap -0.31 0.09 0.21 -0.26 -0.15 0.12 0.35 -0.44 

RH 0.40 0.03 -0.03 0.39 -0.29 -0.20** -0.45 0.36 

CldAmt 0.19 -0.09 0.04 -0.49 -0.17 0.00 -0.21 0.06 

Tmed_10 -0.06 0.09 -0.08 0.29 0.11 0.04 0.05 0.15 

Rain_10 0.09 0.54 0.47* 0.45* 0.69** 0.10 0.57* 0.20 

CldAmt 0.21 0.43 0.17* -0.05 0.23 -0.02 -0.49 0.59** 

2019 
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Tmax 0.90** 0.33* 0.78** 0.15 0.24 0.71* 0.83 -0.05 

Tmin 0.58 0.17 -0.29 -0.19 0.02 0.16 0.16 -0.29* 

Tmed 0.86** 0.48** 0.12 0.02 0.18 0.70* 0.80 -0.23 

Gmin 0.52 -0.14 -0.34 -0.32 -0.06 0.03 0.12 -0.27* 

Rain -0.13 -0.44 -0.53 -0.10 -0.21 -0.45 -0.18* -0.48* 

Pres 0.57* 0.50* 0.72** -0.15 -0.02 0.36 0.33 0.51** 

Wind_s 0.08 -0.28 -0.35 -0.29 0.15* -0.07 0.08 -0.33** 

Wind_d -0.36 0.28 -0.35 -0.29 -0.06 0.04 0.49 -0.10 

Day_L -0.08 0.12 0.21 -0.01 0.31 0.25 0.64 0.19 

G_rad 0.25 0.18 0.30 0.16 0.33* 0.35 0.78 0.33* 

Soil 0.84** 0.34* 0.20 0.16 0.26 0.74** 0.66 0.14 

Pe 0.55* 0.41* -0.10 0.12 0.33* 0.41 0.84 0.20 

Evap 0.64** 0.30 0.07 0.12 0.39** 0.44 0.71 0.27 

RH -0.52* -0.21 -0.04 0.21 -0.38 -0.11 -0.67 -0.25* 

CldAmt 0.21 0.02 -0.12 -0.04 -0.18 -0.11 -0.42 -0.11 

Tmed_10 0.19** -0.15 0.21 -0.43 0.06 0.25 0.26 -0.47** 

Rain_10 0.35* 0.02 -0.15 -0.17 0.14** -0.05 -0.32** -0.31** 

2020 
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*significance at the 95% level, **significance at the 99% level 
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Tmax -0.07 -0.06 -0.04 -0.05 -0.54* 0.21** 0.50 0.42** 

Tmin -0.49 0.22 -0.19 0.16 0.04 0.35* 0.54 0.15 

Tmed -0.37 0.18 -0.12 0.13 -0.27 0.26** 0.62 0.37** 

Gmin -0.15 0.12 -0.21 0.09 0.01 0.32 -0.07 0.03 

Rain 0.02 0.26 -0.25 0.22 0.24 -0.17 -0.37 -0.09 

Pres -0.35 -0.12 0.16 -0.14 -0.35 0.36 0.62 -0.05 

Wind_s 0.26 0.06 -0.07 0.19 0.35* -0.04 -0.67 -0.33* 

Wind_d -0.12 -0.12 -0.21 -0.37 0.02 0.17 0.07 -0.06 

Day_L 0.27 -0.15 0.17 0.03 -0.34* -0.46 0.52 0.13 

G_rad 0.28 -0.20 0.10 0.07 -0.34* -0.20 0.60 0.03 

Soil -0.23 -0.10 -0.06 0.06 -0.18 0.31* 0.44 0.53** 

Pe 0.12 -0.14 0.04* -0.10 -0.49* -0.15 0.55 0.07 

Evap 0.17 -0.05 0.05* 0.02 -0.36 -0.12 0.55 0.00 

RH -0.25 0.25 -0.22 0.29 0.44 -0.12 -0.59 -0.01 

CldAmt -0.15 0.26 -0.15 0.07 0.26 0.55* -0.52 -0.26 

Tmed_10 0.10 -0.63 -0.22 -0.65 0.47** 0.20 -0.31* 0.49** 

Rain_10 -0.42* 0.48 -0.40 0.47 -0.27 -0.79* 0.07 -0.20 
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Table 3.5: Spearman´s rank correlation coefficients between daily PSP 2017-2020 Dublin pollen 

data and meteorological parameters. 

2017 
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Tmax - - - - - - 0.53** 0.50** 

Tmin - - - - - - 0.11 0.13 

Tmed - - - - - - 0.41** 0.38** 

Gmin - - - - - - -0.01 0.03 

Rain - - - - - - -0.65* -0.51* 

Pres - - - - - - 0.67** 0.39** 

Wind_s - - - - - - -0.33* -0.16* 

Wind_d - - - - - - -0.05 0.06 

Day_L - - - - - - 0.32** 0.31** 

G_rad - - - - - - 0.33** 0.29** 

Soil - - - - - - 0.54** 0.33** 

Pe - - - - - - 0.38** 0.37** 

Evap - - - - - - 0.35** 0.33** 

RH - - - - - - -0.20 -0.36* 

CldAmt - - - - - - -0.30** -0.33** 

Tmed_10 - - - - - - -0.23 -0.20 

Rain_10 - - - - - - 0.01 0.11 

2018 
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Tmax -0.27 0.11 -0.09 -0.75* -0.43* -0.45 -0.34* -0.05 

Tmin -0.04 0.42 0.06 -0.17 -0.59** -0.36 0.17 0.23 

Tmed -0.18 0.13 -0.05 -0.65 -0.59** -0.40 -0.41 0.12 

Gmin 0.09 0.28 0.11 -0.23 -0.54** -0.13 0.33 0.25 

Rain 0.03 0.07 0.04 0.28 0.07 0.14* 0.66** 0.08 

Pres 0.20 -0.25 -0.08 -0.49 0.13 0.43 0.08 -0.03 

Wind_s 0.51** 0.34 -0.01 -0.20 -0.02 0.34 0.73** 0.12** 



 

117 

 

Wind_d 0.04 -0.01 0.20 -0.36 -0.27* -0.35 0.06 0.18 

Day_L -0.10 -0.04 -0.30* -0.62 0.00 -0.14 -0.46** -0.04 

G_rad -0.13 0.03 -0.23 -0.68 -0.02 -0.12 -0.45** -0.08 

Soil -0.16 0.13 -0.08 -0.53 -0.55** -0.51 -0.43** -0.08 

Pe 0.05 0.20 -0.18 -0.47 -0.19 -0.08 -0.48** -0.15 

Evap 0.11 0.28 -0.18 -0.43 -0.16 -0.11 -0.44* -0.11 

RH -0.20 -0.37 0.08 0.26 0.22 -0.53** 0.31 0.14 

CldAmt 0.12 -0.03 0.26 0.60 -0.03 -0.08 0.44* 0.16 

Tmed_10 0.12 0.14 -0.07 -0.25 -0.65** -0.42* -0.84** -0.34 

Rain_10 0.03 -0.18 0.05 0.31* 0.59** 0.51* 0.73** -0.12 

2019 
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Tmax 0.30 0.66** -0.01 0.46* -0.36 0.23 -0.13 0.59* 

Tmin 0.05 0.09 -0.21** -0.04 0.21 0.17 -0.26 0.23 

Tmed 0.11 0.65** -0.11 0.37 -0.12 0.28 -0.25 0.36 

Gmin -0.01 0.01 -0.32** -0.10 0.19 0.14 -0.24 -0.01 

Rain -0.60 -0.28 -0.18 -0.17 0.47 -0.02 -0.31 -0.35 

Pres 0.46* 0.09 0.11* -0.04 -0.67** 0.15 0.56** -0.32 

Wind_s 0.11 0.01 -0.11 -0.07 -0.07 0.07 -0.35* -0.51 

Wind_d -0.61* 0.13 -0.07 0.09 -0.05 0.32* -0.01 -0.40 

Day_L 0.14 0.57** 0.08 0.36 -0.51 -0.08 0.17 -0.07 

G_rad 0.30 0.43 -0.02 0.28 -0.43 -0.05 0.28 0.03 

Soil 0.03 0.53* -0.14 0.26 -0.57** 0.14 -0.04 0.63* 

Pe 0.40 0.59** -0.03 0.40* -0.39 0.02 0.20 0.20 

Evap 0.42 0.61* -0.03 0.42* -0.44 0.05 0.21 0.06 

RH -0.63* -0.54** -0.07 -0.37 0.32 -0.11 -0.35* -0.22 

CldAmt -0.32 -0.34 -0.04 -0.15 0.34 0.08 -0.10 -0.06 

Tmed_10 0.25 -0.13 -0.33** -0.26 -0.70** -0.19** -0.65** -0.42 

Rain_10 -0.10 -0.04 -0.25 -0.40 0.40 -0.76** -0.14 0.69* 

2020 
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*significance at the 95% level, **significance at the 99% level 

Examination of the PRP highlighted the importance of temperature and sun duration in 

pollen production and release. The majority of pollen types exhibited significant positive correlations 

with temperature variables (air or soil), sun and global radiation in at least one of their PRPs. 

However, during particularly dry or warm periods, the potential strain on pollen-producing plants 

can be seen – possibly suggesting drought-like/heat-stress conditions, this can be exhibited as 

negative correlations with temperature/sun parameters (like what was observed for Quercus pollen 

during the 2018 MPS). The same can be said for the PRP concentrations of Quercus pollen 2020, 

which also exhibited notable negative correlations with sun, global radiation and potential 

evapotranspiration. Although predominant negative correlations were observed for relative humidity 

and rain during the PRPs, there were times during the 2018 and 2019 sampling years when a notable 

positive correlation with average rainfall over the previous 10 days was observed, potentially hinting 

at the importance of rain before pollen release and again during times of dry weather.  

  On occasion, similar correlations extended to the PSP, with temperature and sun duration 

often continuing to play a role in pollen release and later the probable resuspension of pollen. In 

times of prolonged dry weather, a negative correlation was observed for sun duration and 

temperature. The PSPs generally show an increased dependence on wind-speed, both leading to an 

increase and decrease in several pollen types over the campaign. The increasing influence of 

evaporation was also observed, perhaps also indicating the likelihood of pollen resuspension after 

Tmax -0.07 -0.10 - -0.13 0.22* 0.47 0.27 0.47 

Tmin 0.19 -0.05 - -0.49 -0.46 0.12 -0.15* 0.30 

Tmed 0.09 -0.09 - -0.44 -0.14 0.43* 0.08 0.49 

Gmin 0.22 0.05 - -0.29 -0.40** -0.11 -0.20* 0.23 

Rain -0.07 0.00 - -0.25 -0.40* -0.22 -0.20 -0.07 

Pres -0.06 0.25 - 0.23 0.33** 0.31 0.21 -0.02 

Wind_s 0.09 0.62** - 0.19 -0.05 0.04 -0.14 0.20 

Wind_d 0.04 -0.25 - -0.26 -0.11** -0.22 0.17 0.19 

Day_L -0.18 0.60 - 0.62 0.54** 0.52 0.32* 0.07 

G_rad -0.24 0.38 - 0.28 0.52** 0.52* 0.39* 0.05 

Soil -0.03 -0.57 - -0.24 0.27** 0.46 0.10 0.57** 

Pe -0.18 0.36 - 0.22 0.51** 0.50* 0.45** -0.04 

Evap -0.22 0.41* - 0.34 0.51** 0.55* 0.43* -0.03 

RH -0.03 -0.48 - -0.26 -0.61** -0.40 -0.34 0.27* 

CldAmt 0.12 -0.72** - -0.86 -0.51** -0.55 -0.15 0.14 

Tmed_10 -0.14 -0.27 - -0.16 -0.47 -0.07 -0.43** 0.18 

Rain_10 -0.36 0.56 - 0.55 -0.70** -0.29 -0.09 -0.35 
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peak days. In the case of the Cupressaceae pollen season of 2020, the PSP was classified as 1 day 

long and as such no correlations could be obtained. 

 

3.3.4 Geographical origin of major pollen types 

To better understand the transport of airborne pollen grains over Dublin, the ZeFir source receptor 

model was applied. Wind pollination is a significant transport mechanism for a wide variety of pollen 

types (Dowding, 1987). The resulting wind rose diagrams reveal details about the geographic origins 

of pollen. Recently, similar methods have been applied to evaluate the temporal variability and 

geographic origin of ambient bioaerosols (Estève et al., 2018; Markey et al., 2022a, 2022b; Martínez-

Bracero et al., 2022; Sarda-Estève et al., 2020, 2019).  

Results are depicted as a wind rose plot where sectors are shaded according to the joint 

probability of the wind originating from that direction. The term “Joint probability” (Figure 3.8) is 

used to describe the distribution and statistical probability of the prevailing winds experienced during 

the sampling period. A scale of wind speed in kilometres per hour is shown as white gridlines that 

cross through the wind rose plot, with the inner circle equalling 8 km/h, followed by 16 km/h, 24 

km/h, and 32 km/h. The model results showed that prevailing winds at Dublin originate from a south-

westerly direction sector at speeds between 8 and 24 km/h (Figure 3.8).  

 

 

Figure 3.8: Wind rose of (A) prevailing winds during sampling period and (B)origin of total pollen 

concentration at the Dublin site. The white gridlines represent a wind speed scale in kilometres per 

hour (8 km/h, 16 km/h, 24 km/h, 32 km/h). 

 

 

 

A 
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Figure 3.9: Origin of Alnus, Betula, Cupressaceae, Fraxinus, Quercus, Pinus, Poaceae and 

Urticaceae pollen concentrations at Dublin. The colour scale represents the estimated concentration 

(Pollen grain/m3) while the white gridlines represent a wind speed scale in kilometres per hour (8 

km/h, 16 km/h, 24 km/h, 32 km/h). 
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Total pollen was shown to originate from nort-east/east directions which differs significantly 

from the prevailing wind direction. The same analysis was also carried out for the major pollen types, 

as illustrated in Figure 3.9. The model results indicate that the main origin for Alnus pollen is from a 

south to south-easterly direction with varying wind speeds from less than 8 to greater than 24 km/h. 

Although higher concentrations were associated with higher wind speeds from the south. The main 

origins for both Betula and Fraxinus pollen were from the northeast/east sectors at strong wind 

speeds greater than 16 km/h. Cupressaceae pollen illustrated multiple sources in both the northern 

and north-eastern sectors at high wind speeds greater than 24 km/h. Other minor sources were also 

noted from a south-easterly direction at a range of wind speeds, this was also seen for Quercus pollen. 

However, the majority of Quercus pollen seemed to originate from a northerly direction at wind 

speeds between 16 and 32 km/h. Pinus pollen originated from several locations at particularly low 

wind speeds surrounding the area and then additionally from the southeast at wind speeds less than 

24 km/h. Both Poaceae and Urticaceae pollen showed multiple sources – due to the widespread 

presence of these plants within the city. However, a strong easterly presence at low wind speeds (<8 

km/h) was shown for Poaceae, while Urticaceae pollen exhibited a northerly origin at higher wind 

speeds between 8 and 16 km/h.  

The varying wind speeds and directions associated with the differing pollen types provide 

greater insight into the geographical origins of different pollen types. To aid in the determination of 

possible local sources a landcover map for Dublin was also examined (Figure 3.10). Potential 

southern sources of tree pollen such as Alnus and grass pollen include the grasslands and forests that 

lie to the south of the city – this represents a fraction of the Wicklow mountains and national park. 

Several green urban areas are also present around the sampling site, including the Phoenix park which 

is seen as the large urban green area situated to the west of the city centre. Additional urban parks 

exist close to the sampling site that are not captured by the resolution of the Corine land cover. These 

include St. Kevin’s Park which is directly to the east of the sampling site, the Iveagh Gardens, to the 

southeast and St. Stephens Green and Merrion Square to the northeast. All of these are within 2 km 

of the sampling site, representing several likely sources for the variety of pollen types investigated.  
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Figure 3.10: Land cover map of the immediate 30km surrounding the Dublin sampling site 

 

3.3.5 Comparison between urban and rural sites (2018-2019) 

A more detailed comparison between the two sites has been previously published in (Markey et al., 

2022a), this section represents a summarised analysis. The relationship between the two sites was 

assessed by examining the correlation between the different pollen types, displayed in Table 3.6. 

Significant positive correlations were noted for Betula, Cupressaceae, Fraxinus, Pinus and 

Urticaceae for both years. Significant positive correlations were only observed for Alnus and Quercus 

during the 2019 season and for Poaceae and Total pollen during the 2018 season. In the case of Alnus 

pollen, the lack of correlation seen for 2018 can be attributed to a delay in sampling at the Carlow 

site which did not commence until the 18th of April. This led to the Alnus season of 2018 in Carlow 

going largely undocumented.  
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Figure 3.11: Time-series of total pollen concentrations from 2018 -2019 (Carlow) 

Table 3.6: Spearman correlations between pollen concentrations in Carlow and Dublin 

 Major Pollen 2018 2019 

Alnus  -0.01 0.64** 

Betula  0.58* 0.72** 

Cupressaceae  0.42** 0.49** 

Fraxinus  0.49** 0.65** 

Pinus 0.48** 0.47** 

Quercus  0.31 0.61** 

Poaceae  0.68** 0.61 

Urticaceae  0.71** 0.61** 

Total Pollen 0.79** 0.41 

*significance at the 95% level, **significance at the 99% level 

Although similar diurnal bihourly trends are observed in Figure 3.12(A), an obvious point 

of contention between the two sites was noted by comparing the annual time-series for Carlow (2018-

2019) shown in Figure 3.11 to those previously shown for Dublin (Figure 3.3); the magnitude of 

pollen concentrations experience at the two sites varied considerably. The mean APIn determined 
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for Dublin during the 2018-2019 sampling period was 34,217 Pollen * day/m3. Concentrations at 

Carlow were significantly higher with an average APIn of 78,389 Pollen * day/m3 recorded. The 

deviations in pollen concentration are mainly attributed to considerably higher Poaceae 

concentrations recorded in Carlow. This can be seen in Figure 3.12 (B), where the biggest deviation 

between the monthly concentrations can be seen for June. Although Dublin experienced lower annual 

concentrations, a greater variety in pollen taxa was recorded. There were 26 additional pollen types 

recorded in Dublin than there were in Carlow (Figure 3.12 (C)). The diversity in pollen concentration 

at the Carlow site was mainly dominated by Poaceae (70%), Urticaceae (12%), Betula (5%), Quercus 

(2%), Fraxinus (1%) and Pinus (1%).  

 

Figure 3.12: Comparison plots between Dublin (Blue) and Carlow (Yellow): (A) Average bihourly 

diurnal distribution (B) Log transformed distribution of daily pollen concentrations and (C) Average 

variation in the number of pollen types recorded each month. 
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3.4 Discussion 

3.4.1 Pollen trends and seasonal features 

Over the sampling period (2017-2020) a wide variety of pollen types and trends were recorded, 

generating valuable information regarding the most common pollen taxa and their seasonal changes 

in Dublin. The bimodal behaviour of the Dublin pollen season can be summarised as commencing 

with the release of early flowering Betulaceae (Corylus and Alnus) pollen in late January, coming to 

a peak in spring with the release of Betula and Fraxinus pollen followed by a lull in pollen 

concentration in May, before the primary peak in June as a result of high Poaceae concentrations. 

The summer peak in Poaceae is succeeded by Urticaceae pollen which in its decline brings the pollen 

season to an end in late-September/mid-October. This general pollen season trend is comparable to 

similar aerobiological studies conducted in the United Kingdom (J. Emberlin et al. 1990, 1993, 2007) 

but is significantly different from those conducted in Mediterranean (Camacho, 2015; Galán et al., 

1995; Giner et al., 1999; Puljak et al., 2016; Rodríguez et al., 2015; Subiza et al., 1995) and Nordic 

climates (Nilsson and Persson, 1981; Przedpelska-Wasowicz et al., 2021). 

The prevalence of Betula and Poaceae pollen during spring and summer peak periods, 

respectively, represents the two predominant allergenic pollen taxa observed during the campaign. 

This can be extended to include pollen originating from other trees within the Betulaceae family such 

as Corylus and Alnus. Both Poaceae and Betulaceae are well known for their clinical relevance across 

Europe in causing allergies (Burbach et al., 2009). Sensitizations have been previously found within 

the Irish population (Bousquet et al., 2007; Heinzerling et al., 2005), although more up-to-date 

sensitization tests are required to fully understand the severity and relevance of these aeroallergens 

to the current population.  

The average bihourly diurnal distribution for Dublin also showed similarities to other 

literature studies. The average daily distribution for Dublin was dominated by a single afternoon 

peak, peaking at midday. The data was scaled every 24 hours prior to this analysis to reduce the 

influence of high concentrations of Poaceae pollen. Otherwise, Poaceae pollen would have 

drastically influenced the trend, which has previously been shown (Markey et al., 2022a). 

Alternatively, the diurnal distribution herein is more representative of the entire pollen season. 

Diurnal variations for the most abundant pollen types were also investigated, many of which 

exhibited a similar afternoon peak such as Alnus, Betula, Cupressaceae and Pinus. Whereas Poaceae 

and Urticaceae pollen show a slightly later peak between 14:00 and 16:00 and Fraxinus at 18:00. 

The majority of these individual pollen daily trends show similarities to other diurnal studies 

conducted throughout Europe (Aboulaich et al., 2013; Fernández-Rodríguez et al., 2014a; Kluska et 

al., 2020; Kolek et al., 2021; Norris-Hill and Emberlin, 1991; R. G. Peel et al., 2014; Spieksma et 

al., 1985; Yang et al., 2003). This is particularly true for other roof-top studies such as that by Kolek 
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et al., 2021, many of the rooftop diurnal trends depicted in this study closely mimic those seen for 

Dublin with only very slight variations.  

As an extension of the original study (Markey et al., 2022a), this chapter represents the 

longest Irish aerobiological study, to-date. Prior to this, traditional aerobiological surveys of Ireland 

were limited to two summer pollen studies conducted in 1977-1978 in Galway (McDonald, 1980; 

McDonald and O’Driscoll, 1980) and more recent introductory fungal spore campaigns also 

conducted in Dublin at the same sampling site (Martínez-Bracero et al., 2022). Neither of these 

studies was devised to provide any long-term or seasonal details on the pollen season in Ireland. This 

led to the initial publication of the Markey et al., 2022a study, whereas that study focused more on 

the comparison between urban and rural sampling sites, this chapter has been extended to include 

additional 2019 and 2020 data as well as examining more precise influences of meteorological 

impacts on induvial pollen season stages.  

Given the scarcity of previous studies on this topic in Ireland, the few that have been 

conducted were examined for similarities and differences. The summer-time Galway studies from 

the late 1970’s (McDonald, 1980; McDonald and O’Driscoll, 1980) could be directly compared to 

the data collected during the equivalent summer months in Dublin (and Carlow). Similar peak periods 

of both Poaceae and Urticaceae pollen were observed. However, significant concentrations of other 

pollen such as Rumex and Chenopodium were also recorded in these studies. Although the presence 

of these pollen taxa was recorded, the magnitude of which they were present does not directly 

coincide with concentrations sampled in 1970’s Galway. It is possible that these summertime 

variations could suggest regional variations in pollen within Ireland, however, the true nature of this 

can only be fully realised once modern-day campaigns are conducted.  

Comparisons can also be made between the updated Dublin pollen calendar and similar work 

conducted by Adams-Groom et al. (2020), who recently published details on the seasonal statistics 

of allergenic pollen taxa and created a regional pollen calendar for Northern Ireland. The updated 

Dublin pollen calendar shows marked differences from its original instalment  (Markey et al., 2022a) 

with several pollen taxa showing longer periods of occurrence. This comes as a result of extended 

sampling throughout 2019 and 2020. The simplified approach of the updated calendar is also more 

in line with the work presented by Adams-Groom et al. (2020), showing only abundant or important 

pollen taxa. The presented Northern Irish regional calendar is in many ways comparable to that of 

the Dublin pollen calendar.  

On average the season start-dates and end-dates of the pollen taxa discussed by Adams-

Groom et al. (2020) did not deviate much from those seen for Dublin. Generally, the season starts 

for Fraxinus, Betula, Quercus and Poaceae all commence between ~ 1 week and 10 days earlier than 

those documented in the North of Ireland. Urticaceae on the other hand started later in Dublin. 

Seasonal end dates differed more substantially with the end dates for the Quercus season differing 
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by almost 2 months (extending further in Dublin). The average APIn stated for each pollen type was 

also exceeded by several degrees in Dublin. The majority of these differences can be extended to 

differing sampling years, slight variations due to different season calculation methods as well as 

changes in land cover. However, looking at the overall trends in the pollen calendar, peak periods of 

the differing taxa tend to coincide with their Dublin counterparts for the majority of taxa.    

Following the 2020 season the Dublin monitoring site was relocated to the current site at the 

Met Éireann facility (4 km from former site) due to closure of the TU Dublin Kevin street campus. 

Due to limitations in availability of sampling locations within the city as well as financial, time and 

labour constraints required to carry out multiple point monitoring in Dublin, only one Dublin site 

could be operated at a time. Due to setbacks due to COVID restrictions and changes in sampling 

locations, additional efforts are required to fully compare and contrast the pollen trends between the 

sites to identify notable spatial variations within the city. The vast majority of aerobiological studies 

have continued to use one Hirst volumetric sampler (at roof level) per city, even in relatively large 

cities (Werchan et al., 2017).  Traditionally, pollen data collected using a volumetric sampler at >10m 

has been shown and is widely believed to be representative for a 30km area (Pashley et al., 2009; 

Rojo et al., 2019). Nevertheless several studies have examined the potential changes in spatial 

variation of pollen concentrations in urban areas using multiple Hirst samplers (Arobba et al., 2000; 

Cariñanos et al., 2002; Fernández-Rodríguez et al., 2014a; Fornaciari et al., 1996; Frisk et al., 2022; 

Gonzalo-Garijo et al., 2006; Katelaris et al., 2004; Nowak et al., 2012; Simoleit et al., 2017; Velasco-

Jiménez et al., 2013; Werchan et al., 2017).  

These studies jointly concluded that multiple sampling locations throughout a city show 

similarities in the general seasonal trends and pollen taxa recorded, however, differences arise due 

to proximity to local sources (Werchan et al., 2017). Many of these investigations and their findings 

also suffer from other uncertainties in sampling height. A study by  Werchan et al., 2017 aimed to 

limit these impacts by distributing 14 gravimetric samplers across the city of Berlin at consistent 

sampling heights. Notable spatial and temporal variations in pollen sedimentation due to the presence 

of local sources near sampling sites were noted. This variation could equate to different health 

implications for allergy sufferers. This paper suggests that in larger cities such as Berlin 

(approximately 8 times larger than the city of Dublin) at least 2 samplers should be deployed at 

various locations across the city. This is particularly important for the monitoring of Poaceae pollen, 

which can show considerable spatial variations throughout urban areas even if the effects are limited 

to several hundred metres from the pollen source (Skjøth et al., 2013a; Werchan et al., 2017). In the 

case of the Dublin sampling site, further assessment of pollen data from the relocated site is required 

before an accurate suggestion of how many samplers should be used to more precisely monitor pollen 

over the city can be made.  
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3.4.2 Comparison of rural and urban sites 

For the 2018-2019 seasons, sampling at both the Dublin (urban) and Carlow (rural) sites were 

compared. This is explored in greater detail in the Markey et al., 2022a study, but a summarised 

adaption is provided here. A direct comparison of the APIn for total pollen between the sites 

illustrated that generally, Carlow experienced higher concentrations of pollen (for both years), 

mainly driven by exponentially higher Poaceae pollen concentrations recorded during the summer 

months. This can be expected as the land cover surrounding the Carlow site is dominated by rural 

grasslands (Markey et al., 2022a). However, the magnitude of the Poaceae pollen recorded at the 

rural site is also largely dictated but the proximity of the sampler to the ground (2-3 m) when 

compared to the Dublin sampler (20 m) and resulting counts. The effect of varying sampler heights 

has been widely documented in the literature (Aulirantio-Lehtimäki et al., 1991; Fernández-

Rodríguez et al., 2014b; Kolek et al., 2021; Rojo et al., 2020, 2019; Xiao et al., 2013), many of which 

have found that grass and other herbaceous pollen concentration are inversely proportional to sampler 

height (Aulirantio-Lehtimäki et al., 1991; Kruczek et al., 2017; Spieksma et al., 2000). This explains 

why the concentrations of Poaceae and total pollen did not exhibit a significant correlation between 

the two sites for the 2019 season (Table 3.6). 

The current standard method for pollen monitoring using the Hirst has suggested that the 

sampler be positioned 10-20 m without direct influence of neighbouring buildings (Galán et al., 

2014). However, this is not always possible in isolated rural areas such as with Carlow although 

efforts were made to raise the device above the level of surrounding foliage. Measurements at ground 

level are not encouraged as roof-top levels allow for improved regional area monitoring allowing for 

the best spatial and temporal resolution achievable (de Weger et al., 2013). This conclusion has been 

met with controversy with some arguing that ground level measurements should be considered to 

truly depict the real conditions experienced by the individual, especially in urban areas (Bastl et al., 

2023). Conflicting results remain throughout literature. Several recent studies have highlighted that 

ground level exposure can vary throughout different environments with the individual experiencing 

increased levels of pollen exposure, especially from herbaceous pollen (de Weger et al., 2020). An 

urban study by  de Weger et al., 2020 found increased spatial variation, higher concentrations and 

earlier detection were recorded at ground level but still correlated with rooftop concentrations. Local 

ground level sources were attributed to these changes.  

When local emissions are not an issue rooftop levels are found to be a good proxy for inhaled 

pollen concentrations (Peel et al., 2013). On occasion street level analysis in urban areas has even 

been shown to experience significantly lower grass pollen concentrations than roof-top level 

concentrations (Robert George Peel et al., 2014). Studies utilising crowd sourced data illustrated that 

overall, higher agreement with symptom development with rooftop levels were seen than for ground 

level (Bastl et al., 2019). The local and anecdotal impact of ground level urban monitoring has 

therefore been deemed unsuitable for long-term regional monitoring, forecasting models, and clinical 
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studies (de Weger et al., 2013). Therefore, future sites established in Ireland should aim to further 

elevate monitoring devices when roof-top sampling is not achievable, especially in rural areas, to 

avoid impacts from local sources such as those seen for Carlow.  

Studies investigating the variations in sampler height also noted fewer significant differences in 

determining arboreal pollen concentrations (Leuschner, 1999; Rantio‐Lehtimäki et al., 1991; 

Soldevilla et al., 1995).Throughout this campaign certain tree pollen types such as Alnus, 

Cupressaceae and Quercus pollen were more abundant at the urban site. This can partially be 

attributed to the surrounding land cover. Although the aforementioned land cover map of Dublin 

shows little detail on many of the urban green spaces and broad leaf forest areas within the city, 

Dublin has twice as much surface area occupied by urban green spaces, broadleaved forests and 

mixed forests than the rural site (Maya-Manzano et al., 2021). Dublin also recorded a greater variety 

in pollen type diversity with pollen types such as Platanus, Ulmus, Fagus, Ericaceae, Mercurialis, 

Forsythia, Hedera, Populus, and Ranunculaceae which were not identified in Carlow.  

The presence of these pollen types can be explained by the common use of ornamental plants 

within urban green spaces (Velasco-Jiménez et al., 2020). The presence and higher concentrations of 

Platanus, Castanea, Ulmus, Fagus, Populus, Aesculus and Ericaceae pollen seen in Dublin relative 

to Carlow can be explained by the ornamental use of these tree types in the city (Ningal et al., 2010; 

Xie, 2018). The same applies to the higher concentrations of Cupressaceae and Quercus pollen. The 

distribution and allergic impact of urban pollen, particularly tree pollen, has received increased 

attention in recent years (Cariñanos et al., 2019, 2014; Cariñanos and Marinangeli, 2021; Gonzalo-

Garijo et al., 2006; Maya Manzano et al., 2017; Sousa-Silva et al., 2021). The benefits of urban parks, 

greenspace and street trees are many; ranging from improving air quality (Fang and Ling, 2005), 

noise reduction (Fang and Ling, 2005), and biodiversity (Kapoor, 2017) as well as being linked to 

enhancing the general health and wellbeing of residents (Javadi, 2021). This has led to the expansion 

and promotion of urban greenspaces across Europe in recent decades. Dublin is no different; since 

2016 a Dublin city tree strategy has been in place to provide the city with a diversity and abundance 

of healthy, attractive trees (Snyder et al., 2016).  

However, the presence of certain ornamental species in urban areas has been shown to have 

given rise to new and growing pollen sensitisations in cities (Cariñanos and Casares-Porcel, 2011). 

Despite recommendations to limit and reduce the impact of allergenic plants in the planning of urban 

greenspaces, few regulations have been passed to correct this (Cariñanos and Marinangeli, 2021). In 

efforts to provide a greater awareness and insight into the risk posed by urban flora, particularly 

certain trees, a number of recent studies have attempted to update and verify the allergenic potential 

of some of the most common urban trees (Cariñanos et al., 2019; Cariñanos and Marinangeli, 2021). 

Several of these pollen taxa perceived to represent an agreed moderate-to-high allergenic potential 

were observed in considerable quantities at the Dublin sampling site, including Alnus, Betula, 

Castanea, Cupressaceae, Platanus, Quercus, Tilia and Ulmus.  
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Dublin also experienced higher concentrations of pollen associated with coastal and riverside 

areas such as Juncaceae. Juncaceae has been well associated with coastal regions from both an 

aerobiological (El-Amier, 2015; Fall, 1994) and ecological (Fontana, 2005) perspective. Ecological 

surveys of the coastal regions of Dublin have corroborated the presence of such foliage along the 

coastal regions of Dublin (Doogue et al., 2004). The aesthetic appeal of urban gardens and 

greenspaces likely resulted in the addition of several varieties of herbaceous pollen types that were 

absent from the rural sampling location, many of which were only observed in small quantities 

including Ranunculaceae, Forsythia and Sambucus.  Hedera was also unique to the Dublin sampling 

location, this is likely due to the presence of decorative ivy plants present on many of the historical 

buildings located in Dublin city centre, close to the sampling site. Interestingly a drastic increase in 

these pollen types associated with wall growth such as Hedera and Mercurialis saw substantial 

increases in concentrations in 2020 most likely due to the COVID pandemic – possibly as a result of 

reduced maintenance of these public ruins as a result of lockdowns.  

All in all, the similarities in seasonal trends observed between Dublin (2017-2020), Carlow 

(2018-2019),  the previously published finding for the summer of 1977-1978 for Galway (McDonald, 

1980; McDonald and O’Driscoll, 1980) and seasonal statistics for Northern Ireland (Adams‐Groom 

et al., 2020) suggests that general pollen trends for certain pollen taxa appear to be somewhat 

comparable across Ireland. More widespread monitoring over comparable sampling years is needed 

to further investigate this.  

 

3.4.3 Influence of meteorological conditions on pollen concentrations - MPS 

Several factors can influence the airborne concentration of pollen grains, this includes both the 

production/release of the pollen and the dispersal and transportation (Galán et al. 1995; Volkova et 

al. 2016). Therefore, Spearman’s correlation analysis was performed to determine the predominant 

influential meteorological parameters on pollen concentration during the MPS, PRP and PSP. The 

trends and strengths of the relationships between the concentrations of major pollen types and 

meteorological conditions showed strong deviations from year to year, illustrating the complex 

nature that exists between the two. The majority of pollen types studied decreased in concentration 

significantly during 2018, followed by high concentrations in 2019, both of these trends can be 

explained by examining the meteorological conditions experienced. During February-March of 2018 

a snowstorm nicknamed “Storm Emma” struck the east coast of Ireland. The worst conditions were 

experienced during the 28th of February to the 4th of March; including considerable snowfall and air 

and soil temperatures plummeting 5-10 degrees below normal (Government of Ireland and Met 

Éireann, 2019). These conditions are very rare thanks to the temperate climate of Ireland. As a result 

the pollen season recorded during 2018 deviated from expected and was found to more closely mimic 
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trends seen for countries that normally experience cooler early-spring conditions, such as the Nordic 

countries (Emberlin et al. 2002; Nilsson and Persson 1981; Przedpelska-Wasowicz et al. 2021). 

 Early spring temperatures have been shown to act as deciding factors in plant development 

and pollen production (Matyasovszky et al., 2015). The unusual cold spell experienced in 2018 led 

to a significant reduction in arboreal pollen release in late March as with the Poaceae pollen release 

in summer. Similar trends attributed to cold springtime conditions have previously been recorded 

elsewhere (Emberlin et al., 2002; Kasprzyk and Borycka, 2019; Makra et al., 2012). One such 

investigation by  Emberlin et al. (1999) recorded a similar trend between the soil temperature in early 

spring and the magnitude of grass pollen released the following summer in the UK. This further 

corroborated the lack of correlation seen for many tree pollen types in 2018 and accounts for the 

increased Poaceae pollen concentrations seen in 2019. 

Fraxinus is the only exception to this 2018-2019 trend, with a stark decrease in 

concentrations seen in 2019. This significant drop can result for a number of reasons. For instance, 

Ireland was experiencing an “Ash Dieback” (ADB) epidemic during the sampling period, which can 

influence the production and release of pollen (Teagasc, 2019). The impact of ADB on pollen 

concentration is somewhat conflicting with both reductions (Evans, 2019) and increases (Gassner et 

al., 2019) in Fraxinus pollen concentrations being recorded. It is possible that other factors such as 

mast years could also lead to deviations in Fraxinus pollen concentrations. Many trees experience a 

variation in reproductive efforts over several years known as masting (Dahl et al., 2013). Literature 

shows that Fraxinus trees can simply experience periods of significantly lower pollen production 

once every few years. It is possible that 2019 represents one such inactive period (Gassner et al., 

2019) and is not a result of ADB. 

Spearman correlation analysis highlighted the differing importance of conditions on pollen 

concentrations throughout the sampling years. Although great degrees of variation were observed, 

many of the pollen types showcased strong positive association with temperature during their MPS, 

the importance of which has been recorded extensively in literature (Aboulaich et al., 2013; Emberlin 

et al., 1993; Frenguelli et al., 1991; Helfman-Hertzog et al., 2023; Khwarahm et al., 2014; Norris-

Hill, 1997). However, the opposite was also observed during periods of high temperature or 

prolonged dry spells. This is most notably seen for Quercus pollen during 2018/2020.  During both 

years, the Quercus MPS coincided with dry and warm conditions during the summer months of 2018 

and late spring of 2020. It is possible that the dry and warm conditions seen during these times led 

to heat stress and reduced pollen release, which corroborates findings from previous studies 

illustrating similar trends for both tree and herbaceous pollen during dry conditions (Emberlin and 

Norris-Hill, 1991; Knaap et al., 2010). 

 Generally, trends for relative humidity and rainfall were observed to negatively correlate 

with several of the major pollen concentrations. This trend of decreasing pollen concentrations with 
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increasing relative humidity and rainfall is well established in literature (Janati et al., 2017) and is 

largely associated with particle-deposition and washout effects and the inhibition of anthesis of 

several pollen species (Bruffaerts et al., 2018; Janati et al., 2017; Kluska et al., 2020; Puc and Puc, 

2004; Ribeiro et al., 2003). Low relative humidity is important in the wind-mediated detachment of 

pollen grains from anthers, as to achieve this the pollen grains must be dry (Emberlin, 2009). 

However, on occasion, it was found that pollen concentrations during MPSs were positively 

associated with the average rain concentration of the previous 10 days. This suggests that rainy days 

preceding pollen release may act as a trigger of pollen release (Khwarahm et al., 2014).  

It was observed that sun duration and global radiation also had a fluctuating impact on pollen 

concentrations. Depending on the pollen type and year in question, the MPS was either positively or 

negatively influenced by sun and radiation. The additive effect of sun duration and global radiation 

for pollen release has been well documented in literature (Gioulekas et al., 2004; González-

Fernández et al., 2021; Khwarahm et al., 2014), especially for grass and herb pollen types (Çakir and 

Doğan, 2020; de La Guardia et al., 1998; Myszkowska, 2012).  Whereas the negative influence can 

be attributed to the previously discussed likelihood of heat stress. 

 

3.4.4 Influence of meteorological conditions on pollen concentrations – PSP and PRP 

Even the pre-season conditions can be interpreted to explain certain seasonal trends recorded. One 

such case is the notable lack of a predominant Poaceae peak during the 2020 season. Although a peak 

concentration was recorded on 07/06/2020, there were several comparable peak days (shown in 

Appendix A Figure A1), varying from previous years when one dominant peak day was observed. 

In addition, the Poaceae season length was substantially longer in 2020 than in other years. Although 

little correlation can be seen for Poaceae during the 2020 season (MPS, PRP in particular), this trend 

can be explained following the unseasonable dry conditions during the late spring/early summer. 

Such conditions have been well documented to limit the flowering intensity of herbaceous pollen 

resulting in a longer season devoid of a predominant peak (Dahl et al., 2013; Galán et al., 1995; 

González Minero et al., 1998).  

Previously, correlation analysis between monthly total pollen concentrations and 

meteorological conditions was conducted for Ireland (Markey et al., 2022a), highlighting the 

potential influence of weather during the PRP and PSP of several pollen taxa. To more specifically 

examine how the relationship between meteorological conditions and pollen concentrations changes 

throughout a MPS, the same Spearman correlation analysis was applied to the PRP and PSP of each 

major pollen’s MPS. Pollen concentrations during the PRP are mainly seen to be driven by 

temperature parameters which promote the onset of anthesis and pollen release, while the PSP is 

influenced by parameters that continue the pollen season either by facilitating extended release of 

pollen or by other mechanisms such as resuspension (Helfman-Hertzog et al., 2023; Mesa et al., 
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2003). Typically literature studies tend to echo the same consistent findings; the PRP can show a 

significant positive correlation with temperature, and sunshine duration and a negative correlation 

with rainfall and relative humidity, whereas, the PSP often illustrates the opposite effects as 

temperature dependence generally decreases following peak pollen dates (Helfman-Hertzog et al., 

2023; de La Guardia et al., 1998; Pérez-Badia et al., 2013; Piotrowska and Kaszewski, 2012). 

However, these findings were not always seen during this campaign. 

In the case of the Dublin campaign, temperature was seen to strongly influence the PRP for 

many tree, grass and herbaceous pollen types. This behaviour is well documented, highlighting the 

important role of temperature in initiating the onset of pollen release (Emberlin et al., 2002; 

Khwarahm et al., 2014; Piotrowska and Kaszewski, 2012). However, unlike many other literature 

studies, this relationship often extended into the PSP with many pollen types maintaining this positive 

relationship with temperature (except for 2018). This suggests that rising temperatures following the 

peak-day promoted the release of pollen as well as resuspension. These findings corroborate similar 

trends observed for Betula and Poaceae pollen in the UK (Khwarahm et al., 2014). The result implies 

that maximum air temperature, on the day of measurement, exerts a strong control on pollen count 

through pollen release and resuspension mechanisms. For 2018, Fraxinus, Quercus and Poaceae 

showed negative correlations with PSP temperature recordings. This is largely attributed to a 

commonly witnessed PSP trend of declining pollen concentrations with increasing temperature 

(Khwarahm et al., 2014) 

Sunshine duration is yet another parameter that has been shown previously to promote pollen 

release during the PRP of herbaceous pollen (de La Guardia et al., 1998). However, a notable lack 

of correlation with temperature and sunshine was observed for the Poaceae PRP, removing the peak 

day from this dataset led to strong positive correlations with these variables. This possibly suggests 

that the days surrounding the peak day of the Poaceae MPSs may act differently than the PRP and 

PSP as seen previously by (Smith and Emberlin, 2005) for Poaceae counts in the UK.  

Rainfall and relative humidity also led to a decrease in airborne pollen concentrations during 

PRP and PSP for several major pollen types which is consistent with previous findings (de La 

Guardia et al., 1998). However, the opposite was also observed for average rain concentrations over 

the previous 10 days during the PRP and PSP, and rain during the PSP of Pinus and Poaceae in 2018. 

In the case of the positive correlation during the PRP, this is indicative of the relationship between 

rainfall and the opening of anthers and subsequent pollen release (Hoebeke et al., 2018; Newnham 

et al., 2013). On average, a stronger positive correlation with rainfall parameters was seen for the 

PSP. This could still be influenced by the mechanism of rainfall and humidity promoting anther 

opening etc. in the case of average rain concentrations over the previous 10 days. However, a strong 

positive correlation was also observed for the PSP of Poaceae in 2018 which is linked to the dry and 

warm conditions experienced leading to a reduction in Poaceae pollen due to heat stress and pollen 

production continuing following the return of rain and moisture.  
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3.4.5 Wind analysis of major pollen concentrations 

The importance of wind speed and direction on pollen concentrations has been credited in Ireland 

since initial studies were conducted (McDonald, 1980; McDonald and O’Driscoll, 1980). Although 

positive and negative correlations were observed for windspeed and several major pollen types 

during the MPS, the influence of wind was stronger during the PRP and PSP. Windspeed is an 

important parameter that is essential for facilitating the release of arboreal pollen from catkins (M. 

Sofiev et al., 2013). This accounts for the positive correlation seen between several PRP 

concentrations of tree pollen and windspeeds. Aside from this observation, there was no other 

consistent correlation between windspeeds with a great degree of variation observed for different 

times of the seasons, years, and pollen types. Generally, it can be assumed that positive correlations 

with wind speed are linked with the release of pollen from anthers or transport of pollen to the 

sampling area from other areas, whereas a negative correlation could be characteristic of the removal 

of pollen from the sampling area (Khwarahm et al., 2014).  

To further evaluate the impact of wind speed and direction on the transportation and 

spatiotemporal variation of observed pollen concentration, the geographical origins of total and 

specific pollen types were also investigated for the Dublin sampling location. This is similar to 

previous work carried out by Markey et al., 2022a. Possible sources of long- and short-range transport 

can be evaluated by examining Figure 3.9.  

Betula, Fraxinus and Cupressaceae pollen were seen to predominantly originate from a Nort-

easterly direction at high wind speeds. A recent study regarding the spatial and temporal variations 

in the distribution of birch trees and Betula pollen in Ireland has shown that high concentrations of 

Betula over both Dublin and Carlow originate from air masses coming from the UK (Maya-Manzano 

et al., 2021). This corroborates the origin of Betula pollen although the same may apply to the 

Fraxinus and Cupressaceae. However, it is important not to disregard the influence of local sources 

which have been shown to contribute up to 70% of the pollen variance of one city (Bogawski et al., 

2019; Rojo et al., 2015). Directly northeast of the sampling site is St. Stephen’s Green Park, although 

limited tree surveys exist highlighting the presence of many trees including Betula and Fraxinus, no 

Cupressaceae trees are registered (OPW, 2023) although they do exist within the park as well and 

the surrounding urban area (Xie, 2018). Urticaceae and Quercus pollen showed strong associations 

from the north-to-north east which could also relate to nearby sites such as the botanic gardens, 

situated to the north of the site. Poaceae and Urticaceae pollen showed multiple possible sources – 

likely as a result of multiple local and further sources around the city. Both illustrated a north-

westerly source at high wind speeds which could be connected to the Phoenix park which has a 

variety of tree and plant diversity (Gaughran and Stout, 2020) 
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 In addition, high concentrations of Alnus pollen appeared to be originating from a south-

westerly and south-easterly direction. Other pollen such as Cupressaceae and Pinus also showcased 

similar south easter trends, to a lesser extent. It is possible that pollen originated from forests and 

pastures located south of the City, as shown by the landcover analysis. Other major sources likely 

include the Wicklow Mountains National Park (south of Dublin), previously discussed by Maya-

Manzano et al. (2021).  

Even though the emission of pollen close to the sampling site is largely driven by the 

imminent meteorological conditions, the inclusion of findings from the ZeFir source receptor models 

suggests the influence of pollen originating from other sources further from the site. Future work 

could focus on HYSPLIT back-trajectory analysis to determine the specific origin of these air-

masses, similar to the work that has been done previously by Maya-Manzano et al., 2021 for birch 

pollen. However, in addition to this it is important to consider the representativeness of the analysed 

meteorological data when examining these sources. It is less likely that the majority of 

meteorological data used here will correlate with these distant sources. As a result, it is important to 

consider the connection between different regional meteorological data and pollen dispersion. This 

connection has been well documented (Mikhail Sofiev et al., 2013). In a study by Tampieri et al., 

1977, Castanea pollen transport and dispersion was measured using pollen and meteorological data 

collected from three separate sites. The inclusion of additional monitoring points within Dublin and 

the neighbouring areas could therefore aid in determining the impact of pollen dispersion from 

possible sources discussed above using the ZeFir models and land-cover data. 

Although several significant correlations could be noted and explained between various 

pollen taxa and meteorological parameters. There was a strong degree of diversity witnessed between 

the different years, seasonal periods, locales, and pollen types. Much longer European studies that 

have encompassed decades of data have been able to highlight particular trends for pollen taxa and 

various weather conditions (Hoebeke et al., 2018). In comparison, the shorter monitoring campaign 

conducted herein was greatly influenced by annual variations. As monitoring continues in Dublin 

and elsewhere in Ireland more consistent and apparent trends will likely emerge.  

 

3.5 Conclusion 

The monitoring of pollen at the Dublin site revealed key characteristics around the dominant and 

allergenic pollen taxa that exist here, as well as their seasonal and diurnal trends. The pollen season 

in Dublin is largely bimodal in appearance with a peak in spring dominated by Betula and Fraxinus 

pollen, and a second more intense summer peak appearing in mid-June because of high Poaceae 

concentrations. Early-year pollen commences in late January with the release of Corylus and Alnus 

pollen, with late-season pollen being dominated by Urticaceae and other herbaceous pollen before 

coming to an end in late-September/mid-October. Several allergenic pollen taxa were also recorded 



 

136 

 

in high annual concentrations, especially Betula and Poaceae pollen. The further analysis of this data 

can be used to forecast periods of allergenic exposure which would greatly aid allergy sufferers 

within the city. Preliminary prediction tools were constructed in the form of an updated pollen 

calendar for Dublin – to aid allergy sufferers throughout the year.  

Differences between urban and rural sites were exposed. The urban site in Dublin showed a 

greater diversity in pollen taxa as a result of ornamental use of plants and trees throughout the city, 

whereas, the rural site experienced significantly higher pollen concentrations, particularly during the 

summer months. This was equated to rural grasslands and pastures surrounding the rural site and 

sampler height. The increase of potentially allergenic ornamental tree use within the city was also 

apparent from surveying the ambient pollen data recorded. It is possible that in years to come that 

the allergenic potential of such trees could burden the public as has been shown in other countries. 

As such, documented pollen records might prove a valuable resource.  

The driving meteorological forces behind pollen production and release were also 

investigated, showing variating depending on year and pollen type. Overall, temperature showed a 

positive influence on pollen release with rainfall and relative humidity leading to a decrease in the 

release and deposition of airborne pollen. The PRP and PSP were also investigated – highlighting 

the differences in the impact of meteorology throughout the pollen season. PRPs showed a strong 

association with factors that promote initial pollen release while PSPs were influenced by conditions 

that promoted extended-release and resuspension.  

Wind analysis was further expanded to examine the possible spatiotemporal origins of major 

pollen types in relation to landcover analysis. Possible local sources originating from nearby green 

sites as well as long-range sources such as from the Wicklow mountains and further sources from 

the UK were also discussed.  

In conjunction with the previously published work (Markey et al., 2022a), this chapter 

represents the only in-depth analysis of pollen trends in Dublin and elsewhere in Ireland since the 

late 1970’s.  

3.6 Future work 

During the relocation of the TU Dublin campus, followed by the subsequent transferral of the 

research team to Dublin City University, the Hirst sampler was moved and now resides at the Met 

Éireann headquarters in Glasnevin. There remains several seasons of data that require completion 

and processing. Future work will aim to complete this task as well as comparing the pollen seasonal 

trends between the old and new sampling sites (4 km apart). The two sites represent opposite sides 

of the city. The former site was very much in the centre of the city while the current site is closer in 

proximity to the National Botanic Gardens of Dublin and might experience a greater diversity in 

pollen. As such, future work will focus on assessing any variations in pollen trends, concentrations 
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and taxa to determine if multiple samplers around Dublin city could more accurately account for 

spatial changes in pollen exposure.   

In addition to this, future work will continue to maintain the currently active sampling sites 

around the country as well as establishing several others. Now that the Carlow sampling site has been 

retired, it is likely that future sampling locations will include a representative midlands station as 

well as the further monitoring of other cities such as Galway. Following this, extensive comparisons 

can be carried out between the varying locations of the Irish pollen network as well as the further 

development of prediction tools and forecasting models (preliminary work of which is covered in 

Chapter 4).   
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4.1 Introduction 

Ambient pollen data can be utilised in a range of various applications, the most prominent being to 

improve the warning and treatment of allergy sufferers and those at risk of experiencing adverse 

respiratory health effects due to pollen exposure. Data can be shared with relevant stakeholders 

(medical professionals, agricultural sectors, meteorological services etc.) to improve the diagnosis 

and treatment of allergic conditions, to identify and prevent the spread of invasive plant species and 

diseases as well as improving pollen forecast services. The most rudimentary application of pollen 

monitoring data is to construct a pollen calendar (Oh, 2018). As seen in Chapter 3, a pollen calendar 

is a simple prediction tool composed of a graphical representation of at least 5 years of pollen season 

data for a specific location (Galán et al., 2017). The pollen calendar uses previous seasonal trends to 

estimate when periods of high pollen exposure will likely occur. However, more resolved predictions 

can be made by developing observational-based models by coupling the historical pollen records 

with relevant meteorological parameters.  

Given the previous lack of monitoring data, Irish pollen forecasts are currently determined 

by the University of Worcester using UK data and issued by Met Éireann (Irish meteorological 

service). This might not fully represent the pollen concentrations experienced by the Irish public. 

According to one report, the pollen found in a specific location is only representative of a surrounding 

area of 30 km (Katelaris et al., 2004). This is not a suitable or representative long-term approach for 

the Irish public and so site-specific models for Ireland need to be developed. However, thought must 

be given to the specific pollen models developed. As seen in Chapter 3, there were over 60 pollen 

taxa classified throughout the 2017-2020 monitoring campaign. To aid allergy sufferers, it is often 

more practical to develop models that target specific allergenic pollen classes that pose a critical risk 

to the public.   

The 12 most allergenic taxa as defined by the COST Action ES0603 are Alnus, Ambrosia, 

Artemisia, Betula, Chenopodiaceae, Corylus, Cupressaceae, Olea, Platanus, Poaceae, Quercus and 

Urticaceae, the allergenic potential of which have been well covered in literature (Skjøth et al., 2013). 

Some studies have shown that sensitisation to grasses and Betulaceae pollen (Bousquet et al., 2007; 

Heinzerling et al., 2005; Nae et al., 2021) does exist among the Irish population. However, these 

studies have typically encompassed a wide variety of other known allergens such as dust and animal 

dander. Specific studies focusing on other pollen types (Bousquet et al., 2007; Heinzerling et al., 

2005) are lacking and need to be further explored to assess the impact of potentially allergenic pollen 

from an Irish perspective. Among European studies, the highest degree of sensitisation towards 

specific pollen types is against pollen grains from grasses and the Betulaceae family. Clinically 

relevant sensitisation rates to grass pollen exceeds 50% for the UK with arboreal pollens from the 

Betulaceae contributing to sensitisation rates of between approximately 10-20% (Burbach et al., 

2009). Due to similarities in biodiversity and climate, comparable trends are expected for Ireland.  
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Although grass pollen remains the prevalent allergenic pollen for Ireland, it is possible and 

likely that sensitisation to certain tree pollen taxa, particularly those from the Betulaceae family, will 

increase in years to come. Ireland, at present, would be considered a relatively under-forested 

country. As a result, afforestation efforts in Ireland are currently progressing at one of the highest 

rates in Europe (Buscardo et al., 2008). A number of regulatory schemes have promoted the 

afforestation of many grassland areas in Ireland. Initially, such plans were proposed to improve 

biodiversity and more recently to improve the genetic quality of Irish trees (Teagasc, 2022) and 

combat climate change (Department of Agriculture Food and the Marine, 2020). Several of these 

plans specifically apply to certain trees in the Betulaceae family such as Alnus and Betula and have 

been in operation since the late 1990’s (Teagasc, 2022). A recent, study by J. M. Maya-Manzano et 

al., 2021 has shown that Betula pollen concentrations over Ireland have increased in the last 40 years 

as a result of the concomitant increases in the fraction of birch trees in forest areas as well as the 

ornamental use of birch trees in urban areas and their reaching maturity. Increasing concentrations 

of tree pollen have often been followed by an increase in sensitisation. A Swiss study (Frei and 

Leuschner, 2000) found that over a 30 year period, Corylus and Betula pollen concentrations 

increased notably while herbaceous pollen concentrations remained relatively stable. This was met 

with increased rates of tree pollen allergies, concluding that tree pollen allergy had become more 

important in comparison to grass and herb pollen allergies (Frei and Leuschner, 2000). Increasing 

sensitisation to Betulaceae pollen over the years has also been found in other European countries 

such as Sweden (Warm et al., 2013), Denmark (Warm et al., 2013) and Finland (Movérare et al., 

2006). 

Therefore, this chapter aims to investigate and develop several model types and methods for 

the forecasting of daily Poaceae and Betula pollen using the aforementioned 2017-2020 pollen data 

collected within Dublin. SVM, RF and ANN models were created using the Dublin monitoring data 

for both classification and regression purposes, MLR models were also developed for comparison. 

The combination (Novo-Lourés et al., 2023; Nowosad et al., 2018; Voukantsis et al., 2010b) and 

individual use of these modelling techniques has received much attention and regard in previous 

literature studies, leading to their selection. In addition,  Poaceae and Betula represent 2 of the top 4 

most documented pollen types for forecasting studies, with Poaceae being the single most 

documented (Vélez-Pereira et al., 2021). Numerous studies have evaluated the potential of ANN 

(Lops et al., 2020; Muzalyova et al., 2021; Puc, 2012; Rodríguez-Rajo et al., 2010; Sánchez-Mesa et 

al., 2002; Sánchez Mesa et al., 2005; Voukantsis et al., 2010b, 2010a), SVM (Bogawski et al., 2019; 

Du et al., 2017; Liu et al., 2017), RF (Lo et al., 2021; Navares and Aznarte, 2017a, 2017b; Nowosad, 

2016), and MLR and other standard regression models (Aboulaich et al., 2013; Janati et al., 2017; 

Piotrowska, 2012; Robichaud and Comtois, 2017; de Weger et al., 2014; Zhang et al., 2015) for the 

prediction of Poaceae and Betula concentrations and seasonal trends. Although many of these studies 

encompass numerous years/decades of data that is currently not available for Dublin, there are several 
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studies  which have constructed models using a more comparable number of annual datasets 

(Emmerson et al., 2022; Lops et al., 2020; Nowosad et al., 2018).   

Different aerobiological networks and studies have also previously proposed several 

different classification threshold values of allergenic pollen concentration for use in forecasting 

models. These include Poaceae and/or Betula pollen thresholds in Denmark (Kiotseridis et al., 2013), 

Sweden (Becker et al., 2021; Steckling-Muschack et al., 2021), Italy (Brighetti et al., 2014), Spain 

(Galán et al., 2007), UK (Osborne et al., 2017) etc. However, these values can vary and change as 

they have been found to strongly depend on certain regional conditions such as vegetation and 

climate (de Weger et al., 2013). As forecasts currently come from the UK for Ireland and the two 

countries share similar climates, the UK threshold values for Poaceae and Betula were selected for 

this study. In addition to this, a more simplistic threshold based on the consensus that allergenic 

responses in individuals generally begin at Poaceae/Betula levels over 30 grains/m3 (Corsico, 1993; 

Navares and Aznarte, 2017a) was also used. 
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4.2 Methods 

4.2.1 Pollen and meteorological data collection 

In line with methods discussed in Chapters 2-3, Pollen monitoring was conducted continuously over 

the course of several pollen seasons (May 2017-October 2020) at the previously established Dublin 

site (Old TU Dublin Campus) using a volumetric Hirst sampler. MPS Poaceae and Betula pollen data 

were used in the construction of preliminary forecast models.  

Similarly, meteorological data used was sourced from the Met Éireann website (“The Irish National 

Meteorological Service,” 2023) for the Dublin Airport weather station.  

A series of phenological parameters were also considered, including growing degree days (GDD) 

and previous days' pollen concentrations.  

A list of considered Meteorological and phenological parameters for model construction is provided 

in Table 4.1, below.  

Table 4.1: Model input variables 

Variable Class Input Variables Abbreviations 

1. Pollen Inputs • Pollen concentration of the previous 1 day 

(grains/m3) 

• Average Pollen concentration of previous 

7 days (grains/m3) 

• Average Pollen concentration of previous 

10 days (grains/m3) 

• Poaceae1/ 

Betula.1 

• Poaceae.7/ 

Betula.7 

• Poaceae.10/ 

Betula.10 

 

 

2. Phenological 

Inputs 

• Growing degree days  

(Base Temperature= 2-10°C) 

• GDD_2 – 10 

3. Meteorological 

Inputs 

• Maximum Temperature (°C) 

• Minimum Temperature(°C) 

• Mean Temperature (°C) 

• Rainfall (mm) 

• Rainfall of previous day (mm) 

• Wind direction (Deg) 

• Wind speed (Knots) 

• Mean CBL pressure (hPa) 

• Cloud cover 

• Sunshine duration (hours) 

• Tmax 

• Tmin 

• Tmed 

• Rain 

• Rain_1 

• Wind_d 

• Wind_s 

• Pres 

• Cld_Amt 

• Day_L 
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• Grass minimum temperature (°C) 

• Global Radiation (J/cm2) 

• Relative humidity (%) 

• Mean soil temperature (°C) 

• Evapotranspiration (mm) 

• Potential evapotranspiration (mm) 

• Average Rainfall of previous 7 days (mm) 

• Average Mean Temperature of previous 7 

days (°C) 

• Average Rainfall of previous 10 days 

(mm) 

• Average Mean Temperature of previous 

10 days (°C) 

 

• Gmin 

• Radiation 

• Rh 

• Soil 

• Evap 

• Pe 

• Rain_7 

• Tmed_7 

• Rain_10 

• Tmed_10 

 

4.2.2 Data processing 

Data variables were first examined for the presence of collinearity, which has been found to impact 

both regression and classification models (Chan et al., 2022; Daoud, 2018; Næs and Mevik, 2001). 

Multicollinearity arises when a linear relationship (or correlation) exists between two or more 

independent variables in a dataset (Chan et al., 2022). This causes the standard error of the 

coefficients to increase – making some variables appear to be insignificant when they are in fact 

significant (Daoud, 2018). To remove parameters that are experiencing multicollinearity, variance 

inflation factor (VIF) and tolerance (TOL) were calculated and evaluated. VIF is the reciprocal of 

TOL. Any parameter with a VIF>10 and TOL <0.11 was removed in a stepwise manner prior to 

model construction and deemed to be collinear. These values are popular thresholds used in air 

quality (Ebrahimi-Khusfi et al., 2021). VIF has been used extensively at this limit, or in some cases 

lower, for several aerobiological studies (Cariñanos et al., 2020; Sadyś et al., 2015; Vélez-Pereira et 

al., 2019; Zhang et al., 2015). 

 

4.2.3 Regression models and classification models 

Regression models refer to an algorithm that predicts a numeric output (concentration) that, in this 

case, can be compared directly with the observed and recorded ambient Poaceae/Betula 

concentrations (grains/m3). Whereas, classification models compute a classifier rather than a 

quantitative regression result, fitting results into one of several pre-trained classes (Low, Medium, 

High etc.). Two classification threshold levels were used for both Poaceae and Betula classification 

models. These include a rough threshold of 30 grains/m3, over which is deemed high, and under 
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which is deemed low (30T). The second threshold used comes from those used in the UK (UKT) by 

both the University of Worcester and the UK Met Office, which is fitting since current Irish forecasts 

coming from the UK are also using these levels (Adams‐Groom et al., 2020; Osborne et al., 2017).   

In both cases, the models were trained with 80% of the collected data and tested with the 

remaining 20% 

 

Random Forest (RF) 

RF is an ensemble approach and consists of a combination of tree predictors (Breiman, 2001). It is a 

supervised learning approach that combines the average prediction of a number of randomised 

individual decision trees. This random nature of the approach surpasses the ability of classical 

regression trees by resisting overfitting. One added strength of using the  RF model is that they are 

able to measure variable importance via model training, providing a list in order of most influential 

(Navares and Aznarte, 2017a). RF models were computed using the randomForest (Breiman et al., 

2022) and Caret (Max et al., 2023) packages in R.  

RF models were also used to evaluate the relative importance of model variables by measuring the 

Mean decrease in Gini (MDG) for classification models and the Increase in Node Purity (INP) for 

regression models. MDG measures how much a particular model feature contributes to reducing Gini 

impurity when making splits within the RF (Calle and Urrea, 2011). Gini impurity measures the 

likelihood of misclassification, with lower values equating to better splits within the RF.  

The concept of INP refers to the ability of each variable to reduce the impurity of a node when 

making splits within the RF. The concept of node impurity is closely linked to error metrics such as 

MSE. An increase in node purity corresponds to a decrease in MSE. The INP metric is computed for 

each individual tree, and subsequently averaged across all trees within the RF. The variables 

exhibiting the highest INP values will possess the greatest significance (González et al., 2015). 

 

Support Vector Machines (SVM) 

SVM are a type of mathematical algorithm originally proposed by Vapnik, 2000 that maps input 

variables into a high-dimensional feature space so that the data can be separated and categorised. 

Typically for pollen forecasting, the radial basis function (RBF) kernel is used (Novo-Lourés et al., 

2023). SVM models were constructed using the e1071 (Meyer et al., 2022) and caret (Max et al., 

2023) packages in R.  

 

Artificial Neural Networks (ANN) 
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ANN are forecasting algorithms designed to mimic the information flow of the human brain. It is 

composed of an input (model parameters) and output layers (result), as well as 1 or many hidden 

layers in between. ANN models were constructed using the neuralnet (Fritsch et al., 2019) and caret 

(Max et al., 2023) packages in R 

 

Multiple Regression 

Whereas the other model types were used in both regression and classification capacity, multiple 

regression (MLR) is used exclusively for regression purposes. MLR is an extension of linear 

regression. Linear regression models are generally composed of one dependent and one independent 

variable. Multiple regression on the other hand accounts for one dependent variable and more than 

two independent variables. In this study, MLRs were developed using a backwards-stepwise 

approach from the MASS package (Ripely et al., 2023) in R. 

 

Combined Regression models 

Both mean and median results of combined regression models were also investigated.  

 

Evaluation Metrics 

Several metrics were calculated to evaluate and compare the performance of each regression model, 

these included: the coefficient of determination (R2), Spearman/Pearson correlation coefficient (r), 

root mean square error (RMSE), symmetric mean absolute percentage error (SMAPE), mean 

absolute error (MAE). The interpretation of R2 values was carried out to assess the degree of linear 

association between the predicted and observed results. Spearman rank and Pearson correlation 

coefficients (r) were also computed. Literature states that there is no definitive consensus stating 

which parameters should be used to evaluate model performance in the prediction of exact daily 

pollen concentrations (Šikoparija et al., 2018), with papers often using both Pearson and Spearman 

correlation and a range of other metrics (Csépe et al., 2020). Similar to the r2, Pearson correlation 

measures the degree of linear association between a set of variables, on the other hand, Spearman 

correlation coefficients measure the strength of monotonic relationships. Whereas the RMSE, MAE, 

and SMAPE were used to assess the degree of errors that existed between the predicted and observed 

results.  

In the case of classification models, model accuracy, sensitivity, specificity and kappa values 

are considered for evaluation. Model accuracy refers to the percentage of correct classifications made 

in comparison to the actual observed values. For a given threshold value the sensitivity values 

measure the proportion of values above the threshold that were correctly classified. Conversely, the 
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specificity represents the proportion of values correctly classified below the threshold (Navares and 

Aznarte, 2017a). Cohen's kappa evaluation provides detail on the measure of inter-rater agreement 

(de Weger et al., 2014), ie. Kappa calculates the probability that the classifications determined by 

two evaluators will overlap (Novo-Lourés et al., 2023). 

 

4.2.4 Feature selection  

Hyperparameter 

Hyperparameters for RF and ANN models were determined through grid search analysis of provided 

vector possibilities, similar to work completed by (Navares and Aznarte, 2017a). This was carried 

out using the tune function of the caret package (Max et al., 2023) in R. This was completed for both 

the number of nodes within a hidden layer for ANN development (using a range of values as 

suggested by (Rodríguez-Rajo et al., 2010)), and for mtry and ntree parameters for RF development. 

For SVM hyperparameters, such as cost function and gamma the tune.svm function was used from 

within the e1071 package (Meyer et al., 2022) in R. 

 

Model inputs 

Feature selection of model variables is an integral part of data science and is often overlooked in 

aerobiological studies in favour of popularly used variables from other similar literature works. 

Model parameter selection is often a dubious task and model developers often struggle to isolate the 

most important parameters and remove redundant ones. The random forest model is more robust to 

possessing numerous features and can include them in the model (Lo et al., 2021).  In effort to further 

explore this area of research, a popular feature selection method was deployed. Boruta (BOR) 

analysis was utilised in the development of both SVM and ANN classification and regression models.  

BOR is a wrapper method based on the RF classifier capable of sorting features based on 

importance (this was also examined). The method creates shadow features alongside the actual model 

features. For each inputted model feature, the BOR function creates a corresponding shadow 

variable. A shadow variable is a copy of the true model feature but with its values shuffled randomly 

(Bulot et al., 2023). Therefore, these shadow variables act as a benchmark of importance for the true 

model features. Actual model features are classified as relevant only if their importance measurement 

surpasses that of the maximum shadow variables (Chen et al., 2020).   

 In this study, important model features were determined by using the BORUTA in R (Kursa, 2022). 

An example of a BOR result plot (for Poaceae regression models) is provided below.  
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Figure 4.1: BORUTA result plot for Poaceae regression analysis 

Green boxes represent variables that were determined to be more “important” than the shadow 

variables. Yellow is classified as tentative (has importance similar to their best shadow attributes), 

red is rejected (as less important) and blue represents the shadow variables. During this investigation, 

BOR models refer to models in which only important and tentative parameters are kept prior to 

development. 

 

4.3 Results 

4.3.1 Poaceae models – Regression 

Several regression models were created for the prediction of Poaceae concentration in Dublin using 

the pollen data collected throughout the 2017-2020 monitoring campaign. The performances of the 

differing models were compared using r2, r (Pearson and Spearman), RMSE, MAE and SMAPE. The 

results of each model are provided in Table 4.2, below.  

Table 4.2: Poaceae regression model performance  

Model r2 r  

(Pearson) 

r 

(Spearman) 

RMSE MAE SMAPE 

RF 0.27 0.52 0.39 75.03 60.07 1.01 

SVM 0.11 0.33 0.50 63.61 43.78 0.97 



 

157 

 

SVM-

BOR 

0.036 0.19 0.51 70.68 46.16 0.93 

ANN 0.02 0.14 0.43 69.53 42.31 0.85 

ANN-

BOR 

0.03 0.17 0.54 78.82 42.87 0.83 

MLR 0.05 0.22 0.46 

 

99.36 

 

77.21 

 

1.27 

 

Mean 0.06 0.25 0.55 65.12 41.94 0.77 

Median 0.05 0.22 0.53 66.89 42.55 0.80 

 

Overall, the regression models did not tend to accurately account for all peak periods 

encountered during the test dataset and the inclusion of the added BOR feature selection did not 

appear to improve model performance. RF and SVM models were found to perform the best by 

describing the highest degree of variance, with r2 values of 0.27 and 0.11 determined, respectively. 

Spearman rank correlation was also calculated to examine the monotonic relationship that exists 

between the observed and predicted results. In this instance, the mean of the predicted results from 

the RF, MLR, SVM and ANN models relayed the increasing and decreasing trend of the observed 

results best. Comparisons of the differing forecast models are illustrated in Figures 4.2 and 4.3. In 

the case of RF and SVM, the best model with the highest r2 and lowest RMSE was selected for the 

comparison plots.  

It can be observed that the models somewhat mimic the observed concentration of Poaceae 

pollen. However, some issues are apparent. The prediction models are often unable to accurately 

predict periods of high pollen concentrations, often experiencing a lag of 1 day. When pollen 

concentrations were seen to increase, all models inaccurately predicted the same rise 1 day later. This 

is most apparent for the primary peak in Poaceae concentration observed on the 15th of July which 

was not predicted by any of the regression models to increase until the 16th. However, not all models 

inaccurately predicted all peak days, the ANN model was able to predict the peaks observed on the 

12th, 19th and 21st of July – owing to its high Spearman correlation. No other model accurately 

predicted these peak periods. To further investigate this lagged trend, -1-day lagged models were 

also examined in efforts to capture the peak periods accurately, but these models also suffered from 

the same delay. Dependency on the previous day’s concentration was initially suspected to be 

strongly influencing the model results (owing to the high importance of Poaceae.1 seen from BOR 

and RF analysis), however, upon removing this variable from the test dataset, a lag still remained. 

Therefore, this lagged prediction likely resulted from insufficient training dataset size and relevance.  

In general, the mean and median models performed better than the majority of the regression 

models with lower RMSE, MAE, SMAPE errors encountered and Spearman correlation coefficients 
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of >0.5 calculated, however, r2 values were still considerably lower than the RF models, despite 

having lower error readings.  

 

 

Figure 4.2: Comparison of regression models (MLR, RF, SVM, ANN) for prediction of daily Poaceae 

pollen concentrations 



 

159 

 

 

Figure 4.3: Comparison of Mean and Median regression model results for prediction of daily 

Poaceae pollen concentrations 

 

Since the random forest model had the highest value for r2, the variable importance of the 

different model parameters was further investigated and shown in Figure 4.4(A). It was found that 

the average Poaceae concentration of the previous 10 days was the single most important variable. 

This was followed by the Poaceae concentration observed the previous day, the average temperature 

of the previous 10 days, wind speed and pressure. For comparison purposes, the BOR results were 

also examined, as shown in Figure 4.4(B). In this case, Poaceae concentration of the previous 1 and 

10 days (average), pressure and wind speed were again seen as important. However, the average 

temperature of the preceding 10 days was not, with increased importance also seen for GDD above 

10°C, radiation, minimum temperature, and relative humidity.  
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Figure 4.4: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods - Poaceae 

 

A 

B 



 

161 

 

4.3.2 Poaceae models – Classification 

A series of RF, SVM and ANN classification models were also developed for Poaceae pollen. These 

were constructed using two sets of Thresholds: 

(i) 30T: Low >=0, High >=30 (Rough threshold based on allergic responses – literature) 

(ii) UKT: Low >=0, Medium >=30, High >=50, Very High >=150 (UK Met office) 

In this case, a set of different parameters were used to evaluate model performance as a classifier 

result is predicted. Model accuracy, kappa, sensitivity, and specificity were used to compare the 

different model performances. A summary of 30T and UKT models is described in tables 4.3 and 4.4 

below. 

 

Table 4.3: Model Accuracy and Kappa of Poaceae classification models 

Model and Threshold Accuracy Kappa 

RF 30 0.63 0.27 

RF UK 0.53 0.24 

SVM 30 0.67 0.36 

SVM UK 0.47 0.21 

SVM-BOR 30 0.67 0.35 

SVM-BOR UK 0.61 0.35 

ANN 30 0.63 0.28 

ANN UK 0.55 0.27 

ANN-BOR 30 0.63 0.26 

ANN-BOR UK 0.59 0.19 
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Table 4.4: Model Sensitivity and Specificity of Poaceae classification models 

Model and Threshold Sensitivity Specificity 

RF 30  0.59 0.68 

RF UK: LOW 0.67 0.68 

RF UK: MEDIUM 0.00 0.80 

RF UK: HIGH 0.69 1.00 

RF UK: VERY HIGH 0.43 0.91 

SVM 30  0.61 0.81 

SVM UK: LOW 0.58 0.74 

SVM UK: MEDIUM 0.00 1.00 

SVM UK: HIGH 0.89 0.55 

SVM UK: VERY HIGH 0.00 0.96 

SVM-BOR 30 0.63 0.77 

SVM-BOR UK: LOW 0.71 0.78 

SVM-BOR UK: MEDIUM 0.00 0.80 

SVM-BOR UK: HIGH 0.44 0.97 

SVM-BOR UK: VERY HIGH 0.00 0.92 

ANN 30  0.58 0.75 

ANN UK: LOW 0.88 0.26 

ANN UK: MEDIUM 0.00 0.97 

ANN UK: HIGH 0.44 0.93 

ANN UK: VERY HIGH 0.00 0.98 

ANN-BOR 30 0.62 0.64 

ANN-BOR UK: LOW 1.00 0.21 

ANN-BOR UK: MEDIUM 0.00 1.00 

ANN-BOR UK: HIGH 0.33 0.98 

ANN-BOR UK: VERY HIGH 0.00 0.98 

 

The 30T models often performed better than their UKT counterparts with an increase in 

accuracy ranging from 6-20%. Unlike the previous models, BOR feature selection often led to an 

increase in model performance. From examining the accuracy and kappa readings it was found that 

SVM models performed the best for both threshold types, with the standard SVM model reaching an 

accuracy of 67% with a kappa of 0.36 for 30T and the SVM-BOR model reaching an accuracy of 

61% with a kappa of 0.35 for UKT. The ability of these models to accurately classify results into the 

designated thresholds can be further examined from their sensitivity and specificity values. 
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Essentially high sensitivity values can be equated to low false negative rates whereas a high 

specificity can be equated to a low false positive rate.  

In the case of the SVM model for 30T, a sensitivity of 0.61 and a specificity of 0.81 were 

observed and although these reasonably outperform several of the other 30T models, it is apparent 

that the model is, to some degree, impacted by false negatives. This can be further witnessed from 

examination of the confusion matrix, shown in Figure 4.5. In this case, the model is unable to 

correctly assign all low value days to the low classifier, with only half being assigned correctly.  On 

the other hand, the model performs well in predicting days classified as high. 

 

Figure 4.5: Confusion matrix of SVM Poaceae model (30T) 

In the case of the SVM-BOR model for the UKT, multiple sensitivity and specificity values 

are provided for the 4 assigned classes. Although relatively high specificity values were found, 

sensitivity values were unable to be computed for both the medium and very high classes, giving a 

result of 0. This arises when there are no positive results predicted for that class. From further 

examination of the confusion matrix (Figure 4.6), it can be observed that although the model rather 

accurately predicts the low and high classes, it struggled to correctly determine days of medium and 

very high concentration, with none of these two classes correctly identified. The other UKT models 

all failed to correctly account for these classes, as can be seen in their confusion matrix results – 

provided in Appendix B (Figures B1-B18). 
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Figure 4.6: Confusion matrix of SVM-BOR Poaceae model (UKT) 

Feature importance was also examined using both RF importance ratings and BOR results 

plot for feature selection, the results of which are summarised in Figures 4.7 and 4.8 for all threshold 

types. For the 30T model, RF identified Poaceae concentrations of the previous day as the most 

important variable, followed by average Poaceae concentrations over the previous 10 days, radiation, 

GDD over 10°C, relative humidity and maximum temperature. BOR feature selection also identified 

the importance of these parameters. In the case of the UKT models, the RF measure of importance 

again identified the impact of previous day and average 10-day Poaceae concentrations, radiation, 

GDD above 10°C, relative humidity, with the addition of pressure and absence of maximum 

temperature. BOR further corroborated these findings also highlighting the importance of rainfall 

and maximum temperature.  
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Figure 4.7: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods for 30T models - Poaceae 

A 

B 
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Figure 4.8: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods for UKT models - Poaceae 

 

A 

B 
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4.3.3 Betula models – Regression 

The same types of regression models were also developed and applied to predict the daily 

concentrations of Betula pollen in Dublin. r2, r (Pearson and Spearman), RMSE, MAE and SMAPE 

results of each model are summarised in Table 4.5.  

Table 4.5: Betula regression model performance  

Model r2 r  

(Pearson) 

r 

(Spearman) 

RMSE MAE SMAP

E 

RF 0.31 0.56 0.42 168.13 109. 18 0.98 

SVM 0.37 0.61 0.31 169.13 102.25 1.18 

SVM-BOR 0.41 0.64 0.23 162.86 95.58 1.08 

ANN 0.05 0.22 0.33 182.03 125.75 1.05 

ANN-BOR 0.22 0.47 0.34 163.33 103.88 0.93 

MLR 0.25 0.50 0.44 165.34 101.30 0.99 

Mean 0.34 0.58 0.37 160.37 95.70 0.93 

Median 0.41 0.64 0.46 156.05 91.55 0.92 

 

Although the regression models for Betula tended to perform statistically better than the 

Poaceae regression models, it was seen that they did not accurately account for the main peak period, 

experiencing the same 1-day lag as seen before (Figure 4.9). The test data depicts a peak in Betula 

concentration on the 20th of April, whereas the models tended to predict a delayed peak on the 21st 

of April. Mimicking the same lag experienced by the Poaceae regression models. However, the 

addition of BOR feature selection did improve model performance, leading to increases in r2 and 

decreases in error readings. SVM-BOR and median combined regression models were found to 

perform the best by describing the highest degree of variance, with r2 values of 0.41 and the lowest 

of all error values. Average and median combined models were calculated from the models of each 

type with the highest r2 and lowest errors. The median of the predicted results from the RF, MLR, 

SVM-BOR and ANN-BOR models ultimately predicted the Betula daily concentrations the best, 

outperforming the SVM-BOR model on the grounds of errors calculated. Comparisons of the 

differing forecast models are illustrated in Figure 4.9 and 4.10.  
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Figure 4.9: Comparison of regression models (MLR, RF, SVM-BOR, ANN-BOR) for prediction of 

daily Betula pollen concentrations 
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Figure 4.10: Comparison of Mean and Median regression model results for prediction of daily 

Betula pollen concentrations 

Variable importance of the different model parameters was further investigated by 

examining the RF importance ratings and BOR feature selection shown in Figure 4.11. It was found 

that the average Betula concentration of the previous day was the single most important variable in 

the RF ranking. This was followed by the GDD above 2°C, the average temperature of the previous 

10 days, maximum temperature, pressure, average rainfall over the previous 10 days, sunshine 

duration and relative humidity. For comparison purposes, the BOR results were also examined, 

further corroborating the importance of several of these parameters with the addition of GDD above 

10°C and the tentative exclusion of relative humidity and rejection of sun duration.  
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Figure 4.11: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods - Betula 

 

A 

B 
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4.3.4 Betula models – Classification 

Several RF, SVM and ANN classification models were also developed for Betula pollen. These were 

constructed using two sets of thresholds: 

(i) 30T: Low >=0, High >=30 (Rough threshold based on allergic responses – literature) 

(ii) UKT: Low >=0, Medium >=40, High >=80, Very High >=120 (UK Met office) 

The different classification models were assessed by reviewing several metrics including model 

accuracy, kappa, sensitivity and. A summary of 30T and UKT models is described in tables 4.6 and 

4.7. 

 

Table 4.6: Model Accuracy and Kappa of Betula classification models 

Model and Threshold Accuracy Kappa 

RF 30 0.67 0 

RF UK 0.39 0.23 

SVM 30 0.61 -0.11 

SVM UK 0.44 0.30 

SVM-BOR 30 0.67 0 

SVM-BOR UK 0.5 0.21 

ANN 30 0.56 -0.2 

ANN UK 0.44 0.23 

ANN-BOR 30 0.61 -0.11 

ANN-BOR UK 0.67 0.50 
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Table 4.7: Model Sensitivity and Specificity of Betula classification models 

Model and Threshold Sensitivity Specificity 

RF 30  0.67 0 

RF UK: LOW 0.67 0.67 

RF UK: MEDIUM 0.22 1.00 

RF UK: HIGH 0.25 0.71 

RF UK: VERY HIGH 1.00 0.88 

SVM 30  0.64 0.00 

SVM UK: LOW 0.29 0.91 

SVM UK: MEDIUM 1.00 0.56 

SVM UK: HIGH 0.40 0.85 

SVM UK: VERY HIGH 0.50 1.00 

SVM-BOR 30 0.67 0.00 

SVM-BOR UK: LOW 0.44 1.00 

SVM-BOR UK: MEDIUM 0.00 0.89 

SVM-BOR UK: HIGH 0.00 0.72 

SVM-BOR UK: VERY HIGH 1.00 0.88 

ANN 30  0.63 0.00 

ANN UK: LOW 1.00 0.55 

ANN UK: MEDIUM 0.00 1.00 

ANN UK: HIGH 0.4 1.00 

ANN UK: VERY HIGH 0.75 0.92 

ANN-BOR 30 0.65 0.00 

ANN-BOR UK: LOW 1.00 0.73 

ANN-BOR UK: MEDIUM 0.00 1.00 

ANN-BOR UK: HIGH 0.40 0.92 

ANN-BOR UK: VERY HIGH 1.00 0.93 

 

On average, the majority of classification models for both thresholds performed worse than 

their Poaceae counterparts although the ANN-BOR UKT model performed slightly better than the 

best Poaceae UKT model. The most accurate model was witnessed for the UKT, this was also seen 

when evaluating the kappa values. Cohen’s kappa statistic compares the observed accuracy of results 

to expected accuracy (random chance), a low value indicates no difference between the two, whereas 

a high value indicates a strong difference, and a negative value is interpreted as disagreement. The 

majority of kappa values for both the 30T and UKT models are very low, on average much lower 

than those seen for the Poaceae classification models which themselves were not very high (barely 
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exceeding 0.3). The only Betula model that surpasses this is the ANN-BOR model for the UKT, with 

a kappa value of 0.50 and an accuracy of 67%.  

The 30T models all experienced similar accuracy readings of ~0.6, however, the kappa value 

indicated that these models performed just as well as random chance. The ability of these models to 

accurately classify results into the designated thresholds can be further examined from their 

sensitivity and specificity values. All 30T models exhibit specificity values of 0 – this can be 

translated as the lack of observed true negatives and that all readings in this class were registered as 

false positives. From examination of the confusion matrix of the RF model (joint best 30T model 

along with SVM-BOR), shown in Figure 4.12, it can be observed that issues arose when attempting 

to classify low levels of Betula pollen. 

 

Figure 4.12: Confusion matrix of RF Betula model (30T) 

In the case of the best-performing UKT model (ANN-BOR), multiple sensitivity and 

specificity values were calculated for all assigned classes. Similar to the UKT Poaceae models, the 

medium class gave a sensitivity value of 0, indicating no positive predicted results as shown in Figure 

4.13. From further examination of the confusion matrix, it can be observed that although the model 

rather accurately predicts the low, high very high classes, it struggled to correctly determine days of 

medium concentration, leading to several false results. The only UKT model that accurately predicted 

this level was the SVM model, although this model struggled to assign other classes.  All other 

confusion matrix results are provided in Appendix B (Figures B9-B16). 
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Figure 4.13: Confusion matrix of ANN-BOR Betula model (UKT) 

Feature importance was also examined using both RF importance ratings and BOR results 

plots for feature selection, the results of which are summarised in Figures 4.14 and 4.15 for all 

threshold types. For the 30T model, RF identified GDD over 2°C as the most important variable, 

followed by GDD over 10°C, rainfall of the previous day, Betula concentrations of the preceding day 

and wind speed. BOR feature selection also identified the importance of all these parameters. In the 

case of the UKT models, RF measure of importance again identified the importance of previous day 

Betula concentrations, GDD above 2°C, average temperature of the previous 10 days, maximum 

temperature, average rainfall over the previous 10 days as well as degrees days above 10°C. The 

BOR further corroborated these findings for GDD and previous days' Betula concentration but 

classified the average rainfall of the previous day as more important and introduced the importance 

of the pressure variable while classifying maximum temperature as not important 
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Figure 4.14: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods for 30T models - Betula 

 

A 

B 



 

176 

 

 

Figure 4.15: Variable importance of model parameters indicated by (A) RF model and (B) BOR 

feature selection methods for UKT models - Betula 

 

A 

B 
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4.4 Discussion 

4.4.1 Evaluation of selected models  

There are many benefits of monitoring ambient pollen concentrations, such as understanding 

seasonal/temporal trends and driving factors that promote pollen production and release. However, 

one of the primary applications of pollen monitoring is to develop pollen forecasting models. This is 

particularly the case for allergenic pollen taxa that pose risks to the public. In this case, it was decided 

to develop a number of preliminary regression and classification models to predict daily Poaceae and 

Betula concentrations, which represent the primary allergenic pollen taxa identified in Ireland.  

Although modelling efforts before the commencement of this project were non-existent in 

Ireland, due to the lack of aerobiological studies, there is a unique benefit to this late establishment. 

The popularity of modelling techniques has varied throughout the decades and was initially 

dominated by regression methods due to more complex machine learning methods having not been 

fully established yet (Bringfelt et al., 1982; Galán et al., 1995; Goldberg et al., 1988; Jose María 

Maya-Manzano et al., 2021; Scheifinger et al., 2013; Vélez-Pereira et al., 2021). As the advent of 

more sophisticated and machine learning techniques commenced, a gradual decrease in regression 

techniques was observed. Machine learning methods are now favoured due to their robustness and 

lack of dependence on linear and normal aerobiological data (Vélez-Pereira et al., 2021). As such, 

Irish pollen networks are in the unique position to bypass these unfavourable modelling methods 

which was not possible for other long-established networks whose past modelling advancements 

were hindered by the computational power/methods available at the time. 

Although SVM models have been the least documented in literature, they consistently 

outperformed several of the other models for the prediction of Poaceae and Betula. The best results 

for the 30T classification of Poaceae pollen were observed for the standard SVM model whereas the 

SVM-BOR offered the best performance for the UKT classification levels. In the case of Betula, 

SVM-BOR models performed best for Betula regression and 30T classification models.  

It is generally expected that for locations with limited amounts of ambient pollen data, 

classification models tend to perform best – making it applicable to the limited data available for 

Dublin (2017-2020). However, to correctly determine suitable threshold levels for a particular 

allergenic pollen type, either sensitisation studies (Davies and Smith, 1973; Kiotseridis et al., 2013) 

and/or comparisons between ambient pollen concentrations and hospital/health data are required 

(Becker et al., 2021; Steckling-Muschack et al., 2021). However, due to the shortage of 

aerobiological studies in Ireland, this work has largely gone undone, and the adoption of previously 

established thresholds was required.  

In UKT classification models for Poaceae and Betula, a consistent error in classifying 

medium level pollen concentrations was found, which has been found in similar studies also using 

RF, ANN and SVM models for the prediction of Alnus pollen seasonal trends (Novo-Lourés et al., 
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2023). However, in this case, it could have arisen from unbalanced data as Betula training/testing 

data did not have many actual medium level values. Overall, this was the main reason for the majority 

of sensitivity related issues and is largely linked to the limited amounts of training data. The relatively 

good results recorded for SVM type models contrasts well with a similar studies conducted by 

Nowosad et al., 2018, Voukantsis, Niska, et al., 2010 and Novo-Lourés et al., 2023 who found that 

SVM models were often outperformed by ANN and RF models for the prediction of Betulaceae 

(including Alnus and Betula) and Poaceae pollen. Although this is an interesting contrast to several 

of the well-performing SVM models presented here, it also further corroborates the performance of 

the RF Poaceae regression and Betula ANN-BOR UKT models that substantially outperformed other 

SVM models. These results could suggest the use of SVM models in pollen forecasting when only 

several years of data is available – although further study would be needed to corroborate this.  

Similar analysis of the same pollen model types for Poaceae, Oleaceae and Urticaceae pollen 

concentration prediction, was also carried out in Greece. A total of 15 years of continuous data was 

used in that study (Voukantsis et al., 2010b). Once again, the SVM models for Poaceae were often 

outperformed by ANN and RF. It was in this case that, although all models performed reasonably 

well, it was the combined model of all predicted results that performed the best. This is reflective of 

the median Betula regression model seen here, which outperformed the other regression models 

examined.  

Overall, the models constructed here performed reasonably well with the highest r2 values 

achieved of 0.27 for Poaceae and 0.41 for Betula regression models and accuracies of 61-67% for 

Poaceae and 67% for Betula Classification models. This relatively lower r2 value for Poacea 

regression models can partially be attributed to large variances in annual Poaceae pollen 

concentrations which has been found to impact the forecasting accuracy of such models (Lops et al., 

2020). Although the majority of model performances were lower than many literature studies, this 

study’s main goal was to investigate and compare different model types in hopes of establishing 

preliminary models that can be further improved and built upon as monitoring efforts progress. The 

r2 results therefore showed similar ranges to other such preliminary studies (Nowosad et al., 2018).  

Previous adaptions of preliminary models for Poaceae, Betula and Alnus pollen were also 

developed as part of the EPA POMMEL project (O’Connor et al., 2022). These models also 

encompassed several years of unpublished data used in the production of the pollen calendar in 

Chapter 3. In this current adaption, the decision was made to construct pollen models using only the 

currently available pollen data recorded in Dublin from 2017-2020. This is mainly due to differences 

in distance between the historical and modern sites ranging from 2-12km, as well as changes within 

the urban infrastructure and biodiversity of the city between the sampling years. Studies have found 

that relying on historical data can often overlook and omit changes in pollen seasonality and intensity 

(Addison-Smith et al., 2021; Anderegg et al., 2021), especially if large inconsistencies exist between 

the sampling years.  
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Pollen monitoring sites generate point measurements and, therefore can be considered as an 

approximation of the real-world situation (Bastl et al., 2023). The resulting observation models are 

site specific and experience the some of the same uncertainties described in section 3.4.1 relating to 

spatial and temporal variations. Observational models often cannot be applied to neighbouring 

regions (Jose María Maya-Manzano et al., 2021). However, it is not always achievable to intricately 

expand pollen monitoring networks. In such cases mathematical extrapolations and modelling can 

be used to predict pollen concentration in areas with no sampler using meteorological and landcover 

data (Lo et al., 2021; Oteros et al., 2019; della Valle et al., 2012). More representative city-wide 

forecasts can be developed in the future providing the inclusion of additional sampling points 

throughout the city, if future work shows significant spatial variations between sites due to local 

sources. As such, this city-wide network could provide more accurate forecasts if urban variations 

are observed.  

 

4.4.2 Importance of certain model variables  

The importance of model variables was also investigated for both regression and classification 

models. In both Poacea and Betula models, the importance of the previous day(s) pollen 

concentration was highlighted. This has been found in many other literature studies (Emmerson et 

al., 2022; Janati et al., 2017; Navares and Aznarte, 2017a) providing models with additional data 

regarding the pollen season and summarising the impact other variables had on pollen release during 

previous days (Novo-Lourés et al., 2023). The importance of other weather variable such as 

temperature, sunshine duration, relative humidity and wind speed were also noted and their 

importance to pollen release was also explained in previous chapters and extensively throughout 

literature (Fernández-Rodríguez et al., 2016; Laaidi, 2001). However, one interesting finding was the 

apparent influence of GDD in both Poaceae and Betula models, the inclusion of which has been 

highlighted previously (Lo et al., 2021; Nowosad, 2016). In the case of Betula, the dependence of 

model performance on GDD above 2°C, often trumped that of the previous day’s pollen 

concentration. This high rank can be explained by the temperature stimulation needed by such trees 

before pollen release which requires consecutive daily temperatures above a certain base temperature 

(Dahl et al., 2013). A period of chilling followed by GDD above a certain temperature is also required 

to trigger the flowering phase of grasses (García-Mozo, 2017) adding credence to the importance 

placed on GDD above 10°C for the Poaceae models.  

 

4.4.3 Feature selection 

The forecasting of ambient pollen concentrations is reliant on the representable variables and the 

computational power available. Meteorological conditions, historical pollen records, air quality 

measurements, phenological observations as well as air-mass trajectory/transport parameters are all 
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but a broad classification of parameters that can be included or considered when creating a forecast 

model. As models become more complex and sophisticated it is important to consider the magnitude 

of inputs. High dimensional data often leads to complex models with a multitude of redundant 

relationships and uncertainty, not to mention the computational increase needed to run this algorithm 

(Navares and Aznarte, 2019). Feature selection is a popular method within data science that aims to 

aid and improve model performance by removing redundant variables (Kapadia and Jariwala, 2022; 

Li et al., 2017; Venkatesh and Anuradha, 2019). Although this might not be a big issue for the current 

model system, it might well become an issue in the future and might already be one for more seasoned 

aerobiological datasets elsewhere. Very few literature studies provide much detail on the feature 

selection process carried out (Navares and Aznarte, 2019, 2017b; Voukantsis et al., 2010b) with 

many using any available parameter (Brighetti et al., 2014), and those that do, often duplicate 

variables used in other studies or use “simple human judgement” (Emmerson et al., 2022). 

The BOR feature selection method has gained popularity in other areas of data science (Chen 

et al., 2020) and ambient monitoring. Recently, the use of this method has been shown to improve 

the modelling of tropospheric ozone using ANN (Kapadia and Jariwala, 2022) and in the use of low-

cost particulate matter sensors (Bulot et al., 2023). As a result, BOR was further extended to use in 

aerobiological studies during this investigation. The addition of the BOR feature selection step did 

not seem to offer much improvement for the forecasting of Poaceae pollen, only increasing 

classification model accuracy for SVM and ANN by up to 14 and 4%, respectively, for the UKT 

models. On the other hand, a more notable increase in performance was found for Betula models. 

Classification models experienced an increase of up to 6% and 23% for SVM and ANN models of 

both threshold types with regression models also exhibiting a slight increase in r2. An increase in r2 

of 0.04 for SVM and 0.17 for ANN was noted for regression models, accompanied by a reduction of 

between 7-19 in RMSE. These preliminary results could indicate BOR as a suitable feature selection 

method in select aerobiological studies, following further testing.  

The vast majority of pollen forecasting studies have evolved thanks to the extensive decades 

of monitoring data available in many countries. Ireland on the other hand has only commenced 

continuous monitoring as of 2017. The development of more specific forecast models is largely 

spurred on by the prevalence of allergic disease and respiratory conditions seen among the Irish 

public. Similar short-term studies (Emmerson et al., 2022; Lops et al., 2020; Nowosad et al., 2018) 

however, do exist such as a recent study conducted by Emmerson et al., 2022 which developed 

several short-term daily airborne grass pollen forecasts in several locations around Australia. These 

forecasts and monitoring efforts were also motivated by public health concerns, having come into 

effect following the 2016 thunderstorm asthma event in Victoria (Australia). With such minimal 

amounts of data, these forecasting methods covering only several years of data can be considered a 

foundation for future work and will improve with each year and experience (Emmerson et al., 2022). 

A similar short-term study from the US, covering just 5 years of data also often found that peaks in 
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observed data were not always correctly predicted leading to the conclusion that in order to do so, 

the models need to be further trained with more consistent pollen and meteorological data as 

monitoring continues (Lops et al., 2020).  

 

4.5 Conclusion 

As is the case with much Irish aerobiological research – very little has been conducted historically 

in relation to modelling or forecasting pollen concentrations, with the meteorological service in 

Ireland getting potentially misrepresentative forecasts from the UK. Developing functional Poaceae 

and Betula forecasting systems for Dublin and other major cities/regions in Ireland is therefore of 

vital importance and would allow those suffering from allergies/asthma to take the necessary 

precautions.  

In efforts to improve and commence pollen forecasting systems within Ireland, a series of popular 

regression and classification models were developed using several meteorological and phenological 

parameters to predict Poaceae and Betula pollen concentrations. Although only several years of 

continuous data are available for model training/testing, it is hoped that this work will instigate the 

future curation of operational forecasts with the addition of future years of pollen data. 

Overall, the models constructed here performed reasonably well with the highest r2 (and lowest error 

readings) values achieved of 0.27 for Poaceae RF and 0.41 for Betula Median regression models and 

percentage accuracies of 67/61% for Poaceae SVM (30T) /SVM-BOR (UKT) and 67/67% for Betula 

SVM-BOR (30T) /ANN-BOR (UKT) classification models. Regression models often experienced a 

lag of 1-day for high peak concentrations. This was found to be attributed to insufficient training data 

and is hoped to benefit from the future inclusion of monitoring data. As such, at this time, with 

limited data availability, it is recommended that classification models be used for Dublin. 

These models represent some of the first Dublin pollen forecast models ever created (including those 

previously completed by the author in an EPA project report (O’Connor et al., 2022)). They represent 

an important preliminary step in aerobiological research in Ireland, as often some of the first 

application of aerobiological monitoring data is for forecasting purposes due to the valuable nature 

of the results for allergy sufferers. Furthermore, the inclusion of additional data will only aid in the 

accuracies of these preliminary models and act as a foundation for future forecasting efforts to build 

upon.  

 

4.6 Future work 

At present coarser predictions (classification models and pollen calendars) might be better for end 

users given the lack of extensive monitoring data. The inclusion of extended years of data will further 

improve the performance and applications of these initial models. Other future considerations for 
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model improvement could include the addition of other predictors such as factorised wind direction 

and spatial variables. The inclusion of additional staggered temporal variables such as lagged data 

could also further improve the performance and has been recommended after developing preliminary 

model methods (Nowosad et al., 2018). As such initial future work will aim to discover and include 

other representable parameters that are able to capture more variance in pollen data. This will be a 

big task to undertake, especially when considering other feature selection and model methods that 

could be used. Due to the influence that pollen from the UK has on the concentration of some 

allergenic pollen that reaches Dublin (eg. Betula), transport models and/or the inclusion of air mass 

trajectories into models could help to account for this. In addition, due to the varying meteorological 

impacts noted for different parts of the MPS (explained in Chapter 3), future work would also benefit 

from creating models that account for pollen concentrations at different times within their season eg. 

PRP Poaceae/Betula models which accounts for pollen release and dispersal and PSP models that 

account for continued release and resuspension impacts. Additional pollen types and fungal spores 

could also be investigated for forecasting, including other allergenic Betulaceae pollen (Alnus and 

Corylus) and fungal spores of allergenic/agricultural concern such as Cladosporium and Alternaria.  

Now that the aerobiological research team in DCU is working closely with collaborators in Met 

Éireann, additional support will be available from their modelling department, who are currently 

responsible for the entire island’s weather and marine forecasts. This will be an invaluable resource 

and is likely to propel pollen forecasting advancements in the coming years.  
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Chapter 5: Evaluation of a Real-time Fluorescence 

Sensor for Pollen Detection  
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5.1 Introduction 

With the increasing prevalence of seasonal allergies and the labour-intensive and time-consuming 

laboratory processes needed to analyse the samples collected by the Hirst device, there is now a 

greater need for more timely aerobiological data. This has led to the increase in real-time monitoring 

device, as previously summarised in Chapter 1.  

There are currently a wide variety of such devices commercially available that operate using 

fluorescent and/or optical principals (Tummon et al., 2021a). The use of real-time devices offers 

several improvements over the traditional Hirst volumetric method. For one, data is typically 

available at much higher time resolutions in real-time or near-real-time and significantly reduces the 

intensive preparation, counting and identification processes needed for the Hirst. Through this 

efficient monitoring and dissemination of airborne pollen data, information can be provided to 

relevant stakeholders/medical sectors in a timelier manner. This could lead to improvements in the 

prevention and treatment of allergy-related conditions and thus reduce the burden on health systems 

(Clot et al., 2020). The inclusion of near-real-time pollen measurements is also expected to improve 

current forecasting tools (Sofiev, 2019), making more representable forecasts available to medical 

professionals and allergy sufferers so that immediate care can be taken and periods of high exposure 

can be avoided. Recently, another unexpected improvement of real-time devices was noted amid the 

COVID-19 pandemic. During periods of lockdown, it was often difficult to maintain Hirst 

instruments as a result of restrictions and building closures, an issue that is not seen with automatic 

instruments as do not require weekly manual resets (Tummon et al., 2021b) and data is often available 

externally through servers.  

The availability and reliability of these automatic techniques give way to other areas of study, 

that typically, were unachievable for traditional methods, including the analysis of indoor air quality. 

Real-time devices have the potential to monitor other bioaerosols aside from pollen, such as fungal 

spores, bacteria and potentially viruses and aerosols exuded by individuals, making it applicable to 

monitoring air quality and potential contaminants in healthcare and other sterile environments 

(Fennelly et al., 2023, 2022, 2021; Walshe et al., 2021). Aside from this, such high-resolution data 

for pollen and other PBAP could also improve research efforts in other fields such as investigating 

the contribution and impact of PBAP on the hydrological cycle/radiative forcing and agricultural 

studies studying the spread of invasive plant species and diseases etc.  

This chapter outlines the deployment and evaluation of one such device for pollen 

monitoring. The WIBS-NEO was selected for this campaign. As previously discussed in Chapter 1, 

the WIBS has been used extensively to monitor ambient bioaerosol concentrations in a range of 

different outdoor and indoor environments, including several Irish field campaigns and lab studies 

(Healy et al., 2012a, 2012b, 2014; O’Connor et al., 2013, 2014a). Field studies within Ireland have 

largely been limited to less complex environments with high bioaerosol concentrations such as 
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national parks and bio-waste sites. Nevertheless, these studies have highlighted the potential of the 

WIBS to detect ambient bioaerosols when compared to traditional volumetric sampling methods 

(O’Connor et al., 2014a). Laboratory studies using the WIBS-4 (now surpassed by the WIBS-NEO) 

have also illustrated the potential for the WIBS to discriminate between pollen grains and fungal 

spores, as well as other bioaerosols and aerosols of non-biological origin (Healy et al., 2012a). In 

efforts to determine the suitability of this device to specifically detect pollen grains in more complex 

urban environments, the WIBS was deployed at the Dublin sampling site during a sampling campaign 

in 2019.  
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5.2 Methods 

5.2.1 Site and instrumentation  

Monitoring took place over 41 days (from 07/08/2019 12:00 – 16/09/2019 12:00) at the Dublin 

sampling site, situated on the roof of the former TU Dublin Kevin Street campus in Dublin city 

centre.  

The WIBS-NEO was concurrently located a satisfactory distance away from Hirst 

volumetric sampler, to allow comparison of the results. The WIBS recorded particle counts and 

details of both fluorescent and non-fluorescent particles sampled during the campaign. Details 

regarding a particle’s size, shape (AF) and fluorescence intensity in each of the 3 fluorescent channels 

was recorded. This was later compared to the pollen concentrations optically identified.  

More detail on the specific operation of either instrument can be found in Chapter 2 (Methods). 

 

5.2.2 WIBS data analysis 

A summary of the operation of the WIBS during this campaign is provided below, more detailed 

information on the specific monitoring principles deployed by the WIBS is given in Chapter 2. 

Particles detected by the WIBS-NEO were categorised as fluorescent or non-fluorescent based on a 

predetermined fluorescent threshold (force trigger mode). The WIBS was placed into forced trigger 

mode daily to ensure no large variations in baseline fluorescence were detected. 

Upon determination of the fluorescent fraction, the particles were further categorised 

utilising the Perring nomenclature (Perring et al., 2015). This annotation system categorizes 

fluorescent particles into one of seven types based on their fluorescent characteristics in each channel. 

These categories consider each channel individually (FL1, FL2 and FL3) and all possible 

combinations.  

Various size and fluorescence filters were applied to WIBS particles to extract a 

representative fraction of the observed FAPs indicative of pollen grains. A Pearson correlation test 

was then used to calculate the degree and significance of correlation between the isolated WIBS 

particles and pollen concentrations registered by the Hirst using the nortest (Gross and Ligges, 2015) 

and corrplot (Gross and Ligges, 2015) packages within R (R Core Team 2017). 

 

5.2.3 Meteorological and air quality data 

Meteorological data was obtained from the Met Éireann website (“The Irish National Meteorological 

Service,” 2023). Dublin Weather data was obtained from the weather station at Dublin Airport 

(53°21‘49” N, 06°20’59’’ W). The available parameters were: mean temperature [ºC] (Tmed), 

maximum temperature [ºC] (Tmax) and minimum temperature [ºC] (Tmin), grass minimum 
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temperature [ºC], 2 cm above the ground (Gmin), mean 10cm soil temperature [ºC] (Soil), 

precipitation amount [mm] (Rain), mean cbl pressure [hpa] (Pres), mean wind speed [kt] (Wind_s) 

and wind direction at max 10 min mean [deg] (Wind_d), global radiation [J/cm2] (G_rad), sunshine 

duration [hours] (Day_L), potential evapotranspiration [mm] (Pe), evaporation [mm]  (Evap) and 

relative humidity [%] (Rh). Open access air quality and anthropogenic pollution data including NOx, 

NO, NO2, SO2, CO, PM2.5 and PM10, was collected at nearby sampling sites at Winetavern Street 

and Rathmines (PM2.5 only).  The Winetavern Street sampling site is situated less than 1km from 

the sampling site, while the Rathmines site is located 1.6 km away. The air quality data collected 

from these sites was obtained from the Environmental Protection Agency SAFER open data website 

(EPA Ireland, 2021). 

The normal distribution of the WIBS, Hirst and meteorological/pollution daily data was 

tested using the Shapiro-Wilk test. The results of which showed that most daily data did not follow 

a normal distribution. A Spearman correlation test was selected to calculate the degree and the 

correlation between selected variables using the nortest (Gross and Ligges, 2015) and corrplot (Gross 

and Ligges, 2015) packages within R (R Core Team 2017). 

 

5.3 Results 

5.3.1 Overview of pollen trends 

Over the course of the monitoring campaign, the ambient pollen concentrations recorded at 

the Dublin site were largely dominated by Urticaceae pollen, which represented 78% of the pollen 

identified. There were some small concentrations of Poaceae pollen also recorded, representing only 

11% of the pollen encountered. This is to be expected and is indicative of that time of the year when 

grass pollen season is ending/finished and herbaceous pollen closes out the remaining end of the 

annual pollen season. A time-series plot of the pollen trends seen during the campaign is provided in 

Figure 5.1, below. From examination of these temporal trends, it can be seen that the highest daily 

concentration was recorded on the 25th of August due to the presence of high ambient Urticaceae 

concentrations. A second peak was witnessed again on the 29th of August, followed by a series of 

more minor peaks on the 4th, 7th and finally on the 14th of September. Several early peaks were also 

observed on the 11th, 15th and 17th of August. Again, the majority of these peaks were seen to be 

largely driven by Urticaceae pollen. In comparison, the highest daily concentration of Poaceae 

recorded was seen on the 15th of August. Following this, the overall trend in Poaceae pollen 

concentration lessened, coinciding with the declining pollen season. 
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Figure 5.1: Time series of ambient pollen concentrations during the WIBS-NEO campaign 

5.3.2 Overview of WIBS particle trends 

While pollen concentrations were being monitored by the Hirst, the WIBS-NEO instrument was 

simultaneously recording the size, shape and fluorescent intensity of airborne particles. Throughout 

the campaign a total of 47,396,045 particles were sampled. The fluorescent portion of these particles 

was determined by applying a force trigger threshold/baseline. Initially, the baseline was set to 3 

standard deviations greater than the mean fluorescence intensity in each channel (3δ) during force 

trigger mode. Overall, 86% of particles sampled were classified as non-fluorescent, meaning only 

14% of particles sampled exhibited fluorescence above the determined threshold. This fraction is 

termed FAPs. A time-series of the distribution of fluorescent versus non-fluorescent particles is 

shown in Figure 5.2. Although the fluorescent particles are considerably outnumbered by non-

fluorescent particles, there are two FAP peak periods observed. The first of these occurred on the 

20th of August followed by the highest peak on the 25th of August. Two more successive peak periods 

were also witnessed on the 8th and 14th of September. Although these peaks are representative of all 

FAPs recorded, including those as small as 0.5 µm in size, the peaks on the 25th of August and 14th 

of September do coincide with high pollen/Urticaceae concentrations. Diurnal distributions of total 

FAPs were also investigated (Figure 5.2 (B)), it was found that FAP concentrations peaked in the 

morning at 8:00, with two less intense peak period also found at 14:00 and 18:00.  
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Figure 5.2: (A)Time series of ambient aerosol particles detected by the WIBS-NEO during the 

monitoring campaign, and (B) normalised diurnal distribution of total FAPs 

 

To further investigate the contributing factors influencing the FAP fraction of WIBS 

particles, FAPs were further subdivided into distinct categories based on their fluorescence 

characteristics in each of the 3 channels (FL1, FL2, FL3) (Perring et al., 2015). The contributions to 

each classification are summarised in Table 5.1. B type particles were found to be the most abundant, 

followed by BC and ABC particle classes, together these classes represent over 70% of FAPs 

witnessed. A, C and AB particles were present in lower quantities, while AC type particles 

contributed negligibly to observed FAPs. 
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Table 5.1: WIBS particle distribution (% of total FAPs) using Perring nomenclature 

Particle Class % Contribution  

B 43% 

BC 15% 

ABC 14% 

A 11% 

C 9% 

AB 7% 

AC <0.5% 

 

 To obtain initial estimates of the bioaerosol classes that might be contributing to each 

FAP class, a more detailed analysis of particle characteristics was conducted. A temporal plot of 

WIBS particle classes and heatmaps detailing distributions in AF and size are illustrated in Figures 

5.3 - 5.5. Over the course of the campaign, it can be observed (Figure 5.3) that the majority of particle 

classes were dominated by smaller particles, this is especially clear for periods of high B particle 

concentrations. However, periods of high BC particle concentration are also apparent, especially on 

the days of the 7th and 14th of September. The majority of particle types were dominated by particles 

of size less than 10-15 μm, as shown in Figure 5.4, except ABC particles which were seen to contain 

larger-sized particles. The larger ABC particles greater than 15 μm observed could very well 

represent the coarser fraction of pollen grains observed, especially Poaceae pollen, which represents 

one of the bigger pollen types observed during the campaign. B, AB and BC type particles also 

exhibited notable shifts in particle contributions at larger size and AF ranges (Figure 5.4). Typically, 

particles with lower AF values are indicative of a spherical morphology whereas larger values are 

indicative of more obscured shapes, with a value of 100 representing a perfect rod shape. 

 Many of the particle classes were seen to possess high concentrations of small and 

diversely shaped particles with some appearing more rod-like in shape than any other sizes. Since 

the size resolution of the WIBS-NEO can detect particles as small as 0.5µm in size, it is likely much 

of this AF diversity is the result of bacteria and other small microbes or biological debris. The larger 

particles also see a shift in AF, this is particularly true for ABC particles, suggesting the presence of 

inconsistently shaped large particle formations. This could potentially represent a mix of larger 

bioaerosols, plant debris or clusters of smaller bioaerosols.  
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Figure 5.3: Daily temporal trends of WIBS FAPs (each area within the red dotted line illustrates 1 

day) with relation to size 

 

Figure 5.4: Kernel density distribution of WIBS particle sizes 
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Figure 5.5: Size vs. Asymmetry Factor distribution of WIBS FAP classes 

Up to now, there are no clear suggestions as to which class is influenced by pollen 

concentrations except for that ABC, BC, and AB classes seem to possess particles with larger sizes 

(especially ABC) as shown in Figure 5.4, with BC and B particles also illustrating selective high 

temporal concentrations that could coincide with peaks in pollen concentrations. The WIBS can 

record particles as small as 0.5μm, making it applicable for monitoring other bioaerosols such as 

bacteria. The Hirst on the other hand is limited by its use of microscopic analysis, limiting it to 

detection of particles ~2μm in size (Fernández-Rodríguez et al., 2018). The WIBS and Hirst also 

operate using very different flow rates. The WIBS operates at a flowrate of 0.03 L/min while the 

Hirst operates at a considerably higher flow of 10 L/min. As a result, differing numbers of FAPs and 

pollen grains were sampled by the WIBS and Hirst. In efforts to improve the comparison of the two 

methods, WIBS particles less than 2µm were removed from the collected fluorescent data prior to 

any additional analyses/comparison to Hirst data. This allows for preliminary comparison to pollen 

(and fungal spore) concentrations.  

 Further examination of the average diurnal trends of the classified FAPs provides 

little supporting information on the possible contributing PBAP fractions. As seen in Figure 5.6, the 

average hourly trends of the WIBS particles are rather erratic and do not typically converge with the 

trends observed for pollen. The only exception to this is the slight association between BC particles 

and Urticaceae pollen. The average diurnal trend for BC particles was also seen to peak in the early 

morning and continuously during the afternoon. 
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Figure 5.6: (A) Normalised diurnal concentrations of WIBS FAPs >2µm, and (B) comparison of BC 

and Urticaceae diurnal trends 

 

5.3.3 Comparison of WIBS particle fraction to pollen concentrations  

To further improve comparison efforts between Hirst pollen results and WIBS FAPs, additional size 

and fluorescent filters were applied to isolate these larger particle fractions. This aided in removing 

potentially interfering biological particles such as bacteria and fungal spores that remain even after 

removal of less than 2µm. The fluorescent threshold was also subsequently raised to 6σ and 9σ in 

efforts to remove other less fluorescent interfering particles. Following this, total pollen and 

Urticaceae concentrations were found to correlate the strongest with BC particles greater than 8µm 

in size at 6σ, yielding Pearson correlation coefficients (r) of 0.73. This comparison is illustrated in 

Figure 5.7, below.  In the case of Poaceae pollen, no substantial relationship greater than r=0.5 was 

observed with any of the WIBS particle fractions at any fluorescent threshold. The best correlation 
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for Poaceae pollen was also observed for BC particles greater than 8µm at 6σ (r=0.54). However, 

this isolated fraction of BC particles failed to account for many of the peaks in Poaceae. A slight 

improvement was also seen for slightly larger particles and total pollen concentrations (>10µm, 

r=0.77 for total pollen) but the particle concentrations were significantly lower indicating the loss of 

potentially representative bioaerosols and so the size filter of >8µm was favoured.  

Overall, increasing the florescent threshold from 3σ to 6σ showed only a slight improvement 

between the two instruments. Increasing the fluorescent threshold was found to drastically improve 

the particle number/m3 seen between the two instruments, removing redundant particles or 

interferences. However, several deviations remained, the most obvious being the peak in BC particles 

seen on the 20th of August when pollen concentrations were notably low. This peak illustrates the 

potential limitations in utilising the WIBS for the selective detection of specific pollen taxa. Although 

the isolated BC particles do greatly follow the trend of observed pollen, there are unexplained 

deviations, which may be other biological particles or highly fluorescent interferents. Further 

increasing the fluorescent threshold from 6σ to 9σ does not improve the correlation between BC 

particles and Urticaceae pollen at any size range. Increasing the fluorescent thresholds changes the 

classification pathway of FAPs samples. At the higher threshold, it is observed that some particles 

previously classified as ABC, are now in the BC class, potentially adding non-pollen-like aerosols 

to the fraction, thus reducing the correlation seen when compared to the Hirst counts.  

Although not covered here, it was found that ABC particles followed the trends seen for 

many different types of fungal spores, with larger ABC particles also following similar trends. This 

suggests the larger ABC particles were representative of large clusters of fungal spores rather than 

individual spores.  
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Figure 5.7: (A) Time series of Hirst Pollen counts and WIBS Pollen type particles (Daily) and (B) 

Hirst Total Pollen counts vs WIBS type particles (Daily) and (C) Hirst Urticaceae Pollen counts vs 

WIBS type particles (Daily) 

Despite the promising results seen for the comparison of WIBS BC particles and pollen 

concentrations, it was found that this BC class at sizes greater than 8µm was also indicative of other, 

similarly sized bioaerosols, namely Alternaria spores. The isolated BC fraction was found to have a 

mean size of 10 µm with maximum sizes reaching 20 µm. Although this could suggest the presence 

of Urticaceae pollen, it is possible that other bioaerosols may also be present. Although the real-time 

detection of fungal spores is beyond the scope of this thesis, it was found that this fraction also 

mimicked the temporal trends of Alternaria, with the combined concentrations of total pollen and 

Alternaria yielding a higher correlation with a Pearson coefficient of 0.8 (shown in Figure 5.8). This 

could be driven by the fact that the peak days of pollen and Alternaria occurred at similar times. 

However, at this time it is not possible to differentiate the BC classes further. Efforts were made to 

distinguish between the pollen and spore-related FAP fractions by use of K-means clustering but to 
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no avail. This fraction may be representative of both bioaerosol classes and the narrowing shape of 

Alternaria spores and the potential spherical/rumpled shape of the Urticaceae could be representative 

of the shifts in AF seen for larger BC type particles.  

 

 

Figure 5.8: (A) Time series of Hirst Total Pollen and Alternaria counts and WIBS BC > 8µm (6σ) 

type particles (Daily) and (B) regression plot Hirst Total Pollen and Alternaria counts and WIBS BC 

> 8µm (6σ) type particles (Daily) 
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5.3.4 Correlation analysis between meteorological parameters/air quality and WIBS 

particles 

To assess the influence varying meteorological and air quality parameters have on the detection of 

FAPs, Spearman’s rank correlation analysis was carried out, the results of which are shown in Table 

5.2. The analysis of WIBS classes includes all particle sizes classified at the 3σ threshold.  

Table 5.2: Spearman´s rank correlation coefficients between daily WIBS Particle data and 

meteorological parameters. 

 *significance at the 95% level, **significance at the 99% level 

 

It was observed that the majority of fluorescent WIBS FAP classes exhibited very similar 

and consistent correlations with several of the meteorological parameters. Significant negative 

correlation with minimum temperature, grass minimum temperature and wind speed was recorded 

for B, C, AB, AC, BC, ABC and total fluorescent particles (FL). In addition, a notable positive 

correlation was observed for FAP classes and pressure. Daily trends and regression of such 

parameters are shown in Figure 5.9. Although the current analysis extends down to small FAPs, 

several of these observed correlations remained, even at higher FAP size ranges. It was seen that 

  A B C AB AC BC ABC FL NF 

Tmax -0.06 -0.16 -0.13 0.02 -0.1 -0.07 0.04 -0.11 -0.11 

Tmed -0.23 -0.29 -0.36* -0.19 -0.36* -0.23 -0.2 -0.27 -0.18 

Tmin -0.29 -0.33* -0.43** -0.29* -0.47** -0.28* -0.32* -0.33* -0.14 

Gmin -

0.48** 

-0.66** -0.67** -0.61** -0.61** -0.57** -0.57** -0.66** -0.17 

Rain -0.42 -0.33 -0.49 -0.32 -0.4 -0.22 -0.22 -0.33 -0.28 

Pres 0.32 0.4* 0.45** 0.39* 0.4** 0.28* 0.16 0.36* 0.17 

Wind_s -0.19 -0.39** -0.24* -0.48** -0.43** -0.51** -0.48** -0.4** 0.23 

Wind_d -0.12 -0.1 -0.05 -0.2 -0.1 -0.14 -0.1 -0.11 0.07 

Day_L 0.24 0.2 0.25 0.18 0.17 0.1 0.3 0.19 0.12 

G_rad 0.04 0 0.06 0 0.04 -0.03 0.24 0.03 -0.05 

Soil -0.26 -0.24 -0.33 -0.14 -0.27 -0.09 -0.03 -0.19 -0.21 

Pe -0.1 -0.22 -0.2 -0.19 -0.17 -0.22 -0.02 -0.19 -0.21 

Evap -0.1 -0.23 -0.18 -0.23 -0.20 -0.26 -0.03 -0.2 -0.12 

Rh -0.09 -0.02 -0.16 0.12 -0.01 0.14 0.1 0.02 -0.14 

PM2.5 0.52** 0.52** 0.55** 0.54** 0.65** 0.49** 0.55** 0.58** 0.25** 

PM10 0.60** 0.43** 0.49** 0.49* 0.56** 0.43* 0.36* 0.48** 0.34** 

NOX 0.37* 0.42* 0.29** 0.64** 0.59** 0.53** 0.57** 0.49** -0.12 

NO 0.37* 0.38* 0.27** 0.64** 0.56** 0.53** 0.48** 0.44** -0.11 

NO2 0.32 0.37* 0.25* 0.58* 0.54** 0.49* 0.53* 0.45* -0.14 

CO 0.37* 0.41** 0.37** 0.44* 0.41** 0.14 0.48* 0.39** 0.09 

SO2 0.37* 0.41** 0.37** 0.44* 0.41** 0.14 0.48* 0.39** 0.09 
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even BC particles >8um maintained a significant negative association with windspeed and grass 

minimum temperature. Days with wind speeds greater than 9 knots led to the highest deviations 

between sampling methods for all pollen types. This wind speed is the equivalent to a moderate 

breeze, highlighting the possible environmental limitations of the WIBS in comparison to traditional 

methods. Upon removal of these days from the analysis (resulting 18-day dataset), the Pearson 

correlation coefficient (r) between BC particles and Total/Urticaceae pollen increases from 0.73 to 

~0.84. 

In comparison, few significant correlations were observed for non-fluorescent (NF) particles 

recorded by the WIBS. Correlation analysis with meteorological and air quality parameters was also 

extended to ambient pollen concentrations (Appendix C, Table C1). However, few significant 

correlations were found apart from the expected positive correlation with temperature and sun 

parameters, followed by negative associations with rain and relative humidity. 

 

 

Figure 5.9: Daily trends in FAP and selected meteorological parameters 
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To investigate the possibility of anthropogenic interferences, due to the urban location of the 

sampling site, correlation analysis was extended to locally sourced anthropogenic and air quality 

parameters. The majority of FAP classes showed significant correlation with almost all pollution 

parameters (NOX, NO, NO2, SO2, CO, PM2.5 and PM10). Although it was expected that the ambient 

particle concentrations recorded by the WIBS would correlate well with PM2.5 and PM10, as the 

WIBS samples particles within these size classes, a comparably high correlation was also seen for 

NOX. NOX showed strong correlations to FL1 type particles, particularly AB type particles (r=0.64 

at 3σ with no size filtering applied). Increasing fluorescent thresholds to 9σ, could not remove this 

association with FL1 type particles. Correlation analysis to meteorology was also extended to these 

air quality parameters (Table 5.3) and it was found that NOX and its constituents mimicked the strong 

correlations seen for FAPs. NOX concentrations exhibited similar negative correlations with 

minimum temperature and wind speed as well as the positive correlation with pressure, that were 

seen earlier for FAPs. However, the influence of these anthropogenic sources on WIBS FAPs 

decreased significantly with increasing particle size. It was found that WIBS FAPs less than 2 µm in 

size had the highest correlations with these gaseous pollutants. High r (spearman) coefficients of 

between 0.6-0.7 were observed for NOX with AB, AC and ABC type particles at this size range. AB 

particles illustrated the strongest correlation with NOX (at sizes less than 2 µm) and are presented in 

Figure 5.10, below. 

 

Figure 5.10: NOX and AB particle time-series analysis 
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The correlation between NOX and AB type particles yields an r = 0.7. It can be seen that increases in 

AB particle concentration are often seen to correspond to increased NOX concentrations. It is unlikely 

that these FAPs directly correspond to NOX itself, as it is a gaseous pollutant and more probably 

corresponds to combustion-related particulates and/or secondary organic aerosols (SOA), related to 

the formation and reactivity of NOX. 

Table 5.3: Spearman´s rank correlation coefficients between Air quality and meteorological 

parameters 

 
PM2.5 PM10 NOX NO NO2 CO SO2 

Tmax 0.13 0.14 0.03 0.04 0.01 0.00 0.00 

Tmed -0.09 -0.08 -0.35* -0.35* -0.34 -0.20 -0.20 

Tmin -0.20 -0.21 -0.51** -0.51** -0.48** -0.27* -0.27* 

Rain -0.45 -0.53 -0.24 -0.30 -0.20 -0.36 -0.36 

Gmin -0.35 -0.46** -0.41** -0.43* -0.36 -0.22 -0.22 

Pres 0.27 0.09 0.44** 0.50* 0.42* 0.59* 0.59* 

Wind_s -0.46** -0.20 -0.70** -0.62* -0.71* -0.51* -0.51* 

Wind_d -0.40 -0.38 -0.20 -0.13 -0.19* -0.11 -0.11 

Day_L 0.09 0.41 0.22 0.20 0.22 -0.09 -0.09 

G_rad 0.01 0.29 0.09 0.06 0.11 -0.32 -0.32 

Soil 0.02 0.03 -0.07 -0.16 -0.02 -0.13 -0.13 

Pe -0.09 0.21 -0.21 -0.21 -0.19 -0.44* -0.44* 

Evap -0.12 0.21 -0.23 -0.23 -0.20 -0.51* -0.51* 

Rh 0.04 -0.25 0.33 0.23 0.38 0.24 0.24 

*significance at the 95% level, **significance at the 99% level 

 

Given the presence of significant positive correlations between PM2.5 and PM10 readings 

with WIBS FAPs, and considering the ability of the WIBS to measure the sizes of the particles 

sampled, it was decided to conduct a more comprehensive assessment of the suitability of the WIBS 

as a monitoring tool for PM2.5 and PM10. To do this a mass density conversion was applied to all 

individual particles detected by the WIBS, this included fluorescent particles and non-fluorescent 

particles. For comparison to PM10, WIBS particles were filtered to those that have size 

measurements less than 10 µm whereas for PM2.5 comparisons a filter of <2.5 µm was applied. A 

conversion was required to compare the concentrations sampled by the WIBS (particles/m3) to PM 

mass readings (µg/m3), the volume of the particle was determined from its size reading and a single 

unit density (1g/cm3) was then applied to find the rough mass of each particle. Once converted, the 

mass reading of the WIBS particles can be compared to the PM10 and PM2.5 readings as shown in 

Figures 5.11 and 5.12.  
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Figure 5.11: Comparison of WIBS particle masses with PM2.5 measurements 
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Figure 5.12: Comparison of WIBS particle masses with PM10 measurements 

The mass of extracted WIBS particles seemed to follow the general trends of the PM2.5 and 

PM10 readings. Improved results were noted for PM10 over PM2.5. One considerable point of 

inflexion between the comparison of ambient PM readings and WIBS particle masses is the notable 

reduction in mass seen for the WIBS readings, however, this is likely explained by inaccurate unit 

density values used as well as the differing heights of the samplers. Whereas the WIBS was situated 

at roof level, PM readings were taken 1-2 km away, closer to ground level. In addition, the WIBS is 

capable of detecting particles as small as 0.5 µm in size, while the PM10 and PM2.5 monitoring 

devices can record particles smaller than this. As a result, the WIBS mass conversions for PM2.5 and 

PM10 can be considered incomplete measurements due to the absence of these smaller particles. 
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Considering these differences, the WIBS particle masses performed rather well as proxies for PM10 

and PM2.5 measurements. 

  

5.4 Discussion 

5.4.1 FAP trends observed over the sampling campaign 

Over the course of the monitoring campaign, it was found that airborne pollen concentrations were 

mainly dominated by Urticaceae pollen which is representative of established Irish pollen trends for 

that time of the year (Markey et al., 2022a). While pollen concentrations were monitored by the Hirst, 

the WIBS-NEO instrument measure airborne aerosol particles. The concentration of FAPs identified 

by the WIBS-NEO was found to be considerably higher than those previously found in other Irish 

campaigns. Previous studies have been conducted at similar times of the year at more pristine rural 

sites, such as the WIBS campaign conducted by Healy et al., 2014 in 2010 from 02/08/2010 – 

02/09/2010 at Killarney National Park. Since urban areas such as Dublin, typically experience lower 

concentrations of ambient bioaerosols compared to rural areas (due to the notable reduction in plant 

cover), it would be expected that a higher amount of FAPs would be observed at the rural site. These 

higher FAP concentrations may be indicative of interfering sources. Although, other factors such as 

instrument sensitivity, which can vary from WIBS to WIBS as well as from different generations 

(WIBS-4 to WIBS-NEO) (Forde et al., 2019) should be considered. However, similar trends have 

been noted previously by Yu et al., (2016) when comparing urban and rural FAP concentrations. 

This literature study concluded that increases in FAPs could very well be attributed to the presence 

of combustion-related particles present at the urban site (Yu et al., 2016). The prevalence of 

potentially anthropogenic/interfering particles is not unexpected at the Dublin site considering the 

urban location and the declining pollen season. 

The FAPS monitored by the WIBS were heavily dominated by B type particles (43%). 

Although B type particles are representative of some biogenic sources (Savage et al., 2017), it is 

more commonly linked to anthropogenic sources and other interfering particles (Gabey et al., 2011; 

Toprak and Schnaiter, 2013; Twohy et al., 2016). This further corroborates the initial suspicions of 

anthropogenic interferences. Previous studies have cautioned that any atmospheric sampling in 

which B type particles dominate the fluorescent fraction should be examined carefully for likely 

interferents (Hernandez et al., 2016). This warning comes as a result of B type particles only 

marginally contributing to PBAP fractions (Hernandez et al., 2016). BC (15%) and ABC (14%) type 

particles were the next prevalent FAP types found. Both of these classes have been associated with 

the presence of airborne PBAP, most notably, pollen grains. Several laboratory and field studies have 

highlighted the contribution of various pollen types to both BC and ABC categories (Hernandez et 

al., 2016; Hughes et al., 2020; Markey et al., 2022b; Savage et al., 2017). 
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The majority of FAP types were dominated by small particles with the exception of ABC, 

BC and AB particles which were seen to contain larger sizes, this was particularly true for ABC 

particles. It has been shown that fluorescence intensity and fluorescence type is a function of particle 

size and as such, larger particles tend to favour the ABC category (Savage et al., 2017). AB type 

particles showed notable fluorescence in the FL1 channel for both particles present at small size 

ranges of less than 5µm as well as at the coarser size ranges recorded for the AB fraction (10-18µm). 

This general trend could be representative of ambient fungal spore concentrations. Fungal spore 

classification has often been associated with strong FL1 fluorescence (Hernandez et al., 2016; 

Hughes et al., 2020; O’Connor et al., 2015; Savage et al., 2017). Other types, namely AC were seen 

to contribute negligibly to the fluorescent fraction (0.3 %). This limited presence of AC particles has 

been well-documented in previous WIBS studies (Hernandez et al., 2016; Perring et al., 2015; Yu et 

al., 2016). 

Examination of diurnal trends provided little information regarding the potential identity of 

the contribution of PBAP to FAP classes. The majority of WIBS diurnal trends almost perfectly 

mirrored those observed by Yu et al. (2016), which were shown to track well with ambient 

concentrations of black carbon, especially for FL1 classes. This observation adds further credence to 

the presence of interfering particles at the Dublin site. The only exception to this is the association 

between BC particles and Urticaceae pollen. The average diurnal trend for BC particles was also 

seen to peak in the early morning and continuously during the afternoon as observed in Figure 5.6. 

This trend has been routinely observed for Urticaceae and grass pollen (Kosisky et al., 2010; del Mar 

Trigo et al., 1996). When compared to the normalised diurnal trend of Urticaceae pollen, BC particles 

seem to follow a similar trend, accounting for both the minor morning peak and afternoon behaviour. 

 

5.4.2 Evaluation of WIBS instrument for pollen detection 

As yet, there is no standard procedure to which to compare real-time monitoring instruments (Pereira 

et al., 2021). Many studies compare the performance of real-time pollen monitoring instruments to 

the Hirst as it is traditionally the most widely used pollen monitoring method. However, caution 

should be taken when comparing such methods due to the uncertainty in measurements produced by 

the Hirst (Pereira et al., 2021) as well as any differences introduced by the varying operating 

principles. For fluorescence-based instruments like the WIBS, it has also been speculated that some 

bioaerosols may fluoresce too weakly to be detected in certain circumstances (Healy et al., 2014). 

As such, comparisons should be made to the Hirst to assess how real-time instruments function under 

different ambient conditions and to determine any limitations associated with the real-time method. 

A series of size and fluorescent filters were applied to the FAP data in order to isolate pollen-

like FAPs. The temporal profiles of these FAPs were then compared to those seen by the Hirst. 

Following this, it was found that the best association between the WIBS and Hirst instruments for 
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pollen monitoring was found for BC type particles at the 6σ threshold at sizes larger than 8µm. BC 

particles were largely classified at size ranges less than 20µm at low AF values less than 9, indicating 

the detection of spherical particles. The observed size range of this fraction (particles between 9-20 

µm in size) is indicative of Urticaceae pollen. The various individual species making up Urticaceae 

pollen exist in the atmosphere at sizes between 9 and 20 µm (Sorsa and Huttunen, 1975). Although, 

the main Urticaceae type in Dublin is Urtica dioica (15-30 µm) is slightly larger (Healy et al., 2012a) 

it is possible that this late in the season that Urticaceae pollen may be slightly smaller due to 

dehydration experienced during dispersion (Pacini, 2000). Particle sizing by the WIBS is based on 

Mie theory which estimates particle size from the scattering of light assuming particles are spherical. 

Inaccuracies in sizing can therefore occur as particles become less spherical. In addition to this, Mie 

theory can vary in accuracy depending on the particle size and wavelength of light used 

(Kolokolnikov et al., 2019). As such, a slight disparity between the size calculated by the WIBS and 

that of the actual recorded particle can occur. This explains why slightly smaller particles were seen 

to correlate the best with Urticaceae pollen. Previous studies have suggested particles with high FL2 

and FL3 fluorescence intensities (BC) and lower AF values correlate well with both pollen and fungal 

spores (Healy et al., 2012a, 2014; Hernandez et al., 2016; O’Connor et al., 2014a; Savage et al., 

2017; Sodeau et al., 2019). This fraction could therefore represent smaller pollen grains such as 

Urticaceae or similar-sized fungal spores, particularly considering the peak in BC particles noted on 

the 25th of August, coinciding with the highest observed Urticaceae.  

However, notable deviations were observed between the two instruments. This can be 

attributed to the differing operating principles of the instruments. The enhanced flow rate of the Hirst 

makes it more efficient at sampling faster moving and larger particles, such particles are unaffected 

and thus under-sampled by the lower flow rate of the WIBS, resulting in under-sampling of certain 

bioaerosol fractions by the WIBS. Several laboratory studies have investigated the counting 

efficiency of the WIBS for particles of varying sizes. In both cases, for the WIBS-4 and the WIBS-

NEO, a greater sampling efficiency was determined for smaller particles less than 2 µm (Healy et 

al., 2012b; Lieberherr et al., 2021b). This means the WIBS-NEO could have under sampled larger 

particles such as pollen which accounts for the slightly lower ambient concentrations seen for the 

isolated BC particles when compared to ambient pollen concentrations sampled by the Hirst. The 

Hirst sampler is designed to constantly align itself with the prevailing wind direction. Consequently, 

it may as a result provide differing estimates of bioaerosol concentrations in comparison to less wind-

orientated samplers like the WIBS (Heffer et al., 2005; Miki et al., 2019). This disparity could 

potentially account for the absence of specific pollen peak periods observed by the WIBS. It is 

possible also that other biological and chemical interferents are influencing the analysis – resulting 

in peaks seen by the WIBS that are not observed by the Hirst. 

Although the Hirst represents the standardised method to compare the WIBS-NEO to, it is 

far from ideal, and various studies have identified several uncertainties (Adamov et al., 2021) such 
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as significant differences between Hirst samplers positioned close together (Tormo Molina et al., 

2013), inaccuracies in calculating flowrate (Oteros et al., 2017),  sampling efficiency (Käpylä and 

Penttinen, 1981; Oteros et al., 2017; Rojo et al., 2019; Ŝikoparija et al., 2011), and human errors 

when counting (Cariñanos et al., 2000; Galán et al., 2014). The resulting data also suffers from high 

degrees of uncertainty due to the limited sample area analysed and use of extrapolation (Galán et al., 

2014; Ŝikoparija et al., 2011). This can lead to an overall measurement uncertainty of at least 30% 

(Adamov et al., 2021; Gottardini et al., 2009). Uncertainties using the WIBS are less known, due to 

its limited field use in comparison to the Hirst. By comparing the WIBS to a known and standardised 

method, limitation of its use in various settings can be identified. Despite several literature 

investigations evaluating the potential of the WIBS to be used as a real-time monitoring device 

(compared to the Hirst), little discussion is often given on the relative uncertainties that have appeared 

in relation to this (Healy et al., 2014; Markey et al., 2022b; O’Connor et al., 2014a; Tummon et al., 

2021a). This introduces some concerns regarding the readiness of such a device for pollen 

monitoring. For one, although the majority of pollen grains sampled during the current WIBS-NEO 

study (Urticaceae) were within the size limits of the device, the coarser fraction of pollen often 

exceeds the maximum size range of the WIBS-NEO (30-35 µm). This is mirrored in previous studies 

that have favoured relatively simple ambient environments with only several dominating pollen types 

of agreeable sizes such as Yew pollen which is typically seen at sizes less than 27 µm (O’Connor et 

al., 2014a). As such the WIBS is currently incapable of detecting the full spectrum of ambient pollen 

within the air. This is a particular issue when considering known allergenic pollen types of concern 

that typically exist above this range such as Japanese cedar and many species of Poaceae.  

The current study as well as other works conducted as part of this PhD (Markey et al., 2022b) 

have shown that even when additional fluorescent emission bands are added to the WIBS, only broad 

classes of pollen can be  detected. Compared to other popular real-time pollen devices such as the 

Rapid-E, Poleno and BAA500, which have all been shown to be able to relatively accurately 

differentiate various pollen taxa, the specificity of the WIBS is greatly limited. Literature studies 

using the BAA500 have yielded multiclass accuracies of over 90% for the identification of 14 

different pollen types ranging from arboreal and herbaceous sources, the lowest accuracies were seen 

for Populus (73%) and Alnus (64%) pollen (Oteros et al., 2020). The Rapid-E device has also shown 

promising results, being able to detect and differentiate 5 of 11 pollen taxa with accuracies of over 

80% and has shown robustness and reproducibility in varying locations (Šauliene et al., 2019). 

Similar studies using the Swisens Poleno has also illustrated promising potential for more in-depth 

pollen monitoring – being able to identify 6 of 8 pollen taxa with an accuracy exceeding 90% 

(Sauvageat et al., 2020). Compared to these other methods the WIBS is very limited and has been 

shown to possess further uncertainties regarding the reproducibility between instruments and model 

iterations. These other real-time methods operate using various principles as discussed in Chapter 1 

with classification of pollen taxa being made in real-time using trained machine learning algorithms. 

Traditionally, WIBS analysis has favoured a more simplistic and unsupervised approach, however 
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more recent studies have also investigated the possibility of using similar supervised learning 

methods, however these too focussed on broad classification of pollen versus other bioaerosol classes 

(Ruske et al., 2017).  

Several studies have also collocated and/or compared a number of real-time devices 

(Lieberherr et al., 2021a; Maya-Manzano et al., 2023; Tummon et al., 2021a). In one such case where 

WIBS was included in a pollen monitoring campaign comparing various real-time device to each 

other and to the Hirst. Limitations were put in place to restrict analysis to total pollen due to the 

limited specificity of  instruments such as the WIBS and KH-3000-01 (Tummon et al., 2021a). In 

this particular literature investigation, no single device outperformed the rest. Varying degrees of 

agreement were seen between the real-time devices and the Hirst. This was largely attributed their 

varying abilities to identify different pollen taxa as well as applying classification algorithms that 

were not originally developed for total pollen (Tummon et al., 2021a). Aside from this total pollen 

study, the sole use of the LIF principles used by the WIBS can be considered too restrictive for taxa 

specific pollen monitoring. As a result, future work will focus on further incorporating additional 

real-time devices such as the Swisens Poleno into the current Irish pollen network. The Swisens 

Poleno Jupiter offers the combine benefits of LIF and holography for pollen identification and has 

illustrated some promising initial results (Ruske et al., 2017).  

 

5.4.3 Potential interferents  

Although efforts were made to reduce the impact of interferences, evidence of other contributing 

factors to the BC pollen-type fraction was noted. Efforts were made to remove other interfering 

bioaerosols by applying a size filter representative of pollen. However, larger bioaerosols such as 

large fungal spores like Alternaria could be also impacting the analysis. Correlation for the isolated 

BC fraction and Alternaria spores was also observed. This introduces additional uncertainty to the 

connection between the BC fraction and pollen. It is possible that this BC fraction could be 

representative of both Alternaria and Urticaceae pollen as the highest correlation was seen for the 

sum of Alternaria and total pollen concentration with the BC fraction (r =0.8). However, using the 

current setup there was no way to further differentiate this fraction.  

Improved separation could be achieved with the inclusion of additional fluorescent channels 

such as those previously suggested, for the detection of chlorophyll (O’Connor et al., 2014b, 2011; 

Pöhlker et al., 2013). The inclusion of such fluorescence detection channels could aid in the 

differentiation of grass and other herbaceous pollen such as the major pollen types witnessed during 

this campaign. Although the presence of chlorophyll in photosynthesising plants is well known, the 

same is not known for pollen grains. Pollen grains lack the presence of chloroplasts making the 

presence of chlorophyll unexpected. Despite this, several studies have highlighted the presence of 

chlorophyll fluorescence when examining the autofluorescence and fluorescent lifetimes of grass and 
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other herbaceous pollen taxa (O’Connor et al., 2014b, 2011; Pöhlker et al., 2013). Therefore the 

presence of chlorophyll in these pollen grains can exist in the form of freely bound chlorophyll bound 

to the pollen cell wall or bound to flavoproteins (O’Connor et al., 2014b; Pöhlker et al., 2013) .  

Detecting the presence of chlorophyll and other plant specific fluorophores could further 

differentiate pollen types from other bioaerosols such as fungal spores since fungal spores do not 

possess chlorophyll. Another campaign conducted under this PhD project assessed just this (Markey 

et al., 2022b). A modified WIBS instrument was deployed at a semi-urban site in Saclay, France. 

The WIBS-4 model was modified to include two additional detection bands (FL4 and FL5) targeted 

to detect the emission maxima of chlorophyll-a fluorescence (~670 nm) across the wavelength range 

of 600–750 nm using two excitation sources (280 nm and 370 nm). The study found that the addition 

of the FL4 and FL5 channels allowed for the improved differentiation between tree (R2 = 0.8), 

herbaceous (R2 = 0.6) and grass (R2 = 0.4) pollen as well as for fungal spores (R2 = 0.8).  

During this modified WIBS study, the inclusion of this additional fluorescent data also 

improved unsupervised k-mean clustering possibilities. Earlier investigations dismissed the viability 

of k-means clustering for WIBS data analysis because it often resulted in groups of similar sizes 

(Robinson et al., 2013). Nevertheless, a recent demonstration of its effectiveness in distinguishing 

various pollen types using data from a different fluorescence-based bioaerosol sensor has renewed 

interest in its potential (Swanson and Huffman, 2018). The incorporation of FL4 and FL5 channels 

introduced supplementary dimensions that could distinguish between FAPs originating from various 

sources. This potential enhancement suggests that k-means clustering may be a more suitable 

approach for analysing WIBS data than previously believed, providing additional fluorescent 

intensity is included. Markey et al., 2022b found that utilising k-means clustering could present a 

time-efficient alternative that maintains effective differentiation between pollen and fungal spore 

concentrations, especially when incorporating the FL4 and FL5 channels. However, due to the lack 

of additional fluorescent data in this current study, k-means clustering attempts were unsuccessful.  

Although the emission channels of the WIBS are selected for the specific detection of 

biomarkers present in bioaerosols, several studies have highlighted potential interferents that can also 

contribute to the fluorescence signals in these channels (Savage et al., 2017). Generally, these 

interferences originate from anthropogenic sources, the presence of which would not be unexpected 

at the urban sampling location in the heart of Dublin city centre. Such interferents include polycyclic 

aromatic hydrocarbons (PAH), humic-like substances (HULIS), mineral dust, SOAs and black 

carbon (Savage et al., 2017; Yue et al., 2016).  The effects of potentially interfering aerosols can be 

reduced by increasing the initial fluorescent threshold - from 3σ to 6σ and 9σ. Increasing the 

fluorescent threshold in this manner has been shown to significantly reduce the interference from 

non-biological aerosols but not affect the relative fraction of bioaerosols detected by the WIBS 

(Savage et al., 2017). Interfering particles linked to the anthropogenic emissions of NOX, CO and 
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SO2 were also observed during this campaign. These particles likely came from combustion-related 

origins or via SOA formation using these gaseous pollutants. However, increasing the fluorescence 

threshold and size filter was found to reduce the association between the WIBS FAPs and these 

suspect combustion-related particles. Although these chemical interferences correlated well with 

WIBS FAPs at sizes smaller than 2 µm, some chemical interferences such as soil, dust and soot 

particles have been found to produce aerosols of up to 10 µm in size (Gabey et al., 2011). These 

particles could potentially interfere with the observed BC FAPs, representing peaks that were not 

accounted for from comparison to aerobiological data. 

5.4.4 Influence of meteorology/air quality on detection  

Meteorological conditions such as strong wind speeds have been seen to inhibit the ability 

of the WIBS to successfully sample pollen (O’Connor et al., 2014a). Spearman correlation analysis 

between WIBS FAPs and meteorological parameters showed a notable negative correlation with 

wind speeds, further corroborating this finding. As a result, the sampling efficiency of the WIBS is 

likely to be greatly inhibited by wind speeds. This was found to be true even at larger particle sizes 

for BC type particles, thus, improved results were observed when days of moderate wind speed were 

removed from the analysis. This could be explained by the low flow rate of the WIBS being unable 

to efficiently capture fast-moving aerosols during periods of high wind speeds. A notable negative 

correlation between temperature and grass minimum temperature during this period could well be 

indicative of declining pollen concentrations. One reason for this decline in FAPs could also be 

related to the significant correlation seen between grass minimum temperature, rain and wind speed 

which are drivers for the transport and deposition of certain bioaerosols (Brągoszewska and 

Pastuszka, 2018; Davies and Smith, 1974; Hart et al., 1994; Oliveira et al., 2009). A notable positive 

correlation was also observed for FAPs detected by the WIBS with pressure. Such trends with 

pressure have been well documented in past literature for a myriad of pollen and fungal spore types 

(Kruczek et al., 2017; O’Connor et al., 2014c), potentially indicating a degree of contribution by 

bioaerosols to the FAP fraction. 

Since the WIBS measures the intrinsic fluorescence of a particle, it can detect other particles 

that are not biological in nature. Considering the urban location of the sampling site, the likelihood 

of chemical interferents is higher than for previous Irish WIBS campaigns which were mainly 

conducted in less atmospherically diverse environments. NOX and its derivatives were the more 

prevalent of these pollutants recorded during the sampling period. The negative correlations between 

NOX, minimum temperature and wind speed as well as the positive correlation with pressure have 

been noted previously (Arain et al., 2009; Harkey et al., 2015), including in a study from 1998 

conducted in Dublin (Delaney and Dowding, 1998). NOX is strongly associated with the production 

of SOAs and can be used as a proxy for particulate emissions from both car exhausts and 

homes/industries. The general diurnal trend witnessed for total FAPs sampled by the WIBS (Figure 
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5.2 (B)) initially illustrated comparable trends to NO2 emissions recorded for the same year, with 

peak periods directly coinciding with increasing NO2 concentrations seen between 7:00-8:00 (Perillo 

et al., 2022). Following further analysis, a strong correlation was seen for NOX and FL1 type 

particles. Previous studies using LIF techniques have shown similar trends for combustion-type 

particles (Miyakawa et al., 2015; Yu et al., 2016). A study by Miyakawa et al., (2015) showed that 

the detection of fluorescent aerosols, which possess similar temporal trends to NOX indicates the 

presence of PAHs or their derivatives. These particles were shown to interfere with the selective 

detection of PBAP using UV-LIF methods, even at larger particle size ranges (Miyakawa et al., 

2015). As a result, it can be inferred that the collected FAPs are representative of both ambient 

bioaerosol and anthropogenic aerosol concentrations. 

Only a limited number of research studies have explored the WIBS characterisation of 

known anthropogenic aerosols. In a specific investigation conducted by Savage et al., 2017, various 

non-biological samples were examined. The study found that soot-type particles primarily displayed 

A-type fluorescence, while smoke-type samples were predominantly categorised as B-type particles  

(Savage et al., 2017). The observed strong correlation observed for AB-type particles and 

combustion-related pollution such as NOX and its derivates suggests that some FAPs sampled during 

the campaign exhibit strong resemblances to the smoke and soot particles generated during wood 

burning, as identified in the research by Savage et al., 2017. 

Another similar study conducted by Yu et al., 2016b investigated the impact of combustion-

related particles on the real-time detection of fluorescent aerosols using the WIBS-NEO. It was found 

that when using LIF instruments like the WIBS near polluted sites (such as a busy city centre), 

fluorescent measurements experience heavy interference from anthropogenic aerosols, notable for 

combustion particles such as black carbon. Substantial contributions to the FL1 channel were found 

for combustion-related particles. Therefore, the correlation witnessed here in Dublin between AB 

particles and combustion-related sources further supports previous results that some FAPs might 

originate from anthropogenic/combustions processes (Miyakawa et al., 2015; Toprak and Schnaiter, 

2013; Yu et al., 2016). Other interfering aerosols not compared to the WIBS in this study due to the 

absence of co-located monitoring data such as mineral dust, HULIS-like compounds and other SOAs 

have also been shown to possess fluorescence and could also be contributing to fluorescent fractions 

of the sampled WIBS particles (Pöhlker et al., 2012; Savage et al., 2017; Toprak and Schnaiter, 

2013). 

These findings indicate the potential use of the WIBS as a general air quality monitor that 

can broadly detect anthropogenic and biological aerosols. To further extend this possibility to PM 

monitoring a density conversion was applied to all WIBS particles (fluorescent and non-fluorescent) 

and filtered for particles less than 2.5 µm and 10 µm for comparison with PM2.5 and PM10 

measurements. Results correlated reasonably well with PM10 and PM2.5 despite the differences in 

sampling heights and size fractions sampled by the WIBS. The WIBS underestimated the mass of 
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PM readings, however, this could be a function of height compared to lower-level PM monitoring 

devices and the sampling ability of the WIBS. Studies have shown that PM measurements are 

inversely proportional to sampling height (Ding et al., 2005; Yadav et al., 2013). In this scenario, the 

influence of meteorological and air quality factors on the performance of the WIBS has highlighted 

the potential of using the WIBS or future versions as a comprehensive air quality monitoring tool. 

Such a system could have the capacity to identify and potentially categorise both biological and 

anthropogenic particles. 

 

5.5 Conclusion 

This campaign represents the first real-time pollen monitoring study in Dublin city and aims to 

investigate possible limitations of the real-time sampler used. The WIBS-NEO was deployed from 

07/08/2019 to 16/09/2019 to assess its potential to identify and detect atmospheric concentrations in 

a relatively complex ambient environment. Although a good correlation was observed for total pollen 

and WIBS BC particles (>8 µm, at 6σ), the presence of other interferences was apparent. Other larger 

bioaerosols such as Alternaria spores were also associated with these particles. Deviations in WIBS 

FAP trends also indicate the presence of other interfering particles. This analysis shows that the 

WIBS-NEO is not exclusively capable of differentiating pollen from these interferences.  This is 

largely due to the limited excitation and emission wavebands used by the WIBS instrument. The 

inclusion of additional fluorescent detection bands and emission sources could aid in this 

development and has been shown for other urban sites, such as Paris 

Analysis of meteorological and air quality data illustrated the importance of certain 

conditions on FAP production, some of which showed strong similarities to combustion-related 

interferences which were also studied.  The impact of wind speed on the ability of the WIBS to detect 

some particles was also observed, increasing wind speed was shown to negatively impact the 

sampling efficiency of the WIBS. This was especially true for smaller particles, although negative 

correlations with wind speed were also observed for relatively larger particles. This highlights a 

potential environmental limitation of the WIBS – especially in areas known to be affected by wind. 

With regards to potentially interfering non-biological interferences, notable correlations with 

combustion-related sources and PM (PM2.5 and PM10) were observed. Although these findings 

could forewarn users against future urban deployment of the WIBS due to the apparent influence of 

anthropogenic emissions, this might also indicate the possibility of the WIBS extending its 

applications to general aerosol monitoring (bioaerosol and other). However, further testing is 

required to fully evaluate the true potential of the WIBS to act as an overall air quality monitoring 

device 
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5.6 Future work 

Ultimately, the WIBS-NEO instrument was not exclusively capable of undoubtedly identifying 

pollen concentrations from other biogenic and anthropogenic interferences. It is for that reason that 

future work should experiment with other instrumentation such as more diverse fluorescent 

instrumentation or holographic instruments. Initially, work with the WIBS-4+ might be able to 

further evaluate the ability of the WIBS to differentiate between biological and anthropogenic 

sources. This model differs by the addition of 2 extra detection bands. Similar work has been carried 

out by the author previously (Markey et al., 2022b). In an upcoming (currently unpublished) work, 

the WIBS-4+ was examined for its ability to differentiate between biological and anthropogenic 

aerosols more specifically than what has been done for the WIBS-NEO, in a semi-urban site in Paris. 

Promising results were found, indicating the additional channels could also aid in detecting similar 

combustion-related aerosols (such as black carbon) separately from bioaerosols. It would therefore 

be interesting if the same could be applied/tested in Dublin – to further examine the environmental 

applications/limitations of the WIBS family of instruments.  

In addition to this, the aerobiology team at DCU (working in conjunction with Met Éireann) has 

recently gained access and full use of a Swisens Poleno Jupiter. Although the aims currently focus 

on training the Poleno with representable local pollen samples of known taxa. Work is planned to 

further examine whether the addition/impact of anthropogenic exposure can vary results obtained by 

the Poleno. A fraction of this possibility will be explored in Chapter 6, however, training studies 

using the Poleno will offer a more accurate account of anthropogenic impacts on a more diverse 

fluorescent instrument, while also examining any changes to holographic characteristics.  
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Chapter 6: Spectroscopic and Surface Analysis of 

Pollen – A Lab Study 
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6.1 Introduction 

Aerobiology is reliant on the time-consuming and accurate identification of pollen grains which is 

made worse by the delays incurred by the traditional volumetric Hirst method. This has led to the 

advent of various real-time devices based on a variety of methods such as image recognition, 

fluorescence, light scatter or a mixture of all these parameters (Crouzy et al., 2016; Erb et al., 2023; 

Kawashima et al., 2007; O’Connor et al., 2014c, 2014a; Oteros et al., 2020; Šauliene et al., 2019). 

Essentially, two criteria exist for the evaluation of such methods: (i) comparable identification quality 

to traditional methods and (ii) timely output availability (Depciuch et al., 2018). In all cases, these 

traditional and real-time methods are limited to higher taxonomic levels such as families of pollen, 

as genus and species-level identification are often not possible. This level of identification offers 

several drawbacks such as not being able to differentiate between pollen species that are optically 

inseparable but have differences in allergenicity – such as Urticaceae (Vega-Maray et al., 2006), 

Cupressaceae (Barberini et al., 2015) and even Poaceae (Jung et al., 2018). Identifying grass pollen 

at the genus level holds significant importance as it has been shown that different genera can vary in 

their capacity to induce allergic reactions (Hrabina et al., 2008; Jung et al., 2018; De Weger et al., 

2011). As pollen allergies continue to rise and pollen seasons worsen (D’Amato et al., 2007) the 

identification of allergenic pollen species becomes more vital and thus the identification resolutions 

of available instruments should increase.  Therefore, there is a clear need for more sensitive methods 

of pollen monitoring (Kraaijeveld et al., 2015). To date, this level of analysis has largely been 

conducted using various molecular methods and has been shown to greatly improve the possibility 

of detecting invasive species, plant pathogens as well as specific clinically relevant allergenic species 

of pollen and fungal spores (Banchi et al., 2020). However, these molecular methods can be costly 

and require biochemical training and expensive equipment (Zimmerman et al., 2016).  

These problems can be solved by Fourier transform infrared spectroscopy (IR). One major 

advantage of using IR for pollen analysis is the quick analysis and no need for any pre-treatment 

steps or extractions (Zimmermann, 2018). As previously mentioned in Chapter 2, IR is used to 

measure the vibrations of different chemical functional groups within a sample. Absorbances at 

different infrared wavelengths are indicative of vibrational frequencies of different chemical bonds, 

providing information on the chemical composition of the sample. Vibrational spectroscopic analysis 

of pollen offers an alternative approach to pollen differentiation by providing detail on a pollen’s 

biochemical ‘fingerprint’. The resulting spectra detail the presence of lipids, proteins, carbohydrates, 

water etc. (Kenđel and Zimmermann, 2020). IR has been used extensively in recent years for the 

analysis and differentiation of pollen samples and has achieved more accurate classification (species 

level) than optical microscopy and real-time devices (Depciuch et al., 2018; Diehn et al., 2020; 

Zimmerman et al., 2016). The detailed compositional changes that are not apparent from microscopic 

analysis of pollen grains also provide information on environmental conditions experienced by the 

samples. Spectroscopic studies have highlighted the differing spectral features of pollen exposed to 
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adverse conditions such as heat stress (Lahlali et al., 2014), urban pollution (Depciuch et al., 2017, 

2016; Zhao et al., 2016) as well as differences between the same pollen types sampled from varying 

locations (Bağcıoğlu et al., 2017; Zimmermann et al., 2017) and different years (Bağcıoğlu et al., 

2017). 

While changes in pollen chemical composition have been linked to exposure to air pollution 

and different levels of urbanisation, this work has mainly focussed on the effects of gaseous 

pollutants. Several studies have investigated the effects of pollution on the IR spectral properties of 

pollen (Depciuch et al., 2017, 2016; Zhao et al., 2016). These studies have largely focussed on 

sampling pollen from unpolluted and polluted environments and comparing spectral features – 

concluding any differences to be the result of anthropogenic exposure. However, the degree of these 

differences is also likely influenced by changes in location – which has been shown to exist when 

devoid of pollution exposure. To further investigate the chemical and structural changes that occur 

to pollen grains following release and transport in a polluted environment, a series of lab studies were 

conducted. This has focussed on exposing pollen to various gaseous (ozone and car fumes), 

particulate (ash and dust exposure) and environmental (hydration) conditions and analysing any 

changes that are noted.  

To further examine the changes that can occur under different conditions/environments, 

samples were also analysed using fluorescent confocal microscopy. This section of the study is aimed 

at assessing whether changes in pollen fluorescence, as a result of environmental conditions, have 

the potential to impact current real-time detection methods (that use LIF), such as the Poleno and 

WIBS. Although initial evaluations of current real-time instruments offer promising results, it is vital 

to continue to fully understand the capabilities of these technologies in differing environments. 

Conclusions from the previous real-time chapter (Chapter 5), highlight the potential interferences 

and limitations of such real-time techniques in adverse and urban environments.  
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6.2 Methods 

6.2.1 Pollen samples 

Pollen samples for IR analysis were either purchased from Bonapol or collected from local foliage 

surrounding the DCU campus/nearby North Dublin area. A detailed description of each pollen used 

is provided in Table 6.1. Efforts were made to speciate the pollen types being collected, where 

possible. If any doubts remained, taxonomical identification was made to the genus level (denoted 

as sp.).  

Table 6.1: Pollen samples used in IR analysis and source 

Pollen Sample Sourced 

Alnus glutinosa (L.) Gaertn. Collected in Dublin 

Betula pendula L. Collected in Dublin 

Corylus sp. Collected in Dublin 

Fraxinus excelsior L. Bonapol 

Lolium perenne L. Bonapol 

Pinus sp. Collected in Dublin 

Plantago lanceolata L. Bonapol 

Platanus x acerifolia (Aiton) Willd. Bonapol 

Quercus robur L. Bonapol 

Taxus baccata L. Bonapol 

Urtica dioica L. Collected in Dublin 

 

The collection and storage procedures used for both tree and grass/herbaceous pollen samples 

collected from the Dublin area are discussed in detail in Chapter 2. 

For IR and fluorescence analysis of exposed samples, Betula pendula samples were chosen 

for the study. Betula pollen was chosen due to its allergenic prevalence across Europe and elsewhere. 

Considerable quantities could also be collected rather easily compared to other allergenic pollen taxa 

such as Poaceae. Betula pollen was collected near Dowth Avenue (53°21'34.5"N 6°17'13.0"W) in 

North Dublin at the onset of inflorescence and used for all exposure scenarios.  

 

6.2.2 Betula pendula exposure scenarios  

Control Pollen 

Control pollen refers to the pollen sampled directly from the catkin, devoid of any heat treatment or 

exposure as per the standard method given in chapter 2. 
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Hydrated Pollen 

A small sample of Betula was hydrated using a similar method to Castro et al., 2010 - by placing it 

on a wet filter paper and incubating for 1 hour at 30°C. The original method proposed a 30-minute 

incubation period. However, following microscopic analysis of the hydrated sample at the 30-minute 

mark, it was clear that the sample was not yet fully hydrated and so the incubation time was extended 

until the Betula pollen had a notable full-hydrated appearance.  

 

Dried Pollen 

A sample of Betula pollen was dried on a filter paper overnight at 30°C to ensure excess water 

removal with no changes in pollen surface structure or composition, that may arise at higher 

temperatures.  

 

Pollen exposed to dust/ashes 

Pollen samples were exposed to known ash samples generated in the lab/obtained from suppliers. A 

small sample of pollen followed by a small sample of ash (wood ash, turf ash or coal ash – generated 

by combustion of known fuel sources) or dust (Saharan dust obtained from Swisens) were added to 

a small sample tube and agitated for 10 minutes to promote mixing. Following this, the polluted 

pollen samples were examined under light microscopy to ensure coagulation of particulates had taken 

place. The removal of unbound ash/dust was aided by sieving smaller particles from the contaminated 

sample before analysis. To produce pollen grains that the majority of which contained at least 1-2 

adsorbed particulates, an excess of dust/ash was required – far exceeding typical ambient 

concentrations. This was done to ensure the majority of pollen grains tested were representative of a 

“polluted Betula pollen grain” which has been shown to carry on average of 2 ± 1 particles per grain 

(Choël et al., 2022a). 

 

Pollen exposed to O3 

Samples of unexposed (control) and exposed Betula pendula pollen were obtained from collaborators 

at the University of Lille, France. Pollen originally collected in 2019 was exposed to O3 at 

concentrations of 130±5 ppb for 16 hours. In this case, the control pollen used was a pre-exposed 

sample of Betula pendula from Lille.  

 

Pollen exposed to Car exhaust fumes 
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A sample of Betula pollen was also placed into a sample chamber and exposed directly to a petrol 

car exhaust for 10 minutes. After which the pollen sample was collected and later evaporated at 30 

degrees for up to 2 hours to remove any heavy moisture from the sample introduced during exposure 

– to more accurately mimic ambient exposed pollen. 

 

6.2.3 IR spectroscopy and data analysis 

IR spectra were acquired using an ATR IR spectrometer and the resulting spectra were pre-processed 

using Savitzky Golay EMSC, as previously detailed in Chapter 2.  

Pre-processed spectral data were utilised to examine the chemical/compositional similarities 

among the individual pollen samples (general comparison of different pollen types as well as 

comparison of control Betula pollen to exposed samples), this was done by employing principal 

component analysis (PCA) and hierarchical clustering (HAC). HAC analysis and dendrograms were 

constructed using the Euclidean distance matrix measurements and Ward distance (Zimmermann et 

al., 2015b).  

Typically, PCA was applied to non-derivatised data for comparison to average spectra – in 

order to determine areas of interest from principal component loading values. HAC was then applied 

to the more complex derivatised data. Although the derivatised spectra can be difficult to visually 

critique compared to the non-derivatised spectra, they offer several benefits. Derivatisation typically 

enhances peak resolution and improves sensitivity which can make small spectral differences more 

apparent and is favoured for clustering. These processing and data analytics steps were adopted from 

various studies by the Zimmermann research group, who have extensively analysed pollen and fungal 

spores by IR (Kenđel and Zimmermann, 2020; Zimmermann, 2018; Zimmermann et al., 2015a, 

2015b; Zimmermann and Kohler, 2014). 

All processing and data analytic steps were carried out using R. 

 

6.2.4 Sample imaging – fluorescence microscopy 

Pollen exposed to various conditions was further analysed with a Leica sted super-resolution confocal 

microscope using a 405nm excitation laser and 410-750 nm emission range. The resulting images 

were further analysed using ImageJ software by Fiji. A more detailed description of these processes 

is provided in Chapter 2.  

The intensity of autofluorescence of the pollen grain surfaces was calculated as the mean 

intensity per unit area of the extracted pollen grain using maximum projections from Z-stack images. 

The fluorescence intensity of each sample type (n=40 pollen grains) was plotted in the form of box 

plots using R software and ggplot2 package. The normality of sample types was also assessed using 
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the Shapiro-Wilks test. Overall, all datasets were found to contain at least one variable illustrating 

non-normal distributions, as a result, non-parametric comparison tests were used to compare the 

differing sample fluorescence intensities to each other and a control (pure-unexposed pollen) sample.  

Differences between sample fluorescence were analysed using the Kruskal- Wallis test and followed 

by a Dunn's test for multiple pairwise comparisons. While the Kruskal-Wallis test is used to 

determine whether there are statistically significant differences between two or more groups, it does 

not specifically describe which groups are significantly different from each other. In essence, the 

Dunn’s test can be considered as an extension or a post hoc test to be used following the rejection of 

a Kruskal-Wallis test and involves performing pairwise comparisons between each independent 

group to determine which groups are statistically significantly different. In some cases, only two 

samples could be compared (exposed: (ozone or car exhaust exposed pollen), and unexposed pollen), 

in this case, the Mann-Whitney U test was used for the pairwise comparison. 

 

6.3 Results and Discussion 

6.3.1 Comparison of various pollen taxa by IR spectra  

Throughout literature, the use of vibrational spectroscopy for the analysis of the chemical 

composition of pollen has been well documented. Studies have favoured analysing a wide variety of 

species and taxa of both pollen and fungal spores (Bağcıoğlu et al., 2017; Baʇcioʇlu et al., 2015; 

Kenđel and Zimmermann, 2020; Zimmerman et al., 2016; Zimmermann et al., 2015b) as well as 

individual studies on select pollen types, including Poaceae (Diehn et al., 2020), Betula (Depciuch 

et al., 2018), Corylus (Depciuch et al., 2017), Ambrosia (Zhao et al., 2016) and Artemisia (Depciuch 

et al., 2016) pollen, from a myriad of locations/environments. Several studies have even utilised IR-

microscopy to probe the differences that exist between the composition of differing parts/orientations 

of individual saccate pollen grains (Zimmermann et al., 2015a). During this current study, an initial 

replication of such work was carried out to assess the ability of IR analysis to differentiate between 

11 of the most common pollen taxa present in the Irish environment and to determine the spectral 

features responsible for such differentiation.  

The IR spectra of each pollen sample were investigated for the presence of various spectral 

features between 800-1900 cm-1. Within this spectral range, various regions can be attributed to the 

presence of different components such as lipids, carbohydrates, proteins and sporopollenin units 

(Zhao et al., 2016). The appearance and general ratios of these signals are the defining features used 

to differentiate between various pollen types. However, before discussing the regions of importance 

between the 11 pollen types samples, a general overview of IR band identifications will be covered 

to highlight typical pollen band allocations. The provided IR spectra for Quercus robur will be taken 

as an example, as seen in Figure 6.1. The Quercus sample was chosen for this analysis as it contained 

a wide variety of spectral bands seen in many of the other arboreal and herbaceous pollen samples.  
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Figure 6.1: IR spectra obtained from the ATR analysis of Quercus robur pollen 

The region between 1800-1500 cm-1 indicates the presence of C=C and carbonyl groups. The 

peak seen at 1743 cm-1 corresponds to the carbonyl vibration of esters (Lahlali et al., 2014; Pappas 

et al., 2003), indicating the presence of intracellular lipids (Depciuch et al., 2016; Zimmermann, 

2010). The next peak appearing is a broad band seen at 1640-1606 cm-1. This band likely represents 

multiple overlapping bands resulting from the presence of C=C and carboxylate groups (-COO-) 

(Pappas et al., 2003; Prdun et al., 2021). However, this band can also be attributed to the presence of 

proteins via C=O amide stretches and/or H-O-H vibrations (deformation) from water  (Baʇcioʇlu et 

al., 2015; Mularczyk-Oliwa et al., 2012; Prdun et al., 2021). The next band at 1544 cm-1 is likely 

comprised of N–H bending and C–N stretching from the presence of proteins (Depciuch et al., 2016; 

Hong et al., 2021; Prdun et al., 2021). The band in the region of 1437 cm-1 comes as a result of CH2 

bending and, CH3 deformations (Bağcıoğlu et al., 2017; Gottardini et al., 2007; Zimmerman et al., 

2016) belonging to lipid, protein and carbohydrate fractions (Zimmermann, 2018, 2010). The next 

band at 1378 cm-1 indicates the presence of OH, COH, COO-, CH3 bending and CH2 

wagging/twisting (Mularczyk-Oliwa et al., 2012), commonly resulting from the presence of 

sporopollenin in conjunction with several other bands (Baʇcioʇlu et al., 2015). The band at 1230 cm-

1 is assigned to the presence of –OH in-plane bending as well as C–O stretching vibrations from ester 

and amide carboxyl groups (Pappas et al., 2003; Zimmermann, 2010). Several bands can also be 

indicative of aromatic ring vibrations – mainly seen at 1515, 1167 and 831 cm-1 (Zimmermann and 

Kohler, 2014). The final few bands at 1042 cm-1 and 987 cm-1correspond to the stretching vibrations 

of C–OH and C–O–C groups present in carbohydrates, whereas the bands at 922 cm-1 and 830 cm-1 

are indicative of b-glycosidic bonds and a-glycosidic bonds, respectively (Baʇcioʇlu et al., 2015; 

Pappas et al., 2003). As such, this final arrangement of bands can be correlated with the presence of 

carbohydrates and sugars.  
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Figure 6.2: Combined spectra of various pollen samples investigated by IR-ATR analysis 

The majority of pollen samples investigated contain varying magnitudes of these vibrational 

bands which can be seen in the combined spectrum shown in Figure 6.2. Analysis of individual pollen 

taxa can be found in Appendix D (Figure D1 –D11). It can be seen that generally speaking the 

composition of various pollen species can be considered to be relatively consistent. Although the 

majority of grouped samples illustrate similar compositional features there are notable differences 

seen for Taxus baccata and Pinus pollen. They both illustrate notable absences of bands at ~1540 

cm-1 which is seen in the majority of other samples. Similar spectral trends have been seen for other 

Taxus (Zimmermann, 2010) and Pinus species (Zimmermann et al., 2015a) and are related to changes 

in protein composition, specifically the amide II band. Additional differences between the spectra of 

the various pollen types can be further identified by examining the PCA (Figure 6.3) and princip 

component (PC) loading plots (Diehn et al., 2020). Figure 6.4 shows the loadings of the first and 

second PCs which explained over 73% of the total variance between the pollen samples. The PCA 

applied to the IR data reveals that the primary differences between spectra arise from fluctuations in 

the bands linked to proteins, carbohydrates, and sporopollenin (Kenđel and Zimmermann, 2020). 

From an examination of the PCA biplot in Figure 6.3, it can be seen that Pinus, Taxus, 

Lolium, Plantago and Urtica pollen all show mostly positive score values with PC1, and the 

remaining pollen types all show negative values with PC1. In comparison, Quercus, Platanus, Pinus 

and the majority of Fraxinus pollen show positive score values with PC2, with the remaining pollen 

samples illustrating negative values. Similarities between the pollen samples within the Betulaceae 

family (Alnus, Betula and Corylus) were also visible which all show strong negative values with 

PC1, and neutral values with PC2 and are clustered close together. It has been shown previously that 

pollen from the same family share common chemical features (Kenđel and Zimmermann, 2020). 

Similarities are also witnessed for Platanus and Quercus pollen and to a lesser extent for Plantago 

 

Lolium perenne 
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and Lolium pollen. Loading plots can be used to determine the contributing factors to each PC and 

have been used in this manner for several pollen analysis studies (Zhao et al., 2016; Zimmermann et 

al., 2015a, 2015b). According to the loadings plots (Figure 6.4), the most prominent differences (seen 

as intense peaks) between the spectra exist in the ~1605-1700 cm-1 (PC1), ~1500-1600 cm-1 (PC1) 

and 1475 cm-1 (PC2) regions which are mainly assigned to differences in protein compositions 

(Diehn et al., 2020; Kenđel and Zimmermann, 2020). Changes associated with sporopollenin 

structure were also witnessed for areas close to 1605 cm-1 (PC2), 1169 cm-1 (PC2) and 833.5 cm-1 

(PC2). Many of these sporopollenin bands are associated with phenyl ring vibrations (Kenđel and 

Zimmermann, 2020). Weaker changes in carbohydrate and lipid content were also observed at ~920 

cm-1 (PC2), ~833.5 cm-1 (PC1 and PC2), and ~1741 cm-1 (PC1 and PC2) etc. Overall, it can be seen 

that PC1 mainly led to the differentiation of pollen samples based on protein content and 

composition, whereas PC2 was more strongly influenced by changes in the sporopollenin structure. 

Although the exact chemical composition of sporopollenin has yet to be clarified in literature, it is 

known to be a biopolymer, made of phenylpropanoid sub-units (Blokker et al., 2006), which are 

linked to UV-B protection. The composition of which is also known to vary depending on species-

specific production pathways (Baʇcioʇlu et al., 2015), further corroborating the differential power 

found in this study.  
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Figure 6.3: PCA biplot of 11 pollen species analysed by IR-ATR analysis 
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Figure 6.4: PC loadings plot of PC1 and PC2 

 HAC was also carried out on the spectral data of the differing pollen types to examine 

similarities and differences of the underlying features. The HAC dendrogram is shown in Figure 6.5 

and was constructed using second-derivative spectral data. Good separation between the different 

pollen types is clear, with all samples clustered accordingly. Similarities can again be seen in the 

close proximity of the Betulaceae pollen clusters. Ultimately, second derivative data provides a good 

separation of the different taxonomic pollen samples. However, non-derivatised data was chosen for 

spectral and PCA/PC loadings analysis due to the ease of comparison and interpretation. This work 

further supports this method process initially suggested by Zimmermann, Tkalčec, et al., 2015. 

Overall, IR analysis of common Irish pollen types showed clear separation based on spectral features 

and slight differences in chemical composition.  
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Figure 6.5: HAC dendrogram of second derivative processed spectra of 11 pollen types analysed by 

IR-ATR 

  

6.3.2 IR analysis of pollen exposed to differing hydration conditions. 

Pollen grains undergo various stages of hydration, dehydration and rehydration during their 

production, release and dispersal. There are 5 main phases in pollen development and each one is 

subject to changes in hydration (Firon et al., 2012). Pollen initially develops inside the anther, 

surrounded by a nutrient-rich locular fluid, during which the grain becomes hydrated. This fluid is 

then either reabsorbed or lost through evaporation prior to anthers opening (Pacini et al., 2006), 

following this the mature pollen grain undergoes dehydration. As the anther undergoes dehydration, 

it opens, releasing pollen. Up to this point, the water content of pollen is generally well-covered in 

literature, although variations to this general process can be expected for plants of differing types 

and environments (Firon et al., 2012; Pacini et al., 2006). Typically, most pollen species are partially 

dehydrated prior to anther opening but several species such as Urticaceae and Poaceae remail 

partially hydrated with no mechanisms to prevent water loss (Dahl et al., 2013). These pollens are 

often quite spherical in shape a lack furrows (colpi) and may experience wall collapse due to water 

loss. However, after release of pollen from the anther, the literature becomes less certain as 

environmental uncertainty is experienced. The hydration state of pollen upon its release is largely 

dependent on the conditions of its development as well as the environmental conditions faced (Firon 
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et al., 2012; Lisci et al., 1994; Nepi et al., 2001). Upon release, different pollen can be subject to 

ambient conditions for different lengths of time. These conditions can have adverse effects on the 

hydration and composition of pollen grains before they finally reach a stigma and are rehydrated 

before germination and pollen tube growth.  

In this investigation changes induced by different degrees of pollen hydration were 

investigated. To further explore these changes IR analysis was applied to both a dehydrated and 

hydrated sample, the resulting spectra are shown in Figure 6.6, below. It was noted that the control 

pollen was essentially inseparable from the dried pollen sample – indicating the release of dehydrated 

pollen from the Betula catkin. Even secondary derivative HAC analysis failed to differentiate 

between the two. This section thus focuses on the comparison between dried and hydrated pollen. 

The similarities between the control and dried samples highlight two main points of interest. For one, 

this corroborates previous studies highlighting that dehydrated or semi-dehydrated pollen is released 

from anthers (Firon et al., 2012). The similarities between the two spectra also ensure that the drying 

process did not generate heat stresses or changes. Heat stress has been shown to affect the protein 

and lipid composition of pollen grains leading to detrimental impacts on the pollen’s viability 

(Lahlali et al., 2014). 

 

Figure 6.6: IR spectra of Betula pendula pollen samples exposed to varying hydration conditions 

Notable differences were seen for the PCA and HAC (Figures 6.7 - 6.8) analysis of the pollen 

samples investigated. Notable changes in composition are apparent from the examination of the IR 

spectra. Three main areas of importance are apparent: 1741 cm-1, 1634 cm-1 and 830-1200 cm-1. The 

most prominent being the changes seen at ~1634 cm-1. This band was seen to increase substantially 

upon hydration. This band area is typically dominated by several functional groups including 

carboxylate groups and amid stretches, however, due to the nature of the exposure and increases in 

the intensity of the broad band at 3300-3400 cm-1 (not shown in the fingerprint region, noted from 
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original expanded spectra) this band escalation is a result of increased water content and H-O-H 

vibrations (deformation) from water  (Baʇcioʇlu et al., 2015; Mularczyk-Oliwa et al., 2012; Pappas 

et al., 2003; Prdun et al., 2021). A notable decrease in lipid concentration was also noted at ~1741 

cm-1 for hydrated pollen. This could be the result of adverse adhesion mechanisms that pollen 

undergoes once hydrated at the stigma. Once adhered to a plant stigma, or in this case a moist 

environment, the external layer of the exine (containing lips) has been shown to permeate from the 

surface to attach to the stigma surface (Scott, 1994)(Lahlali et al., 2014). This could have resulted in 

the reduction of lipids seen here. 

 

Figure 6.7: PCA biplot of Betula pendula pollen exposed to various hydration conditions analysed 

by IR-ATR analysis 
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Figure 6.8: HAC dendrogram of second derivative processed spectra Betula pendula pollen exposed 

to various hydration conditions analysed by IR-ATR analysis 

Considerable variance was also witnessed for the 800-1200cm-1 region which indicates 

changes in the polysaccharide content of the pollen. Literature studies have also examined the 

nutritional changes (especially with regard to carbohydrate reserves) that occur within pollen during 

various stages of its production, release, hydration/dehydration and gemination (Pacini, 1996; Pacini 

et al., 2006).Ripe pollen can contain stores of starch, or not. If there is no starch present, this means 

that starch has been fully hydrolysed to glucose, fructose, sucrose etc. during the final stages of pollen 

maturation (Pacini et al., 2006). In this case, one might expect to see increased presence of 

representative bands such as those at ~1032 cm-1, ~1050 cm-1 and ~990 cm-1 for glucose, fructose 

and sucrose, respectively (Prdun et al., 2021; Wang et al., 2010). Whereas the presence of bands in 

the 1175–1140 cm−1 region could be the result of glycosidic linkage formation in polysaccharides 

(Hong et al., 2021; Lammers et al., 2009). Different configurations of glycosidic linkages also result 

in changes in the 1000–920 cm−1 region (Hong et al., 2021). From the analysis of the spectra 

presented here, it appears as though the dehydrated pollen is dominated by the presence of 

monosaccharides and disaccharides (Prdun et al., 2021; Wang et al., 2010) indicated by the bands at 

~987 and 1038 cm-1. On the other hand, the absence of these bands and increased absorbances at 

1020 and 1080 cm-1 in the hydrated sample could suggest the presence of polysaccharides such as 

starch – which has been shown to present a notable absorbance at ~1020 cm-1 and ~1080 cm-1 (Liu 
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et al., 2021; Pozo et al., 2018). Changes in the 920-830 cm-1 region between the two spectra are 

linked to different types of glycosidic bonds between the sugar units whereas the band in the dry 

sample at 922 cm-1 are representative of b-glycosidic bonds whereas the increased band intensity of  

~830 cm-1 of the hydrated sample can be attributed to a-glycosidic bonds (Pappas et al., 2003). The 

reduction in b-glycosidic bond presence and increase in a-glycosidic bonds further indicates the 

presence of starch which contains strictly a-glycosidic bonds (Jiang and Zhang, 2013).  

This shift in carbohydrate composition could result from changes in pollen activity upon 

rehydration in wet conditions. Upon rehydration, the metabolism of previously dormant pollen has 

been shown to reignite (Firon et al., 2012). Depending on storage conditions, pollen can remain 

viable for at least 3-6 months post-storage (Kadri et al., 2022), the pollen collected here was tested 

soon after collection with a maximum delay of several weeks. Under dry conditions, pollen has been 

shown to contain low concentrations of starch and high concentrations of sucrose, such 

functionalities of which have been linked to membrane protection and protection against desiccation 

(Firon et al., 2012; Hoekstra et al., 2001). Although levels of hydration in pollen have previously 

been shown to have little effect on starch concentration (Nepi et al., 2010), the results herein do 

illustrate some change. Starch can be found within mature pollen as energy reserves or can undergo 

partial or full hydrolysis before release (Pacini, 1996; Pacini et al., 2006; Speranza et al., 1997; 

Vesprini et al., 2002). It is possible that the suspect starch polysaccharides became more prominent 

during hydration due to the metabolism of sugars or through interconversion, which has been shown 

to occur in pollen (Vesprini et al., 2002).  

Alternatively, starch granules are released via the rupturing of pollen grains under certain 

conditions such as exposure to rain/humidity (Mampage et al., 2022). Although no ruptured/damaged 

grains were noted upon microscopic analysis of pollen samples, this does not mean some grains did 

not experience partial/total rupture, releasing SPP such as starch granules, which could have occurred 

during the compaction of the sample by the ATR method.  The presence of ruptured grains could 

result in contamination of SPP released – potentially accounting for this increased starch-related 

band. Shifts in carbohydrate composition/intensity have previously been noted for the comparison of 

intact and ground pollen, perhaps further corroborating the potential of carbohydrate release upon 

the breaking of external cell walls of the pollen grain (Baʇcioʇlu et al., 2015).  Nevertheless, to further 

corroborate these suspicions and reject the possibilities of other interferences, an investigation was 

carried out to see if at any point during the rehydration process would pollen become contaminated 

with starch. However, the equipment used in the process was either made of silica glass or pure 

cellulose filter papers, which would not result in the increase seen for a-glycosidic bonds as it is 

insoluble in water and is exclusively bonded through b-glycosidic linkages. The differences in IR 

spectra seen suggest changes in carbohydrate composition upon re-hydration either through the 

metabolism of sugars, interconversion to polysaccharide or release of starch granules following cell 

wall rupture/breakage.  
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6.3.3 IR analysis of pollen exposed to differing anthropogenic (gaseous) sources. 

The severity and rising prevalence of seasonal allergies are further worsened by air pollutants. This 

includes various gaseous and particulate emissions. Exposure to gaseous pollutants such as NOx and 

O3 has been shown to independently induce airway inflammation as well as enhance allergenic 

responses (Gruijthuijsen et al., 2006). Exposure to polluted environments has been shown to also 

result in chemical modifications of pollen grains, with a major focus placed on altering allergen and 

protein structures/potency (Gruijthuijsen et al., 2006; Ribeiro et al., 2014; Sedghy et al., 2018; 

Sénéchal et al., 2015)(Zhao et al., 2016). Several studies have investigated such compositional and 

structural changes in polluted areas using spectroscopic techniques, either by sampling pollen from 

areas of varying pollutant concentrations (Depciuch et al., 2017, 2016) or by artificially exposing 

pollen (Pereira et al., 2021; Ribeiro et al., 2017) or plants (Kanter et al., 2013) to gaseous pollutants. 

During this particular study, the choice was made once again to expose Betula pendula samples to 

various controlled conditions to determine the specific changes introduced by each condition rather 

than sampling from areas of varying pollution exposure. This was due to the fact that although studies 

exist doing just this, there are also studies that highlight the interannual and intrasample variation 

between pollen samples. The variation in pollen composition can be substantial, even between the 

same species samples or pollen from the same area (Bağcıoğlu et al., 2017).  

The pollen samples were exposed to car exhaust fumes and ozone. The European 

Environmental Agency previously published work detailing the impacts various pollutants have on 

air quality in Ireland, highlighting PM2.5, NOx and O3 as major contributors (Quintyne and Kelly, 

2023). According to the Irish Environmental Protection Agency, the leading source of NOx in Ireland 

is traffic, whereas the major sources of PM2.5 (and PM10) are fuel combustion as well as diesel 

emissions (EPA Ireland, 2023). In the case of O3, Ireland generally has relatively low levels 

compared to other countries, although this is influenced by transboundary sources. However, in urban 

areas, O3 levels are typically lower due to reactions with other pollutants emitted through combustion 

processes. Considering this, O3 was still utilised to illustrate potential changes that can be induced 

via the oxidation of the pollen samples which although less likely to occur due to anthropogenic O3 

sources in urban Ireland, can still occur as a result of exposure to other gaseous pollutants such as 



 

242 

 

NOX and from atmospheric O3 concentrations - which has commonly been used to mimic aerosol 

aging processes (Santarpia et al., 2012).  

 

Figure 6.9: IR spectra of Betula pendula pollen samples exposed to varying O3 conditions 

Individual samples of Betula pollen were exposed to ozone and car fumes, however, they 

cannot be compared together since different sources (Dublin and Lille Pollen) were used. Pollen 

collected from collaborators at the University of Lille was exposed to ozone concentrations of 130±5 

ppb for 16 hours and was then analysed by IR-ATR. The resulting spectra are shown in Figure 6.9, 

above. Several notable differences are apparent, including differences in the 1545, 1515 and 900-

1200 cm-1 regions. Such findings indicate alterations in protein, protein/sporopollenin and 

carbohydrate compositions, respectively. These deviations led to the clear distinct separation of 

pollen samples – evident by the resulting PCA and HAC plots (Figure 6.10 and 6.11). There is a clear 

divide evident in the PCA plot of the non-derivatised pre-processed spectral data with each sample 

type showing opposite loading value signs for PC1. The first two PCs explain over 92% of the 

variance between sample types. Resulting loadings plots only strengthen the association differences 

clearly seen from the comparison of the two spectra. The second derivative spectra used in the HAC 

plot also highlight the clear division between the two samples – with no miss classification evident.  
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Figure 6.10: PCA biplot of Betula pendula pollen exposed to various O3 conditions analysed by IR-

ATR analysis 
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The increased intensity of protein bands at 1545-1515 cm-1 (C-N-H vibration of amide II 

bond) has previously been found in a similar study by Depciuch et al., 2016, during which Artemisia 

pollen was sampled from several different areas of varying pollution concentrations. The highest 

absorbance values for proteins in this region were seen for pollen collected from the non-polluted, 

traffic-free site, corroborating the higher absorbances seen for the unexposed Betula pollen. 

However, as a response to growing under varying conditions, this literature study also noted that the 

largest differences occur in the protein regions of the spectra between (1600-1700cm-1), these 

observations were not seen here during this current investigation and are related to the plant’s defence 

mechanisms to adverse anthropogenic conditions experienced prior to pollen production and release 

(Depciuch et al., 2016). In another study by Depciuch et al., 2017, Corylus pollen from various 

unpolluted and urbanised areas were also compared – again showing noticeable protein changes 

(1600-1700 cm-1). However, neither of these studies nor other plant exposure studies (Kanter et al., 

2013; Zhao et al., 2016) indicate the drastic difference seen here for the presence of carbohydrates – 

as such these changes are likely linked to the post-influorescence exposure and not to in-vivo 

exposure of the plants. It is also possible that such changes could have resulted from damage to the 

pollen cell wall following exposure to O3 (as was the case with hydrated pollen), although no 

noticeable damage to the cell wall was seen via microscopic analysis. However, it is possible that 

fractures existed that were not noticeable at the X400 magnification used. In addition, further 

Figure 6.11: HAC dendrogram of second derivative processed spectra Betula pendula pollen 

exposed to various O3 conditions analysed by IR-ATR analysis 
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breakage could have occurred during ATR analysis since exposure to oxidising gaseous pollutants 

has been shown previously to weaken and damage the cell wall of pollen grains (Sénéchal et al., 

2015). This could have led to the release of internal cytoplasmic carbohydrates.  

A decrease in peak intensity at 980 cm-1 coupled with the increase in 1027 cm-1 intensity has 

been noted before in laboratory oxidation tests of spores and pollen. These changes are thus indicative 

of oxidation processes (Jardine et al., 2015), which can occur upon O3 exposure (Ribeiro et al., 2014). 

The decrease in bands at ~980 cm-1 can also be related to oxidation and attributed to the loss or 

destruction of cellulose structures (Domínguez et al., 1998). Cellulose is a common structural 

component found in the cell walls of many plant cells, including pollen grains where it usually 

composes part of the cell wall (intine) (Jardine et al., 2015; Zimmermann et al., 2015b). In similar 

pollen exposure studies of Platanus pollen, comparable reduction in amide II bands has been noted 

with changes found to be more apparent when exposed to both NO2 and O3 (Ribeiro et al., 2017). 

Similar reduction in the 980 cm-1 (allocated to glycosidic bonds of carbohydrates) was also noted for 

ozone exposure (Ribeiro et al., 2017). Changes to the pollen wall composition of four forest tree 

species, Betula pendula, Corylus avellana, Acer negundo and Quercus robur examined by Raman 

spectroscopy highlighted changes in lipid, protein and sporopollenin as well as the differences in 

susceptibility of different pollen types to pollutant exposure (Pereira et al., 2021). This suggests that 

the changes seen here for Betula pendula could vary depending on pollen species. 

 

Figure 6.12: IR spectra of Betula pendula pollen samples exposed to car exhaust fumes 

Betula pollen exposed to car exhaust fumes characterised by the presence of CO2, NOx, CO 

and particulate matter (Jaworski et al., 2018) was also examined. The resulting spectra are shown in 

Figure 6.12, above. Several changes such as the reduction in bands at ~920 cm-1 ~988 cm-1 and 1040 

cm-1 and the increase in bands at 1023 cm-1 and 830 cm-1 illustrate much of the same deviations 

witnessed for the resulting oxidation caused by O3 exposure. However, additional variation was also 
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witnessed including the notable increase in bands at ~1627 cm-1, 1514 cm-1, and 1434 cm-1 and a 

decrease in the band at ~1745 cm-1. These notable changes also led to the clear differentiation 

between exposed and unexposed pollen samples following PCA and HAC analysis as shown in 

Figures 6.13 and 6.14, with the first two PCs accounting for over 95% of sample variance. 

 

Figure 6.13: PCA biplot of Betula pendula pollen exposed to car exhaust fumes analysed by IR-ATR 

analysis 
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Figure 6.14: HAC dendrogram of second derivative processed spectra Betula pendula pollen 

exposed to exhaust fumes analysed by IR-ATR analysis 

The shift in this 1620-1640 cm-1 could occur simply due to changes in hydration and water 

content (Mularczyk-Oliwa et al., 2012). However, coupled with the changes seen in the ~1514-1550 

cm-1 range it is likely that there are changes in protein composition/concentration since proteins are 

mainly characterised by two strong and broad bands at 1640 cm-1 (amide I: C = O stretch) and ~1540 

cm-1 (amide II: NH deformation and C–N stretch) (Baʇcioʇlu et al., 2015). Similar increases in the 

absorbance of protein bands and decreases in carbohydrate bands have been noted previously for 

ragweed pollen exposed to elevated levels of NO2 (Zhao et al., 2016). It has been shown that even at 

levels below legislative limits for plant health, changes can be induced in the general protein structure 

of the pollen grains (Ribeiro et al., 2017). Many studies have also investigated the changes in 

allergenicity of certain pollen allergens following exposure. Conflicting results in protein 

modification and changes in allergenicity have been well documented in past literature with both 

increases and decreases in protein content/allergenicity noted for a variety of pollen taxa and 

conditions (Bist et al., 2004; Chassard et al., 2015; Franze et al., 2005; Gruijthuijsen et al., 2006; 

Sénéchal et al., 2015; Sousa et al., 2012; Zhao et al., 2016). Variation in protein modifications is 

largely dependent on pollen type and exposure conditions. Exposure to ambient conditions and 

anthropogenic sources can lead to protein oxidation and nitration posttranslational modification due 

to oxidative stress and aging (Reinmuth-Selzle et al., 2014; Ribeiro et al., 2017). These oxidative 
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stresses have been shown to change protein structure and content – recorded as increases, decreases 

or no change in protein content (Kanter et al., 2013; Reinmuth-Selzle et al., 2014; Ribeiro et al., 

2017). Thus, the oxidation/nitration of protein can be observed as changes in the band at 1640 and 

1515-1545 cm-1. 

The decrease in absorbance seen at ~1745 cm-1 is largely attributed to changes in intracellular 

lipid concentrations. From a pollen development point of view, lipids play a pivotal role in pollen 

development, particularly in the development of the exine and later, before release, in the production 

of the pollen coat from the tapetum (Piffanelli et al., 1998). The presence of lipids on the exterior of 

the pollen grain serves to protect it from UV damage and dehydration but can also be stored in the 

form of intracellular lipids which can be used up after the pollen grain is released (Piffanelli et al., 

1998; Zimmermann and Kohler, 2014). It has also been shown that heat stress and other 

environmental factors can further impact and reduce the lipid content of mature pollen (Lahlali et al., 

2014; Zimmermann and Kohler, 2014). Lipid modification and a decrease in IR lipid-related bands 

have also been noted following exposure to air pollution (Kanter et al., 2013). Fatty acid content of 

pollen grains has been shown to reduce in accordance with proximity/extent of pollution exposure 

caused by degradation and peroxidation processes (Pukacki and Chałupka, 2003). However, 

exposure to oxidising pollutants like ozone has also been shown to result in the de-methylation and 

or de-esterification of pectin (also found in the intine of pollen grains) which has also been shown to 

contribute to the bands at ~1740cm-1 (indicative of the ester group of pectin) (Kanter et al., 2013). 

Similar behaviour has previously been reported for ragweed pollen, subject to elevated ozone 

concentrations (Kanter et al., 2013). Exposure to oxidative gaseous compounds like O3 and NO2 has 

also been shown to change the bands observed in the 1410-1450 cm-1 region (Ribeiro et al., 2017) 

which can also be attributed to the presence of lipid components (Baʇcioʇlu et al., 2015; Zimmermann 

and Kohler, 2014). In the case of a study carried out by Ribeiro et al., 2017, where Platanus pollen 

was artificially exposed to NO2 and O3, notable changes were observed for the 1410-1450 cm-1 

region, showing slight increases in band prominence for polluted samples, similar to what was seen 

here.  

 

6.3.4 IR analysis of pollen exposed to differing particulate matter (ashes and dust). 

Following anther dehiscence, released pollen can come into contact with various forms of PM 

through its transport and dispersal. Various mechanisms of pollen and particle interactions have 

recently been suggested, investigated and discussed (Visez et al., 2020). Although catkins (prior to 

pollen release) can contain adhered particles, this has been found not to transfer PM to the individual 

grains. Therefore, particle adhesion to individual pollen grains mainly occurs during dispersal (Choël 

et al., 2022b).  Particles that adhere to the surface of pollen grains can interact with pollen allergens 

often binding to combustion particles – aiding their dispersal and respiratory implications since PM 

represents a known respiratory allergen in itself (Namork et al., 2006; Solomon, 2002). Many studies 
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have noted the adhesion of such anthropogenic PM to the pollen grain surface, particularly in urban 

settings, can occur even under low pollution conditions (Choël et al., 2022a; Visez et al., 2020). 

Whereas the implication of gaseous pollutants on pollen grain compositions has been well 

documented in literature (Frank and Ernst, 2016), there exists very few studies doing the same for 

PM (Choël et al., 2022b, 2022a; Visez et al., 2020).  

Particulate matter represents another major contributor to air quality within the Irish 

environment, PM2.5 and PM10 are dominated by particles resulting from combustion processes such 

as fossil fuel burning (EPA Ireland, 2023). As such, Betula pendula pollen samples were exposed to 

combustion ashes of three common household fuels used in Ireland, including wood ashes, turf (peat) 

ashes and coal ashes. To ensure a representative fraction of each exposed sample contained adhered 

particles within the limits quantitatively determined by Choël, Ivanovsky, et al., 2022 (individual 

grains on average containing 2± 1 particles), an excess of ashes/dust was mixed with the pollen – 

this was further evaluated by examining the grains by light microscopy. This was carried out in small 

reaction tubes by agitation and does not represent atmospherically relevant concentration ratios of 

pollen and PM. However, this was intended as a proof of principle study and required excesses of 

contaminant due to the bulk analysis method available (ATR). Saharan dust was also investigated as 

a possible contamination of the pollen due to the concurrent transport noted in literature (Grewling 

et al., 2019). The likelihood of this debris reaching Ireland and the British Isles has been noted several 

times through the decades (Goudie and Middleton, 2001). The resulting IR spectra of the pure 

ash/dust samples as well as the contaminated pollen samples and ash/dust samples are provided in 

Figures 6.15-6.19, below (individual ash/dust spectra are shown in Appendix D, Figures D12-D15).  

 

Figure 6.15: IR Spectra of ash and dust samples 

 Clear distinctions between the various ashes/dust samples are evident. All samples contain 

a wide band within the 900-1200 cm-1 region which is common among typical atmospheric dust 
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particles (Laskina et al., 2012). The single peak at 1000 cm-1 found for Saharan dust is a signature 

band highlighted previously for the same sample source (Laskina et al., 2012). Coal ashed illustrated 

several bands at 1070 cm-1, 1396 cm-1 and 1565 cm-1. The peak at 1070 cm-1 can be attributed to the 

stretching of silica-containing bonds, whereas the band at 1396 cm-1 results from methyl or ethyl 

group vibrations and the band at ~1565 cm-1 arises due to vibrations related to aromatic rings (Lin et 

al., 2019). The strong peak at 1100 cm-1 seen for turf ashes indicates the presence of silicate groups 

(Anıl et al., 2014). Compared to the other samples, wood ashes appear to be the most complex with 

several notable bands at 873 cm-1, 1047 cm-1, 1099 cm-1 and 1410 cm-1. The strong bands at 1410 

cm-1 and 873.2 cm-1 can be attributed to several possible groups, including aromatic silicon bonds, 

various mineral bonds such as ammonium-containing compounds as well as aromatic C-H bonds, all 

of which are present in a host of ambient aerosols including other carbonaceous combustion particles 

(Barnasan et al., 2021). Upon combining with pollen samples, it is apparent that several of these 

features are inherited from the ash/dust additives. 

 

Figure 6.16: IR spectra of contaminated Betula pendula pollen with coal ash 
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Figure 6.17: IR spectra of contaminated Betula pendula pollen with turf ash 

 

 

 

Figure 6.18: IR spectra of contaminated Betula pendula pollen with wood ash 
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Figure 6.19: IR spectra of contaminated Betula pendula pollen with Saharan dust 

The combination of coal ash and pollen contains the least variation from the original pollen 

sample, whereas the wood ash contaminated sample contains a prominent peak seen at 1417 cm-1 as 

well as a new peak forming for the band seen at 873 cm-1, inherited from the ash samples. 

Contaminating the pollen sample with Saharan dust led to the broadening of bands seen at ~1000 cm-

1, whereas turf ash contamination resulted in a more apparent broad shoulder forming at ~1100 cm-1 

in the pollen spectra. The similarities between the contaminated samples were further compared to 

each other and uncontaminated samples using PCA and HAC analysis (Figure 6.20-6.21). The PCA 

plot illustrates the similarities and differences seen from examination of the spectra. The majority of 

samples show clear differentiation from one another and from the uncontaminated sample, except 

for the coal-pollen sample which shows strong similarities. However, upon analysis of the second 

derivatised spectra (Figure 6.22), enough variance between the two is evident to allow for correct 

clustering following HAC analysis.  This was most apparent at 1745 cm-1 and 960 cm-1 regions.  
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Figure 6.20: PCA biplot of Betula pendula pollen exposed to ashes/dust samples analysed by IR-

ATR analysis 
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Figure 6.21: HAC dendrogram of Betula pendula pollen exposed to ashes/dust samples analysed by 

IR-ATR analysis 

 

Figure 6.22: IR 2nd derivative spectra of contaminated Betula pendula pollen with coal ash 

Overall, the inclusion of dust and ash particles to pollen samples introduced sufficient 

variance between the samples for them to be categorised as distinctly separate from the original 

sample. Although this is unlikely to affect the bulk sampling of pollen,  if microscopic IR analysis is 

to traverse into the realm of real-time pollen detection, this is likely to lead to misclassification and 
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uncertainties – especially in urban environments where these polluted pollen grains could cause 

heightened allergic and respiratory responses. Therefore, identification of pollen samples via IR 

spectroscopy can be considered a rather complex task that needs to take into account not only the 

variability that exists between species, sampling locations and growing conditions (Baʇcioʇlu et al., 

2015) but also variations that can occur during dispersal and exposure to air pollutants.  

 

6.3.5 Changes to the overall fluorescence intensity of exposed and control pollen 

samples 

The interest in pollen and bioaerosol autofluorescence has been a topic of popularity for decades. To 

date many studies have investigated the fluorescent profile of pollen and other bioaerosol classes, 

determining contributing fluorophores as well as differences that may exist between different 

bioaerosol classes (Després et al., 2012; Fennelly et al., 2017; Melnikova et al., 1997; O’Connor et 

al., 2011, 2014b; Pöhlker et al., 2012, 2013). The detection of important bio-fluorophores is what led 

to the development of LIF real-time devices, aimed at improving the detection of airborne pollen and 

other biogenic emissions /aerosols.  

In the previous sections of this chapter, the chemical composition changes induced via 

exposure of pollen to varying environmental and anthropogenic conditions were investigated. 

Whereas these changes were apparent on a vibrational spectroscopic level, the majority of popular 

new-age and novel real-time detection devices utilise LIF to detect bio-fluorophores that are 

indicative of various biogenic sources. In order to investigate whether these conditions have the 

potential to disrupt the detection of pollen from various environments, these samples were also 

analysed by fluorescent-confocal microscopy. This not only allowed for differentiation between 

fluorescent intensities but also any physical/structural differences to be noted, since several real-time 

instruments such as the Poleno (Sauvageat et al., 2020), BAA500 (Oteros et al., 2020) and 

Pollensense (Buters et al., 2022) are primarily led by the use of holographic imaging/image 

recognition. This means that the algorithms used to classify airborne pollen grains are heavily 

dependent on the general shape and size of the grains. Although previous studies separately analysed 

the potential of anthropogenic aerosols to interfere with LIF type instrumentation such as the WIBS 

(Savage et al., 2017) and changes in pollen autofluorescence by exposure to various pollutants 

(Castro et al., 2010; Roshchina, 2003; Roshchina and Karnaukhov, 1999; Roshchina and Mel’nikova, 

2001), no study has investigated whether changes in pollen fluorescence can impact the detection 

using such instrumentation.  

In this study, pollen exposed to O3, car exhaust fumes, various ashes, Saharan dust and 

varying degrees of hydration (dry vs. wet) were compared to a control sample of unpolluted pollen 

when autofluorescence was triggered using an excitation wavelength of 405 nm and emission 

detection band of 410-750 nm. Although selection of excitation wavelength was limited due to 
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available resources, the detection band was chosen as it encompasses many of the channels used in 

popular LIF instruments such as the Swisens Poleno, Rapid-E and the WIBS. The Poleno utilises 3 

separate excitation wavelengths, one being 405 nm. Although this study is limited by the selection 

of excitation wavelength, it was designed as a preliminary investigation of whether pollutants shown 

to alter the chemical composition of the surface of pollen grains would translate to changes in 

fluorescent characteristics – potentially leading to difficulties in characterisation by LIF.  

Boxplots illustrating the differences in fluorescence intensity between samples and 

conditions are illustrated in Figures 6.23,6.25,6.27 and 6.28. From examination of the boxplots, it 

can be observed that changes in the fluorescent intensity of the sample varied depending on the 

conditions used. In the case of O3 and car exhaust exposure, little deviation in fluorescence intensity 

was observed when compared to the control samples – despite notable changes in the chemical 

composition being found prior. More drastic differences were observed for the remaining samples. 

To determine if any statistically significant differences existed between the exposed pollen samples 

and control sample Kruskal-Wallis tests followed by a Dunn's tests for multiple pairwise 

comparisons were carried out as well as Mann-Whitney U tests, the results of which are highlighted 

in Table 6.2.  

Table 6.2: P-values of pairwise comparison tests  

Condition P-value  

Betula Dry 0.02* 

Betula Wet 9.74E-04* 

Betula Turf 0.52 

Betula Wood 0.04* 

Betula Coal 0.01* 

Betula Sahara 6.82E-11* 

Betula Ozone 0.91 

Betula Car 0.59 

* P-value <0.05 indicated significant differences between the sample and control (unpolluted pollen) 
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Figure 6.23: Fluorescence intensity ranges for pollen exposed to varying hydration conditions 

(n=40) 

Pollen samples that were hydrated and dried accordingly were analysed in comparison to 

each other as well as to a control sample. Varying degrees of fluorescence intensity were experienced 

for each sample as illustrated in Figure 6.23. All three conditions were found to be statistically 

significant from each other following Kruskal-Wallis and Dunn’s post hoc testing. The control 

sample generally contained pollen grains at varying degrees of drying/hydration since the sieved 

sample likely contained dehydrated and semi-dehydrated fresh pollen. In comparison, the dried 

pollen had notably higher fluorescence intensity and dehydrated appearance as shown in Figure 6.24. 

Conversely, the hydrated sample had a notable decrease in fluorescence intensity and a more rounded 

and bloated appearance, as well as this, the hydrated sample had a greater affinity for forming large 

groups of pollen grains whereas the other samples often gave rise to single independent grains. It 

was, however, apparent that under all conditions a variety of intensity was observed with some pollen 

grains being brighter or duller than others in the same sample type (Figure 6.24). It is possible that 

despite stable exposure settings, this intra-variability reflects fluctuations in the water content across 

each sample group.  
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Figure 6.24: Confocal microscopic view of (A) control, (B) dried and (C) hydrated Betula pendula 

pollen 

Similar findings have been noted previously for the hydration of various pollen types. In a 

similar investigation, pollen from several species was examined by fluorescence microscopy before 

and after rehydration (Castro et al., 2010). Although different excitation and emission wavelengths 

were used, there was a notable decrease in fluorescence observed upon re-hydration along with the 

same changes to the physical structures of pollen. Dried pollen was found to contain a tight formation 

usually containing furrows and folds, upon rehydration the structure expanded and filled and often 

became rounder in appearance – further justifying the observations noted here. The decrease in 

fluorescence seen upon hydration is attributed to the quenching ability of water which has previously 

been found to occur naturally during rehydration at the stigma as well as upon germination (Audran 

and Willemse, 1982; Roshchina, 2005). Interestingly, high intensities were still found for the wet 

pollen – although significantly less so than for the dried or control pollen, this possibly indicates the 

presence of non-viable pollen grains, which have been found not to experience the same notable 

decreased in fluorescence (Castro et al., 2010; Roshchina, 2003). The difference between the control 

and dried pollen set an interesting comparison to the IR analysis, which was not able to distinguish 

any notable differences in composition. This indicates that even when no notable differences can be 

determined from chemical analysis – differences in fluorescence may remain.  
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Figure 6.25: Fluorescence intensity ranges for pollen exposed to ashes/dust samples (n=40) 

Upon exposure to different types of ashes/dust, a range of fluorescent intensities were 

observed. All samples except the pollen-turf sample exhibited statistically significant differences 

from the control pollen. Although the turf-pollen sample was ultimately determined to have 

comparable average fluorescent intensity to the control pollen, a greater variance in intensity was 

found. In some cases, the adhesion of turf ash to the pollen grain led to a reduction in fluorescence 

whereas on other occasions a notable increase was noted. This can be observed in Figure 6.26B where 

some fluorescent particles from the tuft ash was seen adhered to the pollen. This notable fluorescence 

of some ashes/soot has been noted previously in an investigation focussing on potentially interfering 

fluorescent particles that could be misclassified as bioaerosols using the WIBS (Savage et al., 2017). 

Soot was shown to possibly possess notable fluorescence whereas wood smoke aerosol illustrated a 

varying degree of fluorescence (Savage et al., 2017). Although the majority of ashes investigated 

here had a negative impact on pollen fluorescence – this could vary using other excitation 

wavelengths such as 280 nm and 370 nm (WIBS) since notable fluorescence for dust and soot has 

been noted previously. A similar study by Pöhlker, Huffman and Pöschl, 2012 examined the 

autofluorescent behaviour of several bioaerosols and potential interfering aerosols and although soot 

and dust samples exhibited less intense fluorescence than many of the other samples, the fluorescence 
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that was noted commonly occurred at lower excitation and emissions than was used here. However, 

it is still possible that the fluorescence provided by the adhered particles could still be less than that 

of the pollen – leading to a dulling effect, which was seen for the remaining samples. This was 

particularly true for the Saharan dust samples as illustrated in Figure 6.26C, the addition of particles 

on the pollen surface can be noted as dull areas – where the intensity of the pollen grain fluorescence 

is muted. There is a notable absence of literature studies that investigate the combined effect of pollen 

grains and adhered particles in terms of fluorescence.  However, one study looking at the effects of 

fullerene particle adhesion to pollen noted a significant decrease in fluorescence, similar to what was 

observed here, in addition to a decrease in pollen germination (Aoyagi and Ugwu, 2011). This also 

suggests that perhaps smaller particles similar in size to fullerene particles can also have a notable 

impact on pollen fluorescence.  

 

Figure 6.26: Fluorescence microscopic images of (A) control sample, and (B) turf ash and (C) 

Saharan dust on Betula pendula pollen grains, adhered particles are shown within red circles for 

clarification 

In the case of the pollen exposed to O3 and car exhaust fumes, little difference in fluorescent 

intensity was observed. In previous studies, extracts of several pollens were shown to undergo a 

notable shift in emission maxima following exposure to O3 (from 530-550 nm to 475-480 nm) 

(Roshchina and Karnaukhov, 1999; Roshchina and Mel’nikova, 2001). Similar changes have also 

been observed for other bioaerosol classes including bacteria (Santarpia et al., 2012). Perhaps a si,ilar 

shift occurred in the current study but was not noted due to the inability to obtain specific fluorescent 

spectra using the apparatus available. Similar shifts in pollen fluorescence have also been noted for 

pollen that has been aged for several years as well as pollen exposed to UV light (Roshchina, 2003; 

Schulte et al., 2008). It is possible that changes occurred in the pollen samples exposed to O3 and car 

exhaust fumes (as evident from the IR spectra), however, this was not detected using the available 

confocal microscope setup. Although the overall fluorescence intensity did not differ between the 

exposed and unexposed samples, it is likely that if examined using more sophisticated fluorometric 

devices or even using the varying channels available for bioaerosol classification in the WIBS, 
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Rapid-E and Poleno, that deviations would be observed if these shifts in fluorescent maxima were to 

occur.  

 

Figure 6.27: Fluorescence intensity ranges for pollen exposed to O3 (n=40) 
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Figure 6.28: Fluorescence intensity ranges for pollen exposed to car exhaust (n=40_) 

 

6.4 Conclusion 

Vibrational spectroscopy offers a strong alternative to molecular methods when determining species-

specific level identification of ambient pollen types, including the accurate differentiation of 11 of 

the most common pollen types present within the Irish environment. The power of IR to detect 

compositional changes to the pollen grains following exposure to varying environmental and 

anthropogenic conditions was also noted. Changes introduced due to variations in water availability, 

exposure to gaseous pollutants such as car exhaust and ozone as well as particle adhesion to the 

pollen surface can all lead to notable changes in pollen composition. This suggests if such methods 

were ever to be introduced to the real-time detection of ambient pollen concentrations, the potential 

exists to also examine air quality parameters through the identification of such interferences.  

Several of these changes in chemical composition did not translate to changes in overall 

fluorescence intensity, although this could be due to the fluorescence parameters/equiptment used 

being unable to detect changes in emission maxima. However, in the case of samples that showed 

limited compositional changes, making IR differentiation between control and dried pollen difficult, 
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changes in fluorescence intensity were apparent. This indicates the potential synergy between the 

two analytical methods. Notable changes in pollen fluorescence intensity were observed for changes 

in water content as well as the adherence of particulate matter. Although emission spectra were not 

available, the clear deviations indicate that LIF instrumentation such as the WIBS and potentially the 

Poleno could be subject to a range of uncertainties when sampling pollen in diverse urban 

environments. This has previously been noted in this project for the use of the WIBS (as has other 

preceding literature), however, it is unclear how such conditions could affect the identification 

efficiency of more complex instruments such as the Poleno.  

 

6.5 Future work 

Although the potential to discriminate to a species level has been shown for the analysis of pollen 

with IR, this was not fully investigated in Dublin. To further assess this potential, IR analysis coupled 

with molecular methods (currently in place at the Dublin site) could further add credence to this. 

Notable deviations in the chemical composition of Betula pendula following exposure to various 

conditions were also noted. However, alterations induced in pollen composition are dependent on a 

range of parameters, including pollen type. Therefore, to determine the susceptibility of different 

pollen types to different conditions, future work should also include the analysis of a variety of other 

pollen taxa (following exposure scenarios), particularly those of allergenic concern such as Poaceae.  

  Much work is intended with regard to the fluorescent implications associated with polluted 

or contaminated pollen. Many real-time instruments such as the Poleno (recently purchased and 

currently being trained at the Dublin site) operate on the basis of machine learning algorithms having 

been trained with known pollen samples. However, although this method is likely to account for 

fluorescent changes between different pollen types, it may not fully account for changes in pollen 

fluorescence and morphology following pollen dispersal. Future work could focus on analysing 

samples of polluted pollen using fluorometers (excitation and emission scans), once a suitable solid 

sample holder is sourced, to determine specific spectral deviations. Following this, samples could be 

further examined using the Poleno and/or WIBS to determine if misclassification occurs since these 

polluted pollens will likely represent more immediate respiratory concern than their unpolluted 

counterparts. Training using suitably exposed pollen (using typical atmospheric concentrations of 

pollutants etc.) could aid in this detection and will be further investigated beyond the scope of this 

project in future studies.  
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Appendix A 

 

Figure A1: Time-series of Poaceae pollen concentrations from 2017 -2020 (Dublin) 
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Appendix B 

 

Figure B1: Confusion matrix of RF Poaceae model (30T) 

 



 

A3 

 

 

 

Figure B2: Confusion matrix of RF Poaceae model (UKT) 

 

Figure B3: Confusion matrix of SVM-BOR Poaceae model (30T) 
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Figure B4: Confusion matrix of SVM Poaceae model (UKT) 

 

Figure B5: Confusion matrix of ANN Poaceae model (30T) 
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Figure B6: Confusion matrix of ANN-BOR Poaceae model (30T) 

 

Figure B7: Confusion matrix of ANN Poaceae model (UKT) 
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Figure B8: Confusion matrix of ANN-BOR Poaceae model (UKT) 
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Figure B9: Confusion matrix of RF Betula model (UKT) 

 

Figure B10: Confusion matrix of SVM Betula model (30T) 



 

A8 

 

 

 

Figure B11: Confusion matrix of SVM-BOR Betula model (30T) 

 

Figure B12: Confusion matrix of SVM Betula model (UKT) 
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Figure B13: Confusion matrix of SVM-BOR Betula model (UKT) 

 

Figure B14: Confusion matrix of ANN Betula model (30T) 
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Figure B15: Confusion matrix of ANN-BOR Betula model (30T) 

 

Figure B16: Confusion matrix of ANN Betula model (UKT) 
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Appendix C 

Table C1: Spearman´s rank correlation coefficients between daily Dublin pollen data and 

meteorological parameters. 

 
 

Total Urticaceae Poaceae 

Tmax 0.32* 0.32* 0.40** 

Tmed 0.16 0.13 0.16 

Tmin 0.01 -0.04 -0.04 

Rain -0.55* -0.56 -0.47 

Gmin -0.19 -0.20 -0.12 

Pres -0.05 -0.01 -0.03 

Wind_S 0.04 -0.03 0.15 

Wind_D -0.02 0.01 0.05 

Day_L 0.25 0.24 0.29 

G_rad 0.25 0.25 0.33* 

Soil 0.33* 0.32* 0.35* 

PE 0.26 0.22 0.35* 

Evap 0.25 0.21 0.38* 

RH -0.49 -0.47 -0.48* 

PM2.5 0.05** 0.07** -0.03 

PM10 0.25** 0.21** 0.25* 

NOX -0.11 -0.06 -0.12 

NO -0.07 -0.02 -0.09 

NO2 -0.14 -0.10 -0.12 

CO 0.09 0.12 -0.02 

SO2 0.09 0.12 -0.02 

 

*significance at the 95% level, **significance at the 99% level 
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Appendix D 

 

 

Figure D1: FTIR spectra obtained from the ATR analysis of Alnus glutinosa pollen 

 

 

 

Figure D2: FTIR spectra obtained from the ATR analysis of Betula pendula pollen 
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Figure D3: FTIR spectra obtained from the ATR analysis of Corylus pollen 

 

 

Figure D4: FTIR spectra obtained from the ATR analysis of Fraxinus excelsior pollen 
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Figure D5: FTIR spectra obtained from the ATR analysis of Lolium perenne pollen 

 

 

 

 

Figure D6: FTIR spectra obtained from the ATR analysis of Pinus pollen 

 

 

 

 

Lolium perenne 
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Figure D7: FTIR spectra obtained from the ATR analysis of Plantago lanceolata pollen 

 

 

  

 

Figure D8: FTIR spectra obtained from the ATR analysis of Platanus acerifolia pollen 



 

A16 

 

 

 

 

Figure D9: FTIR spectra obtained from the ATR analysis of Quercus robur pollen 

 

 

 

Figure D10: FTIR spectra obtained from the ATR analysis of Taxus baccata pollen 
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Figure D11: FTIR spectra obtained from the ATR analysis of Urtica dioica pollen 

 

 

Figure D12: FTIR spectra obtained from the ATR analysis of turf ash 
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Figure D13: FTIR spectra obtained from the ATR analysis of wood ash 

 

 

 

Figure D14: FTIR spectra obtained from the ATR analysis of coal ash 



 

A19 

 

 

 

Figure D15: FTIR spectra obtained from the ATR analysis of Saharan dust 

 

  

 

 


