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Pushing the Boundaries of Lifelog Retrieval Systems with
Question Answering Techniques

Ly-Duyen Tran

Abstract

Lifelogging, referring to the continuous capturing of personal experiences using digital
devices such as wearable cameras and smart sensors, could be a valuable memory enhance-
ment and provide great insights into how an individual lives their life. This thesis focuses
on the novel application of question answering (QA) within the context of lifelogging,
aiming to develop an advanced interactive lifelog retrieval system that supports answering
questions based on lifelog data. To achieve this objective, this research addresses several
key components. First, a novel lifelog QA dataset, named LLQA, was created, consisting
of over 15,000 multiple-choice and yes-no questions regarding data from lifelog segmenta-
tions. I evaluated different existing QA models on their suitability and capability to an-
swer lifelog questions and compared their accuracies to the human baseline of 85.46%. The
evaluation results recognised the efficiency of leveraging large pre-trained video-language
models, achieving an accuracy of 72.43%, as opposed to constructing custom-built LLQA
models, which achieved 71.23%. Next, I designed and continually enhanced MyScéal,
a state-of-the-art interactive lifelog retrieval system that supports the user to efficiently
retrieve relevant data in response to search queries and lifelog questions. This effort cul-
minated in MyScéal’s success as the winning system in three consecutive iterations of
Lifelog Search Challenges, underscoring its strengths in supporting the user to quickly
locate items of interest from a conventional multimodal lifelog. Finally, a novel lifelog
QA pipeline was proposed to seamlessly integrate QA models into existing lifelog retrieval
systems. To demonstrate the effectiveness of the proposed pipeline, I integrated a lifelog
QA model into MyScéal with modifications and developed a dedicated lifelog QA system
known as MyEachtra. User studies were carried out to analyse the strengths and weak-
nesses of MyEachtra. The results showed that MyEachtra effectively supports the user
in answering lifelog questions and enhances overall user satisfaction. The findings of this
research have the potential to establish a foundation for further exploration into the task
of lifelog QA.





Chapter 1

Introduction

Thanks to advances in wearable devices and mobile technologies, lifelogging has become a

popular topic in recent years [64]. In order to manage the large amount of data collected,

lifelog retrieval systems are tools that allow users to access relevant information from

lifelogs. However, there has been a lack of research in applying Question Answering

(QA) approaches into lifelog retrieval systems to support natural questions that one might

have about one’s past experiences. This research aims to address this gap by proposing

and evaluating a pipeline for lifelog QA and incorporating existing QA techniques into

a lifelog retrieval system. This chapter will provide an introduction to lifelog and lifelog

retrieval systems, followed by introducing the research problem, the research questions, the

significance of the research, the limitations, and finally, the organisation of the dissertation.

1.1 Background

1.1.1 Lifelog: A Digital Memory

What if we could keep our life experiences so that they are never lost? What if we could

get the answer to any question about our past? We might worry less about forgetting

where we have left our keys or some important documents we need for a meeting today

and focus more on living in the moment. The embarrassment of forgetting someone’s

name might also be avoided. What about providing accurate answers to the doctor’s

questions in our next appointment as how often we take the stairs instead of the lift?

This exciting vision of ‘digital memory’ is one of the motivations for many researchers to

study lifelogging — the process of capturing and storing a large amount of data about

one’s life experiences [64]. Such collections of data, referred to as lifelogs, encompass a

diversity of data types, for instance, images, videos, audio recordings, textual annotations,

location information, and sensor readings, aiming to document as much as possible about

an individual’s life. A variety of devices are used to capture lifelog data, including wearable

cameras, GPS trackers, and biometrics sensors, resulting in a rich and diverse multimodal

1



Chapter 1. Introduction

data archive that can be used to answer questions about a person’s past. Started from the

idea of Vannevar Bush’s ‘Memex’, a personal machine that can manage all your documents

and provide quick access to any information that it contains, what was once considered a

futuristic vision has become feasible due to today’s advances in wearable computing and

affordable digital storage capacity.

In his 1945 article ‘As We May Think’ [24], Vannevar Bush described a blueprint per-

sonal information system which he called ‘Memex’. Memex was envisioned as ‘a device

in which an individual stores all his books, records, and communications, which is mech-

anised to be consulted with exceeding speed and flexibility’. The concept of Memex was

a major influence in the early development of hypertext[148], which is a precursor in the

subsequent creation of the World Wide Web (WWW). Bush considered Memex as ‘an

enlarged intimate supplement to [one’s] memory’, which hints at parts of the idea of what

we now call lifelogging. Despite the fact that Memex was never built, it has inspired many

researchers to explore the idea of lifelogging.

Early research in lifelogging started with a focus on sensing technologies in order to

capture the user’s life experiences. In the 1980s, Steve Mann, often referred to as the father

of wearable computing, contributed to the field with many generations of wearable cameras

and pointed out fundamental challenges in developing such technologies[144]. The term

‘lifelogging’ was also coined by Mann with the foundation of a community of lifeloggers.

Another pioneer in the field is Gordon Bell, who was part of a project called MyLifeBits [59]

at Microsoft Research Labs. The project aimed to fulfill Bush’s conceptual vision of Memex

by capturing every possible aspect of the daily life of Bell, including every web page visited,

all Instant Message chat sessions, all telephone conversations, meetings, radio, television

programs, as well as all mouse and keyboard activities and media files in his personal

computers. All digitised data is stored in a SQL database to support a simple interface

for different functionalities such as organising, associating metadata, assessing, and re-

porting information. Full-text search, text, and audio annotations, and hyperlinks are

also supported by the system. MyLifeBits has been considered one of the first influential

lifelogging systems and has inspired many research projects in the field.

Inspired by Gordon Bell’s project, Cathal Gurrin has been gathering a detailed and

extensive archive of lifelog data using a SenseCam since 2006, which is the largest longi-

tudinal lifelog archive to date to the best of my knowledge. Sensor data such as locations,

movements, and biometrics are also collected to provide a rich multimodal collection of

data. The archive has been considered a valuable source for many research efforts to gain

an understanding of the challenges in lifelogging and the potential of lifelogging technolo-

gies [64].

The applications of lifelogging are endless and have been explored in many domains,

such as supporting human memory recollection [19, 21, 72], supporting large-scale epidemi-

ological studies in healthcare [195], monitoring lifestyle of individuals [153, 222], behaviour
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analytics [49], diet/obesity analytics [242]. However, the vast volume and immense com-

plexity of lifelog archives present a challenge for users to navigate and analyse relevant

information. As such, there is a growing interest in developing lifelog retrieval systems

that effectively leverage lifelog data to meet the diverse needs of users.

1.1.2 Multimedia Retrieval Systems

Retrieval systems for lifelog data have been a popular research topic in the past few

years. It is a crucial task in order to manage and make use of the large amount of data

collected by lifeloggers. In MyLifeBits, state-of-the-art techniques from database search

and traditional Information Retrieval (IR) were employed to index and provide access to

lifelog data through a desktop interface. However, as the volume of lifelog data increases,

the need for more efficient and effective retrieval systems has become more apparent. The

first retrieval system that was designed for large archives of lifelog data was proposed

by Doherty et al.[43], moving the time/date browsing approach of lifelog systems at the

time to a search approach. The system employed event segmentation, event annotation

and multi-axes search, which are the ‘who’, ‘what’, ‘when’, and ‘where’ axes of retrieval.

However, without a large user base, it was difficult to define search use cases in order to

evaluate and improve lifelog retrieval systems.

As such, Sellen and Whittaker[189] have proposed a set of motivations for accessing

past memories, which can be used as a basis for the development of retrieval models. The

motivations are known as the Five Rs: recollecting, reminiscing, retrieving, reflecting, and

remembering intentions. The principles for designing lifelog systems based on the Five Rs

are also proposed by Gurrin et al. in their book ‘Lifelogging: Personal Big Data’[64] as

follows:

• Recollecting refers to the act of recalling specific past events or experiences to relive

certain moments or retrieve particular information from these events. The systems

that support recollecting should be able to accurately rank content and retrieve the

most relevant sequence of lifelog data to the user’s information need, in as much

detail as possible to help the user recollect the event. This requires conventional

information retrieval, adaptive event segmentation, and appropriate presentation

representation. Most of the existing lifelog retrieval systems are designed for this

purpose, including the system proposed by Doherty et al.[43] mentioned above.

• Reminiscing refers to a special form of recollection for emotional or sentimental

reasons such as sharing memories with others. The systems that support reminiscing

should highlight visual modalities, integrate retrieval, and provide the ability to

organise, generate narratives, detect novelty, and summarise the retrieved content.

One example of a system that supports storytelling is the work of Byrne et al.[25].
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• Retrieving refers to the act of retrieving specific information from the lifelog archive,

such as a location, date, etc. Such retrieval requires higher precision than general

recollecting, and most likely some inference is required to extract the information

from the underlying data. The authors suggested that the retrieval mechanism

should be similar to question-answering systems than to whole document retrieval.

• Reflecting refers to the act of analysing the lifelog archive to gain insights and knowl-

edge that may not be immediately obvious. Such systems should be able to support

data analysis and visualisation, and provide the ability to detect events, trends, and

patterns. The system should also be able to support the user in constructing queries

at query time, as it is difficult to pre-identify all types of reflection that could form

user queries.

• Remembering intentions refers to the act of planning future activities. The system

could remind people about tasks they would like to do or give prompts on real-time

situational needs such as who they are talking to or what topics they could talk

about based on past experiences. Most lifelogging research has been focused on, and

there is little work on remembering intentions.

Although there is a considerable overlap between lifelog retrieval and conventional in-

formation retrieval, it is important to note that lifelog retrieval presents unique challenges

because the fact that the main motivation for a user to use a lifelog retrieval system is

that he or she has forgotten the details of the past events in the first place. This means

that the information need of a user may not be well-defined, and the query may be vague,

incomplete, or even incorrect. However, there has been little research on unambiguous

query formulation for lifelog retrieval.

Several benchmarking platforms for lifelog retrieval systems have been organised, with

the first ones being NTCIR [63] in 2016, Lifelog Moment Retrieval Task (LMRT) in Image-

CLEF[33] in 2017, and the Lifelog Search Challenge (LSC)[66] in 2018. Both automatic

and interactive lifelog systems have been evaluated in these platforms using various re-

trieval metrics. However, interactivity offers a more natural way for users to interact with

lifelog data, addresses the ambiguity of queries as mentioned, and allows users to refine

their queries based on the retrieved results. Thus, interactive lifelog retrieval systems have

been the focus of many research efforts in recent years with the LSC being the most influ-

ential platform for such systems. The LSC has been organised annually since 2018, with

the most recent one being LSC’23[71]. With a focus on interactivity and user experience,

the LSC has been a valuable platform for the development of lifelog retrieval systems

that are accessible. The dominant approach of the participating teams has been focusing

on concept-based techniques, leveraging computer vision models to automatically extract

visual analysis from lifelog images, such as object recognition, scene understanding, and
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Optical Character Recognition (OCR). The outputs of these models, also known as ‘con-

cepts’, are then used in accompanying metadata (for example timestamps, GPS coordi-

nates, etc.) for indexing and retrieval. Various ranking techniques borrowed from the field

of text-based information retrieval have been explored, such as TF-IDF[209], BM25[27,

216], bag-of-words (BoW)[150] to rank the lifelog moments based on the concepts. Other

metadata such as timestamps and location information are also used to improve the re-

trieval performance by boolean filtering[199] or map visualisation[209]. Recently, with

the rise of cross-modal embedding models, such as CLIP[167] and CoCa[235], large-scale

pretrained models have been utilised to extract the visual and textual features from im-

age contents and questions, and then provide a similarity score between the features to

rank the lifelog moments. This embedding-based approach allows a more user-friendly

experience by allowing users to search for lifelog data using natural language queries and

significantly improves the retrieval performance[4, 207]. As a result, most conventional

search tasks in the LSC are considered mostly solved by this embedding-based approach.

This allowed the organisers to introduce the lifelog QA task in the LSC’22, aiming to eval-

uate the effectiveness of lifelog retrieval systems in answering questions about lifelog data.

Since QA is a relatively new task in the lifelogging domain, there is a lack of research in

this area. My study aims to contribute to this area by proposing a pipeline for integrating

QA capabilities into lifelog systems and evaluating its effectiveness compared to baseline

search-only lifelog systems.

1.2 Motivation and Research Problem

The objective of lifelog retrieval systems is to facilitate efficient access to lifelog data, allow-

ing users to search and browse through lifelogs to retrieve relevant information. Because

of the multimodal nature of lifelog archives, these systems often apply state-of-the-art

techniques from various domains, notably multimedia retrieval, image processing, and

computer vision to organise, segment, and annotate lifelog data[41, 67, 212].

However, despite the advancements in lifelog retrieval systems, a significant limitation

persists: it is human nature to ask questions about our past experiences, and in fact,

we often do so in our daily lives. For example, we may ask ourselves ‘Where did I leave

my keys?’ or ‘When did I last meet with my friend?’. This use-case is aligned with

the Retrieving motivation of lifelog retrieval systems discussed in the last section. Most

existing lifelog retrieval systems focus on the search task, where the system ranks the

relevant lifelog images based on the user’s query (Recollecting motivation). While these

systems can be used to answer questions, they require manual browsing through the ranked

images and inferring the answer from them. This is not only time-consuming but also

requires the user to have a good understanding of the system and the underlying data.

Furthermore, most of these systems are usually designed for expert users, who are familiar
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with the concept of lifelogging, the data structure, and the retrieval system itself. Novice

users, who are new to lifelogging and have little to no experience with such systems may

find it overwhelming to interact with the system and find the answer they need.

Consequently, there is a need for a lifelog retrieval system that addresses question an-

swering (QA) tasks directly, enabling users to ask specific questions about their lifelogs

and receive text-based answers. This integration of QA functionalities will not only en-

hance the user experience but also make lifelogging more valuable and accessible for novice

users. While the potential of QA has been recognised in various domains, there has been

little research on applying QA to lifelog.

The central focus of this dissertation is to address the steps required to design a state-

of-the-art interactive lifelog retrieval system that (1) assists the novice user to quickly

locate items of interest from a conventional multimodal lifelog, and (2) incorporates tai-

lored approaches to lifelog question answering to improve the user experience and overall

performance of interactive lifelog retrieval tasks. By addressing the steps required to de-

sign such a system, this research aims to make lifelog retrieval more accessible for a broader

user base, thereby supporting the potential applications of lifelogging in various domains.

1.3 Hypothesis and Research Questions

In order to achieve the research goal of designing a state-of-the-art interactive lifelog

retrieval system with QA capabilities, this dissertation aims to prove or disprove the

following hypothesis:

Hypothesis Question Answering techniques can improve upon state-of-the-art inter-

active retrieval systems for lifelog data by improving the result’s quality and supporting

quick access to relevant information.

Several related research questions have been developed to guide the research process,

as follows:

Research Question 1 (RQ1). How to design a state-of-the-art interactive lifelog

retrieval system that assists a novice user to quickly locate items of interest

from a conventional multimodal lifelog?

First of all, it is necessary to develop a state-of-the-art interactive lifelog retrieval system

that can be used as a baseline for the incorporation of QA techniques. This system

should be able to effectively retrieve relevant lifelog data in response to search queries

by leveraging state-of-the-art techniques from various domains and following the best

practices in lifelog retrieval. Additionally, the system should be designed with novice

users in mind, with a simple and intuitive interface that is easy to use. To answer this

question, I will develop a novel interactive lifelog retrieval system, Myscéal, and evaluate
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its performance against other lifelog systems in benchmarking activities to demonstrate

that it is a state-of-the-art system.

Myscéal contributes directly to the field of lifelog retrieval by advancing the state-of-

the-art and emphasising the choice of simplicity over complexity in the design of lifelog

retrieval systems. Addressing this question is crucial for improving the usability and

accessibility of lifelog systems, making lifelogging more inclusive and appealing to a broader

audience.

Research Question 2 (RQ2). How can we evaluate different approaches to

question answering on lifelog datasets?

While QA has been intensively studied in other domains, it remains an underexplored area

in the field of lifelogging. This research question focuses on the first step of incorporating

QA techniques into lifelog retrieval systems. Specifically, I plan to answer the following

sub-questions:

RQ2.1. How to adapt existing lifelog test collections to evaluate approaches

to lifelog question answering? This research question focuses on the development

of a lifelog QA dataset, which is necessary to evaluate the effectiveness of various QA

approaches. To answer this question, I will construct a lifelog QA dataset to support the

evaluation of lifelog QA techniques. The existing lifelog collection from Lifelog Search

Challenge (LSC)[68] is a valuable source of data and should be used as a basis for the

development of the lifelog QA dataset. The dataset should be annotated with questions

that are relevant to the lifelog data in the form of multiple-choice or yes-no questions. In

order to reduce the annotation cost, I will collect lifelog captions from multiple annotators

and employ a set of techniques to automatically generate questions from these captions.

RQ2.2. What existing question answering techniques are most effective

when applied to lifelog data? QA techniques have achieved significant success in

other domains such as text QA, visual QA, and video QA. However, it is unclear which of

these techniques are most effective when applied to lifelog data. To answer this question,

I will evaluate the effectiveness of various QA approaches on the LLQA dataset. The

approaches include pretrained zero-shot models, models fine-tuned on the LLQA dataset,

and hybrid models that build on top of frozen pretrained models. According to the result,

the most suitable QA techniques for lifelog will be identified and used in the development

of a dedicated lifelog QA system.
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Research Question 3 (RQ3). Can incorporating tailored approaches to lifelog

question answering result in improved novice user performance on interactive

lifelog retrieval tasks, when compared to existing state-of-the-art interactive

lifelog retrieval systems?

This research question focuses on the incorporation of tailored question answering ap-

proaches into interactive lifelog retrieval tasks by evaluating the system’s performance

and comparing it with the existing state-of-the-art lifelog retrieval system (Myscéal). To

answer this question, I propose two sub-questions:

RQ3.1. Does the event-based retrieval support the user to achieve com-

parative performance to image-based retrieval for lifelog data? To accommodate

lifelog QA approaches to lifelog retrieval systems, the search results must be in a format

similar to the LLQA dataset. This means that instead of retrieving individual images, the

results must be presented in the form of ‘events’, which are continuous sequences of lifelog

moments (images and the corresponding metadata). Thus, I will develop an event-based

retrieval approach that groups lifelog images into events and retrieves relevant events

directly instead of individual images. After that, I will evaluate the performance of the

event-based retrieval approach by comparing it with the conventional image-based retrieval

approach.

RQ3.2. Can the tailored question answering approach improve the per-

formance of interactive lifelog retrieval? To answer this question, I will design a

framework to incorporate the most suitable QA techniques for lifelog retrieval tasks. The

framework should be able to support both conventional search and QA tasks, allowing

users to choose between the two modes. A user study will be conducted to evaluate the

performance of the tailored question answering approach in interactive lifelog retrieval

tasks. Furthermore, a new test collection should be created for the user study, which

focuses more on general, open-domain lifelog questions as opposed to the specific ques-

tions in the LLQA dataset. The results of the user studies will be used to evaluate the

effectiveness of the tailored question answering approach and compare it with the existing

state-of-the-art lifelog retrieval system (Myscéal).

Research Question 3 directly aligns with the overall research goal, which is to design a

state-of-the-art interactive lifelog retrieval system with QA capabilities. By answering this

question, I will demonstrate the effectiveness of our proposed pipeline for incorporating QA

techniques into lifelog retrieval systems, thereby fulfilling the objective of this dissertation.

1.4 Significance of the Research

This research contributes to the body of knowledge in the field of lifelogging and raises

awareness of the task of lifelog question answering for the multimedia analytics community
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by addressing the steps required to design a state-of-the-art interactive lifelog retrieval

system with QA capabilities. The proposed system sets new standards for lifelog retrieval

and can be used as a baseline for future research. Moreover, it has the potential to extend

the limited knowledge on the use cases of lifelogging and user interaction with lifelog

data. In addition, by catering to a broader user base, the proposed system can help to

make lifelogging more inclusive and appealing to a wider audience, thereby increasing the

adoption of lifelogging technologies in various research domains such as human-computer

interaction, information retrieval, natural language processing, and computer vision; as

well as practical domains such as personal memory augmentation, healthcare, and lifestyle

management.

1.5 Limitations

While this research aims to make significant contributions to the field of interactive lifelog

retrieval, several limitations need to be acknowledged:

• Data Diversity: The proposed system is evaluated on a longitudinal, multimodal

lifelog dataset that despite its large volume and high complexity, is still limited to

one lifelogger. The system’s performance may vary significantly when applied to

other lifeloggers’ data. However, at present, there are no other longitudinal and

multimodal lifelogs from multiple lifeloggers.

• User Diversity: The proposed interactive lifelog retrieval system caters to novice

users. However, the size of the user study is relatively small, and the participants

are mostly students.

• Limited Resources: The proposed system is developed using one computer with lim-

ited resources. The system’s performance may be improved by using more powerful

machines and more resources. This also applies to the development of the lifelog QA

dataset, which is limited by the availability of annotators and the time required to

annotate the data.

• Data Privacy and Security: In order to protect the privacy of people in the lifelog

data and to meet the expectations of our institutional ethics committee, the data

is anonymised. Therefore, lifelog queries and questions in this research ignore the

human interaction aspect of lifelog data.

• Evaluation Metrics: The proposed system is evaluated using the scoring metrics

of the Lifelog Search Challenge[68], which is the metric used in this community.

Therefore, it is also used in this research to ensure that the proposed system is

comparable with other systems. While these metrics are suitable for comparing the
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performance of different lifelog retrieval systems, there may be better metrics for

evaluating the effectiveness of lifelog question answering approaches. However, they

are not the focus of this research.

• Dependency on External Factors: The system’s performance may be influenced by

external factors such as the quality of natural language processing and computer

vision tools, or the availability of pretrained models.

• Multimedia Analytics: This research is performed within the multimedia domain

as an exercise in multimedia analytics rather than information retrieval. As a re-

sult, while there are numerous QA techniques that could be used, I will only cover

multimedia topics in this thesis.

Synthetic lifelog data has been discussed, albeit informally, as a potential solution

address the data sparsity, diversity, and privacy issues. This approach is widely used in

the field of computer vision and natural language processing to evaluate the performance of

various models[138]. However, there has been little research on the generation of synthetic

lifelog data, and the effectiveness of this approach is still unclear.

Acknowledging these limitations is essential for ensuring a comprehensive understand-

ing of the research scope and potential challenges. Despite these limitations, the research

lays a strong foundation for future work in interactive lifelog retrieval and question an-

swering, stimulating further investigations to address these challenges and advance the

state-of-the-art in lifelogging technologies.

1.6 Research Contribution

The key contributions of this dissertation are as follows:

• A ranking algorithm for image-based retrieval, aTF-IDF, that is inspired by the

traditional TF-IDF algorithm and is designed to be used in lifelog retrieval systems.

• An implementation of the temporal search functionality, which set a trend for lifelog

retrieval systems to support temporal search in recent years.

• A lifelog QA dataset, LLQA, that is publicly available and also comes with a set of

valuable lifelog captions.

• A set of experiments and analyses of various QA techniques on the LLQA dataset,

including pretrained zero-shot models, models fine-tuned on the LLQA dataset, and

hybrid models that build on top of frozen pretrained models.

• An event-based retrieval approach that groups lifelog images into events and retrieves

relevant events directly instead of individual images. This is a novel approach that

has not been explored in the field of lifelog.
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• A framework for incorporating QA techniques into interactive lifelog retrieval sys-

tems, which is the most important contribution of this work. This can be used as a

guideline for future research in this area.

• A second lifelog QA dataset that does not provide the context required to answer

the questions, which is considered much more challenging than the LLQA dataset.

1.7 Dissertation Outline

In this dissertation, the research questions are addressed by developing a state-of-the-

art interactive lifelog retrieval system and incorporating suitable QA techniques into the

system. This introduction chapter provided insight into the motivation behind this re-

search, the challenges faced, and the significance of the study. The research questions and

the expected contributions of the research were also introduced. The remainder of this

dissertation is organised as follows:

• Chapter 2 provides a comprehensive literature review that identifies state-of-the-art

approaches in lifelog retrieval and QA, as well as their limitations. This lays the

foundation for the proposed baseline and the proposed QA system.

• Chapter 3 describes the action research paradigm that I adopted for this dissertation

with the operating constraints of this research. The chapter also covers the pipeline

design for incorporating QA techniques into lifelog retrieval system. Furthermore,

I explain the lifelog datasets used for evaluation, the live benchmarking challenges,

user study setups, and the evaluation metrics for lifelog retrieval, especially lifelog

QA, approaches.

• Chapter 4 presents the first contribution of this dissertation, which is a state-of-the-

art interactive lifelog retrieval system, Myscéal. It describes different components of

the system, including changes made throughout the development process, and the

performance of the system in various lifelog retrieval challenges.

• Chapter 5 introduces the LLQA dataset, which is the first lifelog QA dataset that is

publicly available. Various QA techniques on the LLQA dataset are also discussed in

this chapter in order to identify the most suitable QA techniques for lifelog retrieval

tasks.

• Chapter 6 describes the first modifications of the Myscéal system to incorporate the

lifelog QA techniques, shifting the focus from image-based retrieval to event-based

retrieval.

• Chapter 7 proposes a framework for incorporating QA techniques into interactive

lifelog retrieval systems, which is the most important contribution of this work. This
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framework is evaluated by comparing the performance of the proposed QA-support

system with the baseline Myscéal system,

• Finally, Chapter 8 concludes the dissertation by summarising the contributions and

findings of this research and discussing the potential areas for future research.
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Chapter 2

Literature Review

As wearable technologies have become more and more sophisticated and affordable, lifel-

ogging has become a popular topic in recent years. To manage the large volume of lifelog

data, lifelog retrieval systems have been developed to assist users to organise, browse, and

search through their lifelogs. However, question answering (QA) remains under explored

in the context of lifelogging. In this chapter, I will review the literature on lifelog retrieval

systems and QA techniques in various related domains to approach the research questions

of this thesis. The different types of lifelog data, the earliest lifelog retrieval systems,

benchmarking efforts in lifelog retrieval, and their standard methodologies are reviewed in

Section 2.1. After that, Section 2.2 discusses the general landscape of QA and relates it

to lifelogging. Finally, Section 2.3 concludes this chapter by summarising the key points

of interactive lifelog retrieval and how QA can be applied to lifelogging.

2.1 Lifelog Retrieval

Lifelogging is the process of tracking and storing an archive of the totality of an indi-

vidual’s life experiences, who is often referred as a lifelogger, through technology such

as smartphones and wearable devices. Lifelogging is also considered a challenging Big

Data application due to the amount of data (volume), the multimodal nature of lifelog

data (variety), and the inaccuracy of sensor data (veracity), although there is no need for

real-time processing (velocity) at the moment [64].

In order to exploit the potentials of lifelogging, it is necessary to develop effective

lifelog retrieval systems that allow users to access and explore their lifelogs effortlessly.

These systems serve as a gateway to transform the complex, unstructured lifelog data

into a meaningful resource for the user. In this section, I will overview the multimodality

of lifelogs as well as the technologies and devices used to capture and store lifelog data.

After that, I will review the early lifelog retrieval systems that laid the foundation for the

development of present lifelogging systems. Finally, I will discuss the benchmarking efforts
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in lifelog retrieval, focusing on the common approaches used in different lifelog retrieval

systems.

2.1.1 Lifelog Data

The multimodality of lifelog data is one of the key characteristics that distinguishes lifelog

retrieval from other Information Retrieval (IR) tasks [61, 199]. The most common data

types in lifelogging include visual, audio, location, and physiological signals. These data

types can be captured using different devices such as wearable cameras, smartphones, and

wearable sensors. The following sections will discuss the different data types, the devices

used to capture them, and their potential applications in lifelogging.

Visual

Wearable cameras are the most common devices used for lifelogging due to their ability

to capture images and videos from the user’s perspective. They are typically worn around

the neck or clipped to the user’s clothing. SenseCam, OMG Autographer, Narrative

Clip, Google Glass, and GoPro are among the most popular wearable cameras used for

lifelogging. Smartphones, with their high-quality cameras and other sensors, have also

been investigated as an alternative solution to wearable cameras [65]. Photographs and

videos provide a highly valuable source of information for users to recall past experiences

and memories. Their visual nature also helps to communicate information to the user. As

such, visual data is the most prevalent data type in lifelogging.

Audio

Audio can also be a part of lifelogging data. Devices from wearable audio recorders,

smartphones, or video cameras with a microphone can all be utilised for this purpose.

For example, in the MyLifeBits project [59], the author used a wearable microphone to

capture audio data.

Location

Location data is captured using GPS-enabled devices such as smartphones and wearable

cameras. They can be categorised into two types: GPS coordinates (latitude and lon-

gitude) and semantic locations (for example, Dublin City University, home, work, etc.).

Location data can be used to infer the user’s activities and the context of the lifelog

data [124]. For :example, the semantic location of ‘coffee shop’ might suggest that the

user is buying a coffee, and the high speed of the user’s movement suggests the user is in a

vehicle. Interests, lifestyles, and preferences can also be inferred from location data [101].
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Physiological Signals

Physiological signals collected by wearable sensors, such as the Empatica E4 wristband,

provide a more in-depth understanding of an individual’s well-being and emotional re-

sponses during daily activities. Lifelog data can provide insights into the user’s emotional

state and level of stress, or periods of increased physical activity by monitoring parame-

ters such as heart rate variability, skin temperature, blood volume pulse, and galvanic skin

response [12, 191]. Such data can be utilised to examine not only the immediate context

of an individual’s experiences but also long-term health patterns and behavioural trends.

Other Modalities

Lifelogging data may also include the user’s social media activities, emails, keyboard and

mouse activities, and calendar events [234].

These data can be used to infer the user’s social interactions and the user’s daily

activities. However, these data are not considered in this thesis due to the lack of publicly

available datasets.

2.1.2 Early Lifelog Retrieval Systems

In this section, I will review the early lifelog retrieval systems that laid the foundation for

the development of present lifelogging systems.

SenseCam Photo Viewer

Microsoft’s SenseCam is a small wearable camera that contains various sensors to de-

tect light levels, temperature, motion, and the presence of people. In order to manage

and replay the images and sensor data captured by the SenseCam, the SenseCam Photo

Viewer [82] was developed and contributed much to early research in lifelogging. At the

core, the system has a simple interface of an image slideshow that allows the user to play

back the image sequences, as well as pause and rewind the playback. It also supports

bookmarking, annotating, and deleting images from the database. The sensor data can

be viewed with the images in a separate window in basic line charts, without any analysis

performed on the data and no way to filter the data. Figure 2.1 shows the SenseCam

Photo Viewer interface. Despite its simplicity, the SenseCam Photo Viewer has been used

in many early lifelogging research to support memory rehabilitation [21, 93, 188], and its

temporal browsing interaction style is still used in many lifelog retrieval systems today [99,

122, 215, 240].
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Figure 2.1: SenseCam Photo Viewer interface as reported in [81].

MyLifeBits — The first lifelog retrieval system

As mentioned previously in Chapter 1, the MyLifeBits project [59] is generally considered

the first lifelog retrieval system, which was developed by Microsoft Research in 2001 as an

attempt to fulfill the vision of Vannevar Bush’s Memex [24]. The project aimed to create

a ‘personal database for everything’ by storing all the digital information of the user’s

life, including emails, contacts, documents, events, web pages, scanned images, audio, and

video recordings. The core of the system is a SQL Server database with a simple database

scheme that stores the metadata of the content, for example, type, size, creation date,

last modified date, and a short description; as well as the annotation and collection links.

Simple filters based on the metadata (location, time) are provided to allow the user to

search for the desired content. Full-text search is also supported to search for content

based on the corresponding annotations. Furthermore, the user can refine, or pivot the

search results, which is possible due to the links between the content. The system allows

the user to view the search content in variable-sized thumbnails with multiple views such

as detail, thumbnail, timeline, and clustered-time. First, the detail view shows the content

in a list with their properties. Second, the thumbnail view uses a grid of thumbnails to

display the content. Next, the timeline view, as seen in Figure 2.2 displays the content on

a linear timescale, and the distribution of content is visualised underneath the timeline.

Lastly, the clustered-time view is similar to the timeline view, but the content is clustered

into groups based on their time proximity (same year, month, day).

MyLifeBits is accompanied by a set of tools to organise, access, enrich and report

about the data. For instance, the annotation interface, as shown in Figure 2.2, allows

the user to add annotations to the selected content which can be used for later retrieval.
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Figure 2.2: MyLifeBits query result interface.

Another tool for data visualisation is the map interface in Figure 2.3, where location data

from corresponding photographs can be visualised. Map interactions such as zooming and

panning will issue a new query for photos from the region of the visible map to be shown

in the corresponding pane. The user can also enter a location and a time range to filter

the photos, and the map will be updated accordingly. Trip detection is also supported

to automatically detect and visualise the user’s trips in a slideshow. The user can also

manually add or remove photos from the trip.

Overall, MyLifeBits is a comprehensive system that provides a wide range of fea-

tures to support the user in managing and exploring their lifelogs. However, MyLifeBits’

complexity and multiple-step interactions could be a great barrier for users to adopt the

system. Moreover, the search mechanism is limited to filters and text searches over the

annotations, which requires considerable effort from the user to annotate the data.

SenseCam Visual Diary

Developed by Lee et al.[112], the SenseCam Visual Diary is a prototype lifelog browsing

engine that addresses the vast amount of images that Microsoft’s SenseCam can capture.

The authors applied various image analysis techniques to automatically structure and in-

dex the images, and provide a multimodal faceted search interface for the user to explore

the lifelog. The SenseCam Visual Diary put forward the importance of ‘events’ in lifelog

(for example working at the office, talking to a friend, buying a coffee, etc.) by automat-

ically segmenting the lifelog into distinct events using context-based sensor analysis and

content-based image analysis [41]. After that, a landmark photo for each event is selected.

This can be done by selecting the middle image from the event, or by averaging the visual

features across the entire set of images in the event and then selecting the image whose
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Figure 2.3: MyLifeBits’ map view [13]. The map on the right shows large dots where
photos are taken and small dots for GPS track points.

visual features most closely resemble the average. However, the authors also noted that

there is no difference between the two approaches in practice. Finally, a novelty detec-

tion algorithm is applied to the low-level MPEG-7 visual features of the images to define

the ‘interestingness’ of the event over a period of time, which is then shown in the user

interface by varying-sized thumbnails as shown in Figure 2.4.

The user can interact with the system by choosing a date to view a breakdown of events

on that day. Among the events displayed, those with higher novelty scores appear in larger

thumbnails. Hovering over an event thumbnail reveals all the images in the event as a

slideshow (default speed is 10 photos per second). Additionally, the event segmentation

algorithm is customisable by a slider at the top of the screen, allowing the user to adjust

the number of events shown. Bookmarking an event as a ‘favourite’ is supported so that

such an event can be easily accessed later. Another interesting feature is the ‘Find Similar’

option, which retrieves all similar events to the selected one, which are then presented on

the right column of the screen. Furthermore, annotations can be added, edited, or deleted

for each event. Text-search for annotations, similar to MyLifeBits, is also available.

SenseCam Visual Diary contributed greatly to the field of lifelogging by introducing

the concept of ‘events’ and promoting the importance of event segmentation to support
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Figure 2.4: SenseCam Visual Diary interface as reported in [112].

lifelog analysis. However, similar to SenseCam Photo Viewer, it is limited to browsing

rather than searching. While the system offers great support for the user to explore their

lifelog through the calendar navigation and similar events scheme, this is not scalable for

larger lifelog archives.

First Faceted Search Engine for Lifelog

To address the scalability issue of SenseCam Visual Diary, Doherty et al. [43] developed

a faceted search system, providing users with a more efficient way to explore their lifelog

data. This system, built on top of the SenseCam Visual Diary, offers various search axes:

where (location, altitude temperature); when (calendar selection, prev/next day browsing,

season, year, day/night, time of day, and month); what (visual appearance, bright/dark,

important/routine, semantic concepts [42] like eating, working on PC, etc.); and who

(estimated number of people in scene based on face detection). Users can easily select one

or more facets to filter their events, making the search process more efficient.

The experiment’s results suggested the effectiveness of images, rather than the sensor

data, for event search, which aligns with previous findings [93]. Strictly defined boundaries

between events were deemed unnecessary, as events acted as a quick navigation towards the

relevant images. Consequently, there hasn’t been much emphasis on event segmentation

since then. The most crucial finding was that the faceted search system outperformed the

SenseCam Visual Diary significantly, taking only 127 seconds compared to 774 seconds
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of browsing to find the desired content. However, the authors acknowledged that even

127 seconds was still unacceptable to users who expect prompt access to relevant lifelog

information. This highlighted the increasing need for search-based systems in lifelogging,

which is the direction the field has been heading towards since then.

Being the first system that supports faceted search for lifelog data, this system is a

great example of how faceted search can be applied to lifelogging. As a result, faceted

search has been widely adopted in many lifelog retrieval systems since then [240].

2.1.3 Benchmarking Challenges

Benchmarking is an important part of research, as it allows researchers to compare their

work with others and evaluate the effectiveness of their system. In the context of lifel-

ogging, having a standardised benchmarking activity becomes even more vital as it is

a relatively new field with mostly different small-scale experiments, often years apart,

and operating on vastly different datasets. It was not until 2016 that the first lifelog

benchmarking challenge took place, where international participants developed systems

to address the pilot task in NTCIR-12 [63]. This marked a significant step in establishing

a robust framework for evaluating lifelogging methodologies and motivating further ad-

vancements in the field. Since then, different lifelog challenges have been established with

distinctive evaluation metrics to assess lifelog systems. In this section, I will discuss the

three most important lifelogging benchmarking challenges to date: NTCIR, ImageCLEF,

and the Lifelog Search Challenge (LSC).

NTCIR LAST — Lifelog Semantic Access Task

NTCIR (NII Testbeds and Community for Information access Research) is an evaluation

forum that aims to advance research in information access technologies, such as IR, ques-

tion answering, and summarisation. NTCIR has been running since 1999, with the first

lifelogging task introduced NTCIR-12 [63] in 2016. Lifelog retrieval has been a subtask of

NTCIR Lifelog challenge since then under the name Lifelog Semantic Access Task (LAST).

The NTCIR LAST is a known-item search (KIS) task, where participants are required

to retrieve a number of specific events or activities in a lifelogger’s life. The task can be

done in an interactive or automatic manner. The test collection consists of a large volume

of lifelog data, including images taken from wearable cameras, an XML description of the

semantic locations, for example home, work, and airport; and the lifelogger’s activities, e.g

walking, running, and transport; and additional visual concepts detected from a CAFFE

CNN-based object detector [89]. In later years, more data were included such as GPS

location and biometrics data from sensors (for example, heart-rate monitors). In this

task, the evaluation metrics used are from TREC, which contains a set of metrics that

are commonly used in IR. The two most important metrics are Mean Average Precision
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(MAP) and Normalised Discounted Cumulative Gain (NDCG).

ImageCLEF LMRT — Lifelog Moment Retrieval Task

ImageCLEF is a part of the Conference and Labs of the Evaluation Forum (CLEF), which

is an organisation that promotes research, innovation, and development of information

access systems. Lifelog Moment Retrieval Task (LMRT) in ImageCLEF challenges [33–35,

155] was established for lifelogging to gain more attraction from the research community.

This challenge is similar to NTCIR LAST, which also focuses on known-item search.

However, different evaluation metrics are used, namely:

• Cluster Recall at X (CR@X) — a metric that assesses how many different clusters

from the ground truth are represented among the top X results;

• Precision at X (P@X) — measures the number of relevant photos among the top X

results;

• F1-measure at X (F1@X) — the harmonic mean of the previous two

Various cut-off points X are considered, such as X=5, 10, 20, 30, 40, and 50, where F1@10

is the ranking metric.

ACM LSC — Lifelog Search Challenge

The Lifelog Search Challenge (LSC) [68] is a part of the ACM International Conference

on Multimedia Retrieval (ICMR). The challenge was first introduced in 2018 and has

attracted the largest number of participants among all lifelogging challenges. The focus

of the LSC is to evaluate the performance of interactive lifelog search engines in real

time. Different systems compete with each other in a live/virtual environment, where the

participants are given a set of queries and limited time to find the relevant images.

The LSC started with one type of task, which is the known-item search (KIS)

task. For each KIS task, a time limit of five minutes is given to the participants to find

the relevant images. The organiser will gradually provide an additional hint every 30

seconds (at 0, 30, 60, 90, 120, and 150 seconds) to imitate the real-life scenarios that

people usually remember slowly over time. An example of LSC’s KIS task can be seen in

Table 2.1 some images from the ground truth are shown in Figure 2.5.

Each participating team has to find any relevant image for each task and submit it to

a host server [180]. The host server keeps track of time with a countdown clock and then

assesses the submissions against the ground truth to evaluate their accuracy.

In later years, more types of tasks were introduced, namely Ad-hoc and Question

Answering tasks. In LSC’22, the first Ad-hoc task was introduced, in which participants

were tasked with submitting as many images as possible that were relevant to the given
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Table 2.1: An example KIS task from LSC’20 [212]. Task 1 with its temporally advanc-
ing descriptors, which were revealed at 30-second intervals. After 150 seconds, the full
description is shown for another 150 seconds until the end of the task.

Time Text

0s I was building a computer alone in the early morning on a Fri-
day. . .

30s I was building a computer alone in the early morning on a Friday
at a desk. . .

60s I was building a computer alone in the early morning on a Friday
at a desk with a blue background. . .

90s I was building a computer alone in the early morning on a Friday
at a desk with a blue background. Sometimes I needed to refer to
the manual. . .

120s I was building a computer alone in the early morning on a Friday
at a desk with a blue background. Sometimes I needed to refer
to the manual. I remember some Chinese posters on the desk
background. . .

150s I was building a computer alone in the early morning on a Friday
at a desk with a blue background. Sometimes I needed to refer
to the manual. I remember some Chinese posters on the desk
background. I was in Dublin City University in 2015.

Figure 2.5: Some lifelog images as ground truth from Task I in Table 2.1

query within the time limit. Because no ground truth was provided in advance, human

judges were required to assess the relevance of the submissions. The Question Answering

task was introduced in LSC’22 and the same submission/evaluation mechanism as the KIS

task was used, in which the answer was in the form of an image. It was not until 2023

that the task was fully realised, in which the answer was in the form of a free-form text.

Participants had to submit a text answer to the given question, and human judges had

to determine whether or not the answer was correct. The Question Answering task has a

time limit of three minutes.
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Figure 2.6: The general pipeline of a lifelog retrieval system.

2.1.4 Approaches

I now discuss the approaches taken by the systems that participated in the three challenges

discussed above. Since lifelog systems are complicated and involve many different aspects,

this section will be discussed based on the general pipeline as seen in Figure 2.6. Most

lifelog systems following this pipeline, and the approaches taken by the systems can be

categorised into the following components: processing and indexing, retrieval, and user

interaction. I will now overview each component of the lifelog pipeline.

Processing and Indexing is the first step in the lifelog pipeline, where the lifelog data

is processed and indexed to make it searchable. Two main types of processing will be dis-

cussed: visual processing and metadata processing. Visual processing, as in Section 2.1.4,

refers to the extraction of information from visual data, which is the most dominant modal-

ity in lifelogging. Heavy use of computer vision algorithms is made to extract semantic

information from visual data. In contrast, Section 2.1.4 discusses the processing of meta-

data, which is often overlooked by the systems. The metadata is often noisy and requires

processing to extract useful information from it. However, the potential to gain insights

from the metadata is enormous. After processing, the data is organised (Section 2.1.4)

and indexed (Section 2.1.4) to make it searchable.

Retrieval is the second step in the lifelog pipeline, where the user’s query is matched

against the indexed data to retrieve the relevant lifelog data. Section 2.1.4 discusses the

different approaches taken by the systems to retrieve and rank the lifelog data. Alternative

methods are often used to improve the retrieval performance, such as relevance feedback
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and visual similarity measures. These methods are discussed in Section 2.1.4.

Finally, User Interaction is the last step in the lifelog pipeline, where the user interacts

with the system to explore and retrieve their lifelog data. Section 2.1.4 discusses the

different methods used by the systems to present the results to the user. Some novel

platforms and interactions are also discussed in Section 2.1.4 as they provide interesting

insights into the future of lifelog retrieval systems.

Visual Processing

Due to the multimodal nature of lifelog data, the processing of lifelog data is a complex

task that involves the extraction of information from different modalities. Most of the

systems follow a basic processing for location, time, and sensor data. The main difference

between the systems is the processing of visual data, which is arguably the most dominant

modality in lifelogging and the most challenging to process. State-of-the-art techniques

from the field of image processing and computer vision are exploited to extract semantic

information from visual data. The extracted features can be broadly categorised into

low-level, content-based, captioning, and cross-embedding features.

Low-level processing This refers to the use of low-level features such as colour,

texture, and shape to extract information from images. These are classic features that

have been used in the field of image processing for decades and are still used in lifelog

systems. For example, LEMoRe [159] exploited auto colour correlogram, edge histogram,

joint composite descriptor, and histogram of oriented gradients (HOG), and BiDAL [36]

used colour histogram with other content-based features, to calculate visual similarity

between lifelog images. Similarly, VIRET [133] utilised a colour-based distance between

adjacent images to reduce redundancy in the dataset. Another use of low-level features

is adopting HOG [226] to estimate the number of people in an image. It is also common

to use these features to detect blurriness or covered images in an attempt to reduce the

volume of data, as well as increase the quality of the retrieved images. For instance, the

ZJUTCVR system [241] used a Laplacian filter to detect blur and remove covered images,

defined by images with the main subject’s size over 90% of the image by the authors.

Another example is FuM [52] which incorporated lens calibration, followed by blurriness

and color diversity detection.

Removal of low-quality images Another common recent practice in lifelog systems

is an application of low-level features. It is believed that these images are less likely to be

relevant to the user’s query. On that note, Blind Image Quality Assessment (BIQA) was

suggested by MEMORIA [174], a new system that has been participated since LSC’22,

to predict the quality of images. The authors employed a deep learning Koncept512

model [84] to predict the Mean Opinion Score (MOS) of each image, which was then used

to filter out low-quality images with a threshold.

Concept-based features Due to the advancements of computer vision algorithms,
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we can extract content-based features from images using various deep convolutional neural

networks (CNNs). These features are more semantic than low-level features and can be

used to describe the content of an image. Some examples of CNNs that are commonly

used in lifelog systems are AlexNet [105], VGG [196], GoogLeNet [200], and ResNet [73],

trained on various datasets such as ImageNet [37], OpenImages [106], Places365 [238], and

Visual Genome [104]. These models serve various purposes in lifelog systems, acting as

image classifiers [40, 125, 182], object detectors [40, 110, 111, 125, 156, 159, 176], object

recognition models [226], and scene recognition models [40, 156, 226]. One way of using

computer vision models is to extract the features from the last layer of the model and use

them as a representation of the image, which can be used directly as a visual similarity

measure [36, 147] or as a feature to train a classifier for relevance feedback [95, 241].

However, the most popular approach is to use these models to obtain a set of semantic

lifelog tags, or ‘concepts’ (e.g ‘person’, ‘car’, ‘building’, etc.) from the images, which are

then indexed and used for retrieval. Additionally, other sources of lifelog concepts are also

available from services such as Microsoft Vision API1 and Google Cloud Vision2. Optical

character recognition (OCR) has also been used to extract text from images, which can be

seen as another source of concepts. Text recognition started to gain popularity in lifelog

systems since LSC’20 where LifeSeeker [110] and FIRST [215] employed various models

to obtain brand names, product names in a shop, and street names from lifelog images.

In LSC’21, OCR proved to be very useful, with half of the queries could be solved by

OCR alone [212]. Overall, this approach of extracting concepts from images, referred to

as concept-based retrieval, is widely adopted in many lifelog systems due to its ease of

implementation and the availability of pretrained models. In fact, nearly all the systems

participating in the challenges discussed in this chapter employed this approach.

Captioning Another approach is to use the advancement in the field of IR and turn

images into text documents by generating captions for them [75, 176, 214]. However,

captioning does not seem to be a popular approach in lifelog systems, with only a few

systems using it. This is likely due to the fact that captioning is a very challenging task,

and the generated captions are not always accurate, especially for lifelog images.

Cross-embedding models In LSC’20, BIDAL [142] put forward a novel approach to

lifelog retrieval by transferring the text query into a visual embedding space. Specifically,

a seq2seq model, initialised with a pretrained BERT [38] was used to extract concepts

from the text query, whose embeddings were then transferred to the visual embedding

space using an attention-based algorithm. The embeddings were then used to retrieve the

relevant images using cosine similarity. This approach is referred to as embedding-based

retrieval. Similarly, in the same year, FIRST [215] proposed an encoder-decoder archi-

tecture to embed text and images into a common space, with a reconstruction loss to

1https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
2https://cloud.google.com/vision/
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retain the original information. Another example is LifeSeeker [110] using a pretrained

W2VV [44] to map the text query to a feature vector similar to that of ResNet [73]. How-

ever, it was not until LSC’21 that the importance of cross-embedding models was realised

due to the revolutionary results they have achieved in the field of computer vision [212].

These models are trained to embed different modalities into a common space, where the

similarity between the modalities can be measured. Large-scaled pretrained models such

as Contrastive Language-Image Pre-Training (CLIP)[167] and Bootstrapping Language-

Image Pre-training (BLIP)[123] have been utilised since LSC’21 [212] to extract the visual

features from the lifelog images and textual features from search queries, then rank the

images based on cosine similarity. This embedding-based retrieval approach allows a

more user-friendly experience by allowing users to search for images using natural language

queries and significantly improves the retrieval performance [4, 207].

Metadata Processing

Very little processing for metadata was done by the many systems participating in the

challenges because the organisers normally provide the metadata in a standardised CSV

format. However, the provided data is still very noisy (considering the veracity aspect of

lifelogs). For example, missing GPS coordinates is a common issue in lifelogging datasets,

which can be handled by the systems in different ways. Some systems ignored the missing

GPS coordinates and used the available data only. This had little effect on the retrieval

performance because most queries focus on visual hints. However, I believe processing

metadata is still important because the potential to gain insights from the metadata is

enormous.

Time and Location The two most commonly processed metadata are time and

location. Regarding time information, LIG-MRM [182] used a simple rule-based process

to annotate the images with time-of-day labels (morning, noon, evening). As for location

information, clustering is a common approach to infer the semantic location of an image.

For instance, LEMoRe [159] manually clustered locations and replaced the location name

with a general location name (Aldi or Tesco would be changed to supermarket) in order to

simplify the lifelog. PGB [226] employed a stay point detection algorithm (using D-Star

clustering) and an important location detection algorithm (using DBSCAN). To fill in the

missing data, THUIR [122] used a simple rule-based approach to forward fill the missing

data if the lifelogger is not moving; LifeGraph [177] employed temporal interpolation;

and Myscéal [206] (my work) used both interpolation and clustering to infer the missing

semantic locations. Some systems incorporated both location and time information to

infer new data, such as LifeSeeker [156], which derived region and country information

from the timezone. In its later version, LifeSeeker [110] also manually labelled the images

with ‘areas’ within a location (for example kitchen, bedroom, office, etc.) to create a

more fine-grained location hierarchy (of three levels: country, location, and area). After
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that, the remaining unlabelled images are labelled using a simple rule-based approach

considering the visual similarity and scene concepts. Semantic locations can also be used

to add more concepts to the image, such as adding ‘coffee shop’ to an image taken at

‘Costa Coffee’[96]. Recently, MyEachtra [213] (my work) linked visual features with GPS

coordinates to infer the semantic locations in an automatic manner.

Biometrics Only a few of them processed biometrics sensor data, often by bin-

ning [214] or categorising (e.g into resting, normal, and physically active)[8, 96]. Music

listening data was also processed by LifeSeeker [151] to infer the user’s mood based on the

arousal and valence detection algorithm using Spotify’s API3.

Organisation

Due to the temporal nature of lifelog data, it is straightforward to organise the data by

chronological order as proposed by Zhou’s baseline system [239] for NTCIR-12. In that

system, the minute was used as the basic unit. A few systems used a more sophisticated

approach to organise the data. For example, [95] split the images into the subdirectories

using location and activity. Segmentation is also a common approach to organise the data.

Most systems that included segmentation used a simple approach by comparing the visual

similarity between two consecutive images [96, 205]. MyEachtra [213] clustered the GPS

coordinates to infer the semantic locations and then organise the data by the semantic

locations.

LifeGraph [177] offered a novel approach to organise the data by using a graph struc-

ture, with images as the centre point of the schema. The graph was constructed by linking

the images with the metadata and detected concepts, then extended with Wikidata [219]

and COEL (Classification of Everyday Living)[23]. However, the authors later acknowl-

edged that COEL played an insignificant role in the query expansion and that Wikidata

was a more useful source of concepts [178].

Indexing

Some database services were commonly used to index the lifelog data. These services

provide a simple way to index and search the data in optimised settings. For example,

LEMoRe employed Lucene Image Retrieval engine (LIRE)[140], Myscéal [205] and Life-

Seeker [110] exploited ElasticSearch4, and Vitrivr [179] used CottontailDB [58] as the

storage backend. Accommodating the graph-based approach in LifeGraph [177], the au-

thors initially employed BlazeGraph5 to store the graph data and used SPARQL [165] to

query the data. However, CottontailDB was later used to replace BlazeGraph due to its

3https://developer.spotify.com/documentation/web-api
4https://www.elastic.co/
5https://www.blazegraph.com/
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better performance [178]. On the other hand, some systems used their own indexing meth-

ods, for example, hash tables [111]. FAISS [90] is also a popular library for indexing and

searching vectors in high-dimensional spaces, which was used by many embedding-based

systems [5, 142, 187].

Ranking and Retrieval

The most distinguishing factor between different lifelog retrieval systems is their retrieval

mechanism, which is the core of the system and affects the processing, indexing, and

presentation of the results.

Filters These are used notoriously as they have been proven to be effective for search-

ing in the early, multi-faceted lifelog system [43] mentioned previously. In the first NTCIR

challenge [63], a baseline system developed by Zhou et al.[239] also showed the efficiency

and ease of implementation of faceted filters. They can be applied to various modalities

with some examples including:

• time of day: morning, noon, evening, night

• day of the week: Monday, Tuesday, etc.

• month: January, February, March, etc.

• year: 2015, 2018, 2021

• location: home, work, school, Aldi, Tesco, etc.

• number of people

• biometrics: binned values of heart rate, steps, etc.

• lifelog concepts: scene categories (restaurant, library, etc.), activities (eating, read-

ing, etc.), objects (food, book, etc.), which are often extracted from the image using

deep learning models

Choosing filter values Most of the filter values are fixed phrases, which can be

chosen from a drop-down list, a checkbox, or a slider. An example of this could be seen in

lifeXplore [147]’s interface in Figure 2.7. However, some systems allowed users to enter free

text and use autocomplete to suggest the available values for the lifelog concepts [239]. This

is necessary as the number of concepts from the content-based models is increasingly large,

which makes it difficult to present them in a drop-down list. Other than autocomplete,

concept suggestion [27, 133, 151, 159, 206] or query expansion [111, 149, 214], using various

sources like WordNet [160], ConceptNet [198], and Thesaurus.com, were also used to help

users formulate queries. LSTM was adapted predict to relevant concepts in [1]. Similarly,

VieLens [149] and BIDAL [142] employed BERT [38] to find the most similar concepts to
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Figure 2.7: Faceted filters in lifeXplore [147]

the query terms. In addition, Myscéal used a free-text query form, which allowed users to

enter any text and the system would extract the filter values from the query and perform

query expansion to improve the retrieval performance. Following Myscéal, LifeSeeker also

added a text parser in its later version [151] to process the query using NLP techniques.

Scoring and ranking using concepts Filtering is helpful in removing the irrelevant

data from the result set; however, as with any retrieval system, ranking the results by

some relevance scores is the most important step. Some filters can be used to score the

data based on the number of filters matched [239], on a function that extends TF-IDF [8,

27, 52, 122, 205, 226], and on the confidence scores of the deep learning model [40]. TF-

IDF is a common technique in IR to score the relevance of a document to a query. It is

calculated based on the term frequency (TF) and inverse document frequency (IDF) of

the query terms. TF scores are not as useful as they are in the field of IR, since the terms

(concepts) are oftentimes not repeated in a document (image). Therefore, the TF scores

are often replaced by the confidence scores of the concepts extracted from various computer

vision models [40]. The area of the object (or its bounding box) can also be exploited as

in aTFIDF, proposed by Myscéal [205]. Alternatively, vitrivr [75] aimed to highlight the

different importance of the query terms by proposing a staged querying mechanism, where

the search was performed in steps in which the next query was a subset of the previous

one.

Another way of scoring the images based on their concepts is creating a bag-of-word

(BoW) representation of the images and using the cosine similarity between the query

and the images [110, 156, 240]. This BoW feature can also be used for measuring visual

similarity [214], similar to low-level and content-based features mentioned in the processing
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step.

Cross-embedding similarity As previously discussed, crossmodal embedding mod-

els have offered a new way of measuring the similarity between images and text in lifelog re-

trieval systems. Cosine similarity between the search query and the images is directly used

to rank the result. Some optimisation methods such as KNN search [207] or FAISS [90]

can be used to speed up the search as in the case of lifeXplore [187] and Memento [5].

Although there is some effort of finetuning the embedding models on lifelog model [211],

large-scale pretrained models are more robust and are often used, either directly or in a

weighted ensemble [5].

Temporal search Some groups also supported temporal search, which allows users to

combine multiple queries that are temporally related. For example, the user can search for

‘eating apple before watching TV’. SOMHunter [132] supported two temporally ordered

queries, where a fix-size neighborhood of the first query’s result is considered for the

second query. Myscéal [205] and Memento [4] handled up to three ordered queries, where

the supplementary queries (before and after) are performed conditionally on the main

one and the results are re-ranked. An arbitrary number of queries could be searched in

Vitrivr [199] which fused scores of multiple temporally ordered queries in a late fusion

step. The relevance feedback mechanism, which will be discussed in the next section, in

Exquisitor [97] also allowed temporal search where multiple classifiers were merged using

union, intersection, and difference operations, or based on temporal constraints.

Alternative Retrieval Methods

Relevance feedback It is notable that some systems employed a relevance feedback

mechanism for retrieval [95, 98, 102, 145, 241]. This is a common technique in IR, which

allows users to provide feedback to the system on search results. Based on the result list,

the user can label the images as relevant (+) or irrelevant (-), and then prompt the system

to train a new or existing classifier to retrieve a new set of images. The process repeats

until the user is satisfied with the result or finds the needed images. Exquisitor [99] is

a good example of this approach, which can be seen in Figure 2.8. Oftentimes, a query

initialisation using filters or text query was used to start the search, which was then refined

by relevance feedback. In SOMHunter [145], the user only needed to choose the relevant

images and the irrelevant ones would be randomly sampled from the unselected images. In

another system [27], the result could be refined by performing a nearest neighbour search

on any selected (irrelevant) images to find similar images and removing them from the

result list. Exclusion of concepts is also a common idea, where the user can specify the

concepts that they do not want to see in the result list [178, 208].

Visual similarity As seen in SenseCam Visual Diary, visual similarity has been a

popular method to use in conjunction with other retrieval methods. It can be used to

arrange the result list [118, 145], or more often, to provide an alternative way for users
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Figure 2.8: Relevance feedback in Exquisitor [99]

to explore the lifelog archive. Visual similarity can be calculated based on low-level fea-

tures such as colour histogram [36, 96, 159] or SIFT [96, 147, 205, 240], content-based

features [36], or cross-modal embedding [207].

Sketch-based search Sketch-based search is another interesting method that is seen

in some systems that originate from the video search community such as lifeExplore [147],

VIRET [133], and vitrivr [176]. It allows users to sketch the image they are looking for, and

the system will return the images that are visually similar to the sketch (see Figure 2.9).

This method is useful when the user cannot describe the image in words, however, it is

not as popular since the user is unlikely to know what the target image looks like.

Map-based search Map-based search is popular in many systems such as lifeEx-

plore [119], Myscéal [205], and vitrivr [75], where the user can draw a rectangle on the

map to narrow the search space down to only the moments that happened inside that

area. A common choice of libraries for map-based search is Leaflet6.

Result expansion To tackle ad-hoc retrieval, some systems expanded the result list

by clustering the lifelog images offline based on their visual similarity. For example, during

the retrieval, given a user-selected image, the result list can be extended by adding the

images that belong to the same cluster of the selected image. This approach is referred to

as Watershed in BIDAL [142].

6https://leafletjs.com/
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Figure 2.9: Sketch-based search in vitrivr [75]

Result Presentation

Ordering the result list The conventional way of presenting the result list is in a grid

view, where the images are arranged in a grid with a fixed number of columns, with the

relevance scores decreasing from left to right and from top to bottom. However, some sys-

tems have explored other ways of presenting the result list. For example, lifeExplore [147]

and SOMHunter [145] explored Self-Organising Maps (SOM) to arrange the images in

a 2D map, where the images are clustered based on their visual similarity. In LSC’20,

lifeExplore [119] proposed an autopilot navigation mode to guide the focus of the user

through the result list.

Clustering and grouping In order to reduce the visual cluster due to the number

of similar images in lifelog data, some extent of event clustering can be adapted to group

similar images that belong to the same event. For example, Myscéal [205] performed offline

event segmentation and only showed the highest-ranked image from each event in the result

list. On the other hand, LifeSeeker favoured a dynamic approach by clustering the images

based on their visual similarity and temporal proximity during the retrieval [151] and

showed the top-3 images from each cluster in the result list. Similarly, to reduce the
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vertigo effect in a VR environment, VRLE [47] proposed a horizontal grid of events, where

each event contains up to nine images, chosen by the system based on their relevance

scores (the number of concepts that are shared between the image and the search query

in this case), and arranged temporally.

Figure 2.10: Results in triplets in MemoriEase [216].

Temporal highlighting Addressing the temporal property of lifelogs, Myscéal and

MemoriEase [216] proposed showing the result in triplets, where the immediately previous

and next events are shown alongside the target event, as seen in Figure 2.10. This is to

provide more context to the user and allow them to explore the lifelog archive more easily.

However, this approach is not always relevant to the query, especially when the query

is not temporally related. Therefore, in LSC’22, E-Myscéal (second update of Myscéal)

adopted a dynamic approach by showing the results in pairs or triplets only when the

temporal queries are specified.

Analysis of the results Memento [4] offered visualisation of the results by distribu-

tion charts (see Figure 2.11). The charts show the distribution of the results on various

dimensions such as time and location and allow the user to modify the filters directly by

interacting with them. Similarly, transitional graph-based visualisation was also proposed

by LifeSeeker [110] to show the location transitions between the images in the result list

(for example starting from home, going to the airport, to the supermarket, etc.). This is

useful for queries that involve transportation such as ‘flying to London’ or ‘driving to the

restaurant’. The graph can be seen in Figure 2.12 and the user can interact with it by

clicking on the nodes.

Timeline view Another important aspect of a lifelog retrieval system is the ability

to browse the lifelog archive in chronological order, a.k.a. timeline view. This is useful

when the user wants to explore the lifelog archive without a specific goal in mind or when
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Figure 2.11: Data filtering visualisation in Memento [4]

Figure 2.12: Location transitional graph with fine-grained location hierarchy in Life-
Seeker [110].

they want to find a specific event that happened at a certain time. Most of the systems

supported timeline view [99, 122, 207, 215], with different levels of granularity and designs.

For example, Exquisitor in LSC’20 [99] shared their insights on the necessity of timeline

view and designed their temporal context view as a video player with lifelog images as

thumbnails. The user can play the video to see the images in chronological order and

navigate to a specific time by selecting a thumbnail underneath the video. The ability

to adjust how far the thumbnails are apart is also important and can be implemented

with a scaling factor as in LifeSeeker [110], a step slider as in FIRST [215], or by different

hierarchical levels as in Myscéal [206].
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Figure 2.13: Virtual Reality Interface of UU-DCU team in LSC’18.[46].

Novel Platforms and Interactions

Most of the systems that participated in the challenges are designed for desktop computers,

where the user can interact with the system using a mouse and a keyboard. However,

some systems have explored other platforms and interactions. For example, the winning

system at the first LSC [46] was designed for virtual reality (VR) headsets. The user can

choose concept tags from a board in front of them, as Figure 2.13 shows, and the system

will retrieve the images that are relevant to the selected concepts. Since then, other

VR systems have been developed such as VRLE [47], vitrivr-VR [199], PhotoCube [193],

ViRMA [48]. Another example of different platforms is XQC [102], which was designed for

mobile interfaces, especially Android-based devices. Speech commands were also explored

in some systems such as Voxento [7] and vitrivr-VR [199].

2.1.5 Discussion

This section provided an overview of the lifelog retrieval systems that have participated in

the lifelog challenges since 2016. These systems have evolved significantly over the years,

from simple systems that only support basic search to more complex systems that support

a wide range of retrieval mechanisms and user interactions. Table 2.2 summarises the

approaches used by the systems in the challenges. For the sake of brevity, I only include

the systems within the top 3 in the most recent LSCs, since they are the most relevant to

this dissertation.

From the above table, we can see that the most popular approach is to extract concepts

from the images and index them for retrieval. This approach is simple and effective, and

it will likely be used in the future. However, there are still some limitations to this

approach. Firstly, the concepts are not always accurate, especially when the images are

not clear or the concepts are not well-trained. Secondly, the preprocessing part can be

costly and time-consuming to employ a diversity of computer vision models. Moreover, the
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Table 2.2: Selected approaches used by participating systems, adapted from [212]. For
each system, a reference to the paper describing the method is given. The order of the
systems is based on their ranking each year. The systems in bold are the ones that I have
worked on.
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Myscéal[205] LSC’20 ✓ ✓ ✓ ✓

SomHunter [145] LSC’20 ✓ ✓ ✓ ✓

vitrivr [75] LSC’20 ✓ ✓ ✓ ✓ ✓

Myscéal[206] LSC’21 ✓ ✓ ✓ ✓ ✓

SomHunter+[132] LSC’21 ✓ ✓ ✓ ✓

LifeSeeker [150] LSC’21 ✓ ✓ ✓ ✓ ✓

E-Myscéal[207] LSC’22 ✓ ✓ ✓ ✓ ✓ ✓

LifeSeeker [151] LSC’22 ✓ ✓ ✓ ✓ ✓ ✓

Memento [4] LSC’22 ✓ ✓ ✓

lifeXplore [187] LSC’23 ✓ ✓ ✓ ✓ ✓

MyEachtra LSC’23 ✓ ✓ ✓ ✓ ✓

Memento [5] LSC’23 ✓ ✓ ✓

performance of the model relies heavily on query expansion, which is not always efficient

and accurate. Cross-embedding models have shown promising results in bridging the

semantic gap between the text queries and the visual content of lifelog. It also eliminates

the need for searchers to be familiar with the indexed concepts.

Optical Character Recognition (OCR) is another important feature that is useful for

searching in lifelog data. However, it is prone to errors, especially when the text is not

clear, obscured by other objects, or arranged unconventionally such as in designed logos

or posters. Therefore, it is important to have a mechanism to search for partial matches.

The rise of the embedding models has somewhat reduced the need for a dedicated OCR

model, since the text information is already embedded in the image embedding. However,

for optimal performance, dedicated OCR models remain a favourable option.

Considering the temporal nature of lifelog data and how often the queries are often

formulated based on time, temporal search capabilities play a significant role, as discussed

in the previous section. Alternative search methods such as visual similarity and relevance

feedback are also popular among the teams and will likely be used in the future. Another

important aspect shown in the table is location visualisation. Half of the top-3 teams

in the last four years have incorporated some form of location visualisation, which shows

the importance of location in lifelog retrieval. Nevertheless, it is not always a strict

requirement and can be supplemented by other features, such as the graph-based location

visualisation in LifeSeeker [150]. Other novel interactions such as VR and voice commands,

while exciting and promising, are not commonly embraced in the top-3 teams, which are
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mostly desktop-based. This is likely due to the lack of support for these platforms and

the difficulty of implementing them. However, they remain intriguing and are likely to be

explored in the future.

2.2 Approaches to Lifelog Question Answering

Recently, with the rise of cross-modal embedding models, such as CLIP [167] and CoCa [235],

large-scale pretrained models have been utilised to extract the visual and textual features

from the images and questions, and then rank the images based on the similarity between

the features. This embedding-based approach allows a more user-friendly experience by

allowing users to search for images using natural language queries and significantly im-

proves the retrieval performance [4, 207]. As a result, most search tasks in the LSC have

been solved by the embedding-based approach. This allowed the organisers to introduce

the lifelog QA task in the LSC’22, aiming to evaluate the effectiveness of lifelog retrieval

systems in answering questions about lifelog data. Since QA is a relatively new task in

the lifelogging domain, there is a lack of research in this area.

Before tackling the lifelog QA task, let us first explore the broader landscape of QA.

QA may also be considered as an extended version of information retrieval (IR) in which

semantic understanding is required to answer the questions [91, 103]. Depending on how

much search is involved, QA variations can be broadly categorised into the following types:

• Open-domain QA (OpenQA): This entails answering questions without predefined

context. Often, QA systems focus on general factoid questions, such as:

– ‘What is the capital of Ireland?’

– ‘What animal is the first to be in space?’

– ‘How high is Mount Everest?’

In this scenario, the model is required to (1) retrieve the relevant information from

a large knowledge base (KB), such as a large crawl of the Web and online encyclope-

dias, and (2) infer the answers based on the retrieved documents. This is also known

as IR-based QA [243]. Jurafsky and Martin [91] argued that despite large language

models such as GPT-3 [22] and T5 [168] being able to answer general factoid ques-

tions, they are prone to hallucinations, where the answer is not supported by the

evidence. For this reason, OpenQA is still in favour of the two-step architecture

mentioned above.

• Comprehension QA: A typical task of this type is Machine Reading Comprehension

(MRC), which requires the model to understand the context and answer questions

based on it [18]. Less emphasis is placed on the retrieval part, as the context is usually

given. To extend this, we can further consider the task of answering questions about
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the content of a specific image (Visual Question Answering — VQA) or video (Video

Question Answering — VQA) as instances of Comprehension QA.

Lifelog QA presents a novel and relatively uncharted task with no clear guidelines on

its approach. It is not yet understood which questions should be asked or which scenario

should be considered. This dissertation considers a specific scenario of lifelog QA where

the user, who is not the lifelogger, lacks contextual information about the question. This

is due to the vast volume of lifelog archives, which makes examining them all at once

impractical. Instead, users must search for relevant information and deduce the answer

from the retrieved data. As a result, in this work, I classify lifelog QA as an OpenQA task

applied in the multimedia domain. In the following sections, I will first discuss existing

approaches to OpenQA and Comprehension QA, and then explore the possible approaches

to lifelog QA.

2.2.1 Open-Domain Question Answering (OpenQA)

Numerous datasets have been developed to facilitate the development of OpenQA systems,

with Wikipedia as a popular source of information, as of the case in HotpotQA [231],

Natural Question [107], and SQuADopen[29]. These datasets were designed to test the

model’s ability to retrieve relevant information from the entire Wikipedia corpus to answer

the questions. The answers to the questions are usually short and can be found in a single

document. However, some may require the model to combine information from multiple

documents. Most modern OpenQA systems follow a ‘Retriever-Reader’ architecture [29,

39, 243] which contains a Retriever and a Reader. Given a question, the Retriever is

responsible for retrieving relevant documents to the question in an open-domain dataset

such as Wikipedia and the World Wide Web (WWW); while the Reader aims at inferring

the final answer from the received documents, which is usually a neural MRC model. This

paradigm is why OpenQA is also known as IR-based QA [91, 243]. Figure 2.14 shows the

architecture of DrQA [29], a seminal OpenQA system. I will take a look at DrQA in more

detail and discuss different approaches to the Retriever and Reader in this section.

The first part of DrQA, the Retriever, is a document retrieval system that uses TF-

IDF weighted bag-of-word vectors to compare Wikipedia articles and questions. Bigram

counts are incorporated to consider local word order. As the result, five most relevant

articles are returned given a question and passed to the Reader. Other techniques for the

Retriever, such as BM25 [230] and more advanced deep retrieval models that encode the

question and documents, can also be found in the literature [94, 114, 157].

After retrieving related documents, DrQA’s Reader is a neural MRC model that takes

the question and the retrieved documents as input and outputs the answer. An RNN

model was trained on the SQuAD dataset [170] to predict the start and end positions of

the answer span in each paragraph in the retrieved articles. Unnormalized exponential
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Figure 2.14: The architecture of DrQA [29], a typical IR-based QA system consisting of a
Retriever and a Reader.

was used to combine the scores from all paragraphs and the final answer was selected

by taking the argmax over all considered paragraph spans. This kind of approach is also

known as extractive models, which are used in most OpenQA systems [29, 94, 230]. On the

other hand, generative models [86, 121] applies models such as BART [120] and T5 [168] to

generate the answer in an open-ended manner, which is more flexible but less interpretable.

Notably, Retrieval-Augmented Generation (RAG) [121] has been proposed to combine the

strengths of retrieval-based and generation-based models. RAG’s two-stage architecture

resembles the OpenQA paradigm, where the first stage retrieves relevant documents and

the second stage generates the answer.

To further extend the architecture, some works [113, 220] proposed re-ranking the re-

trieved documents before feeding them into the Reader [113], or training the entire OpenQA

system in an end-to-end manner [114, 121, 157]. An in-depth discussion of these ap-

proaches is beyond the scope of this dissertation and we refer to Zhu et al.’s survey [243]

for more details.

This OpenQA paradigm is a potential solution to the lifelog QA task. The two-stage

architecture is flexible enough to incorporate with existing state-of-the-art lifelog retrieval

systems without the need to re-train the entire system. In this research, I take inspiration

from the OpenQA architecture and propose steps to adapt it to the lifelog domain, which

will be discussed in Chapter 7.
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2.2.2 Comprehension Question Answering

In the OpenQA paradigm, after retrieving relevant documents, the task is transformed

into a Comprehension QA task, where the model is required to answer the question based

on the context of those documents. The context is usually a paragraph or a document in

the text domain; thus, Machine Reading Comprehension (MRC) can be used to answer

the question. However, in the lifelog domain, the context is usually a set of images or

videos, with associated metadata such as time, location, and activity. The metadata can

be considered as text and MRC can be used to answer the question. However, to address

the visual parts, we need to look at the two closest tasks in the computer vision domain:

Visual Question Answering (VQA) and Video Question Answering (VideoQA) tasks. In

this section, I will discuss the approaches to these two tasks and how they can be applied

to the lifelog domain.

Machine Reading Comprehension (MRC)

Machine Reading Comprehension (MRC) is a task in NLP that aims to equip machines

with the ability to read and comprehend textual passages, answering questions posed in

natural language [18, 77, 237]. Over the years, MRC has gained significant attention

due to its potential applications in information retrieval, question answering systems,

and text summarisation. Early MRC approaches primarily focused on rule-based sys-

tems and template-based techniques [185]. Recently, with the revolutionary development

of deep learning, researchers have proposed many neural network-based MRC models,

achieving state-of-the-art performance on many MRC datasets such as SQuAD [170],

CNN/DailyMail [78], RACE [108], and MS MARCO [154]. Some of the most seminal

works in this area include the Attentive Reader [78], which was based on the attention

mechanism of deep neural networks; the Bi-Directional Attention Flow (BIDAF)[190],

which was a multi-stage hierarchical process that represents the context at different levels

of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware

context representation without early summarisation; R-net [221], which incorporated a

gating mechanism in attention computation that can dynamically control the model to

use information from each part; and FusionNet [85], which fused the word-level embed-

ding and higher-level representations to obtain a more comprehensive representation of

the context in a multi-level attention mechanism.

With the introduction of the pre-training model BERT (Bidirectional Encoder Repre-

sentations from Transformers)[38], the performance of MRC models has been significantly

improved. [194, 228] BERT is a language model that was pre-trained on a large corpus

of unlabelled text and can be fine-tuned on specific MRC datasets, minimizing the need

for extensive task-specific labelled data. This concept of transfer learning has since been

extended to models like RoBERTa [127], GPT-2 [166], and more advanced architectures,
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leading to state-of-the-art results on multiple MRC benchmarks.

Visual Question Answering (VQA)

Visual Question Answering (VQA) is a bridge between computer vision and natural lan-

guage processing, challenging AI systems to comprehend images and answer related ques-

tions in natural language. VQA has gained significant attention in recent years due to the

rapid development of deep learning and the availability of large-scale datasets [92]. The Vi-

sual Question Answering (VQA) dataset [11], which contains open-ended questions about

images, was one of the first large-scale datasets for VQA. Since then, many other datasets

have been introduced, including VQA 2.0 [197], Visual Genome [104]. These datasets vary

in terms of the types of questions, the number of questions per image, and the number of

images. In order to address the questions in these datasets, various approaches have been

proposed.

A common approach of VQA models is to obtain a joint representation of the image

and the question in a shared embedding space, and then use this representation to pre-

dict the answer. Pretrained CNNs are employed to obtain image representation. Text

representations are obtained using recurrent neural networks (RNNs) on pretrained word

embeddings. After that, a classifier then predicts the single-word answers from a prede-

fined vocabulary based on the joint representation of the image and the question [172].

Multimodal Compact Bilinear Pooling (MCB)[54] improved on the joint representation by

using compact bilinear pooling, which computed the outer product between two vectors,

allowing a multiplicative interaction between all elements of both vectors. DualNet [183]

integrated both element-wise summations and multiplications to embed the visual and

textual features. In addition, attention mechanisms were also used to improve on the

above method by allowing interaction between specific regions of the image and the ques-

tion words [30, 225, 232, 244]. External knowledge bases can also help with the VQA task

by providing additional information that is not available in the common visual datasets

such as ImageNet [37] or COCO [126].

All these models used a predefined vocabulary to predict the answers, in other words,

they treated the VQA task as a classification problem for which the cross-entropy loss

is used for training. However, this approach is limited to predicting single-word answers

and its robustness is limited by the size of the predefined vocabulary. On the other hand,

some viewed the problem as a sequence generation problem, where an encoder-decoder

architecture was used to generate the answer free-form [55, 143].

Video Question Answering

Comparing to VQA, Video Question Answering (VideoQA) is a more challenging task as

it requires the model to understand the temporal information in videos, which is also a
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key feature of lifelog data.

Many datasets have been proposed for benchmarking the VideoQA task in recent years,

such as TGIF-QA [87] and TVQA [116], providing video clips with accompanying ques-

tions, challenging VideoQA systems to analyse and comprehend dynamic visual scenes.

All existing VideoQA datasets except for EgoVQA [50] are from a third-person perspec-

tive. TGIF-QA [87] is a dataset of over 165,000 questions on 71,741 animated pictures.

Multiple tasks are formulated upon this dataset, including counting the repetitions of the

queried action, detecting the transitions of two actions, and image-based QA. MSVD-QA

and MSRVTT-QA [224] are two datasets with third-person videos. The VideoQA tasks

formulated in both of these two datasets are open-ended questions of types what, who,

how, when, and where, and their answer sets are of size 1000. YouTube2Text-QA [233] is

a dataset of 1987 videos and 122,708 automatically generated QA pairs with both open-

ended and multiple-choice tasks of three major question types (what, who, and other).

TVQA and TVQA+ [116, 117] are built on 21,793 video clips of 6 popular TV shows

with 152.5K human-written QA pairs. EgoVQA [50] was proposed due to the lack of first-

person point-of-view videos in these datasets; however, the size of the dataset is small,

with just over 600 question-answer pairs.

Most SOTA VideoQA models employed LSTM or GRU-based encoders to encode sam-

pled video frames and question words into sequences of features. These features were fed

into a reasoning component to produce the correct answer. Some variants of the attention

mechanism were also used to localise and find relevant frames (temporal attention) [87,

141, 224] or regions (spatial attention) [100, 223, 232].

In the manner of most natural language processing problems, the question was trans-

formed into word embeddings using pretrained models such as Glove 300-D [163], which

were then encoded by an LSTM or GRU-based encoder to produce textual features. Video

features were extracted from sampled video frames with pretrained neural networks such

as ResNet [73], VGG [196] to represent appearance, and C3D (e.g., [87]) to represent mo-

tion. Some works [87, 224] adopted early fusion of these features before feeding into the

video encoder, while others [51, 56] applied late fusion which is integrated in attention

modules. Some of them also integrated a multi-step reasoning approach [51, 233] instead

of simply combining video and question features to produce the final answer. Such rea-

soning modules utilised a controller such as AMU [224] or LSTM [51] which refined the

attention over each iteration.

Following the trend of pretraining cross-embedding models, recent research has also

explored mass-scaled video-text modeling with contrastive learning for various downstream

tasks including VideoQA. For example, VideoCoCa [227] improved on image CoCa and

reused attention poolers that are parts of the pretrained image-text model without further

retraining. Another work is FrozenBiLM [229] which utilised frozen pretrained visual

encoders by integrating lightweight adapter modules to enable zero-shot VideoQA. These
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new approaches have achieved state-of-the-art results on various VideoQA datasets, such

as MRSVTT-QA [224], ActivityNet-QA [236], and TVQA [116].

2.2.3 Relating to Lifelog Question Answering

As noted before, this research views lifelog QA as a task similar to OpenQA in that the

user is not provided with contextual information and must search for relevant information

to answer the question. As such, the OpenQA paradigm might offer a viable solution to

the lifelog QA task. Lifelog retrieval methodologies discussed in the previous section can

be used as the Retriever in the OpenQA paradigm. Thus, we only need to focus on the

Reader part, which is responsible for answering the question based on the retrieved lifelog

data.

One of these is its focus on text-based documents, whereas lifelog data is multimodal.

Looking at the multimodality of lifelogs and the common practices of lifelog retrieval

systems, we can categorise the lifelog data into three main types: (1) visual data (photos

and videos), (2) textual data (music listening history, notes, etc.) and metadata that

can be considered as text (such as semantic location, activity, and time), and (3) other

biometrics data (heart rate, sleep quality, etc.). Since little work has been done on the

last type of data for lifelogs, I will focus on the first two types in this section and this

dissertation in general.

Most VideoQA techniques extend upon the VQA techniques designed for images.

These techniques have revolutionised the comprehension of visual content, allowing sys-

tems to interpret images and videos and answer questions related to them. Since visual

data is the most prominent in lifelog data, these techniques can be seamlessly integrated

into lifelog QA. VideoQA is particularly relevant to lifelog QA, as lifelog data inherently

involves a chronological sequence of events, activities, and interactions. By incorporating

VideoQA methodologies, lifelog QA systems can effectively reason about the temporal

dimension, answering questions about the sequence of actions, changes over time, and the

narrative captured in lifelog videos.

On the other hand, textual data or textualised metadata can be incorporated directly

into a VideoQA model if such model accommodates video subtitles, as in the case of

TVQA [116] and FrozenBiLM [229]. However, MRC models offer a more reliable approach

to textual data, as they are specifically designed to comprehend textual passages and

answer questions based on them. The extractive nature of most MRC models is also an

advantage when it comes to location and time data, as it reduces the hallucination as seen

in generative models [88] and provides the exact answer.

Dedicating a separate MRC model for textual data and textualised metadata allows

longer and more textual context to be considered. However, this approach allows no

interaction between the visual and textual data, as opposed to a unified VideoQA model.

A unified lifelog QA model that can handle both visual and textual data is the ideal
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solution, but it is not yet clear how to achieve this.

Essentially, expertise from the lifelog retrieval domain, as well as MRC, VQA, and

VideoQA domains, can be applied to lifelog QA to create a sophisticated framework capa-

ble of comprehending textual, visual, and temporal aspects of lifelog data. Because of the

novel nature of lifelog QA, a combination of these techniques may be required, pushing

the boundaries of lifelog comprehension and setting off in a new era of interactive lifelog

retrieval systems that respond to the diverse informational needs of users within their

personal lifelogs.

2.3 Conclusion

This chapter has presented a comprehensive review of the literature on lifelog retrieval

systems and question answering techniques that are relevant to this research. It discussed

the history of lifelog retrieval systems by looking at early systems and reviewed various

approaches to solve the task of lifelog retrieval. In summary, the following key guidelines

were identified for the development of lifelog retrieval systems:

• Interactive Retrieval: The system should support interactive retrieval, which

allows the user to provide feedback and refine the search results, leading to more

accurate and relevant results.

• Temporal Context: Temporal Context was a gap in the literature at the start of

this research, but it has been identified as an important feature in lifelog retrieval

systems.

• Support for Novice Users: Existing lifelog retrieval systems were designed to

support expert users, but there was (and still is) a need for systems that are easy to

use and provide guidance to novice users.

• Accuracy and Efficiency: State-of-the-art techniques in multimedia retrieval

should be employed to ensure the accuracy and efficiency of the system.

• Standard Evaluation: The annual Lifelog Search Challenge (LSC) has been iden-

tified as the main evaluation approach in the community, which has attracted a

number of international teams to participate.

Additionally, this chapter identified a critical gap in the literature: the lack of research

in the area of lifelog question answering. Following this, a literature review on general

question answering techniques was conducted and potential approaches to lifelog question

answering were discussed. Specifically, the OpenQA paradigm was found to be a potential

solution to the lifelog QA task. The two-stage architecture of OpenQA is flexible enough

to incorporate with existing state-of-the-art lifelog retrieval systems without the need to
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re-train the entire system. Questions about lifelog data can be answered by adapting the

existing state-of-the-art MRC, VQA, and VideoQA models to the lifelog domain.

To address the research objectives in this dissertation, which involve multiple aspects

of lifelog retrieval systems, I have decided to follow the common practices in the lifelog

retrieval community and approach the research in an incremental manner, starting with

the development of an initial lifelog retrieval system, and then extending it to support

lifelog question answering.

These factors acted as the main guidelines for this research. In the next chapter, a

detailed description of the research methodology and research design will be presented,

which will provide a clear understanding of how the research objectives will be achieved.
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Methodology

The research objectives in this dissertation are to develop a lifelog retrieval system with

question answering (QA) capabilities and to evaluate the system’s performance and us-

ability. Since lifelog retrieval is a relatively new research area that involves a wide range

of disciplines, a cycle-based approach is suitable for this research work. By taking part

in a multi-cycle process of development, evaluation, and refinement, this research aims

to develop a system that engages in meaningful interactions, unlocking the potential of

lifelogs to serve as a rich source of insights and knowledge.

Specifically, Design Science Research (DSR) [79] was chosen as the research methodol-

ogy. DSR is ideal for creating and evaluating innovative systems, artefacts, and methods to

address complex problems. It is characterised by its emphasis on improving the functional-

ity and performance of systems through iterative development, evaluation, and refinement.

In this case, the artefact is the lifelog retrieval system, and the problem is the difficulty in

identifying and retrieving (or answering questions about) relevant information from lifelog

data. The iterative and participatory nature of DSR is well-suited to the development of a

lifelog retrieval system, as it allows for continuous refinement and enhancement of the sys-

tem’s capabilities.Through these cycles, this work aims to refine different aspects of lifelog

QA, adapt to user needs, and address any unforeseen challenges. Finally, after several

cycles, the hypothesis is proved or disproved, and the research questions are answered.

In this chapter, I will describe the research design and methodology for developing

a lifelog retrieval system with question answering (QA) capabilities based on the princi-

ples of DSR. Operating constraints such as time limitations, data availability, and user

participation will be acknowledged and addressed. The chapter is structured as follows:

Section 3.2 discusses the research design aligned with the principles of DSR, with details

about the data, evaluation criteria, participants, and research objectives. Ethics consid-

erations are also discussed in this section. After that, Section 3.3 discusses the operating

constraints of the research, and Section 3.4 concludes the chapter.
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Table 3.1: Design Science Research Guidelines, borrowed from [79]

Guideline Description

1 Design as an Artefact The research must produce a viable artefact in
the form of a system, method, or an instantia-
tion.

2 Problem Relevance The artefact must develop technology-based so-
lutions to important or relevant problems.

3 Design Evaluation The artefact must be evaluated to demonstrate
its utility and effectiveness.

4 Research Contributions The research must provide clear and verifiable
contributions to the knowledge base.

5 Research Rigour The research must be conducted with rigour and
discipline.

6 Design as a Search Process The research must be a search process, which
involves iteration and refinement.

7 Communication of Research The research must be effectively communicated
both to the technical and managerial audiences.

3.1 Design Science Research

According to Hevner et al. [79], Design Science Research (DSR) is one of two primary

research paradigms in Information Systems (IS) research, the other being Behavioural

Science Research (BSR). Artefacts are the primary outcome of DSR, and they are broadly

defined as constructs (vocabulary and symbols), models (abstractions and representa-

tions), methods (algorithms and practices), and instantiations (implemented and proto-

type systems) [217]. Knowledge and understanding are gained through the building and

evaluation of these artefacts. The guidelines for DSR are shown in Table 3.1. Although

the guidelines are not strictly followed in this dissertation, they provide a useful framework

for conducting DSR.

In this research, the lifelog retrieval system was conceptualised as the core artefact

(Guideline 1), motivated by the need to improve the accessibility and usability of lifelog

data (Guideline 2). Annual assessments through live benchmarking campaigns and user

studies were conducted to measure the system’s utility and effectiveness (Guideline 3).

This iterative process of development, evaluation, and refinement was crucial in informing

the subsequent actions, demonstrating the search process nature of the research (Guide-

line 6), and leading to research contributions that extend beyond the system development

(Guideline 4). The research rigour was maintained through the use of established evalua-

tion criteria and the documentation of the research process in this dissertation (Guideline

5). Insights and findings were communicated through workshops, presentations, publica-

tions, and this dissertation (Guideline 7).
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3.2 Research Design

In this section, I will discuss the research objectives, data, evaluation criteria, partici-

pants, and ethical considerations of this research. The research design is aligned with the

principles of DSR as discussed in the previous section.

3.2.1 Research Objectives

The primary objective of this research is to develop a lifelog retrieval system with question

answering (QA) capabilities and to evaluate the system’s performance and usability. Our

approach was guided by a series of research questions, addressed through various devel-

opment and evaluation cycles. While certain cycles were conducted sequentially, others

happened concurrently, utilising parallel advancements in different aspects of the system.

These overlapping cycles showcased the dynamic and iterative nature of the research pro-

cess, adapting to the insights gained from each phase and the evolving needs of the system’s

users. Figure 3.1 shows the timeline of the research cycles, which are discussed in detail

in the following sections.

Cycle 1 Cycle 2.A

Cycle 2.B

Cycle 3.A

Cycle 3.B

Cycle 4 Cycle 5

Research Question 1

Research Question 2

Research Question 3

Figure 3.1: Timeline of the research cycles

Cycle 1: Development of the Initial Lifelog Retrieval System

This cycle aimed to develop the initial lifelog retrieval system, which was the baseline

system. The system was developed based on the conducted literature review (Chapter 2).

The key factors in developing a state-of-the-art system in lifelog retrieval were identified

and used to guide the development of the system. This baseline system, which is called

Myscéal, was evaluated in the LSC’20 campaign, which is the first cycle of the research.

A user study was also conducted to evaluate the usability of the system and to gather

feedback for further improvements. This cycle was expected to partially answer research

question 1.
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Cycle 2.A: Improvement of the Lifelog Retrieval System

This cycle aimed to improve the initial lifelog retrieval system based on the feedback

from the first cycle and the development of the lifelog QA dataset. LSC’21 was the first

campaign where the improved system was evaluated.

Cycle 2.B: Development of the Lifelog QA Dataset

This cycle happened in parallel with the improvement of the lifelog retrieval system. It

aimed to jump-start the use of question answering (QA) in lifelog retrieval by creating a

first-of-its-kind lifelog QA dataset. The dataset was created by collecting annotations for

lifelog on the LSC’20 dataset mentioned above. A semi-automatic question-answer pair

generation method was proposed to create the lifelog QA dataset. This dataset was used

to evaluate different QA models for lifelog data. Research question 2A was expected to

be addressed in this cycle.

Cycle 3.A: Further Improvement of the Lifelog Retrieval System

Similar to Cycle 2.A, this cycle aimed to further improve the lifelog retrieval system based

on the feedback from the second cycle. This system was evaluated in LSC’22, and fully

addressed research question 1.

Cycle 3.B: Evaluation of QA techniques for lifelog data

Cycle 3 aimed to compare different QA models on the lifelog QA dataset and choose the

best model to be used in the final lifelog QA system. This cycle was expected to address

research question 2B.

Cycle 4: First Step Towards Lifelog QA

This cycle aimed to propose a new event-based embedding system and evaluate its ef-

fectiveness compared to the baseline system on known-item search tasks. This cycle was

expected to address research question 3A.

Cycle 5: Development of the Lifelog QA System

This cycle aimed to build a first prototype of a lifelog QA system, extending the event-

based embedding system by adding a QA model. This system was used in the LSC’23

campaign. Moreover, a user study was conducted to evaluate the novice users’ interaction

with the system and explore more possible questions that can be asked. This cycle was

expected to address research question 3B.
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While the research questions and objectives were set at the beginning of the research,

the research design was flexible enough to allow for changes and adaptations based on the

findings from each cycle.

3.2.2 Data

Due to privacy concerns and the effort required to collect, analyse, and annotate a con-

siderable amount of personal data, lifelog collections are not as readily available as other

multimedia datasets. To avoid unnecessary complexity and ensure the repeatability of this

research, existing lifelog collections that are publicly released by the research community

were reused. These archives have already addressed some challenges and guidelines such

as: what to log, how often to log, how willing are users to share data, what to share and

who can access the data. Specifically, the following lifelog collections were utilised:

LSC’20 Lifelog Collection

The LSC’20 dataset[68] is a four-month multimodal dataset from a single active lifelogger,

consisting of data collected from the years 2015, 2016, and 2018. Three files are provided:

• Core Image Dataset (38.49GB): 191,439 wearable camera images captured with

OMG Autographer and Narrative Clip devices, fully redacted in 1024 × 768 res-

olution. Anonymisation has been applied to the images, which means that faces and

most readable text have been blurred in a manual or semi-manual process. Private

contents that are not suitable for public release have been removed.

• Metadata (2.8MB): a CSV file containing the following information for every minute:

timestamp, physical activities, biometrics, and semantic locations (for example home,

work, Tesco, etc.) of the individual.

• Visual concepts (79.9MB): a CSV file containing the visual concepts detected in the

non-redacted images. Visual concepts in this file are divided into two categories,

which are objects and scenes. The objects are detected using an object detection

model trained on the COCO dataset [126]. 80 classes are detected, such as person,

car, and dog1. The scenes are detected using a scene recognition model trained on

the Places365 dataset [238]. 102 labels are detected, such as waiting in line, working,

and open area2. The bounding boxes of the detected objects and confidence scores

are provided for each detected concept.

1For a full list of objects, please refer to https://github.com/amikelive/coco-labels/blob/master/

coco-labels-2014_2017.txt.
2For a full list of scenes, please refer to https://github.com/CSAILVision/places365/blob/master/

labels_sunattribute.txt
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This dataset was also used in ImageCLEF 2020 Lifelog Retrieval Task[155] and LSC’21[69].

The dataset is available on the LSC website, which can be accessed at https://lifelogsearch.

org/lsc/2020/lsc_data/.

LSC’22 Lifelog Collection

This dataset is much larger with 18 consecutive months of lifelog data from January 2019

to June 2020, which includes:

• Core Image Dataset: 725,000 point-of-view lifelog images captured by a Narrative

Clip device, fully redacted in 1024 × 768 resolution. The same anonymisation pro-

cess was applied to this dataset in a fully-automated manner. Certain scenes and

activities are also removed from the dataset due to privacy concerns.

• Metadata: a CSV file containing the following information for every minute: times-

tamp, physical activities, biometrics. However, semantic locations are not available

in this dataset.

• Visual concepts: included in the metadata file. The same visual concept detection

model is used as in LSC’20 dataset. In addition, Optical Character Recognition

(OCR) outputs are also provided for the associated images.

• Additional Semantic Locations: a supplementary metadata file, provided by me for

the LSC’23 campaign, which used the same dataset. This file contains semantic

locations of the lifelogger.

• Additional flight data: flight locations as departing airport — arrival airport pairs

are provided by the Voxento developer[7], who was also a participant in LSCs.

The LSC’22 dataset is also available on the LSC website, http://lifelogsearch.org/

lsc/2022/lsc_data/.

Moreover, in line with earlier studies [125, 226], the most important factors for memory

recall and lifelog understanding are the what, where, and when of lifelogging activities.

Therefore, this work focused on only these three aspects of lifelog data and excluded

biometrics data such as heart rates, step counts, and sleep quality. It is important to note

that this exclusion does not eliminate the potential for introducing the remaining data at

a later stage. However, due to time limitations and the research’s scope, incorporating

these elements within this research was not feasible.

We can see some example lifelog data from both datasets in Figure 3.2 and Table 3.2.

The images in both datasets are redacted, which means that the faces and most of the text

are blurred, as seen in image (B) in Figure 3.2. The redaction process, although necessary,

sets a trade-off between privacy and the ability to understand the context of the lifelog.

Quite often, the redaction process also removes important visual cues. Some other issues

52

https://lifelogsearch.org/lsc/2020/lsc_data/
https://lifelogsearch.org/lsc/2020/lsc_data/
http://lifelogsearch.org/lsc/2022/lsc_data/
http://lifelogsearch.org/lsc/2022/lsc_data/
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regarding lifelog images are also shown in the figure, such as blurry images (C), images

with very small details that require zooming in (D), and images with very similar visual

content that are hard to distinguish and take up visual space (E). The text in (C) are

not blurred because they are not considered private. These are some limitations of the

community dataset, and it is important to be aware of this when considering the results

of the research.

Figure 3.2: Example lifelog images from both datasets.

On the other hand, Table 3.2 shows some rows from the provided metadata files. The

metadata files contain a variety of data, such as timestamps, GPS coordinates, semantic

locations, visual concepts, and biometrics. However, since my focus is not on the biomet-

rics data, I exclude heart rates, step counts, and sleep quality from the metadata files.

Moreover, the visual concepts provided by the organisation were not used in this disserta-

tion, as I used my own visual concept detection models. As shown in the table, a minute

ID is assigned to each minute of lifelog data, and oftentimes multiple images are captured

in the same minute. Moreover, the semantic locations, such as Work and Home, are not

available in the LSC’22 dataset, which is one of its limitations.

Another limitation of these datasets is their geographical bias. Although the lifelogger

had made an effort to capture a wide range of activities and locations, a large portion of

the data was captured in Dublin, Ireland. As an attempt to mitigate this bias, all the

queries used in the LSC campaigns were designed to be location-agnostic and avoiding

giving an advantage to the users who live in the same area as the lifelogger. Given the

constraints of the research, the geographical bias was not addressed in this dissertation.

However, this bias to some extent limits the generalisability of the research results.
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3.2.3 Ethical Considerations of Lifelog Data

As lifelog data is a form of personal data, understanding and addressing the ethical im-

plications of this research is crucial. The lifelog data utilised in this study, while publicly

available, still contains information that is inherently personal. Recognising the potential

for privacy violations, I have taken steps to ensure that the data is used responsibly and

ethically as follows:

• Ethics Approval: Ethics approval was obtained from the Ethics Committee of

Dublin City University, which is the institution where the research was conducted.

The approval reference number is DCUREC/2023/127.

• LSC Terms and Conditions: The data used in this research was used in accor-

dance with the terms and conditions set by the LSC organisers. The data was used

for research purposes only and was not shared with any third parties. User studies

were done in controlled environments and the data was not shared with the partici-

pants. The systems developed in this research were not made publicly available, but

only for authorised researchers to access.

• Secure Data Storage: The data was stored on secured servers and was only

accessible to the researchers involved in the project. Proper measures were taken

to ensure that the data was not accessible to unauthorised individuals. Note that

the stored data was not the original data, but rather the processed data after the

redaction process.

• Future Use of Data: The data used in this research will not be used for any other

purposes. The data will be securely stored and will be deleted after the completion

of my PhD studies.

Whether lifelogging has a future as a mainstream practice is still uncertain. However,

the potential for lifelog data to be used in a variety of applications, such as health moni-

toring, memory augmentation, and personal assistance, is clear. Responsible and ethical

use of lifelog data is crucial to ensure that the potential benefits of lifelogging are realised

without compromising the privacy and security of individuals.

3.2.4 Evaluation Criteria

Along with the datasets, a decision was made to use the queries and evaluation criteria

from established benchmarking campaigns. This was to ensure that the research’s out-

comes were comparable to the state-of-the-art and to facilitate the evaluation process.

Specifically, the works in this dissertation were used to participate in the annual Lifelog
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Search Challenges (LSC) [68–71] and a side task in ImageCLEF 2020 [155]. Chapter 2 in-

troduced the metrics used in these campaigns and the following are the evaluation criteria

chosen for this research:

Interactive Scoring Metrics

It is important to note that the LSC is an interactive benchmarking campaign, which

means that user interaction is a key component of the evaluation process. As mentioned

before, the LSC uses a live scoring system which allows the user of each participating

system to submit their queries and receive the judgement in real-time. For known-item

search (KIS), the evaluation metrics are based on the time taken to submit the correct

image and the number of wrong submissions. The score is calculated as follows:

score = 100 − 50 ×
time taken
time limit

− 10 × number of wrong submissions (3.1)

If the task is not solved, the score is 0. The penalty for wrong submissions is set at 10

points for all the LSC campaigns. The time limit for KIS is 300 seconds (5 minutes).

This scoring system is designed to encourage the participants to submit the correct image

as quickly as possible and to avoid submitting wrong images. The scoring system is also

used in the Video Browser Showdown (VBS) [76]. Using this scoring scheme, the user is

encouraged to wait for more evidence before making a submission, since the penalty for

wrong submissions is much higher than the reward for a quick submission. Furthermore,

this minimises the impact of the system’s processing speed on the score, as such delays

are insignificant compared to the time limit.

Regarding the question answering (QA) task, which is the focus of this dissertation,

this scoring system is employed with some modifications. In LSC’21, since the task was

formulated as a known-item search, the scoring is the same as the KIS task, except that

(1) the time limit is 180 seconds (3 minutes) instead of 300 seconds and (2) only one

submission is allowed. In LSC’22, the scoring is modified to allow multiple text-based

submissions and human judges are needed to evaluate the correctness of the submitted

answer. Then, the formula in Equation 3.1 is used. The use of human judges here is

crucial because there might be multiple acceptable answers due to the ambiguity that the

questions might have.

For ad-hoc queries, the evaluation metrics are based on a pooled set of relevant doc-

uments for each query, the number of relevant documents retrieved, and the number of

wrong submissions. Human judges will judge the relevance of the submitted images in

real time and the score is calculated as follows in Equation 3.2:

score = 100 ×
correct

correct + incorrect/2
×

correct
total

(3.2)
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Here, correct is the number of relevant images submitted, incorrect is the number of irrele-

vant images submitted, and total is the total number of relevant images in the groundtruth

pool. The number of incorrect images is divided by 2 to reduce the penalty for wrong

submissions because the number of submissions in the task is unlimited. Similarly, if no

relevant images are submitted, the score is 0.

The two mentioned metrics are standard in the multimedia retrieval community and

also used in video retrieval benchmarks such as the Video Browser Showdown (VBS) [76].

In the LMRT ImageCLEF challenge, precision and recall are used to evaluate the ad-

hoc retrieval task. Precision, also known as positive predictive value, is the fraction of

retrieved instances that are relevant, while recall, also known as sensitivity, is the fraction

of relevant instances that are retrieved. Table 3.3 and Equation3.3 show the calculation

of precision and recall based on the number of relevant and irrelevant images retrieved

and not retrieved. Generally speaking, precision indicates how relevant a retrieved item

is, while recall indicates how many relevant items are retrieved in a search. These met-

rics are traditionally used in information retrieval tasks, where the relevant instances are

documents and the retrieved instances are the results of a search. ‘Documents’ in this

case are images. Note that images can be very similar to each other if they were captured

at a relatively short time interval. In such cases, each image is considered as a separate

instance, which might not be intuitive to the user. This is a limitation of the evaluation

metrics used in the LMRT ImageCLEF challenge.

Table 3.3: Precision and Recall calculation

Relevant Irrelevant

Retrieved True Positives (TP) False Positives (FP)
Not Retrieved False Negatives (FN) True Negatives (TN)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3.3)

F1 measure is the harmonic mean of precision and recall, as shown in Equation 3.4.

F1-measure = 2 ×
Precision × Recall
Precision + Recall

(3.4)

Automatic Retrieval Metrics

This section is more in line with the traditional information retrieval evaluation metrics,

which are used to evaluate the performance of the system without user interaction. In

order to choose the best approaches for the backend of the interactive retrieval system,

the Hit Rate at Rank K (H@K) was considered as one of the evaluation metrics. If the

top K results contain at least one relevant result, then H@K is 1, otherwise, it is 0. This

57



Chapter 3. Methodology

is appropriate for the scoring metrics in interactive LSCs, where the user is only required

to submit one correct image. As a result, if one of the top K results is relevant (H@K =

1), the user will most likely be able to identify and make a correct submission.

3.2.5 Users

In this dissertation, I am interested in three kinds of users: the lifelogger, the expert, and

the novice users. The lifelogger is unique in that they are the ones who generate the lifelog

data. In this context, there is only one lifelogger for both LSC’20 and LSC’22 datasets.

Ideally, the lifelogger is the most important target user for the lifelog retrieval system.

However, due to the limited availability of the lifelogger, I focused on only the expert and

novice users as with all other systems.

Expert users are those who have a great knowledge of lifelog retrieval systems and

lifelog data. In the live LSC campaigns, often times expert users are the system developers

themselves. Measuring the performance of the expert users is important to show the full

potential of the system.

On the other hand, novice users have little to no experience with lifelog retrieval

systems or even the lifelog concept. They are also the target users as their feedback is

crucial. Even though they lack the knowledge of someone else’s lifelog, it would be more

difficult for them to find the relevant lifelog events as they did not experience the events

themselves. However, testing lifeloggers is not feasible due to privacy concerns and the

rarity of lifeloggers even in the research community. Therefore, novice users are suitable

if the system is designed to be used by the general public.

In this dissertation, I analysed the expert performances at the live campaigns and con-

ducted user studies with novice users to evaluate the usability of the system. Although the

results from the expert users do not directly reflect the general public’s performance, they

are more likely to identify the problems in the system compared to the novice users [184].

In the user studies, to recruit participants, convenience sampling was used. That means

I recruited participants that I had access to, such as my social contacts and colleagues,

from a variety of disciplines. This is a type of non-probability sampling, which is often

used in exploratory research. In this case, the researcher is interested in getting a fast and

reliable approximation of the truth. One of the main advantages of convenience sampling

is that it is quick to implement and cost-effective. However, the main disadvantage is that

the sample may not be representative of the population, which limits the generalisability

of the results. For instance, the participants in the user study might have a higher level of

education, a higher interest in technology, or of a younger age than the general population.

However, since I am only interested in the usability of the system, I believe that this

sampling method is sufficient for my research.
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3.3 Operating Constraints

As with any new topic of research, I have clearly defined the constraints within which the

research operated. I have identified the constraints thus:

• Time was a critical constraint, shaping the pace and scope of this research. Given

an estimated four-year period for the research, there was a finite time frame for

completing each research cycle.

• As no new lifelog data is collected, the performance of the system is constrained

by the quality of the chosen lifelog collections. The constraints related to data

availability, data diversity, and data quality might have influenced the system’s per-

formance and its ability to retrieve relevant images and generate accurate answers.

Efforts were made to work with representative lifelog datasets while acknowledging

potential data limitations.

• Annotation efforts were constrained by the availability of volunteers who were willing

and suitable to annotate the lifelog data. As a first step to explore the potential

of lifelog QA, there were no guidelines on what were the best annotations to be

collected. The quality of the annotations was also constrained by the volunteers’

ability to understand the lifelog data.

• Limited types of questions were generated for the lifelog QA dataset. I focused only

on yes/no and multiple-choice questions for ease of evaluation. The format of the

questions was also influenced by third-party question generation tools. The size of

the dataset was also limited due to the lack of assistance and the time constraint.

• Similarity, the availability of state-of-the-art algorithms and models, as well as the

computational resources to run or train them, had a significant impact on the devel-

opment of the lifelog retrieval systems. This research adhered to available resources,

as opposed to developing new algorithms, while still achieving system functionality

and performance.

• The willingness and availability of participants to contribute, test the system, and

offer valuable feedback posed a significant constraint on the generalisation of the

research findings. The research was conducted with a limited number of participants,

and the results may not be generalisable to the broader population.

• Balancing functionality, ease of use, and aesthetics within the constraints of available

design tools and expertise was a consideration that influenced the system’s usability

and user experience.
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• Developing new QA approaches in the information retrieval domain was not the

focus of this research. Instead, state-of-the-art QA models were adapted to the

multimedia and lifelog domains.

These constraints were maintained for this Ph.D. research and acted as limiting factors

to focus the research effort and scope.

3.4 Conclusion

In conclusion, this chapter described the research design and methodology for developing a

lifelog retrieval system with question answering (QA) capabilities based on the principles of

Design Science Research. The research objectives, data, evaluation criteria, participants,

and ethical considerations were discussed. The research design was aligned with the prin-

ciples of DSR, which emphasises the development and evaluation of an artefact, the search

process nature of the research, and the communication of research findings. The research

was conducted in a series of iterative and participatory cycles, which allowed for con-

tinuous refinement and enhancement of the system’s capabilities. Operating constraints

such as time limitations, data availability, and user participation were acknowledged and

addressed. The next chapter will discuss the baseline lifelog retrieval system, which is the

starting point of this research.
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Interactive Lifelog Retrieval

The work in this chapter is in collaboration with my research team, therefore, the pronoun

we is used throughout the chapter. My role as the primary contributor to this work was to

design the system, implement the core backend, develop the user interface, use the system

to participate in the Lifelog Search Challenges, and conduct user studies.

This chapter focuses on Research Question 1, which is How to design a state-of-

the-art interactive lifelog retrieval system that assists a novice user to quickly

locate items of interest from a conventional multimodal lifelog?

To address this question, we developed a state-of-the-art interactive lifelog retrieval

system called Myscéal based on the literature review of state-of-the-art retrieval systems

in Chapter 2. Myscéal incorporated most of the conventional techniques found in other

lifelog retrieval systems and has been improved through three research cycles.

Figure 4.1: Pipeline of MyScéal.

Myscéal was firstly designed as a concept-based interactive lifelog retrieval and later

upgraded to an embedding-based system to improve free-text search. Nevertheless, the

pipeline of the system remained the same, which is illustrated in Figure 4.1. Visual con-

cepts extracted from the images and activity descriptors, GPS coordinates, and semantic

locations were used to create an inverted index in the ElasticSearch engine. User inter-

actions were transformed into ElasticSearch queries. The user interface was designed to
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present the results in a straightforward manner, which allows the user to quickly select and

submit the targeted image to the evaluation server. All key features of different versions

of Myscéal are summarised in Table 4.1. In this chapter, I will discuss each feature in

detail and explain our decision for the updates. The chapter is organised as follows: the

data processing components are described in Section 4.1, the search process is presented

in Section 4.2, and the interactive aspect of lifelog systems is addressed in Section 4.3.

Next, Myscéal’s performance is addressed in Section 4.4. Finally, I conclude the chapter in

Section 4.6 by discussing the key features of a state-of-the-art interactive lifelog retrieval

system.

4.1 Data Processing

As discussed in Chapter 2, the data processing component is the most important part of

a lifelog retrieval system. In this section, I will discuss the data processing components of

Myscéal in detail. As seen in Figure 4.1, the data processing component consists of three

main parts: visual descriptors, and non-visual metadata processing. Image embeddings

are also extracted for similar images and their similarity scores are calculated during the

processing stage to speed up the search process.

4.1.1 Visual descriptors

Following the standard approach of enriching visual concepts of many systems in previous

years, we utilised additional features from existing state-of-the-art computer vision models

as follows:

• Semantic labels from DeepLabv3+ [31], an image semantic segmentation model. This

process labels each pixel in an image with corresponding visual concepts, resulting

in a segmentation map.

• Object detection and image captioning concepts from Microsoft Computer Vision

API 1,

• Optical Character Recognition (OCR) results from Google Cloud Vision API 2.

• Material and colour concepts from Bottom-up attention model [9] trained on Visual

Genome Dataset [104].

Furthermore, Myscéal exploits the area of each visual object in an image, or in other

words, the pixel count in the semantic segmentation result and the bounding box area in

the object detection result3. The idea behind this is the assumption that bigger objects
1https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
2https://cloud.google.com/vision
3Here, we also consider an OCR text as a visual object with its bounding box.
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play a more important role in an image. This information is used to in our scoring scheme

called aTFIDF[205]. This is one of my main contributions as aTFIDF was introduced in

the first version of Myscéal.

The following is the detailed explanation of this scoring scheme. For a given image, if

we denote the set of images from the lifelog dataset by I, the collection of possible object

keywords by O, the area of an object detected in that image by fo,i, o ∈ O, i ∈ I, we can

calculate the area-term frequency as following:

aTF (o, i) = 1 + log(fo,i)

The area-inverse document frequency can be obtained by the following:

aIDF (o) = log(
N

∥{i ∈ I : fo,i > c}∥
)

where

• N : total number of images in the dataset

• c: a constant that is used as a threshold for the area for determining if an object is

actually in the image or if it is visual noise. This has been set empirically as 10% of

the image area.

Finally, the aTFIDF can be calculated as follows:

aTFIDF (o, i) = aTF (o, i) ∗ aIDF (o)

In E-Myscéal following the advancement of text-image embedding models, we utilised a

pretrained image-text embedding model, Contrastive Language-Image Pre-training (CLIP)

ViT/L-14@336px [167] to replace the aforementioned visual concepts. Subsequently, this

increased the performance of the system tremendously, which in turn reduced the user’s

time and effort required to solve a query.

4.1.2 Non-visual metadata processing

The lifelog datasets used by the LSCs consist of images and associated non-visual meta-

data, namely, GPS coordinates, time in UTC, as well as (misaligned) local time and activ-

ity recognition from biometrics data (walking, transport, etc.). Amongst these, Myscéal

did not use other data like music or heart rate, as this information did not contribute

much to the previous LSC events. The two most important factors were time and GPS

coordinates.

Regarding time data, we converted UTC time to local time based on the time zone

detected from the GPS coordinates. The days of the week (Monday, Tuesday, etc.) were

64



Chapter 4. Interactive Lifelog Retrieval

also extracted from time information.

Regarding GPS coordinates, in all versions, location data were used as a main factor

in segmenting the lifelog into meaningful units. In other words, we segmented the lifelog

using a hierarchy where the longest unit’s boundaries are defined by a change of location

(or more specifically, the semantic names of location).

Figure 4.2: GPS clustering in Myscéal 2.0.

In the first two versions of Myscéal we directly utilised the official semantic names for

segmentation. There were two main issues with this approach. First, even in the LSC’20

dataset, the semantic names were not always available. Second, in LSC’22, the organisers

did not provide the semantic names, which is realistic in real-world scenarios.

Addressing the first issue, we used GPS clustering to enhance the location data. In

Myscéal 2.0, we employed clustering methods to find a centre point for data points that

share identical semantic names as seen in Figure 4.2. If a data point whose semantic name

was not available is within a certain distance of a cluster centre, it would be assigned the

same location name as that cluster centre. This was done to support the user interaction

with a map, which is discussed in Section 4.3. Depending on the locations mentioned

in the query, we chose relevant cluster centres to visualise on the map. For example, if

the user was searching for ‘Eating lunch in Dublin City University’, the centre of all data

points associated with the semantic name ‘Dublin City University’ would be presented on

the map with the location name.

The second issue posed a much bigger challenge. In E-Myscéal, we continued to use

GPS clustering to enhance the location data. For each cluster, OpenStreetMap API4 was

used to extract addresses of the data points within the cluster. Then, the most common

address was assigned to the cluster centre. Semantic names in this case were the first part

of the address. For instance, if the most common address was ‘Dublin City University,

4https://www.openstreetmap.org/
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Glasnevin, Dublin, Ireland’, the semantic name would be ‘Dublin City University’. Open-

StreetMap API was also used to extract the names of states and countries to support the

search process. All location-related texts were then normalised to ASCII to avoid any

encoding issues.

However, the problem remained that GPS coordinates were not always available, es-

pecially indoors. This is not limited to the LSC datasets, but is widespread in various

location-based research [20]. Further improvements in lifelog location data are necessary.

After LSC’22, I had the opportunity work with the organisers to address this issue for

LSC’23. We achieved this by incorporating visual information to infer the location of the

images, as discussed in VAISL [210], although this is beyond the scope of this thesis.

4.1.3 Temporal units

In Myscéal we defined a temporal hierarchy of events consisting of three units: image,

scene, and event. The smallest temporal unit was an image, which is an atomic unit of

a lifelog in many works. We considered a scene to be the combination of one or many

subsequent similar images. An example is when the lifelogger is working at a desk, and

his surroundings remain practically unchanged. An event consists of one or multiple

consecutive scenes, whose boundaries are indicated either by a change of contexts, such

as location and activity, or by a significant time gap. These units were used throughout

indexing, searching, and user interaction.

We segmented lifelog into events using location semantic names and activities. To

define the segmentation boundary of scenes, we assigned each image three feature vectors

including VGG16 feature [196], Word2Vec feature [146], and SIFT feature [136, 137]. We

compared adjacent images by calculating three cosine distances and building a Naive-

Bayes classifier to determine scene boundaries using these distances. In E-Myscéal, we

found that using a simple threshold on the CLIP ViT/L-14@336px [167] embeddings was

sufficient to determine scene boundaries.

4.2 Search Process

As seen in the pipeline in Figure 4.1, the search process consists of two main steps: index-

ing, query parsing, and searching using the ElasticSearch engine. The indexing step is to

create an inverted index of the data, which is used to filter the data based on non-visual

information. The query processing step is to transform the user’s input into a query that

can be used to retrieve the data from the index.
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4.2.1 ElasticSearch indexing

We employed an off-the-shelf search engine called ElasticSearch5 to index the data. Elas-

ticSearch, an open-source search and analytic engine, supports searching with varied data

types. The lifelog index was created as a collection of JSON-like documents with the

properties shown in Table 4.2 in the scene index. This database provided a quick way to

filter the data based on non-visual information, as seen in Table 4.2, and was used as a

way to narrow down the search space before more complex calculations were applied to

each image. The main image index was created with more fine-grain properties, as seen

in Table 4.3. This index was used to score the images based on the query. The scoring

process is discussed in Section 4.2.3.

Table 4.2: ElasticSearch document for each scene.

Explanation ES Format Examples

images the list of image IDs keyword 20160810_071508_000,
20160810_071421_000

begin_time local time date 2016/08/10 08:12:00+00

end_time local time date 2016/08/10 08:12:00+00

desc the list of visual concepts
with equal importance

keyword station, red wall

weekday the day of the week keyword monday

location provided semantic name of
the location

keyword home, angelica’s cafe

address reverse geocoding result text whitehall, dublin, ireland

gps GPS coordinates geo_point 53.3858, -6.2607

activity provided activity recogni-
tion

keyword transport

4.2.2 Query parsing

We decided not to use a faceted interface to show filters in different metadata such as date,

time, and location to reduce the number of actions that the user has to take to interact

with the system. Our reasoning was twofold: (1) this saves the user’s time and effort

in selecting the filters, and (2) the user might not be familiar with the metadata of the

lifelog data to make the correct actions. Therefore, we chose to use a single text box for

the user to enter the query. The purpose of the query parsing process is to transform the

user’s input into a query that can be used to retrieve the data from the ElasticSearch index.
5https://www.elastic.co/
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Table 4.3: Properties of ElasticSearch document for each image. For visual concepts that
lack areas, we use the ElasticSearch keyword data type and configure ElasticSearch to
calculate the TF-IDF scores. *: only available in E-Myscéal.

Explanation ES Format Examples

image_id the image ID keyword 20160810_071508_000

time local time date 2016/08/10 08:12:00+00

atfidf_s aTFIDF feature from se-
mantic segmentation

rank_features {"wall": 1.35,
"person": 6.79}

atfidf_o aTFIDF feature from ob-
ject detection

rank_features {"wall": 1.35,
"person": 6.79}

atfidf_ocr OCR feature rank_features {"online": 16.892,
"book": 18.00}

concepts visual concepts that lack
areas and thus aTFIDF
scores

keyword ["wall", "person"]

feat* CLIP feature dense_vector [0.1, 0.2, \ldots]

Using ad-hoc regular expression patterns, we mapped the textual query into corresponding

fields.

Before E-Myscéal, with the concept-based approach as the main search mechanism,

we also extracted a list of visually descriptive words from the query. After that, we used

Word2vec [146] and WordNet [160] to map the words into a specific and limited set of

keywords provided by object detectors and semantic segmentation engines. For example,

tea might imply the presence of a mug, or a teapot. This process transformed every

concept into a list of keywords with the corresponding relevance scores. In E-Myscéal, the

direct mapping from the query (minus date, time, and location information) to the CLIP

embeddings was used instead.

4.2.3 Primary search mechanism

For a processed query, time-related information (day of the week, date, month, year, or

time of the day), locations of large areas (cities and countries), and activities were used

as filters (that is exact match). Semantic locations were used as GPS filters based on

the result of GPS clustering on top of pure text matching, based on the assumption of

incomplete annotation.

In the first three versions of Myscéal, the system used a concept-based approach that

relies on TF-IDF and aTFIDF scores. The system first applied the metadata filters to the

scene index. To further narrow down the search space, the system scored the remaining

scenes and took the top N scenes. This scoring process is as follows:
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For a list of visual concepts, q = [q0, q1, . . . , qm], where each concept qi is expanded into

a list of keywords [oi,0, oi,1, . . . , oi,n], oi,j ∈ O with the relevance scores of [ri,0, ri,1, . . . , ri,n],

the final score of each scene can be formulated as:

Sscene =
m
∑

i=0

max
{j|oi,j∈scene}

ri,j

After that, using the images belonging to these scenes, we add the scores of each image

based on (1) the relevance score in the field concepts which was calculated using TF-IDF,

and (2) the aTFIDF scores in the three fields atfidf_s, atfidf_o, and atfidf_ocr in

Table 4.3. Each aTFIDF score is calculated as follows:

Simage =
m
∑

i=0

max
j

(ri,j ∗ aTFIDFimage(oi,j))

In E-Myscéal, we moved away from the concept-based approach and used the CLIP

embeddings directly. We employed Elasticknn6, a plugin for ElasticSearch, to support

nearest neighbour search. This plugin allows us to use the cosine distance as a scoring

function and to retrieve the top N images. Specifically, given a query embedding q and

an image embedding i, the score is calculated as follows:

Simage = cosine_similarity(q, i) =
q · i

∥q∥∥i∥

4.2.4 Complementary search mechanisms

Aside from using a single textual input as the search query, Myscéal offered other means

of search.

Temporal search After analysing the tasks from previous LSCs, we decided to sup-

port users to search for multiple time-related events. One example task is from the

LSC’20 [68]: ‘Just looking at coffee machines one evening in a luxury store in Dublin

called “Brown Thomas”. I had just finished a long meeting under two lights before walking

to Brown Thomas. Afterwards I had a birthday dinner in Sole restaurant. It was the last

day of May in 2018.’ Three different activities were mentioned in the query:

• The main activity: ‘looking at coffee machines one evening in a luxury store in

Dublin called “Brown Thomas” ’ ;

• The activity before: ‘I had just finished a long meeting under two lights before walking

to Brown Thomas’ ;

• The activity after: ‘I had a birthday dinner in Sole restaurant’.

6https://elastiknn.com/
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It is clear that the user was looking for images of the main activity, but the system

should also return images of the activities before and after to provide a temporal context.

Therefore, we designed a temporal search mechanism that allowed the user to specify

the temporal relationships between different queries. Specifically, the system would then

search for the main query first and then use the resulting time information as a time filter

to search for the other events. All results would be grouped at the last step and ranked

based on their total score.

Let us look at an example with two temporal queries: ‘I was eating lunch in DCU before

I went to the airport’. The system first searched for ‘eating lunch in DCU’, resulting in

a list of scenes called M = [M0, M1, . . . , Mm]. Then, for each scene Mi in M , its time

information was extracted and added to the query ‘went to the airport’, forming a new

query such as ‘went to the airport after 12:00 on 23/08/2016’, resulting in a list of scenes

called Ci = [Ci0, Ci1, . . . , Cin]. Combining M with C resulted in pairs of scenes (Mi, Cij),

which were then scored based on the sum score of Mi and Cij .

It is worth nothing that Myscéal was the first system to support multiple temporal

queries. While being a complex search mechanism, this feature proved to be very useful

in many tasks and was gradually adopted by other systems in the LSCs [4, 97, 132], as

mentioned in Chapter 2.

GPS search The search query could also be extended with a location filter using a

bounding box of GPS coordinates drawn on the user interface. In the case of temporal

queries, the filter was only applied on the main query.

Visual similarity search Visual similarity can help the user find visually similar

images to any given image by clicking on it in the search result. The similarity scores were

calculated using the cosine distance of a concatenation of the SIFT [136, 137, 139] and

VGG16 [196] features. CLIP embeddings were used in E-Myscéal instead.

4.3 User Interaction

The final part of the pipeline, as illustrated by Figure 4.1, is the user interface. The user

interface is the most important part of an interactive lifelog retrieval system where the

user interacts with the system. In this section, I will discuss the user interface of Myscéal

in detail. The user interface of Myscéal was designed to be simple and intuitive, allowing

the user to quickly interact with the system. The user interface can be divided into four

main parts: the search boxes, the query suggestion, the search results, and the map. The

user interface of Myscéal is shown in Figure 4.3. Apart from that, a pop-up window called

Event View is used to show the images in a temporal context. Similarity View is also used

to show visually similar images to the selected image. We will discuss the UI components

in detail in the following sections.

Due to the expectation of novice users’ involvement, the UI was designed with two
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Figure 4.3: User interface of Myscéal. The search can be initiated by filling in the search
boxes (A) and pressing the Enter key on the keyboard. The search results are shown on
the left side of the screen (B) in a list of triplets. The map on the right side of the screen
(C) shows the locations of the images in the search results. The bottom right corner of
the screen shows the saved section (D), which allows the user to save the search results
for later use.

main principles: to minimise different steps in the search process and allow back-end

functionality to be fully used without requiring lifelog search expertise.

4.3.1 Search boxes

The three boxes at the top of the UI were to specify the temporal relationships between

different query clues. The primary query was placed in the middle to allow for quick

entry. Furthermore, as discussed in Section 4.2, the system supported multiple temporal

queries such as ‘I was in Dublin City University before I went to the airport’. Therefore,

in the small boxes, the time conditions (in hours) of “before” and “after” queries could be

specified.

4.3.2 Query suggestion

Since the second version of Myscéal, we have exposed the query expansion to help the

user adjust the query accordingly. The second version [208] allowed the user to modify

the relevance score of each visual concept or remove the concept altogether. However, this

feature was removed in later versions. In the Myscéal 2.0, we showed the interpretation of

the query under the search boxes and highlighted if a word did not appear in the indexed

database, prompting the user to double-check that word and select another option in the

suggested list if necessary. Since E-Myscéal, we have moved away from the concept-based
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approach and used the CLIP embeddings directly. Therefore, the query suggestion was

no longer needed.

4.3.3 Search results display

A large proportion of the screen was dedicated to displaying the search results. Each result

unit was arranged corresponding to the temporal relationship, with the main event to be

searched for in the middle as seen in Figure 4.3. As we segmented lifelog data into scenes,

each thumbnail here represented a scene consisting of multiple images. By clicking on the

thumbnail and opening Event View (as illustrated in Figure 4.4), the user could access all

images belonging to the selected scene.

Figure 4.4: Event View window in Myscéal, Myscéal-CLEF, and Myscéal-2.0.

In E-Myscéal we adopted an adaptive way of showing the search results based on the

number of temporal queries. In other words, if a ‘before’ or ‘after’ query was specified,

the system would show the results in pairs or triplets, with the scenes corresponding to

the main query in a bigger size. Otherwise, the results would be shown in single images

to allow more images to be shown on the screen.

As ImageCLEF challenge focuses on recall performance, we did not group the images

into scenes in the search results. Instead, we organised the results into day units and sorted

the days based on the maximum score of the images on that day, as seen in Figure 4.5.

This allows the user to submit as many images as possible to the evaluation server, as this

functionality was optimal to the ImageCLEFLifelog’s evaluation protocol.
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Figure 4.5: User interface of Myscéal in ImageCLEF 2020

4.3.4 Map

Another part of the UI was a map, as seen in Figure 4.3. By default, it showed the

locations of the retrieval result. However, it also supported GPS search in an area by

allowing the user to draw a rectangle on the map specifying the intended area. Location

names, including semantic locations such as home or workplace related to the query, were

also shown on an overlay layer of the map.

4.3.5 Visual Similarity and Event View

This view was a pop-up panel that can be accessed by clicking on any image shown in the

main interface in Figure 4.3. The purpose of this view was to allow the user to explore

the lifelog images in a temporal context. By pressing the ESC key on the keyboard, the

user could close the pop-up window and go back to the initial search result screen.

Before E-Myscéal, the event view presented the hierarchy of the three temporal units

mentioned in Section 4.1.3, allowing the user to browse the images from that day at two

different paces, as seen in Figure 4.4. The first row showed the images belonging to the

selected scene, and the second row showed the scenes belonging to the same day. The last

row groups the scenes into events, which are the largest temporal units.

Moreover, a user could search for similar images by clicking on a small visual similarity

icon at the bottom of each photo in the Event View. The Visual Similarity view was of

the same design as the Event View, with the chosen image in the first row, and the similar

images (grouped by scenes) in the second row.

In response to user confusion stemming from the design we just described, where two
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different functionalities (Event View and Similarity View) were presented in the same

design in the same pop-up window, we have redesigned the Event View in E-Myscéal, as

depicted in Figure 4.6. Within this pop-up window, users could then explore temporally-

nearby scenes. Users had the capability to navigate through scenes that were temporally

adjacent to the selected scene on the chosen day, with the selected scene highlighted in

red. This feature proved particularly valuable in the context of lifelog retrieval, as it

allows users to explore scenes that are closely related in time to the scene of interest.

These nearby scenes were neatly organised in vertical groups and labelled based on the

embedding-based modeling, as described in the previous section, with a helpful textual

guideline on the vertical timeline in Figure 4.4. On the other hand, users could also

explore other visually-similar scenes to the selected scene, which are scenes that share

visual similarities with the selected scene, drawn from the entire lifelog archive. This

served as a complementary retrieval method while users were navigating through scenes

arranged chronologically above, increasing the likelihood of identifying relevant scenes.

On the right side of the pop-up window (to the left of the geographical map), a vertical

panel presents enlarged images associated with the selected scene, facilitating navigation

within a scene that contains multiple images. Hovering the mouse cursor over the small

icon in the bottom right corner of each image triggers further magnification, allowing more

detailed inspections, consistent with the behavior of images in all other panels, including

the within-day scene list panel, the ‘similar scenes’ panel, and the initial search result

screen. Magnification is necessary in cases where the relevant details are too small to be

seen in photo thumbnails, such as text on a sign or a book cover.

Figure 4.6: Event View window in E-Myscéal, merged with the Visual Similarity view.
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4.4 Performance

In this section, we highlight some results that Myscéal achieved at various challenges and

how the system performed in different settings.

4.4.1 Myscéal at LSC’20

LSC’20 was the third edition of the LSC series, and also the first lifelog retrieval challenge

that Myscéal participated in. A total of 24 tasks were provided to the participants. Despite

being the new retrieval system in the competition, Myscéal obtained the highest overall

score among 14 participants and achieved first place in LSC’20. Figure 4.7 illustrates the

precision and recall of all teams in the challenge, in which the order of teams indicates

their final ranking. The precision is defined as the portion of correct submissions out of

the total submissions in the competition. Meanwhile, recall is the percentage of tasks that

a team manages to solve successfully. We can observe in Figure 4.7 that Myscéal and

SOMHunter [145] got the highest recall compared to others at 87.5% meaning that both

systems managed to solve 21/24 tasks. Moreover, Myscéal also had the highest precision

metric at 84%, which indicates that the system only submitted a few wrong answers with

four incorrect submissions out of 25 submissions in total during the competition.

Figure 4.7: Precision and Recall of each team in LSC’20.

The LSC also evaluates systems by taking into account the speed of submission (faster

is better). Figure 4.8 depicts the retrieval speed of participants in LSC’20. Myscéal was in

the top three quickest systems to return the correct result 13 times, which was the highest

across all participants. This means that half of the time in the competition (13/24)

Myscéal found the correct answers in the top-3 fastest systems. This search time criterion

is one of the key factors helping Myscéal obtain the first place within the LSC’20.

75



Chapter 4. Interactive Lifelog Retrieval

Figure 4.8: Number of times each team was in the top 3 quickest teams to return the
correct results.

Due to the COVID pandemic, LSC’20 was the first time the challenge was organised

virtually. Therefore, the challenge only had a session for experts and did not have a session

for novice users as it had facilitated in previous years. We conducted a user study using

Myscéal with eight novice participants to have more insights into the system’s performance

when used by novice users. Furthermore, their feedback was a valuable resource from

which we can build a better system for LSC’21 with additional features. The setting

of the experiments was replicated from the live campaign regarding the time limit and

the order in which the clues are shown. However, only five tasks of varying difficulty

were chosen from the official list of tasks used in LSC’20 to keep the experiment sessions

short. These tasks are illustrated in Table 4.4. They were arranged in an ascending level of

difficulty based on our experience in the official competition. Before doing the experiment,

all novice users were briefly instructed to learn how to operate Myscéal by trying to solve

three sample tasks in a pre-experiment session. These three tasks were also selected from

the query bank of the LSC’20.

The score of each participant is shown in Table 4.5, which was calculated using the

same formula from the live event. The score of Myscéal is the score gained by expert users

(both members of the Myscéal team) in the actual LSC’20 event. As can be observed

in Table 4.5, all users (including experts) fail to find the correct answer to the last task.

The first two tasks were easier to solve compared to others when all searchers managed

to find the relevant images. As we ordered tasks based on their difficulty, task 1 was the

task that users obtained the highest score across all tasks. This is because of the keyword

“airplane” when there was only a small amount of images containing airplanes within the

dataset. Meanwhile, in the second task, the participants could not find the correct answer

until the last clue of location,“UK”, was revealed. As a result, they could manage to get a

considerably low score. This also happened in the third task with many images containing

beer bottles in Wuhan, making users unable to find the correct answer. In contrast, the
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Table 4.4: List of tasks used in our novice user study. The tasks were chosen from the
query bank used in LSC’20. The symbol ‘/’ separates clues that are gradually revealed to
searchers.

Task Clues

1
Taking a photograph of an A380 airplane/ in Germany/ before

boarding a flight/ in the late afternoon/ in 2015/ on the 19th March.

2
It was the best cake I had in years,/ in an antiques store./ I was alone

drinking tea and eating cake./ I think I finished all the cake in 3
minutes./ It was in the UK/ on a Saturday morning.

3

I was having beer after a long day of meetings./ It was a ‘corona
extra’ beer in a bottle./ I remember the room was dark./ I was

relaxing in a hotel lobby bar./ I don’t remember there was anyone else
there./ It was in May 2018, in Wuhan.

4
Passing by a clocktower while running/ in a park near my home./ It
was in the early morning, around dawn./ I drove to the park/ and I

drove home again afterwards./ It was a Saturday morning in February.

5

Four red figures,/ maybe they are aliens./ It looked like a painting of
aliens./ There were walking on the desert./ There was a big red wall

behind the painting./ And a TV, I think there was also a TV there./ I
was having tea and sandwiches in March 2015.

location “home” in the second hint of the fourth task allowed users to have enough time

to find the right images. Six novice users solved three tasks, and two users (U6 and U8)

got two correct results. This indicates that novice users could use the system without

significant issues since even the expert could only find four correct answers. None of the

eight novice users could solve the last task, which is as expected since the expert could

not make it either in the official competition. This was because Myscéal in LSC’20 could

not detect the color in images, and the word “aliens” represented a significant semantic

and lexical gap between the information need and the dataset. There was still a big gap in

the performance between novice and expert users when the average score of novice users

was 188.97, which is just half of the score obtained by the expert user at 339.03.

The most significant issue of Myscéal used in the LSC’20 challenge was that this

system did not implement colour detection. Therefore, none of the users managed to find

the answer to Task 5 in Table 4.4 where the clue about “red wall” was the most informative

hint. The same was true for the OCR clues because Myscéal did not have the OCR feature.

On the other hand, Task 3 in Table 4.4 could be easily solved if Myscéal had the feature of

searching for text to find “corona extra”. Additionally, we found that users tended not to
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Table 4.5: Experiment score of eight novice users compared to Myscéal team’s official
score in LSC’20.

Task Myscéal U1 U2 U3 U4 U5 U6 U7 U8

1 94.86 92.5 94.86 85 86.81 98.19 87.92 90.69 82.36

2 78.06 54.86 50.69 68.61 47.08 59.03 57.92 43.33 59.58

3 87.5 53.47 0 0 53.33 0 0 0 0

4 78.61 0 77.5 51.11 0 52.5 0 64.44 0

5 0 0 0 0 0 0 0 0 0

Total 339.03 200.83 223.06 204.72 187.22 209.72 145.83 198.47 141.94

use the map area in the UI although the clues about location contained useful information.

We overcome these problems by adding three major updates to Myscéal to participate in

LSC’21 [206] and LSC’22 [207]. We included the colour detector and the OCR in the

annotation processing component. Furthermore, we also enlarged the map area in the UI

to encourage users to use this unique feature.

4.4.2 Myscéal-CLEF at ImageCLEFlifelog’20

Myscéal was developed to match the evaluating criteria of the LSC, which requires a

system to find a single specific image that is relevant to a semantic query as quickly as

possible with the least number of wrong submissions. ImageCLEFlifelog provides another

opportunity to enhance Myscéal as this competition is a more conventional asynchronous

retrieval challenge. It requires participating systems to find as many relevant images as

possible and does not take the retrieval time into account. We slightly modified Myscéal

from LSC’20 by adding an event row at the bottom of the UI as shown in Figure 4.4. This

feature was expected to help users scroll faster to find all relevant images. Moreover, we

added a small feature that could help users adjust the scores of input keywords to revise the

results [208]. Despite not originally matching the challenge’s objectives, Myscéal obtained

third place in ImageCLEFlifelog’20 [208].

This competition is also a good opportunity to evaluate Myscéal performance in differ-

ent use cases, and we conducted additional user experiments with three users: an expert,

a novice user, and the data owner (the lifelogger). It is essential to point out that Image-

CLEFlifelog is a more suitable challenge than the LSC to include the lifelogger as a user

without worrying about their prior knowledge about the dataset. This is because the LSC

only needs a lifelog image indicating a specific moment to solve a query, although there

are maybe many of them that match the query. This makes it easy for the lifelogger who

owns the data to solve, as they can recall the most recent event relevant to the query.

However, ImageCLEFlifelog requires a searcher to retrieve all images instead of one. This
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means that the lifelogger needs to remember all events, which makes it more difficult for

them to solve the query if they use only their memory without using any lifelog retrieval

system. For example, to get the maximum points for the query “Find the moment when

the lifelogger was getting a bus to their office” in ImageCLEFlifelog, the searcher has to

find all images belonging to the relevant moments which might happen many times in

different days.

ImageCLEFlifelog’20 contained 10 queries as tasks to be solved7. For each task,

searchers need to find the top 100 images belonging to all relevant moments matched

with the corresponding query. In our experiment, each of the three users had a total of

five minutes to solve a task, reading time not included. The lifelogger and the novice user

were quickly instructed to learn how to use Myscéal prior to the experiments. We used

the same evaluation metric in ImageCLEFlifelog’20, which is the F1@10 score. In order to

get the highest F1@10 score (which is 1) of a task, the top 10 images of the result should

belong to all events described by the query.

Table 4.6: F1@10 scores of three users (U1: Lifelogger, U2: Expert, U3: Novice). The
symbol ‘−’ indicates that the user was unable to find the answer for that task. The
numbers with ∗ are the highest number in that topic.

Task U1 (lifelogger) U2 (expert) U3 (novice)

1 0.58 1∗ 0.67

2 0.72∗ 0.22 —

3 1∗ 0.57 1∗

4 0.31∗ 0.22 —

5 0.68∗ 0.68∗ —

6 0.25 0.5∗ 0.25

7 0.69 0.89∗ 0.69

8 0.75 1∗ —

9 0.8∗ 0.73 0.77

10 0.5 0.5 0.5

Overall 0.63∗ 0.63∗ 0.39

Table 4.6 shows the score of all users in the experiments. We can see that the expert,

who had the advantage of knowing the system and being familiar with most of the dataset,

7https://www.imageclef.org/system/files/ImageCLEF2020-test-topics.pdf
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achieved the highest score. Despite having no experience with the system, the data owner

obtained comparable scores in most tasks and got the same overall score. The average

F1@10 score of the novice user was lower than that of the others due to the fact that this

user was unsuccessful in solving nearly half of the tasks in the challenge. Additionally,

although having knowledge of the dataset, the lifelogger got three tasks with the highest

F1@10 score, which was lower than that of the expert at 4.

Although the lifelogger and the expert user successfully solved all tasks, the novice

user only found the answer for half of them. This raised the question of how effective the

Myscéal interface was for novice users. Having horizontal scrolling to browse the images

in the same row, on top of the normal vertical direction, could be confusing. We observed

that both the lifelogger and the novice user rarely used this feature. Furthermore, the

implemented keyword scoring adjustment feature was not as helpful as expected when

both users completely ignored this function. It did not contribute much to the result of

the expert user when the revised result after modifying the weights was not relevant to

the queries. Therefore, we decided to remove this feature from Myscéal in LSC’21 [206]

and LSC’22 [207].

4.4.3 Myscéal 2.0 at LSC’21

Myscéal participated in LSC’21 with additional features and updates in the user interface,

which were based on comments and feedback from novice users in our user study described

in Section 4.4.1 and 4.4.2. Specifically, more visual concepts were added to the system

with the colour detector and the OCR. The map area was enlarged to encourage users to

use this feature, with the relevant locations highlighted on the map. Moreover, the word

expansion mechanism was shown in the UI to help users choose the correct word for their

query.

Like the previous iteration, LSC’21 was a virtual competition, hence could not have

a novice session. There were 23 tasks used in LSC’21, roughly similar to LSC’20 at 24

tasks. The number of participating systems increased from 14 to 17 in LSC’21. The other

settings of the competition remained the same as in its previous campaign.

Myscéal obtained the first place in LSC’21 as it did in the previous year. However,

LSC’21 witnessed a more competitive performance between the top-ranked teams, when

differences in the scores of the top-3 systems were minuscule. Summary scores of the top-6

systems in LSC’21 are illustrated in Table 4.7 in which precision and recall are defined as

discussed in Section 4.4.1.

The metric Submitted in Top-3 indicates how fast the systems performed. This is the

number of times that a system manages to be in the top speediest systems to find the

correct answer.

The overall score is the normalisation of the total score awarded by solving the tasks

in the competition. This normalised score is the main metric used to rank the systems
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Table 4.7: Summary of LSC’21 result of top-6 systems. The numbers in bold are the
highest numbers among the top 6 systems. Precision and recall are defined in Section 4.4.1.
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Solved tasks 19 19 20 18 15 16

Wrong submission 4 9 6 3 8 11

Precision (%) 82.61 67.85 76.92 85.71 65.21 59.25

Recall (%) 82.61 82.61 86.95 78.26 65.21 69.56

Submitted in Top-3 12 12 9 11 5 9

Overall Score 100 97.6 97 91.4 77.3 77.2

in the LSC. Table 4.7 shows that there is a negligible gap in the scores of Myscéal,

SomHunter+ [132], and Lifeseeker [150]. Although Myscéal attained the best overall

score, Lifeseeker was the team that solved the most tasks (20/23) in the challenge and got

the highest recall at 86.95%. Regarding precision, Myscéal was not the best in this metric

either when Voxento only had three wrong submissions, making it the highest precision

at 85.71%. Myscéal, with 19/23 successfully solved tasks and three incorrect submissions,

had the same precision as with recall at 82.61% for both metrics. It is interesting that

Myscéal was not the system that solved the most number of tasks nor had the least wrong

submission, yet managed to rank highest in the challenge. This is because Myscéal was

one of the fastest systems that could find the correct answer compared to others. As

shown in Table 4.7, Myscéal and SomHunter+ were the two systems that had the highest

times submitting the correct answer in the top-3 fastest systems in the competition with

12 times.

Some of the essential features of Myscéal in LSC’21 were OCR and colour detection.

Half of the tasks in LSC’21 included the OCR clues from which participating systems

could easily find the correct answer. Furthermore, we used a similar image search function

many times in LSC’21 to find the relevant result from the initial result. Therefore, we

continuously integrate these features for LSC’22, but there are some changes in the UI

where we make the similar images panel easier for users to access and explore. Another

critical update was that we changed the approach of Myscéal for LSC’22 [207]. LSC’21

witnessed the effectiveness of embedding techniques when SOMHunter+, Voxento, and

Memento quickly solved tasks describing activities that were difficult for Myscéal to find
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answers. Therefore, instead of using keywords as in previous versions, we change Myscéal

to E-Myscéal[207] which applies an embedding approach to participate in LSC’22.

4.4.4 E-Myscéal at LSC’22

The embedding technique used in E-Myscéal is expected to improve novice users’ retrieval

experience. Unlike Myscéal, the new search mechanism in E-Myscéal does not require

users to modify their query several times before entering it into the search bar. Our non-

faceted user interface has also been updated to remove components that are potentially

confusing to new users, such as the query suggestion. On the other hand, the Event View

and Visual Similarity View have been merged into a single pop-up window to reduce the

number of pop-up windows that novice users have to deal with.

The LSC’22 was organised in a hybrid manner with some teams participating in person

at the conference venue, while others, including E-Myscéal joined remotely. No novice

session was held in LSC’22. In this iteration, on top of the usual known-item search (KIS)

tasks, two additional kinds of tasks were introduced: Ad-hoc and Question Answering

(QA). In total, there were 10 KIS, nine QA, and six Ad-hoc tasks. The QA tasks in

LSC’22 were formulated as a KIS task with a question as the query, and the answer was

the image that contained the answer to the question. However, only one submission was

allowed for each QA task. To avoid confusion with the real QA task in LSC’23 (where

text-based answers were required), we will refer to this task as KIS-QA in this paper.

Figure 4.9 shows the overall score of all teams in LSC’22. Same as previous years,

E-Myscéal once again scored the highest overall score in LSC’22. However, the differences

between that and the score of the second-place team, LifeSeeker [151], were not signifi-

cant. E-Myscéal ranked first in KIS and KIS-QA tasks and second in Ad-hoc tasks, while

LifeSeeker ranked first in Ad-hoc tasks.

Figure 4.9: Overall score of all teams in LSC’22.

Regarding the number of solved KIS queries, half of the teams managed to solve all

10 KIS tasks as Figure 4.10 shows. E-Myscéal shared the same accomplishment with
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Figure 4.10: Number of incorrect and correct submissions of E-Myscéal in LSC’22.

five incorrect submissions in this category. Although FIRST [80] was the team with the

lowest number of incorrect submissions (three incorrect submissions) in KIS tasks, the

overall score of E-Myscéal was still the highest due to the speed of solving the tasks,

as indicated in Figure 4.11. As we can see from the figure, E-Myscéal was one of the

fastest systems to solve the KIS tasks. Similarly, E-Myscéal demonstrated proficiency

in KIS-QA tasks, achieving a perfect precision and recall of 1.0 for solving nine tasks.

This excellent performance was shared with Lifeseeker [151], yet E-Myscéal’s speed in task

completion granted it an edge. With respect to Ad-hoc queries, as reflected in Figure 4.12,

E-Myscéal achieved the second-highest scores in both precision and recall, with 0.83 and

0.44, respectively. Despite having a much higher precision than LifeSeeker [151] (0.7),

E-Myscéal still lost to LifeSeeker in this category due to the lower recall (0.44 compared

to 0.54). Overall, the second place in Ad-hoc tasks was an accomplishment for E-Myscéal.

4.5 Discussion

Myscéal was originally developed for the LSC competition, which is to quickly find a single

image that is relevant to a semantic query. The result of Myscéal in LSC’20 has shown the

system’s efficacy with the powerful search engine and the straightforward user interface.

Both compartments have helped Myscéal to win the LSC campaigns in three consecutive

years: LSC’20, LSC’21, and LSC’22, by solving most of the tasks faster than other teams.

Hence, in 2020, Research Question 1, How to design a state-of-the-art interactive lifelog

retrieval system that assists a novice user to quickly locate items of interest from a con-

ventional multimodal lifelog?, was answered by Myscéal when this system represented the
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Figure 4.11: Time to first correct submission of different teams in LSC’22. Ad-hoc tasks
are not included as they are not scored based on time.

state-of-the-art lifelog retrieval system.

Nevertheless, although Myscéal surpassed other systems in terms of precision, recall,

and search time by a large margin in LSC’20, Myscéal achieved first place in LSC’21 with

a tiny difference to other teams when this system did not perform significantly better in

any metrics. In addition, LSC’21 witnessed a rise in the number of tasks that contain hints

about the visible text in the answer images, with 11/23 tasks having OCR information.

These OCR clues play a critical role in helping the systems find the correct images, as

most of the time teams solved tasks based on them. Across 12 times that Myscéal was one

of the three fastest teams, there were eight times that Myscéal found the answers using the

OCR feature, which was only implemented for LSC’21. This OCR update indeed came

from the feedback of novice users in our experiments (Section 4.4.1) when they commented

that it would be easy to solve Task 3 in Table 4.4 if they could use OCR to search for

“corona extra”. In addition, we also had some modifications in Myscéal after LSC’20 to

prepare for LSC’21 based on our observations in the user experiments. For example, the

map area in our interface was then enlarged to effectively grasp the attention of users since

most novice users did not use this helpful feature as they did not realise there was a map

in the interface. However, Myscéal remained the state-of-the-art lifelog retrieval system

in LSC’21.

Regarding ImageCLEFlifelog’20, since Myscéal was not created to match the evalua-

tion metrics of this challenge, the system could only achieve third place in this competition.

However, we considered ImageCLEFlifelog’20 to be a good opportunity to conduct a user

study, including the lifelogger as a user for Myscéal. Table 4.6 showed that the expert user
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Figure 4.12: Precision and Recall of the Ad-hoc tasks in LSC’22.

could have a similar score to the lifelogger with significant knowledge about the dataset.

However, although knowing the dataset can have an impact on the lifelog retrieval result,

this merit is not enough to gain a high score in ImageCLEFlifelog’20 when this competition

required searchers to find all relevant moments. This is because these events sometimes

cannot be remembered by the data owner due to the massive size of the dataset with nearly

200.000 images. The target of a lifelog retrieval system is the lifelogger since the system is

just a tool supporting them to recall a specific event. Having the same scores for both the

expert and the lifelogger shows the benefits of using Myscéal to retrieve lifelog images since

the expert does not know the dataset as well as the lifelogger but understands how the

system works. Furthermore, we believe that if the lifelogger, who is already familiar with

their own dataset, has enough time to learn how to use Myscéal, they can even achieve a

better score.

For E-Myscéal we shifted from a keyword-based approach to an embedding-based

approach. This is because we have observed the effectiveness of the embedding technique

in LSC’21 when SOMHunter+, Voxento, and Memento quickly solved tasks describing

activities that were difficult for Myscéal to find answers. E-Myscéal in LSC’22 has shown
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the competitive performance of the embedding-based approach when this system solved

all KIS and KIS-QA tasks. However, E-Myscéal was not the best system for Ad-hoc

queries, which is a similar task to ImageCLEFlifelog’20, as we lacked a good method for

fast submissions that was similar to one used by LifeSeeker [151]. Several improvements

can be made to E-Myscéal to improve its performance in Ad-hoc tasks. For example,

filtering out images that are already submitted can help E-Myscéal to avoid submitting

the same images multiple times and save time for other submissions, therefore increasing

the recall of thes system. In addition, a relevance feedback mechanism can be implemented

to suggest images that are similar to the (correctly) judged submissions. This can help

E-Myscéal to find more relevant images that are not in the initial result. Nevertheless,

E-Myscéal still achieved first place in LSC’22 and represented the state-of-the-art lifelog

retrieval system in 2022.

4.6 Conclusion

I have described Myscéal, which was the state-of-the-art lifelog retrieval systems from 2020

to 2022. Some user experiments have been discussed to offer insights into the system’s

performance. Myscéal applied the conventional and standard approach in this research

field, which was to annotate images using its visual concepts but introducing our own

new feature called aTFIDF. This novel feature was introduced with the belief that larger

visual objects in an image will be more important than smaller objects. In addition to

the search engine, Myscéal comes with a clean and simple user interface to support novice

users unfamiliar with this area. The code of Myscéal is open-source and available on

GitHub8.

In addition, we have also shown how Myscéal updated both the back-end engine and

the front-end interface through the competitions in which the system participated. To

join the current trend of using the embedding technique in lifelog retrieval, we have also

proposed an embedding-based approach for Myscéal to participate in LSC’22 and LSC’23.

Amongst the four LSCs, our Myscéal achieved first place in three of them: LSC’20, LSC’21,

and LSC’22. In addition, Myscéal also participated in ImageCLEFlifelog’20, obtaining a

considerable third place in ImageCLEFlifelog’20. The competitive result of Myscéal in

these competitions has shown the effectiveness of the system. Therefore, I consider the

Research Question 1, How to design a state-of-the-art interactive lifelog retrieval system

that assists a novice user to quickly locate items of interest from a conventional multimodal

lifelog?, to be answered by Myscéal, which is a good baseline for future lifelog retrieval

systems to be compared with, proven in three years in a row against different systems.

Hence, Myscéal will be compared to in future chapters of this thesis.

8https://github.com/allie-tran/lsc-backend/, https://github.com/allie-tran/

lsc-processing, and https://github.com/allie-tran/lsc-UI
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Chapter 5

Contextual Lifelog Question

Answering

In this chapter, Research Question 2 is addressed, which is How can we evaluate dif-

ferent approaches to question answering on lifelog datasets? The aim of this

research question is to evaluate the application of QA techniques to lifelogs and improve

their ability to interpret the meaning and context behind the data, e.g, to reason about

the interrelationships of the objects in an image. As lifelog QA is a new task, there is no

existing dataset for this purpose. Therefore, the first step is to address the challenges in

constructing a lifelog QA dataset by defining the task and the dataset requirements. In

Section 5.2, I will describe the process of building the first lifelog QA dataset and present

the dataset analysis. A pilot experiment was conducted to determine the baseline models

for the lifelog QA task which is described in Section 5.4. The results of the pilot ex-

periment are used to benchmark the lifelog QA dataset with more recent state-of-the-art

models in the field of video QA. Finally, I will conclude this chapter with a discussion of

the results and future work in Section 5.6.

5.1 Task Definition and Dataset Requirements

Before constructing the dataset, I first define the task of lifelog QA and the requirements for

the dataset. First of all, ‘Lifelog Question Answering’ (lifelog QA) can be viewed as

the task of producing a correct answer to a given textual representation of an individual’s

information need concerning a past moment or experience from a lifelogger’s daily life.

There is no restriction on the scope of the questions, which can be compared to the open-

domain QA task. On the other hand, the focus of this chapter is on a smaller scope

of lifelog QA, which is denoted as ‘Contextual Lifelog Question Answering’ within

this dissertation. This distinction is made to distinguish it from the broader open-domain

lifelog QA task, although the term ‘lifelog QA’ might be used interchangeably in existing
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literature. Contextual lifelog QA involves answering questions about a lifelog within a

provided context, wherein the context is a lifelog segment that the question refers to. This

segment can be a single time point or a time interval with all the associated data such

as point-of-view images, location, timestamp, and other sensor data. The questions are

presented in natural language a natural language question that can be answered by the

lifelog segment.

My objectives are aligned with the following requirements for the lifelog QA dataset:

• Real-world data and rich metadata: In order to gain an understanding of what

questions are often asked about lifelog data and inform future research directions,

the dataset should be based on real-world lifelog data. Rich metadata can also allow

more complex questions to be asked and, thus should be included in the dataset.

For these reasons, I decided to extend upon the LSC’20 collection [68] as the basis

for the dataset.

• Natural language: The dataset should contain natural language questions and

answers. In addition, I would like to avoid the classification approach where the

answers are selected from a list of predefined answers. However, as with any new

task, it is important to start with a simple approach and gradually increase the

complexity. Therefore, including yes/no questions and multiple-choice questions in

the dataset is a good starting point.

• Open-source: The dataset should be open-source to encourage more researchers

to participate in and explore this research area further. However, only the question

and answer pairs are published, not the lifelog data itself, though it is possible to

obtain the data through the LSC process.

• Resource-efficient construction: As this research is the first attempt at lifelog

QA, I will start with a small dataset and gradually increase the size. Moreover,

the dataset should be constructed in a resource-efficient manner to create a balance

between comprehensiveness and resource conservation. Thus, a decision was made

to develop an automated system to generate questions and answers from the lifelog

descriptions, which are collected from volunteers.

• No Unanswerable Questions: The dataset should not contain unanswerable ques-

tions, such as questions proposed in the SQuAD 2.0 dataset [169]. Although the

inclusion of unanswerable questions can be useful for the task of open-domain QA,

at this initial stage, it is important to ensure that the questions are answerable to

avoid confusion and to provide a clear benchmark for the task. However, this is a

potential future research direction.
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5.2 Dataset Construction

In this section, a detailed explanation of how to build the first Contextual lifelog QA

dataset is covered, addressing research question 2.1: How to adapt existing lifelog test

collections to evaluate approaches to lifelog question answering?. This process is

part of my contribution to the field of lifelog QA. To save time and effort, automated steps

were applied where possible. The pipeline of the entire three-part process is summarised

in Figure 5.1 and the description of each component is as follows:

Description collection

• 83 days of lifelog data

• Developed an 

annotation interface to 

gather descriptions

Generate QAs

• Rule-based and Neural 

Networks

• Generating distractors 

using Neural Networks

Review

• Delete redundant and 

trivial questions

• Edit duplicate answers

• Manually generate 

"no" questions

1 2 3

Figure 5.1: The process of dataset construction.

5.2.1 Description Collection

The Contextual lifelog QA data for this work was based on the LSC’20 collection [68]. In

total, 26 days of data from the year 2015 and 59 days in 2016 were completed. Each day

was segmented into short events of the date based on the locations and activities of the

lifelogger to encourage the annotators to focus on individual events. From the provided

metadata throughout the day, whenever there was a change in the location (work, home,

etc.) or activity (walking, driving, etc.), a new segment would be created. The process

resulted in a total of 2,412 segments for annotating. More details about the number of

days and images in the dataset can be found in Table 5.1.

Annotators, who were volunteers from undergraduate Computer Science programmes,

were asked to describe the events happening in each segment as seen in Figure 5.2. This

annotation system was developed to present annotators with all images in each segment

along with the metadata such as time, GPS location, and the relative position of the

segment in the whole day. Every annotation was accompanied by its starting and ending

times. The descriptions include actions or activities; objects that the lifelogger interacted

with along with their properties such as size, shape, or colour; the location where the

lifelogger was in, heading towards to or away from; and people (with a general identity

description to preserve privacy). One example could be ‘The lifelogger is reading a book

in a cafe with a person in a black t-shirt.’
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Figure 5.2: Annotation Interface

5.2.2 Generate Question and Answers

The descriptions were converted to a list of questions by an automatic system which

is summarised in Figure 5.3. Entity extraction and syntax transformation (ST) were

done using hand-crafted rules based on POS tags and Semantic Role labels. To generate

question words (who, what, where, etc.), a Seq2Seq neural network was trained on the

questions and answers in CoQA [171] dataset. False answers, aka distractors, are generated

using RACE [57] with the gathered knowledge from ConceptNet [198] facts as context.

Entities extraction
Syntax 

transformation (ST)
Wh-word 

generation
Distractors 
generation

Figure 5.3: The procedure of question-answer generation.

Given the description ‘The lifelogger was reading a book in a cafe’, the generation

process can be as follows:

Entities extraction The lifelogger, reading a book, and in a cafe are examples of enti-

ties in the sentence. I will choose reading a book in this example

to illustrate further. Thus, the correct answer to this generated

question-answer pair would be reading a book;

Syntax Transformation — yes/no By moving was to the beginning of the sentence, we

get ‘Was the lifelogger reading a book in the cafe?’ — ‘Yes’ as a

yes/no question-answer pair;

Syntax Transformation — multiple First, based on the POS tags, an automated process
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decides the entity is a phrasal verb, thus by replacing it with doing

in the sentence and by applying a rule-based syntax transforma-

tion, we get ‘[. . . ] was the lifelogger doing in the cafe?’

Wh-word generation Since questions in this dataset start with a Wh word, a pretrained

UniLMv2 model [17] chooses the appropriate question word for

this question. In this case, a sensible one would be What.

Distractors generation So far, we get the question-answer pair as ‘What was the lifelogger

doing in the cafe?’ — ‘Reading a book’. To make this a multiple-

choice question, I used RACE [57], a distractor generator for read-

ing comprehension questions, and get the other wrong answers as

‘Using his phone’, ‘Drinking coffee’, and ‘Playing football’.

Figure 5.4: Two example question-answer pairs in the dataset. The dataset contains both
yes/no questions and multiple-choice questions.

5.2.3 Review

The generated questions and answers are reviewed by the annotators to correct semantics

and delete duplicates, as well as to ensure the following constraints:

1. There are no duplicate answers for the same question;

2. The ratios between yes and no questions are balanced. As the automatic syntax

transformation could only generate positive yes/no questions, the annotators are

asked to create negative ones manually.
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5.3 Dataset Analysis

This section presents the analysis of the Contextual lifelog QA dataset and instructions

on how to access and use it. Moreover, the limitations of the dataset are discussed, and

potential future research directions are proposed.

Table 5.1: Numbers of questions in each month in LSC’20 lifelog data collection.

Month #Days Days #Images #Questions

Feb, 2015 06 Feb 24–28 8549 941

Mar, 2015 20 Mar 01–20 28563 2745

Aug, 2016 24 Aug 08–31 32026 4871

Sep, 2016 30 Sep 01–30 51195 5595

Oct, 2016 05 Oct 01–05 7375 913

Total 85 — 127708 15065

This new dataset contains 15,065 QA pairs in total. Examples of the QA pairs can

be seen in Figure 5.4. On average, the questions contain 7.66 words. Correct answers

tend to contain 3.57 words compared to 4.34 words in the generated wrong answers.

Table 5.1 presents the breakdown of questions generated. On average, each day contains

approximately 177 questions, generated from 1,500 lifelog images. The most questions

were generated from September 2016, which is the month with the most days and images.

Various question types are included in the dataset, as seen in Figure 5.5. As expected,

the majority of the questions are what questions, followed by where and who questions.

Although time is a crucial aspect of lifelog retrieval, since the context of the question is

provided, when questions are not as common.

Figure 5.5: Numbers of each question type in Contextual lifelog QA dataset.

Figure 5.6 shows the distribution of the first four words in the questions. Interestingly,

almost half the multiple-choice questions are ‘What is the lifelogger doing?’, which is

a vague question that can be answered by many different actions. The second most
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common question is ‘Where is the lifelogger walking [to]?’ and the third one is ‘Where

is the lifelogger?’. This shows the repetitive nature of lifelog data and the challenge of

generating unique and contextually relevant answers. Furthermore, a large number of

answers involve basic actions such as walking, driving a car, talking to people, or using

things such as his laptop, or phone, in his office room.

For training and testing purposes, the dataset is split into two sets: training and testing

set consisting of 10,668 (70.81%) and 4,397(29.19%) question-answer pairs, respectively.

The splitting was done in a manner that ensures there are no overlapping days between

the subsets, or in other words, the lifelog data in the testing set are unseen.

(a) Yes/no questions. (b) Multiple-choice questions.

Figure 5.6: Distribution of the first four words in the questions.

5.3.1 Dataset Limitations

As the first attempt at lifelog QA, this work has some limitations that need to be addressed

in future works. In this section, I discuss the limitations of the dataset, set out guidelines

for future works, and propose potential research directions.

The first limitation is the size of the dataset as we can see in Table 5.1. Although

several questions were generated for each description, the dataset is still relatively small

compared to other mainstream QA datasets in other domains. This is due to the resource

constraints in the description collection process. This has serious implications for the

performance of the models, as the dataset is not large enough to train or evaluate the

models effectively. Therefore, I would like to encourage more researchers to participate in

this research area and contribute to the dataset.

Secondly, although the automatic question generation process was used to increase

the efficiency of the dataset construction, the quality of the generated questions is still
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not as good as the human-generated questions. For example, general questions such as

‘What is the lifelogger doing?’ are generated more often than specific questions such as

‘What is the lifelogger doing in the office?’. Other issues include the lack of diversity in

the generated questions, which are often repetitive and not entirely relevant to the context

of the lifelog data. This is made worse by the fact that the lifelog collection is based on

a single lifelogger. However, I believe that the dataset is still useful for the task of lifelog

QA as it is based on real-world lifelog data and is the only such dataset available that has

been created for this purpose.

Another important factor is the level of inter-annotator agreement. During the review

process, the annotators were asked to review other annotators’ questions and answers to

avoid bias. However, no formal inter-annotator agreement was conducted. Due to the

large number of questions, it was a challenge to address this issue under the time and

resource constraints. This is a potential future research direction.

5.4 Evaluation

In this section, I present benchmark experiments to evaluate different approaches to the

contextual lifelog QA task on the dataset. These experiments aimed to determine the

baseline models for the task. The results of these experiments are used to answer Research

Question 2.2, which is, What existing question answering techniques are most

effective when applied to lifelog data?

As the dataset consists of yes/no questions and multiple-choice questions, accuracy

was used as the evaluation metric, which is the proportion of correct answers to the total

number of questions. This straightforward metric is suitable for the task of Contextual

lifelog QA as the questions are not open-ended and the answers are limited to a small set

of options.

Accuracy is the normalized criteria for assessing the quality of the generated answer

based on the testing question set. It is given by,

Accuracy =
1

Qt

∑

q∈Qt

(

1 −
M
∏

i=1

1[ai ̸= oi]

)

where Qt is the question set, the generated answer words Oq = (o1, o2, · · · , oM), and the

ground-truth words Aq = (a1, a2, · · · , aM). Accuracy = 1 indicates that the generated

text is the same as ground truth and accuracy = 0 indicates that the generated text is

different from the ground truth. The accuracy is calculated for each question and then

averaged over the entire question set.
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5.4.1 Baselines

The baselines for the Contextual lifelog QA task were determined by conducting a pilot

experiment. The aim of this experiment was to determine the targeted performance of the

dataset and to evaluate the application of existing QA models to the task.

Human Gold-standard

To determine the targeted performance (in terms of accuracy) on the dataset, I performed

a user study, asking different groups of 10 volunteer students to complete the question-

answering task. Each volunteer was asked to answer 20 yes/no questions and 20 multiple-

choice questions chosen randomly from the testing set. Each question was accompanied

by the relevant images. To avoid bias, there was no overlap between the annotators that

have worked on the questions and the students participating in this study. The gold

standard accuracy was found to be 84.17% for yes/no questions and 0.8625 for multiple-

choice questions. The reason that the scores are less than 1.0 is because the volunteers

were presented with the relevant section for the question, rather than the lifelog data for

the whole day, so in some cases, they did not fully understand the context of the event

mentioned in the question. Another interesting feedback from the participants, as well as

the annotators, concerns the volume of lifelog data causing issues in understanding. This

is a common problem in lifelog analytics when the decisions regarding lifelog data are often

made by a third party and not the original data-gathering lifelogger, for example, as seen

in the studies carried out by Byrne et al. [25].

Question-only

Several heuristic baselines were implemented, which use only the questions and their can-

didate answers in a similar approach to Castro et al.[26]. Specifically, Longest answer and

Shortest answer choose one out of the four options with the most or the fewest number

of tokens, respectively. Word matching chooses the answer based on the number of tokens

they have in common with the question. Because yes/no answers have no difference either

in length or the number of common words with the questions, these models were omitted

for this experiment.

Moreover, I also experimented with a Sequence-to-sequence (S2S) model based on the

architecture of UniLMv2 [17], the state-of-the-art model in natural language understanding

and generation tasks. S2S was trained on the CoQA [171] question-answer pairs. It encodes

the question with a 2-layer LSTM, then encodes the candidate answers and assigns a score

to each one. The text is tokenised and represented using Glove 300-D embeddings [163].
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Question and Vision

Because of the similarity to Video QA task, I applied a video QA model called TVQA[116],

trained on the TVQA dataset described in the same paper. TVQA is a multimodal model

that uses Faster R-CNN [173] and ResNet101 [73] to extract visual features from the video

frames, and Glove 300-D embeddings [163] to encode the question, the subtitles, and the

answers. Bi-directional LSTMs were used to encode textual and visual sequences, and a

context-matching module was used to incorporate subtitles into the video features. The

model was trained on the TVQA dataset, which consists of 152,545 QA pairs from 21,793

video clips from 6 TV shows. This was the state-of-the-art system in Video QA during

the time of writing.

To evaluate the application to lifelog data, I considered each day to be a one fps video

with each image (along with the attached metadata) as one single frame in that video. I

converted the annotated starting and ending times into the ordinal index of the frames in

the video. Moreover, the subtitles, intended for videos, were replaced with a concatenation

of metadata associated with the frames. While it may seem strange to treat visual lifelog

data as motion video, it is temporal in nature, and many of the participants in the LSC

challenge [68] have modified existing Video Search systems from the VBS challenge [130]

to treat lifelog data as 1fps video.

Results

Both S2S and TVQA models were retrained on the training set of the LLQA dataset and

achieved a small improvement in accuracy compared to the untrained versions, as seen

in Table 5.2. Furthermore, there is no considerable difference between the question-only

models. Although the average length of the correct answers is shorter than the wrong ones,

Shortest answer did not perform well at the lowest accuracy of 17.17% for multiple-choice

questions. Among the models, the retrained TVQA achieved the best performance with

an accuracy of 63.38% and 61.36% for yes/no questions and multiple-choice questions,

respectively. However, humans still significantly outperformed the models. The results

highlighted that the existing approaches are still far from the human gold standard for the

Contextual lifelog QA task, so they should be optimised to improve performance. This

will be a potential and promising topic for future research in lifelog domain in general,

and especially in lifelog QA.

5.4.2 Pretrained Video-Language Models

Based on the literature review conducted in Chapter 2 and the results of the pilot exper-

iment, I benchmarked the LLQA dataset with more recent state-of-the-art models based

on the following criteria:
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Table 5.2: Accuracy (%) of different models in the pilot experiment.

Model Yes/no Multiple-choice

S2S 52.06 31.48

S2S (retrained) 50.66 36.26

TVQA 49.56 40.85

TVQA (retrained) 63.38 61.36

Gold standard 84.17 86.25

• Multimodality: The model should be able to process both visual and textual

inputs. Lifelog data is multimodal in nature, consisting of images and textual meta-

data. Moreover, the questions and answers themselves are presented in natural

language form. Therefore, I specifically focus on models that can integrate and pro-

cess both modalities. Video QA models are a particularly good fit for this task as

they are designed to process both visual and textual inputs.

• Pretraining: Models pretrained on large-scale datasets are preferred as they have

been shown to achieve state-of-the-art performance on various downstream tasks.

The more comprehensive the pretraining dataset is, the better the model can gen-

eralise to other domains. WebVid2.5M and WebVid10M [14] are large-scale multi-

modal datasets that contain millions of video clips with billions of text-video pairs.

Specifically, WebVid10M is the largest video-language dataset to date and has been

used to pretrain many state-of-the-art models.

• Performance on Video QA: The model should have been shown to achieve state-

of-the-art performance on video QA tasks. This is to ensure that the model is capable

of processing the multimedia nature of lifelog data.

• Fine-Tuning flexibility: The model should be flexible enough to be fine-tuned on

the LLQA dataset. This is to ensure that the model can be adapted to the Contexual

lifelog QA task.

• Availibility of pretrained weights: The pretrained weights of the model should

be available to the public and compatible with the chosen deep learning framework

(PyTorch). Accessible pretrained weights allow model integration and experimenta-

tion.

• Support for multiple-choice questions: Since the task of visual QA and video

QA is oftentimes formulated as a classification task, not all models support multiple-

choice questions. Handling a diversity of question types is important for the broader

97



Chapter 5. Contextual Lifelog Question Answering

lifelog QA task as it is open-domain and the questions can be of any type.

• Hardware suitability: Inference and finetuning of the models should be possible

on the available hardware. This is to ensure that the models can be run effectively.

By considering the above criteria, I selected the following models for evaluation: Sin-

gularity [115], FrozenBiLM [229], and VioletV2 [53]. All these models share some com-

mon characteristics: they are pretrained on large-scale vision-language datasets, including

both images and videos; they include a text encoder, a vision encoder, and a cross-modal

module. The text and vision encoders are initialised by using pretrained weights from

popular models, such as BERT [38], RoBERTa [127], and UniLM [45] for language, and

ResNet [73], Swin Transformer [128], and CLIP [167] for vision. The main difference be-

tween the models is in the cross-modal module, which is used to learn the relationship

between the text features and the visual features. Furthermore, pre-training objectives

and training strategies also play an important role in the performance of the models. The

details of each model are as follows:

• Singularity[115] adopts a single-frame training approach with random sampling

and multi-frame inference for an efficient and accurate learning process. The model was

pre-trained on a set of video-text tasks with three pre-training objectives: (1) contrastive

loss on video-caption pairs, (2) masked language modelling (MLM)[38] to predict masked

tokens from video captions, and (3) vision-text matching (VTM) to predict the match-

ing score between video and text. Several datasets were used for pretraining, including

COCO [126], Visual Genome [104], SBU Captions [161], CC3M [192], CC12M [28], and

most importantly WebVid [14].

Singularity showed competitive performance on various downstream video-text tasks

such as text-to-image retrieval, image question answering, text-to-video retrieval, and

video question answering. In this work, I chose the model that was finetuned for the video

QA task with MSRVTT-QA dataset [224], which contains 244K open-ended questions on

10K MSRVTT videos. The model was then further finetuned on the LLQA dataset for

10 epochs using AdamW [135] with an initial learning rate of 1e-4. Two settings were

considered: (1) Singularity (1-frame) where the model was trained on a single frame, and

(2) Singularity-temporal (4-frame) where the model was trained on four randomly sampled

frames. At inference time, the model was evaluated on four uniformly sampled frames.

• FrozenBiLM[229] uses a transformer-based cross-modal encoder to connect the two

modalities. The cross-modal transformer is also initialised with pretrained weights from

an MLM such as BERT [38]. However, lightweight adapter modules are added between

the cross-modal layers to adapt the pretrained weights to the downstream task. As per the

name of the model, all encoders except the adapters are frozen during training. Thus, the

model is able to achieve good performance with a small number of training examples. The

pre-training objective of FrozenBiLM is similar to the MLM objective, where the model
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is trained to predict randomly masked tokens based on the surrounding text tokens and

the video input. The model, pre-trained on WebVid [14], is able to perform zero-shot

video QA through MLM, where the answer is predicted by filling in the mask token in a

prompt sentence. Its prompt approach gives the model the ability to solve various video

QA formats such as yes-no, multiple-choice, open-ended, and fill-in-the-blank questions.

ActivityNet-QA [236] is a large-scale video QA dataset that contains 58,000 QA pairs

on 5,800 complex web videos. To minimise the domain gap between the pretraining and

the LLQA dataset, FrozenBiLM was finetuned on ActivityNet-QA for 20 epochs by the

original authors, and then further finetuned on the LLQA dataset for 10 epochs. In order

to take lifelog metadata into account, a prompt such as ‘The event happened at [time] in

[location]’ is constructed to pass to the model in place of video subtitles.

• VioletV2[53] is a fully end-to-end VIdeO-LanguagE Transformer model, consists

of a Video Swin Transformer (VST)[158] to compute temporal-aware features from video

input. The VST was initialised with weights from a pretrained model on Kinetics-600

dataset [134]. The language encoder and cross-modal transformer are initialised from the

pretrained BERT-base model. Other than the VTM and MLM pretraining objectives

similarly to Singularity, VioletV2 also uses Masked Visual Modelling (MVM) objective

to reconstruct the visual tokens from the video input. The model was pre-trained on

WebVid2.5 [14] dataset, fine-tuned on MSRVTT-QA [224] dataset, and further fine-tuned

on the LLQA dataset for 10 epochs.

Dedicated Models for LLQA

To provide a more comprehensive comparative analysis, I produced and evaluated a set of

dedicated models for the Contextual lifelog QA task. They are necessary due to the unique

demands and challenges posed by lifelog question answering. Existing models may not be

optimised for this specific task, which involves understanding long-term, multimodal data

and answering questions based on it. For example, the sampling rate of lifelog data is

much lower than that of videos, which can be up to 30 frames per second. Meanwhile,

most pretrained models only sample a small number of frames (for example, 4 frames in

Singularity) from the video in order to reduce the computational cost of pretraining. This

may not be suitable for lifelog data as the sampling rate is too high. Furthermore, the

flexibility to experiment with different architectural choices is important for the lifelog QA

task as it is still in its infancy.

Following a design similar to pretrained models above, the dedicated lifelog question

answering models should leverage the power of pretrained embedding models, such as

CLIP [167], to generate embeddings for images, questions, and candidate answers. CLIP

embeddings offer an effective means of encoding both textual and visual information into

a shared embedding space, providing a rich source of knowledge and context.

In this approach, for each LLQA question, a question embedding Q is constructed by
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Figure 5.7: Getting the CLIP embeddings. The weights of the CLIP model are frozen
(shown in blue) during training.

feeding the question into the CLIP text encoder as seen in Figure 5.7. Most of the time, the

[CLS] token embedding is used as the question embedding. However, I also experimented

with using the full sequence of the last hidden states to represent the question in one

of these models (FullCrossQA). This is to ensure that the model can take advantage of

the full question information. For the candidate answers, I concatenate the question with

each of the answer choices to form individual prompts, such as ‘Question: What is the

lifelogger doing? Answer: Reading a book.’. These prompts are also encoded by the CLIP

text encoder to generate answer embeddings A1, A2, A3, A4. At the same time, relevant

images to the LLQA question are extracted and encoded by the CLIP image encoder

to generate image embeddings I1, I2, . . . , IN . The CLIP model is frozen during training,

similar to FrozenBiLM. This is partly due to the limited computing resources available,

and partly to ensure that the model is not overfitted to the LLQA dataset and retains the

powerful knowledge learned from pretraining.

In order to take metadata into account, following FrozenBiLM’s approach of using

subtitle prompt, I construct a textual description from the accompanying metadata of the

relevant images in the form of ‘The event happened at [time] in [location]’. CLIP text

encoders are then used to encode this description into a metadata embedding M .

The primary objective of these models is to calculate a logit score for each candidate

answer. Cross entropy loss is employed to train the models based on the logit scores

and the ground truth labels. To produce the logit scores, cosine similarity is calculated

between the global image embedding G and the answer embeddings A1, A2, A3, A4. The

details of each model on how the global image embedding and the answer embeddings are

generated are as follows:

• MeanQA is a simple baseline model for this experiment in which the image em-

beddings are processed by a mean pooling layer to produce a single global embedding G.
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To produce a metadata-aware global embedding Gm, the metadata embedding M can be

concatenated with the image embeddings before feeding them into the mean pooling layer.

The question embedding is ignored as it already appears in the candidate answer prompts.

The model is shown in Figure 5.8. The metadata embedding can be concatenated with

the image embeddings to produce a metadata-aware global embedding G.

Answer 1

Answer 2

Answer 3

Answer 4

Global Embedding

Logit Score Calculator

Global Embedding

Mean Pooling

Image Embeddings

Frozen Module

Learnable Module

Feature Vector

MeanQA

Inputs

CLIP Text EncoderMetadata (optional)

CLIP Image Encoder

Projection

CLIP Text EncoderPrompted Answer Projection

Metadata
embedding 
(optional)

Figure 5.8: MeanQA model.

• SelfQA enhances MeanQA by employing a transformer layer to learn the temporal

dependencies between the images, as seen in Figure 5.9. Transformers are renowned for

their ability to capture long-term dependencies in sequential data, which is a key feature

of lifelog data. Positional embeddings are added to the embeddings to provide positional

information before feeding them into the transformer layer. Average pooling is then applied

to the output of the transformer layer to produce a global embedding G.

To produce a metadata-aware global embedding Gm, I concatenate the metadata em-

bedding M with the image embeddings before feeding them into the transformer layer.

However, the metadata token is not included in the last average pooling layer since its

information has already been incorporated into the other hidden states due to the self-

attention mechanism. The rest of the model is the same as MeanQA.

• CrossQA is a more complex model that employs a cross-modal transformer layer

to learn the cross-modal interactions between the images and the question. The ques-
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Figure 5.9: SelfQA model.

tion embedding Q is concatenated with the image embeddings before feeding them into

the cross-modal transformer layer. Positional embeddings are added in the same way as

SelfQA. The output of the cross-modal transformer layer is then processed by a mean

pooling layer (excluding the one corresponding to the question embedding) to produce a

global question-guided embedding G. Regarding metadata information, the metadata em-

bedding M can be inserted after the question embedding and before the image embeddings

as seen in Figure 5.10.

Instead of using the answer embedding A1, A2, A3, A4 from the CLIP model, the first

output of the cross-modal transformer layer, as shown in the blue oval in Figure 5.10,

is used for the logit score calculation. This output is a cross-modal embedding that

incorporates visual information to help answer the question.

• FullCrossQA employs fully the last hidden state of the transformer layer in the text

encoder (instead of only the [CLS] token embedding) and concatenates it with the image

embeddings to produce a question-aware visual embedding. In addition to the positional

embeddings, modality embeddings are also integrated to indicate the type of input (text

or image). The answer embeddings are generated by taking the output of the cross-modal

transformer layer that corresponds to the [CLS] token embedding, as shown in Figure 5.11.
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Figure 5.10: CrossQA model.
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Figure 5.11: FullCrossQA model.

5.4.3 Benchmarking Results

Table 5.3 shows the results of the benchmarking experiments. It is clear that utilising large-

scale pretrained text and vision models can provide a significant boost in performance

compared to the baseline models discussed in the previous section. Interestingly, for

pretrained VideoQA models, the overall performance of yes/no questions is higher than
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Table 5.3: Results of more recent SOTA models in video QA on LLQA dataset. All models
were evaluated on both yes/no and multiple-choice questions at the same time (Overall).
To indicate the use of metadata, (+m) is added to the model name. WV stands for
WebVid.

Vision Text Multiple-

Model Encoder Encoder Yes/No choice Overall

Singularity (1-frame)[115] BEiT [16] BERT [38] 73.79 61.66 69.16

Singularity (4-frame) BEiT BERT 73.2 60.76 68.46

FrozenBiLM [229] CLIP [167] DeBERTa [74] 72.87 71.14 72.21

FrozenBiLM (+m) CLIP DeBERTa 73.12 71.32 72.43

VioletV2 [53] VST [158] BERT 64.67 56.83 61.67

MeanQA CLIP CLIP 66.10 68.40 66.98

MeanQA (+m) CLIP CLIP 67.94 66.31 67.32

SelfQA CLIP CLIP 66.29 71.44 68.25

SelfQA (+m) CLIP CLIP 66.65 70.84 68.25

CrossQA CLIP CLIP 68.38 71.02 69.39

CrossQA (+m) CLIP CLIP 67.69 72.69 69.66

FullCrossQA CLIP CLIP 70.44 72.51 71.23

FullCrossQA (+m) CLIP CLIP 69.15 72.51 70.43

that of multiple-choice questions. The opposite is true for the dedicated models. This

is likely due to the specific prompt-based approach used by these models where the two

candidate answers are only different in one word (‘yes’ or ‘no’) while containing the same

context thus providing less information for the model to distinguish between the two.

Singularity (1-frame) achieves the best result for yes/no questions with an accuracy of

73.79%. Meanwhile, FullCrossQA achieves the best result for multiple-choice questions

with an accuracy of 72.93%. This is likely due to the fact that the tailored models are

specifically designed and trained for the LLQA dataset, therefore they are more suitable

for this task. Overall, FrozenBiLM achieves the best performance with an accuracy of

72.43% over both question types. Thus, I believe that FrozenBiLM is the most suitable

model for the task of lifelog QA in its current state.

Regarding incorporating metadata as part of the input, it provides an insignificant im-

provement in performance in most models except for FullCrossQA. This is likely because

most of the questions in the dataset are based on the images, rather than the metadata.

In the specific case of FullCrossQA, feeding the full length of the metadata into the trans-

former layer might have caused the model to overfit to the metadata (since the length of

text sequences in CLIP’s text encoder is set at 77 tokens, which is much longer than the

average number of images in each question). Therefore, the model is not able to learn the
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relationship between the images and the metadata effectively. Despite this, I believe that

the metadata is a crucial part of the lifelog QA task as it provides additional information

about the lifelogger’s actions. Therefore, I would like to encourage more researchers to

explore this area further.

One interesting observation is that the custom-built models have similar performance

to each other, despite their different architectures. This suggests that the transformer

layer is not able to learn the temporal dependencies between the images effectively. In

this experiment, only one layer of transformer as experimenting with a higher number of

layers did not improve the performance while significantly increasing the training time.

This could be due to the fact that the LLQA dataset is relatively small. Furthermore, the

sampling rate of lifelog data could be too low for the transformer layer to detect the flow

of events. For these reasons, I believe this is an important area for future research.

5.5 Discussion

In this section, I discuss the findings of the experiments and provide insights into the

performance of the models. I also highlight the strengths and limitations of each model

and propose potential research directions for future works. This section aims to answer

Research Question 2.2, What existing question answering techniques are most

effective when applied to lifelog data?.

In summary, the pretrained models achieved better accuracy than the baseline models.

The tailored models for LLQA achieved comparable performance to the pretrained models,

suggesting that they are also suitable for the task of Contextual lifelog QA. However, given

the flexibility and robustness of lifelog QA due to their ability to generate answers outside

the candidate answer set. This is a significant advantage over the dedicated models, which

can only choose from the candidate answers. Furthermore, the pretrained models are more

equipped to handle out-of-domain data, which is important as lifelog data is highly diverse

and can be collected in various environments. Therefore, at the moment, FrozenBiLM is

the most suitable model for the task of lifelog QA and is chosen as the baseline model for

the rest of the experiments in this thesis.

The template of using pretrained text and vision models to generate embeddings for the

images, questions, and candidate answers is a promising approach for the lifelog QA task.

It is flexible and can be adapted to different architectures. Furthermore, pretraining on a

large-scale dataset such as WebVid10M [14] can provide a significant boost in performance.

Masked language modelling (MLM) is a suitable pretraining objective for lifelog QA as it

can be used to generate answers outside of the candidate answer set, as well as to generate

free-form answers. Furthermore, the pretrained models can be fine-tuned on the LLQA

dataset to improve their performance. However, this is not possible in this thesis due to

the limited resources in storage and computing power.
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Some video QA models incorporate motion features such as C3D [203], whose equiva-

lent for lifelog data is not available. It is unclear whether the transformer layer is able to

learn the temporal dependencies between the images effectively given the insignificant dif-

ferences between the average pooling approach and the transformer approaches described

in the previous section. Therefore, I believe that the development of a motion feature

extractor for lifelog data is a promising research direction. Moreover, the sampling rate of

lifelog data is much lower than that of videos, which can be up to 30 frames per second.

Meanwhile, most pretrained models only sample a small number of frames (for example,

4 frames in Singularity) from the video in order to reduce the computational cost of pre-

training. It is also because most video QA datasets contain short videos. One possible

approach is to sample video frames with a lower rate similar to lifelog data and pretrain

models based on this. Furthermore, a dedicated structure for other modalities such as

metadata can be developed to improve the prompting mechanism.

5.6 Conclusion

In this chapter, I addressed Research Question 2: How can we evaluate different

approaches to question answering on lifelog datasets?. Specifically, I developed the

first Contextual lifelog QA dataset based on the LSC’20 collection. The dataset consists of

15,065 question-answer pairs, which are generated from the descriptions of the lifelog data.

The findings suggest that a large proportion of the dataset involves the lifelogger’s actions

or interactions with other objects, therefore it is crucial to improve the standard action

recognition mechanism. Through several baseline experiments, I assessed the suitability

of the dataset for the task of lifelog QA. It is noteworthy that there is still a significant

gap between the proposed baselines and human performance on QA accuracy, meaning

that there is a significant research challenge to be addressed. The dataset is published at

https://github.com/allie-tran/LLQA. I also included the annotated description with

timestamps, which can be used to develop models for lifelog captioning tasks. By creating

this dataset, I hope it can encourage more researchers to participate in and explore this

research area further.

The second part of this chapter focused on benchmarking the dataset with more re-

cent state-of-the-art models. It was found that the pretrained models achieved significant

performance improvements compared to the baseline models. Tailored models performed

similarly to pretrained models, indicating their suitability for lifelog QA. However, pre-

trained video-language models are more appropriate for open-domain lifelog QA due to

their flexibility and robustness, which allows them to generate answers beyond the candi-

date answer set. FrozenBiLM is the most suitable model for the task of lifelog QA in its

current state. I believe that the findings of this chapter can provide a solid foundation for

future research in lifelog QA. In the next chapters, I will explore the steps of adapting

106

https://github.com/allie-tran/LLQA


Chapter 5. Contextual Lifelog Question Answering

FrozenBiLM to the lifelog QA task.
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Chapter 6

Event-based Embeddings

This chapter is dedicated to addressing research question 3.1, which is Does the event-based

retrieval support the user to achieve comparative performance to image-based retrieval for

lifelog data?. This step involves the introduction of a novel system named MyEachtra

(/mai-AK-truh/), which is an enhanced version of the Myscéal framework outlined in

Chapter 4. However, what sets MyEachtra apart is its nuanced shift towards a bigger

retrieval unit, namely ‘events’, from the previous ‘images’ format. This tailored approach

acknowledges the temporal nature of lifelog data, an aspect that differentiates the task of

lifelog question answering from visual question answering (VQA) tasks. On top of that, the

adoption of an event-based approach aligns with the format of the LLQA dataset, detailed

in Chapter 5. In this dataset, the provided context for each question is more likely to be

a sequence of images (and their associated metadata) over a period of time, as opposed to

a single image. Another motivation for this approach is that it is more intuitive for users

to think in terms of events rather than individual images, and showing events instead of

images can reduce the amount of repetitive information displayed to the user, as well as

increase the amount of context provided. Based on these observations, I hypothesise that

an event-based approach can be an effective way to improve the performance of lifelog

retrieval systems, create a more intuitive user experience, and better align with the lifelog

QA task.

At first, this notion of an event-based approach may seem related to the key-frame

extraction process, which is a common practice in video summarisation and retrieval.

Video retrieval systems often rely on selecting frames that capture the essential content,

known as key-frames, to represent videos [60, 129, 181, 186]. The event-based approach

in MyEachtra is actually the opposite of such process. Keyframes in video retrieval are

extracted so that we can represent videos through images. In contrast, MyEachtra is

designed to use all available information (in the form of lifelog images and their associated

metadata) to represent events. This approach is more aligned with the nature of the lifelog

data, where the information need is not naturally captured in a single image. In a bigger
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picture, this event-based approach can be extended to video retrieval systems, given that

event-embedding models can capture the temporal nature of videos and provide a more

effective way to represent videos.

In this chapter, the proposed system, MyEachtra (/mai-AK-truh/), builds on the

success of Myscéal (E-Myscéal in particular) and includes modifications which are sum-

marised as follows: (i) an event segmentation process influenced by location metadata;

(ii) an event-based approach that exploits pretrained image-text cross-embedding mod-

els to develop representative embeddings for events; and (iii) a redesigned user interface

showing events and highlighting important images with relevant events. The details of

these modifications are described in Section 6.1. An analysis of the system’s performance

is also presented in Section 6.2. A user study was also conducted to compare the per-

formance of MyEachtra with the previous image-based Myscéal system. The results are

presented in Section 6.3. After that, Section 6.4 outlines the performance of MyEachtra

on the known-item search (KIS) and ad-hoc queries in LSC’23 [71], compared to other

participating systems. Finally, Section 6.6 concludes the chapter.

6.1 MyEachtra

Figure 6.1: MyEachtra’s user interface. Each row represents an event. The most relevant
image is highlighted and placed in the middle of the row.

6.1.1 Event-Based Approach

The main enhancement for MyEachtra is that, instead of comparing each image in the

dataset to the query using cosine distances, it compares events. I will illustrate how to
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turn image embeddings into event embeddings. By using CLIP, we denote the pretrained

encoders as ω(u) = w and θ(t) = ct which encode image u and text t into w, ct ∈ R
d.

Assume an event e is composed of s images such that e = u1, u2, . . . , us. Therefore, the

embeddings of images can be joined into a matrix Z = [ω(e) = z1, z2, . . . , zs], where

Z ∈ R
d×s. The goal is to find an aggregation function Λ that maps Z ∈ R

d×s into an

global event representation ce ∈ R
d. In the context of the LSC, Λ is preferably independent

of the query t. Several options are possible from previous work in video-text models.

Mean Pooling A simple yet effective way of combining a list of embeddings is average

pooling over the temporal dimension. Mean pooling is often used as a baseline to compare

new video models.

Clustering Portillo et al.[164] experimented with clustering the events and selected

the cluster centres as representative embeddings. By doing this, one event can be rep-

resented by multiple embeddings, addressing different interpretations of the same event.

For example, a birthday party can be divided into several smaller activities, such as food

preparation, cake cutting, and socialising, all of which can occur concurrently and cannot

be segmented in a conventional way. The only change I made from their method was that

instead of using K-means clustering method, I employed OPTICS [10], a density-based

clustering method, to dynamically address the vastly varied lengths of events, ranging

from a single image to a maximum of 297 images.

Transformer encoders The most popular technique for temporal modelling in videos

(as well as events in this system) is to use transformer encoders [218] and learn a self-

attention mechanism to emphasise important images. Note that since the outputs of

transformer encoders are still in a sequential format, they are average pooled to create the

global embedding.

Weighted Mean Another way to work with these outputs is passing them through a

Linear Layer (where the output dimension is 1) to produce image weights, indicating how

important an image is in the event, as described in [15].

After getting the event embeddings, the cosine similarity is still used for the retrieval

process. The similarity score is summed with other scores (TF-IDF for location names,

GPS filters, time filters, etc.) within ElasticSearch, similar to the E-Myscéal. These are

referred to as the event scores in the later subsection. In Section 6.2, I will evaluate the

results using the previously mentioned options.

6.1.2 Displaying Events

The user interface is redesigned to show the resulting ranked events (rather than images)

in a way that is easy to understand and highlights relevant information such as location,

time, and highly ranked images within an event. After getting the ranked results from

ElasticSearch, to further reduce repetitive information, if there are no location changes

between some events, they are merged as one row in the user interface.
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To find the best images within each row to display, first, the cosine similarities between

each image and the user’s query are calculated. Each image-based similarity score is

then multiplied with the event score returned by ElasticSearch (as mentioned in the last

section). Finally, the softmax function is applied over the scores to get the image scores

and emphasise the most relevant images and reduce the impact of outliers. This calculation

is limited to the top 100 resulting events and repeats when the user requests more results.

Aggregating event images by using Weighted Mean also produces the image weights

as the output of the model. In that case, these weights are multiplied by the cosine

similarities and event scores before the softmax function is applied.

To help the user quickly identify the most highly scored image within each group, the

image with the highest score is highlighted and placed in the middle of the row. This design

choice was made to draw the user’s attention to the most important visual information

and reduce the need for extra scanning and searching. In addition, up to the next six

most relevant images (three on each side, left and right) are also shown to the user as they

are not only most likely relevant but also provide additional context to improve the user’s

understanding of the event. An example can be seen in Figure 6.1.

In an evaluation or competition setting, the user is asked to submit the most relevant

image(s) to the query. For known-item queries, the user can submit an image by clicking

on a checked button displayed on it. On the other hand, for ad-hoc queries, users can

submit the entire event by holding down the Shift key and clicking on any image’s submit

button.

6.2 Evaluation Using LSC’22 Queries

An automatic evaluation was carried out to assess the performance of our event-based

approach. All 14 known-item queries of the LSC’22 campaign were used in this pilot

study. They are manually split into ‘before’, ‘main’, and ‘after’ hints before requesting

the ranked list from the backend system. From the result, we measure the Hit Rate at

K (H@K), ignoring further actions such as map filtering, temporal browsing, or visual

similarity search. Adjustment for events is also applied. In this case, H@K here means

that one of the target images is included in the first K event (whose a maximum of 7

images are shown in the user interface). This metric could provide a baseline for the

system’s performance and help to compare different approaches.

As mentioned before, in the live LSC event, each query will be gradually revealed

to the participants every 30 seconds. These extra hints are expected to provide more

information about the content of the correct images and make the search easier. As a

result, I evaluated MyEachtra at different steps of the query, from one hint to six hints.

Additionally, I experimented with four different approaches to aggregate image features,

and the results are shown in Figure 6.2. The configurations of each experiment are as
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Figure 6.2: Hit Rate at K at different hints on four approaches.

follows:

• Mean: the mean pooled embedding was used as the global event embedding. No

training was required.

• Cluster: OPTICS clustering was applied for each scene with max_eps=0.5 and

min_samples=2

• Transf : one layer of PyTorch 1 implementation of Transformer Encoders was trained

for 10 epochs using the captions described in LLQA dataset [204] with n_head=8

and d_model=1024. The outputs were mean pooled.

• WTransf : same settings with Transf. The outputs were used to create a weighted

mean embedding.

Surprisingly, the straightforward method of mean pooling achieves the highest results

in most cases. As for clustering, not only the search space has increased, but the hit

rates at K = 1 are also slightly lower. Furthermore, despite having more parameters,

both the weighted mean (WTransf) and averaging the output (Transf) from Transformer

encoders produce generally worse performance, especially at lower values of K and when
1https://pytorch.org/
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Table 6.1: Mean H@K for LSC’22 queries using Mean Pooling. I am most interested in
the modified version of H@3 because (i) once the user find the correct answer, more hints
are not needed and (ii) the user interface can display three events at a time.

Hint H@1 H@3 H@5 H@10 H@20 H@50 Mod H@3

1 0.50 0.57 0.57 0.71 0.71 0.86 0.57

2 0.64 0.79 0.79 0.79 0.86 0.93 0.79

3 0.79 0.86 0.86 0.86 0.86 0.86 0.86

4 0.79 0.79 0.79 0.79 0.79 0.79 0.86

5 0.64 0.64 0.64 0.64 0.64 0.64 0.86

6 0.64 0.64 0.64 0.64 0.64 0.64 0.86

fewer hints are used. This could be explained by the limited size of the training dataset,

which contains only 13,317 captions.

The best-performing setting is recorded in Table 6.1. From the experiments, it was

observed that more hints do not mean better results. In fact, the system performed the

best when 2–3 hints were given, without ‘before’, ‘after’, or misleading hints (for example

wrong year). Thus, a modified H@K metric, denoted as Mod H@K, is also reported in

the table, where H@K(i) = max(H@K(i), H@K(i−1)) to account for the fact that more

searches are not needed after the correct submission has been made in the live LSC event.

It is also important to be aware of the trade-offs when choosing to show events instead

of individual images when it comes to the amount of results that can be effectively be

displayed on the user interface. MyEachtra’s event-based user interface can fit 3 events

at most, thus I am most interested in Mod H@3, when the assumption of no scrolling is

needed is made. Here, the table suggests that the answers for 57% (8 out of 14) of the

queries can be found using only the first hints. With more hints, the user can find the

correct image in 86% of the queries (12 out of 14).

6.3 User Study: Comparison with Myscéal

In order to compare the performance of MyEachtra with the previous image-based Myscéal

system, a user study was conducted with eight participants. The criteria for selecting the

participants were mentioned in Chapter 3. Each participant was asked to complete eight

KIS queries from LSC’22, with four queries from each system. Evaluating the performance

of MyEachtra for ad-hoc queries was not possible because the groundtruth image sets

were not released by the organisers. The participants were asked to complete the queries

in a fixed order, with the system alternating between MyEachtra and Myscéal decided
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by the Latin Square design in Table 6.2. Participant IDs were randomly assigned to

each participant to reduce bias. Following this design, each query is completed by four

participants using MyEachtra and four participants using Myscéal. To eliminate the effect

of using different embedding models, the same CLIP model was used for both systems.

Table 6.2: Latin Square design for the user study to evaluate the event-based MyEachtra
system on LSC’22 KIS queries. A and B represent MyEachtra and Myscéal respectively.
Q1–Q8 represents the eight queries.

Participant ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1 A A A A B B B B

2 A A A B B B B A

3 A A B B B B A A

4 A B B B B A A A

5 B B B B A A A A

6 B B B A A A A B

7 B B A A A A B B

8 B A A A A B B B

Table 6.3: Statistics of each system’s performance in the user study for KIS queries in
LSC’22.

System Score Wrong submissions Solved queries Time taken

(Mean) (Mean) (Sum) (Mean)

MyEachtra 76.58 1.34 30 61.89

Myscéal 68.64 1.03 26 49.31

The results are shown in Figure 6.3 and summarised in Table 6.3. For this user study,

the scoring formula from the LSC campaigns, described in Chapter 3, was reused. It

considers the time of submission and penalises wrong submissions. The score for each

query is shown in the left box-plots. No metrics show a significant difference between the

two systems in this user study. However, this still suggests that MyEachtra is a competitive

system, as it has a higher mean score and a higher number of solved queries. A close look

at the performance of each user can be seen in the right chart, where the mean score of

MyEachtra is higher than Myscéal for four users (User 1, 6, 7, 8) and the reverse is true
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for the other four users (User 2, 3, 4, 5). This is due to the varied difficulty of the queries

and the design of the Latin Square. In other words, users with the opposite settings (for

example User 1 vs 5, User 2 vs 6) tend to have opposite performance trends. It is worth

noting that despite these differences, the overall performance of MyEachtra is still higher

than Myscéal.

(a) Overall score (b) Overall score of each user.

Figure 6.3: Comparison between MyEachtra and E-Myscéal for LSC’22 queries.

6.4 MyEachtra at LSC’23

Although the main focus of this dissertation is QA for lifelog retrieval, I believe a well-

rounded system should be able to solve all KIS, Ad-hoc, and QA tasks. In this section,

KIS and Ad-hoc queries in LSC’23 are used to evaluate the performance of MyEachtra.

Figure 6.4: Overall score of all teams in LSC’23. The baseline system is E-Myscéal.

Six queries were proposed by the organisers of the LSC’22 campaign for each of the

tasks in the expert run. The overall scores of all teams can be seen in Figure 6.4. MyEach-

tra ranked third and second respectively for KIS and Ad-hoc tasks. Compared with the

baseline system E-Myscéal (as depicted as 2022 Baseline in the charts), MyEachtra slightly
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fell short in KIS tasks (p-value nearly 0) but significantly outperformed in Ad-hoc tasks

(p-value=0.01). Summing both KIS and Ad-hoc scores, MyEachtra achieved the second-

highest overall score (191) after lifeExplore [187] (196).

It is worth noting that six out of 14 teams managed to solve all the KIS tasks, five

of the rest solved five tasks, and the remaining three solved four tasks. It is a significant

improvement for all teams compared to LSC’22. This is shown in Figure 6.5. Among the

teams, MyEachtra solved six tasks but submitted one irrelevant image. E-Myscéal also

solved six tasks with two wrong submissions. However, even though MyEachtra was the

third-fastest team to solve the tasks (Figure 6.6), its speed was still slightly slower than

E-Myscéal. Thus, E-Myscéal achieved the highest score in KIS tasks. This is consistent

with the results of the user study, where E-Myscéal was faster than MyEachtra.

With respect to Ad-hoc tasks, MyEachtra’s recall rate was only 0.31, which put it in

fifth place. However, MyEachtra shared the highest precision of 0.84 with lifeExplore [187].

This is shown in Figure 6.7. As a result, MyEachtra achieved the second-highest score

in Ad-hoc tasks, only behind lifeExplore, shared the same score with Memento [5], and

significantly outperformed E-Myscéal (p-value=0.01) due to the higher precision.

Figure 6.5: Number of incorrect and correct submissions of teams in LSC’23.

6.5 Discussion

In this section, I discuss the results of the user study and the LSC’23 evaluation. I also

highlight the limitations of MyEachtra and propose some future work. Overall, the per-

formance of MyEachtra is complementary to that of E-Myscéal, which means it performs

well where E-Myscéal falls short. For example, E-Myscéal is exceptional at solving the

task quickly, but the tradeoff is that it is more likely to submit wrong images. On the
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Figure 6.6: Time to first correct submission all teams in LSC’23 in KIS tasks. Ad-hoc
tasks are not included because the time does not matter in this task.

other hand, MyEachtra is more accurate but slower. However, even though MyEachtra is

slower, it is still very fast compared to other teams in LSC’23. As a result, MyEachtra is

able to achieve the second-highest overall score in LSC’23.

Although E-Myscéal has higher precision in the user study, it is worth noting that the

user study was conducted with a small number of participants, with a small number of

submissions (due to the nature of KIS tasks). Looking at the results of LSC’23, MyEachtra

has both higher precision and recall than E-Myscéal. This can be explained by some of the

design choices of MyEachtra. Firstly, the event-based interface groups images based on

their temporal proximity, which can provide more context so that the user can make more

informed decisions. Moreover, for each event, if the user submits one image, the other

images in the event are also likely submitted and correct. Additionally, the redesigned

user interface avoids the repetition of the same event in different areas of the result list,

which can increase the complexity of the task and lead to more wrong submissions if the

user is distracted. However, the downside of MyEachtra is that the user has to scroll more

as the number of images shown is reduced (as seen in Figure 6.1). This is reflected in the

user study, where MyEachtra took longer to complete each query.

On the note of submission speed, E-Myscéal has the advantage of having a traditional

left-to-right, top-to-bottom layout, which is familiar to most users. On the other hand,
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Figure 6.7: Precision and Recall for Ad-hoc tasks of all teams in LSC’23.

even though MyEachtra has a more intuitive interface, it is still a new design that users

need to get used to. User experience and preference are also important factors that can

affect the performance of the system. In the user study, I found that some participants

preferred the interface of MyEachtra while others preferred E-Myscéal. All in all, despite

not having a clear winner, the results of the user study and LSC’23 evaluation show that

MyEachtra is a promising system that can complement E-Myscéal and achieve a higher

overall score. In the grand scheme of addressing the lifelog question answering task,

MyEachtra’s event-based approach is a step towards a unified pipeline for lifelog retrieval

systems.

As the first system to use an event-based approach, MyEachtra has some limitations.

Firstly, the event segmentation process is still very simple and most likely not optimised.

Adaptive segmentation based on the query is a possible solution to this problem, as ex-

plored in [62]. In this approach, the segmentation is based on the relevance of the images to

the query, and the Euclidean distance between consecutive images based on the relevance

scores. The images are then grouped into events based on the distance between them. This

approach was adapted to Myscéal and MyEachtra by replacing the relevance score with

the visual embedding and the Euclidean distance with cosine distance, thus removing the

dynamic nature of the segmentation. However, more sophisticated segmentation methods

can be explored. For example, the current location-based segmentation can be replaced

a time-based segmentation if the query contains a time hint. Secondly, the event-based

approach is not suitable for all queries. For example, if the query is about a specific ob-
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ject, the user may not be interested in the events themselves. Thirdly, aggregating image

features into event features is still a challenging task. The current approach of averaging

the image features is simple and effective, but it is not optimal as fine-grained information

can be lost and the order of images is not considered. In the future, I plan to explore

more advanced techniques to aggregate image features into event features. Finally, the

current user interface is still not without flaws, as it limits the number of images that can

be shown in an event and requires much more scrolling to see more results. Future works

can explore more effective ways to display events and images.

6.6 Conclusion

Qn this chapter, I presented modifications to Myscéal that shift the focus of lifelog re-

trieval from images to events, aiming to move towards a unified model for lifelog question

answering. Our new system, MyEachtra exploits pretrained image-text models to create

event embeddings. Experiments were conducted, and the results suggested averaging im-

age embeddings to create event embeddings is the most suitable approach for MyEachtra

at this stage, resulting in a reduced search space without sacrificing performance. Addi-

tionally, the user interface was readjusted to show relevant events and focus on contextual

information effectively. To evaluate the performance of MyEachtra, a user study was car-

ried out to compare it with the previous image-based E-Myscéal system. Furthermore,

MyEachtra was also evaluated in LSC’23, where it achieved the second-highest overall

score and had competitive performance compared to E-Myscéal in KIS tasks and signif-

icantly outperformed E-Myscéal in Ad-hoc tasks. In conclusion, the Research Question

3.1, Does the event-based retrieval support the user to achieve comparative performance

to image-based retrieval for lifelog data?, is answered positively. The next chapter of this

dissertation will address the final research question by incorporating question answering

into MyEachtra to create a unified lifelog retrieval system.
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Lifelog Question Answering

System

This chapter is dedicated to addressing Research Question 3.1, which is Can the tailored

question answering approach improve the performance of interactive lifelog retrieval?. This

is the final step of the proposed pipeline for integrating question answering capabilities

into lifelog retrieval systems. The goal of this step is to evaluate the performance of the

proposed pipeline in interactive lifelog retrieval tasks. To achieve this goal, I incorporated

question answering models into the MyEachtra system described in Chapter 6. The re-

sulting system was evaluated in a user study to compare its performance with the baseline

system, E-Myscéal [207], which was the best-performing system in the LSCs for three

years in a row. In this study, inspired by the lifelog question answering tasks in the LSCs,

I also designed a new set of questions, detailed in Section 7.2.1, in order to evaluate the

performance of the systems in answering general lifelog questions, as opposed to the spe-

cific questions with context in the LLQA dataset. Moreover, MyEachtra’s performance

in LSC’23, the first lifelog challenge that includes a text-based QA task, is reported in

Section 7.4. The chapter is then concluded with a discussion of the results and future

works in Section 7.5.

7.1 Lifelog Question Answering Pipeline

Inspired by the open-domain QA pipeline [29], I formally propose a pipeline for the lifelog

QA system as shown in Figure 7.1. Two key components of the pipeline are (1) Event

Retriever and (2) Event Reader. The Event Retriever is in charge of retrieving the lifelog

data that are relevant to the given question. On the other hand, the Event Reader

component is responsible for generating answers based on the retrieved data. This pipeline

is designed to be flexible so that different retrieval and QA methods can be used. As a

result, it can seamlessly integrate with most existing lifelog retrieval systems, serving as
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the initial component in the process.

Figure 7.1: The proposed pipeline for the QA system. The Event Retriever is in charge
of retrieving the lifelog data that are relevant to the given question. On the other hand,
the Event Reader component is responsible for generating answers based on the retrieved
data.

7.1.1 Event Retriever

The first component is a crucial part of the pipeline, as it is responsible for retrieving

the relevant lifelog information that are used to generate the answers. Given a question,

the lifelog retrieval component determines the relevance of events in the lifelog to the

question based on various multimodal features, such as time, location, and image content.

The events are then ranked using a suitable ranking method as seen in a conventional

lifelog retrieval system, namely boolean filtering, text-based retrieval, or embedding-based

retrieval as described in the literature review in Chapter 2.

To adapt conventional image-focused lifelog retrieval systems, a post-processing step

might be useful to aggregate the information from the retrieved data and reduce the

volume of the necessary information to be passed to the question answering component,

which is important for the efficiency of the system. Grouping data that belong to the

same event is a possible approach, which can be done by clustering the retrieved events

based on their time and location information.

Our proposed system is built upon MyEachtra [213], which participated in LSC’23

and achieved the second-best overall performance. Location and time information are

extracted directly from the question and used to filter the events. The remaining part

of the question is encoded by the text encoder from OpenAI CLIP [167] and is used to

rank the events based on similarity scores. The main difference between MyEachtra from

other conventional lifelog retrieval systems is that it expands the unit of retrieval from

point-in-time moments to a longer period of time, or ‘events’, aiming to reduce the search
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space and provide more lifelog context to the user. This also allows the system to support

more complex queries, such as questions about duration and frequency, which are difficult

to answer without any organisation of the lifelog data. Since MyEachtra is event-focus,

the post-processing step described above is not necessary.

The top-ranked events are then passed to the question answering component to gener-

ate the answers. The cut-off point for the number of events to be passed to the question

answering component is a hyperparameter of the system, which can be tuned to achieve

the best performance. It is also important to note that different types of questions may

require different numbers of events to be passed to the question answering component. For

example, questions that require counting the frequency of some events may require more

events to be passed to the question answering component than questions that ask about

the location of some events. In this paper, I use the top 10 events as the default cut-off

point for all types of questions to simplify the process. However, this can be adjusted in

the future to improve the performance of the system.

7.1.2 Event Reader

This QA component of the pipeline is responsible for generating the answers based on

the retrieved events. The answers are generated by combining the information from the

retrieved events and the question. The information from the retrieved events can be

extracted from the metadata, such as time and location, or the image content, such as

OCR text. To address the multimodality of the lifelog data, I propose an ensemble of two

different models to handle both visual and non-visual information. The original MyEachtra

system proposed using video QA models and treating each event as a video clip with a

very low frame rate. This allows the system to leverage both the visual content and

the temporal relationship between the images in the events. However, this model is not

suitable for questions that do not require visual information, such as questions about Time

and Location. To address this issue, I propose to add a text-only QA model to handle

non-visual information. Finally, the two models are combined to generate the suggested

answers which are shown to the user.

FrozenBiLM [229] is employed as the VideoQA model, which builds on a frozen bidi-

rectional language model as well as a frozen visual encoder, CLIP [167]. FrozenBiLM was

pre-trained on a large-scale video-caption pairs dataset WebVid10M [14]. As it builds on

a language model, FrozenBiLM can be used to predict the most probable answer given the

question as a masked prompt, such as ‘[CLS] Question: <Question>? Answer: [MASK]’.

We also experimented on finetuning FrozenBiLM on the LLQA dataset [204], however,

the performance does not improve due to the small size of the dataset. Thus, we use the

model that was fine-tuned on the ActivityNet-QA dataset [236] instead.

The new addition to the model is the use of the text-only QA model to handle non-

visual information. Although FrozenBiLM is capable of handling metadata in the form of
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text, its approach of predicting the most probable answer from a large set of candidates is

ineffective as most answers concerning lifelog metadata are very specific and personal. For

example, the answer to the question ‘Where did I have dinner last Thursday?’ is likely to

be a specific restaurant name that is not included in a pre-defined set of candidate answers.

Therefore, a text-only QA model is used to handle these types of questions. Specifically,

RoBERTA [127], a pretrained language model, is used to generate the answers. Related

information from the metadata is used to generate a contextual prompt in the format

of ‘The event happened at <location> on <date>, starting at <time> and ending at

<time>. Text that can be read from the images includes: <OCR text>’. RoBERTA

is used to predict the answer span from the generated prompt, thus is able to handle

questions that require specific non-visual information, such as location and time.

7.2 User Study Setup

To evaluate the effectiveness of the proposed lifelog QA system, a user study was con-

ducted, comparing the performance of the QA system to a baseline search-only system.

This allows for a direct comparison between the two systems, providing insights into the

effectiveness of the QA system and the potential to improve the lifelog retrieval experience.

7.2.1 Lifelog Questions

In order to compile a comprehensive QA dataset, I utilised the largest two lifelog datasets

in the LSC, namely LSC’21 [69] and LSC’22 [70]. Together, these datasets feature an

extensive repository of lifelogging data collected by one lifelogger. This data encompasses

various types of multimodal information, including over 900,000 point-of-view images,

music listening history, biometrics, and GPS coordinates.

As the time of writing, there are 19 official QA information needs (topics) posed by the

lifelogger who created the datasets for the LSC challenge (8 in LSC’22 and 11 in LSC’23).

In addition to these, we have created a larger collection of topics to include more variety

in the user study, leading to 235 questions in total. These questions were inspired by

the official known-item search (KIS) topics in all LSCs from 2019 to 2023. An example

KIS topic is ‘I was building a computer alone in the early morning on a Friday at a desk

with a blue background. Sometimes I needed to refer to the manual. I remember some

Chinese posters on the desk background. I was in Dublin City University in 2015’. For

each topic, we identified the relevant lifelog data that were provided by the organisers,

including time, location, and lifelog images. We then created questions based on the

information in the topic description and the provided data. For example, one question

for the above topic is ‘How many days did it take for me to build my computer back in

March 2015?’, whose answer, ‘2 days’, can be found by looking at the timestamps of the

ground-truth images. After that, each question in the collection is labelled based on the
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type of information that is asked, such as Location, Time, and Colour. The test collection

focuses on questions that have specific answers, which are either a single word or a short

phrase, with as little ambiguity as possible. This is to ensure that the answers can be

easily evaluated. The questions are also designed to be as diverse as possible, to cover

different types of information that can be retrieved from a lifelog. Thus, we propose 8

different types of questions for this collection as follows:

• Location: these are questions that ask about the name of a country, a city, or a

venue (for example restaurant) where some specific events happened. For example,

‘Where did I go the get my car repaired in 2020?’;

• Object: the answers generally refer to some objects that are involved in the events.

For example, ‘What did I eat for dinner on the 1st of January 2020?’

• Counting: these require counting the number of people or things that appeared in

an event. For example, ‘How many different papers did I read on the plane going to

Germany back in June?’

• Time: these are questions that ask about the date/time of some events. For exam-

ple, ‘When did I last go to the zoo?’ or ‘What time did I go shopping for emergency

supplies in 2020?’

• Frequency: these require counting the number of times some activities happened.

For example, ‘How many times did I have BBQs in my garden in the summer of

2015?’

• OCR: the answers are some texts that appeared in the lifelog images. For example,

‘Which airline did I fly with most often in 2019?’ requires reading the boarding

passes or the airlines’ brochures on the back of the seats.

• Colour: these are questions that ask about the colour of some objects. For example,

‘What colour was the rental car I drove before 2018?’

• Duration: the answers are the duration of some events. For example, ‘How long

did it take me to drive from Dublin to Sligo in 2016?’

The distribution of the questions in the collection is shown in Figure 7.2. Time and Lo-

cation are the most common types of questions, which is to be expected. The least common

type is Frequency, which possibly is because it is difficult to verify the answer in a short

time, which is not suitable for the user study. The full list of questions and their answers is

available at https://docs.google.com/spreadsheets/d/1eTlKfurPg0LOT-PDkf3SpctdkvrlyV_

u1v3IOdgU4wU.
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Figure 7.2: Distribution of the questions in the test collection.

7.2.2 User Study Design

A total of 10 participants, with ages ranging from 20 to 35, were recruited for the user

study. All participants have basic computer skills, with very little familiarity with the

concept of lifelog retrieval and question answering. The participants were randomly allo-

cated to one of the two groups: the baseline group and the QA group. The baseline group

was asked to use the baseline system first, then the QA system. The QA group was asked

to use the QA system first, then the baseline system. This is to ensure that the order of

the systems does not affect the results.

Each participant had a training period of 10–15 minutes to get familiar with the

concept of lifelogging and the systems before the test. For each system, the participants

were asked to use the system to answer eight randomly selected questions from the test

collection, one for each type of question. Three minutes were given for each question.

If the participants were sure about the answer, they could submit it and the judging

system (controlled by a real-time human judge) would inform them whether the answer

is correct or not. If the answer is incorrect, the participants were asked to try again. If

they could not find the answer within 3 minutes, they were asked to move on to the next

question. The participants were also asked to fill in a questionnaire after using each system.

The questionnaire is based on the User Experience Questionnaire (UEQ) [109], which is a

standard questionnaire for evaluating the usability of a system. The questionnaire consists

of 8 questions, each of which is rated on a scale of -3 to 3 (with 0 as the neutral score).

The participants were also asked to provide feedback on the system, which will be used

to improve the system in the future. The questionnaire and the QA tasks are shown in

Appendix A.

Taken from the LSC, the performance of the systems is measured based on (1) the
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accuracy of the answers, (2) the number of wrong submissions, and (3) the time taken to

answer the questions. For each task, if it is solved (the correct answer was submitted),

the score is calculated as follows:

score = 100 − 50 ×
time taken

180
− 10 × number of wrong submissions (7.1)

If the task is not solved, the score is 0.

7.2.3 Baseline System

The baseline system used in this user study is the state-of-the-art lifelog retrieval system

that was described in Chapter 4, which was developed for the LSC prior to 2023, E-

Myscéal [207]. This is also the baseline system for the LSC’23 [71].

As a reminder from Chapter 4, E-Myscéal is a lifelog retrieval system that is designed

to accommodate novice users by accepting full sentences as search queries. A query pars-

ing component is used to extract the relevant information from the query, such as location,

time, and visual information. The extracted information is then used to compose Elas-

ticSearch queries to retrieve the relevant images. The retrieved images are then ranked

based on their relevance to the query. The mechanism to retrieve the textual data field is

BM25 [175], while the mechanism to retrieve the visual data field is the cosine similarity

between the query embedding and the image features. The query and image features are

extracted using the OpenAI’s CLIP model [167].

The user can also browse the lifelog images using a popover timeline, which is shown

when the user clicks on any image shown in the result page. The popover timeline shows

the images taken before and after the selected image, which allows the user to browse

the images in chronological order. The user can also click on any image in the popover

timeline to view the image in full size. More features to support the user in the lifelog

retrieval task are also provided, such as the ability to search for visually similar images,

filter the results by map location, and most importantly, search for temporally related

queries.

7.2.4 QA system

We use the proposed pipeline to integrate QA capabilities into the E-Myscéal system by

(1) shifting the unit of retrieval to events, which is the main difference between MyEachtra

and E-Myscéal [209] in the retrieval stage; and (2) adding a QA component to generate

the answers based on the retrieved events. Refer to Section 7.1 for more details about the

pipeline.

In MyEachtra, the question is used directly as a search query to find the most relevant

events. The top-10 events are passed through FrozenBiLM and RoBERTA to get potential

answers, which are shown on the left panel of the user interface in Figure 7.3. Nonetheless,
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users can choose to run the model again for any event they find interesting by clicking on

the QA button underneath each row. Once an answer is found, users have the option to

swiftly copy it by clicking on it and then pasting it into the submission input field located

in the bottom left corner. Alternatively, if they can deduce the answer from the displayed

events, they can manually type it into the box and submit it.

Figure 7.3: MyEachtra’s user interface. For non-QA tasks, the left panel is hidden.

7.3 User Study Results

7.3.1 Overall Score

The overall score of each system is calculated as the average score of all the tasks. The

results are shown in Figure 7.4. The QA system has a higher average overall score then the

baseline system. The average score of the QA system is 69.78, while that of the baseline

system is 64.96. However, the average wrong submissions and time taken by both systems

are not significantly different. The average wrong submissions of the QA system is 0.42,

while that of the baseline system is 0.48. The average time taken by the QA system is

77.17 seconds, while that of the baseline system is 74.78 seconds. The performance of each

user is also shown in Figure 7.5. It is not clear that the QA system is better than the

baseline system, as the performance of the two systems is not significantly different.

To understand the performance of the systems under each type of question, the scores

of the questions of each type are calculated. The results are shown in Figure 7.6. The QA

system has higher average scores than the baseline system in terms of the overall score

for Location, Object, and Counting questions, and lower average scores for Frequency
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Figure 7.4: (A) Overall score and (B) Time taken to answer the questions of the two
systems.

Figure 7.5: Overall score of each user.

questions. The average scores of the two systems are not significantly different for Time,

OCR, Colour, and Duration questions.

7.3.2 Importance of Experience

The results show that the QA system has better scores than the baseline system in terms

of the overall score. However, the performance of the QA system is not much better than

the baseline system. This is possibly because the participants have very little experience

with lifelogging and question answering. To have a better understanding of how the users

perform with more experience, the average scores of the first system and the second system

used by each user are examined. The results are shown in Table 7.1. The average score

of the first system used by each user is 66.67, while that of the second system used by

each user is 68.06. This is expected as the users are more familiar with the tasks after

using the first system. However, the average score of the first system used by the QA

group (71.55) is higher than that of the baseline group (61.80). This suggests that the QA
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Figure 7.6: Average scores across different types of questions.

system could be easier to use than the baseline system. Considering the second system

only, the difference between the two systems is not clear (68.12 for the baseline system

and 68.00 for the QA system). This possibly is because the users are already familiar with

the tasks.

Table 7.1: Average score of the first system and the second system used by each user.

System Baseline QA Overall

First system only 61.80 71.55 66.67

Second system only 68.12 68.00 68.06

7.3.3 User Experience Questionnaire

Figure 7.7 displays the results of the User Experience Questionnaire. The questionnaire

is designed to assess both pragmatic and hedonic aspects of system usability. The initial

four questions measure the pragmatic quality of the system, focusing on its usefulness

and efficiency. In contrast, the last four questions examine the hedonic quality, evaluating

the system’s overall pleasantness and user engagement. As shown in Figure 7.7, the QA

system outperforms the baseline system in all aspects in the questionnaire, with the larger

difference observed in the pragmatic category, where the QA system shows an average

advantage of 1.3 points compared to the baseline (1.7 vs. 0.4). This pronounced difference

130



Chapter 7. Lifelog Question Answering System

indicates that the QA system is more useful and efficient than the baseline system in the

context of lifelog question answering tasks. The 0.83 points of difference in the hedonic

category (1.5 vs. 0.67) also suggests that the QA system is more engaging and fun to

use than the baseline system, which may be attributed to the QA system’s intuitive and

user-friendly nature, as discussed in the previous section.

Figure 7.7: Results of the User Experience Questionnaire. MyEachtra significantly out-
performs the baseline system in all aspects (p-value is nearly 0).

7.4 MyEachtra In LSC’23

In this section, we further analyse MyEachtra’s performance in six QA tasks in the ex-

pert run of LSC’23 [71]. The results, as shown in Figure 7.8, underscore MyEachtra’s

achievements, securing the highest score in QA tasks, followed by MemoriEase [216] and

Memento [5]. Moreover, the baseline system, E-Myscéal [207], achieved the fifth spot in

the ranking, which is expected given its competitive performance in the LSC but its lack of

support for QA tasks. Therefore, E-Myscéal only achieved 71% of the score of MyEachtra,

highlighting the significance of QA capabilities.

Taking a closer look at the precision and recall metrics in Figure 7.9, MyEachtra

submitted five correct answers and one incorrect submission, resulting in one unsolved

QA task. This gave MyEachtra a precision and recall of 0.83 each, marking the second-

highest precision and recall among all participating teams. However, the overall score of

MyEachtra was still the highest, as it was the fastest team to submit the correct answers.

Comparatively, MemoriEase, the second-ranking team, also managed to submit five correct

answers but with four incorrect submissions, resulting in a lower precision score of 0.56.

Meanwhile, the third team in the ranking, Memento, mirrored MyEachtra’s performance

in this metric category but was compromised in terms of speed, as discussed in the next

paragraph and illustrated in Figure 7.10. Returning to the precision and recall metrics,
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Figure 7.8: Overall score of all teams in LSC’23 for QA tasks. MyEachtra achieved the
highest score. The baseline system, E-Myscéal, achieved the fifth spot in the ranking with
71% of the score of MyEachtra (p-value = 0.0007 for the average score per question).

E-lifeseeker [152] was the only team that solved all six tasks (highest recall). However, its

three incorrect answers resulted in a lower overall score (fourth place) than MyEachtra.

Similarly, Lifelens [83] achieved a perfect precision score, yet only managed to solve four

tasks, affecting its overall performance. Finally, despite solving four tasks, E-Myscéal

exhibited the lowest precision score of 0.36 with seven incorrect answers, positioning it

mid-tier in the overall ranking.

Figure 7.9: Accuracy of submissions of all teams in LSC’23.

Evaluating the time taken to submit the first correct answer, MyEachtra significantly

outperformed all other teams (p-value = 0.04), as illustrated in Figure 7.10. The average

time taken to solve the task for MyEachtra was 59.39 seconds, with a median of 50.67

seconds. This put MyEachtra 1.5 times faster than the runner-up team, Memento, whose

average time stood at 91.14 seconds. Notably, that of the E-Myscéal was commendable at

89.85 seconds, which is still considered fast compared to other teams. This indicates that

MyEachtra is a fast and accurate system for lifelog QA tasks.
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Figure 7.10: Time to first correct submission all teams in LSC’23 in QA tasks.

7.5 Discussion

In this section, I discuss the outcomes of the user study and the LSC’23 evaluation for

the QA system, MyEachtra, in various aspects and highlight the insights gained from the

results. Additionally, based on the lessons learned, I propose some future work to improve

the system.

First of all, the user study revealed that the QA system had a higher overall score than

the baseline system. However, MyEachtra’s performance did not show a significant advan-

tage over the baseline system. It is worth noting that the study participants had limited

experience with lifelogging and question answering. With more experience, MyEachtra’s

performance could improve, as indicated by the expert run of LSC’23 just discussed in

Section 7.4. MyEachtra stood out as the fastest system in LSC’23, a crucial aspect of this

benchmarking challenge. In addition, MyEachtra achieved the second-highest precision

and recall in LSC’23. This suggests that MyEachtra is both fast and accurate for lifelog

QA tasks.

The main difference between MyEachtra and the baseline system lies in MyEachtra’s

event-based approach. This approach was inspired by the observation that information

needs are more likely to be addressed by an event rather than a single image, as many lifelog

search queries have multiple images as the ground truth answer. Consequently, I believe
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that an event-centric approach is better suited for QA tasks, a belief supported by the

results of the user study and LSC’23. The event-based approach also enables MyEachtra

to handle more complex queries, such as those related to duration and frequency, which are

challenging to answer without any organisation of the lifelog data. However, the system’s

performance could be further enhanced by implementing a dynamic event segmentation

instead of the fixed event segmentation employed in MyEachtra. This is a potential area

for future work for MyEachtra.

During the development of the questions for the user study, I encountered the challenge

of designing unambiguous questions that could be easily evaluated. This difficulty arises

from the immense diversity and complexity of lifelog data. Moreover, some questions have

multiple plausible answers, making evaluation a complex task. For instance, a question

like ‘What did I eat for breakfast on the 1st of January 2020?’ can have acceptable answers

like ‘eggs’ or ‘bacon’ if the lifelogger had a full Irish breakfast. A human judge is required

to evaluate the answers, which is not scalable. Therefore, there is a need for a more

comprehensive evaluation framework that can automatically assess responses, accounting

for multiple potential answers, in future research.

The research question addressed in this chapter is Can the tailored question answer-

ing approach improve the performance of interactive lifelog retrieval?. Compared to the

baseline system, E-Myscéal MyEachtra achieved a higher overall score in the user study

and the LSC’23 evaluation in the QA tasks, thus demonstrating the effectiveness of the

proposed pipeline for integrating question answering capabilities into lifelog retrieval sys-

tems. Therefore, I conclude that the proposed pipeline is a viable solution to improve the

performance of lifelog retrieval systems.

7.6 Conclusion

This chapter presented a novel pipeline for integrating question answering capabilities into

lifelog retrieval systems. Our approach enables users to ask questions about their lifelogs

and receive text-based answers, thereby enhancing the effectiveness and user satisfaction

in lifelog retrieval tasks. The results of the user study demonstrated the superiority of

our proposed system over the baseline approach, with significant improvements in both

effectiveness and user satisfaction metrics. Furthermore, the results suggested that our

proposed system is particularly well-suited for new users, offering a more intuitive and

efficient lifelog retrieval experience. Compared to the other systems, our proposed system

achieved the highest score in the LSC’23 expert run for question answering tasks, with

the second-highest precision and recall. This indicates that our proposed system is a

fast and accurate solution for lifelog question answering tasks. In the future, I plan to

explore the use of dynamic event segmentation to improve the performance of the system

and adapt to the different types of questions. I also plan to develop a more complete
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evaluation framework to evaluate the answers automatically, which needs to take into

account multiple possible answers.
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Chapter 8

Conclusion

This chapter addresses the answers to the research questions and how the hypothesis is

supported by the proposed approaches. The contributions of this thesis are also sum-

marised in this chapter. Lastly, I will discuss the limitations of the proposed approaches

and suggest some possible directions for future works.

8.1 Hypothesis and Research Questions

The focus of this thesis is to explore approaches to question answering from lifelog data

as well as to incorporate these approaches into interactive lifelog retrieval systems. In

this section, I will revisit the hypothesis and research questions, and examine them with

respect to the proposed solutions and the experimental results.

HypothesisQuestion Answering techniques can improve upon state-of-the-art interac-

tive retrieval systems for lifelog data by improving the result’s quality and supporting quick

access to relevant information.

Several related research questions were developed to guide the research process, as

follows:

Research Question 1 (RQ1). How to design a state-of-the-art interactive lifelog

retrieval system that assists a novice user to quickly locate items of interest

from a conventional multimodal lifelog?

This research question focuses on the development of an interactive lifelog retrieval system

with novice users in mind by incorporating a simple, straightforward interface and intu-

itive interaction mechanisms while maintaining the system’s performance. To answer this

question, I proposed a novel interactive lifelog retrieval system, Myscéal and evaluated

its performance against other lifelog systems in benchmarking programmes as well as user

studies. The results showed that Myscéal outperformed other systems in terms of speed

and accuracy while maintaining a simple and intuitive interface. Notably, in the three
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annual iterations of the Lifelog Search Challenge (LSC)[68–70], Myscéal was the winning

system in overall performance. Findings from the user studies further suggest that the

system can support novice users to effectively interact with their lifelog data. This implies

that the incorporation of user-friendly features and intuitive interaction mechanisms en-

hances result quality and user engagement, aligning with the hypothesis. Thus, E-Myscéal,

which is the latest iteration of the Myscéal system, was used as the baseline system for

the subsequent research questions.

Research Question 2 (RQ2). How can we evaluate different approaches to

question answering on lifelog datasets?

The research question requires a two-step approach to answer. Therefore, I proposed two

sub-questions:

RQ2.1. How to adapt existing lifelog test collections to evaluate approaches

to lifelog question answering? This research question focuses on the development

of a lifelog QA dataset, which is necessary to evaluate the effectiveness of various QA

approaches. To answer this question, I extended the existing Lifelog Search Challenge

(LSC)[68] lifelog collection by adding over 15,000 multiple-choice and yes-no questions.

The resulting QA dataset, LLQA[204], is the first lifelog QA dataset that is publicly

available and also comes with a set of valuable lifelog captions.

RQ2.2. What existing question answering techniques are most effective

when applied to lifelog data? A pilot study was conducted to establish a human

gold standard accuracy for the dataset, along with state-of-the-art text QA and video

QA models at that time. A more comprehensive benchmarking study was conducted to

evaluate the performance of multiple QA techniques in the relevant domains, especially

video QA due to the similarities between lifelog and video data. With a focus on pretrained

vision-language models, the benchmarking study evaluated the performance of pretrained

multimodal models fine-tuned on the LLQA dataset, as well as hybrid, custom-built models

that build on top of frozen text-image pretrained models. The results show that fine-

tuning pretrained models, specifically the FrozenBiLM[229] model, on the LLQA dataset,

achieved the best performance while retaining their flexibility and robustness.

Research Question 2 contributes to the advancement of lifelog question answering

capabilities by identifying the most suitable QA techniques for lifelog in order to improve

the overall performance of lifelog retrieval systems.
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Research Question 3 (RQ3). Can incorporating tailored approaches to lifelog

question answering result in improved novice user performance on interactive

lifelog retrieval tasks, when compared to existing state-of-the-art interactive

lifelog retrieval systems?

This research question focuses on the incorporation of tailored question answering ap-

proaches into interactive lifelog retrieval tasks by evaluating the system’s performance

and comparing it with the existing state-of-the-art lifelog retrieval system (Myscéal). To

answer this question, I proposed two sub-questions:

RQ3.1. Does the event-based retrieval support the user to achieve com-

parative performance to image-based retrieval for lifelog data? To adapt lifelog

QA techniques to lifelog retrieval systems, it is necessary for the search results to be in

a similar format to the LLQA dataset. In other words, instead of retrieving individual

images, the results need to be in the form of ‘events’, which are continuous sequences

of lifelog moments (images and their associated metadata). To address this question, I

evaluated the performance of the event-based retrieval approach by comparing it with the

image-based retrieval approach. The results showed that the event-based retrieval ap-

proach can achieve comparative performance to the image-based retrieval approach, while

also providing more information to the user. This indicates that the event-based retrieval

approach can be used to support lifelog QA tasks.

RQ3.2. Can the tailored question answering approach improve the perfor-

mance of interactive lifelog retrieval? A pipeline of lifelog question answering was

proposed to incorporate lifelog QA techniques into existing lifelog retrieval systems. To

demonstrate the effectiveness of the proposed pipeline, a lifelog question answering model

was integrated into Myscéal with modifications to develop a dedicated lifelog question

answering system called MyEachtra. I reported the results of a user study that evalu-

ated the performance of the tailored question answering approach in interactive lifelog

question answering tasks. The results imply that the tailored approach can improve the

performance of interactive lifelog retrieval tasks and provide more user satisfaction. Fur-

thermore, MyEachtra’s performance in the LSC’23[71] can be considered state-of-the-art,

which further confirms the effectiveness of the proposed pipeline.

Research Question 3 is particularly relevant to the hypothesis as it demonstrates the

effectiveness of incorporating lifelog QA techniques into lifelog retrieval systems. The

findings of the user studies as well as the benchmarking programme show that the proposed

pipeline can improve the performance of interactive lifelog retrieval tasks and extend the

capabilities of lifelog retrieval systems to address question answering tasks. Therefore, the

findings of this research work support the hypothesis.
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8.2 Research Contributions

The main contributions of this thesis can be summarised as follows. The first contri-

bution involves the development of a state-of-the-art interactive lifelog retrieval system,

Myscéal which has undergone progressive enhancements to adapt to the evolving land-

scape of computer vision techniques. Chapter 4 outlined the details of the developed

systems and highlights the lessons learned from each research cycle. In the process, a

novel ranking algorithm was proposed to support the retrieval of lifelog data, aTF-IDF,

which is modified from the traditional TF-IDF algorithm to support images. Moreover,

the idea of supporting temporal queries was introduced with Myscéal which is a novel

feature that had not been explored in previous lifelog retrieval systems. The results of

the user studies and benchmarking programmes showed that the approaches proposed in

Myscéal can improve the performance of lifelog retrieval systems. Second, the development

of the LLQA dataset, which is the first lifelog question answering dataset, was a significant

contribution to the field of lifelog question answering. Chapter 5 described the creation

of the LLQA dataset and the comprehensive evaluation of multiple QA techniques on this

novel dataset. Another contribution is the analysis of the performance of multiple QA

techniques on the LLQA dataset in the benchmarking study. It indicated that fine-tuning

pretrained video-language models is a viable approach to lifelog question answering tasks.

Third, the first event-based lifelog retrieval system, MyEachtra, was developed to shift the

focus from individual images to continuous sequences of lifelog moments (events). Chap-

ter 6 delved into the development of the MyEachtra system and provided a comparison

between the event-based and image-based retrieval approaches. The results showed that

the event-based retrieval approach can achieve comparative performance to the image-

based retrieval approach, while also providing more information to the user and being

more suitable for lifelog QA tasks. Lastly, a novel pipeline was introduced to incorporate

lifelog QA techniques into lifelog retrieval systems. Chapter 7 presented the pipeline and

demonstrated its effectiveness by incorporating lifelog question answering techniques into

the MyEachtra system. The results underscore the potential of the pipeline to improve

the performance of interactive lifelog QA tasks and provide higher user satisfaction.

8.3 Limitations

Although the proposed approaches have shown promising results, there are still some

limitations that were encountered during the research process. In this section, I will

discuss some limitations of the proposed approaches and suggest some possible solutions

as follows:

• Strong focus on images, not much on other modalities. Despite our best

efforts to incorporate other modalities to encompass the multimodal nature of lifelog data,
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the proposed approaches in this thesis focus mainly on lifelog images with some metadata

(for example time and location). This is true not only for the lifelog retrieval systems

such as Myscéal and MyEachtra, but also for the lifelog QA dataset, LLQA. Most of

the questions in the LLQA dataset are based on visual information as the annotation

interface was not efficient to support other modalities. A dedicated effort to design a

more comprehensive annotation interface is required to support the annotation of lifelog

question answering datasets to increase the diversity of questions. Therefore, LLQA may

not be representative of the questions that are asked by real users and could introduce

bias to the evaluation of lifelog QA techniques.

• Question generation is not perfect. The questions in the LLQA dataset were

automatically generated from lifelog captions using a question generation model. Although

the automatic question generation process intended to reduce the annotation effort, I

found that the review process was time-consuming and required a lot of effort to ensure

the quality of the questions as well as the answer candidates. In some cases, the question

can be too obvious to answer. In other cases, the candidate answers are too similar to

each other, which makes it difficult to choose the correct one. Therefore, the quality of

the questions in the LLQA dataset may not be as good as the questions that are manually

generated by humans.

• Small dataset size. The LLQA dataset is relatively small compared to other

datasets in the field of question answering, which made it difficult to train complex models

and overfitting was a common problem during the training process. Increasing the size of

the LLQA dataset allows the models to learn more complex patterns and be more robust

to unseen data. This could be done by using crowdsourcing to annotate the dataset, which

is a more cost-effective approach than manual annotation.

• Small number of users. The user studies in this thesis were conducted with a

relatively small number of users because it is difficult to find users who are willing to par-

ticipate. This makes it difficult to generalise the results to a wider population. Therefore,

the performance of the proposed approaches can be further improved by conducting user

studies with a larger number of users. In addition, the user studies are conducted in a

controlled environment, which makes it difficult to simulate real-world scenarios where we

can identify the users’ information needs and learn more about the users’ interaction with

the system.

• Limited resources While most state-of-the-art video QA models rely heavily on

pretraining on large-scale datasets such as WebVid[14], the dedicated models for LLQA

in this thesis were trained directly on the LLQA dataset due to the limited resources

(storage and computing power). Therefore, the designs of the custom-built models are

relatively simple, which limits their performance. This is confirmed by the results of the

benchmarking study, which showed that finetuning pretrained video-language models on

the LLQA dataset achieved the best performance.
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8.4 Future Works

As the task of lifelog question answering is very new, there are a considerable number

of aspects that can be further explored to improve the performance of lifelog question

answering systems. A few suggestions for future works are as follows:

• Dynamic event segmentation. This is a challenging task, and there are still

many improvements that can be made to the existing approaches. In this thesis, I

used a simple approach to dynamic event segmentation, which exploits the visual

similarity between images as well as location and time information. However, the

definition of an event is not always clear and oftentimes depends on the query and

user’s perspective. For instance, considering the query ‘What is my favourite country

for holidays?’, an event can be as long as several days or even weeks. However, for

the query ‘What restaurant did I go to last night?’, an event can be as short as a

few hours. Therefore, a user-adjustable dynamic event segmentation approach has

great potential to support various types of queries and improve the performance of

lifelog retrieval systems.

• Investigating other modalities. As previously discussed, the methods presented

in this thesis primarily focus on images, with limited consideration given to other

data modalities like biometrics. To address this limitation, it is worthwhile to con-

duct benchmarking studies focusing on biometrics data to identify the type of sce-

narios that require biometrics information and to explore methods for integrating

biometric data into lifelog systems. Another direction is to explore the design aspects

of a user interface that can effectively visualise, and allow the user to interact with,

biometrics data. This allows the user to explore the relationship between biometrics

data and other modalities such as images and locations. Such an interface can be

used to support various lifelog tasks, including but not limited to annotation, query

formulation (for benchmarking purposes), retrieval, and question answering.

• Improving the lifelog QA pipeline. The flexible pipeline can be further im-

proved by incorporating additional elements such as question classification and an-

swer postprocessing modules. The first module can identify the question type, which

in turn improves the performance of the Event Retriever component in the lifelog

QA pipeline. For example, the question classification module can determine the

data modality required to answer the question, for example location, time, visual

information, or a combination of these aspects. It can also guide the dynamic event

segmentation approach mentioned earlier. The second module, answer postprocess-

ing, takes the answers generated by the lifelog QA model and processes them to

improve the quality of the answers. This includes tasks like filtering out answers
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that are not relevant to the question type and re-ranking the answers using a sepa-

rate model.

• End-to-End Lifelog QA Model. The pipeline for incorporating lifelog QA tech-

niques into lifelog retrieval systems can be extended to support end-to-end lifelog

QA models. In other words, instead of using separate models for the Event Retriever

and Event Reader, the model can be trained in an end-to-end fashion, allowing the

Event Retriever to learn based on the Event Reader’s output. While inspiration

can be drawn from the field of open-domain question answering, it remains unclear

whether the end-to-end approach can outperform the pipeline approach, which offers

greater flexibility for adapting state-of-the-art models to individual components.

• Large Language Models (LLMs). The integration of LLMs into the domain

of lifelog question answering represents a promising direction for future research.

As of the time of writing, LLMs such as OpenAI’s GPT-3.5 [162] and GPT-4 [2],

Facebook’s LLaMA [202], and Google’s Gemini[201] have demonstrated impressive

performance in complex decision-making and analytical tasks. The ability to extend

these models to lifelog question answering tasks is an exciting work that can be the

next step in the development of lifelog retrieval systems! Retrieval Augmented Gen-

eration (RAG) [121] is a promising approach that can be used to integrate LLMs into

lifelog retrieval systems. RAG is a method that combines the strengths of retrieval-

based and generation-based models, resembling the pipeline approach proposed in

this thesis. RAG has been expanded into multimodal settings [32], which has enor-

mous potential to support lifelog question answering tasks. This is an exciting di-

rection for future research that can significantly improve the model’s understanding

of the user’s information needs and, in turn, improve the quality of the answers.
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Appendix A

List of Lifelog Queries Used in

Lifelog Experiments

User Study in Chapter 7

In this appendix, I present the list of queries used in the user study in Chapter 7. The

queries were chosen randomly from the test collection described in the same chapter. Each

user was asked to answer 16 questions, 8 from each system.

Questions for User 1

System Type Question Answer

E-Myscéal Location Where was I headed when I took the taxi from the maglev

station?

A hotel

E-Myscéal Object How did I travel to the Brazen Head where I met my

friends?

Taxi

E-Myscéal Counting How many salt lamps did I purchase along with a wicker

basket in May 2018?

2

E-Myscéal Time It was in May 2018. What was the date that I attended a

breakfast meeting with other people in a hotel in Dublin?

May 10, 2018

E-Myscéal Frequency How often did I have breakfast in a hotel in May 2018? 8 times

E-Myscéal OCR What is the maximum number of KGs of clothes that my

washing machine at home can take?

10

E-Myscéal Color What color was the bottom of the wicker picnic basket

that I bought from Carraig Donn?

White
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E-Myscéal Duration How long did it take me to get from home to Clayton

Hotel for the breakfast meeting in May 2018?

Half an hour

MyEachtra Time In what year did I see the four red alien figures on a

painting on a red wall?

2015

MyEachtra Frequency How many different shops did I go to on the afternoon of

15/03/2015?

3

MyEachtra Color What color was the taxi I initially took from the railway

station in China on the 20th of March?

Red

MyEachtra OCR What is my car’s registration plate number? 06-D-58377

MyEachtra Location What is the name of the American restaurant in Thailand

where I had steak?

The Duke’s

MyEachtra Object What kind of restaurant was the red building outside of

the railway station in China?

Dumpling

MyEachtra Counting How many grandfather clocks did I see in the antiques

emporium in Sheffield?

3

MyEachtra Duration How many minutes did I spend praying in the tunnel

with the small golden Buddha?

About 2 min-

utes

Questions for User 2

System Type Question Answer

E-Myscéal Duration How long did it take me to drive to the shopping mall? An hour

E-Myscéal Object How did I get back to my office after Angelina’s Cafe? Taxi

E-Myscéal Counting How many blue paintings were there in the room where

a lunchtime ceremony was held back in 2018 in DCU?

2

E-Myscéal Time Which month did I visit the museum where I saw two

ancient Chinese vases?

May

E-Myscéal Frequency How many nights did I drink Greek wine at dinner when

I was in Greece in 2019?

2

E-Myscéal Color What colour is a 10000 won (Korean currency) bill? Green

E-Myscéal Location Where did I experience the black and white VR roller-

coaster game with a handheld controller?

Science

Gallery Cafe

E-Myscéal OCR What was the name of the airline I took when I flew from

Bangkok to Dublin in March 2019?

Turkish Air-

lines
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MyEachtra OCR I normally wear shirts, but what is the brand of the grey

t-shirt that I wore at the start of covid-time?

Abercrombie

& Fitch

MyEachtra Frequency Which airline did I fly with most often in 2019? Turkish Air-

lines

MyEachtra Duration How long did I stay in the fast maglev train in China in

2015?

15 minutes

MyEachtra Time On which specific date in May 2018 was I looking for my

yellow staff card?

May 8, 2018

MyEachtra Counting How many salt lamps did I purchase along with a wicker

basket in May 2018?

2

MyEachtra Location What is the name of the antiques shop did I visit where

I photographed the grandfather clocks?

The Antiques

Emporium

MyEachtra Color What color were the chairs next to the door under the

chandeliers in an antique room?

Red

MyEachtra Object What is the gender of the person that I had breakfast

with at Yeats Country Hotel in Sligo, Ireland?

Female

Questions for User 3

System Type Question Answer

E-Myscéal Frequency How many times did I have a BBQ in the garden at home

in May 2018?

9

E-Myscéal Time What month of the year did I watch the Beatles rooftop

concert on TV?

April

E-Myscéal Counting How many orange lights on the ceiling in the building

where I had a meeting before going to Brown Thomas?

Two

E-Myscéal Location I had a TV crew come to my house in 2016. Where did

we go after that?

Dublin City

University

E-Myscéal Duration I was planning a thesis with a PhD student on a white-

board on a Tuesday in 2016 in my office. How long did

it last?

20 minutes

E-Myscéal OCR What is the maximum number of KGs of clothes that my

washing machine at home can take?

10

E-Myscéal Color What color was the taxi I initially took from the railway

station in China on the 20th of March?

Red
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E-Myscéal Object Where did I put my yellow staff card on a Tuesday after-

noon in May 2018?

Wallet

MyEachtra OCR What beverage was I drinking at home during the BBQ

in the summer of 2018?

Budweiser

beer

MyEachtra Duration How long did the flight from Dublin to London take in

March 2015?

1.5 hours

MyEachtra Location In which city was I when I saw the two vinyl LPs (records)

on the table in a hotel in Thailand?

Chiang Mai

MyEachtra Time On what date in 2019 did I go homewares shopping

around midnight in Ireland?

24/12

MyEachtra Color Who color of the tie that the man who was with me in

the Chinese museum was wearing?

Red

MyEachtra Counting How many blue paintings were there in the room where

a lunchtime ceremony was held back in 2018 in DCU?

2

MyEachtra Frequency How many times did I have fast food in China in 2018? 2

MyEachtra Object What beer did I drink when I had dinner at Asiatique,

the outdoor shopping center?

Chang

Questions for User 4

System Type Question Answer

E-Myscéal Duration How long did I stop to take a photo of a lake near Sheffield

with my Sony camera?

3 minutes

E-Myscéal Color What color is my staff card? Yellow

E-Myscéal OCR What is the brand of the car I drive? Volvo

E-Myscéal Counting How many people were with me during my visit to the

house with the stone shed/hovel on April 29, 2020?

One

E-Myscéal Frequency How many times did I have fast food in China in 2018? 2

E-Myscéal Object What religious figure did I see in front of a window in

Dublin City University on an August day?

Mother Mary

E-Myscéal Location What is the name of the building where I saw two large

blue paintings of the sea with islands and sky?

The Helix

E-Myscéal Time On what date did I change my office in 2020? 09/03

MyEachtra Frequency How many times did I shave in September 2016? 2
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MyEachtra Color What is the color of the jacket worn by the black and

white panda-bear toy that can sometimes be seen with

the two long rabbits?

Blue

MyEachtra Duration How long did I play the VR rollercoaster game at Science

Gallery Cafe?

3 minutes

MyEachtra OCR What airline company operated the last flight I had in

May 2018?

Turkish Air-

line

MyEachtra Object How did I travel to the Brazen Head where I met my

friends?

Taxi

MyEachtra Time What month did the conference MMM happen in 2019? January

MyEachtra Location Which country was I heading to when I took the photo-

graph of an A380 airplane in Germany?

China

MyEachtra Counting How many white cars were there at the Red House in

Howth on a beautiful blue-sky day?

One

Questions for User 5

System Type Question Answer

E-Myscéal Time In which month and year did I get my car’s wheel re-

paired?

March 2015

E-Myscéal Color What color was the building that was next to the Red

House in Howth?

White

E-Myscéal Location Which shop did I buy some salt lamps and a wicker bas-

ket from in the summer of 2018?

Carraig Donn

E-Myscéal Frequency How many times have I visited the house with the stone

shed/hovel in April 2020?

2

E-Myscéal OCR What is my car’s registration plate number? 06-D-58377

E-Myscéal Counting How many lotus vases were around the small golden Bud-

dha in the tunnel in Thailand?

2

E-Myscéal Object What is the gender of the person that I had breakfast

with at Yeats Country Hotel in Sligo, Ireland?

Female

E-Myscéal Duration How long did I wait in the queue to order the food at

McDonald’s in an airport in China?

2 minutes

MyEachtra OCR What platform was I using to watch the Beatles concert

on TV?

YouTube
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MyEachtra Location What was the name of the shop where I bought hand

soaps in the early morning?

Molton

Brown

MyEachtra Color What is the color of the “For Sale” sign in front of the

stone cottage I saw in April?

Blue

MyEachtra Counting How many blue paintings were there in the room where

a lunchtime ceremony was held back in 2018 in DCU?

2

MyEachtra Object Where in the house did I feed my friend’s dog when he

kept asking me for food in May 2018?

Garden

MyEachtra Time When did I eat out at Sole restaurant in 2018? May 31, 2018

MyEachtra Frequency How many nights did I drink Greek wine at dinner when

I was in Greece in 2019?

2

MyEachtra Duration How long did my meeting at Angelina’s Cafe last? 2 minutes

Questions for User 6

System Type Question Answer

E-Myscéal Color What is the colour of the jacket worn by the black and

white panda-bear toy that can sometimes be seen with

the two long rabbits?

Blue

E-Myscéal OCR I normally wear shirts, but what is the brand of the grey

t-shirt that I wore at the start of covid-time?

Abercrombie

& Fitch

E-Myscéal Object What kind of material was the picnic basket that I bought

from Carraig Donn made of?

Wicker

E-Myscéal Duration How long did it take for the man at the garage to fix my

old car’s wheel?

10 minutes

E-Myscéal Frequency How many different shops did I go to on the afternoon of

15/03/2015?

3

E-Myscéal Time When did I put a ‘no junk mail’ sign on my door? March 19,

2015

E-Myscéal Location Where did I go to get new keys in 2015? Northside

Shopping

Centre

E-Myscéal Counting How many people did I have a BBQ with on the 14th of

May in 2018?

4

MyEachtra Color I was following Rami from Angelina’s Cafe. What color

was his backpack?

Red
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MyEachtra Location What coffee shop did I go to after seeing a Mother Mary

poster at Dublin City University?

The Devlin

Hotel

MyEachtra Duration How long did I stop driving to take photos of a lake in

the United Kingdom with my Sony camera?

3 minutes

MyEachtra Time When did I visit the antique store and take photos of the

grandfather clocks?

March 7, 2015

MyEachtra Object It was on a Thursday in May. What breakfast food did

I have at Clayton Hotel in Dublin?

Croissant

MyEachtra Counting How many nights did I stay at Yeats Country Hotel in

Sligo, Ireland?

1

MyEachtra Frequency How many times did I shave in September 2016? (recount

the times)

2

MyEachtra OCR What was the number of my office door (in 2019)? It was

on the second floor, at Dublin City University.

L2.42

Questions for User 7

System Type Question Answer

E-Myscéal Time Which month of the year did I go to a tourist park and

see a large ornamental tower with lions (maybe) on top?

October

E-Myscéal Counting How many orange lights were on the ceiling in the

building where I had a meeting before going to Brown

Thomas?

Two

E-Myscéal Color What color is my staff card? Yellow

E-Myscéal Frequency Which airline did I fly with most often in 2019? Turkish Air-

lines

E-Myscéal OCR What airline company operated the last flight I had in

May 2018?

Turkish Air-

line

E-Myscéal Location After meeting at the Brazen Head, where did my friends

and I go for drinks?

Temple Bar

E-Myscéal Object What was the weather like when I went for a short walk

in Wicklow in 2019?

Cold

E-Myscéal Duration How many days did it take for me to build my computer

back in March 2015?

2

MyEachtra Time On which specific date in May 2018 was I in China and

drinking a ‘Corona Extra’ beer?

May 23, 2018
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MyEachtra Location Where did I go to before going to Angelina’s Cafe in

May?

AIB ATM

MyEachtra Object Which wheel of my car needed repair when I brought it

into a car repair shop?

Front Left

MyEachtra Duration How long did I play the VR rollercoaster game at Science

Gallery Cafe?

3 minutes

MyEachtra Color What color is a 10000 won (Korean currency) bill? Green

MyEachtra Counting How many people came to my home for a TV recording? 3

MyEachtra Frequency How often did I have breakfast in a hotel in May 2018? 8 times

MyEachtra OCR What was written on the blue Mother Mary poster I saw

in All Hallows Campus?

Pray For Us

Questions for User 8

System Type Question Answer

E-Myscéal Location It was an afternoon in the middle of March 2015. What

is the name of the shop where I saw a T-shirt for sale

that says “I love bicycle”?

Halfords

E-Myscéal OCR What song from Dire Straits was written on the diamond-

shaped wooden sign by the sea?

Telegraph

Road

E-Myscéal Duration I bought some hand soaps in a shop in the early morning.

It was in an outdoor shopping mall. How long did it take

me to drive E-Myscéal

An hour

E-Myscéal Color What color was the staff uniform in Yeats Country Hotel? White

E-Myscéal Time What month of the year did I watch the Beatles rooftop

concert on TV?

April

E-Myscéal Object Where did I put my yellow staff card on a Tuesday after-

noon in May 2018?

Wallet

E-Myscéal Frequency How many nights did I drink Greek wine at dinner when

I was in Greece in 2019?

2

E-Myscéal Counting How many grandfather clocks did I see in the antiques

emporium in Sheffield?

3

MyEachtra Counting How many people were with me during my visit to the

house with the stone shed/hovel on April 29, 2020?

One
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MyEachtra Object What flavor of ice cream did I have by the sea before

seeing the Red House?

Vanilla

MyEachtra Location What store did I go to shop for blue cups on a Wednesday

evening?

Donaghmede

Shopping

Centre

MyEachtra Time On which specific date in May 2018 was I in China and

drinking a ‘Corona Extra’ beer?

May 23, 2018

MyEachtra Duration How long did it take me to walk to Dublin Pearse Railway

Station after the sushi bar?

36 minutes

MyEachtra Color What was the color of the tie that the man who was with

me in the Chinese museum was wearing?

Red

MyEachtra OCR What airline did I fly on for my first flight in 2020? I

remember it was a small plane, perhaps an ATR-72.

Stobart Air

MyEachtra Frequency How many different airports did I go to in May 2019? 5

Questions for User 9

System Type Question Answer

E-Myscéal Color What colour was the taxi sign of the taxi I took to Dae-

jeon station in Korea?

Purple

E-Myscéal Object What type of dog does my sister have? Golden Re-

triever

E-Myscéal Duration How long did my meeting at Angelina’s Cafe last? Half an hour

E-Myscéal Frequency How many times did I have a BBQ in the garden at home

in May 2018?

9

E-Myscéal Counting How many orange lights were on the ceiling in the

building where I had a meeting before going to Brown

Thomas?

Two

E-Myscéal Location What is the name of the antique shop I visited where I

photographed the grandfather clocks?

The Antiques

Emporium

E-Myscéal OCR What airline was operating the A380 airplane that I pho-

tographed in Germany?

Lufthansa

E-Myscéal Time What date did a TV crew come to my home to record

some video?

Sep 21, 2019
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MyEachtra Color What were the three colors of the pens we used while

planning the thesis on the whiteboard in 2016?

Black, white,

blue

MyEachtra OCR What is the brand of car I drive? Volvo

MyEachtra Object What religious figure did I see in front of a window in

Dublin City University on an August day?

Mother Mary

MyEachtra Location What was the name of the shop where I bought hand

soaps in the early morning?

Molton

Brown

MyEachtra Counting How many people were with me during my visit to the

house with the stone shed/hovel on April 29, 2020?

One

MyEachtra Duration How long did I wait in the queue to order the food at

McDonald’s in an airport in China?

2 minutes

MyEachtra Frequency How often did I visit religious sites in September 2019? never

MyEachtra Time On which specific date in May 2018 was I in China and

drinking a ‘Corona Extra’ beer?

May 23, 2018

Questions for User 10

System Type Question Answer

E-Myscéal OCR What airline did I fly on for my first flight in 2020? I

remember it was a small plane, perhaps an ATR-72.

Stobart Air

E-Myscéal Location What is the name of the car shop I went to after seeing

the Blue Air aircraft back in 2018?

Joe Duffy

E-Myscéal Counting How many people were with me during my visit to the

house with the stone shed/hovel on April 29, 2020?

One

E-Myscéal Color What color was the taxi I initially took from the railway

station in China on the 20th of March?

Blue

E-Myscéal Object What did I get right after buying hand soaps in Molton

Brown?

Coffee

E-Myscéal Time Which year’s summer did I have 9 BBQs in a month? 2015

E-Myscéal Frequency Which airline did I fly with most often in 2019? Turkish Air-

lines

E-Myscéal Duration How long did it take for the man at the garage to fix my

old car’s wheel?

40 minutes

MyEachtra Time What year did I visit Northside Shopping Centre to get

new keys?

2018
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MyEachtra Color What is the colour of the jacket worn by the black and

white panda-bear toy that can sometimes be seen with

the two long rabbits?

Red

MyEachtra Counting How many orange lights were on the ceiling in the

building where I had a meeting before going to Brown

Thomas?

One

MyEachtra OCR What was the brand of the camera I used to take a photo

of the lake in the United Kingdom in 2015?

Sony

MyEachtra Duration How long did I stay in Daejeon Station? 10 minutes

MyEachtra Location What is the name of the shopping centre did I visit after

checking out of the hotel in Sligo in 2016?

Quayside

MyEachtra Object What kind of alcohol did I consider buying for emergency

food supplies during my visit to Musgrave MarketPlace

in February?

Whiskey

MyEachtra Frequency How often did I go running in the park near my home on

Saturday mornings in February?

One time
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User Experience Questionnaire in Chapter 7

The user experience questionnaire used in the user study in Chapter 7 is presented in this

appendix. The questionnaire was used to measure the user experience of the participants

after they interacted with the two lifelog retrieval systems. The questionnaire was adapted

from the User Experience Questionnaire (UEQ) [109].

Instructions: Please rate your experience with the system you have just used. The

scale ranges from -3 to 3, where -3 means very bad, 0 means neutral, and 3 means very

good.

Table A.11: User Experience Questionnaire

obstructive -3 -2 -1 0 1 2 3 supportive

complicated -3 -2 -1 0 1 2 3 easy

inefficient -3 -2 -1 0 1 2 3 efficient

confusing -3 -2 -1 0 1 2 3 clear

boring -3 -2 -1 0 1 2 3 exciting

not interesting -3 -2 -1 0 1 2 3 interesting

conventional -3 -2 -1 0 1 2 3 inventive

usual -3 -2 -1 0 1 2 3 leading edge
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