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ABSTRACT
Models of computational memorability have historically been predi-
cated on “yes/no” recognition memory games, resultantly overlook-
ing and obscuring the variability in how we remember—from un-
prompted intentional detail oriented retrieval to prompted feeling
based familiarity. In this paper, we detail an innovative short-term
video memorability experiment which leverages drawings as a mea-
sure of recollection to explore the relationship between recognition
and recall memorability of a previously-viewed video, finding evi-
dence to suggest a measurable interaction. Our findings highlight
the need to refine how we currently quantify of remembrance to
more faithfully reflect its true phenomenology, and accordingly
adjust our current computational models of memorability so that
their downstream application in multimedia retrieval may be of
higher utility.
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• Computing methodologies→ Computer vision problems.
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1 INTRODUCTION
Recognition and recall form the basic fabric of remembrance (the
act of remembering) [40]. These mechanisms, though conceptually
distinct, have been shown to be entangled on a neural level [29],
but the full extent of their relationship has yet to be understood.
Existing computational models of memorability—defined as the
likelihood that something will be remembered—stand as impressive
contributions to our understanding of human memory, allowing
us to predict with near human consistency, the likelihood that a
given image or video will be subsequently recognised after a 24 to
72 hour period. This has been demonstrated at the predicting video
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memorability task as part of the annual MediaEval workshops in
2023 [6], 2022 [34] and 2021 [17].

The models developed in such benchmarks, however, focus on
simple recognition tasks, where a binary response of “yes" or “no"
indicates whether an individual believes they have encountered
a particular stimulus before [5, 14, 16, 23]. This approach makes
a silent presumption, one which sidesteps the known complexity
within the remembering process itself. Consider a key distinction:
an item might be recognised based on a mere sensation of famil-
iarity or on the basis of “recollection”—where distinct, contextual
details about the item can be recalled from memory. Though seem-
ingly subtle, this distinction carries considerable weight, and has
numerous implications for computational memorability models,
and their downstream applications in the indexing of video content
to support richer multimedia retrieval.

A review of three decades of memory research indicates that the
recognition process first relies on the mechanisms of recollection,
before defaulting to feelings of familiarity if explicit details fail to
be recalled [40]. However, recent experimental work suggests an
absence of connection between recognition and recall [2]. That
study found no significant connection between the number of par-
ticipants who recognised an image and the number who were able
to recall the same image. Additionally, the correlation between the
quantity of objects recalled in an image and its recognition rate
was found to be equally unremarkable. These counter-intuitive
conclusions present a rift that deserves resolution. Bainbridge et
al.’s chosen means of analysis offers potential insight into the ae-
tiology of this contradiction. While elegant in its simplicity, their
approach arguably creates a false equivalence; relying on measures
of comparison that, when examined closely, appear to be incommen-
surate: straightforwardly comparing rates of “yes/no" recognition
and free recall without accounting for innate differences in process-
ing capacity (i.e., individuals can correctly recognise upwards of
10,000 images [3, 33], which is orders of magnitude greater than
recall limits [7]), and the ensuing effects they have on experimen-
tal conditions. Providing a strong counterpoint to Bainbridge et
al.’s conclusions, Broers and Busch [4] employed a more refined
“remember/know" procedure—participants indicate directly, after
an old/new statement, whether they recall specific episodic details
about an item (recollection) or whether they only know that the
item is old (familiarity) [11, 37]—finding evidence to suggest that
an image’s memorability scales with a greater likelihood of recollec-
tion but not familiarity. They also noted considerable variability in
the judgements across individual images: some memorable images
were recognised almost exclusively based on recollection, others
mostly on familiarity. In essence, images with high recall memo-
rability also tend to have high “yes/no" recognition memorability.
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This study highlights the limitations inherent with our current
models of computational memorability and raises important ques-
tions, such as, what determines whether recollection or familiarity
contributes most towards memorable content, and whether these
findings translate to the video domain?

The nature and content of memories has historically been dif-
ficult to quantify. Representations of recollection, captured in the
form of drawings, provide a window in ways that other method-
ologies may not permit [2]. They offer a tangible visual output
that embodies the idiosyncrasies of individual cognition, revealing
subtleties that may remain hidden within conventional measures of
remembrance. This paper details an innovative video recall experi-
ment which leverages drawings as a measure of recall to provide
further clarity on the interplay between recognition and recall of
a previously-viewed video. How we remember naturally impacts
how videos may be found and why we may be searching for them
in the first place, why they have been forgotten. After a section on
background and related workwe describe our experimental method-
ology, then we present results of our experiments, and finally a
conclusion to the paper.

2 BACKGROUND & RELATEDWORK
Research into visual recall has been primarily foundational, fo-
cusing on basic effects to support memory system theories, and
resulting in few insights into the visual attributes influencing re-
call performance. Probability of recall is generally regarded as a
function of position in a serial presentation, with two basic effects
emerging in serial-position curves—a primacy effect, increasing the
recall probability of items near the start of a presentation list, and
a recency effect, increasing the recall probability for items near the
end of a presentation list [22, 32, 36]. This primacy effect can be
attributed to the increased rehearsal of the first few items in a list,
resulting in better long-term storage for these items and can be
eliminated by ensuring all items receive equal amounts of rehearsal
[1]. The recency effect can be eliminated with a short mental task,
following presentation and preceding recall, indicating that the ef-
fect can be attributed to items still being held in short-termmemory
[25]. The degree of vividness with which a person reports being
able to visualise imagery has been found to be predictive of their
recall performance [20, 31]. The strongest determinants of recall
are list length and the complexity of items, with short lists of low
complexity items exhibiting the greatest recall [22, 25, 31, 32, 36].

Given that more complex stimuli also eliminate the primacy
and recency effects [36], many past studies’ use of simple stimuli—
line drawings [8, 19, 20], or images with simple depictions of ob-
jects [13, 21]—and low resolution verbal metrics—a single word
[8, 19, 21], or a brief verbal description [20, 32, 36], has resulted in
little insight into the content and contributing factors of memory
formation. Bainbridge et al.’s aforementioned study explicitly set
out to address many of these past limitations, aiming to provide
more direct insight into recalled memories and assess the relation-
ship between “recall memorability" and “recognition memorability"
[2]. They found that drawings from delayed free recall accurately
reflect aspects of their original images, containing visual informa-
tion beyond a simple construction from the scene category label.

Drawings made while viewing an image or immediately after en-
coding it, display a greater degree of diagnosticity, indicating time
modulated memory decay. Memory drawings were found to pre-
serve an accurate spatial map of the original image, and contain
very few incorrect objects. It was also suggested that recall could
be driven by semantic meaning captured in an image—with visual
saliency and meaning maps explaining aspects of memory perfor-
mance. Ultimately, they purported to have found no relationship
between the “recall memorability" and “recognition memorability"
of individual images.

2.1 Myopia in the Mind’s Eye
The ability to conjure up colourful images and examine them in the
mind’s eye has long been thought of as fundamental to a thinking
mind. The belief that the character of one’s mind is like any other is
likely to be at the heart of this intuition. Given the impossibility of
inspecting the qualia of a mind other than one’s own, what reason
would one have to assume otherwise? This widespread intuition
was formally assessed for the first time by Sir Francis Galton, who
pioneered the study of mental imagery with his “breakfast-table sur-
vey", reporting a wide variation in reported mental vividness, and
some participants describing “no power of visualising" [10]. Even
though surveys of mental imagery abilities [20] have consistently
suggested that 2-5% of people are non-imaging/imaging impaired,
the contemporary mental imaging literature still largely views non-
imaging/imaging impaired individuals as ‘repressive’/‘neurotic’, or
outright denies their existence [9]. However, with the phenom-
enon’s recent acquisition of a name—aphantasia: a condition of
reduced or absent voluntary mental imagery [41]—the subject of
inter-individual variability in internal mental representations has
garnered more serious attention.

The relationship between the ability to generate vivid mental
imagery and memory recall has been expressed in several notable
theories. Paivio’s dual coding theory [24], for instance, articulates
that encoding of information is significantly enhanced when both
verbal and visual channels are engaged, resulting in more vivid
mental representations and consequently, improved recall. Empiri-
cal evidence of this dynamic is observed in studies employing the
method of loci (or“mind palace"), a mnemonic strategy based on the
creation of detailed, spatially structured mental images to facilitate
information retrieval [39]. Echoing this, [18] reinforces the corre-
lation between vivid mental imagery and recall, indicating that
memories associated with detailed mental images are more likely
to be successfully recalled. Moreover, research into the unique phe-
nomenology of episodic memory further illuminates the central
role of vivid mental imagery in recall. Such memories, often expe-
rienced as rich mental images [38], are generally characterised by
higher detail, thus aiding recall [28]. Taken together, these studies
suggest a deep-seated nexus between vividness of mental imagery
and memory recall. However, with the recognition of aphantasia,
recent research examining the phenomena presents a paradox: de-
spite the lack of vivid (or any) mental imagery, individuals with
aphantasia often exhibit recall abilities akin to those with typical
mental imaging capacities [15]. These seemingly contradictory find-
ings imply that the mechanisms of recall are resilient to the absence
of vivid mental imagery, and that vividness of mental imagery—in
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those that can conjure it—may simply be a proxy for another quality
of the stimulus which facilitates better recall.

3 METHODOLOGY
With Bainbridge et al.’s findings in mind—demonstrating that object
and spatial details of images can be captured with a drawing-based
visual memory experiment [2]—a novel drawing based video recall
experiment was devised and carried out to investigate the nature
of the relationship between recognition and recall memorability, in
videos. To facilitate a more direct comparison between recognition
and recall, videos from extreme ends of the recognition memorabil-
ity spectrum were selected as the stimuli to be used in the video
recall drawing experiments. A total of 32 videos were selected from
the Memento10k dataset [23]—a short-term “yes/no" recognition
video memorability dataset. Half of these videos were selected from
the top 100 memorable videos (Figure 2), and the other half were
selected from the bottom 100 (Figure 3). Videos were selected with
“drawability" in mind, and representing a broad array of depiction
categories.

In this context, drawability refers to the inherent qualities of a
visual scene or event within a video that make it amenable to being
accurately represented or reconstructed through simple sketches
or line art. Several factors influenced our choice of videos based on
this principle. Uniqueness was a primary factor; videos chosen had
distinct visual elements that set them apart from others, ensuring
that drawings can be specifically attributed to a particular video.
Simplicity was another essential criterion; videos with straightfor-
ward yet striking visuals were prioritised, avoiding overly intricate
scenes that might hinder recall accuracy. Additionally, the cultural
and cognitive accessibility of content was assessed, giving prefer-
ence to scenes that have universal resonance, as opposed to those
tied to specific cultural contexts.

The experiments were structured into eight rounds, where each
round consisted of an encoding phase, inwhich participantswatched
four unique videos; a recall drawing phase, in which participants
were tasked with drawing a scene from a “target" video—one of
the four videos—from memory; and a perceptual baseline, in which
participants were presented with a frame from the target video, and
were tasked with drawing it. This perceptual baseline serves as an
essential point of reference for each participant’s innate drawing
ability. By incorporating this baseline, we can account for individ-
ual variations in drawing proficiency, ensuring that the assessment
of recall is not confounded by participants’ abilities to draw.

3.1 Encoding Phase
A video selection algorithm created a dataframe of video ordering
and target selection, unique to each participant. The algorithm en-
sured a balanced representation in each round, where two videos
were highly memorable, and two were highly unmemorable. To
introduce an element of randomness and mitigate the risk of pat-
tern recognition by participants, the order of these videos was
randomised for each round. The algorithm also assigned a target
video for each round. This target assignment was pseudo-random,
meaning that it was randomly chosen, but in an increasingly con-
strained manner that ensured every video was assigned as a target
at least once across all participants. This ensured that all videos

used would produce data, and that we could account for serial
position and recency effects.

The algorithm commences by shuffling both lists of selected
videos (high and low memorability), then iterates through each
participant, forming blocks of four videos for each round. If both
video lists still contain elements, a block is formed with two videos
from each list, and the order within the block is randomised. A
target video is then selected. If the initially chosen target video is
not part of the current block, the algorithm continues to randomly
select a target until it finds one that is in the block. Once a valid
target is found, its index within the block is recorded, and the
participant’s ID, the four videos, and the target index are stored as
a row of data. If one of the lists is exhausted before the other, the
remaining videos from the non-exhausted list form the remaining
blocks, again with randomised order and target selection following
the same methodology. After cycling through all participants and
rounds, the resulting data is used to create a dataframe that contains
the participant IDs, the videos presented to each participant in
each round, and the target for each round. This controlled pseudo-
randomised structure of video presentation is designed to ensure
balanced and unbiased experiments, while the random elements
keep the experiments challenging and engaging for the participants.
A total of 52 participants, with the following inclusion criteria: age
18-65, no cognitive impairment, no personal or immediate family
history of epilepsy, no personal history of neurological illness or
brain injury, took part in the experiments. 17 participants were
dropped for failing to complete all phases of the experiment, leaving
a final 35 used in the analysis phase. The median participant age
was 25 and gender was not recorded.

5s

5s

5s

5s

3s

3s

3s

3s Time

Figure 1: Encoding phase in online drawing experiment.

During the encoding phase, videos were displayed at their native
resolution, ranging from 200px by 600px to 600px by 200px. Each
video was 3 seconds in duration, and they were presented following
an anchoring screen lasting 5 seconds, which was consistently
coloured, with a countdown. The display procedure is shown in
Figure 1.
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Figure 2: High memorability videos used in experiments (resized to fit into the grid with a 1:1 ratio).

Figure 3: Low memorability videos used in experiments (resized to fit into the grid with a 1:1 ratio).

3.2 Recall Drawing Phase

Figure 4: Drawing page for video recall in online drawing
experiment.

After all four videos in a round were displayed, participants were
redirected to a drawing recall page, where they were instructed
to draw a scene from the target video for that round, and then
caption their drawing before submitting. As shown in Figure 4, the
drawing recall page consisted of a heading which indicated the
current round and the target video; a drawing canvas which was
the same dimensions as the target video; a drawing toolbar which
enabled participants to change the colour of their brush, resize
it, undo or redo an action, and clear the canvas; a caption bar for
participants to describe their drawing; and a submit button to move
onto the next phase.

3.3 Perceptual Baseline
After submitting their recall drawing and caption, participants were
redirected to a perceptual drawing page where they were instructed
to draw a scene from the target video which was depicted on screen,
and then caption their drawing before submitting. As shown in
Figure 5, the interface was the same as the previous phase, but but
with a video scene image added.

Figure 5: Drawing page for perceptual drawing in online
drawing experiment.

3.4 Vividness of Mental Imagery
Upon successful completion of eight rounds of the experiments,
participants were redirected to a page with the Vividness of Vi-
sual Imagery Questionnaire (VVIQ), a widely recognised self-report
measure that gauges the vividness of an individual’s visual imagery
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[20]. The questionnaire consists of 16 items in which participants
are asked to visualise four scenarios and rate the clarity and vivid-
ness of their mental imagery on a five-point scale. Each scenario
is rated on vividness in four different aspects, creating a total of
16 separate ratings. The five-point scale ranges from no image at
all, which scores 1, to perfectly clear and as vivid as normal vision,
which scores 5. Accordingly, the total possible score ranges from 16
(least vivid) to 80 (most vivid), with a score below 40 typically being
an indication of some degree of visual mental imagery impairment,
such as aphantasia. The inclusion of the VVIQ in this experiment
offers supplementary data on a participant’s ability to mentally
visualise. While not the main focus of the study, a participant’s
ability to mentally visualise provides important context to their
drawing and recall capacity.

4 RESULTS
An essential aspect of assessing the efficacy of the drawing recall
experiment lies in effectively quantifying recall. Traditional metrics:
recall accuracy (proportion of items correctly recalled); recall fre-
quency (the number of times an item is recalled); and recall latency
(the time taken to recall an item), fail to capture the complexity
and nuance inherent in the process of remembering, providing a
relatively artificial view of memory processes. Human cognition,
in contrast, is more about comprehending the world in a meaning-
ful, interconnected manner, rather than just cataloguing discrete
details. These measures, while providing easy-to-quantify metrics,
strip memories of the narrative and contextual associations that
imbue them with value. An effective measure of recall, especially
of complex stimuli like videos, should therefore encapsulate the
essence, meaning, or narrative of the perceived stimuli. Seman-
tic similarity, is one such measure, offering a more ecologically
valid and holistic comparison between the perception of a stimulus
and its reconstruction from memory. Semantic similarity can be
quantified by calculating the cosine angle between two vectors
in a multi-dimensional space—a smaller angle indicating greater
similarity. Due to its training on image and text paired data, the
Contrastive Language–Image Pretraining (CLIP) model [26] can
project visual and textual embeddings into a common latent space,
making it suitable for extracting and comparing semantic informa-
tion from both images (e.g., video frames, and drawings) and text
(e.g., captions).

4.1 Drawing Based Measures
In the context of the drawing experiment 1, there are two distinct
types of drawings: the drawings created by participants as a result
of their recall—“recall drawings"—and the drawings produced while
viewing a frame from the original video stimulus—“perceptual draw-
ings". CLIP image embeddings for both of these types of drawings
can be generated, enabling a straightforward semantic similarity
between them to be calculated. However, a challenge arises when
attempting to calculate the semantic similarity between a drawing
and the ground-truth video frames. This comparison is naturally
not straightforward as video frames are not drawings; they don’t
have the same properties and structural peculiarities inherent in
human drawings. Hence, a direct comparison between a drawing
1Data: https://doi.org/10.6084/m9.figshare.25579773.v1

and an image may not yield a useful measure of semantic similar-
ity. To bridge this gap, we turn to a ControlNet [42] conditioned
Stable Diffusion [27] model. Stable Diffusion is a state-of-the-art
open-source text-to-image model that can generate high-quality
synthetic images. In combination with ControlNet, synthetic im-
ages that closely align with the underlying semantics and structure
of the recall and perceptual drawings can be synthesised. These
synthesised images served as a “semantic bridge", allowing for a
more valid calculation of semantic similarity between the drawings
and the ground-truth video frames.

4.1.1 Recall Drawings vs Perceptual Drawings. While this compari-
son offers potentially valuable insights into the overall correspon-
dence between recalled and perceived content, and at face value
seems sensible and straightforward, it is not without its limitations.
While the CLIP model typically excels at mapping visual data to
a high-dimensional space, it can struggle with the inherent ambi-
guity and idiosyncrasies of hand-drawn images. For instance, it is
vulnerable to producing high similarity scores between drawings
with minimal semantic content.

Figure 6: Example Similarity score between a participant’s
recall (A) and perceptual (B) drawings.

Consider two drawing samples produced by a participant (Figure 6).
Both consist of black scribbles. Despite a lack of discernible seman-
tic features in these drawings, the CLIP similarity score between
them rounds to one. However, this actually makes a lot of sense if
we consider what the model is doing, and the fact that the dominant
semantic quality of both drawings—which they equally share—is
being a black scribble. In the absence of more complex semantic
features, this will be the case for any two images that share identical
colour characteristics. This highlights the importance of a minimum
level of participant drawing ability for this specific vector of analy-
sis. If a participant produces drawings with a high level of detail,
CLIP can extract a more meaningful higher-dimensional represen-
tation, and accordingly more nuanced and accurate semantic simi-
larity scores can be calculated. Interestingly, for participants who
demonstrated a high degree of drawing ability, even without con-
sistent use of colour, this approach proved to be quite effective, as
demonstrated in Figure 7. An analysis of this subset of high-quality
participant drawings (see Figure 8 for more examples) revealed a
subtle difference in the semantic similarity scores based on the high
recognition memorability of the videos which yielded a slightly

https://doi.org/10.6084/m9.figshare.25579773.v1
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(A) (B)

CLIP Score: 0.6924

Figure 7: Example of similarity score between recall (A) and
perceptual (B) drawings.

higher average semantic similarity score (𝑥 = 0.73, 𝑆𝐷 = 0.06) com-
pared to low recognition memorability videos (𝑥 = 0.65, 𝑆𝐷 = 0.07).
This difference, while small, approached statistical significance
(𝑡 = 2.09, 𝑝 = 0.051) and the weak correlation could be explained by
videos with high recognition memorability—due to their distinct
and memorable content—stimulating more comprehensive and pre-
cise drawings. However, given the small effect size and marginal
statistical significance, this finding should be interpreted cautiously.

Recall Drawing Video FramePerceptual Drawing

(A)

(B)

(C)

“man putting toothpaste on brush
to brush teeth”

“a man with long hair brushing
 teeth in mirror”

“cocolate cake on a wooden table
fairy lights and blue cup”

“fisher man’s boat out at sea” “passenger boat out at sea”

“chocolate sauce being poured on 
chocolate cake, wooden table
fairy lights, blue cup”

Figure 8: Examples of high-quality participant recall and per-
ceptual drawings with associated captions, alongside ground-
truth video frames. A and B are from videos in the high
memorability group, and C the low memorability group.

4.1.2 Recall Drawings vs Ground-Truth Video Frames. As previ-
ously mentioned, a direct comparison between drawings and video
frames is unlikely to be of much use as they have drastically diver-
gent visual and structural properties. Accordingly, a ControlNet
conditioned Stable Diffusion model was leveraged to create high-
fidelity image representations of participants’ recall drawings, as
shown in Figure 9. The intent was to transform the relatively low
resolution and potentially abstract recall drawings into more de-
tailed images, which can be compared more effectively with actual

video frames. The process of generating the surrogate images in-
volves feeding the caption into the Stable Diffusion model and
feeding the recall drawing into the ControlNet. The caption is used
to convey the desired conceptual properties of the synthesised
image, and the drawing is used to guide its structural composition.

“cool flaming metal octopus”

“barbie doll being washed
in the sink”

“grey bus with red stripe
 driving through city”

Frame Recall Drawing + Caption Synthetic

Figure 9: Examples of participant recall drawings and cap-
tions, and the resultantly synthesised images.

Once the synthetic image has been generated, it is then compared
against the first, middle, and last frames of the ground-truth video
to compute semantic similarity scores. This was done to account
for any temporal changes in the video’s narrative content, thereby
providing a more comprehensive and accurate representation of the
video’s overall semantics. The final similarity score was chosen as
the highest score from these comparisons, representing the closest
match between the synthetic image and the video frames. While
the synthesis of recall-drawing-based surrogate images facilitated
a comparative analysis with actual video frames, the results were
somewhat mixed. A weak but statistically significant positive cor-
relation was observed between the semantic similarity scores and
the ground-truth recognition memorability of the videos (𝑟 = 0.256,
𝑝 = 0.018). In other words, videos that were more memorable (high
category) tended to have higher semantic similarity scores com-
pared to less memorable (low category) videos. More specifically,
high recognition memorability videos yielded an average similarity
score of 0.66 (SD = 0.07), slightly higher than the low memorability
videos which averaged at 0.61 (SD = 0.06). A t-test performed on
these averages did not yield a statistically significant difference
(𝑡 = 1.56, 𝑝 = 0.124).

A second method of comparison considered both recall-drawing-
based synthetic images and synthetic images generated for the
ground-truth videos. Three synthetic images—using the first, mid-
dle, and last frames—were generated for the ground-truth videos
by passing the first ground-truth caption and a frame as inputs
to the ControlNet conditioned Stable Diffusion model. The final
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similarity score between a recall drawing and a video was cho-
sen from the highest comparison score between the synthetic re-
call image and each of the synthetic video-frame-based images.
A statistically significant positive correlation was found between
the semantic similarity scores and the memorability of the videos
(𝑟 = 0.563, 𝑝 < 0.003). More memorable videos (high category)
consistently had higher semantic similarity scores compared to less
memorable videos (low category). In terms of mean semantic simi-
larity scores, a statistically significant difference was noted between
the high and low memorability videos. Specifically, high memora-
bility videos demonstrated an average similarity score of 0.76 (SD =
0.07), which was significantly higher than that of low memorability
videos, which had an average similarity score of 0.68 (SD = 0.06),
𝑡 = 3.14, 𝑝 < 0.011. This stronger correlation and distinct differ-
ence in means suggests a more evident relationship between video
memorability and semantic alignment. The inclusion of synthetic
images representing the ground-truth videos potentially provides a
more accurate gauge of the semantic consistency between recall
and original video content.

0.7321

CLIP
Score

Figure 10: Example synthetic images generated from recall
drawings, and CLIP scores to a ground-truth video frame.

4.2 Textual Measures
In the context of the drawing recall experiments, textual measures
serve as an illuminating counterpart to visual measures, capturing
nuanced details of remembered stimuli that may not find expression
in visual representations. Three axes of comparison are considered:

Recall Captions vs Perceptual Captions reflects the fidelity
of recall, gauging the degree of correspondence between the se-
mantics perceived and those recounted from memory. A marked
distinction was observed between high and low recognition memo-
rability videos. High memorability videos exhibited significantly
greater semantic similarity between recall and perceptual captions
(𝑥 = 0.833, 𝑆𝐷 = 0.064) compared to low memorability videos
(𝑥 = 0.674, 𝑆𝐷 = 0.051; 𝑡 = 7.81, 𝑝 < 0.0002), suggesting that the
recognition memorability of a video bears a strong influence on the
semantic alignment between perceived and recalled stimuli.

Recall Captions vs Ground-Truth Captions provides an ex-
ternal assessment of recall accuracy, reflecting the degree of se-
mantic congruence between the recalled content and the original
video narrative. A difference in mean similarity scores between
high recognition memorability videos (𝑀 = 0.67, 𝑆𝐷 = 0.05) and

low recognition memorability videos (𝑀 = 0.64, 𝑆𝐷 = 0.06), sug-
gests that recalled captions of more memorable videos tend to align
more with ground-truth captions, but not to a degree sufficient to
yield a significant correlation with video recognition memorabil-
ity 𝑡 = 1.90, 𝑝 = 0.067. This lack of significance could stem from
variability in recall strategies and changes in information from
perception to recall, further compounded by participants’ innate
abilities to caption, which might obscure any underlying effects.

Normalised Recall-to-Ground-Truth Similarity accounts for
individual differences in perception and descriptive ability, allow-
ing for an adjusted measure of recall accuracy to be derived. This
is achieved by normalising the recall-to-ground-truth similarity
by the perception-to-ground-truth similarity. This ratio highlights
how effectively a participant’s recall aligns with the original video
content after factoring in their initial perceptual and descriptive
ability. This normalised measure revealed a significant correlation
between the normalised similarity score and video memorability
(𝑟 = 0.723, 𝑝 < .0027). High memorability videos yielded an aver-
age normalised similarity score of 0.819 (𝑆𝐷 = 0.038), significantly
higher than the average score of 0.667 (𝑆𝐷 = 0.053) observed for
low memorability videos (𝑝 < .0154). The emergence of this corre-
lation after normalisation suggests that the extent to which recall
preserves original perception appears to be strongly linked to the
recognition memorability of the video content.

4.2.1 Recall Caption Precision. A quantifiable measure of recall
precision, Caption Specificity (CS), was introduced to assess the
level of detail and specificity of the captions produced during the
recall phase of the experiments. CS was predicated on Average
Term Frequency-Inverse Document Frequency (Avg TF-IDF) and
Named Entity Count (NEC). The Avg TF-IDF was computed using
standard natural language processing (NLP) procedures: tokeniza-
tion, case normalisation, and punctuation removal, applied to a
corpus composed of the entire Google Conceptual Captions dataset
[30]. Each unique term within a recall caption was assigned a score
that was indicative of its relative significance within the caption
and its rarity within the corpus, facilitating the computation of
Avg TF-IDF. NEC complements Avg TF-IDF by focusing on the
level of detail of the caption. The default implementation of Named
Entity Recognition (NER) in the Python spaCy library [12], was
used. The final CS assigned to each recall caption was computed
by summing the normalised Avg TF-IDF and NEC. CS values from
the experiments revealed interactions between recall caption speci-
ficity and video recognition memorability categories. A relative
comparison measure was devised based on the difference between
the recall CS and the ground-truth CS, normalised by the difference
between the perception CS and the ground-truth CS. This created
a score that encapsulated the change in specificity from perception
to recall, relative to the ground-truth. A statistically significant
positive correlation was observed between the normalised CS and
high video recognition memorability, with 𝑟 = 0.36, 𝑝 = 0.009. This
finding indicates a link between recall caption precision and the
recognition memorability of the videos. Specifically, it suggests that
for videos categorised as highly memorable, the recall caption speci-
ficity more closely matched the ground-truth caption specificity
relative to the initial perception. Furthermore, when comparing



ICMR ’24, June 10–14, 2024, Phuket, Thailand Lorin Sweeney, Graham Healy, and Alan Smeaton

recall and perceptual caption specificity within recognition memo-
rability categories, the average differences between the was smaller
for high memorability videos compared to lowmemorability videos,
𝑡 = 2.18, 𝑝 = 0.037. These observations suggest that recognition
memorability might be linked to the quality and detail of recall.
However, it should be noted that high recognition memorability
videos might inherently contain more unique, detailed, or rich con-
cepts, which could influence the observed differences in caption
recall precision.

4.3 Other Measures
Alongside the primary analysis, the recall drawing experiments
incorporated two additional measures to enrich understanding of
video recall memorability. The first of these addressed instances of
forgotten or misremembered videos. Participants who could not
remember a particular video typically left the drawing canvas blank,
and wrote a statement akin to “I don’t remember" in the caption.
Videos that were misremembered were identified by comparing
the recall drawing and captions with the corresponding perceptual
drawing and captions. Interestingly, none of the videos in the high
memorability category were forgotten or misremembered. For the
low memorability category, there were nine instances (out of 140)
of videos being forgotten or misremembered. Of these, one video
was forgotten/misremembered by three participants and two were
forgotten/misremembered by two participants. Notably, all mis-
remembered instances involved a video from the encoding phase
positions 2 or 3 being confused for a high memorability video in
the corresponding 2nd or 3rd position. A subsequent Z-test for the
difference in proportions of correctly recalled videos between high
and low recognition memorability videos revealed a significant
difference (𝑍 = 3.0542, 𝑝 = .00228). This difference in recall pro-
portions between high and low recognition memorability videos
provides further evidence for the existence of a relationship be-
tween recognition and recall.

A second measure involved participants completing a VVIQ fol-
lowing the experiments, the distribution of which largely aligned
with what is expected in the general population. Only one partici-
pant reported a complete absence of mental visual imagery, scoring
a 16. This specific participant’s drawings were not discernibly dif-
ferent to the average drawing, and did not result in any drawing
score outliers. Additionally, a Pearson correlation analysis revealed
no significant direct relationship between VVIQ score and any
drawing recall score measures—recall vs perceptual drawings, syn-
thetic recall images vs ground-truth images, and synthetic recall
images vs synthetic ground-truth images, 𝑟 = −0.086, 𝑝 = 0.182
𝑟 = 0.073, 𝑝 = 0.235 𝑟 = 0.065, 𝑝 = 0.275, respectively. How-
ever, independent-samples t-tests showed a significant difference
in mean VVIQ scores between participants in the top quartile (>64)
and those in the bottom three quartiles across the three measures
of CLIP similarity scores. For recall versus perceptual drawings
𝑡 = 2.28, 𝑝 = 0.026; for synthetic recall images versus ground-truth
images, 𝑡 = 2.15, 𝑝 = 0.034; and for synthetic recall images versus
synthetic ground-truth images, 𝑡 = 1.98, 𝑝 = 0.049. These results
indicate an interaction between vivid mental imagery capacity and
memory recall fidelity. While a strong direct correlation between
mental imagery ability and recall accuracy isn’t consistent across

participants, those in the top VVIQ quartile show enhanced se-
mantic precision in their recall drawings. This enhancement may
not solely indicate recall quality but could also suggest that higher
VVIQ scores relate to superior drawing representation abilities,
rather than enhanced recall ability alone.

5 CONCLUSION
The results in this paper suggest that there is, at the very least,
not an absence of a relationship between recognition and recall
memorability for videos, as indicated by Bainbridge et al.’s previous
work on images [2]. Rather, there is likely a notable relationship
obscured by their amalgamation in “yes/no" paradigms, which only
becomes evident withmore refinedmeasures, and at extremes of the
memorability spectrum. This relationship, underscored by dispari-
ties in semantic alignment and recall precision between videos of
high and low recognition memorability, emphasises the need for fu-
ture experiments to isolate familiarity-based and recollection-based
recognition.

Our introduction of the Caption Specificity (CS) metric repre-
sents a step forward in quantifying recall precision, revealing a
significant correlation between normalised scores and high video
recognition memorability. Additionally, the absence of forgotten
or misremembered videos in the high memorability category aug-
ments the body of evidence in favour of a general correlation be-
tween recognition and recall memorability. Incidentally, a signifi-
cant enhancement in recall precision was noted among participants
in the top VVIQ quartile, warranting further investigation into the
relationship between imageability and memorability. However, our
exploration also reveals the nascent state of our methodology and
the need for refinement in both experimental design and analytical
tools. The drawing-based recall experiment, while providing valu-
able insights, underscores the challenge of comparing recall with
traditional measures of recognition, and points toward the need to
evolve beyond current paradigms.

Future endeavours should focus on refining drawing analysis
techniques, potentially through the development of a standardised
scoring rubric that integrates novel metrics for assessing qualitative
aspects of memory, such as emotional resonance or narrative coher-
ence. Furthermore, while we focus on visual input there are other
modalities such as the audio channel [35] that impact video memo-
rability. The creation of multimodal datasets that can independently
and comprehensively capture auditory, visual, and conceptual di-
mensions may offer a more holistic understanding of memorability
across various sensory modalities. Ultimately, the imperative for a
more exhaustive exploration into memorability is clear. The devel-
opment of a refined computational framework that distinguishes
between familiarity- and recollection-based memorability could
impact how we interact with and retrieve digital content. Only by
meticulously accounting for the subtleties of human memory can
we pave theway for advancements inmultimedia retrieval systems—
enhancing our ability to remember and rediscover valuable content.
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