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Abstract: In this project, a smart knee sleeve was developed for the purpose of measuring a subject’s
knee angle continually. The device is wireless and washable, making it suitable for rehabilitation at
home. Two separate methods were incorporated onto a standard knee sleeve: a flexible silicone-based
bend sensor and two IMUs. Each approach was evaluated, and testing was conducted on three
subjects wearing the knee sleeve, using a reference video motion-tracking method. Squats were used
as the exercise protocol for testing. The results showed that the flex sensor performed better for two
of the three participants, with an average RMSE of 8.3 degrees, which is comparable to results from
related research.

Keywords: flex sensors; inertial measurement units; knee angle measurement; wearable technology

1. Introduction

After a person undergoes knee surgery, such as an anterior cruciate ligament (ACL)
reconstruction, the monitoring of the range of motion (ROM) of the knee is important for
a successful recovery. During the early phases of rehabilitation, monitoring can help a
healthcare professional (HCP) to track progress and better identify individual therapeutic
needs for patients [1].

In a clinical setting, knee joint angles are most often measured using a goniometer.
A goniometer measures the angle of the knee and the ROM is determined by finding the
maximum and minimum knee angle for the patient. Video-based systems are used in some
larger clinical settings and can provide results dynamically. They measure the angle of the
knee using high-speed cameras with marker-based motion capture systems [2]. However,
high-speed cameras are not suitable for home rehabilitation as they are expensive, and
movement is limited to a small area. Due to these limitations, other methods are needed for
use outside of the clinical setting, which creates a need for a wearable device to accurately
measure the knee angle. This paper proposes and compares two sensing methods to obtain
the knee joint angle in the sagittal plane as alternatives to current camera-based systems.

2. Related Work

Inertial measurement unit (IMU) sensors, electrogoniometers, resistive, and capacitive
sensors are among the devices used for measuring knee angles. In the works of Faisal et al.,
Favre et al., and Li et al. [3–5], IMUs were used to measure knee angles in activities such as
walking, running, and walking up stairs. A current limitation of IMUs is that measurement
drift can be an issue over a longer period of time [6].

Another approach presented by Buttner et al. [1] used a potentiometer to measure
the knee angle. However, this technique can limit the patient’s natural movement due to
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its rigid structure. Resistance sensors such as those used by Watson et al. and Di Tocco
et al. [7,8] can be a good option as a wearable sensor. Nonetheless, they can suffer from
hysteresis issues that affect the continuity of the measurements. Capacitance sensors offer
the same wearability properties, without the aforementioned issue, as seen in the work by
Hermann et al., Atalay et al., and Poomsalood et al. [9–11].

3. System Design

Two measurement approaches are proposed in this work to measure the knee angle:
a flex sensor (Method 1) and IMUs (Method 2). A capacitive-type flex sensor was used
to measure displacement directly as the knee angle changes. In addition, IMU sensors
were chosen given their accuracy and small size, making it possible to use them within a
wearable device. The locations of both types of sensors are shown in Figure 1a.
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The overall prototype device has a total weight of 200 g.

3.1. Hardware

For Method 1, the flex sensor used was a commercial product from Nitto Bend Tech-
nologies [12]. This sensor operates by measuring the change in capacitance proportional to
the curvature of the bent sensor.

For Method 2, the Bosch BNO055 [13] was chosen as the IMU due to its internal fusion
algorithms to calculate absolute orientation. Two identical sensors were used, with one for
above the knee joint and the other below.

An Arduino Nano BLE was chosen as the microcontroller due to its ability to send
data via Bluetooth Low Energy (BLE). The flex and IMU sensors were wired to the Arduino
on the I2C bus.

3.2. Wearable Considerations

It was noted in the work of Watson et al. [7] that keeping the sensors tight to the skin
resulted in better measurements, so a number of close-fitting fabrics or commercial knee
sleeves were considered. The Vulkan Classic Knee support [14] was obtained as it was
manufactured from close-fitting material that was durable and washable.

The flex sensor was aligned vertically along the side of the knee and held tight against
the leg using a fabric pocket sewn to the knee sleeve. The IMUs were positioned in line
with each other on the front part of the sleeve to rotate around one axis in the sagittal plane
using hook-and-loop tape.

The final knee sleeve and electronics are shown in Figure 1b. The electronics have
been separated for visual purposes, but can be reattached to the sleeve for use.
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3.3. Software

Regular sampling of the sensor registries was performed with a sampling rate of
25 Hz. This is quite low compared to other studies and could have been increased to
100 Hz. However, 25 Hz was sufficient to capture the movement of lower extremities [15]
for the chosen exercise regime involving slow repetitions.

In order to provide user feedback and record the values, a desktop application was
developed. The application provided near-real-time visual feedback of the knee angle
through a graphical user interface, shown in Figure 2, which displayed the current knee
angle reported by the IMUs (green) and Flex sensor (red).
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4. Testing and Results
Subject Testing

After an initial stage of testing on a custom rig which allowed for setting the knee
sleeve at a known angle (see Video S1), the next stage of testing involved subjects wearing
the device (See Video S2). Calibrations were performed before each test on the IMUs, but
were not needed on the flex sensor as it was factory calibrated. Tests were performed on
three subjects with no history of knee issues. Squats were chosen as the test exercise due
to the large knee angle range of motion. Although testing was performed on squats, it is
anticipated that the device will work for other rehabilitation exercises such as hamstring
curls and cycling.

To determine how effectively the wearable device reports the knee angle, a video-
based tracking system was used to record exercises. All video was recorded using a Canon
EOS 1000D digital camera captured at 25 frames/se. Three reflective markers were worn
by each subject: on the hip; the knee joint; and on the ankle. The video clip was loaded into
a 2D motion capture system called Kinovea [16]. Subjects were asked to perform ten squats
at a comfortable pace.

The results from one of the tests are shown in Figure 3, which plots the flex and IMU
values with the reference (Kinovea obtained) value over time.

Accuracy across the different methods was determined by taking the difference of
the sensor reported angles and the reference reported angle (Kinovea) to calculate the root
mean squared error (RMSE). An ideal sensor would have an error value of 0◦, meaning
perfect agreement with the reference value. In total, the device was tested six times, across
three different subjects, with the results shown in Table 1 and the RMSE calculated.
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Table 1. Results of subject testing.

Test # Subject RMSE (◦)
Flex Sensor

RMSE (◦)
IMUs

1 1 5.2 13.7
2 1 7.1 9.0
3 1 12.5 10.6
4 2 8.5 18.1 1

5 3 18.6 9.4
6 3 22.6 11.8

1 IMUs were not fully calibrated during this test.

5. Analysis

Both sensors showed good reaction time to changes in angle as there was very little
lag compared to the reference system, as shown in Figure 3. In general, the flex worked
well on Subjects 1 and 2, with an average error of 8.3◦.

The flex sensor is most accurate when properly aligned straight along the side of the
leg at the start of the test. In this paper, the flex sensor did not work as well for Subject 3.
From analysis of the video, the suggested reason for this was that the flex was impeded at
times during the squat cycle. This subject had a larger knee than the other subjects, so it is
suggested that a larger knee sleeve was needed.

The IMUs worked well on Subjects 1 and 3, as seen in Table 1. The test for Subject 2
was not completed correctly due to an issue with internal calibration. The main source of
error for the IMUs was underestimating the max angle of the knee by 10◦ or more.

Comparing the flex sensor to the IMUs, the lack of internal calibration on power up
is certainly an advantage for the flex sensor. Continuous calibration is not practical for
regular use, especially as a home rehabilitation device. The flex did not have this issue. The
flex is also composed of a single component, as opposed to two IMU components, which is
also important for a lightweight solution.

6. Conclusions

This paper implemented a washable, wireless device to allow the tracking of the knee
angle during rehabilitation exercises. There is a need for such a device as the current
methods are limited to a clinical setting.

The device was tested on three subjects. The flex sensor showed good results on two
of the three subjects with a low average RMSE of 8.3◦.
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Future work has been identified to investigate ways to improve the device through
further research on flex sensor alignment and IMU orientation algorithms. Each change
should ensure that the device remains comfortable and convenient to wear. Future testing
is also needed on a larger range of subjects, performing different rehabilitation exercises.

Supplementary Materials: The following supporting information can be downloaded at: Video S1.
Testing with rig setting angles at 0◦, 45◦, 90◦, and 135◦: https://drive.google.com/file/d/12CFZWc3
buth1OOUEYQw_6ym4ZG3Ad4KD/view?usp=drive_link (accessed on 18 January 2023); Video S2.
Subject 1 Test 1 with Kinovea annotations of squats: https://drive.google.com/file/d/1hmN1ul-
9iWp20UJW0T1nRtFUxEgGcEUb/view?usp=drive_link (accessed on 18 January 2023).
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