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Abstract—The global sports analytics industry has a market
value of USD 3.78 billion in 2023. The increase of wearables such
as GPS sensors has provided analysts with large fine-grained
datasets detailing player performance. Traditional analysis of
this data focuses on individual athletes with measures of internal
and external loading such as distance covered in speed zones or
rate of perceived exertion. However these metrics do not provide
enough information to understand team dynamics within field
sports. The spatio-temporal nature of match play necessitates an
investment in date-engineering to adequately transform the data
into a suitable format to extract features such as areas of activity.
In this paper we present an approach to construct Time-Window
Spatial Activity Graphs (TWGs) for field sports. Using GPS data
obtained from Gaelic Football matches we demonstrate how our
approach can be utilised to extract spatio-temporal features from
GPS sensor data.

Index Terms—Spatio-temporal graphs, GPS analytics, graph
analysis, sports analytics

I. INTRODUCTION

Spatio-temporal data refers to data that has both spatial (ge-
ographical) and temporal (time-related) components, exhibiting
variations in both space and time. This type of data is commonly
encountered in various fields such as environmental science
[1], agriculture [2], transportation [3], [4], [5], epidemiology
[6], and meteorology [7], among others. Over the last decade,
spatio-temporal data have been hugely involved in sport thanks
to the introduction of the use of sensors and in particular
Global Positioning System (GPS). GPS sensors record a
fixed number of observations (10 or 100 depending on the
device) for each second of the variables latitude, longitude,
speed (meters/seconds), and acceleration (meters2/seconds).
Sport organizations are investing in tracking systems to gain
competitive advantages through harnessing recorded data, with
the aim of making more data-driven decisions [8]. GPS data
have emerged as a valuable resource for researchers and sports
professionals to identify speed zones [9] [10], define athletes’
external load during competition [11], identify sequential and
recurrent players movements [12], among other applications.
Recently, machine learning approaches, such as ensemble
learning [13], graph clustering [14], and neural-network based
[15], have been applied to extract new insights. Thus far, GPS
analytics focused on the analysis of individual players, to
improve physical performances or prevent injuries, but have
neglected the examination of team dynamics. More complex

analyses such as understanding the relationship between players
during game time, in terms of direction and intensity of
movement is not currently addressed. The players’ profiles have
been investigated without considering the interactions between
teammates. To address the need for enriched individual and
collective physical metrics, it is required the analysis of a
network comprising players, locations and movements, and
to understand how that network evolves over time. Spatio-
temporal data exhibit interconnected dependencies within both
temporal and spatial dimensions, deviating from the assump-
tion of independence or identical distribution for individual
instances [16]. Due to the spatial and temporal components,
GPS data are suitable for spatio-temporal graph representation.
A spatio-temporal graph is a type of graph where usually nodes
represent locations and edges represent events that start in a
location and end in a different one.

Contribution. In this work, we introduce a graph-based
framework to represent the journey of Gaelic Football (GF)
players of a team during games and extract patterns and insights
about players’ movements. We are interested in analyzing the
areas in the pitch with higher levels of action, making compar-
isons across games and players. Utilizing spatio-temporal graph
representations can help sports scientists and coaches in making
data-driven decisions based on objective insights derived from
real-time player tracking data. This approach enhances the
accuracy and effectiveness of performance analysis, player
evaluation, and strategic planning, ultimately contributing to
better team performance outcomes.

Paper Structure. The remainder of this paper is structured
as follows: Section II introduces past research in spatio-
temporal graphs; Section III describes the required steps to
realize the spatio-temporal framework; Section IV presents the
results obtained by the framework on a case study; Conclusion
discussion and future work are presented in Section V.

II. RELATED RESEARCH

Spatio-temporal graphs offer a powerful framework for
analyzing GPS data, enabling the representation of both spatial
locations and temporal dynamics over time. By incorporating
both spatial and temporal dimensions, these graphs facilitate the
exploration of movement patterns, trajectory analysis, and the
understanding of dynamic interactions in various applications.



Authors in [17] present two different graph models: a static
and a spatio-temporal graph, to analyze the fire activity in the
Amazon basin (years 2003-2018). The static graph represent
the fire activity for the entire period, while the spatio-temporal
graph is based on the same building-rules but represent one
week of activity. The area of interest is divided into a grid.
Each cell grid represent a node of the network. Two nodes are
connected when two successive events in chronological order
happen in the grid cells corresponding to the nodes. This spatio-
temporal graph representation permits to analyze the areas most
affected by fires (centrality score) and the areas of similar
activity (community-detection) over the different windows
of time. In a successive work, same authors [16] propose
Chronnet, a chronological network-based model for analyzing
spatio-temporal data. In Chronnet, the nodes are represented
by areas of same size obtained by dividing a geometric space
into grid cells. The areas are connected when consecutive
chronological events happen in the two distinct cells. The
graph model has been tested on three artificial datasets and a
real dataset describing the global fire activity across the years
2003-2018. The authors demonstrated the capability of the
suggested graph-based model to extract data characteristics
that extend beyond basic statistics, such as frequent patterns,
spatial variations, and spatio-temporal clusters. A frequency-
based spatio temporal graph network is proposed in [18] to
analyze and compare bike-sharing mobility patterns in different
years, before (2019), during (2020), and after (2021 and 2022)
Covid-19 outbreak. In this study, the nodes are the location in
the area of interest and weighted edges represent the frequency
of trips starting in a location and ending in a different one. The
metrics involved in analyzing the trend of mobility patterns
are nodes’ connectivity, clustering coefficient, and modularity-
based community detection. The application of graphs in sports
analytics provides a comprehensive framework for analyzing
complex interactions and patterns among players, teams, and
game elements. By representing players or areas of the pitch
as nodes and actions as edges, graphs allow for insightful
analyses of team strategies, player dynamics, and tactical
decision-making, offering valuable insights for improving
performances and enhancing data-driven coaching strategies.
In their study, [19] implemented betweenness centrality scores
to identify the principal players during attacking actions in
football. They represent the players as nodes and compute
the number of interactions (performed or received passes) to
define weighted-directed edges among them. In our study, we
applied similar metrics to study the importance of nodes in the
graph. Our research diverges in terms of graph topology, where
we represent areas of the pitch as nodes rather than players,
and movements at different speed zones as edges, contrasting
with passing between teammates. Furthermore, our research
objectives vary as we focus on assessing the significance
of specific areas on the pitch rather than the importance of
players. Researchers in [20], proposed the uPATO software,
which offers the capability to generate adjacency matrices that
illustrate the passing interactions among players within a team
throughout a match or across different phases of a match. The

main functionality provided by uPATO is the possibility to
asses team performance over distinct time intervals within
a match. Even in this case, our research diverges in both
purpose and graph topology, although common aspects such
as the use of centrality scores. Passing networks are analysed
also in [21]. The authors explored how passing networks and
positioning variables (involved as attributes of the players-
nodes) are linked to the outcome of elite young football matches.
In particular, they found that lower betweenness centrality
scores (describing passing dependency to given players) and
high closeness centrality scores (describing intra-team well-
connected passing relations) are related to better outcomes. In
this study, although the authors used a two-step cluster analysis
to classify teammates’ positioning, they didn’t delve deeply
into the spatial aspect. They mainly focused on static positions
on the field without looking into the dynamic movements of
players, which could provide interesting insights into how
players interact. In a recent football study [22], a spatio-
temporal graph was constructed with players as nodes and
weighted edges representing distances between them on the
pitch, including temporal connections between the same player
across consecutive seconds. Various player attributes were
incorporated, and a 15-second segment was analyzed for binary
classification of possession change using a multilayer Graph-
Neural Network model. Our research shares similarities with
this study in considering the movements of players within the
pitch. However, we differ in both graph topology and purpose.
While they focus on predicting outcomes of actions related to
gaining possession of the ball, we explore the variation of the
importance of specific areas on the pitch across rolling time
windows. In [23], a graph-based approach is used to analyze
statistical differences among pitch zones in scoring actions, with
nodes representing pitch zones obtained by dividing the pitch.
Weighted, directed edges denote ball movements between zones
during scoring actions, and dominant areas are identified using
degree centrality computed for each pitch zone. Our research
diverges in several aspects. Firstly, we utilize different types of
data sources, with our study relying on GPS data while theirs
utilizes video footage. Secondly, when dividing the pitch, we
employ methods such as domain expert input or elbow method,
whereas their approach is not as well specified. Additionally,
our graph topology differs, as we focus on capturing movements
and changes in speed zones, whereas their approach uses
the number of passes between areas of the pitch. Lastly, our
analysis incorporates temporal dynamics, whereas theirs may
not.

III. METHODOLOGY

This work presents a novel framework which provides graph
transformations from spatiotemporal datasets of team-based
sports. Through this framework we are able to perform graph-
based analytics which permits the extraction of insights about
players’ activity during games.

The framework is composed of four main steps:
• Step 1: Data collection, cleaning & Annotation. This

step involves the initial export of data from the GPS



Fig. 1: Overview of framework for spatio-temporal graph construction

sensing devices, cleaning and annotation of additional
features (such as average speed) to the data to produce a
dataset of player actions.

• Step 2: Spatial Grid Mapping. This provides an overlay
topology for the graph where a grid is developed to allow
for more fine-grained spatial analyses.

• Step 3: Spatio-Temporal Graphs Construction. This
process builds the spatio-temporal graphs through an
iterative process.

• Step 4: Graph-based Analysis. This step implements
graph theory techniques to analyze patterns of behaviors
of players during games or time windows of the same
game.

A. Data collection, cleaning & annotation

The dataset used is a manipulation of raw GPS data collected
during 11 competitive GF inter-county games over the seasons
2019–2021. A micro 10Hz GPS sensor device (STATSports
Apex 10 Hz, Northern Ireland, UK) wore by the athletes,
recorded 10 observations for each second for the variables
latitude, longitude, and speed (m/s). The data have been filtered
and pre-processed by the STATSports software (version: 4.5.19).
Past research [24] claimed that the error made by 10 Hz Apex
unit (1–2% of the distances measured in the experiments)
can safely be ignored. The data have been transformed into a
new dataset by using a series of steps described in a previous
work [25]. The dataset describes the actions performed by
players during games by using some features such as start and
end location, average speed, duration of the action, distance
covered, etc. A sample of the resulting dataset is shown in
Tab. I which presents a subset of columns: Start Lat. and

Start Lon represent the initial point of an action,End Lat
and End Lon represent the final point of an action, Speed
(m/s) is the average speed in metres per second for the action.
Action is a textual classification of the action (e.g. running,
jogging) and Duration is the duration in seconds of the
action.

B. Spatial Grid Mapping

In sports analytics, the process of creating a spatial grid
overlay for a graph represents a dynamic mapping of the field
of play. This process is crucial for certain types of analytics.
The segmentation of the field of play and subsequent allocation
of the relative coordinates to those areas enables the end user
to understand the complex and dynamic movement patterns of
players that occur during match play, identify the most active
segments of the field of play, and examine the distribution of
events.

The number of unique latitude and longitude coordinates
covered by players during games is considerable. These
differences can occur for a number of reasons such as subbing
players or additional injury time. These factors coupled with
the individual dynamics across games such as offensive and
defensive play necessitate examining each game individually
constructing a set of cells representing the dynamics of the
game.

For each game a spatial grid is constructed by using the
Tesspy library [26]. Tesspy is a library that performs tessellation,
the process of dividing space into non-overlapping, gap-free
subspaces. The process to create a spatial grid mapping of the
pitch is composed of the following steps:



TABLE I: Sample of the actions dataset.

Player ID Start Time End Time Start Lat. Start Lon. End Lat. End Lon. Speed (m/s) Action Duration
152 0 4 54.123 −7.357 54.224 −7.351 5.36 Running 4
152 3 5 54.224 −7.351 54.011 −7.391 3.97 Jogging 2
152 5 10 54.011 −7.391 54.349 −7.650 4.98 Running 5
152 10 16 54.349 −7.650 54.012 −7.655 3.83 Jogging 6
152 16 20 54.012 −7.655 54.020 −7.657 4.51 Running 4

1) Specification of a Point of Interest (POI). Tesspy takes
as input a POI (example: ’Wembley’) and creates a
Tesselation object.

2) Spatial Grid Generation. Define an initial resolution for
the cell size. Generate adaptive square grids based on
the provided Points of Interest (POI) data, starting with
this initial resolution. It is returned the set of latitude
and longitude coordinates of the centroids of the square
grids.

3) Spatial Grid Mapping. Each coordinate covered by
players during the game is assigned to the closest centroid.
Centroids without assigned coordinates are excluded from
the analysis, as they represent areas of the stadium or
portions of the pitch not covered by the players.

Each centroid outputted by the tesselation process represent
a cell of the pitch which will be used to construct a spatio-
temporal graph.

C. Spatio-Temporal Graphs Construction

Once the cells are obtained from the spatial grid mapping, a
domain expert will provide a time interval (minutes) to create
a set of snapshots of spatial activity within the cell using
a rolling window. This produces the Time-Window Spatial
Activity Graph.

a) Definition 1. Time-Window Spatial Activity Graph
(TWG): . The Time-Window Spatial Activity Graph TWG
is a set of spatial-activity graphs where each graph is a
snapshot of activity for a timepoint w within a cell a. Each
Spatial Activity Graph is a directed graph TWGa,w = (N,E)
where N is the set of nodes representing an area of activity
denoted a tuple containing the latitude and longitude for said
area n =< lat, lng >, n ∈ N . E denotes the set of edges
within the graph where each edge e represents a four-tuple
e =< nfrom, nto, P, ¯Speed >, e ∈ E where, nfrom and nto

are the to and from nodes for the directed edge, P is the
distinct list of players who traversed between two areas of
activity and ¯Speed is the average speed for all players during
that transition. The pseudocode for constructing the TWG is
presented in Alg 1, where TW is a distinct list of time windows
(e.g. [0, 5], [1.6]...) and A is the set of actions annotated with
the cell number.

A sample of TWG at different time points can be seen in
Fig 2. While the number of nodes given by the spatial grid
mapping remains the same, the number of edges may vary (540,
and 527 respectively), such as their average weight (3.4, and
3.3 respectively). This results in having more or less connected
nodes or to the formation of isolated nodes.

D. Graph-based Analysis

Using the TWG generated from the previous step a domain
expert can utilise graph analytics to identify areas of activity
within the graph, perform comparative analytics across time-
windows and identify shifting communities as the game
progresses. We now detail two graph analytics methods we can
utilize to extract insights into team dynamics. These methods
will be demonstrated in our case study in §IV.

E. Nodes Centrality Analysis

Betweenness centrality detects the degree of influence a node
(player or location) maintains over the flow of information.
Nodes that more frequently lie on shortest paths between other
nodes will have higher betweenness centrality scores. The
formula for calculating betweenness scores [27] is shown in
Equation (1) where σstis the total number of shortest path
going from s to t, and σst(x) the number of those paths passing
through node x.

bc(x) =
∑

s̸=x ̸=t

σst(x)

σst
(1)

In a spatio-temporal analysis such as that used here, the
analysis seeks to identify locations through which most shortest
paths are routed. A high betweenness score may indicate a
bridge which joins two or more segments of a graph, indicating
a location whose removal could effectively segment the graph.
However, the most common effect is that all shortest paths



Fig. 2: Sample of 25 nodes of the TWG for time windows: [0,5) (left) and [1,6) (right) in a selected game before edges
aggregation.

become longer, meaning a complete change in the dynamics
of multiple player movements.

Within a TWG, nodes with high weighted betweenness
centrality scores indicate pathways frequently traversed by
players and represent areas where players transition between
speed zones frequently. These pathways are crucial for player
movement and can reveal strategic zones on the pitch. Such
methods could be employed a sports analyst to plan and
optimise player positioning.

F. Community Detection

This analysis focuses on applying community detection tech-
niques to group areas of the pitch according to their connectivity
during a given time window. The communities identified by
the Louvain algorithm represent clusters of locations that are
frequently connected or have similar movement patterns.

A hierarchical clustering approach was used (Louvain
modularity) which compares density among the relationships
inside the partitions against those outside using Equation(2),
where Ai,j represents the weight of the edge between i and j,
ki =

∑
j Ai, is the sum of the weights of the edges for node

i, ci is the community to which node i is assigned, and δ is a
function such that δcicj = 1 if node i and node j are assigned
to the same community [28].

M =
1

2m

∑
i,j

[Ai,j −
kikj
2m

]δcicj (2)

Each community consists of locations that are more closely
related in terms of the average speed of movements between
them. Community detection can reveal clusters of nodes
representing areas where players frequently interact or transition
between speed zones together. Analysts can interpret these
communities to understand how the team organizes itself
spatially and how players collaborate within different areas of
the pitch.

IV. RESULTS

A. Case Study

This research utilizes data obtained from male Gaelic
Football players. GF is a sport originating from Ireland with
distinctive rules blending elements of rugby and soccer. In
GF, players are permitted to carry the ball in hand but must
bounce or tap it every four steps. Passing can be executed
using both hands and feet, and scoring can occur above (one
point) or below (three points) the crossbar. GF matches involve
two teams comprising 15 amateur players each, played on a
pitch typically spanning 130–150 meters in length and 80–90
meters in width. Games can be played at the local or county
levels, with county matches lasting 70 minutes, divided into
two halves of 35 minutes each.

Past research measured that the average match distance is
8160 ± 1482 meters, with 1731 ± 659 meters covered at
high speed [11]. The sprint distance is 445 ± 169 meters
distributed across 44 sprint actions. The peak speed is 8.4
± 0.5 meters/seconds with an average speed of 1.8 ± 0.3
meters/seconds.

The proposed graph-based framework has been evaluated
using data from a single GF county game to demonstrate its
efficacy. All players involved in the game have been included
in the analysis, except for the goalkeeper.

The match selected as a case study was a county-level male
Gaelic Football match with 16 players and ran for 78 minutes
resulting in a dataset of 13586 records.

B. Spatial Grid Mapping of the pitch

This process starts by specifying the POI (the name of the
stadium) and a cell resolution. The tesspy library provides the
coordinates of the points representing the pitch as a grid (grid
points). Each coordinate covered by players during the game,
obtained using GPS data of players, is associated with the
closest grid points. The result is shown in Fig.3



Fig. 3: Spatial grid mapping of the pitch. Left: grid points returned by the library. Right: the result of the association of players’
coordinates to their closest grid point.

At this stage, the original dataset (Tab. I) is updated by
adding the coordinates of the grid points to which the starting
and ending locations of the action belong.

C. TWG generation

Once the spatial grid mapping is complete, the next step
is the generation of the TWG. The initial phase involves the
definition of the rolling time window. This decision can be
made by a domain expert, depending on the granularity of the
interest. Larger time windows may lead to more connected
graphs but to the loss of information in the aggregating process.
On the contrary, narrow time windows can lead to the analysis
of few actions, resulting in the generation of limited and less
valuable insights.

For the purpose of this paper, a 5-minute time rolling
window has been chosen: [0,5), [1,6), etc. [0,5) denotes that
the range includes the first value but not the second. This
time length permits the study of an elevated number of actions
without the loss of significant information due to the edges
aggregation. With the game lasting 78 minutes and using a
5-minute rolling window, a TWG of size 74 has been generated.
Tab. II presents descriptive metrics regarding the structure of
TWG across a sample of consecutive 5-minute rolling windows.
The columns describe the following graphs’ characteristics:
Time Window (T.W.) indicates the interval time used to
create the graph. Nodes indicates the number of nodes in
the graph (cells in the pitch). This number indicates the
number of cells representing the segmented pitch (the selected
k for the k-means algorithm). Edges specifies the number of
edges (directed movements between cells).Average Weight
Edges measures the average weight of the edges.Density
is computed as the ratio of the number of edges in the graph
to the maximum possible number of edges and measures the
connectivity of the graph. Values are in the range [0,1]. 0
indicates a poorly connected graph, and 1 when all nodes are

connected. Average Degree is the average number of in-
coming or outgoing edges per node. Average Clustering
Coefficient measures the average degree to which nodes
tend to cluster together. Values are in the range [0,1]. 0 indicates
that the nodes are not connected in communities, and there are
no triangles formed by connected triples of nodes. 1 indicates
that every connected triple of nodes forms a triangle. Average
Shortest Path computes the average shortest path length
of the graph between all pairs of nodes.

As indicated by the metrics in Tab. II, the graph’s topology
varies according to the analyzed window. A lower number
of edges may suggest prolonged movements within the same
speed zone, indicating less frequent changes in players’ speeds.
Alternatively, it could indicate a greater concentration of players
within specific cells, resulting from the aggregation of edges
linking the same nodes during the graph construction. The
average weight of the edges describes how the average speed of
the players varies across time windows. The density is close to 0
in each time window, meaning the graphs are poorly connected,
and may contain isolated nodes. The low connectivity is due
to the distance between pitch cells. Typically, players change
speed zones after a few seconds, executing movements that
cover short distances occurring within the same or adjacent
cells. The shortage of edges between cells is also highlighted
by the low values of the average clustering coefficient. This
results in communities composed of adjacent cells where not
all cells within the same community are interconnected.

D. Analysis of Areas of Activity

Using betweenness centrality (Sec. III-D) we can compare
the centrality of cells across time windows. As the game evolves
betweenness centrality highlights areas of activity as the game
progresses.

Fig. 4 exhibits the betweenness centrality for four different
rolling windows of 5 minutes. The locations displayed are the
ones covered by players only in the specific time windows



TABLE II: Descriptive statistics regarding the characteristics of the TWG within each time window.

T.W. Nodes Edges Avg. Weight E. Density Avg. Degree Avg. Clust. Coeff. Avg. Shortest Path
[0, 5) 118 952 3.2 0.07 11.4 0.26 3.5
[1,6) 118 882 3.1 0.06 10.7 0.21 3.8
[2,7) 118 872 3.0 0.06 10.8 0.23 3.8
[3, 8) 118 881 2.9 0.05 10.2 0.20 4.1
[4, 9) 118 782 2.7 0.05 9.6 0.19 4.1
[5, 10) 118 718 2.5 0.05 8.7 0.18 4.4
[6, 11) 118 764 2.6 0.05 9.2 0.20 4.4
[7, 12) 118 726 2.6 0.06 9.1 0.17 4.0
[8, 13) 118 700 2.6 0.06 9.3 0.21 3.7
[9, 14) 118 829 2.8 0.06 10.0 0.22 3.9
[10, 15) 100 826 2.9 0.05 10.4 0.23 3.8

and can change over time. The most important locations (in
terms of speed and connectivity) are frequently placed in the
central area of the pitch. The dynamic of the game shifts as
we move across windows, highlighting strategic alterations
in the distribution of the scores. The importance of locations
changes during the time windows analyzed: Fig. 4 illustrates
this transition from central to peripheral areas. The importance
of the cells is given by their connectivity. This means that
these cells are reached by a higher number of different cells.
Players tend to move from or in these specific cells more than
others.

E. Community Detection of Interconnected Areas
Similar to the fluctuation observed in centrality scores,

we employed the Louvain community detection algorithm to
identify distinct communities across different time windows
in the TWG. Fig. 5 details the community detection result
across four consecutive time windows (black points represent
coordinates not covered by players in the time window).
The algorithm returns a variable number of communities
for each time window (6, 4, 5, and 5 respectively). These
communities change shapes and internal composition over time.
This behaviour may derived from a wider spread of players
across the pitch, leading to a greater number of less populated
communities. The detection of communities formed mainly
by adjacent cells suggests that players tend to traverse short
distances before changing speed zones. In contrast, when a cell
belongs to a different community compared to its adjacency
cells means that the specific cell has been visited by players
covering different areas, potentially reflecting the initiation of
actions in remote areas. This observation provides insights into
how players navigate the pitch. In particular, where they tend
to change speed zone. It provides valuable insights into players’
strategies and preferences, which can be particularly useful for
a sports coach.

The internal composition of the identified communities, in
terms of descriptive statistics regarding the speed originating
from nodes within those communities, remains relatively stable.
The communities are formed mainly thanks to the proximity of
the nodes, which makes it easier and more frequent to perform a
movement in the same community. Within the [0,5) time frame,
community red stands out with notably higher metrics for the

variable speed. It exhibits the highest recorded values for the
1st quartile (2.4 m/s), average (3.6 m/s), and 3rd quartile (4.9
m/s), distinguishing itself from other communities in this time
window. In the same area of the pitch, in the successive time
window [1,6) we observe a similar pattern: community green
records the highest values for 1st quartile (1.6 m/s), average
(3.2 m/s), and 3rd quartile (4.6 m/s). Likewise, community
green in window [2, 7) and community yellow in window [3, 8)
demonstrate similar trends. This suggests an area characterized
by a greater frequency of activities occurring at higher speeds.

In contrast, it seems that communities colored yellow and
brown in the time window [0,5), yellow in [1,6), yellow and
red in [2,7), and red in [3,8) indicate areas where activities
typically occur at slower speeds. For instance, in the yellow
community (which covers roughly the same area) during the
time windows [0,5), [1,6), and [2,7), the recorded speeds for
the 1st quartile are 1.6, 1.6, and 1.5 m/s respectively. The
averages are 2.9, 2.8, and 2.7 m/s, and the 3rd quartiles are 4.2,
3.9, and 3.9 m/s. These values represent some of the lowest
scores observed for these metrics.

V. CONCLUSION & FUTURE WORK

As the domain sports analytics evolves and more field-
based teams and sporting organisations adopt data-driven
approaches to training and strategy, emphasis on analytics will
shift from individualised player performance to team-focused
analytics necessitating an investment in data engineering
solutions to transform, clean and structure the data in a format
suitable for extracting team-centred analytics during match
play. In this work we present a framework to construct a
Time Window Spatial Activity Graph; a collection of spatio-
temporal graphs across rolling time windows focused on player
movement during match play. Our evaluation demonstrates how
graph-analytics such as betweenness centrality and community
detection can be utilised to extract insights into team-dynamics
and may aid sports analysts in areas of player positioning
and team strategies. Our future work is to employ the use of
more graph-analytics methods such as link-prediction to predict
graph state changes across time windows.



Fig. 4: Betweenees centrality for 5 minutes rolling windows: [0, 5) (top-left), [1, 6) (top-right), [2, 7) (bottom-left), and [3, 8)
(bottom-right).
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Fig. 5: Community detection for 5 minutes rolling windows: [0, 5) (top-left), [1, 6) (top-right), [2, 7) (bottom-left), and [3, 8)
(bottom-right). Black points represent coordinates not covered by players in the analyzed time window.
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