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Abstract—The precision of cardiac magnetic resonance seg-
mentation is an important area to investigate clinically and has
received a lot of attention from the research community for
its impact on the evaluation of cardiac functions. However, the
correct identification of key time frames of cardiac sequences
has received significantly less attention, especially in the MR
domain, despite its great importance in the correct measurement
of the Ejection Fraction, a key metric in diagnostics. In this
paper, we present two deep learning regression methods to
automate the otherwise time-consuming annotation process, with
performance within the 1-2 frame distance error and almost
instant calculation over short-axis images from a public dataset.
Results are presented using publicly available data.

Index Terms—Cardiac Imaging, Deep Learning, Phase Detec-
tion, Magnetic Resonance Imaging.

I. INTRODUCTION

Cardiac Magnetic Resonance Imaging (MRI) image seg-
mentation is an important step during quantitative analysis for
the diagnosis of cardiovascular diseases. During the process,
the image is partitioned into meaningful regions. The labelling
of this information helps clinicians calculate and understand
important features, such as the ejection fraction (EF), which
are then used to determine whether subjects have a particular
pathology or if surgery is necessary [1].

Electrocardiography (EKG or ECG) is a non-invasive di-
agnostic procedure employed to record the heart’s electrical
activity over time. This technique utilizes electrodes (usually
between 12 and 15 [2]) placed strategically on a patient’s
skin to detect and measure the electrical signals generated by
the heart’s specialized cells during each cardiac cycle. The
resulting data is represented as a graphical waveform, which
provides invaluable insights into the heart’s overall function,
rhythm, and conduction system.

Precision during End-Diastolic (ED) and End-Systolic (ES)
phase detection is a key aspect when measuring important

features in cardiac functional analysis. Incorrect labels on these
frames can lead to important errors in key clinical indicators
[3], such as EF and global longitudinal strain (GLS), resulting
in up to 10% error within the two and three frame difference
[4], [5].

Developing techniques that suppress the need for accom-
panying cardiac MRI scan with ECG signals improves the
robustness of algorithms that support cardiac analysis and
prevent miscalculations or additional clinical efforts to label
these phases manually.

Deep learning has been the golden standard for cardiac MRI
segmentation in the past ten years. For this task, the Convo-
lutional Neural Network (CNN) is the most important type
of network, similar to other vision applications. In particular,
U-shaped convolutional network variations have provided the
best results [6], [7].

In this work, we target cardiac short-axis magnetic reso-
nance images to automate the detection of ED and ES phases
through deep learning in a regression task.

Our contributions are the following:
• Report performance on public data: the previous work

on this topic reported results on private data [8], hence
reproducing their results was impossible. We provide
evidence of strong performance in an available open
dataset M&Ms [9].

• Comparison of two different architectures: we studied
the performance of different novel models, where we
experiment with two elements that have shown great per-
formance in a variety of problems that include sequences:
(1) LSTM [10] and (2) Transformers [11].

• Inference time: the inference time of our models is
500 times faster than in previous work on the same
problem [8]. While the results were obtained faster,
the computational resources of the previous method are
unknown.

• Open source: code is available at https://github.com/
carlesgarciac/regression.979-8-3503-6021-9/23/$31.00 ©2023 IEEE
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II. RELATED WORK

This section reviews the previous work related to our
research and the two sequential encoders adopted for the
regression task.

A. TempReg-Net

TempReg-Net [8], the previous work on cardiac MRI phase
detection, used a deep learning approach that combined the
Zeiler-Fergus model [12] encoder and a temporal decoder
based on Recurrent Neural Networks (RNNs) with a particular
loss function (Section III-C). The loss has two different com-
ponents and penalizes frames labelled in the incorrect phase
(either systolic or diastolic). The ground truth was synthesised
to replicate the left ventricle volume changes in a standard
cardiac cycle.

The results of [8] were obtained with private data from 420
patients.

In our work, we changed the first part of the architecture
for the encoder part of a U-Net [13] due to its demonstrated
performance in the segmentation task.

B. Sequential encoders

In our work, we adopted two of the most significant sequen-
tial modules of contemporary deep learning research. While
both excel at processing sequences, there are some differences:

• LSTM: Long Short-Term Memory Networks (LSTMs)
represent a class of RNNs widely adopted by deep
learning-based models for their ability to model and cap-
ture long-range dependencies in sequential data. LSTMs
address the vanishing gradient problem associated with
traditional RNNs through the incorporation of specialized
gating mechanisms, including input, forget, and output
gates, which enable them to retain and update information
over extended sequences selectively.

• Transformer: Transformers [11] are characterized by their
attention-based mechanisms and parallelizable architec-
ture. Unlike traditional RNNs and CNNs, Transformers
rely on a self-attention mechanism, which enables them to
capture intricate and long-range contextual information in
input sequences, without being constrained by sequential
processing. This parallelization of computation results in
significantly reduced processing times.

III. METHODOLOGY

Our experiments were carried out on MRI sequences of pub-
lic data, using two different novel deep learning architectures
that we propose in this work. Details of our method and our
experimentation are detailed in this section.

A. Data

In our experimentation, we employed the data released
during Multi-Centre, Multi-Vendor and Multi-Disease Cardiac
Image Segmentation Challenge (M&Ms). In particular, the
dataset consists of 150 training cases, 34 for validation, and
136 for testing. For the pre-trained part of the network, we
employed the M&Ms2 training data.

The subjects were scanned with scanners from four different
vendors, two of them are present in the training set, and all
of them are present in the testing one.

For our experimentation, we used a single middle slice for
each time frame. An example of a short-axis mid-ventricle
slice is depicted in Figure 1.

Fig. 1. Example of a mid-ventricle short-axis view from a CMR scan. Image
from M&Ms2 [14].

B. Architecture
The model architecture comprises a CNN module (corre-

sponding to the encoder part and the bottleneck of a U-net
[13]) followed by a fully connected layer where CNN features
are flattened. Then, the resulting features are passed to the
part that extracts the features sequence-wise, an LSTM and a
Transformer Encoder, in the first experiment and in the second
experiment, respectively. The output of the sequence module is
then connected to a second fully connected layer that outputs a
vector corresponding to one element per frame in the sequence.
The complete architecture is depicted in Figure 2.

The parameters chosen for our networks were the following:
• The CNN encoder was pre-trained in a segmentation task

using the M&Ms2 data and then frozen while training the
rest of the network. In particular, the parameters of the
network were: 32 filters in the first out of five pairs of
convolutional layers, and a max-pooling layer after each
of the four first pairs of convolutional layers.

• The fully connected layers had 512 and one neuron in
the input and output, respectively.

• The LSTM had the default PyTorch parameters, except
that it was set to bidirectional. Both the input size and
the hidden size were 512 neurons, and it had two layers.

• The Transformer Encoder was set to have 512 neurons
as the input size, with four heads and two layers.

C. Experiment
In our experiment, we tested the performance of our two

proposed networks, which were trained using a loss function
consisting of two components:



Fig. 2. The proposed network with the sequential module referring to an LSTM or a Transformer encoder in each experiment.

• The Mean Squared Error between the prediction and the
synthetically generated signal (see equation 1).

• A temporal structured loss (see equation 2).
TempReg-Net [8] proposed this combination of losses.

yk =


∣∣∣ k−Nes

Nes−Ned

∣∣∣δ, if Ned < k ≤ Nes∣∣∣ k−Nes

Nes−Ned

∣∣∣υ, otherwise
(1)

Where N is the ground truth for each phase, and is the time
frame number. δ and υ are hyperparamaters set to 3 and 1/3
respectively to mimic the behaviour of the left ventricle in the
cardiac cycle.

Ltemp = 1
2
(Linc + Ldec)

Linc = 1
T

T∑
k=2

1(yk > yk−1)max(0, ηk−1 − ηk)

Ldec = 1
T

T∑
k=2

1(yk < yk−1)max(0, ηk − ηk−1)

η is the prediction.

(2)
To label the time frames, the maximum and the minimum of

the signal are set as the ED and ES time frames. An example
of the resulting signal is depicted in Figure 3. In this signal,
the time frames corresponding to ED and ES are the first and
eighth frames of the scan.

To evaluate the performance, we used the average Frame
Difference (aFD) (see equation 3) to quantify the error.

aFD =
1

N

N∑
t=1

|ŷt − yt| (3)

IV. RESULTS

Table I details the performance in the test set of the M&Ms
dataset for both architectures: aFD (less is better) and the
detection time for each frame. We computed our method using
an Nvidia GeForce RTX 2080Ti.

Fig. 3. An example of the output regression curve. The maximum (first
frame) and the minimum (eighth frame) correspond to ED and ES time frames,
respectively.

The results are promising since the range of our average
frame difference remains below the 2 to 3 aFD, which can lead
to important miscalculations for the EF. The LSTM performed
marginally better than the transformer, while the detection
time remained similar. Time-wise, we achieved almost instant
calculations.

TABLE I
TIME FRAME DETECTION RESULTS: AVERAGE FRAME DIFFERENCE AND

DETECTION TIMES.

Model aFD ED aFD ES Detection Time (s)

CNN + LSTM 1.70 1.75 0.0028
CNN + Transformer 2.03 1.84 0.00246



V. CONCLUSIONS

Our models performed generally under the two-frame dif-
ference, even over data from unseen scanners. Our LSTM
model outperformed the model with a transformer encoder. We
hypothesize that the transformer encoder is performing with
higher aFD due to the lack of fine-tuning of the parameters,
which suggests there is potential for better results. Further-
more, the speed at which both models processed the data at
testing time was much faster (0.0025 s) than others (more than
one second).

We demonstrated that the performance of our proposed
method is comparable to that of human annotators but at a
much greater speed, easing the adoption of the algorithm in
current clinical tools. Further training experimentation, such as
training in conjunction with a segmentation task, improving
training strategies, or joining the two proposed recurrent
modules, proved to be promising research areas.

In future work, we speculate that the addition of optical
flow [15] between frames could lead to improvements. As a
direct input in a parallel encoder or indirectly by obtaining
a feature from it. Moreover, incorporating more slices might
provide additional benefits.
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