
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 00.0000/ACCESS.0000.DOI

Constructing a meta-learner for
unsupervised anomaly detection
MAŁGORZATA GUTOWSKA1, SUZANNE LITTLE1, AND ANDREW MCCARREN1
1School of Computing, Dublin City University, Dublin, Ireland

Corresponding author: Małgorzata Gutowska (e-mail: malgorzata.gutowska2@mail.dcu.ie).

This work was conducted with the financial support of the Science Foundation Ireland Centre for Research Training in Artificial
Intelligence under Grant No. 18/CRT/6223.

ABSTRACT Unsupervised anomaly detection (AD) is critical for a wide range of practical applications,
from network security to health and medical tools. Due to the diversity of problems, no single algorithm
has been found to be superior for all AD tasks. Choosing an algorithm, otherwise known as the Algorithm
Selection Problem (ASP), has been extensively examined in supervised classification problems, through the
use of meta-learning and AutoML, however, it has received little attention in unsupervised AD tasks. This
research proposes a new meta-learning approach that identifies an appropriate unsupervised AD algorithm
given a set of meta-features generated from the unlabelled input dataset. The performance of the proposed
meta-learner is superior to the current state of the art solution. In addition, a mixed model statistical analysis
has been conducted to examine the impact of the meta-learner components: the meta-model, meta-features,
and the base set of AD algorithms, on the overall performance of the meta-learner. The analysis was
conducted using more than 10,000 datasets, which is significantly larger than previous studies. Results
indicate that a relatively small number of meta-features can be used to identify an appropriate AD algorithm,
but the choice of a meta-model in the meta-learner has a considerable impact.

INDEX TERMS Anomaly detection, unsupervised anomaly detection, algorithm selection problem, model
selection, meta-learning, meta-features.

I. INTRODUCTION

ANOMALY detection (AD) is gaining increased atten-
tion in various business sectors, primarily due to the

growing number of systems that collect and use data gener-
ated through a variety of daily activities. Detecting anomalies
in sophisticated systems not only helps them run smoothly,
but in many domains, an identified anomaly is of genuine
value. An outlier can be a potentially harmful event that
should be avoided or an early indicator of a new trend.
Insurance, finance, network traffic monitoring, and health are
just a few examples of the many different fields that benefit
from AD applications [1]–[4].

In contrast to typical classification tasks, most real-world
anomaly detection problems are unsupervised. Anomalies
are rarely known in advance since they have not yet been
identified, and those that could have been detected may
differ significantly from those still to be discovered. This is
intuitive given the essential properties of anomalies, as they
are markedly different from other data instances and rare
compared to normal data points [5].

To overcome the challenges posed by the difficult to define
character of anomalies, researchers categorise them in a
variety of ways, such as by their relationship to other data
points [6]:

• point anomaly – an individual data instance deviating
from other data, often referred to as global anomaly [5],
[7], [8],

• collective anomaly – a collection of data instances
anomalous with respect to the entire dataset,

• contextual anomaly – a data instance anomalous only in
a specific context but not otherwise, also referred to as a
local anomaly [8].

Typically, AD algorithms seek to estimate the likelihood of
every data point being an anomaly in an unsupervised man-
ner [5], considering the anomaly characteristics and types
mentioned above. These algorithms return an anomaly score
(usually not normalised), where a higher score indicates an
increased likelihood that a given data point is an anomaly [5],
[6]. It is not possible, therefore, to measure an algorithm’s
performance in the form of a single metric such as accuracy,

VOLUME 4, 2016 1

M. Gutowska et al.: Meta-learner for unsupervised AD

FIGURE 1: Rice’s framework, as presented by Smith-
Miles [15].

recall or precision. A detailed study of the results is usually
necessary to assess the performance for a new task.

A. ALGORITHM SELECTION PROBLEM
Although numerous AD techniques have been proposed, it is
generally accepted that no single method is optimal for all
AD problems [1], [2]. The concern of a single algorithm per-
forming well on a limited number of problems is not unique
to AD. Rather, it is common across machine learning tasks,
and is otherwise known as the No Free Lunch Theorem [9].
The problem of selecting the best algorithm for a given task is
referred to as Algorithm Selection Problem (ASP) [10]–[12].
Conventional approaches to the ASP are not always optimal.
For example, the trial-and-error strategy can easily become
time-consuming, and hiring a human expert in a specific field
can be prohibitively expensive. Furthermore, none of these
strategies guarantees success.

An alternative method to overcome these drawbacks is
the automated selection of the best performing algorithm.
Creating a model that learns from historical evaluations is
a well-established approach to ASP, also known as meta-
learning [13], [14]. Meta-learning, along with Automated
Machine Learning (AutoML), of which meta-learning is
an essential part, is a rapidly developing topic in machine
learning [14].

Among the most popular strategies for meta-learning is
the use of dataset characteristics that can be mapped to
the performance of specific algorithm configurations from
historical evaluations [14], [15]. Rice’s seminal paper [16]
conceptualised the problem of algorithm selection by map-
ping problem characteristics to algorithm performance. This
framework was expanded by Smith-Miles [15] and captured
in the form shown in Fig. 1.

There are four essential components of the frame-
work [15]:

• problem space P – a set of dataset instances of a
problem,

• feature space F – a set of characteristics generated from
each dataset instance x,

• algorithm space A – a set of algorithms (possibly in-
cluding variations incorporating hyperparameters),

• performance space Y – a set of performance metrics of
the algorithms from A evaluated over the problem space
P .

The ASP can be defined as “For a given problem instance
x ∈ P with features f(x) ∈ F , find the selection map-
ping S(f(x)) into algorithm space A, such that the selected
algorithm α ∈ A maximises the performance mapping
y(α(x)) ∈ Y ” [15].

The ASP is even more challenging when faced with an un-
supervised task. Applying a trial-and-error approach or max-
imisation of performance mapping is problematic without a
single performance metric. A meta-learner that indicates the
best algorithm for a new unsupervised task is thus a necessary
tool, particularly in scenarios with high up-front uncertainty
and high variability.

Few studies have proposed an automated algorithm se-
lection in AD [17]–[21]. Of these, only one model is de-
signed for unsupervised scenarios and utilises the meta-
learner framework as presented by Rice [18].

The current work has been motivated by the growing
importance of AD tools and the little research done to ad-
dress the problem of algorithm selection in unsupervised AD
scenarios. In this research, an alternative meta-learner for
unsupervised AD has been developed with respect to its three
components: meta-feature space F , AD algorithm space A,
and the meta-model (i.e., a model that learns the mapping
of the meta-features into the algorithm space [22], S(f(x)),
referred to as m in the following part of this manuscript). A
comparison with the state of the art and a statistical analysis
of eight meta-learner variants (three factors, each with two
levels) was then performed.

This study makes several contributions to the algorithm
selection problem in unsupervised anomaly detection. The
main ones include:

• creation of an alternative unsupervised AD meta-
learner, superior to the existing state of the art solution,

• examining the effect size of the components contribut-
ing to the performance of the meta-learner.

In addition, this study presents secondary contributions:
• proposal of an extension of Rice’s framework, which is

refactored to the unsupervised AD problem,
• implementation of an existing state of the art unsuper-

vised meta-learning technique on an AD benchmark
project consisting of more than 10,000 diverse datasets.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of work in the meta-learning and
AutoML domains, as well as work in the algorithm selection
problem for unsupervised anomaly detection. The conducted
experiments are described in Section III, and the results are
reported and discussed in Sections IV and V, respectively.
The study’s conclusions are presented in Section VI.

2 VOLUME 4, 2016

M. Gutowska et al.: Meta-learner for unsupervised AD

II. RELATED WORK
Since the formalisation of the ASP framework by Rice,
meta-learning has received increased attention in the research
community. Studies have focused on specific areas of meta-
learning, such as hyperparameter optimisation (HO) [23]–
[30] or meta-features development [31]–[33]. Several survey
studies have also presented a large-scale overview of the re-
search [12], [13], [15], [34], [35]. In particular, a comprehen-
sive compilation of the research and achievements in meta-
learning and broader fields such as AutoML is presented
in [14]. Current AutoML systems are not only capable of
performing model or hyperparameter selection tasks, but are
also fully functional automated pipelines of processes that
include training and testing without the need for human in-
tervention [36]. To date, several automated AutoML systems
have been developed, including Auto-WEKA [37], Auto-
Sklearn [38], Auto-Sklearn 2.0 [39], Hyperopt-Sklearn [23],
Auto-Net [40] and others [41], [42].

These systems were developed to solve supervised prob-
lems. The ASP for unsupervised settings remains mostly
unexplored. A few studies have examined the meta-features’
potential in AD scenarios [1], [18], [19], [43], but their
limitations are either due to the required knowledge of data
labels or a structure, or a need for an extensive evaluation of
algorithms for a new task. The approach presented in [18]
has addressed the ASP problem for unsupervised tasks by
utilising the knowledge gained through past algorithm evalu-
ation and is the state of the art solution for the aforementioned
problem.

A key early exploration of this challenge at scale by Cam-
pos et al. [1] examined how well the selected AD methods
handled anomalies across datasets. The authors defined two
dataset properties, which were difficulty and diversity. The
difficulty score indicated, for each AD method, the difficulty
of detecting outliers in a given dataset. The diversity score
reflected the agreement between the methods on the difficulty
score. The researchers created a feature map based on these
two scores and positioned the datasets accordingly. This
study explored meta-analysis of the algorithm’s performance
across datasets, and is viewed as a first step toward inferring
dataset meta-features and developing a system to aid in
algorithm selection.

Kandanaarachchi et al. [43] attempted to create a method
for automated algorithm selection in AD problems by
analysing the problem space (referred to as instance space).
Two factors that could impact algorithm performance were
investigated. These were dataset normalisation and dataset
characteristics (meta-features). Two meta-features derived
from an initial set of 362 features were used to characterise
the datasets and create a two-dimensional space filled with
the dataset instances. The feature space outlined optimal
regions for a specific method and normalisation type. This
study examined 12,000 datasets obtained by downsampling
and repurposing classification datasets, yielding the most
extensive published set of AD benchmark datasets to date.
However, the meta-features developed in this work required

labelled data to be present, making the chosen features un-
suitable for an unsupervised AD problem.

An alternative set of meta-features for AD tasks has been
proposed by Kotlar et al. [19]. Their research focused on
semantic features designed explicitly for AD, such as global,
local, or collective anomaly types, as well as other character-
istics like anomaly space, anomaly ratio, data type, or data
domain. Creating these features requires prior knowledge
of anomalous instances, such as their ratio or distribution.
These features also need to be provided by a human expert
rather than extracted automatically from the datasets. This
work cannot, therefore, be directly applied to an automated
unsupervised meta-learning problem.

Recent work from Zhao et al. [18] has provided a system
(referred to as MetaOD or UOMS: Unsupervised Outlier
Model Selection) for predicting the best algorithm for an
unsupervised AD task. This work utilised inherent dataset
characteristics that do not require labelled data and are gen-
erated automatically from datasets. In addition to the sta-
tistical meta-features common to many classification tasks,
landmarking features specific to AD problems were also
included. A collection of algorithms are assessed covering
classic AD algorithms, each combined with a set of hyperpa-
rameters to yield 302 potential AD models. The experiments
were conducted on two test setups with 100 and 63 datasets,
respectively. The meta-model was specifically designed to
address the algorithm selection problem in AD and is based
on collaborative filtering (CF), employing the matrix fac-
torisation method. This approach is further highlighted in
Section III, and, as a state of the art solution, it forms a key
part of the comparative analysis in the current study.

A different approach of addressing the ASP in AD to
that mentioned above has recently been presented in [20],
[21]. These studies consider the unsupervised nature of AD
problems but do not use offline meta-training. Instead, the
systems for assessing the performance of a predefined set of
algorithms “online”, while evaluating them on a new task,
were proposed. The primary shortcoming of these systems
is non-scalability. They require evaluation (or even multiple
evaluations) of a number of algorithms when confronted with
a new problem, without taking advantage of transfer learning
from historically evaluated algorithms.

Although ASP and AutoML have received a lot of interest
overall, limited research has examined the ASP in unsuper-
vised AD, i.e. when labels for a task at hand are unknown. To
date, the most successful solution presented in the research is
the UOMS outlined by [18]. The lack of practical benchmarks
or potential directions for the improvement of future systems
is another obstacle. In most cases, the trend in ASP for AD
problems tends to focus on the development of meta-features
and not the meta-model or the range of applicable algorithms
that can be chosen by the meta-learner. Understanding the
influencing factors in a meta-learner is key for the future
development of meta-learning systems. In addition, little
attention has been given to creating an extensive dataset that
can truly test a proposed meta-learner.

VOLUME 4, 2016 3

M. Gutowska et al.: Meta-learner for unsupervised AD

III. METHODOLOGY
This section outlines an alternative strategy to that proposed
by Zhao et al. [18], which uses fewer meta-features and has a
neural network (NN) as opposed to CF as the base learner.
An extensive dataset is required to validate this approach,
and the process for generating this data is initially proposed.
An evaluation process is then outlined, which attempts to
identify the components that contribute to the identification
of the best performing algorithm when using meta-learning
for a range of unsupervised AD algorithms.

A. DATA GENERATION
The problem/dataset space P for this experiment was built
on one of the largest available unsupervised AD dataset
repositories. A total of N = 10, 000 datasets were randomly
chosen from those proposed in [43] 1. Each dataset is defined
as xi where i = 1, . . . , N .

To generate the performance space Y , a selection of AD
algorithms αj ∈ A were evaluated over all the datasets in
P . During the algorithm implementation, two performance
metrics were captured: the area under the receiver operating
characteristic curve (AUC) and the average precision (AP).

The AUC and the AP are the most widely used evaluation
measures in anomaly detection [1], [2]. The output of an AD
method is typically an anomaly score, which indicates the
likelihood that the observation is anomalous. The translation
of anomaly scores into binary labels that are required in
common performance metrics, such as accuracy or precision,
involves using a threshold, which in many practical AD cases
is unknown without additional data exploration. The AUC
and AP measures provide the integral result for all thresholds
from 0 to 1, making them threshold-independent.

The result of this experiment stage were two matrices
of the performance values Yν ∈ RN×L, where ν ∈
{AUC,AP}, whereas N and L denote the number of the
datasets and AD algorithms, respectively.

Procedure 1 outlines the steps taken for generating the
data of the performance values YAUC and YAP for the AD
algorithm set A and the set of datasets P .

The details of the AD algorithms used are discussed in
Section III-B. The algorithm performance metrics obtained
at this stage are available at http://ieee-dataport.org/10491.

B. PROPOSED META-LEARNER
The meta-learner proposed in the current study has three
component parts: meta-features (F1), a set of base AD algo-
rithms (A1), and the base learner – meta-model (mp). Each
component is outlined below.

1) Meta-features
The current study uses a significantly smaller set of meta-
features (F1) compared to UOMS [18] (19 vs 200), which
were specifically designed to accommodate a broad range of

1https://bridges.monash.edu/articles/dataset/Datasets_12338_zip/
7705127/4

Procedure 1 AD algorithms performance data generation
Input:

A = {αj | j = 1, . . . , L}
P = {xi | i = 1, . . . , N}

Output:
YAUC ∈ RN×L

YAP ∈ RN×L

1: for j = 1 to L do
2: for i = 1 to N do

{Run algorithm αj over dataset xi}

3:
yAUC ij

yAP ij

}
← αj(xi)

4: end for
5: end for
6: return YAUC, YAP

anomaly characteristics. The overall design criteria for the
features are as follows:

• to be independent of the data labels (suitable for unsu-
pervised scenarios),

• to capture the main types of anomalies, such as global,
local, and collective,

• to describe multivariate characteristics of the data (mu-
tual relations between the data points and their neigh-
bourhood).

There are two steps involved in the process of feature
generation: 1) calculation of distances between data points;
2) obtaining the actual features as statistical characteristics
of the acquired distance distributions.

In step 1, an approach inspired by Moran scatterplots de-
picting the relationship between global and local z-scores [7]
has been proposed to express characteristics related to local
and global anomalies. The approach has been generalised
to multivariate datasets by substituting the Mahalanobis dis-
tance for z-scores. Global and local Mahalanobis distances,
ζiG and ζiLn, were calculated for each data point i as expressed
in (1) and (2):

ζiG(
−→zi) =

√
(−→zi −−→µ)TS−1(−→zi −−→µ) (1)

ζiLs(
−→zi) =

√
(−→zi −−→µs)TSs

−1(−→zi −−→µs) (2)

where −→zi = (z1i, ..., zKi) represents a single observation i (a
data point) with K features, −→µ = (µ1, µ2, ..., µK) represents
the mean of all other observations in the dataset, and S is
the covariance matrix. In (2), −→µs and Ss represent the mean
and covariance matrix of the s nearest neighbours of −→zi ,
and ζiLs defines the Mahalanobis distance to the respective
s nearest neighbours. The number of nearest neighbours has
been chosen using a grid search approach and defined as
s ∈ {20, 60, 80}. After this step, each data point i has
been represented by four distances to the rest of the data:{
ζiG, ζ

i
L20, ζ

i
L60, ζ

i
L80

}
.

4 VOLUME 4, 2016

https://bridges.monash.edu/articles/dataset/Datasets_12338_zip/7705127/4
https://bridges.monash.edu/articles/dataset/Datasets_12338_zip/7705127/4

M. Gutowska et al.: Meta-learner for unsupervised AD

TABLE 1: Meta-features proposed in the F1 set.

Meta-feature Instances Count

TRζ∗

ζ∗: {ζG, ζL20, ζL60, ζL80}

4
CMζ∗ 4
THζ∗ 4
TQζ∗ 4
Ls s: {20, 60, 80} 3

In step 2, the statistical characteristics of each of the
distance profiles have been obtained. For each set of ζLs and
ζG the features such as TotalRange TR, CenterMass CM,
TailHalf TH, and TailQuarter TQ have been calculated as
expressed in (3)–(6):

TRζ∗ = max(ζi∗)−min(ζi∗) (3)

CMζ∗ =
1

TR
(
P 75(ζi∗)− P 25(ζi∗)

)
(4)

THζ∗ =
1

TR
(
max(ζi∗)− P 50(ζi∗)

)
(5)

TQζ∗ =
1

TR
(
max(ζi∗)− P 75(ζi∗)

)
(6)

where ζ∗ is one of ζG, ζL20, ζL60, ζL80 and P 25, P 75,
and P 50 are the 25th and 75th percentiles and the median,
respectively. In addition, for each neighbourhood s a property
aiming to describe a dataset “locality” Ls was calculated
using (7):

Ls =
1

N

N∑
i

ζiLs

ζiG
(7)

with N representing the total number of data instances within
the dataset. The resulting features are summarised in Table 1.

2) Set of anomaly detection algorithms
The requirement to select methods from a few diverse fami-
lies, in particular, several methods from the “classic bucket”,
and modern deep learning-based techniques, drove the se-
lection for the base set of meta-learner algorithms A1. The
set includes ten “classic” and three neural network-based AD
algorithms. Table 2 presents the algorithms and their parame-
ters chosen for A1. In contrast to UOMS [18], this collection
did not focus on examining the algorithm hyperparameters.
This is therefore referred to as “w/o HO”. The lack of the HO
makes this set more distinct from UOMS that is employed for
the comparative evaluation.

The conventional methods involved in the experiments
cover the following AD algorithms: Local Outlier Factor
(LOF) [44], k-Nearest Neighbours (kNN) [45], One-Class
Support Vector Machines (OCSVM) [46], Connectivity-
Based Outlier Factor (COF) [47], Angle-based Outlier Detec-
tor (ABOD) [48], Isolation Forest (iForest) [49], Histogram-
based Outlier Score (HBOS) [50], Lightweight Online De-
tector of Anomalies (LODA) [51], Copula-based Outlier De-
tection (COPOD) [52], and Principal Component Analysis-
based anomaly detection (PCA) [53]. Deep learning-based
approaches include Variational Autoencoder (VAE) [54],

TABLE 2: AD models and their parameters comprising the
set proposed in this study (A1).

AD algorithm Parameter 1 Parameter 2

LOF n_neighbors = 60 distance = ’euclidean’
kNN n_neighbors = 60 method = ’mean’
kthNN n_neighbors = 60 method = ’largest’
OCSVM nu = 0.008 kernel = ’rbf’
COF n_neighbors = 60 N/A
ABOD n_neighbors = 60 N/A
iForest n_estimators = 100 max_features = 1.0
HBOS n_bins = 90 tolerance = 0.5
COPOD N/A N/A
PCA n_components = ’mle’ svd_solver = ’full’
VAE epochs = 500 hidden layers, as described

in (8)
SO-GAAL epochs = 25 N/A
MO-GAAL epochs = 25 N/A

Single-Objective Generative Adversarial Active Learning
(SO-GAAL), and Multi-Objective Generative Adversarial
Active Learning (MO-GAAL) [55].

The VAE’s architecture was designed individually for each
dataset. The number and dimensions of the hidden layers
were determined by the number of features in each dataset.
Given that K represents the number of features in a given
dataset, the hidden layers were built as described in (8).

K × [0.75, 0.5, 0.33, 0.25] if K ≥ 100
K × [0.75, 0.5, 0.25] if 100 > K ≥ 50
K × [0.5, 0.25] if 50 > K ≥ 6
2 if K < 6

(8)

The implementation from the Python PyOD package [56]
was used to perform the evaluation of the algorithms.

3) Meta-model
A key part of a meta-learner is a meta-model, whose goal is
to select the AD algorithm that performs best on an unseen
and unlabelled AD dataset. The meta-model proposed in
this study (m1) is based on a neural network architecture.
Neural networks have proven successful in a variety of tasks
and are relatively time-efficient when training for small-size
problems.

The architecture proposed in this work features three hid-
den layers (64, 64, and 32 nodes), a dropout of 0.2 after each
layer, and the predictive regression layer that outputs the pre-
dicted performance values ŷ for each algorithm α1, . . . , αL,
with L being the number of algorithms used in the meta-
training.

The training of each meta-model has been started from
random weights and run through up to 1000 epochs. The
Early Stopping functionality from Keras library [57] has
been implemented to cease further training when no improve-
ment is observed, as measured by the loss on the validation
data. Subsequently, the optimal weights have been obtained
based on the validation loss. The resulting training length
ranged for different meta-learner variants (variants described
in Section III-C) from 300 to 1000 epochs. Fig. 2 presents
an example of the training process picturing the training

VOLUME 4, 2016 5

M. Gutowska et al.: Meta-learner for unsupervised AD

FIGURE 2: Training loss (loss) and validation loss (val_loss)
versus epochs in training one of the NN-based meta-model
variant.

TABLE 3: Summary of the factor components of meta-
learners compared in this study.

Current study UOMS

Meta-model
mp

NN CF

Meta-features
Fq

19 features specific
to AD problems

200 features, combined: statis-
tical and landmarking features

Set of AD al-
gorithms Ar

13 algorithms with-
out HO

298 models: 8 algorithms
combined with sets of hyper-
parameters

and validation loss in subsequent epochs. The batches of 32
samples were used in training and the Adam optimiser was
employed to minimise the mean squared error.

The network architecture parameters, such as the number
of hidden layers, the number of nodes, dropout level, epoch
count, and batch size, were chosen using the grid search ap-
proach and optimised with the Weights and Biases tool [58].
The search for the optimal architecture ranged from 2-layered
networks of 4 + 4 nodes to 3-layered networks of 64 + 64 +
64 nodes. More complex architectures were not considered
to avoid the risk of model overfitting.

C. EVALUATION STRATEGY
A 23-factorial design was implemented to examine the fac-
tors which contributed to the performance of meta-learners
for unsupervised AD. The factors used in this experiment
(meta-feature generation strategies Fq , the base set of AD
algorithms Ar, and the meta-model mp) were from the
approach proposed in the current study and the UOMS [18].
Table 3 summarises the factors of both approaches. The
experimental design is illustrated in Fig. 3.

To perform the experiment, eight meta-learners Ml :=
Mpqr, were designed, where l = 1, . . . , 8, and p, q, r ∈
{1, 2}, which incorporated two variants of mentioned factors
Fq , Ar, and mp. Indices 1 and 2 have been used to denote
factors from the current study and UOMS, respectively. Each
combination of the 23-factorial design was implemented on

each candidate dataset xi producing the predicted perfor-
mance metrics ŷij for each algorithm αj . The performance
metrics of meta-learners’ selected algorithms αSEL ∈ A were
then analysed using a mixed model analysis, where xi was
considered to be the subject. The algorithm αSEL was selected
from αj ∈ A for each xi to maximise the predicted perfor-
mance ŷij . The steps performed are described in Procedure 2
and 3, whereas the functional form for this approach is shown
in (9) and (10). For each p, q, r ∈ {1, 2}:

ŷij = ŷi(αj) = m
(
F (xi)

)
(9)

ySELi = yi(α
SEL) : ŷi(α

SEL) := max(ŷij) (10)

where m = mp

F = Fq

αj ∈ Ar

The indices p, q, r have been omitted in (9) and (10) for
readability purposes.

Procedure 2 Training of meta-models
Input:

Fq ∈ RN×Kq

Yr AUC, Yr AP ∈ RN×Lr , where Yr = Y (Ar)

Output:
Y SEL
AUC , Y SEL

AP ∈ RNtest

1: for all ν ∈ {AUC,AP} do
2: for all Fq : q ∈ {1, 2} do
3: for all Yr : r ∈ {1, 2} do
4: for all mp : p ∈ {1, 2} do

{Split the input and output data}
5: (F train

q , F test
q)← Fq

6: (Y train
r , Y test

r)← Yr

7: mp ← train(F train
q , Y train

r) {Train the meta-
model in a supervised manner}

8: Ŷtest
r ← mp(F

test
q) {Predict}

9: Procedure 3 {Select the best algorithm}
10: end for
11: end for
12: end for
13: end for
14: return Y SEL

AUC , Y
SEL
AP

Figure 4 depicts the meta-model framework, including the
multi-factor response, as described in (9).

1) Meta-learner training
The meta-model training in this study was conducted using
a typical supervised machine-learning pipeline, where the
datasets xi were split in a 60:15:25 ratio into the train, val-
idation, and test sets. The meta-model of each meta-learner
Ml was trained to find a mapping between the relevant
meta-features and the AD model performance metrics. The

6 VOLUME 4, 2016

M. Gutowska et al.: Meta-learner for unsupervised AD

FIGURE 3: Experimental design including the meta-learner framework with reference to Rice’s representation (outlined with a
purple line) and factor components used in comparative evaluation (blue stickers). A1, F1, m1 and A2, F2, m2 relate and refer
to components proposed in the current study and UOMS, respectively.

FIGURE 4: Meta-model framework applied and the multi-factor response.

Procedure 3 Find the best predicted algorithm’s performance
Input:

Ŷtest ∈ RNtest×L

Output:
Y SEL ∈ RNtest

1: for i = 1 to Ntest do
2: ySELi ← yi(α

SEL) : ŷi(α
SEL) := max(ŷij)

3: end for
4: return Y SEL

validation set was used to help inform the decision to end the
training process. The learnt mapping was then applied to the
new set of test datasets xtesti where the performance values
of each AD algorithm ŷij were predicted.

2) Comparison of two meta-learners
The performance measure of the meta-learner Ml on the
dataset xi has been defined as the actual performance ySELi

(either AUC or AP) of the selected algorithm αSEL, as
expressed in (10). The value of such a metric would be
accordingly higher as the selection got closer to the actual
best performing algorithm, reflecting the meta-learner’s per-
formance. Another metric used in this study to evaluate meta-
learner performance was the meta-learner error Di, which,
for the dataset xi has been defined as a difference between
the best measured performance yTOPi and the performance of
the algorithm selected by meta-learner ySELi as shown in (11):

Di = yTOPi − ySELi . (11)

A direct comparison of the meta-learning approaches from
the current study to UOMS [18] has been performed. The
mean performance ySEL measured as AUC and AP over the

VOLUME 4, 2016 7

M. Gutowska et al.: Meta-learner for unsupervised AD

set of test datasets, and the meta-learners’ mean error D
have been compared. The statistical significance has been
measured using the Paired t-Test (paired difference test). In
addition to statistical significance, the practical significance
(effect size) has been assessed using Cohen’s d [59] as
outlined in (12) and (13):

dy =
ySEL1 − ySEL2

s∗y
(12)

dD =
D1 −D2

s∗D
, (13)

where subscripts 1 and 2 indicate approaches from this study
and UOMS, respectively, and s∗y and s∗D are the pooled
standard deviation of 1 and 2 distributions of performance
values and errors, respectively. The use of the effect size
was motivated by the large sample sizes. The number of
observations in such cases makes the variables appear statis-
tically significant. As a result, practical significance is a more
useful statistic to recognise. The strength of an effect can be
categorized as follows [59]:

small effect ≤ 0.2 < medium effect ≤ 0.5 < large effect.

3) Statistical analysis
In this study, the factors Zc ∈ {mp, Fq, Ar}, c = 1, . . . , 3,
contributing to the error of the meta-learners in choosing
the correct algorithm were examined using a mixed model
analysis [60]–[62]. The error of the meta-learner or the
Distance from the Top Dil, has been defined as the difference
between the measured performance of the highest performing
AD model yTOPi on the dataset xi and the selected algorithm
performance metric ySELil for a specific meta-learner Ml as
outlined in (14):

Dil = ln
(
yTOPi − ySELil

)
. (14)

Thirty principal components V1i, . . . , Vni (which explain
93 % of the variance) were generated from both sets of meta-
features and used as covariates to adjust for variability due to
the differences between datasets.

The model used is expressed in (15)–(17):

Dil = β0 + β1Z1 + β2Z2 + β3Z3+

+β1′V1i + · · ·+ βn′Vni + γ0i + εil
(15)

with
γ0i ∼ N

(
0, σ2

γ

)
(16)

εil ∼ N
(
0, σ2

ε

)
(17)

where β0, . . . , βn′ describe the fixed effects [60], and γ0i
expresses the random effects’ intercepts. Fixed coefficients
β0, . . . , β3 were assessed for significance using the F -test
with statistical significance set at p < 0.05. The effect

size (Cohen’s d) of the three components Zc was calculated
using (18):

dc =
βc√

σ2
x + σ2

ε

, (18)

where c = 1, . . . , 3 and βc represents the fixed parameters
estimates of Zc, as in (15), and σx and σε represent the
variance of the random components and the error term,
respectively, as expressed in (16) and (17).

IV. RESULTS
This section compares the performance results of the meta-
learner proposed in this study with UOMS. Subsequently,
a mixed model analysis of the factors contributing to the
algorithm choice within the eight meta-learners Ml is given.

A. PROPOSED APPROACH VERSUS UOMS
The performance comparison of the two solutions is pre-
sented in Table 4. It lists the mean performance ySEL mea-
sured as AUC and AP obtained over the set of test datasets
xi, and the meta-learners’ mean error D as defined in (11). In
both cases, AUC and AP, the solution proposed in the current
study has statistically significant higher mean performance
than UOMS (p < 0.001 for AUC, p = 0.028 for AP).

B. STATISTICAL ANALYSIS
A performance summary of eight meta-learners is presented
in Table 5. Interestingly, the hybrid approach of F2, A2, and
m1 gives the best performance results, for both meta-learner
series, AUC and AP-based.

Table 6 presents the Type III main effects for the mixed
model analysis. Whereas the choice of each component Zc

is statistically significant (p < 0.001), the choice of the
meta-model has the largest effect size. This is particularly
visible when using AUC as a performance metric. The AP
metric did not demonstrate a notable difference due to its
“lower resolution” (highly skewed distributions: skewness
– 2.647, kurtosis – 7.064). The skewed distribution of AP
values is expected as unbalanced datasets generally show
this behaviour [63], [64]. The NN meta-learner did, however,
demonstrate a favourable performance in comparison to the
CF group (Table 5).

The interaction terms between the main effects outlined
in (15) had no statistical significance and were subsequently
excluded from the final statistical model.

C. TIME ANALYSIS
Time analysis was performed on a subset of 20 datasets
chosen at random from the entire set used in the current study.
The datasets ranged in size from 68 to 5,186 observations
and 5 to 147 features. This analysis has been restricted to
the end-user perspective, which includes the generation of
dataset meta-features and the prediction of the best-suited
algorithm. The time summary of both approaches to generate
meta-features and perform prediction is presented in Table 7
and Table 8, respectively.

8 VOLUME 4, 2016

M. Gutowska et al.: Meta-learner for unsupervised AD

TABLE 4: Comparison of the mean performance ySEL and mean errors D with
standard deviations across test datasets of two analysed meta-learner approaches,
for AUC and AP.

Current study UOMS D.f. T-stat. p-value Effect size

AUC ySEL 0.6703 ± 0.1820 0.6464 ± 0.1940 2317 7.882 <0.001 0.126
D 0.1567 ± 0.1315 0.1804 ± 0.1558 2317 -7.882 <0.001 0.162

AP ySEL 0.1413 ± 0.1955 0.1369 ± 0.1905 2302 2.193 0.028 0.009
D 0.1685 ± 0.1466 0.1749 ± 0.1543 2302 -2.193 0.028 0.042

D.f. – degrees of freedom, T-stat. – t-test statistic

TABLE 5: Mean performance ySEL with standard deviations
across test datasets of eight meta-learners for AUC and AP.

Meta-
model

AD
alg.

Meta-
features

ySEL, AUC ySEL, AP

M1 (NN) A2 F2 0.692 ± 0.177 0.154 ± 0.215
M1 (NN) A2 F1 0.679 ± 0.179 0.150 ± 0.209
M1 (NN) A1 F2 0.678 ± 0.183 0.146 ± 0.200
M1 (NN) A1 F1 0.670 ± 0.182 0.141 ± 0.195
M2 (CF) A2 F2 0.646 ± 0.194 0.137 ± 0.191
M2 (CF) A2 F1 0.630 ± 0.202 0.136 ± 0.192
M2 (CF) A1 F2 0.630 ± 0.191 0.127 ± 0.176
M2 (CF) A1 F1 0.616 ± 0.193 0.120 ± 0.169

TABLE 6: Type III analysis of the main effects of the meta-
learner components.

Component D.f. F-stat. p-value Effect
size

AUC

Intercept 1,2291 13382.78 <0.001
Meta-features Fq 1,16244 51.457 <0.001 0.082
AD models Ar 1,16244 127.648 <0.001 0.130
Meta-model mp 1,16244 678.938 <0.001 0.300

AP

Intercept 1,2294 14091.410 <0.001
Meta-features Fq 1,16009 0.139 0.710 0.004
AD models Ar 1,16025 69.087 <0.001 0.095
Meta-model mp 1,16016 111.051 <0.001 0.121

D.f. – degrees of freedom, F-stat. – F-test statistic

TABLE 7: Time in seconds to generate dataset meta-features
summarised for a random sample set of 20 datasets.

Statistic (time, s) UOMS Current study

Mean 0.886 2.265
St. dev. 0.777 3.627
Min 0.351 0.044
Max 3.103 10.517

Cases with shorter time 8 12

TABLE 8: Time in seconds to predict the best performing
algorithm summarised for a random sample set of 20 datasets
and across the meta-learner variants.

Statistic (time, s) CF NN

Mean 1.376 0.492
St. dev. 0.574 0.114
Min 0.914 0.400
Max 4.537 0.956

Although the UOMS approach takes less time on average
to generate the meta-feature set, the number of datasets
for which the generation takes less time is greater for the
currently presented approach. The current approach is more
time-consuming for datasets with a relatively higher number
of observations because it involves calculating the distances
between all instances within a dataset. Ultimately, the time
difference between UOMS and the current approach was not
statistically significant for the measured sample set (t19 =
1.835, p = 0.082).

When compared to the CF meta-model, the prediction
times are shorter on average and more consistent with the
use of NN. Furthermore, training times for CF models were
significantly longer than for NN-based models (approx. 20
hours versus approx. 10 minutes, per meta-learner variant).

The above analysis was carried out on the machine with
the following subcomponents: 1.6 GHz Dual-Core Intel Core
i5 processor and 8 GB of 2133 MHz RAM.

V. DISCUSSION
This research performed a direct comparison between a new
method proposed here with the UOMS approach [18]. The
results demonstrate that while there was a statistically sig-
nificant improvement with the proposed method, there was
a negligible effect (practical difference) when comparing the
AP mean error (Cohen’s d = 0.042) and a small effect when
comparing the AUC mean error (Cohen’s d = 0.162) between
the two approaches (Table 4). The proposed method in this
study demonstrates, however, that equivalent results can be
obtained from a substantially reduced feature set and the
omission of HO in the meta-learning configurations. Previous
works have assumed that HO was the main characteristic in
meta-learning. Whereas the initial results are only a direct
comparison between the method proposed in the current
study and the UOMS, the mixed model analysis helps to
elucidate the characteristics that have a contributing effect.

The mixed model analysis, summarised in Table 6, shows
that for AUC, the larger meta-feature set (F2) provides only
a marginal benefit over the smaller set of meta-features F1

(Cohen’s d = 0.082). It is worth noting that while F2 makes
extensive use of generic statistical features, the compact
set F1 is crafted to reflect anomaly characteristics. When
comparing differences in the performance between the two
sets of AD models, the large set with HO (A2) outperforms

VOLUME 4, 2016 9

M. Gutowska et al.: Meta-learner for unsupervised AD

the small set without HO (A1). However, given the number
of models in both groups (298 versus 13), the effect size is
not as compelling as one would expect (Cohen’s d = 0.130).
The analysis demonstrates that the choice of meta-model has
the most significant impact on the meta-learner’s final per-
formance, with the NN-based meta-model m1 outperforming
the state of the art CF approach m2 (Cohen’s d = 0.300).

This outcome is an important consideration given that
current AutoML or meta-learning studies frequently direct
their attention to other aspects, such as meta-features de-
velopment [19], [31] or HO [23], [24], [26]. This work
demonstrates that investing time and effort into creating an
adequate meta-model that can successfully utilise data from
historical evaluations is the most promising approach for
improving meta-learners for unsupervised AD.

The contributions measured on AP show a similar pattern,
however, the effects are less visible. With a significance level
at 0.05, the influence of the meta-features is not statistically
significant. Consequently, the effect size is negligible. The
contributions of the other two components are larger, but their
effect sizes on the AP metric are also minimal.

The results of the time analysis show that using a meta-
learner within an AD pipeline outweighs the costs in terms
of time and computing resources. For a dataset with 1,000
observations and 45 features, the extra time of 1-2 seconds
for meta-feature generation and 0.5 seconds for finding the
best suited algorithm could potentially save hours on a trial-
and-error process of finding the best performing algorithm
and evaluating the results.

VI. CONCLUSION
In this study, a new meta-learner to help in the identification
of an appropriate unsupervised machine learning algorithm
when applied to anomaly detection problems was presented.
When compared to the current state of the art, UOMS [18],
the proposed method demonstrated a statistically significant
improvement in results using two performance metrics, AUC
and AP.

In addition, using a 23 experimental design, an experi-
ment was conducted to understand which of the component
parts (meta-model, meta-features, algorithm set) in both ap-
proaches had the greatest influence on the overall perfor-
mance of the meta-learner. While the choice of meta-features
and the base set of AD algorithms were shown to have a rela-
tively small effect size, the meta-model choice had the largest
effect on the meta-learner performance. Furthermore, the
analysis revealed that a hybrid version of both approaches,
UOMS and the one proposed here, gave the best performance
results.

Finally, the experiments in this study were carried out on
the largest number of datasets used to date for examining an
algorithm selection for an unsupervised anomaly detection
task.

Future work in this area should focus on an in-depth
analysis of approaches used in the meta-models and the

development of datasets that represents a truly robust test to
any future meta-learners.

REFERENCES
[1] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková,

E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of unsuper-
vised outlier detection: measures, datasets, and an empirical study,” Data
mining and knowledge discovery, vol. 30, pp. 891–927, 2016.

[2] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection
techniques: A survey,” Ieee Access, vol. 7, pp. 107 964–108 000, 2019.

[3] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” CoRR, vol. abs/1901.03407, 2019. [Online]. Available:
http://arxiv.org/abs/1901.03407

[4] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K. R. Muller, “A Unifying Review of
Deep and Shallow Anomaly Detection,” Proceedings of the IEEE, vol.
109, no. 5, pp. 756–795, May 2021.

[5] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” PLOS ONE,
vol. 11, no. 4, p. e0152173, Apr 2016. [Online]. Available: https:
//dx.plos.org/10.1371/journal.pone.0152173

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys (CSUR), vol. 41, no. 3, Jul 2009. [Online].
Available: https://doi.org/10.1145/1541880.1541882

[7] E. Schubert, A. Zimek, and H.-P. Kriegel, “Local outlier detection recon-
sidered: a generalized view on locality with applications to spatial, video,
and network outlier detection,” Data mining and knowledge discovery,
vol. 28, no. 1, pp. 190–237, 2014.

[8] C. Wang, H. Gao, Z. Liu, and Y. Fu, “A new outlier detection model using
random walk on local information graph,” IEEE Access, vol. 6, pp. 75 531–
75 544, 2018.

[9] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE transactions on evolutionary computation, vol. 1, no. 1,
pp. 67–82, 1997.

[10] R. Ali, S. Lee, and T. C. Chung, “Accurate multi-criteria decision mak-
ing methodology for recommending machine learning algorithm,” Expert
Systems with Applications, vol. 71, pp. 257–278, 2017.

[11] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette,
H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney et al., “Aslib: A bench-
mark library for algorithm selection,” Artificial Intelligence, vol. 237, pp.
41–58, 2016.

[12] I. Khan, X. Zhang, M. Rehman, and R. Ali, “A literature survey and
empirical study of meta-learning for classifier selection,” IEEE Access,
vol. 8, pp. 10 262–10 281, 2020.

[13] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends
and technologies,” Artificial intelligence review, vol. 44, no. 1, pp. 117–
130, 2015.

[14] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[15] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning for
algorithm selection,” ACM Computing Surveys (CSUR), vol. 41, no. 1, pp.
1–25, 2009.

[16] J. R. Rice, “The algorithm selection problem,” in Advances in computers.
Elsevier, 1976, vol. 15, pp. 65–118.

[17] S. Kandanaarachchi, M. A. Munoz, and K. Smith-Miles, “Instance space
analysis for unsupervised outlier detection,” in EDML@ SDM, 2019, pp.
32–41.

[18] Y. Zhao, R. Rossi, and L. Akoglu, “Automatic unsupervised outlier model
selection,” Advances in Neural Information Processing Systems, vol. 34,
pp. 4489–4502, 2021.

[19] M. Kotlar, M. Punt, Z. Radivojević, M. Cvetanović, and V. Milutinović,
“Novel meta-features for automated machine learning model selection in
anomaly detection,” IEEE Access, vol. 9, pp. 89 675–89 687, 2021.

[20] V. Papastefanopoulos, P. Linardatos, and S. Kotsiantis, “Unsupervised
outlier detection: A meta-learning algorithm based on feature selection,”
Electronics, vol. 10, no. 18, p. 2236, 2021.

[21] C. Le Clei, Y. Pushak, F. Zogaj, M. O. Kareshk, Z. Zohrevand, R. Harlow,
H. F. Moghadam, S. Hong, and H. Chafi, “N-1 experts: Unsupervised
anomaly detection model selection,” in First Conference on Automated
Machine Learning (Late-Breaking Workshop), 2022.

[22] J. Vanschoren, “Meta-learning,” in Automated machine learning.
Springer, Cham, 2019, pp. 35–61.

10 VOLUME 4, 2016

http://arxiv.org/abs/1901.03407
https://dx.plos.org/10.1371/journal.pone.0152173
https://dx.plos.org/10.1371/journal.pone.0152173
https://doi.org/10.1145/1541880.1541882

M. Gutowska et al.: Meta-learner for unsupervised AD

[23] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn,” in ICML workshop on
AutoML, vol. 9. Citeseer, 2014, p. 50.

[24] M. Feurer, J. Springenberg, and F. Hutter, “Initializing bayesian hyper-
parameter optimization via meta-learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[25] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl, and A. C. Car-
valho, “To tune or not to tune: recommending when to adjust svm hyper-
parameters via meta-learning,” in 2015 International Joint Conference on
Neural Networks (IJCNN). Ieee, 2015, pp. 1–8.

[26] T. Horváth, R. G. Mantovani, and A. C. de Carvalho, “Effects of random
sampling on svm hyper-parameter tuning,” in International Conference on
Intelligent Systems Design and Applications. Springer, 2016, pp. 268–
278.

[27] S. Sanders and C. G. Giraud-Carrier, “Informing the use of hyperparameter
optimization through metalearning,” 2017 IEEE International Conference
on Data Mining (ICDM), pp. 1051–1056, 2017.

[28] M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Two-stage transfer
surrogate model for automatic hyperparameter optimization,” in Machine
Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Pro-
ceedings, Part I 16. Springer, 2016, pp. 199–214.

[29] R. G. Mantovani, A. L. Rossi, E. Alcobaça, J. Vanschoren, and
A. C. de Carvalho, “A meta-learning recommender system for
hyperparameter tuning: Predicting when tuning improves svm classifiers,”
Information Sciences, vol. 501, pp. 193–221, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002002551930533X

[30] R. G. Mantovani, A. L. D. Rossi, E. Alcobaça, J. C. Gertrudes, S. B. Junior,
and A. C. P. de Leon Ferreira de Carvalho, “Rethinking default values:
a low cost and efficient strategy to define hyperparameters,” ArXiv, vol.
abs/2008.00025, 2020.

[31] J. Kanda, A. De Carvalho, E. Hruschka, C. Soares, and P. Brazdil,
“Meta-learning to select the best meta-heuristic for the traveling salesman
problem: A comparison of meta-features,” Neurocomputing, vol. 205, pp.
393–406, 2016.

[32] Y. Abdrashitova, A. Zabashta, and A. Filchenkov, “Spanning of meta-
feature space for travelling salesman problem,” Procedia Computer
Science, vol. 136, pp. 174–182, 2018, 7th International Young Scientists
Conference on Computational Science, YSC2018, 02-06 July2018,
Heraklion, Greece. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1877050918315552

[33] A. E. Gutierrez-Rodríguez, S. E. Conant-Pablos, J. C. Ortiz-Bayliss,
and H. Terashima-Marín, “Selecting meta-heuristics for solving vehicle
routing problems with time windows via meta-learning,” Expert Systems
with Applications, vol. 118, pp. 470–481, 2019.

[34] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,”
Artificial intelligence review, vol. 18, no. 2, pp. 77–95, 2002.

[35] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm
selection for black-box continuous optimization problems: A survey on
methods and challenges,” Information Sciences, vol. 317, pp. 224–245,
2015.

[36] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu,
D. Jajetic, B. Ray, M. Saeed, M. Sebag et al., “Analysis of the automl
challenge series,” Automated Machine Learning, p. 177, 2019.

[37] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-weka: Automatic model selection and hyperparameter optimization
in weka,” in Automated machine learning. Springer, Cham, 2019, pp.
81–95.

[38] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” Advances
in neural information processing systems, vol. 28, 2015.

[39] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,
“Auto-sklearn 2.0: Hands-free automl via meta-learning,” The Journal of
Machine Learning Research, vol. 23, no. 1, pp. 11 936–11 996, 2022.

[40] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, M. Ur-
ban, M. Burkart, M. Dippel, M. Lindauer, and F. Hutter, “Towards
automatically-tuned deep neural networks,” in Automated machine learn-
ing. Springer, Cham, 2019, pp. 135–149.

[41] R. S. Olson and J. H. Moore, “Tpot: A tree-based pipeline optimization
tool for automating machine learning,” in Workshop on automatic machine
learning. PMLR, 2016, pp. 66–74.

[42] C. Steinruecken, E. Smith, D. Janz, J. Lloyd, and Z. Ghahramani, “The
automatic statistician,” in Automated Machine Learning. Springer, Cham,
2019, pp. 161–173.

[43] S. Kandanaarachchi, M. A. Muñoz, R. J. Hyndman, and K. Smith-Miles,
“On normalization and algorithm selection for unsupervised outlier
detection,” Data Mining and Knowledge Discovery, vol. 34, no. 2,
pp. 309–354, Mar 2020. [Online]. Available: https://doi.org/10.1007/
s10618-019-00661-z

[44] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[45] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining
outliers from large data sets,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 427–438.

[46] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection,” in Advances in neural
information processing systems, 2000, pp. 582–588.

[47] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung, “Enhancing effec-
tiveness of outlier detections for low density patterns,” in Pacific-Asia
conference on knowledge discovery and data mining. Springer, 2002,
pp. 535–548.

[48] H.-P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection
in high-dimensional data,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2008,
pp. 444–452.

[49] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[50] M. Goldstein and A. Dengel, “Histogram-based outlier score (hbos): A fast
unsupervised anomaly detection algorithm,” KI-2012: poster and demo
track, vol. 9, 2012.

[51] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, no. 2, pp. 275–304, 2016.

[52] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “Copod: copula-based
outlier detection,” in 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 2020, pp. 1118–1123.

[53] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier,” in
Proceedings of the IEEE foundation and New Directions of Data Mining
Workshop, in conjunction with the Third IEEE International Conference
on Data Mining (ICDM03), Jan 2003, pp. 172–179.

[54] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[55] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He, “Genera-
tive adversarial active learning for unsupervised outlier detection,” IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 8, pp.
1517–1528, 2019.

[56] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable
outlier detection,” Journal of Machine Learning Research, vol. 20, no. 96,
pp. 1–7, 2019. [Online]. Available: http://jmlr.org/papers/v20/19-011.html

[57] F. Chollet et al., “Keras,” https://keras.io, 2015.
[58] L. Biewald, “Experiment tracking with weights and biases,” 2020,

software available from wandb.com. [Online]. Available: https://www.
wandb.com/

[59] J. Cohen, Statistical power analysis for the behavioral sciences. Aca-
demic press, 2013.

[60] W. Stroup, Generalized Linear Mixed Models: Modern Concepts,
Methods and Applications, ser. Chapman & Hall/CRC Texts in
Statistical Science. Taylor & Francis, 2012. [Online]. Available:
https://books.google.ie/books?id=GcGrySpkXRMC

[61] C. McCulloch and S. Searle, Generalized, Linear, and Mixed Models, ser.
Wiley Series in Probability and Statistics. Applied Probabil. Wiley, 2004.
[Online]. Available: https://books.google.ie/books?id=bWDPukohugQC

[62] E. Demidenko, Mixed models: theory and applications with R. John
Wiley & Sons, 2013.

[63] H. Haibo and M. Yunqian, “Imbalanced learning: foundations, algorithms,
and applications,” Wiley-IEEE Press, vol. 1, p. 27, 2013.

[64] R. Viola, L. Gautheron, A. Habrard, and M. Sebban, “Metaap: A meta-
tree-based ranking algorithm optimizing the average precision from im-
balanced data,” Pattern Recognition Letters, vol. 161, pp. 161–167, 2022.

VOLUME 4, 2016 11

https://www.sciencedirect.com/science/article/pii/S002002551930533X
https://www.sciencedirect.com/science/article/pii/S1877050918315552
https://www.sciencedirect.com/science/article/pii/S1877050918315552
https://doi.org/10.1007/s10618-019-00661-z
https://doi.org/10.1007/s10618-019-00661-z
http://jmlr.org/papers/v20/19-011.html
https://keras.io
https://www.wandb.com/
https://www.wandb.com/
https://books.google.ie/books?id=GcGrySpkXRMC
https://books.google.ie/books?id=bWDPukohugQC

M. Gutowska et al.: Meta-learner for unsupervised AD

MAŁGORZATA GUTOWSKA received the M.S.
degree in data analytics from the School of Com-
puting, Dublin City University, Dublin, Ireland, in
2019. She is currently pursuing the Ph.D. degree
in artificial intelligence at Dublin City Univer-
sity. Her research interests include data mining,
machine learning, automated machine learning,
algorithm selection and anomaly detection.

SUZANNE LITTLE is an Associate Professor (se-
nior lecturer) in the School of Computing at
Dublin City University, Ireland, and a Science
Fundation Ireland (SFI) Principal Investigator at
the Insight SFI Research Centre for Data An-
alytics working in the area of media analytics,
information access and retrieval across a variety
of application domains. She completed her Ph.D.
at the University of Queensland, Australia in 2006
examining and developing tools for analysing and

managing scientific multimedia data. She has worked on a number of EU
projects in the areas of multimedia, technology enhanced education, security,
autonomous vehicles and big data. Dr. Little is an Investigator in the SFI
ENABLE Smart Communities Spoke and a co-director of the SFI Centre for
Research Training in Artificial Intelligence. She is also part of the EU H2020
funded Cloud-LSVA and VI-DAS projects in utilising big video and sensor
data from instrumented vehicles. Her expertise is in video analysis, semantic
search and data integration.

ANDREW MCCARREN is an Associate Profes-
sor in the School of Computing at Dublin City
University, Ireland, and is a funded investigator
in the Insight Centre for Data Analytics, Ireland.
He is also a collaborative investigator in Vista
Milk and the Adapt Centre, Ireland. His research
interests are in the application of Data Analytics
in the areas of Human Performance, Software
Engineering, Fintech and Agtech.

12 VOLUME 4, 2016

	Introduction
	Algorithm Selection Problem

	Related work
	Methodology
	Data generation
	Proposed Meta-Learner
	Meta-features
	Set of anomaly detection algorithms
	Meta-model

	Evaluation Strategy
	Meta-learner training
	Comparison of two meta-learners
	Statistical analysis

	Results
	Proposed approach versus UOMS
	Statistical analysis
	Time analysis

	Discussion
	Conclusion
	REFERENCES
	MaŁgorzata Gutowska
	Suzanne Little
	Andrew McCarren

