

Leila Bowe, Belinda Huerta, Enrique Jacobo Díaz-Montaña, Christopher Newton and Fiona Regan

> **Ønviron** 2024 25th - 27th March 2024

PROJECT OVERVIEW

ARUP

OVERVIEW

- Introduction • Results
- Problem Conclusion
- Literature Review • **PFAS sources in Ireland**
- Methodology • Ackn • Source identification

Implementation

						•	•	•	•	٠	•	•	•
	•	•	•	٠	•	•	٠	•	•	•	•	•	
owledgments		•	•	•	•	٠	٠	•	•	•	•	•	
		•	•	•	٠	٠	٠	•	•	•	•	•	•
· · · · · · · ·	•	•	•	•	•	٠	٠	•	•	•	•	•	
· · · · · · · · ·	•	•	•	•	•	٠	٠	•	•	•	•	•	•
· · · · · ·	•	•	•	•	•	٠	٠	•	•	•	•	•	•
· · · · ·	•	•	•	•	•	٠	•	•	•	•	•	•	•
				•	•	•	•	•	•	٠	•	•	•

Figure I: Molecular structure of PFOS

- Human-made
- **4700**+

chemicals

 Environmental and human

health issues

- Persistent
- Bioaccumulative

PROBLEM

First Problem

EST p F ASS

- Ubiquitous in the aquatic environment
- Detected in water, air, soil, plants and biota

Second Problem

• Where is it in Ireland? • Scale up a risk assessment methodology to investigate **Irish PFAS sources**

LITERATURE REVIEW **PFAS sources in Ireland**

Anthropogenic sources

- Personal care products
- Non-stick pans
- Detergents
- Waterproof clothing
- Food and drink packaging

Municipal sources

- Incinerators
- Recycling facilities
- Landfills (lined and unlined)
- Solid Recovered Fuel (SRFs)
- Compost facilities
- Wastewater treatment facilities
- Biosolids

6

Civil sources

- AFFFs (fire-fighting foams)
- Airports
- Fire stations
- Military bases

Industrial sources

- Chemical manufacturing plants
- Pharmaceuticals facilities
- Paper and wood processing plants
- Information and technology facilities
- Data centres

PFAS in the environment

RECEPTOR

ARUP

METHODOLOGY Source identification

Dimensional calculation

Chemical footprint

Dimensional modelling

IMPLEMENTATION PFAS sampling along the River Liffey

Figure 3: Sampling Locations along River Liffey

PFAS acronym	PFAS name					
PFPeA	perfluoropentanoic					
PFHxA	perfluorohexanoic					
PFOA	perfluorooctanoic					
PFNA	Perfluorononanoic					
PFDA	Perfluorodecanoic					
PFUdA	perfluoroundecanoic					
PFDoA	perfluorododecanoic					
GenX	perfluoropropoxypropanoic					
PFBS	perfluorobutanesulfonate					
PFOS	perfluorooctanesulfonate					
PFDS	perfluorodecanesulfonate					
PFPeS	perfluoropentylsulfonate					
PFHxS	perfluorohexasulfonate					
FOSA	perfluorooctanesulfonamide					
PFNS	perfluorononylsulfonate					

Table I: 15 PFAS compounds tested for

ARUP

IMPLEMENTATION

Figure 4: Total Concentrations of PFAS along the River Liffey

ARUP

1

IMPLEMENTATION Step I - Geographical Proximity

Figure 5: Potential sources of PFAS in Liffey Catchment (EPA Maps, 2022)

- Industrial Emissions Licence
- Waste facilities

12

• Pollutant release transfer registers Annual Environmental Reports

IMPLEMENTATION Step 2 - Chemical footprint

Figure 6: Speciated PFAS concentrations along River Liffey

IMPLEMENTATION Step 2 - Chemical footprint

Figure 7: PFOS concentrations compared to EQS AAC

		_			
		_			
L13	L14	L15	L16	L17	L18

IMPLEMENTATION Step 4 - Dimensional Modelling

RESULTS **Source identification**

22 stormwater overflow outlets in 2.5km l per ~ll5m

Figure 8: Total PFAS Concentrations and stormwater overflows

RESULTS **Source identification**

4I stormwater flow outlets in 30km

l per ~730m

Figure 9: Total PFAS Concentrations and stormwater overflows

Figure 10: Pollutant release transfer register locations (EPA Maps, 2022)

Acknowledgements **Ønviron** 2024

25th - 27th March 2024

Leila Bowe, Belinda Huerta, Enrique Jacobo Díaz-Montaña, Christopher Newton and Fiona Regan

ARUP