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ABSTRACT

Retrieval is a fundamental challenge within the research commu-
nity of lifelog and the Lifelog Search Challenge (LSC) has been
an important annual benchmarking activity for interactive lifelog
retrieval systems since 2018. This paper proposes MyEachtra (/mai-
AK-truh/), a system designed for the upcoming LSC’23 workshop.
Improved upon MyScéal, which was the top performing system
from LSC’20 to LSC’22, MyEachtra includes modifications to ad-
dress the challenges of non-owner user understanding of lifelog
contexts and open-ended lifelog question answering. Specifically,
MyEachtra shifts the focus from images to events as retrieval units.
Events are segmented using location metadata as well as visual
and time differences between successive images. A pilot study
on different approaches to aggregate images into events was con-
ducted to test the automatic performance of the system, which
showed promising results. For known-item queries, showing only
the top 3 events proved to be adequate to find relevant images.
However, future evaluation of the performance for ad-hoc and
question-answering queries is necessary for a complete analysis of
the MyEachtra.
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1 INTRODUCTION

Lifelogging refers to the process of passively capturing and storing
personal data from everyday life activities in various formats such
as ‘point-of-view’ photos (capture from wearable cameras), videos,
location data, and biometrics data. With the popularity of wearable
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devices and digital technologies, more people, referred as lifeloggers,
have started collecting their lifelogs. Lifelogging shows potential
to bring many enhancements to the individual, such as enhanced
well-being, higher levels of productivity as well as enhancing our
understanding of personal experiences and behaviours.

Lifelog retrieval is one of the fundamental tasks that the lifelog
community has been focusing on for the past few years. As more
lifelog sources become readily available, lifelog research has gained
increasing attention in many international workshops and activi-
ties such as Lifelog Search Challenges [7, 8, 24] and NTCIR Lifelog
tasks [32]. Some challenges that are present in lifelog retrieval are:
(i) the large amount of passively captured data requiring effective
organisation and retrieval approaches, (ii) the lack of a single model
for many modalities of lifelog archives, and (iii) an incomplete un-
derstanding of the user needs. The annual Lifelog Search Challenge
provides a bench-marking opportunity for the research commu-
nity to compare different approaches to lifelog retrieval, as well as
introduce novel challenges to the community.

Known-item search has been the core task of the LSC since the
first iteration in 2018, which requires finding one lifelog image
within the provided dataset that is relevant to a query in natural
language. To emulate the process of memory recall, the query con-
sists of 6 hints which are gradually revealed every 30 seconds. In
this kind of task, the main metric is precision and hit rate (as only
one correct submission is needed). In 2022, two new tasks were
introduced: ad-hoc and question-answering. Ad-hoc tasks accessed
the recall of the submissions by asking for as many correct answers
as possible. ‘Find all the times I was buying whiskey in a store.’ is one
example. On the other hand, question-answering (QA) tasks (e.g,
‘What was the number of my office door (in 2019)?’) sought an image
that identified the correct answer. This was, in a way, similar to
the known-item search with the difference in the amount of given
details. For all tasks, the score of each system is calculated based on
the accuracy of the submissions as well as the submission speed.

The current iteration of the challenge, LSC’23 [4], modifies the
QA task by requesting a free-from answer instead of an image.
Research has been limited in this area. While a Lifelog Question
Answering Dataset (LLQA)[22] was developed using the dataset
from LSC’20[6], addressing the substantial jump from multiple-
choice to open-ended questions will require significant further
investigation.

Our previous system Myscéal [23], along with its updated ver-
sions Myscéal 2.0[26] and E-Myscéal[25], has scored highest in the
last three editions of the LSC. The focus of this system has been
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Figure 1: The MyEachtra overall pipeline follows the previous versions with slight modifications in blue modules and complete
reformation in green modules to adjust to our event-based approach.

on providing an easy-to-use interface that minimises unnecessary
interactions and speeds up the submission process. However, due
to the COVID-19 pandemic, the evaluation benchmarks for the
system in recent years were not able to include novice users who
would not be familiar with lifelogging systems. As a result, the
true performance of the system has not been fully tested, even
though each version of the system was designed with novice users
in mind. As a substitute for novice users, the expert performance
from the previous year was analysed in preparation for the next
event in 2023. Despite having more knowledge of lifelog retrieval
than novice users, the expert still struggled to determine the rele-
vance of some images, and there was a high risk of missing correct
images. This inspires us to adopt an event-based approach to
lifelog retrieval. We believe this will help users understand the
context of the retrieved results more quickly and accurately.

In this paper, the proposed system, MyEachtra (/mai-AK-truh/),
builds on the previous version (E-Myscéal) and includes modifica-
tions which are summarised as follows: (i) an event segmentation
process influenced by location metadata; (ii) an event-based ap-
proach that exploits pretrained image-text cross-embedding models
to develop representative embeddings for event; (iii) a redesigned
user interface showing events and highlighting important images
with relevant events; and (iv) a pipeline to apply video QA models
on retrieved events to answer open-ended questions.

2 RELATED WORK
2.1 Lifelog Retrieval

Lifelog retrieval refers to the process of searching for and retrieving
information from lifelogs. It typically involves customised search
engines, which employ various ranking techniques to present the
most relevant lifelog information in an understandable format to the
user. As the volume and diversity of lifelog archives grow, efficient
lifelog retrieval is crucial to allow the lifeloggers to easily access
and review their past experiences.

As a preliminary attempt to address lifelog retrieval, the solu-
tion to the workshop tasks are in the form of individual images.
Although there are some attempts with aggregating images into
‘moments’ (although moments are not yet clearly defined) [9, 15, 25],
most systems—even the best performing ones—treat each image
separately and turn the task into image retrieval with boolean fil-
ters for other modalities (such as map filtering for location, faceted
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filters for time, etc.). Traditionally, lifelog search systems annotate
each lifelog image with textual information extracted from various
computer vision models and the ranked list result is generated by
comparing the ‘keywords’ in the queries with the annotated con-
cepts. Various teams that participated in the past LSC workshops
employed such an approach [5, 18, 19, 23, 26]. This approach results
in acceptable performance but faces difficulties when the query
becomes more complicated. One approach has been to employ more
models in preprocessing to cover more contexts that are potentially
searched for. However, with the increasing popularity of cross-
modal embeddings, such as CLIP [17], ALIGN [10], and CoCa [30],
many teams have started adapting these pre-trained models into
their systems[1, 15, 25]. Embedding-based models provide a greater
semantic understanding of images compared to disjointed concepts
and have proved their usefulness in recent workshops. Neverthe-
less, these new methods still perform search on the image-level,
ignoring the fact that life experiences are temporal in nature and
many topics in recent LSC editions are built upon that temporal re-
lationship of lifelogs (e.g repeatedly reading the manual instruction
while building a computer, then going for a coffee).

The main motivation of this work stems from a speculation that,
these systems could be more robust if they take into considera-
tion the temporal nature of lifelogs. By extending the semantic
understanding of embedding-based models from the image-level
to a longer period of time, a lifelog system could perform more
complicated searches.

2.2 Adapting Image-Text Models for Video
Modelling

As mentioned in previous section, image-text embedding models
have gained significant popularity. The idea behind both models
is training a text encoder and an image encoder with contrastive
loss on a large number of image-text pairs. Over the past year,
there have been numerous attempts to inherit the knowledge from
such image-text models to model videos with minimal re-training.
One approach is using late fusion module to aggregate video frame
features. Examples include using mean pooling or attentional pool-
ers [28, 30], Transformer Encoders[11], calculating a weighted mean
of frame-wise embeddings[3], or using K-means to return K rep-
resentative embeddings, of which the one that has the maximum
similarity score with a query will be registered during retrieval[16].



Other works proposed novel visual models which are initialised
with pretrained weights from a image-text model. CLIP2CLIP[14]
modifies the linear projection layer of the Vision Transformer (ViT)
to take into account the time axis of videos. To further improve the
efficiency of the model, CenterCLIP[31] suggests clustering video
patches before passing them into the ViT model.

Leveraging image-text models can also be used in various down-
stream tasks including video QA. FrozenBiLM [29] utilises frozen
pretrained visual encoders by integrating lightweight adapter mod-
ules to enable zero-shot video QA. VideoCoCa [28] improves on
image CoCa and reuses attention poolers that are parts of the pre-
trained image-text model without further retraining.

Inspired by these works, we choose to employ pre-trained image-
text embedding models to model lifelog events. As the Lifelog
Search Challenge involves processing a large number of images
within a short period, we opt for text-independent methods for
computing event embeddings offline. This enables us to process
each query more quickly at search time.

3 OVERVIEW OF THE MYSCEAL SYSTEM

In this section, we briefly introduce the previous Myscéal system,
which MyEachtra is based on. The pipeline of Myscéal has remained
mostly unchanged since the first version, illustrated in Figure 1.

The data processing components provided visual descriptors and
non-visual metadata, such as GPS coordinates, semantic location
names, time, and date, for each image. Similar images were previ-
ously computed at this stage using VGG16 [21] and SIFT[12, 13]
features. The Alignment module took into account different sources
of processed data and create documents with image-based keys. All
documents are then indexed in ElasticSearch ! to enable high-speed
searches.

User interactions were performed on a desktop interface, as seen
in Figure 2. The backend system was implemented using Django?®
to support communication between the user interface and Elas-
ticSearch. Myscéal aimed to support a novice user by minimising
interaction steps, so it used a full-text search instead of relying on
a faceted filter panel. The necessary information, both non-visual
metadata and visual descriptors, could be directly parsed from the
textual query by a custom query interpreter.

Myscéal also supported searching for multiple queries based on
their temporal relationships, which is a distinguishing characteristic
of lifelogs. This is shown by the design of three separate query
boxes (‘before’, ‘during’, and ‘after’) at the top of the interface, and
reinforced by showing the search results in triplets, putting the
images in their temporal context.

In some cases, location information could not be well represented
in text, and the user could use the map panel on the top right to
locate the target location and perform filtering. Additionally, the
saved section allowed the user to put aside images that they are
not yet certain about for later consideration.

Another important aspect of Myscéal was the Event View dis-
played, which was designed to help the user understand the context
around an image by showing where the image sat on a timeline
covering the entire lifelog.

Thttps://www.elastic.co/
Zhttps://www.djangoproject.com/

26

4 INTRODUCING MYEACHTRA

4.1 Data Processing

Extra metadata We kept the data processing steps from Myscéal
mentioned in previous section with two changes. First, we sim-
plify the data processing components by using CLIP embeddings
directly to determine image similarities. Specifically, CLIP-H/14
is used, which was trained with the LAION-2B English subset of
LAION-5B [20] using OpenCLIP [17]. Moreover, we incorporate an
addition source of metadata: semantic names, which were produced
by VAISL[27]—a GPS processing method. Each semantic location
also comes with the location type (e.g. Korean restaurant, library,
etc.) to provide extra information when the user needs. However,
as a large amount of GPS data was missing from the original data,
the semantic locations identified sometimes may not be correct.
However, this information helps tremendously with segmenting
lifelog, which is discussed next.

Event segmentation Moving to an event-based approach, it
has become increasingly necessary to have a well segmented lifelog.
Thus, we define event boundaries based on (i) the the change of se-
mantic locations acquired from VAISL, (ii) cosine distance between
successive images, and (iii) the time gap between two images. To
further assist the use of date filters in the query, we also split the
event if they occur over two days (e.g, staying at home overnight).
Using a cosine distance threshold of 0.3 results in 167,570 separate
events.

4.2 Event-Based Approach

The main enhancement for MyEachtra is that, instead of compar-
ing each image in the dataset to the query using cosine distances,
we compare events. We illustrate how to turn image embeddings
into event embeddings. By using CLIP, we denote the pre-trained
encoders as w(u) =w and 0(t) = ¢; which encode image u and text
tintow, ¢y € RY. Assume an event e is composed of s images such
that e = uy, uy, ..., us. Therefore, we can join the embedding of each
image into a matrix Z = [w(e) = 21, 22, ..., 25|, where Z € RAxs,
We need an aggregation function A that maps Z € R4%* into an
global event representation ¢, € R?. In the context of the LSC, A
is preferably independent from the query t. Several options are
possible from previous work in video-text models.

Mean Pooling A simple yet effective way of combining a list of
embeddings is average pooling over the temporal dimension. Mean
pooling is often used as a baseline to compare new video models.

Clustering Portillo et al.[16] experimented on clustering the
events and selected the cluster centres as representative embed-
dings. The only modification from their method is that instead of
using K-means clustering method, we employ OPTICS[2] to address
the vastly varied lengths of events.

Transformer encoders The most popular technique for tem-
poral modelling in videos (as well as events in this system) is to
use transformer encoders and learn a self-attention mechanism to
emphasise important images. Note that since the outputs of trans-
former encoders are still in a sequential format, they are average
pooled to create the global embedding.

Weighted Mean Another way to work with these outputs is
passing them through a Linear Layer (where the output dimension
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is 1) to produce images weights, indicating how important an image When aggregating event images by using Weighted Mean, we
is in the event, as described in [3]. also get the image weights as the output of the model. In that case,
After getting the event embeddings, we continue to use the these weights are multiplied with the cosine similarities and event
cosine similarity for the retrieval process. The similarity score is scores before the softmax function is applied.
summed with other scores (TF-IDF for location names, GPS filters, To help the user quickly identify the most highly scored image
time filters, etc.) within ElasticSearch, similarly to the previous year. within each group, we highlight it and place it in the middle of
We refer to these as the event scores in later subsection. In Section 5, the row. This design choice was made to draw the user’s attention
we evaluate the results using the previously mentioned options. to the most important visual information and reduce the need for

extra scanning and searching. In addition, up to the next six most
relevant images (three on each side, left and right) are also shown
to the user as they are not only most likely relevant but also provide
additional context to improve the user’s understanding of the event.
An example could be seen in Figure 2.

Regarding known-item queries, the user can submit an image
by clicking on a checked button displayed on it. On the other hand,
for ad-hoc queries, users can submit the entire event by holding
down the Shift key and clicking on any image’s submit button.

4.3 Displaying Events

We redesigned the user interface to show the resulting ranked
events (rather than images) in a way that is easy to understand and
highlights relevant information such as location, time, and highly
ranked images within an event. After getting the ranked results
from ElasticSearch, to further reduce repetitive information, if there
is location changes between some events, we merge them together
as one row. The reason behind this is that our event segmentation

still does not account for longer events and that some activities in 4.4 Question Answering

one location can belong to different event segments. To generate the list of answers, we utilise FrozenBiLM [29], a video

To find the best images within each row to display, we first question-answering (QA) model, on the most relevant scenes for the
calculate the cosine similarities between each image and the user’s user’s query. The model’s architecture consists of a frozen bidirec-
query. Each similarity score is then multiplied with the event score tion language model (BiLM) and a frozen pretrained visual encoder
returned by Elasticsearch (as mentioned in last section). Finally, (CLIP VIT-L/14) connected by adapter modules. These adapter mod-
we apply the softmax function over the scores to get the image ules are multilayer perceptrons with residual connection and are
scores. The softmax function can help emphasise the most relevant insearted after each self-attention layer and each feed-forward
images and reduce the impact of outliers. We limit this calculation layer of the language BiLM’s model. To adapt FrozenBiLM to open-
to the top-100 resulting events and repeat the process when the ended videoQA (or lifelog QA in this system), a prompt is created
user requests more results. as follows: ‘[CLS] Question: <Question>? Answer: [MASK].. The
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Figure 3: Hit Rate at K at different hints on four approaches.

limitation of this model is that it is essentially a classification model
that is only capable of choosing the best answers from a fixed set.

In MyEachtra, the question is used directly as a search query to
find the most relevant events. The top-10 events are passed through
FrozenBiLM to get potential answers, which are shown on the
left panel of the user interface in Figure 2. Nonetheless, users can
choose to run the model again for any event they find interesting
by clicking on the QA button underneath each row. Once an answer
is found, users have the option to swiftly copy it by clicking on it
and then pasting it into the submission input field located at the
bottom left corner. Alternatively, if they can deduce the answer
from the displayed events, they can manually type it into the box
and submit it.

5 EVALUATION USING LSC’22 QUERIES

We carried out an automatic evaluation to assess the performance
of our event-based approach. 14 known-item queries of the LSC’22
queries were used in this pilot study. Similarly to last year’s exper-
iment, they are split into ‘before’, ‘main’, and ‘after’ hints before
requesting the ranked list from the backend system. The results
are measured using Hit Rate at K (H@K), with an adjustment for
events. H@K here means that one of the target images are included
in the first K event (whose a maximum of 7 images are shown in
the user interface). This metric could provide a baseline for the
system’s performance that may be comparable to the performance
of a novice user because it ignores complex user interactions that
the system supports.

We experiment on four different approaches to aggregate image
features and the results are shown in Figure 3. The configurations
of each experiment are as follows:

e Mean: the mean pooled embedding are used as the global
event embedding. No training is required.

o Cluster: OPTICS clustering is applied for each scene with
max_eps=0.5 and min_samples=2
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Table 1: Mean H@K for LSC’22 queries using Mean Pooling.
‘We are most interested in the modified version of H@3 be-
cause (i) once the user find the correct answer, more hints
are not needed and (ii) the user interface can handle three
events at a time.

Mod

Hint | H@1l H@3 H@5 H@10 H@20 H@50 | H@3
1 0.50 0.57 0.57 0.71 0.71 0.86 0.57

2 0.64 0.79 0.79 0.79 0.86 0.93 0.79

3 0.79 0.86 0.86 0.86 0.86 0.86 0.86
4 0.79 0.79 0.79 0.79 0.79 0.79 0.86

5 0.64 0.64 0.64 0.64 0.64 0.64 0.86
6 0.64 0.64 0.64 0.64 0.64 0.64 0.86

e Transf: we trained one layer of PyTorch 3 implementa-
tion of Transformer Encoders for 10 epochs using the cap-
tions described in LLQA dataset [22] with n_head=8 and
d_model=1024. The outputs are mean pooled.

e WTransf: same settings with Transf. The outputs are used
to created a weighted mean embedding.

Surprisingly, the straightforward method of mean pooling achieves
the highest results in most cases. As for clustering, not only the
search space has increased, the hit rates at K = 1 are also slightly
lower. Furthermore, despite having more parameters, both the
weighted mean (WTransf) and averaging the output (Transf) from
Transformer encoders produce generally worse performance, es-
pecially at lower values of K and when fewer hints are used. This
could be explained by the limited size of the training dataset, which
contains of only 13,317 captions with low variety.

The best performing setting is recorded in Table 1. From the
experiments, we observe that more hints do not mean better results.
In fact, the system seems to perform the best when 2-3 hints are
given, without ‘before’, ‘after’, or misleading hints (e.g wrong year).
Thus, we also report a modified H@K metric, denoted as Mod
H@XK in the table, where H@K (i) = max(H@K (i), H@K (i — 1))
to account for the fact that more searches are not needed after the
correct submission has been made. Furthermore, we are also aware
of the trade-offs when choosing to show events instead of individual
when it comes to the amount of results that can be effectively be
displayed on the user interface. Our user event-based interface
currently can fit 3 events at most, thus we are most interested in
Mod H@3, when we assume no scrolling is needed. Here we could
see that the answer for 57% (8 out of 14) of the queries can be found
using only the first hints. With more hints, the user can find the
correct image of 86% of the queries (12 out of 14).

6 CONCLUSION

In this paper, we present modifications to Myscéal that shift the
focus of lifelog retrieval from images to events, aiming to move to-
wards a unified model for lifelog archives. Our new system, MyEach-
traexploits pretrained image-text models to create event embed-
dings. We conducted pilot experiments and found that averaging
image embeddings to create event embeddings is the most suitable

Shttps://pytorch.org/



approach for MyEachtra at this stage, resulting in a reduced search
space without sacrificing performance. Additionally, we adjust the
user interface to show relevant events and focuses on contextual
information effectively. However, there is more room for improve-
ments regarding the performance of FrozenBiLM on lifelog data as
the answers are still not directly found from the model’s outputs.
In future work, we plan to explore more advanced techniques to ag-
gregate image embeddings into event embeddings and incorporate
more diverse datasets for training. User studies are also necessary
to gain more knowledge for the future systems.
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