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Abstract
Tu-Khiem Le

Information Lifelogging: Leveraging Eye Movements and Reading

Comprehension for Efficient Retrieval of Previously Encountered

On-Screen Information

The progress of lifelog research has enabled individuals to comprehensively capture
their daily experiences. As a result, previous studies have primarily focused on
developing tools to organise and retrieve lifelog moments effectively. However,
existing lifelog data often lacks the ability to capture the lifelogger’s focal points
(their attention), despite providing information-rich first-person-view lifelog images
of their surroundings and activities. Consequently, this limitation hinders the
lifelog retrieval systems’ utility when lifeloggers seek to retrieve specific information
they have previously encountered. To address this research gap, a subjective point
of view, represented through eye movements, should be incorporated as a new
modality into lifelog data, thereby enhancing the retrieval performance. In pursuit
of this objective, this dissertation investigates the feasibility of retriving on-screen
information by analysing lifelogger’s reading activities and comprehension level.

The primary contributions of this dissertation are as follows. Firstly, the
development of LifeSeeker, an advanced interactive lifelog retrieval system, is
developed and benchmarked in numerous lifelog retrieval challenges and
competitions. By efficiently integrating various modality processing components
(e.g., visual, text, location, biometrics) and user interaction components (e.g.,
search, filtering, browsing, relevance feedback) into a single interactive retrieval
framework, LifeSeeker ranked among the top systems in these benchmarking
activities, serving as the foundation for the rest of the thesis. Secondly, a novel
reading comprehension dataset was created to explore the feasibility of recognising
reading activities and estimating reading comprehension levels in daily life.
Statistical tests and machine learning analyses on the dataset have revealed the
strong connection between eye movement patterns, reading conditions, and reading
comprehension. This led to a novel method for estimating reading comprehension
with potential real-world applications. Furthermore, the longitudinal aspect of
reading comprehension was investigated to examine the stability and generalisation
of reading comprehension estimation models over time. Lastly, the reading
comprehension estimation model was integrated into LifeSeeker as a new modality
processor, resulting in a significant improvement in the system’s overall retrieval
performance. In summary, this dissertation contributes to the understanding of
reading activities and reading comprehension in real-world settings and showcases
the potential of integrating reading comprehension estimation to enhance the
retrieval of previously encountered information in lifelog data.
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Chapter 1

Introduction

How frequently do we find ourselves seeking a piece of information that we recall

having encountered previously, but cannot remember where or how to find it? This

common problem, experienced in our daily lives, can be profoundly frustrating, and

it has raised questions about the reliability of our memory. The inability to retrieve

familiar information not only hinders our productivity but also affects our confidence

in relying on our memory. Whether it is recalling critical data for a project, retrieving

past research findings, or even remembering everyday details, this cognitive challenge

can lead to significant setbacks and delays. The realisation that the human memory

system has its limitations, resulting in lapses in information retrieval, has led us

to consider the need for new mechanisms to support and enhance our capacity for

remembering.

One of the approaches to support remembering vital information is by creating

an external repository where such knowledge can be stored, organised, and easily

retrieved from. This practice is not entirely novel, as throughout history, humans

have employed various methods to externalise their memories. From ancient cave

paintings and inscriptions on stones to the use of diaries, and more recently, in the

digital age, we have an abundance of tools available, such as blogs, videos, photos,

and social media, to capture and preserve our memories [10] However, in the digital

age, the amount of information being generated has surged exponentially, rendering

traditional memory-keeping methods less effective. This growing concern has given

rise to a movement known as "Building a Second Brain" (BASB), aimed at

addressing the limitations of our biological memory by establishing reliable

1



Chapter 1. Introduction

external systems [11]. Building a second brain involves the creation of a structured

and easily accessible digital repository that can supplement our natural cognitive

processes. This approach leverages a variety of tools and techniques to capture,

organise, and link information, effectively offloading the burden of memorisation

from our brains. At its core, the concept of building a second brain revolves around

the idea of "Keeping Found Things Found" (KFTF), a concept that has been of

interest to researchers for decades [12]. KFTF emphasises the importance of

establishing reliable systems to manage and retrieve information when needed,

without succumbing to the frustration of fruitless searches. However, achieving

such a system requires tremendous effort and having to manually organise and

maintain a repository of information can be a daunting task, especially when

dealing with large volumes of data.

To address this, many desktop-based personal information management (PIM)

systems have been developed to facilitate efficient information management [13–15]

by automatically analysing and indexing the files stored on a computer to form a

retrievable database. Since most PIM tools were designed for handling only a

subset of data types (e.g. emails, PDF documents, web caches), they depend

heavily on data decoders to read a new file type to index it, which makes them not

generalise well to capture all on-screen information that a user saw in their daily

computer usage. The emergence of the lifelogging concept, which is commonly

known as the process of generating a personal archive of an individual’s life

experiences by passively capturing information for various sensors [10], has opened

a new approach to the problem of personal information management. Instead of

having to index all data that one has on their computer (which requires an

excessive amount of data decoders), a continuous screen capture could essentially

reveal what information is being displayed (which forms a genre of lifelog data of

computer usage). Moreover, the data captured in this way illustrates how the

modality of information was formatted when displayed to the user, thus allowing

the user to form more detailed queries than conventional PIM tools.
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Despite the ability to capture on-screen information using lifelogging

techniques, the problem of efficiently indexing the content a human has consumed

for future refinding remains a major challenge. Prior approaches to indexing lifelog

data were content-based, which analysed the entire content of lifelog images for

retrieval. However, since people often only focus on specific parts of the

information that are interesting to them, indexing the entire content of an image is

not an efficient way to support refinding as it may include irrelevant information

that might lead to the reduction of retrieval accuracy. Eye tracking is a suitable

data source to measure a human’s interest, as it has been extensively researched in

the psychology literature and adopted to many IR tasks [16–19]. Studying eye

movement features for on-screen information retrieval is the primary focus of this

dissertation since there has not been a standard approach towards indexing and

retrieving on-screen information and coupling gaze features with on-screen

information to enhance the retrieval outcome of viewed screen contents. In the

following sections, I will give a brief overview of lifelogging (Section 1.1), personal

information management (Section 1.2), and eye movement in reading analysis

(Section 1.3), which are the main research areas that this dissertation is based on.

After that, I will present in Section 1.4 the hypothesis and research questions that

this dissertation aims to address and the contributions of this dissertation to the

research community.

1.1 Lifelogging

As the volume of personal data generated by individuals continues to grow, there

emerges a corresponding need for effective data organisation and retrieval systems.

These personal archives encompass data from various sources, including mobile and

wearable devices, tablets, laptops, and social media platforms. Accompanying this

surge in personal data volume is an increased interest in personal data organisation

and analytics, where one pioneering area in this field is lifelogging.
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Lifelogging is the process whereby individuals gather (often passively) large

multimodal personal data archives from diverse sources, aggregating them into a

single repository which is known as a lifelog. This practice is defined as a form of

pervasive computing that generates a unified digital record of an individual’s

experiences, captured multimodally through digital sensors and stored as a

personal multimedia archive [20]. It is also described as a phenomenon where

individuals digitally record their daily lives in various levels of detail for different

purposes [21]. Unlike traditional data organisation challenges, such as photo or

email archives, lifelog, typically being non-curated and passively captured, presents

unique challenges in multimedia analytics and information retrieval [10].

The concept of lifelogging, despite being relatively modern, has been around for

decades. In 1945, Vannevar Bush proposed the Memex [22], a hypothetical

hypermedia device for storing an individual’s books, records, and communications,

and creating linkable information trails. This concept laid the groundwork for

lifelogging. The first practical instance that could reasonably resemble a lifelog was

Richard Buckminster Fuller’s Dymaxion Chronofile [23], a comprehensive physical

scrapbook (of all correspondence, bills, notes, sketches and clippings from

newspapers) maintained from 1920 to 1983, which now resides at Stanford

University. However, it was not until Gordon Bell of Microsoft embarked on the

MyLifeBits project in 2001 [24–26] that the digital lifelogging concept was fully

realised. This project managed to digitally capture and store all personal data,

including emails, web pages, photos, videos, and phone calls.

Historically, lifelogging was hindered by the unavailability of necessary

equipment, with many required data sources being too cumbersome or expensive to

capture. However, recent advancements in sensor and wearable technology have

made it feasible for individuals to comprehensively track daily activities such as

eating, commuting, exercising, working, and sleeping. These developments have

also fostered a greater public acceptance of such technologies, enhancing

participation in lifelogging, both from the perspectives of the lifelogger and the
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recorded subjects in lifelogs.

Ideally, this huge amount of personal data should be securely stored in an

always-on, multimodal storage service. This service should integrate various

time-stamped sensor data sources, organised in a manner that enables standard

data processing techniques like content analysis, information retrieval, data

browsing, and summarisation. Prior to these stages, data typically undergoes

cleaning, temporal alignment, normalisation of sensor outputs, and other methods

of data linking and aggregation. This is done in an effort to create a consistent and

comprehensive lifelog of the individual.

Due to the huge amount of lifelog data accumulated over time, it became

necessary to have a system which efficiently organises data so that it could be

retrieved precisely and effortlessly. The emergence of such lifelog retrieval systems

also created the need for these systems to be benchmarked against each other. To

serve this purpose, many lifelog research tasks were organised. The most common

ones were Lifelog tasks at NTCIR [27–30], ImageCLEFlifelog [31–34], and Lifelog

Search Challenge (LSC) [35–39], each of which employed various metrics for

comparatively evaluating the retrieval systems. The participating systems also

came in a variety of retrieval functionalities, user interfaces and user interaction

methods (details in Section 2.1.2). LifeSeeker [40–44] – an interactive lifelog

retrieval system developed by my colleagues and I – is one of the systems that

participated in these tasks. The system is an experimental platform for exploring

the components that make up a state-of-the-art lifelog retrieval system, which

ultimately serves as a foundation for developing a retrieval system for on-screen

information in this dissertation.

1.2 Personal Information Management

Aside from generic lifelogging which aims at recording the totality of the life

experience of an individual, there are many situation-specific applications of
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lifelogging that mine deeper insights from a particular aspect of life. Lifelogging

was used in the area of market research to measure one’s exposure to advertising

campaigns [45]. In 2013, Aizawa et. al. applied the concept of lifelogging to

monitor diet with a system known as Foodlog [46]. Kids’Cam was a lifelog-based

project which explores the environment in which children live [47]. Moreover,

lifelogging is also applied in conversation analysis [48], causality detection in

human activities [49], understanding human well-being [50] and sport analysis [34].

In terms of capturing computer usage, Hinbarji et al. [51] developed a

MacOS-based software called Loggerman1 which runs in the background and

captures screenshots, mouse and keyboard inputs to form an archive of a human’s

on-screen experience. However, there has been no attempt to analyse the archive

generated by Loggerman in terms of indexing and retrieving on-screen activities.

The concept of logging on-screen information on a day-to-day basis to form

part of a human’s digital archive can be linked to the personal information

management (PIM) concept which focuses on analyzing the way that people

manage their physical and electronic information and building tools that support

such information management goals. The term Personal Information Management

was first used by Lansdale [52] in 1988 which discussed the burden of manual

information management and stressed the need for an automatic user-oriented

personal information management system. This was followed by extensive research

which has been conducted to learn the human’s behaviour in keeping information

and identify the area that a PIM tool can aid them in doing so [53–55]. In 2003,

Dumais et al. introduced the SIS (Stuff I’ve Seen) system [13] which supports

refinding of seen information. The system was built on top of the Microsoft Search

architecture which gathers information regardless of source (e.g. webpage, files,

email, books), then tokenises the text data into tokens to build an inverted index

for retrieval. iMecho [14] focused on the association and semantic links between

information so that the user can navigate through these links to obtain the
1http://loggerman.org/
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information need. Dessy [15] was another PIM system that supports mobile devices

which search for files based on their content and metadata. However, these systems

focused mostly on indexing emails, documents (PDF), web cache, and a few other

MIME types2. They had a restriction in the supported file, meaning that these

systems do not generalise to all data sources. Conversely, Reeves and Ram et al.

approached the problem of digital information capture by analysing

screenshots [56, 57]. Text extraction techniques like OCR and image analysis (e.g.

face detection, colour histogram) were employed to understand what information

was being presented on screen. This allows a searchable database for retrieving

screenshots to be generated. Although Reeves and Ram et al.’s work shares similar

goals with this dissertation, my approach distinguishes itself by focusing on a

deeper level of on-screen information analysis, in which eye tracking is employed to

understand what particular information was perceived by the user, leading to a

more personalised and accurate retrieval system of previously seen information.

1.3 Eye movement and Reading Analysis

To incorporate eye tracking into the lifelogging system to understand what

information was perceived by the user, it is necessary to investigate human reading

comprehension and how eye movement can be used to estimate their level of

information understanding, which in turn can be used to extract useful information

from the screen to facilitate better indexing and retrieval of previously seen

information.

Reading comprehension is the process of understanding written text, enabling

the acquisition of information, communication with others, and successful

completion of various tasks. It is a fundamental cognitive process that plays a

pivotal role in our daily lives as the vast majority of the knowledge of humankind is

communicated in the written form [58]. Reading entails visually perceiving written

words and decoding them into meaningful units, such as phrases, sentences, and
2https://en.wikipedia.org/wiki/Media_type
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paragraphs [59–61]. Comprehension, on the other hand, refers to the mental

process of extracting meaning from the text, making connections between ideas,

and creating a coherent understanding of the overall message [62] It involves not

only understanding the literal meaning of the words but also inferring implicit

information, identifying main ideas, and grasping the author’s purpose. Reading

comprehension combines the skills of decoding and interpreting text, enabling

individuals to engage with written material, gain knowledge, and derive meaning

from what they read. Even though many individuals possess reading abilities [63],

it is frequently observed that reading an identical text passage can yield varying

levels of comprehension among different readers [64, 65]. Thus, understanding

reading comprehension, or the ability to understand and retain written text, is of

paramount importance. Previous methods of assessing reading comprehension

primarily relied on a combination of assessment approaches, including interviews,

questionnaires, oral retelling, freewriting, and think-aloud procedures [66] While

these methods have been effective, they are often only practical in controlled

settings where specific assessments designed for measuring comprehension are

available. In everyday situations where reading happens as part of routine

activities like browsing websites, reading newspapers, or attending seminars, using

these techniques to assess comprehension on an individual basis would be too

burdensome. Consequently, there is a need for automated methods that passively

estimate reading comprehension by leveraging data sources that can be

unobtrusively captured in real-world settings using digital sensors and devices.

Eye movement in reading research has undergone significant development

across multiple eras, each marked by advancements in sensing technology [67]. The

initial era, from the 19th century to the 1920s, focused on investigating basic eye

movement measures such as fixations and saccades to understand the reading

process, as studied by Huey [68]. This was followed by the second era, extending

until the 1970s, characterised by the work of Tinker [69] and Buswell [70]. During

this period, initial attempts were made to apply eye movement research practically,
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although the scope remained limited to investigating cognitive processes through

eye movements. The third era witnessed a significant leap forward with the advent

of digital eye-tracking systems. These enable easier measurements, which has led to

a surge of eye movement studies in various aspects of reading. Rayner [67]

comprehensively summarised the progress made during this era. Presently, we find

ourselves in a new era of eye movement research, characterised by the development

of eye movement-based applications in real-world reading scenarios [71–82]. A

growing body of research has focused on exploring the eye movement

characteristics associated with different reading styles, such as thorough reading,

skimming, scanning, and proofreading [73–75]. These studies have demonstrated

that distinct reading styles exhibit unique eye movement patterns, providing

valuable insights for the development of machine learning models to identify

reading styles in real-world scenarios. Furthermore, numerous studies have found

the association between reading comprehension and eye movement

measures [76–82]. Despite variations in language, participant profiles, and reading

materials, these studies have consistently shown that eye movement measures can

be used to predict an individual’s comprehension level during reading. However,

some studies investigate comprehension in a question-answering manner, where

comprehension questions are provided in advance, which differs from real-world

reading scenarios where individuals read to gain knowledge and understanding, not

to answer specific questions. Moreover, certain studies have focused solely on the

sequential reading style [76, 77, 79–82], neglecting the fact that people employ

different reading styles depending on their purposes and goals. We contend that

different reading styles give rise to distinct eye movement patterns and levels of

reading comprehension. [75] notes the relationship between eye movement

measures, reading styles, and reading comprehension. They discovered significant

changes in eye movement measures and comprehension levels when people employ

different reading styles. Although the observed changes in eye movement

characteristics were identified by comparing specific pairs of reading styles in that
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work, extending this understanding to build a model which handles a more general

context of predicting reading styles through a multi-class classification task, would

be highly valuable. The identification of reading styles, in combination with eye

movement measures, can be utilised to estimate the corresponding comprehension

level of an individual during reading.

Building upon the advancements in eye movement research, my objective is to

investigate deeper into the estimation of reading comprehension in real-world

scenarios. To achieve this aim, I explored a novel approach that combines eye

movement measures and reading styles to estimate reading comprehension. I show

that by integrating the identification of reading styles alongside eye movement

measures for estimating reading comprehension can enhance the accuracy of

predictions within reading conditions. With this approach, on-screen information

can be indexed and retrieved based on the user’s level of comprehension, which can

be used to facilitate better indexing and retrieval of previously seen information.

1.4 Hypothesis and Research Questions

In the previous sections, I have discussed the need for a personal information

management (PIM) tool that can actively index and retrieve a user’s daily

information intake on the computer. Most PIM tools, to the best of my knowledge,

are designed to organise specific documents and files on the computer but lack the

ability to generalise to the multi-modal and unstructured information displayed on

a computer screen (e.g., multiple windows on the screen, one of which shows a news

webpage with text, images, and advertisements). Lifelogging provides a solution to

this problem by capturing on-screen information (e.g., using Loggerman [51]) and

retrieving it using state-of-the-art lifelog retrieval systems [38]. However, it lacks

the ability to distinguish the information a user has read from the information

displayed on the screen. Consequently, the retrieval results might contain irrelevant

information that the user has no interest in. To illustrate this challenge, consider a
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common scenario faced by researchers. We often find ourselves in situations where

we recall having read a paper that stated facts or findings relevant to our current

research, but we struggle to retrieve that specific paper. Although a simple

keyword search can be used, it may not always guarantee success, particularly

when there are numerous papers with similar keywords, and the desired paper does

not rank high in the search results due to other papers matching the keywords

better. Despite knowing that we paid more attention to the paper we are looking

for and merely skimmed through the others, there is currently no existing system

that can leverage this information to re-rank search results based on the user’s

comprehension of the information. This realisation has led to the idea of

incorporating eye movement measures into retrieval systems, as eye movement can

provide valuable insights into where a user’s attention is focused and how well they

comprehend the information displayed on the screen. This adds a new dimension

to the retrieval process, allowing information to be indexed based on not only the

content, but how much attention the user paid to it. By doing so, more important

information (i.e., information with more attention or higher comprehension) can be

prioritised in the retrieval process, leading to more relevant search results. My

conjecture is that eye movement measures can be employed as a new data source

for lifelogs, enabling the estimation of users’ comprehension of on-screen

information for better indexing and ranking of retrieval results. I refer to this type

of lifelog data, where on-screen information is captured in combination with eye

movement measures, as infologging, a term I will use throughout this thesis.

Based on this, I define the hypothesis for this dissertation as follows:

Hypothesis: It is feasible to enhance the retrieval performance of

previously perceived on-screen information by integrating users’

comprehension levels, estimated from their eye gaze patterns captured

through eye tracking, into a state-of-the-art interactive lifelog retrieval

system.
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In order to either prove this hypothesis, a number of related research questions

have been developed as follows:

• Research Question 1 (RQ1). What are the key design principles

and components required to construct a state-of-the-art lifelog

interactive retrieval system?

To develop an effective interactive retrieval system for infologging data, it

is crucial to first establish a strong foundation by identifying the key design

principles and components that contribute to the creation of a state-of-the-art

lifelog retrieval system. By addressing this research question, I aim to gain

valuable insights from the extensive body of literature within the lifelogging

research domain and leverage the experience gained through participating in

annual lifelog benchmarking challenges. The knowledge acquired will not only

help in assessing the system’s performance against contemporary standards but

also serve as a guiding light in the development of a robust and user-friendly

retrieval system.

While working on this research question, I have developed an interactive

retrieval system called LifeSeeker and participated in multiple Lifelog Search

Challenges, each year presenting a different iteration of the system with new

features and improvements in terms of user interface and retrieval

performance. This iterative process of design, implementation, and

refinement through successive challenges has led to the creation of a system

that exhibits state-of-the-art performance in lifelog retrieval tasks. By

achieving this, I have shortlisted the key design principles and components

that are essential for constructing a state-of-the-art system, which addresses

this research question.

• Research Question 2 (RQ2). To what extent can machine learning

models accurately estimate reading comprehension levels based on

eye movement features extracted from eye-tracking data?
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Estimating reading comprehension levels accurately is the core of an effective

infologging retrieval system. Addressing this research question will provide

valuable insights into the feasibility of using eye movement data as a reliable

source for gauging users’ understanding of on-screen information, ultimately

contributing to the development of a more refined and user-centric retrieval

system.

To develop machine learning models for estimating reading comprehension, I

first needed to construct a reading dataset that contains eye movement data

and reading comprehension scores, since such a dataset is not available in the

literature. This dataset was gathered through a user study wherein

participants were instructed to read various articles employing different

reading strategies, namely sequential reading, skimming, scanning, and

proofreading and then answer multiple-choice questions to assess their

comprehension of the articles. Throughout this process, their eye movements

were recorded using an eye tracker. Subsequently, ocular events were

extracted from the eye movement data and used to compute a set of eye

movement features. These features served as the foundation for training

machine learning models to accomplish two primary tasks: (1) predicting the

reading condition (reading styles) and (2) estimating reading comprehension

levels. Experimental results show that there is a close relationship between

eye movement features, reading conditions (reading styles) and reading

comprehension as eye movement features can be used to predict reading

conditions and reading comprehension with high accuracy and correlation

scores, respectively. I also show that the prediction of reading comprehension

can be improved by integrating the predicted reading condition label as extra

features into the model. Ultimately, this research question is addressed by

demonstrating that reading comprehension can be estimated from eye

movement features.
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• Research Question 3 (RQ3). How robust is the reading

comprehension estimation model when applied to longitudinal

reading data?

To ensure the real-world applicability of the reading comprehension

estimation model, it is essential to examine its robustness when applied to

longitudinal reading data. By exploring eye movement features and its

impact on the model’s performance over time, I aim to identify potential

challenges and opportunities for enhancing the model’s adaptability to varied

reading patterns over time. Addressing this research question will provide

valuable insights into the model’s capacity to maintain consistent

performance in real-world scenarios, where reading behavior may fluctuate

over extended periods.

To explore the robustness of the reading comprehension estimation model in

the context of longitudinal reading data, a longitudinal study was conducted.

In this study, participants engaged in reading tasks similar to those in RQ2, but

these tasks were spread over a span of six non-consecutive days. This approach

was designed to simulate a more realistic, varied reading pattern over time. The

experimental procedure from RQ2 was adapted for extracting eye movement

features and training machine learning models to classify reading conditions

and estimate reading comprehension levels. The key distinction in this study

was the training and testing framework of the models: they were trained on

data from the initial days and subsequently tested on data from the remaining

days. The experimental results revealed consistent performance of the models

across different days for both the task of classification and comprehension level

estimation. Notably, it was observed that an increase in the number of days

used for training correlated positively with improved model performance. This

finding suggests that the models benefit from exposure to more varied data

over time, enhancing their predictive accuracy. Overall, this research question

is addressed.
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• Research Question 4 (RQ4). To what extent does the integration of

reading comprehension estimation improve the performance of the

infologging retrieval system for on-screen information compared to

a baseline system without this feature?

Integrating reading comprehension estimation into the infologging retrieval

system is expected to enhance its performance by prioritising information

that users have actively engaged with and comprehended. By comparing the

system’s performance with and without this feature, I aim to quantify the

benefits of incorporating comprehension estimation in the retrieval process.

Addressing this research question will not only demonstrate the effectiveness

of the proposed approach but also highlight the potential for further

improvements in the field of infologging retrieval systems, ultimately leading

to the development of more efficient and user-centric tools for managing and

accessing personal information.

In order to address this research question, another study was conducted to

collect a novel infologging dataset. The data collection process involved a

participant using a computer for their daily tasks while their eye movements

were recorded using an eye tracker. Concurrently, the on-screen information

viewed by the users was captured as images. This screen data was then

processed to extract text, which was later used for indexing and retrieval

purposes. In parallel, the eye-tracking data was processed through the

reading comprehension estimation model to obtain the user’s level of

understanding of the content displayed on the screen. With this data, the

state-of-the-art lifelog retrieval system was adapted to index both the screen

images and the comprehension data.

To evaluate the effectiveness of this infologging retrieval system, two

experiments were conducted. The first experiment was designed to evaluate

the performance of the system in a non-interactive manner. The ranked lists
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returned by the system with and without the integration of reading

comprehension estimation were compared to determine whether the

integration contributed to improved retrieval performance. Additionally, the

second experiment was conducted in an interactive manner, through a user

study. Similar to the first experiment, participants were asked to perform a

series of search tasks using the system with and without the integration of

reading comprehension estimation. The study took the format of the LSC

competition, and the systems were evaluated on the accuracy of the returned

results and the time taken to complete the tasks. The findings from both

experiments suggest that the system’s performance is improved when reading

comprehension estimation is integrated into the retrieval process. This, in

turn, addresses this research question.

1.5 Research Contributions

In this section, the key contributions made in this thesis are outlined as follows:

• Chapter 4 - RQ1:

– Contribution 1: I construct an interactive lifelog retrieval system (in

collaboration with my colleagues) called LifeSeeker, which was evaluated

across several Lifelog Search Challenges held annually. The outcomes of

these challenges consistently demonstrated that LifeSeeker ranks among

the leading state-of-the-art systems in lifelog retrieval. Lifeseeker is a

novel combination of textual and visual search functionalities, with

advanced filtering and feedback mechanisms to enhance retrieval

performance. The user interface design is simple, intuitive and

informative, with the integration of search history for re-finding

purposes. It also possesses speed and scalability due to the use of

distributed and scalable technologies and caching mechanisms.
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• Chapter 5 - RQ2:

– Contribution 2: I construct a novel multi-modal reading dataset

consisting of eye-tracking data and comprehension measures for four

different reading conditions, enabling the investigation of the

relationship between eye movements, reading strategies, and

comprehension levels.

– Contribution 3: I show that by incorporating the identification of

reading conditions with eye movement features, we can improve the

machine learning model’s performance in estimating reading

comprehension levels, i.e. we could better predict comprehension level

knowing the reading condition.

– Contribution 4: I provide novel insights into the importance of eye

movement measures for classifying reading styles and estimating

comprehension levels through a comprehensive analysis using statistical

testing procedures and feature contribution analysis.

• Chapter 6 - RQ3:

– Contribution 6: I create a unique longitudinal reading dataset

consisting of participant reading data collected over six non-consecutive

days, enabling the exploration of the temporal robustness of reading

comprehension estimation models.

– Contribution 7: I show that the eye movement features and the

comprehension estimation model explored in RQ2 are robust when

applied to longitudinal reading data, i.e. the model’s performance is

consistent across different days.

– Contribution 8: I uncover novel insights into the temporal stability

of eye movement features across multiple sessions and their limited

contribution to the model’s performance in estimating comprehension

levels, highlighting the need for further research in this area.
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• Chapter 7 - RQ4:

– Contribution 9: I introduce InfoSeeker, a novel interactive retrieval

system designed for infologging data, which exploits the eye gaze data to

enable filtering search results based on the infologger’s level of

comprehension of the content displayed on the screen and allow users to

quickly retrieve the desired information.

– Contribution 10: I demonstrate the significant improvement in the

performance of the InfoSeeker system through the integration of reading

comprehension estimation, as evidenced by the evaluation of the system

in both non-interactive and interactive settings using a user study.

1.6 Research Limitations

While the research presented in this thesis has made significant contributions to the

fields of lifelogging, eye movement analysis, and information retrieval, it is essential to

acknowledge the limitations that may impact the interpretation and generalisability

of the findings. These limitations arise from various factors, including the choice

of equipment, the characteristics of the datasets, and the scope of the study. By

critically examining these limitations, I aim to provide a balanced perspective on

the research outcomes and highlight potential areas for future investigation. In the

following subsections, I will discuss two main categories of limitations: those related

to the comprehension estimation model and those pertaining to the gaze-coupled

retrieval system.

• Comprehension Estimation Model: The results of our study have

demonstrated the potential of utilising eye movement features and the

identification of reading conditions to predict reading comprehension levels.

However, it is important to consider several limitations when interpreting

these findings.

18



Chapter 1. Introduction

One of the primary limitations associated with the eye tracker used in our

research pertains to its accuracy. Specifically, the eye tracker exhibits a vertical

error, causing the gaze position to deviate from the actual position, as can be

seen in the gaze visualisation in Figure 5.1. This limitation prevents us from

precisely estimating the gaze position on a word level, which is crucial for

analysing eye movement in conjunction with text features. However, when

examining eye movement on the passage level, the error is less significant and

can be disregarded, as observed in previous studies [76]. Notably, our results

highlight that horizontal eye movement features were more influential than

vertical eye movement features in classifying reading conditions and reading

comprehension.

To address the issue of the eye tracker’s vertical shift error, various correction

methods can be applied. For example, inter-trial calibration information

collected in our dataset can be utilised to adjust gaze position (which we

have not yet exploited in this paper), or line detection algorithms can be

employed to align fixations with the corresponding text lines, as proposed

by [83, 84]. It is worth noting that the error in our study is expected when

using a low-cost eye tracker, as it is a trade-off for the accessibility and

applicability of our research in real-world settings.

Another source of error we encountered is the presence of outliers in our dataset

resulting from participants mistakenly performing wrong tasks (i.e. reading

instead of scanning). Despite our efforts to mitigate this issue by including

task prompts on the screen (a small window on the top-right corner of the

screen as can be seen in Figure 5.1, some participants still performed the

wrong task. Unfortunately, we were only made aware of these outliers after

the experiment was completed, and we are unable to identify them specifically

within our dataset. However, based on participants’ reports, the number of

mistaken reading samples is small, and we believe that their impact on our

results is minimal. This belief is further supported by the performance of our
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classification model on reading conditions.

Finally, it is also crucial to acknowledge that the performance of the reading

comprehension estimation model on the longitudinal reading data could be

further improved, yet this was not feasible to investigate in this study due to

the limit of the available data. It was concluded in Chapter 6 that the

model’s performance improved with an increase in the number of sessions

used for training. The best model in Chapter 6 is obtained by utilising the

maximum number of sessions that can be used for training (which is 4

sessions, the remaining 2 sessions are used for validation and testing)

Without additional sessions, the score at which the model’s performance

plateaus is not yet determined, leaving room for further investigation when

more data is available.

• Gaze-coupled Retrieval System

The development of the InfoSeeker system, currently in its early stages,

represents an adaptation of a state-of-the-art lifelog retrieval system to

infologging data retrieval. While the initial results are promising, there are

several areas where the system could be enhanced to improve its robustness

and efficiency in handling infologging data. One notable aspect for

improvement is the system’s current search mechanism relies on matching

query text with OCR text from screenshots. This approach limits the

system’s capability, as it does not utilise other modalities in the retrieval

process. Consequently, the system fails to address queries that require these

additional modalities, such as queries that involve images or audio.

Furthermore, the system currently displays search results directly from the

ranked list generated by the cosine similarity matching algorithm, without

additional processing to re-organise these results. Implementing a mechanism

that groups similar screenshots could significantly improve user efficiency in

conducting search tasks. Such a feature would enable users to navigate through
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the results more intuitively and identify relevant information quickly.

Another area for development relates to the reading comprehension model

integrated into the InfoSeeker system. Although this model demonstrates

acceptable performance, as detailed in Section 7.4.1, there is potential for

further refinement. Specifically, the model’s performance has not been

assessed when re-trained exclusively on infologging data. This retraining

could provide insights into the infologger’s reading behaviour in real-world

settings, potentially enhancing the model’s predictive accuracy. However,

expanding the model’s training to encompass infologging data encounters a

significant challenge: the limited sample size of the existing infolog dataset.

Due to privacy concerns, it is impractical to collect additional infolog data

from a wider range of participants.

1.7 Thesis Outline

In this chapter, I have presented the motivation for this dissertation, the hypothesis,

the research questions that I aim to address, and the contributions of my research.

The remainder of this thesis is structured as illustrated in Figure 1.1, which can be

summarised as follows:

• Chapter 2 provides the underpinning knowledge and background information

about human eyes, how eye movements are recorded, and how eye movement

data is processed and analysed. I also outline the existing literature on utilising

eye movement in reading analysis. Related lifelog retrieval systems in Lifelog

Search Challenges are also highlighted and discussed how Lifeseeker is different

from them.

• Chapter 3 describes the methodology used in this dissertation for the data

collection process the experimental analysis and the evaluation metrics.

• Chapter 4 presents the design and implementation of the lifelog retrieval
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Chapter 8
Conclusion, Research Limitation and Future Work

Exploratory Research

Quantitative Research

Correlational Research

Chapter 3
Research Methodology and Evaluation Methods

Research Methodology Evaluation Methods

Chapter 7
Gaze-coupled Comprehension-evidenced Interactive

Infologging Retrieval System

Chapter 6
Longitudinal Evaluation of Reading Comprehension Estimation Model

Chapter 5
Reading Comprehension Estimation using Eye Movement Measures

Chapter 4
State-of-the-art Lifelog Retrieval System

Accuracy

Spearman's rank
correlation coefficient

LSC score

Precision and Recall

Chapter 1
Introduction

Lifelogging and Lifelog
Retrieval Systems

Chapter 2
Related Work and Background

Eye Movements in
Reading Comprehension

Figure 1.1: The structure of the thesis.
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system, LifeSeeker, which is the foundation for the subsequent chapters.

• Chapter 5 describes the investigation into the relationship between eye

movement features, reading conditions and reading comprehension. Different

training configurations and their corresponding results are also compared and

discussed. Feature analysis using a separate statistical testing procedure and

using feature contribution analysis from SHAP is detailed to provide more

insights into the features’ importance.

• Chapter 6 presents the investigation into the temporal robustness of the reading

comprehension estimation model. The experimental results are described and

the models’ hyperparameters tuning is also detailed. Feature contribution to

the model’s prediction is also analysed and compared against the finding the

Chapter 5.

• Chapter 7 describes the design and implementation of the interactive infolog

retrieval system, which is directly derived from LifeSeeker. Results on the

non-interactive and interactive evaluation of the system, with and without

the integration of reading comprehension estimation, are also presented and

discussed.

• Chapter 8 concludes the dissertation, and discusses the limitations and future

work.
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Related Work and Background

This chapter establishes the foundation for my contributions to the fields of

lifelogging and eye movement research. Initially, it provides an overview of lifelog

retrieval benchmarking tasks, pivotal to addressing research question 1. This is

followed by a comprehensive literature review in Section 2.1, detailing the retrieval

methods and functionalities of the state-of-the-art systems in the Lifelog Search

Challenge (LSC). The insights from this review are utilised in developing my

state-of-the-art retrieval system, thereby addressing the first research question. In

Section 2.2, the chapter shifts focus to the anatomy of human eyes, the

methodologies for eye movement capture, and the standard eye movement measures

used in the field. This forms the basis for a subsequent literature review on using

eye movement analysis to predict reading comprehension, where I identify existing

research gaps and delineate my contributions, addressing research questions 2 and

3. Consequently, by integrating the insights gained from both literature reviews

and my research contributions, I developed a novel interactive retrieval system for

on-screen information which integrates user comprehension estimation through

their eye gaze behaviour, effectively addressing research question 4. Finally, the

chapter gives a brief overview of the methods and models used for addressing the

research questions, setting the stage for the subsequent chapters.
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2.1 Lifelogging and Lifelog Retrieval Systems

2.1.1 Lifelog Challenges

Lifelogging is the practice where individuals capture and accumulate vast amounts

of personal data through various means, such as wearables, smartphones, and IoT

devices [10]. This practice transforms everyday experiences into a digital narrative,

offering a data-rich archive of one’s life. While the sources of data available for

constructing a lifelog dataset vary, they can be broadly categorised into six main

types, according to [30]:

• Vision: This includes images or videos taken from the lifelogger’s perspective,

typically recorded using wearable cameras placed on the head or neck. As

the most informative data source, it provides visual insights into the user’s

environment, social interactions, and activities.

• Hearing: This category encompasses audio recordings of the user’s

surroundings or summaries of listened music and sounds, capturing the

auditory aspect of the lifelogger’s environment.

• Conversation: Whether in text or audio format, this data documents the

lifelogger’s interactions with others. It can include content from text

messages, emails, or recorded daily conversations, offering insight into social

communications.

• Biometric: Collected automatically from smart devices like fitness bands or

watches, biometric data encompasses health-related metrics such as heart rate,

calories burnt, and step count, providing insights into the lifelogger’s physical

well-being.

• Location: Measured using GPS systems in smart devices, location data

identifies specific addresses or semantic names of places the lifelogger has

visited, adding contextual depth to the lifelog moments.
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• Activities: Derived from sensors in smartwatches or bands, like

accelerometers and gyroscopes, activity data includes estimations of actions

such as sitting, standing, or running, offering an overview of the user’s

physical activities throughout the day.

The increasing volume of lifelog data poses a significant challenge in efficiently

navigating and extracting meaningful information from these extensive personal

archives. Information needs often arise when a lifelogger wants to retrieve a specific

moment or event from their lifelog data. These information needs are typically

represented by queries that describe the desired moment in detail. For instance,

when a lifelogger wishes to revisit a particular moment from their past, they might

formulate a query such as: "I was buying a ticket for a train in Ireland. It was

from a vending ticket machine. After the purchase, I walked upstairs to the

platform. I had to wait 8 minutes for the train to arrive. I had walked (for 36

minutes) to the station after eating sushi and beer." Manually browsing through a

lifelog to locate an image that corresponds to this detailed description would be

extremely time-consuming, especially if the volume of lifelog data is relatively

large. This is because human memory is not particularly adept at remembering

specific dates [10], making it difficult to pinpoint the exact moment without the

assistance of a retrieval system.

This difficulty highlights the necessity for advanced lifelog retrieval systems.

Such systems are designed to process and index the huge and often unstructured

multi-modal lifelog datasets to enable efficient retrieval of relevant information.

The emergence of these retrieval systems creates the need for a benchmarking

platform, essential for evaluating the efficacy of these systems. Consequently, a

variety of benchmarking challenge tasks have been organised, each dedicated to

assessing lifelog retrieval systems using different performance metrics. These

benchmarking efforts play a crucial role in advancing the field, and guiding the

development of more capable and user-friendly retrieval systems. The following are

the most common benchmarking challenges in lifelog:
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• ImageCLEF Lifelog [31–34]: Established in 2017, ImageCLEF Lifelog is a

challenge created to recognise efficient methods for lifelog retrieval and to

explore new directions in lifelog data analysis. It usually comprises two tasks:

a primary task held annually for comparative evaluation of retrieval systems,

and a secondary task that varies each year to introduce new lifelogging

challenges to the research community. For instance, ImageCLEF Lifelog

2018 [32] focused on Activities of Daily Living (ADLs) summarisation, where

participants analysed the frequency and duration of specific ADLs. The 2019

iteration [33] challenged participants to chronologically order a set of images

without metadata, illustrating the diversity of tasks presented by this

challenge.

• NTCIR Lifelog [28–30, 85]: NTCIR Lifelog shares similarities with

ImageCLEF Lifelog, featuring a recurring task known as the Lifelog Semantic

Access Task (LSAT). LSAT evaluates retrieval systems both interactively and

automatically. Additionally, NTCIR Lifelog also investigates other aspects of

lifelog analysis, such as Lifelog Event Segmentation Task (LES) in its 13th

iteration (NTCIR13 [29] and Lifelog Activity Detection Task (LADT) in the

14th iteration (NTCIR14 [30], each addressing different facets of lifelogging.

• Lifelog Search Challenge (LSC) [35–39, 86]: The LSC primarily focuses

on developing and evaluating interactive lifelog retrieval systems and is

known for its competitive nature, attracting numerous participants annually

(9 teams in the latest LSC’22). Distinct from the NTCIR Lifelog and

ImageCLEF Lifelog, LSC adopts a unique evaluation format. Evaluations are

conducted in a real-time environment, where queries are displayed on a

screen through a series of clues (with an interval of 30 seconds between two

clues). System operators are tasked with searching and submitting relevant

images, with scores determined based on the accuracy and timeliness of

submissions, and penalties applied for incorrect submissions.

27



Chapter 2. Related Work and Background

Since the primary target of my dissertation is to develop an interactive retrieval

system for infologging data, I will only focus on reviewing the state-of-the-art systems

in LSC. Before discussing these systems in detail, I provide a summary of the datasets

employed in the benchmarking challenges in Table 2.1. As can be seen from the

table, the amount of data significantly increases over time, containing 18 months with

nearly 725,000 lifelog images in the latest version of the lifelog dataset. Consequently,

the retrieval systems have to be upgraded to manage the dataset to provide efficient

retrieval of lifelog moments.

The main task in the Lifelog Search Challenge (LSC) is the Known-Item Search

(KIS) task, where retrieval systems must find relevant images from the lifelog dataset

based on a series of clues provided in a query. The evaluation of these systems is

based on the accuracy and timeliness of their submissions, with penalties applied for

incorrect submissions. In LSC’22, two additional tasks were introduced: the Ad-hoc

Search (Ad-hoc) task and the Question Answering (QA) task. The primary focus of

the Ad-hoc task is to retrieve all relevant images from the lifelog dataset based on a

textual query. Retrieval systems are allowed to submit as many images as desired,

and the evaluation is based on the precision and recall of the submissions. Unlike

the KIS task, no penalties are applied for incorrect submissions in the Ad-hoc task.

The QA task, on the other hand, requires retrieval systems to answer the query in a

textual format, supported by evidence from retrieved images in the lifelog dataset.

The evaluation of this task is based on the accuracy and timeliness of the submission,

and the systems are allowed to submit only once. Despite having different evaluation

settings, all three tasks can be assessed using a single evaluation metric called the

LSC score. This score is a weighted sum of the accuracy and timeliness of the

submissions, providing a unified measure of system performance across the different

tasks. The details of the evaluation metrics, including the LSC score, are provided

in Section 3.3.

Having introduced about the LSC, I will summarise the retrieval systems in the

most recent LSC (LSC’21 and LSC’22) and describe the best-performing systems in
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detail in the following sections.

2.1.2 Lifelog Retrieval Systems at LSC

In the Lifelog Search Challenge (LSC), participating teams primarily employ two

distinct approaches for retrieving life events: concept-based retrieval and semantic-

based retrieval. Concept-based retrieval is the more traditional method, relying

on the analysis of both visual and non-visual content through explicit terms and

keywords. This approach typically represents life events by leveraging low-level visual

features, such as objects, colors, and text, integrated with associated metadata. In

contrast, semantic-based retrieval systems aim to bridge the semantic gap between

visual and textual content. These systems overcome the constraints of keyword-

based approaches by converting lifelog data into high-dimensional joint text-visual

embedding vectors. As a result, semantic-based retrieval not only deepens contextual

understanding but also significantly improves the search experience, particularly for

novice users.

This section will provide an overview of the various retrieval systems that have

participated in the LSC, with a particular focus on those featured in the most

recent challenges, LSC21 and LSC22. A summary of these systems, along with

their respective approaches, is provided in Table 2.3.

2.1.2.1 Concept-based retrieval systems

Concept-based retrieval has been the predominant methodology in the Lifelog Search

Challenge (LSC) from 2018 to 2021, with several systems employing this approach

to great success. In this section, I will discuss the systems that emerged as winners

in each of these years, specifically VRLE [1], which won LSC’18, vitrivr [105], the

winner of LSC’19, and MyScéal [2,106] – the best-performing system in both LSC’20

and LSC’21. Apart from these winning systems, LSC’21 also saw the participation of

various other innovative systems. Each of these systems brought unique features and

methodologies to the challenge, contributing to the evolving field of lifelog retrieval.
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Table 2.3: List of participating systems in LSC’21 and LSC’22 and key approaches
employed by them. This table is an extension of that in [38] to include systems in
LSC’22
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MyScéal [3, 4] ✓ ✓ ✓ ✓ ✓ ✓ ✓
SomHumter+ [87] ✓ ✓ ✓ ✓
LifeSeeker [41,42] ✓ ✓ ✓ ✓ ✓
Voxento [7, 88] ✓ ✓
CVHunter [87] ✓ ✓ ✓
Memento [5, 89] ✓ ✓
FIRST [6,90] ✓ ✓ ✓ ✓
NTU-ILRS [91] ✓ ✓ ✓ ✓
lifeXplore [92,93]
LifeMon [94] ✓
vitrivr [95,96] ✓ ✓ ✓ ✓ ✓
vitrivr-VR [97,98] ✓ ✓ ✓ ✓
XQC [99] ✓ ✓ ✓
Exquisitor [100] ✓ ✓ ✓
PhotoCube [101] ✓ ✓
ViRMA [102] ✓ ✓
LifeGraph [103] ✓ ✓
VRLE [1] ✓ ✓ ✓
MEMORIA [104] ✓ ✓

Their approaches and functionalities are also summarised at the end of this section.

VRLE [1] - A Virtual Reality Lifelog Explorer

The Virtual Reality Lifelog Explorer (VRLE), developed by Aaron Duane et al. [1],

represents an innovative step in lifelog data exploration and retrieval, utilising virtual

reality (VR) technology. It is the winning system in the first LSC in 2018.

VRLE’s functionalities can be summarised as follows:

• Data Indexing Method: The system focuses primarily on visual concepts

extracted from the lifelog data, which is provided as part of the development

dataset by the organiser. Each image in the dataset is annotated with outputs

from a state-of-the-art computer vision concept detector [107], providing a

listing of real-world concepts (like computer, car, coffee) for each image. These

concepts, in combination with additional metadata, such as dates, activities,

and locations are indexed by the system for concept matching and filtering.
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Figure 2.1: User interface of VRLE (adapted from [1])

• Data Retrieval Method: VRLE enables users to construct filter queries

using a VR interface by selecting relevant concepts to the query and specifying

time ranges of interest. The retrieval process ranks the results by relevance of

concepts and time, prioritising concept matching. The user can then browse

this ranked list of images and select images for further inspection or apply

more filters until the desired image is found.

• User Interface: Employing a VR platform (specifically, HTC Vive), VRLE

offers a rich, immersive experience for lifelog data interaction [1] (as shown in

Figure 2.1) Users engage with the system using gesture-based or contact-based

methods to select concepts and time ranges through a virtual interface. The

system’s design enables a novel and intuitive mode of exploring and retrieving

lifelog data, enhancing the user experience by leveraging the unique capabilities

of VR technology [35].

Vitrivr [105] - A Retrieval System for Structured and Unstructured Data
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The vitrivr system was initially an open-source content-based retrieval system

designed for video retrieval [108]. Vitrivr system was adapted to work on lifelog

data, which is mainly images. It first participated in LSC in 2019 and achieved the

highest result in LSC’19.

The following is a breakdown of the system’s components:

• Data Indexing Method: The vitrivr system [108] utilises a modular

multimedia information retrieval stack, which supports various media types

including images, video, audio, and 3D models. It employs ADAMpro [109]

as the main database to store large volumes of content, which supports data

distribution and various index structures for nearest-neighbour queries. For

lifelog retrieval, image data is processed through deep neural networks for

object classes, image captions, OCR, and action recognition. The system uses

a new media type called image sequence to store and process the lifelog

images as segments of one document per day. This allows the system to

attach metadata to individual images as well as the entire day.

• Retrieval Algorithm vitrivr combines Boolean retrieval and similarity-based

retrieval to handle the heterogeneous lifelog data. The system allows the user

to formulate Boolean expressions using the metadata attributes, values, and

comparison operators. The system evaluates the expressions using dedicated

feature modules and applies them as a filter to the similarity-based results. The

system also uses a score-based late fusion approach to combine the results from

different feature modules, which include visual, textual, and deep learning-

based features.

• User Interface The user interface is a browser-based application implemented

in Angular and TypeScript. It supports various query modes, such as Query-

by-Sketch, Query-by-Example, and textual search. The system also allows

the formulation of complex Boolean queries using query containers and query

terms. Vitrivr provides several result views that present the retrieved results in
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different ways and support refinement of search results by applying additional

filters

MyScéal [2, 106] - An Experimental Interactive Lifelog Retrieval System

MyScéal is the winning system of both LSC’20 and LSC’21, which is a combination

of an efficient search engine and an informative user interface with various options

to view and interact with the search results.

Figure 2.2: User interface of MyScéal (adapted from [2,3])

In general, MyScéal is comprised of:

• Data Indexing Method Apart from the visual concepts provided by the

organiser, MyScéal enriches its data indexing by incorporating additional

object detection using DeepLabv3+ [110], which enhances detection accuracy.

Alongside this, the system integrates colour features, text recognition, and

logo detection to augment image annotations. This enriched data, coupled

with metadata like GPS location, date, and activities, is indexed using
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Elasticsearch, a renowned search and analytics engine.

• Retrieval Algorithm The retrieval process in MyScéal combines filtering and

ranking methodologies. Filtering is executed based on the precise match of

query terms with indexed fields, including location, time, activity, and others.

The system also employs a query expansion method, leveraging Word2Vec [111]

and WordNet [112], to enhance the likelihood of matching relevant concepts in

the database. The ranking is conducted using a novel algorithm, aTFIDF [2,3],

which reflects the relative importance of each visual concept within an image.

Additionally, MyScéal supports temporal retrieval, enabling users to search for

events sequentially using before and after keywords.

• User Interface The user interface of MyScéal, as shown in Figure 2.2, is

designed for simplicity and efficiency, primarily focusing on text queries while

minimising the use of faceted search. Users can input up to three parts of a

query, indicating the main event and its preceding and succeeding events.

Search results are displayed as a ranked list of images, with each image

symbolising an event. Users can click on any image to view more images

within that event. A geographic map feature allows for filtering results by

drawing on the map. Additionally, the system facilitates visual similarity

searches and includes utilities to assist novice users, such as reset buttons,

zoomed views, pop-up reminders, and word highlighting features.

Other systems at LSC’21

The literature on participating teams in the LSC’21 showcases a diverse set of

systems, each with unique features and methodologies. Voxento [113] introduces a

novel voice-based retrieval approach, integrating Google’s web speech API for

speech recognition and synthesis, enabling vocal command interactions.

FIRST [90] experiments on a self-attention-based joint embedding model and

support for multiple modalities, including textual querying and query by example.
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LifeConcept [91] reduces the semantic gap between textual queries and images

through word embeddings and relation graphs, incorporating ConceptNet [114] for

concept selection. lifeXplore [92] provides users with chronologic day summary

browsing, and interactive and combinable concepts filtering. LifeMon [94] employs

MongoDB to store and query lifelog data as semi-structured documents, and

provides a web-based user interface for filtering and exploring the results.

vitrivr-VR [97] extends the vitrivr [95] system with a VR-based interface, offering

immersive interaction with retrieval results. Exquisitor [100] explores interactive

learning in multimedia analytics, allowing users to evolve a semantic classifier

through cooperation. With the system sharing the engine with Exquisitor [100],

XQC [99] brings a cross-platform interface to the challenge which supports lifelog

retrieval through a mobile app. PhotoCube [101] introduces a novel approach to

organise media items and metadata into a hypercube in multidimensional space

and allows users to explore a lifelog via a three-dimensional exploration cube.

Similarly, ViRMA [102] shares PhotoCube’s back-end server but introduces

VR-based navigation and browsing of search results. Finally, LifeGraph [103]

presents an experimental approach which links detected objects in images to an

external knowledge base and employs graph traversal for query processing. LSC’21

also marks the shift towards semantic-based retrieval methods, as evidenced by the

adoption of the CLIP model by OpenAI [115] in systems like SomHunter+ [87]

and Memento [5] for text-to-image matching, by comparing the cosine similarity

of the query and images’ embeddings.

2.1.2.2 Semantic-based retrieval systems

The Lifelog Search Challenge in 2022 witnessed a significant shift in the adoption

of Vision-Language models, particularly CLIP (Contrastive Language–Image

Pretraining) developed by OpenAI [115], within many retrieval systems. These

models are efficient in unifying various data modalities into a single vector space,

thereby simplifying the overall process of information retrieval. This technological
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advancement not only streamlined the system interfaces, making them more

accessible and user-friendly but also notably enhanced their performance. The

effectiveness of these systems, particularly those utilising CLIP in their primary

search mechanism, is evident in their scores in the challenge, which will be further

elaborated in Chapter 4. This section will focus on the specifics of some of the

top-performing systems in LSC’22, which utilise CLIP as part of their search

mechanism.

E-MyScéal [4] - Embedding-based Interactive Lifelog Retrieval System

E-MyScéal inherits the core design and functions of MyScéalin LSC’21, with the

integration of a text-image embedding model, making it a semantic-based retrieval

system.

Figure 2.3: User interface of E-MyScéal (adapted from [4])

The system’s functionalities are outlined as follows:

• Data Indexing Method E-MyScéal maintains the initial structure of the

original MyScéal versions but with a critical change in its indexing strategy. By

incorporating embedding models, particularly CLIP [115], the system allows

for a more intuitive matching of textual queries with the rich visual data of

lifelogs.
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• Retrieval Algorithm The core of E-MyScéal’s retrieval mechanism is the

embedding-based approach using the CLIP model. Apart from this, other

functionalities (such as the filtering mechanism, and relevance feedback

modules) from its previous iteration remain unchanged.

• User Interface E-MyScéal presents an interface that balances simplicity and

efficiency. As depicted in Figure 2.3, the system streamlines its non-faceted

interface, removing elements that previously confused to the user, while

enhancing its event view browsing.

Memento [89] - An Interactive Retrieval System for Lifelogs

Figure 2.4: User interface of Memento (adapted from [5])

Memento’s functionalities can be summarised as follows:

• Data Indexing Method: Memento employs two versions of the CLIP model,

ViT-L/14 [116] and ResNet-50x64 [107], to create a joint embedding space for

lifelog images and their associated captions. The resulting embeddings are

stored as static files to optimise the system retrieval speed [89].

• Data Retrieval Method: The system takes a natural language query as

input and encodes it using the text encoders of the CLIP models. It then

computes the cosine similarity between the query embedding and the image

embeddings and ranks the images based on a weighted sum of the scores from

the two models. The system also supports temporal search and navigation,
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which allows the user to search for a target event in the context of a temporally

close past or future event, by specifying the event and the time duration.

• User Interface The system has a web-based user interface that displays the

ranked images in a grid layout (see Figure 2.4), allowing users to easily

navigate and zoom into specific images. The interface also provides access to

various functionalities, including visual data filtering, temporal search, and a

repository of starred images (to save the potential results). It also offers

statistics on the execution of a query, including the number of images

retrieved, the query processing duration, and a confidence score for each

result.

FIRST [6] - Flexible Interactive Retrieval SysTem for Visual Lifelog

Exploration

Figure 2.5: User interface of FIRST (adapted from [6])

FIRST’s functionalities can be summarised as follows:

• Data Indexing Method: The system efficiently reduces the size of the

large lifelogging data collection through pre-processing steps like filtering

blurry images, normalising image orientation, and grouping similar images to
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avoid overcrowding in search results. Keyframes are selected from each group

of contiguous similar images (shots) and then clustered based on their GPS

information and hierarchical relationships of locations. The images are also

indexed in the database with metadata such as time, location, texts in the

image, and visual concepts using the CLIP model and Conceptual Captions

tags

• Data Retrieval Method The system employs CLIP [115] to extract

high-dimensional representations from images. It focuses on both general and

local features by encoding important regions of an image at different levels of

granularity. This approach allows the system to represent an image with an

adaptive semantic embedding set, which enhances its ability to match new

concepts not present in a pre-defined dictionary. Moreover, by leveraging the

CLIP model, the system uses similarity modelling to extend its capabilities.

It defines the distance between images based on the cosine distance between

their embeddings, allowing for searches using visual examples. The system

also integrates external systems like Google Search to find visual examples of

unfamiliar concepts, expanding the scope of search beyond its existing

concepts

• User Interface As displayed in Figure 2.5, the system provides a

user-friendly interface with multiple visualisation and interaction modules. It

offers scene clustering using CLIP features and heuristics and flexible

temporal navigation for quickly browsing through photos with adjustable

detail levels. Local/prototype visual search in FIRST allows users to search

using external image examples. This feature is particularly useful for

searching unknown concepts, where users can input URLs of images for quick

and intuitive searches

Voxento [7] - A Prototype Voice-controlled Interactive Search Engine for
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Lifelogs

Figure 2.6: User interface of Voxento (adapted from [7])

Voxento’s functionalities can be summarised as follows:

• Data Indexing Method: Voxento employs the CLIP model [115] to

transform images into high-dimensional representations, facilitating a

comparison with encoded query sentences through cosine similarity. The

system enhances its indexing efficiency by implementing event segmentation,

and grouping images based on activities and locations. Additionally, it refines

the indexing data by excluding blurred, duplicated, or irrelevant images,

ensuring that only the most relevant and clear images are indexed and

retrievable.

• Data Retrieval Method: The system has two search engines: one for text-

image search and one for text-based search. The text-image search engine uses

the CLIP model to rank images based on their similarity to the query. The

text-based search engine uses the metadata to find images that match specific

concepts such as semantic names, artists, or songs. The voice interaction

feature in Voxento utilises the Google Web Speech API for speech recognition

and synthesis. Users can interact using voice commands or opt for standard

mouse and keyboard input. The system is designed to submit search queries
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live as the user speaks, dynamically updating the results based on the evolving

query

User Interface The system’s web-based interface is designed to support

both voice interaction and conventional text-based retrieval. Users can input

queries using vocal commands, initiated by the phrase "Start recording,"

followed by their spoken query. Alternatively, they can use traditional mouse

and keyboard inputs. The interface also includes dynamic filters, accessible

through a filtering menu with drop-down boxes for criteria such as time, date,

location, environment, semantic name, artist, and song.

Other systems at LSC’22

MEMORIA [104] – a concept-based retrieval system – marked its first

participation at LSC’22. As a web-based, concept-based retrieval system, it allows

users to upload, annotate, and search personal lifelog data using keywords, time

frames, and filters. It utilises advanced computer vision methods, including

Yolov5l6 [117], a model pre-trained on the Places365 dataset [118], and

ResNeXt-101 [119], to extract relevant information from images efficiently.

vitrivr [95] participated for the fourth time at LSC’22. Although no significant

changes were made to it, the evaluation of the system at LSC’22 serves as baseline

results for evaluating its VR variant – vitrivr-VR [96]. vitrivr-VR [96], which

previously outperformed vitrivr in LSC’21, enhances the user experience by offering

more results viewing modes (cylindrical view, single media view and sequence

view) and supporting users to formulate the multimodal query within the VR

environment. lifeXplore [93] was also a returning system with improvements

mainly to its user interface. The system now leverages geolocation data for

improved location search and event filtering. It introduces a results ranking system

based on different criteria like date, time, and location and has improved result

browsing with pagination in its filter view [93].
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2.2 Eye movements in Reading Comprehension

In this section, an introductory overview of human eye anatomy is presented in

Section 2.2.1, providing a crucial understanding of the mechanisms underlying eye

movements. Following this, Section 2.2.2 explores the technologies used for eye

movement tracking, focusing on devices such as eye trackers. Subsequently, Section

2.2.3 summarises the fundamental characteristics of eye movements during reading,

laying the groundwork for my analysis in the context of reading comprehension

estimation. The section concludes with a review of existing literature in the field of

investigating reading comprehension via eye movement measures, outlined in Section

2.2.4, where I identify and aim to bridge a research gap in this thesis.

2.2.1 The human eyes: Structure and Function

The human eye, a marvel of biological evolution, serves as the primary organ for

vision [120,121]. Its intricate structure is specifically designed to capture, focus, and

process light, turning it into interpretable visual information. This section provides

an overview of its fundamental anatomy and the subsequent physiology of sight.

Figure 2.7 shows a vertical slice of the human eye, revealing its internal structure.

As illustrated, the eyeball possesses a spherical shape, optimizing it for capturing

a broad field of vision. The complex components making up this essential visual

organ can be categorized into three principal layers: Fibrous layer, Vascular layer,

and Inner layer [121]

2.2.1.1 Fibrous layer

Serving as the outer shield of the eye, the fibrous layer is fundamental to both

protection and light entry. This layer is primarily composed of the sclera and the

cornea. Sclera is often referred to as the "white" of the eye, the sclera is a thick,

tough tissue that surrounds most of the eyeball. It provides both structural integrity

and a protective barrier against foreign threats. Its opaqueness ensures that light

43



Chapter 2. Related Work and Background

Figure 2.7: The anatomy of the human eye, from OpenStax College, licensed under
CC BY 3.0, via Wikimedia Commons

can only enter the eye through the cornea. The sclera also offers attachment sites

for the extrinsic muscles of the eye, enabling the movement of the eyeball in different

directions. The Cornea is a transparent, dome-shaped surface that stands centrally

in the front of the eye. Beyond its primary role of protecting the eye from dust and

germs, its smooth and transparent properties are crucial in refracting light coming

into the eye. The cornea’s unique curvature and refractive index help focus light

onto the retina.

2.2.1.2 Vascular Layer

Positioned beneath the fibrous layer, this segment encompasses the iris, choroid,

and ciliary body. The iris, which determines our eye’s color, contains a hole at

its centre named the pupil. By dynamically adjusting its size, the pupil controls

the amount of light entering the eye. This adjustment is orchestrated by two sets

of fibers: the sphincter and dilator. The sphincter, a circular muscle triggered by

bright light, contracts the pupil and is regulated by the parasympathetic nervous

system. Conversely, the dilator, a radial muscle, expands the pupil when in the

dark and is controlled by the sympathetic nervous system. The choroid is a vascular
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layer responsible for nourishing the retina with blood. Finally, the ciliary body

is a muscular ring, which dictates the shape of the lens. It comprises the ciliary

muscle and the ciliary process. The muscle contains smooth muscles in three distinct

orientations: longitudinal, circular, and radial. When these muscles contract, the

size of the circular ciliary body diminishes. The ciliary process, meanwhile, connects

the ciliary body to the lens through zonular fibers. This intricate arrangement plays

a pivotal role in adjusting the lens’s curvature based on viewing distances, ensuring

clear vision.

2.2.1.3 Inner Layer

At the core of the visual system lies the retina, the layer tasked with detecting

light. It comprises two distinctive layers: the outer pigmented layer, which absorbs

light, preventing scattering, and the inner neural layer. The latter is populated with

approximately 120 million photoreceptors—rods and 6 million cones [122]. Rods

cater to low-light scenarios, whereas cones operate best under bright conditions and

are pivotal for colour vision. The three cone subtypes, L-cones, M-cones, and S-

cones, are sensitive to red, green, and blue wavelengths, respectively. The varying

ratio of these cones across individuals underpins the differences in colour perception.

Central to the retina is the fovea, a locus responsible for sharp vision. Surrounding

it is the macula, the hub of our central and colour vision. Intriguingly, the retina

also houses an area devoid of photoreceptors—the optic disc. Located nasally, this

"blind spot" is where the optic nerve and blood vessels exit the eye. The absence

of visual input from this region is seamlessly compensated by our brain and the

continuous movement of our eyes, rendering the blind spot virtually undetectable in

daily perception.

2.2.1.4 Eye Movement in Reading

The process of sight begins as light enters the eye through the cornea, the fibrous

layer, which refracts the light onto the lens. The lens, part of the eye’s vascular layer,
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then adjusts the focus, directing the light onto the retina in the inner layer of the

eye. Here, photoreceptors (rods and cones) convert the light into electrical signals,

which are transmitted to the brain via the optic nerve, allowing us to process and

interpret these signals as visual images.

During reading, light reflected from the text enters the eye through the cornea

and pupil and is focused onto the retina by the lens. Although the image of the text

is projected onto the retina, clear perception of this image is limited by the sparse

distribution of photoreceptors across most of the retina’s surface. Only the fovea, a

small central area of the retina, contains a high density of photoreceptors, enabling

acute visual detail necessary for activities like reading. Due to the fovea’s small size,

it can only cover a very small part of the visual field and we must constantly move

our eyes to align different parts of the text with the fovea. This alignment ensures

that we perceive the text with the greatest possible clarity. These eye movements are

called saccades, the rapid movements between points of fixation. A fixation occurs

when the eyes stop briefly to focus on a particular part of the text, allowing for

detailed processing of the visual information. In Section 2.2.3, the characteristics of

fixations and saccades during reading will be discussed in more detail.

2.2.2 Capturing eye movements: The Eye-tracker

In the late 19th century, pioneers like E. Huey [123] and E.B. Delabarre [124]

undertook initial attempts to study eye movements using invasive techniques. Huey

developed an eye tracker that utilised a contact lens linked to an indicator to

measure eye movement, while Delabarre’s method involved a gypsum cap attached

to the eye’s surface. Both techniques were so intrusive that the authors gave their

participants cocaine to alleviate their discomfort during the study. In 1901, a

significant advancement was achieved by R. Dodge and T.S. Cline [125], who

introduced "The Dodge Photochronograph", a non-invasive optical eye tracker,

which, despite its limitations in capturing only horizontal movements and

necessitating subjects to keep their heads still, highlighted that a human’s
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reception of information does not happen during their saccadic movements.

During the 1950s, various eye-tracking techniques emerged to study gaze

patterns. The lense system with mirrors involved a specialized contact lens with an

attached mirror, reflecting the eye’s movement directly onto a recording

device [126]. This method, though direct, was somewhat invasive. The

electromagnetic coil system utilised a coil around the eye, where eye movements

within a magnetic field resulted in an electric current. The current’s magnitude

and direction could then be used to determine the eye’s position and

movement [127]. Electrooculography (EOG) employs electrodes placed around the

eyes, capturing the corneo-retinal standing potential to gauge the direction and

magnitude of eye movements. Among these, the Dual Purkinje Systems stood out

for its precision. By tracking the reflections from both the eye’s surface and the

lens, it offered an accurate measure of eye rotations. However, this method was

known for its high-cost and difficulty in maintaining [128].

Over the 20th century, the evolution of eye-tracking technology accelerated as

various sectors began recognising its potential uses. Besides academic researchers,

the media and advertising sectors started using eye tracking to gauge reactions to

their marketing campaigns [128]. The medical community employed eye-tracking for

diagnosing and treating ocular conditions [128]. People from the field of human-

computer interaction adopted it to refine user interface designs [128]. As a result,

eye-tracking technology grew significantly in variety, having a wide range of options

for accuracy, cost, ease of use, and invasiveness.

To date, video-based eye tracking has emerged as the predominant technique for

monitoring eye movements. These systems utilise infrared-sensitive cameras, infrared

lighting (illumination), and image processing algorithms. These algorithms focus

on detecting the pupil’s center and locating corneal reflections, which ultimately

pinpoint where the individual is looking. Generally, video-based eye trackers fall

into three categories:

• Static eye-tracker : Typically positioned on a table or desk facing the
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participant. There are two main variations: the tower-mounted, which

restricts head movement, and the remote, allowing for small head movements,

as long as it remains within the camera’s field of view.

• Head-mounted eye-tracker : In this configuration, both the light source and

camera are mounted on the user, typically via helmets, caps, or glasses. It

offers the advantage of letting participants move unencumbered and capturing

their first-person perspective.

• Head-mounted eye-tracker with an auxiliary head-tracker : This variant

integrates an additional tracking system to determine the head’s spatial

positioning. This supplementary data stream makes the analysis of

eye-tracking data much easier

The eye tracker that I used in this thesis is a low-cost remote static eye-tracker

manufactured by Gazepoint (model GP3 HD) [129]. Similar to most remote eye-

trackers, it emits low-level infrared light (which is safe for the eyes) and this light

is reflected off the cornea of our eyes. A built-in camera then captures the corneal

reflections and the pupil’s center and sends this to the image processing unit to

analyse the relative position between the pupil and reflections. The internal tracking

algorithms also validate the data quality and apply a series of filters to generate useful

eye movement features (e.g., fixation, saccade, and blinks) based on the estimated

gaze coordinates for each frame. The eye-tracker operates at 60Hz or 150Hz which

allows real-time tracking of eye movements [129]. Its accuracy is reported to be

0.5-1.0 degrees of visual angle and allows 35cm x 22cm for horizontal and vertical

tracking, respectively and +/- 15 degrees for depth movement [129].

Figure 2.8 shows the position of the eye as interpreted by the tracker. The

device’s algorithms have effectively identified and circled the pupil and corneal

reflection, enabling precise gaze coordinate determination. To achieve optimal

tracking results, the recommended distance between the participant and the

eye-tracker is approximately 60-65cm [129]. This can be equated to the distance of
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Figure 2.8: Corneal reflection and pupil detected by the eye-tracker. The figure
shows the tracking in two scenarios: with and without glasses (right and left image,
respectively), under the same distance from the eye-tracker.

an arm’s length. Within Figure 2.8, a bar is present with indicators for Close and

Far alongside a green dot. Ideal positioning is achieved when the green dot aligns

centrally with the bar, as illustrated in the right image of Figure 2.8. It is

important to acknowledge that the use of corrective eyeglasses can influence this

optimal distance. Without glasses, the participant should be situated slightly

further from the tracker. Figure 2.8 shows that under the same distance, the image

on the left (without glasses) was indicated to be quite close. Moreover, proper

angling of the tracker is essential when engaging participants with glasses to

prevent reflections of the environment’s light on glass lenses, preventing a clear

view of the pupil and corneal reflection point. Following the positioning phase,

calibration of the eye tracker is essential. This involves presenting the participant

with one or more targets to visually track while the device collects data on eye

positioning relative to these targets. Upon successful calibration, the eye tracker is

ready to track the participant’s eye movements.

2.2.3 Basic Characteristics of Eye Movements and Application in

Recognising Reading Strategies

Eye movements play a fundamental role in the process of reading comprehension

and I will begin with an overview of their basic characteristics. There are two
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primary measures commonly used to analyse eye movements, which are: fixations

and saccades [67]. Fixations are brief pauses in eye movement when the eyes focus

on a specific point which generally lasts around 200-300 milliseconds [130]. During a

fixation, visual information is processed and integrated. The duration of fixations is

influenced by the complexity and demands of the text, with longer fixations typically

observed during the processing of difficult or unfamiliar content [131]. On the other

hand, saccades are rapid eye movements that shift the gaze from one fixation point to

another [130]. Saccades allow us to move our eyes quickly across a text, allowing us

to sample information efficiently. Many features derived from fixations and saccades

have been widely applied to address many detection and recognition tasks [132–135].

Concerning reading, eye movement measures were found to be useful in

recognise the reading strategies used by readers [73–75]. Biedert et al. [73]

proposed a robust real-time detection method for reading and skimming activity by

using a window-based technique to acquire saccades data and calculate

corresponding features to perform classification. The authors obtained a result of

86% when classifying these two activities. Also, they found that the average

forward speed and angularity are the most robust features for the model’s

generalisation and accuracy. Liao et al. [74] further extended the classification of

reading strategies to five types, namely, speed reading, slow reading,

in-depth-reading, skim-and-skip and keyword-spotting in using temporal (e.g.

fixation duration, saccade duration) and spatial (e.g. saccade length, saccade

direction) eye movement features. An average accuracy of 86.07% was obtained on

a 5-fold leave-one-group-out cross-validation setting, suggesting that eye movement

measures are very informative in distinguishing reading patterns. However, it is

worth noting that to induce the expected reading strategies, the participants’

reading process was partially controlled by the authors. For example, parts of the

text were highlighted in skim-and-skip activity for the participants to follow or

texts were designed to include two halves, one half is a text with clozes (a.k.a.

blanks) and the other is a list of answers to fill in the clozes, in keyword-spotting
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activity for the participants to find the matching keywords for the blanks [74].

To fully understand how reading activities are performed in real-world

scenarios, it is necessary to allow the participants to read freely without controlling

their reading process. This was addressed by Strukelj et al. [75] who investigated

the characteristics of different commonly used types of reading such as regular

reading, thorough reading, skimming, and spell checking, by collecting eye tracking

data of participants reading a single page of text under instructed reading types

and performing a comparative analysis of the eye movement features between

regular reading with each of the other three reading types. The authors formed 7

to 9 hypotheses for each pair of reading types and tested them using statistical

tests. According to the results, compared to regular reading, thorough reading

showed higher comprehension scores with longer total reading times and more

rereading. On the other hand, skimming resulted in lower comprehension scores

with longer saccades, shorter average fixation durations, more word skipping, and

shorter total reading time. Similarly, spell checking also resulted in lower

comprehension scores, but with shorter saccades, longer average fixation durations,

less word skipping, and longer total reading time.

These findings again, highlighted that eye movement measures are very

informative in distinguishing reading patterns. Nonetheless, the applicability of

findings to date in developing machine learning models for recognising reading

strategies remains an open question since the changes in eye movement measures

were found when performing pair-wise comparisons of reading types. How these

changes contribute to a multi-class classification problem is unexplored.

2.2.4 Eye Movements in Estimating Reading Comprehension

Decades of eye-movement research have generated significant knowledge of how

they are coupled with a human’s cognitive processes [67,71]. When reading English

text, saccades are typically 7-9 characters long and last around 20-30

milliseconds [67]. While most saccades bring the eyes forward, some saccades can
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also be regressive which brings the eyes back to previously read words or lines. In

skilled readers, regressive saccades (also called regressions) account for around

10%-15% of all saccades [136]. When reading a difficult text, the number of

regressions increases as well as the duration of fixations, while the saccade length

decreases [136]. These findings underlay research in estimating the level of reading

comprehension from eye movement features.

While most studies found significant correlations between eye movements and

reading comprehension [76–80], establishing a standard method to monitor reading

comprehension remains a challenge [81,82]. Despite having different approaches and

findings, these studies do share a common procedure regarding data collection and

evaluation. First, participants are asked to read a given sentence or text silently.

Then they are asked to answer a set of questions about the text, either multiple-choice

(MCQ) or both multiple-choice and cloze (e.g. fill in the blank) questions [78]. Some

studies also record participants’ subjective ratings of their understanding/difficulty

of the text to give an external reference to the analysis of comprehension [76, 81].

Finally, the eye movements are recorded and analysed to estimate the level of reading

comprehension either as a classification task (predicting classes of comprehension

level, such as low, middle, and high) or as a regression task (predicting a continuous

value of comprehension level, such as a score from 0 to 100).

Copeland et al. [78] explored the answer-seeking behaviour during reading by

analysing the changes in eye movement from the first read-through (with no specific

purpose/requirement) to the second read of the same text (to answer questions).

The authors observed that proficient readers have higher reading intensity (higher

numbers of fixations and regressions, longer total fixation duration) in the first pass

reading compared to the second pass reading. This suggests that reading intensity is

a good indicator of reading comprehension [78]. This work was extended by Copeland

et al. [77] to employ artificial neural networks to further enhance the prediction

of comprehension level. In this study, the reading behaviour was captured and

assessed in four different formats: (A) text first, then text and questions presented
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simultaneously; (B) text and questions presented simultaneously; (C) text first, then

questions; and (D) questions first, then text and then questions again. The results

revealed that the misclassification scores (MCR) were lower in formats A, B, and D

(0.14, 0.11, and 0.21 respectively) compared to format C (0.51). The authors argued

that it is hard to predict comprehension level in format C since the questions are

presented after the text and the participants have to read the text until they are

satisfied to answer questions [77]. This caused the eye movement behaviour to vary

differently from the other formats where the questions were known.

Ahn et al. [81] also proposed to use neural networks to monitor the complex

relationship between eye movement features to predict comprehension level when

reading SAT (Scholastic Aptitude Test) passages. In this study, multiple factors

related to comprehension were investigated including: (1) overall comprehension –

an individual’s comprehension over all passages; (2) passage comprehension – an

individual’s comprehension over a single passage; (3) reading difficulty –

individual’s rating of the difficulty of the passage; and (4) first language – whether

the individual’s first language is English or not. The authors adopted two neural

network architectures, namely a convolutional neural network (CNN) and a

recurrent neural network (RNN), to perform a binary classification task (high/low

level) on each of the aforementioned factors. The results showed that the CNN

model achieved 65% accuracy for overall comprehension, with an increase of 11%

from baseline accuracy (54%). However, the authors concluded that the features

extracted from eye movements are not sufficient for the CNN model to predict

comprehension levels despite showing significant differences between high and low

comprehension groups in statistical testing.

Unlike the previous studies, Southwell et al. [80] attempted to predict

comprehension levels after reading long connected texts. Three eye-tracking

datasets that have comprehension assessments after reading were employed in this

study to address the task. Of these, two datasets have one single passage with

6500 words and the other dataset has 8 passages with 1000 words each. The
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authors adopted linear models to predict comprehension levels and found that

there is a strong association between eye movement measures with comprehension

during reading [80]. The correlations between the observed and predicted

comprehension scores on three datasets were within the range of 0.362 to 0.384.

Interestingly, the authors also found that eye movement measures have generability

across datasets, as models trained on one dataset can be used to predict

comprehension levels on other datasets with nearly similar performance.

Furthermore, the correlation between eye movements and language proficiency

has been explored by Yoshimura et al. [79] in their research. The study utilised eye

movement characteristics to categorise participants into three levels of TOEIC

(Test of English for International Communication) scores: low, middle, and high.

Additionally, the authors discovered that the combined metrics of fixation duration

and saccade velocity provide valuable insights for classifying TOEIC levels. In a

different study, Makowski et al. [82] proposed the integration of scanpaths and

lexical features of fixated words through generative models to identify readers’

identity and assess their comprehension. Although the identification of readers’

identities yielded favourable outcomes, none of the examined approaches accurately

predicted text comprehension. Sanches et al. [76] conducted a study where they

introduced subjective understanding, measured through subjective ratings, as an

alternative evaluation method for reading comprehension, surpassing the

traditional objective comprehension assessment of answering questions. This

approach was considered more natural for evaluating comprehension in real-world

scenarios [76]. Notably, the authors observed a substantial 13% improvement in

subjective understanding estimation through eye gaze features compared to

comprehension questions, indicating a strong association between eye movements

and subjective understanding.

To provide further details on these studies, I have summarised some main

characteristics of the datasets used in these works in Table 2.4.
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Chapter 2. Related Work and Background

Relevance to my present study

The compilation of previous studies demonstrates the existing progress in

integrating only eye movement measures to predict reading comprehension. While

some research has yielded positive results, several challenges have been identified.

In particular, Copeland et al. [77] highlighted the difficulty of predicting

comprehension level when people are reading purpose-free (reading without

knowing what questions they will be asked). Nonetheless, this is the most common

scenario in real-world reading activities, which opens up the opportunity for

further research to address this challenge. During this type of reading, one might

skim through the text to grasp the main idea, while in other cases, one might read

the text intensively to understand the details. Depending on the way people read,

the eye movement behaviour will vary and thus, the prediction of comprehension

level will be affected [75]. When investigating the relationship between eye

movements and comprehension, Southwell et al. [80] pointed out some

characteristics that influenced comprehension level, which I found to have

similarities with the characteristics of reading types as described in [75]. For

instance, Southwell et al. found that making more, but short fixations is associated

with a higher comprehension level, which is also an indicator of attentive reading,

while fewer fixations are associated with skimming/mind-wandering and cause

comprehension levels to drop [80]. Therefore, I hypothesise that eye movements,

reading conditions and reading comprehension form a complex relationship, where

eye movements are influenced by reading conditions and reading comprehension is

influenced by both eye movements and reading conditions.

In this thesis, I aim to investigate the relationship between eye movements,

reading conditions, and reading comprehension. I construct a dataset that records

participants’ eye movements and their comprehension levels as they engage in

various reading tasks where each task is designed to induce a specific type of

reading conditions. Upon thoroughly analysing the complex relationship between
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eye movements, reading condition and reading comprehension, I further propose a

novel approach to predict reading comprehension level by integrating information

from eye movements within reading conditions. While previous work has attempted

to incorporate the estimation of reading strategies when predicting comprehension,

such as reading-ratio and skimming-ratio [77], the effectiveness of such integration

on reading comprehension has not been extensively studied. Moreover, in addition

to reading and skimming, I also investigate the effect of scanning and proofreading

conditions, as these are identified as one of the most common reading types [74,75].

I also further evaluate the temporal robustness of the proposed approach for

comprehension prediction to explore the possibility of applying the approach in real-

world reading activities, such as infologging. To facilitate this, another dataset

is constructed to capture reading activities over a period of time. The proposed

approach is then evaluated on this longitudinal dataset to investigate its temporal

robustness.

2.3 Methods for Statistical Analysis

This section presents an overview of the key statistical methods employed throughout

this dissertation, serving as a foundation for the subsequent chapters. The techniques

discussed have been carefully selected to address the research questions posed and to

effectively analyse the data collected during this study (in Chapter 5 and Chapter 6).

These methods not only allow for the rigorous testing of hypotheses but also facilitate

the exploration of underlying patterns and relationships within the data. In this

research, these statistical methods are computed using the functions provieded by the

Python libraries called Scipy [137], which is an open-source package for mathematics

and science computing.
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2.3.1 Comparison of Group Means and Medians

To gain insights into the variations among different groups in a dataset, it is crucial

to examine their central tendencies. By analysing group means and medians, it

is possible to determine whether observed differences are statistically significant or

simply due to random variation [138] This comparison is essential for identifying any

potential impact of independent variables on dependent variables, thereby revealing

underlying patterns and relationships This research employs both parametric and

non-parametric methods to compare groups, depending on the nature of the data

and the assumptions that can be made about its distribution.

Analysis of variance (ANOVA) [139], is a fundamental parametric statistical

method used to compare the means of two or more groups. This method

determines whether there is at least one group has a significantly different mean

from the others. However, the validity of ANOVA depends on the assumption of

normality and homogeneity of variances within the groups, making it essential to

verify these assumptions before conducting the analysis [139]. The normality

assumption means that the data should be normally distributed within each group,

while the homogeneity of variances assumption requires that the variances of the

groups are equal. To test these assumptions, I employ the Shapiro-Wilk test [140]

and Bartlett’s test [141], respectively, which are covered in Section 2.3.2.

In cases where the assumptions of ANOVA are violated, the Kruskal-Wallis test

[142] can be used as a non-parametric alternative, which compares the medians across

multiple groups. This method is robust against the non-normal distribution of data

and unequal variances of data, as it is based on the ranks of the observations rather

than their actual values [142]. Hence, Krukal-Wallis test is particularly useful when

dealing with ordinal data or when sample sizes are small.

A significant result from either ANOVA or Kruskal-Wallis test indicates that

there is at leaset one group that is significantly different from the others. However,

this does not provide information on which specific groups are different from each

58



Chapter 2. Related Work and Background

other [139,142]. To identify which pairs of groups are significantly different, another

test called post-hoc test is required [138]. The details of the post-hoc tests used in

this research are discussed in Section 2.3.3.

2.3.2 Validating Normality and Homogeneity of Variances

As outlined in the previous section (Section 2.3.1), the ANOVA test assumes the

normality and homogeneity of variances within the groups. Verifying these

assumptions prior to conducting the analysis is crucial to ensure the validity of the

test results. The Shapiro-Wilk test [140] assesses whether the data follows a

normal distribution. Moreover, it is preferred for its effectiveness for small to

moderate sample sizes. A non-significant result indicates that the data do not

deviate significantly from a normal distribution [140]. On the other hand, to test

the homogeneity of variances assumption, Bartlett’s test [141] is one of the

commonly used method [138]. Bartlett’s test is sensitive to departures from

normality [141]; thus, in this reseach, it is often conducted after a significant

Shapiro-Wilk test result. If the data is not normally distributed, the Bartlett’s test

will not be conducted and the Kruskal-Wallis test will be used instead of ANOVA.

In contrast, if the data follows a normal distribution and the Bartlett’s test gives a

non-significant result (meaning the variance of each group is equal), the ANOVA

test will be used to compare the means of the groups.

2.3.3 Post-hoc Tests

Once a significant result is obtained from the ANOVA or Kruskal-Wallis test, it is

crucial to determine the sepcific groups that differ [138]. Post-hoc tests facilitate

this by conducting pairwise comparisons between groups to identify which pairs are

significantly different from each other.

With respect to ANOVA parametric test, the t-test [143] is commonly used as a

post-hoc test to examine differences between group means [138]. Conducting

multiple t-tests, however, increases the risk of Type I errors. A Type I error occurs
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when a true null hypothesis is incorrectly rejected, essentially finding a difference

when there is none. To reduce this risk, significance level adjustments such as the

Bonferroni correction [144] are applied to account for the number of comparisons

made. Specifically, the original significance level (e.g., 0.05) is divided by the

number of comparisons, thereby reducing the likelihood of Type I errors.

In non-parametric contexts, Conover’s test [145] serves as a post-hoc analysis

following a significant Kruskal-Wallis test result. This test performs pairwise

comparisons using rank sums and adjusts for multiple testing, allowing the

identification of significant differences between groups without relying on

parametric assumptions [145].

2.3.4 Correlation Analysis

To explore potential associations and dependencies between variables, correlation

analysis is a fundamental statistical method [138]. Correlation analysis provides

insights into the strength and direction of the relationships between two continuous

variables. There are two common correlation coefficients used in research: Pearson’s

correlation coefficient [146] and Spearman’s rank correlation coefficient [147]. The

correlation coefficient given by either method ranges from −1 to 1, where values

closer to −1 or 1 indicate strong positive or negative correlations, respectively.

Pearson’s correlation [146] is used to measure the strength and direction of

linear relationships between normally distributed variables. This parametric

method provides insights into the degree of association between continuous

variables that exhibit a linear trend. Pearson’s correlation assumes that the data is

normally distributed and that the relationship between the variables is linear [146].

Therefore, it is essential to verify these assumptions before conducting the analysis.

For normality assumption, the Shapiro-Wilk test [140] (discussed in Section 2.3.2)

can be used, while the linearity assumption can be verified by examining scatter

plots of the data. In cases where the assumptions of Pearson’s correlation are not

met, or when measuring relationship between ordinal variables, Spearman’s rank
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correlation [147] is utilised. This non-parametric alternative examines the

monotonic relationships between variables by evaluating the rank-order of the data

It offers a more flexible approach to correlation analysis that is less sensitive to

outliers and non-linear associations.

2.4 Methods for Machine Learning Analysis

This research leverages a comprehensive set of machine learning techniques to

extract insights and build predictive models from complex eye-tracking datasets.

The following sections provide a comprehensive overview of these methods,

detailing their theoretical foundations, algorithmic structures, and key

characteristics.

2.4.1 Regression Algorithms

2.4.1.1 Linear Regression

Linear regression is a statistical method which is widely used to model the

relationship between a dependent variable Y (also known as the response or

outcome) and one or more independent variables X (also known as predictors or

features). The model tries to find the best-fitting line that describes the

relationship between the dependent and independent variables, which can be

expressed as follows:

Y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ

Where

• β0 is the intercept

• β1, β2, ..., βn are the coefficients of the independent variables, X1, X2, ..., Xn,

• ϵ is the error term.
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Linear regression aims to find the coefficients that minimise the sum of squared

differences between the predicted and actual values of the dependent variable. It

is also particularly useful for understanding the influnence of predictor variables on

the dependent variable.

2.4.1.2 Logistic Regression

Logistic regression extends the linear regression model to the concept of binary

classification tasks. It models the probability of a given input belongs to one of two

classes (e.g., 0 or 1) by applying a logistic function to the linear combination of the

input features, as follows:

P (Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)

Where:

• P (Y = 1|X) is the probability of the input X belonging to class 1,

• β0 is the intercept,

• β1, β2, ..., βn are the coefficients of the independent variables, X1, X2, ..., Xn.

The logistic function is also known as the sigmoid function, which maps the predicted

values of the linear combination to a probability value between 0 and 1 to determine

the class label. Moreover, it can be extended to multi-class classification tasks using

methods such as one-vs-one (OvO) or one-vs-rest (OvR). The one-vs-one method

constructs a binary classifier (i.e. the logistic regressor) for each pair of classes,

while the one-vs-rest method constructs a binary classifier for each class against all

other classes.

2.4.2 Ensemble Learning

Ensemble learning is known as a machine learning technique that combines multiple

learning models to improve the ultimate predictive performance.
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2.4.2.1 Random Forest

Random Forest is an ensemble learning method that is built upon the concept of

decision trees. It creates a collection of different decision trees during the training

process and aggregates their predictions to make the final decision. To introduce

randomness, each tree is trained on a random subset of the training data (called

bagging) and a random subset of the features. This helps to reduce overftting and

enhance the generalisation of the model. Depending on the task, the trees’

predictions are aggregated differently, such as majority voting for classification

tasks and averaging for regression tasks. Random Forest is widely used in practice

due to its robustness, ability to handle high-dimensional data, and non-linear

relationships.

2.4.2.2 Extra Trees (Extremely Randomised Trees)

Extra Trees is an ensemble method which is similar to Random Forest, but with a

key difference in the way the decision trees are formed. In Random Forest, the trees

are built using the best split among a subset of features, while in Extra Trees, the

splits are chosen randomly. This helps to diversify the trees and reduce the variance

of the model, which can lead to improved generalisation performance. Hence, Extra

Trees is particularly useful when dealing with high-dimensional and high variance

data.

2.4.2.3 Gradient Boosting Machine

Gradient Boosting Machine is another ensembel model that is built upon a collection

of weak learners (e.g., decision trees) to boost the overall predictive performance. It

works by training a sequence of weak learners in multiple rounds, where each learner

is trained to correct the errors made by the previous learners. Specifically, the new

learner is trained to predict the errors of the previous learner, and the predictions

are aggregated to make the final decision. Matheamtically, the boosting process of
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the model can be expressed as follows:

Fm(x) = Fm−1(x) + γhm(x)

Where:

• Fm(x) is the prediction of the model at stage m,

• Fm−1(x) is the prediction of the model at stage m− 1,

• γ is the learning rate that controls how much the new learner contributes to

the final prediction,

• hm(x) is the weak learner at round m.

2.4.2.4 AdaBoost

AdaBoost is another variant of boosting technique that is designed to improve the

performance of weak learners by focusing on the misclassified instances. All instances

are assigned equal weights initially, then changed in each iteration based on the

performance of the weak learner. In particular, the weights of the misclassified

instances are increased, so that the new learner pays more attention to these instances

in the next iteration. After a certain number of boosting rounds, the final prediction

is made by aggregating the predictions of all weak learners. The algorithm behind

AdaBoost can be summarised as follows:

F (x) =

M∑
m=1

γmhm(x)

Where:

• F (x) is the final prediction of the model,

• γm is the weight of the weak learner at round m,

• hm(x) is the weak learner at round m.

64



Chapter 2. Related Work and Background

For each weak learner hm(x), its weight γm is calculated based on the error rate

of the learner, which is used to update the weights of the instances.

2.4.2.5 Light Gradient Boosting Machine (LightGBM)

LightGBM is an efficient and scalable gradient boosting framework with advanced

implementation that is designed to handle large-scale and high-dimensional data.

Comparing to traditional gradient boosting methods, LightGBM is equipped with

novel techniques such as:

• Gradient-based One-Side Sampling (GOSS) which selects the instances with

large gradients while randomly samples the instances with small gradients to

compute gradients, enabling faster training speed while maintaining the

accuracy.

• Exclusive Feature Bundling (EFB) which bundles the mutually exclusive

features into a single feature, reducing the number of features and thereby

improving the efficiency of the model.

• Histogram-based algorithm which puts continuous features into discrete bins

and hence speeding up the training process.

Due to these advantages, LightGBM is widely used in practice for various machine

learning tasks.

2.4.3 Instance-based Learning

2.4.3.1 K-Nearest Neighbours (KNN)

The k-Nearest Neighbors algorithm is a non-parametric method used in machine

learning for both classification and regression tasks. Its core principle involves

making predictions for a new data point based on the characteristics of its k

nearest neighbors in the feature space. For classification, KNN assigns the most

common class among the k nearest neighbors, while for regression, it averages their

values. There are two critical factors influence kNN’s performance:

65



Chapter 2. Related Work and Background

• The choice of k: A smaller k allows for more flexible decision boundaries but

may be noise-sensitive, while a larger k provides smoother boundaries but

might oversimplify the model.

• The distance metric: Commonly Euclidean distance, but other metrics like

Manhattan or Minkowski may be more suitable depending on the data.

KNN is simple to implement and interpret, but it can be computaionally

expensive, especially with large datasets. However, KNN is a powerful tool for

problems in which the decision boundary is complex and not easily represented by

a parametric model.

2.4.3.2 Support Vector Machine (SVM)

Support Vector Machine is one of the supervised learning models that are commonly

used for both classification and regression tasks. SVM’s main objective is to find the

optimal hyperplane that best separates the data points into different classes within

the maximum margin. Mathematically, SVM tries to find a hyperplan wTx+ b = 0

that maximizes the margin, which is given by the formula:

min
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1 for i = 1, 2, ..., n

Where:

• w is the weight vector,

• b is the bias term,

• xi is the data point,

• yi is the class label,

• n is the number of data points.
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Moreover, SVM is also able to handle non-liearly separable data by employing

different kernel functions such as linear, polynomial, and radial basis function

(RBF) kernels, which map the data into a higher-dimensional space where the data

points are linearly separable. To prevent overfitting, a regularisation factor is also

introduced to the objective function, which controls the trade-off between the

margin and the classification error. The regularised objective function is given by:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi for i = 1, 2, ..., n

ξi ≥ 0 for i = 1, 2, ..., n

Where:

• ξi is the slack variable that allows for some misclassification, which is given by:

– ξi = 0 if the data point is correctly classified and lies outside/on the

margin,

– 0 < ξi ≤ 1 if the data point is correctly classified but lies within the

margin,

– ξi > 1 if the data point is misclassified.

• C is the regularisation parameter that controls the trade-off between the

margin and the classification error.

2.4.4 Probabilistic Learning

In this thesis, I also employ the Bayesian Regression method which is a

probabilistic learning model that is based on the Bayes’ theorem. It can be viewed

as an extension of the standard linear regression model, which has regularisation

terms and Baysian inference. Instead of estimating the coefficients using least

squares as in linear regression, Bayesian regression treats the coefficients as random
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variables with prior distributions and then update the distributions based on the

observed data. The posterior distribution of the coefficients is then used to make

predictions and quantify the uncertainty of the model. The Bayesian regression

model can be summarised as follows:

y = Xβ + ϵ

β ∼ N(0, σ2
pI)

y ∼ N(Xβ, σ2I)

Where:

• y and X are the label and the feature matrix, respectively,

• β is the coefficient vector,

• ϵ is the error term,

• σ2
p is the variance of the prior distribution,

• σ2 is the variance of the error term.

2.5 Chapter Summary

This chapter lays the foundation for my research by introducing key concepts,

challenges, and state-of-the-art systems in lifelogging and eye movement analysis.

It begins with an overview of lifelogging and the need for efficient retrieval systems

as discussed in Section 2.1. A comprehensive review of the best-performing lifelog

retrieval systems in recent Lifelog Search Challenge (a popular benchmarking

challenge for lifelog retrieval systems) is presented, which are categorised into

concept-based and semantic-based approaches (Section 2.1.2).

The second part of the chapter explores eye movement research, covering

human eye anatomy (Section 2.2.1), eye-tracking technologies (Section 2.2.2), and
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the application of eye movement analysis in recognising reading strategies (Section

2.2.3 and 2.2.4). A literature review on using eye movements to predict reading

comprehension is presented. Through this, I identify the research gaps and

hypothesise a complex relationship between eye movements, reading conditions,

and reading comprehension and propose a novel approach to predict reading

comprehension by integrating information from eye movements within various

reading conditions.

Finally, the remaining sections provide a brief overview of the statistical

(Section 2.3) and machine learning methods (Section 2.4) employed in this

research, including ANOVA, Kruskal-Wallis test, post-hoc tests, correlation

analysis, and various machine learning algorithms such as regression, ensemble

learning, instance-based learning, and probabilistic learning. This serves as a

foundation for the subsequent chapters, where I will apply these methods to

analyse the eye movement data and predict reading comprehension.

Building upon the background established in this chapter, the forthcoming

chapter will present the research methodology adopted in this thesis, detailing the

research process and methodologies used to address the research questions outlined

in Section 1.4.
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Research Methodology and

Evaluation Methods

This chapter discusses the research methodologies used in this thesis to address the

proposed research questions. It is divided into three sections: Section 3.1 outlines

the categories of research methodologies, the rationale for their selection for each

research question, and the processes used to address these questions. Section 3.2

examines the operational constraints of the research. Finally, Section 3.3 briefly

overviews the evaluation metrics for assessing the research outcomes.

3.1 Research Methodology

In the Advanced Learner’s Dictionary of Current English, the term "research" is

defined as "a careful investigation or inquiry specifically through search for new

facts in any branch of knowledge." 1. It is a process of collecting, analysing and

interpreting information to answer questions about a topic or phenomenon [148]

According to Clifford Woody (American philosopher, 1939), "Research comprises of

defining and redefining problems, formulating the hypothesis for suggested

solutions, collecting, organizing and evaluating data, making deductions and

reaching conclusion and further testing the conclusion whether they fit into

formulating the hypothesis." [8] For a process to be called research, it must have 6

main characteristics: be controlled, rigorous, systematic, valid and verifiable,
1The Advanced Learner’s Dictionary of Current English, Oxford, 1952, p. 1069
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empirical and critical. [148]: Depending on the research perspective, it can be

classified into three main categories:

• Application of Findings:

– Pure Research: This type involves developing and examining theories

and hypotheses that are intellectually stimulating for the researcher but

might not have immediate or future practical use.

– Applied Research: Prevalent in social sciences, this type applies

research methods to gather information about different facets of specific

issues, situations, or phenomena.

• Objectives of the Study:

– Descriptive Research: This aims to systematically depict a situation,

issue, phenomenon, service, or program.

– Correlational Research: Its primary goal is to identify or confirm the

presence of a relationship between multiple elements of a situation.

– Explanatory Research: Focuses on understanding the reasons and

mechanisms behind the relationship between different aspects of a

situation or phenomenon.

– Exploratory Research: Conducted to explore areas with limited

existing knowledge or to assess the feasibility of a specific research

project.

• Mode of Enquiry Used in Conducting the Study:

– Quantitative Research: This type of research is based on the collection

and analysis of numerical data to explain, predict, or control phenomena

of interest.

– Qualitative Research: Focuses on gathering and interpreting

non-numerical data, such as text, video, or audio, to explore ideas,

viewpoints, or experiences.
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Figure 3.1: Research process in flow chart, adapted from [8]

It is worth noting that the above categories are not mutually exclusive. A research

project can be classified into more than one category. For example, a research

project can be both applied and explanatory [148]. Based on the above

classification, I was able to identify the type of research to be conducted to address

the proposed research questions in Section 1.4. Specifically, all the research

questions are exploratory research, which aims to explore to feasibility of bridging

the gap in the research literature. Moreover, quantitative research is used while

addressing RQ2 and RQ3 since the research questions are based on the collection

and analysis of eye movement measures to estimate reading comprehension. In

RQ2, correlational research is also employed since it aims to investigate the

relationship between eye movement measures, reading conditions and reading

comprehension in detail through machine learning approaches and statistical

testing procedures.

To address the research questions defined in Section 1.4, I followed the research

process depicted in Figure 3.1, which is an adapted version of the research process

in the flow chart from [8]. All research questions in my dissertation underwent

the same process (from I to VII), except for RQ1, where data collection (step V)

was unnecessary due to the availability of existing datasets for analysis. The initial

stages, including research problem identification, literature review, and hypothesis

formulation (steps I to III), have been previously discussed in Chapters 1 and 2. In

this section, I will elaborate on the subsequent stages of the research process (steps
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IV to VII) for each research question.

• RQ1: Since the data collection step was omitted for RQ1, there are only three

main stages: IV, VI, and VII. However, it takes multiple iterations through

two stages IV and VI before conclusively addressing the research question.

The research design (step IV) focused on developing LifeSeeker, the

interactive lifelog retrieval system for the Lifelog Search Challenge (LSC).

This involves selecting suitable technologies, search functionalities, and

designing the user interface. LifeSeeker is then benchmarked in the annual

LSC competitions, offering insights into system performance and user

experience. Step VI entailed evaluating LifeSeeker’s components, analysing

strengths and weaknesses to guide improvements. This feedback loop

returned the process to step IV with insight into necessary changes, leading

to the development of a new LifeSeeker version for subsequent LSC

competitions. Ultimately, the core components crucial for a state-of-the-art

lifelog retrieval system were identified (aiding in constructing the system for

RQ4), which addresses RQ1 Step VII involves documenting these findings,

which can be found in Chapter 4.

• RQ2: This research question begins with step IV which focuses on detailing

the data collection process and analysis procedure. Since this research

question focuses on understanding the relationship between eye movement

measures, reading conditions, and reading comprehension, and proposing a

model for reading comprehension estimation, it involves two main tasks:

classification of reading conditions and regression of reading comprehension,

based on eye movement features. To facilitate the analyses, a reading dataset

– RCIRv1 – is collected in step V, which is designed to capture participants’

eye movements when they are performing reading tasks, while different

reading conditions are being induced. RCIRv1 is then analysed in step VI,

which involves the extraction of eye movement features and subsequent
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analysis of the relationship between eye movement measures, reading

conditions and reading comprehension. To tackle this, two separate processes

are employed, with one focusing on statistical testing procedures and the

other on machine learning approaches, for both classification and regression

tasks. The results from both processes are then compared and contrasted to

gain more insights into eye movement features. Upon confirming the

relationship between eye movement measures, reading conditions and reading

comprehension, the approach for constructing a reading comprehension

estimation model is proposed and reported in Chapter 5 (step VII), which

also concludes RQ2.

• RQ3: The process of addressing this research question is similar to RQ2,

except that the data collection and analysis are conducted in a different

setting, in which the data collection happens over a period of multiple days.

After revising the data collection process and the data analysis procedure to

introduce the longitudinal aspect (step IV), the data collection happens in

step V, which generates the RCIRv2 dataset. Step VI mirrors the analytical

approach of RQ2 to analyse RCIRv2, but with more emphasis on machine

learning analyses since this research question focuses on evaluating the

performance of the reading comprehension estimation model proposed in

RQ2 on the longitudinal aspect. After verifying the model’s stability and

robustness, a further step is introduced which performs hyperparameter

tuning to improve the model’s performance and to prepare for deployment in

real-world applications, which is the case in RQ4. Findings and discussions

addressing RQ3 are detailed in Chapter 6, which is also the last step in

RQ3’s research process.

• RQ4: This question combines elements from RQ1, RQ2, and RQ3, aiming to

develop a proof-of-concept (PoC) retrieval system for perceived on-screen

information. This involved adapting the state-of-the-art lifelog retrieval
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system from RQ1 and integrating the reading comprehension estimation

model from RQ2 and RQ3. The design phase (step IV) included planning the

data collection to simulate lifelog data creation and track on-screen content

and eye movements. It also detailed the plan for the evaluation of the PoC

system’s performance with and without the reading comprehension model.

After having the necessary tools for capturing the infologging dataset, step V

begins by capturing users performing daily tasks on computer usage and their

corresponding eye movements, over a period of 1 month. Participants also

annotate a number of on-screen contents by giving a rating of their

understanding of the perceived information and answering some MCQs that

are generated based on that information to measure their reading

comprehension. These annotations further evaluated the reading

comprehension model before its integration into the PoC system. Upon the

completion of the infolog dataset, step VI begins with a user study to

evaluate the PoC system, with and without comprehension evidence.

Participants are divided into two groups accordingly, and both groups are

asked to perform search tasks on the PoC system, using the same set of

queries. This user study mimics the LSC format, using similar evaluation

metrics Finally, I discuss the results and provide insights into the PoC system

in Chapter 7, which concludes the research process for RQ4.

3.2 Operating Constraints

For any new research topic, I should define the operating constraints of the research

to design and conduct the experiment properly. In this Ph.D. research, I identify

these constraints as follows:

• The Limited number of participants for constructing the RCIRv1 and RCIRv2

datasets is one of the main constraints in this study. Recruiting participants

for eye movement studies is challenging, especially when the study requires
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high commitment from the participants to complete the reading experiment.

• Due to the availability of the eye tracker (one device), the data collection can

not be conducted in parallel. Therefore, the longitudinal RCIRv2 dataset is

limited to only 6 sessions (spanning 6 days) for each participant. As a result,

the full potential of the proposed reading comprehension estimation model’s

performance may not have been explored.

• My research is also constrained by ethical considerations and regulatory

compliance. The data collection experiments in this research were strictly

designed to respect participant privacy and adhere to prevailing data

governance laws.

• Since infologging is sensitive to privacy issues, the dataset for RQ4 only involves

data from the researcher and is not publicly available. The researcher adheres

to pre-defined steps to ensure the data is collected with no bias which influences

the research outcomes.

These constraints are maintained for this Ph.D. research and act as limiting

factors to focus the research effort.

3.3 Evaluation Metrics

In this section, I describe the evaluation metrics used in this dissertation. There

are four main metrics that are employed to evaluate proposed methods for

addressing the research questions, which are: Accuracy, Spearman’s ra to retrieving

correlation coefficient (or correlation score in short), LSC score, Precision and

Recall Specifically, RQ1 employed the LSC score to evaluate the performance of

the lifelog retrieval system, since this score is the main evaluation metric used for

the LSC competition, and hence, using this metric allows for a direct comparison

with other state-of-the-art lifelog retrieval systems. RQ2 and RQ3 used accuracy

and correlation scores to evaluate the performance of the reading condition
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classification and reading comprehension estimation model, accordingly. Accuracy

score is commonly used in classification tasks, especially when the dataset is

balanced, which is the case in this research. Meanwhile, correlation scores are used

to evaluate the predictive power of the reading comprehension estimation model,

which is also employed in previous study [80]. Finally, RQ4 used both LSC score,

precision and recall to evaluate the performance of the interactive infologging

retrieval system. The used of LSC score is to provide comparison with the baseline

retrieval system established in RQ1, while precision and recall are used to provide

more insights into the retrieval system’s performance in terms of the number of

relevant documents retrieved and the number of relevant documents missed,

respectively. A brief description of each metric is provided in the following sections.

3.3.1 Accuracy

Accuracy score is a basic yet crucial metric for evaluating classification models, and

it is the common choice when the dataset is balanced. It represents a measure of how

well a model, system, or test correctly identifies or predicts outcomes. The accuracy

score is defined as the ratio of correctly predicted instances to the total instances in

the dataset. It’s often expressed as a percentage. The formula for accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is

the number of false positives, and FN is the number of false negatives. The accuracy

score ranges from 0 to 1, with 1 being the best possible score.

3.3.2 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient is a statistical measure used to evaluate the

strength and direction of the association between two ranked variables. It’s

particularly useful in situations where the data does not meet the assumptions
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necessary for Pearson’s correlation coefficient, such as when the relationship is not

linear or the data is ordinal. Spearman’s rank correlation coefficient, often denoted

as ρ (rho) is a non-parametric measure of rank correlation. It assesses how well the

relationship between two variables can be described using a monotonic function.

To obtain ρ, each variable must be ranked. If there are ties, assign to each tied

value the average of the ranks they would have received if there had been no ties.

Then apply the following formula:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the difference between the two ranks of each observation and n is the

number of observations.

The coefficient ranges from -1 to 1. A positive ρ indicates that the ranks of the

two variables are positively related (i.e., when one variable increases, the other tends

to increase), while a negative ρ indicates that the ranks of the two variables are

negatively related (i.e., when one variable increases, the other tends to decrease).

The magnitude of ρ indicates the strength of the association. A value of 0 indicates

that there is no association between the two variables.

3.3.3 LSC score

Lifelog Search Challenge (LSC) is a benchmarking competition for lifelogging

research, which has been held annually since 2018. The benchmarking process

considers both the retrieval system and the person who operates it. For a given

query, the operator will perform the search on their system and submit the images

that they believe are relevant to the query. The ultimate goal is to retrieve the

relevant lifelog image that matches a given query as fast as possible while

minimising the penalty for wrong submissions. As a result, for each task, the

score [35] of one LSC participant retrieving the correct answer at a time t is

calculated as:
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Si = max

(
0,M +

D − t

D
(100−M)−W ∗ 10

)
(3.1)

where M refers to the minimum score earned, D denotes the query’s duration and

W represents the number of wrong submissions for each query. Specific to this case,

M and D are set to 50 and 300, respectively. As can be seen from the formula above,

the score is linearly decreased until the minimum score (50) within the 300-second

period. Then the final score is taken by subtracting each negative submission by

10 points. A participant gets a zero score when the time for the query is over (300

seconds have passed) and a positive answer is not found.

The LSC score is calculated by averaging the scores of all queries, which is given

by the following formula:

LSC score =
1

N

N∑
i=1

Si

3.3.4 Precision and Recall

Precision and Recall are widely used metrics to evaluate the performance of

retrieval systems, commonly seen in information retrieval, computer vision, and

machine learning contexts, particularly for tasks like image search, document

retrieval, and object detection. Precision is defined as the number of relevant

documents retrieved divided by the total number of documents retrieved.

Moreover, precision at k measures whether the relevant items are present in the top

k positions of the result list. It is particularly used in information retrieval tasks

where the order of results is significant and is defined as:

P (k) =
TPk

TPk + FPk

where TPk is the number of true positives and FPk is the number of false positives

at the cut-off k.

Recall measures the proportion of actual positives that were identified correctly.
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It is the number of true positives divided by the number of true positives plus the

number of false negatives (FN), which is given by the following formula:

Recall =
TP

TP + FN

where TP is the number of true positives and FN is the number of false negatives.

Both precision and recall are bounded between 0 and 1, with 1 being the best

possible score. There is often a trade-off between precision and recall. Increasing one

typically reduces the other. This is because broadening the criteria to retrieve more

items (increasing recall) often includes more irrelevant items (decreasing precision),

and vice versa.

3.4 Chapter Summary

This chapter presented the research methodologies employed in this thesis to

address the proposed research questions. The chapter outlined the categories of

research methodologies, the rationale for their selection, and the processes used to

address each research question. Additionally, the chapter discussed the operational

constraints of the research, such as the limited number of participants and ethical

considerations. Finally, an overview of the evaluation metrics, including accuracy,

Spearman’s rank correlation coefficient, LSC score, precision, and recall, and the

rationale for their selection was provided.

With the research methodology established, the coming chapters will focus on

addressing the research questions using the proposed methodologies. In particular:

• Chapter 4 will focus on RQ1, detailing the key components and construction of

a state-of-the-art lifelog interactive retrieval system, LifeSeeker. The chapter

will present the system’s development history, architecture, user interface, and

interaction methods, followed by an evaluation of its performance in the Lifelog

Search Challenge.
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• Chapter 5 will address RQ2, investigating the relationship between eye

movement features, reading conditions, and reading comprehension, which is

crucial to building a comprehension estimation model for infolog retrieval

system. The chapter will describe the construction of the RCIRv1 dataset,

the extraction of eye movement features, and the analysis of their

relationship with reading conditions and comprehension using machine

learning models and statistical testing.

• Chapter 6 will focus on RQ3, evaluating the temporal robustness of the reading

comprehension estimation model developed in Chapter 5. The chapter will

detail the construction of the longitudinal RCIRv2 dataset, the adaptation of

the data analysis procedure, and the evaluation of the model’s performance

over time.

• Chapter 7 will address RQ4, presenting the development of InfoSeeker, an

interactive retrieval system for infologging data that integrates the reading

comprehension estimation model. The chapter will describe the system’s

design, data collection process, and evaluation through non-interactive and

interactive experiments.
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State-of-the-art Lifelog Retrieval

System

4.1 Introduction

In this chapter, I address the Research Question 1, which is: What are the key

design principles and components required to construct a state-of-the-art

lifelog interactive retrieval system?

As discussed in Chapter 1, the increasing volume of lifelog data has made it

difficult for users to find the desired moment in their lifelog data by manual

browsing. To address this issue, lifelog retrieval systems have been developed to

automate the process of searching and retrieving lifelog data. The literature review

in Chapter 2 highlighted the key features and interaction methods employed by

state-of-the-art lifelog retrieval systems. Building upon this foundation, this

chapter focuses on the design, implementation, and evaluation of LifeSeeker, an

interactive lifelog retrieval system that incorporates these state-of-the-art features

and techniques LifeSeeker was evaluated in LSC (2019, 2020, 2021 and 2022),

which helped to measure efficacy in enhancing lifelog search capabilities.

Throughout a series of upgrades, refinements and evaluations for each iteration of

LSC, LifeSeeker managed to approach the state-of-the-art performance. As a

result, I also managed to shortlist the core functionalities and interaction methods

that made the success of LifeSeeker.

Furthermore, it is worth noting that LifeSeeker was developed as a collaborative
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effort with my colleagues. Consequently, in this chapter, I use ’we’ or ’our’ to denote

research activities conducted jointly with my colleagues, and ’I’ or ’my’ to refer

exclusively to work performed independently by myself.

In the subsequent sections, I will present a concise overview of LifeSeeker’s

development history. This overview traces the evolution of LifeSeeker from a

simple baseline system to its current state-of-the-art status. It will be followed by

an in-depth description of the system’s architecture, user interface, user

interaction, and the underlying search engine that powers the system. Finally, the

evaluation results of LifeSeeker will be presented and discussed, followed by a

summary of the key findings of this chapter.

4.2 An Overview of LifeSeeker

4.2.1 A Brief History of Development

LifeSeeker has experienced significant development since its inception, first

introduced at the Lifelog Search Challenge 2019 (LSC’19), the second iteration of

the challenge. Up to the time of this dissertation, LifeSeeker has undergone several

major updates, each introducing new features and improvements to meet the

evolving requirements of the challenge. A comprehensive list of features and

improvements is presented in Table 4.1. This section briefly summarises the pivotal

modifications made to the system during each phase of its participation in the

challenges.

Similar to most conventional lifelog retrieval systems, the very first version of

LifeSeeker [40], is designed as a concept-based search tool that analyses both visual

and non-visual content. Its primary aim was to assist users in locating specific life

moments captured by a lifelog camera, using keyword queries, while also enhancing

the user experience with a transparent and intuitive interface. The main search

mechanism was based on concept matching between the user’s query and the

concepts extracted from the lifelog data. This was enhanced by extracting
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Table 4.1: A list of feature changes in LifeSeeker from LSC’19 to LSC’22. Symbol
+ indicates a new feature added to the system, while symbol – indicates a feature
removal from the system. A ✓ means the feature is kept unchanged.

Category Features
LifeSeeker Version

V1
[40]

V2
[41]

V3
[42]

V4
[43]

Search/Filter
mechanism

• Concept search
— Keyword matching* + –
— Using Elasticsearch [149]* + ✓ ✓
— Using Weighted Bag-of-Words [42] + –

• Semantic search using CLIP model* [115] +

• Free-text query* + ✓ ✓

Concepts
enhancement

• Additional visual concepts
— SNIPER [150] pre-trained on COCO [151] + ✓ ✓ ✓
— PlacesCNN [118] pre-trained on Place365 [118] + ✓ ✓ ✓
— Bottom-up Attention model pre-trained [152] on
Visual Genome dataset [153]*

+ ✓ ✓

• Text recognition (OCR)
— Using CRAFT [154]* + –
— Using Microsoft Vision API + ✓
— Using Google Cloud Vision API +
• Locations’ semantic name (inferred through GPS)* + ✓

User
Interface

• Search results presentation mode
— Ranked list of images* + ✓ ✓ ✓
— Group by location* + –
— Group by part of day* +
— Pagination + –
— Single page with lazy loading function + ✓ ✓

• Image zooming + ✓ ✓

• Temporal browsing* + ✓ ✓

Additional
Functionaltities

• Concept expansion* + –

• Concept suggestion + ✓ –

• Visual similarity search
— Bag-of-Visual-Words using SIFT [155] features + ✓ ✓ –
— Cosine distances of CLIP embeddings [115]* +

• Active search (system actively suggest concepts for
filtering)*

+

• Relevance feedback (both positive and negative)* +

• Caching for search results* +

• Continued refinement (filtering applied on top of
the preceding search results)*

+

• Search timeline for reaccessing previous search
results*

+

*These features were mainly developed by me
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additional visual concepts using a pre-trained SNIPER model [150] on the

MS-COCO dataset [151] for object detection and a pre-trained PlacesCNN

model [118] on the Places365 dataset [118] for scene recognition. The system also

expands the input adding related concepts to the original query using thesaurus

lookup [40] to help novice users formulate their queries. The search results are

presented in a paginated ranked-list of images, with an option for detailed view and

visual similarity searches. Visual similarity matching was facilitated by employing

a bag-of-visual-words approach using SIFT features [155] to find similar images.

For LSC’20, LifeSeeker 2.0 [41] saw substantial improvements in both system

architecture and user interface. The architecture was restructured for greater

modularity, facilitating the ease of integrating new components. This version

introduced additional visual content analysis techniques, namely object detection

with attributes [41] using Bottom-up Attention model [152] pre-trained on Visual

Genome dataset [153] and scene text detection using CRAFT [154], which

significantly enhance indexing and retrieval capabilities. The system also employed

Elasticsearch [149] for indexing and searching, which provides a more scalable and

efficient solution than conventional keyword matching on a relational database.

The user interface was redesigned to support temporal browsing of search results

and included a graph-based visualisation for location-based filtering [41]. The

display of search results also shifted from a paginated list to a single page with lazy

loading, which allows users to scroll through the results without having to navigate

to a new page. From the user’s feedback from the first system, the query expansion

function was removed as it often worsened the search results [41]. Instead, concept

suggestion was introduced, which allows users to actively select concepts existing in

the system to perform the search task

The third iteration, LifeSeeker [42], developed for LSC’21, focused on enhancing

performance and scalability. Incorporating Elasticsearch [149] as the primary storage

engine improved the efficiency of indexing and data retrieval. This version also

supported complex query constructions, including boolean operators and wildcards,
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by leveraging Elasticsearch’s syntax-based query language. For scene text detection,

we replaced CRAFT [154] with the OCR modules from Google Cloud Vision API2

and Microsoft Vision API3 as suggested by the organisers [37] and the top-performing

team [2], which provided more accurate results.

In the most recent version, LifeSeeker 4.0, the system underwent further

enhancements to support advanced search and filtering functions, an easy-to-use

interface, and improved scalability. It moves from a concept-based retrieval system

to a semantic-based system by employing CLIP [115] to bridge the semantic gap

between the user’s query and the visual content of the lifelog data. With this,

concept suggestion was no longer needed, and the system could support more

complex queries and was not bound to the concepts existing in the system. Visual

similarity search was also improved by using CLIP embeddings [115] instead of

SIFT features [155] to find similar images. The search results were grouped into

part of the day (early morning, morning, afternoon, evening, and night) to

facilitate better temporal browsing. Additionally, the system also introduced many

new features, including relevance feedback, caching for search results, continued

refinement, and search timeline, to enhance the user experience. More details of

these features are discussed in Section 4.4. These upgrades resulted in LifeSeeker

4.0 becoming the second-best-performing system in LSC’22. The remainder of this

chapter will detail the design of LifeSeeker 4.0, elaborating on its key features and

the rationale behind the design choices.

4.2.2 System Design

Figure 4.1 illustrates the workflow of LifeSeeker, which consists of two main

processes: An offline process that is responsible for indexing and storing the lifelog

data, and an online process that handles user queries and returns the search results.

In the offline process, lifelog images were embedded into a vector space by using

the Contrastive Language-Image Pre-training [115] (CLIP) model and indexed into

a vector database built for scalable similarity search called Milvus [156]. Moreover,
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Figure 4.1: An overview of LifeSeeker system workflow

the Elasticsearch engine1 was used to index and retrieve the metadata provided by

the organisers combined with other metadata we extracted from the lifelog dataset.

These include place categories and place attributes extracted from PlacesCNN [118],

visual object concepts extracted from YOLOv4 [157] pre-trained on COCO dataset

[151] and Bottom-up Attention Model [152] pre-trained on Visual Genome dataset

[153], and text extraction data (OCR) with other visual concepts extracted using

Google Vision API2 and Microsoft Vision API3, respectively. Detailed descriptions

of the structure of the indexed metadata file created for the Elasticsearch engine

are detailed in Section 4.4.1. The offline process is performed only once, during the

initial setup of the system. More details on this indexing process will be discussed

in Section 4.4.1.

The online process is where the user interacts with the system. The user can

submit queries to the system via the web interface, which can either be a search

query or a filter query. The search query is used to retrieve the most relevant
1https://www.elastic.co
2https://cloud.google.com/vision/docs/ocr
3https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
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images to the query, while the filter query is used to filter the search results based

on the metadata. Search queries are processed by the Milvus engine, in which

the CLIP model is used to embed the query into the vector space and perform

a similarity search with embedded images that are already indexed in the vector

database. The Elasticsearch engine is used to process filter queries, by leveraging

the power of Elasticsearch query language. Search and filter results are cached in a

Redis database4, enabling the system to keep track of the user’s search history and

provide a seamless user experience when the user needs to revisit the previous search

results. On top of the search and filter functionalities, the system also supports

visual similarity search, relevance feedback, and active search. Visual similarity

search allows the user to search for images that are visually similar to a given image.

Relevance feedback provides the user with the ability to refine the search results by

annotating images that are relevant or irrelevant to the query so that the system

can re-rank the search results. And finally, active search is a function that allows

the system to suggest filtering concepts to the user, rather than the user having to

manually come up with the appropriate filtering concepts. Details implementation

of these functionalities will be discussed in Section 4.4.2.

The LifeSeeker’s retrieval server is developed using the Django framework5

which plays the role of a middleware layer supporting the communication between

the client-side requests (user interface and interaction) and different retrieval

modules. The interactive search interface of the LifeSeeker is a web-based

application developed using ReactJS framework6 with the support of Redux7 for

state management and Material-UI8 for UI components. In Section 4.3, we describe

the interface of LifeSeeker in detail and illustrate how a user can interact with the

system to perform search tasks.
4https://redis.io
5https://www.djangoproject.com
6https://reactjs.org
7https://redux.js.org
8https://material-ui.com
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4.3 User Interface and User Interaction

4.3.1 User Interface

The user interface of LifeSeeker is composed of four main components: (A) the query

boxes, including a free-text search box and filter box, (B) the active search’s question

display, (C) the search progress bar, and (D) a vertically-scrollable panel displaying

the retrieved result in groups. Figure 4.2 shows the user interface of LifeSeeker with

the aforementioned four main components highlighted.

Figure 4.2: The Interactive User Interface of the LifeSeeker Retrieval System.

The query boxes (A) are the main components of the user interface, where the

user provides the query to the system. The first box on the left is the free-text search

box, where the user can enter a query describing the desired life moment. This

query can be of any length and in any natural language format. After the search is

performed, the results will be displayed in the vertically scrollable panel (D). The
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second box on the right is the filter box (A), where the user can specify another

query to filter the results displayed in (D) to narrow down the search results and

eventually obtain the desired lifelog moment. Once the filter is applied, the results

will be updated accordingly in (D). It is important to note that the filter box is only

available when the user performs a free-text search prior to applying the filter.

The active search’s question display (B) is the component where the system

displays questions to the user during the active search process. The questions are

updated every time there is a change in the search results displayed in (D). One

can perceive this as an alternative for filtering, but instead of the user specifying

the filter, the system actively asks the user a number of Yes/No questions to narrow

down the search results.

The history of the search process (the search timeline) is depicted in the search

progress bar (C). It is a horizontal bar with many dots, each of which represents

a search/filter/active search step. The user can click on any dot to go back to the

corresponding step in the search process. There is no extra computation involved

when the user goes back to a previous step, as the system caches the results of all

the previous steps.

The vertically-scrollable panel (D) shows a ranked list of retrieved moments

obtained from the query submitted in the query boxes (A) and active search function

(B). Each item in the panel is a square box displaying the lifelog images with a date

and time, grouped by part of day. Dates and times are in UTC+0 timezone and

the format of dd/mm/YYYY and 12-hour HH:MM:SS respectively, where d, m, Y, H,

M, S denotes the day, month, year, hour, minute and second correspondingly. This

information is shown alongside the images since it is considered to be one of the

most important pieces of information of a lifelog moment that cannot be recognised

visually from the image. The images displayed in the rectangle boxes are the top

images that match the query of a particular part of day. The vertically scrollable

panel and its items’ size are designed for optimal moment-scanning and browsing on a

27-inch monitor (367.69 mm × 612.49 mm). It is worth noting that this optimization
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is specifically designed for the Lifelog Search Challenge to reduce the overhead time

to find the correct moments to submit by scrolling up and down. According to our

experience in previous Lifelog Search Challenges, viewing as many top results as

possible without scrolling can result in a big gap in the score and the rank of top-

performance systems in the competition. At the bottom of each square box, there

are two buttons, one for showing all images in the group (returned by the search),

and the other for viewing all lifelog images on the same day.

4.3.2 User Interaction

The flow of user interaction can be described via five steps:

1. The user inputs the query into the search box on the left in (A). The query

can be in the form of a full sentence describing the moment or in the form of

a sequence of terms,

2. The user can either scan or browse the ranked list of relevant images displayed

on the vertical-scrollable panel (D),

3. Any moment for which the user wants to investigate if it is the answer to the

query, the user has two options to browse it further; there are two buttons to

browse for more details. Images can be enlarged for a better view by hovering

on the image while pressing the X key,

4. If the user is not satisfied with the results, they can choose one of the following

options:

(a) Apply a filter to the current results by specifying the filter in the filter

box on the right in (A)

(b) Answer the active search’s questions displayed in (B)

(c) Perform visual similarity search using any image shown in (D)

(d) Perform relevance feedback by annotating some images as relevant or

irrelevant in (D) and submit to the system
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5. The user can also go back to any previous step in the search process by clicking

on the corresponding dot in the search progress bar (C).

These five steps are performed repeatedly until the user is satisfied with the results

and decides to submit the answer to the system.

4.4 Search Engine

This section is dedicated to detailing all components of the search engine that powers

LifeSeeker. As LifeSeeker was specifically designed to address the LSC challenge

(which aims to retrieve lifelog moments based on cues given by a lifelogger), its search

engine takes as input a text-based query and returns a list of moments (represented

by images) ranked by the descending order of their relevance to the query. To achieve

this, LifeSeeker is equipped with two main modules: (1) an indexing module that

processes the input data (images, biometrics data, metadata) from the dataset and

transforms them into a searchable representation; (2) a retrieval module which takes

an input query and matches it with the data previously processed by the indexing

module to return the relevant moments.

4.4.1 Indexing

Since the lifelog dataset is constructed by gathering data from multi-modal

sensors (i.e. wearable cameras, biometric devices, GPS, phones, computers), the

Indexing module requires various sub-modules, each responsible for processing one

modality of the lifelog data. Inspired by the lifelog data analysis from NTCIR-14

Lifelog-3 task [30], we categorise the lifelog data into the following types:

1. Time: This is one of the most important pieces of information that helps to

narrow the search space. For example, knowing when (morning, afternoon,

evening) the moment happened can filter out nearly two-thirds of the original

amount of images. Section 4.4.1.1 describes the process of indexing the time

data in more detail.
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Listing 4.1: A sample metadata for a lifelog moment to be indexed into
Elasticsearch for filtering, corresponds to Figure 4.3
"_id": "20160927_140817_000",
"minute_id": "20160927_1408",
"image_path": "LSC/2016-09-27/20160927_140817_000.jpg",
"date": "2016-09-27",
"local_time": "15:08",
"day_of_week": "tuesday",
"month": "september",
"year": 2016,
"part_of_day": "afternoon",
"gps": [53.38571962, -6.258157063],
"activity_type": "walking",
"lat": 53.38572,
"lon": -6.258157,
"location_name": "work",
"location_type": "dcu, university",
"city": "Dublin",
"country": "Ireland",
"location_address": ["wad", "whitehall a ed", "dublin 9",
"dublin", "county dublin", "leinster", "ireland"

],
"place_category": ["elevator/door", "elevator lobby"],
"microsoft_tag": ["text", "wall", "door", "indoor", "floor"],
"yolo_concept": ["tv"],
"visual_genome": ["white sign", "tiled floor",
"black television", "wooden door", "wooden wall",
"white table"

],
"ocr": "cademic offices first floor school office/reception
faculty of engineering & computing dcu first floor faculty
administration offices cngl 1sim"

2. Location: Location can be viewed as a summary of a lifelogger in terms of

where they were on a daily basis, which might imply the sequence of activities

that the lifelogger does throughout the day. It is also useful for adding more

context to the query generation process to find more relevant moments (i.e.

if finding moments that the lifelogger was eating a sushi platter, the user can

add "Asian restaurant" as part of the LifeSeeker input query to obtain more

accurate results). The indexing pipeline for location data can be found in

Section 4.4.1.2.

3. Visual data: Images captured from the wearable camera are information-
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Figure 4.3: The image corresponding to the concepts in Listing 4.1

rich, as moments are illustrated in detail (i.e. what the surroundings look

like, who appears in that moment, and which objects are seen). However,

computers cannot perceive images as humans do. Therefore, in Section 4.4.1.3,

we outlined several adopted approaches to convert images into a machine-

searchable format.

4. Other metadata: Apart from the aforementioned data sources, there are

other modalities provided in the dataset as listed below. However, this

metadata can be indexed instantly into the search engine without further

processing.

(a) Activity: The activity data contains two categories: walking and

transport.

(b) Biometrics: The biometrics data that we use in our search engine

includes heart rate and caloric expenditure.
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4.4.1.1 Time Data

When referring to time, we have different ways to describe it. For instance,

“September 27, 2016 at 15:08" can be referred to as “2016/09/27 at 15:08",

“Tuesday afternoon in September 2016", or “September 2016, after 3 pm".

Therefore, to handle input queries containing variable time formats, these different

variations need to be indexed in the search engine in advance. We note that the

local time gives a more intuitive view into a day in the lifelogger’s data, compared

to the standard UTC time collected from wearable devices, especially when the

lifelogger was traveling to another country in another hemisphere. Hence, we

aligned the current time into the local timezone at the location where the lifelogger

was at that time. Since lifelog data is organised on a one-minute basis, each image

has a minute_id that we can process as follows:

• Date: The date of the image, in the YYYY-MM-DD format;

• Month: Name of the month (e.g. January, September, December);

• Year: The year in the YYYY format;

• Local Time: The time in the lifelogger’s local timezone in 24-hour format;

• Day of Week: One of the seven days of the week expressed in the lifelogger’s

local time;

• Part of the Day: Whether it is early morning (04:00 to 07:59), morning (08:00

to 11:59), afternoon (12:00 to 16:59), evening (17:00 to 20:59), or night (21:00

to 03:59), based on the local time.

A sample of the generated time data is illustrated in Listing 4.1 in the fields date,

month, year, local_time, day_of_week, and part_of_day.
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4.4.1.2 Location Data

Another important attribute in every lifelogger’s life moments is the locations they

have been. Knowing the correct location would give more valuable information

to expedite the search process. From the geographic coordinates collected from

wearable devices, we identify the detailed address of the image using Geocoding API

from Google Map Platform9. Apart from the address, city and country also play a

crucial role in the filtering process, especially for locations outside Ireland (where

the lifelogger is based). Moreover, we also cluster the locations into 32 pre-defined

place categories. Each image has information related to the location of the lifelogger

at that moment as follows:

• Latitude: Angular coordinate specifies the north-south position of the image

on the surface of the earth;

• Longitude: Angular coordinate specifies the east-west position of the image on

the surface of the earth;

• Location’s name: Semantic name of the location (i.e. Dublin Airport, DCU,

...);

• Location’s type: One of the 32 predefined categories in Table 4.3;

• Location’s address: Detailed address associated with the lifelogger’s location;

• City: Name of the city associated with the lifelogger’s location;

• Country: Name of the country associated with the lifelogger’s location.

4.4.1.3 Visual data

There are two main approaches to making visual data searchable: (1) extracting

visual concepts from images and (2) embedding images into a vector space. The first
9https://developers.google.com/maps/documentation/geocoding
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Table 4.3: Location categories

ID Name

1 Airport
2 Antique store
3 Apartment
4 Bank
5 Bar, pub
6 Bus stop
7 Car
8 Castle
9 Church
10 Coffee shop
11 Convenience store
12 DCU
13 Dental clinic
14 Department store
15 Embassy
16 Hall

ID Name

17 Home
18 Hotel
19 Howth
20 Office
21 Park
22 Pharmacy
23 Plane
24 Restaurant
25 Shop
26 Shopping Center
27 Sister home
28 Station
29 Store
30 Street
31 University
32 Unknown

approach is straightforward, as we can employ different pre-trained models to extract

visual concepts from images. These visual concepts are very useful to quickly filter

out irrelevant images and narrow down the search space. The power of this approach

has been proven by the success in previous participations of LifeSeeker (version 1, 2

and 3) in LSC where this has been employed as the main indexing mechanism for

visual data. Some of the main visual concepts that we have used in our search engine

are:

1. Text recognition: Texts appearing in lifelog images can help to determine not

only what the lifelogger might have seen, but also the context of the associated

life moment. Therefore, to convert texts in lifelog images into visual concepts,

we employed the OCR tool from Google Vision API 10 to detect and recognise

text content. The extracted texts were then aggregated into a single string (as

shown in Listing 4.1 in the ocr field) that can be indexed by the search engine

in the latter stage.

2. Object detection: Object tagging is an essential component for most

concept-based retrieval systems. Thus, visual concepts of lifelog images,
10https://cloud.google.com/vision/docs/ocr
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obtained from object detection models, are always provided as part of the

lifelog dataset in all collaborative research tasks and challenges in the

lifelogging domain [36]. Besides the visual concepts shared by the

lifelogger/task organisers, which were generated using Microsoft Vision API

11, we also considered other object detection models (e.g. YOLOv4 [157] and

Bottom-up Attention model [152]) with the aim of tagging more objects from

lifelog images. The YOLOv4 [157], which was pre-trained on the COCO

dataset [151], can detect 80 different categories of common objects in daily

life. Meanwhile, the Bottom-up Attention model [152] is able to detect 1600

object classes along with 400 associating attribute types (e.g., black pillar,

wooden floor, red car, etc.) by using multi-GPU pre-training of Faster

R-CNN [158] with ResNet-101 [107]. This model not only increases the

number of concepts by a significant amount but also enables the retrieval of

concepts at a finer level of detail using their corresponding attributes. The

fields microsoft_tag, yolo_concept, and visual_genome in Listing 4.1

illustrate a sample result of the visual concepts generated by Microsoft Vision

API, YOLOv4 and Bottom-up attention model, respectively.

3. Scene recognition: In addition to text and object concepts, detecting the

surroundings also gives more insight into where the lifelogger was (e.g.,

waiting in a lobby, exercising outdoors, working in an office). To achieve this,

we utilised the PlacesCNN [118] model pre-trained on the Places365

dataset [118], which classifies images into 365 place categories. For example,

the lifelog moment displayed in Figure 4.3 was recognised as "elevator/door"

and "elevator lobby" as shown in the field place_category in Listing 4.1).

However, the main drawback of the first approach is that it is not possible to

search for images that contain a specific object or scene that is not included in the

pre-trained models. Besides, the semantic meaning of the input query is not
11https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
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well-handled. The second approach, on the other hand, is able to address these

issues by embedding images into a vector space, where the similarity between

image-image or image-query pairs can be measured by the distance between their

corresponding embedding vectors. To facilitate this, we employed the Contrastive

Language-Image Pre-training (CLIP) [115] model, developed by the OpenAI team,

which is an embedding model that learns the relation between visual and semantic

concepts of the scene. With the zero-shot transferability, CLIP has been widely

used for different tasks ranging from self-supervised learning [159], action

recognition [160] to image captioning [161]. As can be seen from Figure 4.1, the

CLIP model acts as the Image Encoder which converts lifelog images into

high-dimensional feature vectors. By doing so, we leverage the contextual meaning

of the general image rather than using some keywords to describe the scene only.

In addition, this model also acts as a Text Encoder to convert the input text query

into the same latent space as the images, allowing us to measure the similarity

between the query and images and obtain relevant images for the query.

4.4.1.4 Putting It All Together

After extracting all relevant information, metadata and visual concepts, as well as

obtaining the embedding vectors of all lifelog images, the indexing process begins.

Images’ embeddings are then indexed using Milvus [156], an open-source vector

database, which is optimised for similarity search and high scalability. This

database serves as the main component for handling the search queries. The

remaining information, including metadata and visual concepts, are indexed using

Elasticsearch 12, which is responsible for executing filter queries. Listing 4.1 shows

a sample of the complete metadata of a lifelog image that is indexed into

Elasticsearch. This process only needs to run once for the entire dataset and will

be ready to serve the search queries.
12https://www.elastic.co/elastic/official
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4.4.2 Retrieval

4.4.2.1 Search Query

Upon receiving a search query from the user, the query directly goes through the

Text Encoder where the CLIP model is employed to convert the query into a high-

dimensional embedding vector. The embedding vector is then passed to Milvus,

where the embedding vectors of all lifelog images are stored, to find the most similar

images to the query. Milvus then employs the approximate nearest neighbours search

(ANNS) algorithm is used to find the most similar images to the query, by comparing

the distance between their embedding vectors. The ranked list is then returned to

the user for further browsing and filtering.

4.4.2.2 Filter Query

Elasticsearch was used in the main search mechanism in LifeSeeker, first introduced

in the second version [41], and is currently responsible for executing filter queries

only. A query into Elastic Search can be constructed by combining one or more

query clauses13 of various types, thus users can form very complex queries to define

how Elastic Search retrieves data. Therefore, this search mode was intentionally

integrated for expert users to compete in the LSC challenge.

In order to reduce the query analysis time and allow flexibility in controlling how

each keyword should behave when retrieving lifelog moments (i.e., which should be

used for matching images and which should be used for filtering purposes only), we

introduced a syntax-based query mechanism as below:

<CONCEPTS> ; <LOCATION> ; <TIME> (4.1)

where each query part (<CONCEPTS>, <LOCATION> and <TIME>) corresponds to a

category outlined in Section 4.4.1. A syntax-based query can be formed by specifying

keywords in each part in Syntax 4.1. For instance, the following query is a valid input
13https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
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to LifeSeeker:

flower teddy bear ; bedroom home ; after 7pm on Monday

The Searching process in Elastic Search mode was done by employing the query

string query14 to match <CONCEPTS> and <LOCATION> keywords, while the term

query15 and range query mechanisms were used to filter images using the given

<TIME> keywords.

4.4.2.3 Active Search

Inspired by the way a decision tree functions, which repeatedly breaks down a dataset

into smaller subsets based on the value of a certain attribute, we introduced the

Active Search mechanism to LifeSeeker, which breaks down the search results (based

on whether a concept presents in the image) into two smaller subsets and allows users

to interactively choose which subset to continue searching. Based on this idea, we

attempted to transform our passive search system into an active retrieval engine

that can actively support the user during the searching process. In conventional

passive search systems, the user needs to think of relevant concepts related to the

information needed based on the description of the query, which depends heavily on

the ability of the user and ultimately relies too much on the user to know which

concepts are likely to assist in finding relevant content. In contrast, for an active

retrieval engine, the mutual interaction between the user and the retrieval engine is

more important. LifeSeeker can act as an assistant for the user during the search

progress by asking the user some Yes/No questions on the images’ visual concepts

to narrow the set of relevant items.

After each search query or filter query, LifeSeeker will return a ranked list of

images that are most relevant to the query. The visual concepts of all images in the
14https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-

query.html
15https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-term-query.html
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ranked list are then aggregated into a single list of concepts. Counts of images that

contain/do not contain each concept are then calculated and sorted in ascending

order of the difference between the two counts. This helps to identify the concepts

that best split the ranked list into two halves, where one of the halves will be

discarded once the user answers the question of whether the desired image they are

looking for contains the concept or not. The details of the Active Search

mechanism are shown in Algorithm 1. The results are updated each time the user

answers the Active Search question, and the process is repeated to generate new

questions until the user finds the desired image or there are no more images to

show.

Algorithm 1 Active Search Algorithm
Require: Images - ranked list of images
1: Counter ← {}
2: for Image_Id in Images do
3: Concepts← GetImageConcepts(Image_Id)
4: for C in Concepts do
5: Counter[C]+ = 1
6: end for
7: end for
8:
9: Rank ← {}

10: TotalImages← Length(Images)
11: for Concept, Count in Counter do
12: Rank[Concept]← |Count− TotalImages|/2
13: end for
14:
15: Rank ← Sort(Rank)
16: return First key in Rank

The Active Search mechanism was first introduced in the AVSeeker [162]

system, which is a variant of LifeSeeker (version 3.0) that was developed for the

Video Browser Showdown (VBS) challenge in 2022 [163]. The AVSeeker system

was ranked 5th out of 16 systems in VBS and was entitled the best newcomer

system, which proves the effectiveness of the Active Search mechanism in

supporting the user during the searching process.
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4.4.2.4 Visual Similarity Search

In addition to the text-based search, we also implemented a visual similarity search

mechanism, which allows the user to find similar images to a given image shown in

the search results. This mechanism is straightforward to implement, as all images’

embeddings are already stored in Milvus. Therefore, it only requires a cosine

similarity calculation between the embedding vectors of the given image and all

other images in the database to obtain the final result.

4.4.2.5 Relevance Feedback

To better support users when interacting with the system, we incorporate relevance

feedback, where users are able to provide extra information to adjust the current

result. After specifying a list of positive images (i.e., images that are relevant to

the query) and negative images (i.e., images that are not relevant to the query), the

system then performs a series of visual similarity searches to find similar images to

the positive and negative images, respectively. The similarity scores of the negative

images are then marked as negative. The final result is obtained by fusing the

similarity search results of the positive and negative images using CombSUM method

proposed by Edward et. al. [164], which is a state-of-the-art fusion algorithm for

combining multiple ranked lists into a single ranked list. The implementation of the

CombSUM method is provided by Ranx Fuse [165], which is a Python library that

cumulates the implementation of state-of-the-art fusion algorithms for rank fusion.

The detail of the Relevance Feedback mechanism is shown in Algorithm 2.

Algorithm 2 Relevance Feedback Algorithm
Require: Postive_Images - Images that are relevant to the query
Require: Negative_Images - Images that are not relevant to the query
1: Relevant_Images← GetVisualSimilarImages(Positive_Images)
2: Irrelevant_Images← GetVisualSimilarImages(Negative_Images)
3: Rank_List← CombSUM(Relevant_Images, Irrelevant_Images)
4: return Rank_List

By doing so, we are able to place images closer to positive images higher while
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putting images similar to negative samples lower in the ranked list.

4.5 Benchmarking Result in Lifelog Search Challenge

LifeSeeker was evaluated in the annual Lifelog Search Challenge (from 2019 to

2022), along with many other lifelog retrieval systems from all around the world.

The primary objective of these challenges is the speed and accurate retrieval of

lifelog images that best match specific queries, with penalties imposed for incorrect

submissions. The challenge format was interactive, involving users actively

engaging with the system to search for and submit images they deemed most

relevant to the given queries. LSC score (described in Section 3.3) was used to

evaluate the performance of the systems. In this section, I present the results of

LifeSeeker in the two most recent LSC challenges, namely LSC’21 and LSC’22.

Table 4.4: Statistics of the top-5 teams in LSC’21

Team name No. queries solved Total score Precision* Recall*

Myscéal [106] 19 1604.31 0.83 0.83
SomHunter [87] 19 1566.32 0.68 0.83
LifeSeeker [42] 20 1556.02 0.77 0.87
Voxento [88] 18 1466.87 0.86 0.78
Memento [5] 16 1238.49 0.59 0.70
*Precision and Recall was re-defined by the challenge’s organisers. Precision is the ratio of
correct images to total submissions. Recall is the proportion of solved queries to total queries.

In LSC’21, there was only one type of search task, which was the Known-Item

Search (KIS) task, in which the participants were required to find a specific image

based on a textual description of the image. LifeSeeker distinguished itself as the

third best-scoring system in the challenge, attaining a total score of 1556.02, as

detailed in Table 4.4. The table reveals that LifeSeeker resolved the highest number

of queries among the top five systems, successfully addressing 20 out of 23 queries.

In addition to the score, the performance of our system was also assessed through

other metrics, including variants of precision and recall. According to the challenge’s

organiser, precision is defined as the ratio of correct images to total submissions, and
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recall is the proportion of solved queries to total queries.

LifeSeeker achieved the highest recall score in the competition at 0.87. This

result signifies that our system was capable of accurately retrieving the requested

information in 87% of the instances, outperforming the second-highest recall

system by 4.35%. However, in terms of precision, LifeSeeker recorded a score of

0.77. This was 8.8% lower than that of Voxento [88], the system with the highest

precision. A primary factor contributing to this lower precision score was the

number of incorrect submissions made by the user of LifeSeeker during the

challenge. Despite this, the overall performance indicators suggest that LifeSeeker

is a robust system, demonstrating a high capacity for retrieving desired information

efficiently in a competitive environment.

Table 4.5: The normalised score of the top-5 teams for each task in LSC’22. Detailed
metrics of original scores and metrics were not released by the organisers.

Team name Task

Ad-hoc KIS QA

Myscéal [4] 98 100 100
LifeSeeker [43] 100 88 96
Memento [89] 66 92 79
FIRST [6] 51 95 75
Voxento [7] 49 87 56

Unlike LSC’21, LSC’22 featured three different types of search tasks, namely

Ad-hoc, KIS and QA. The Ad-hoc search task required users to find, within a time

limit, as many relevant images as possible that matched the description. Compared

to KIS, the query in the Ad-hoc task is more general and less specific (e.g. "Find all

moments that I had a burger"). Conversely, the Question-Answering task demanded

the identification of a single image that answered a specific question, with only one

submission attempt allowed.

As indicated in Table 4.5, LifeSeeker excelled in the Ad-hoc search task,

achieving the highest score. This performance underscores the effectiveness of the

improvements applied to the system, particularly in achieving high recall scores.
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However, in the KIS task, LifeSeeker’s score of 88 was the fourth-highest score

among the top five systems. In contrast, the Question-Answering task showed

LifeSeeker ’s effectiveness, as evidenced by its second-highest score of 96/100 in

this category. One might question why LifeSeeker performed better in the QA task

than in the KIS task, given that the two tasks are similar (i.e. both require the

system to find a specific image based on a textual description). The answer lies in

the difference in the number of submissions allowed. In the KIS task, there are

multiple submissions allowed, and the system operator has to option to risk

submitting an uncertain result for a chance to obtain a higher score if the

submission is correct. And this, in our case, led to a lower precision score.

Conversely, in the QA task, only one submission is allowed, most systems’

operators would be more cautious and only submit when they are confident in the

result (when receiving more hints), leading to a higher score.

The benchmarking results of LifeSeeker in LSC’21 and LSC’22 demonstrate the

system’s effectiveness in retrieving relevant images based on textual descriptions.

In particular, LifeSeeker has a competitive performance with other state-of-the-art

systems in competitions, achieving the third-highest score in LSC’21 and the second-

highest score in LSC’22, and hence, LifeSeeker can be considered as one of the current

state-of-the-art lifelog retrieval systems. Through the development of LifeSeeker, I

have gained valuable insights into the components and techniques that are essential

for the construction of a state-of-the-art system. From Table 4.1, I have identified

the following key components for building a state-of-the-art system, which are: (1)

a robust semantic search engine which supports free-text query in natural language,

(2) an effective concept-based filtering mechanism, which works for all metadata

(e.g. visual concepts, scene texts, location, time), (3) a simple user interface with

enhancemance in result presentation and visualisation to provide a comprehensive

overview of the search results, and (4) functionalities to support the refinement of

search results, including filtering, visual similarity search, and relevance feedback.

The identification of these key components has provided me with a solid foundation
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for developing the next retrieval system to allow on-screen information in infologging

data to be retrieved, which I will further elaborate in Chapter 6

4.6 Chapter Summary

In this chapter, I addressed Research Question 1 by presenting the design,

implementation and evaluation of LifeSeeker, an interactive retrieval system for the

multi-modal personal lifelog data, which allows users to search and filter for lifelog

moments based on textual queries. To achieve this, the system utilises many

state-of-the-art techniques (including image-text embeddings model and along with

visual concepts extractors) and advanced engineering solutions for efficient

indexing and retrieval (such as Milvus for large-scale vector similarity calculation,

Elasticsearch for distributed and scalable text search, and Redis for caching). This

combines with an intuitive and easy-to-use user interface, which is designed to

facilitate fast and effective search and exploration of the lifelog data, making

LifeSeeker among the state-of-the-art retrieval systems for lifelog data.

Overall, research question 1 is answered as I have developed a state-of-the-art

interactive lifelog retrieval system, which shows competitive performance in LSC’21

and LSC’22. Additionally, I have identified four main key factors for developing an

effective interactive retrieval system, which I have summarised at the end of Chapter

4.5. Learning of these key factors forms a solid foundation for the development of a

subsequent retrieval system designed for efficiently retrieving on-screen information

in infologging data. The specifics of this development will be discussed in greater

detail in Chapter 6.
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Chapter 5

Reading Comprehension

Estimation using Eye Movement

Measures

5.1 Introduction

In this chapter, I address Research Question 2: To what extent can machine

learning models accurately estimate reading comprehension levels based

on eye movement features extracted from eye-tracking data?

To investigate this, I first create a reading dataset that captures participants’

eye movements while reading a set of passages using one of four pre-defined reading

conditions. Then, ocular events are detected from the eye-tracking data on which a

set of eye movement features are extracted. The relationship between eye

movement features, reading conditions and reading comprehension is then

investigated using two separate approaches: (1) statistical testing procedures and

(2) machine learning analyses. In the machine learning approach, I have further

divided the problem into two smaller tasks, which are reading condition

classification and reading comprehension prediction. I show that by integrating the

identification of reading styles alongside eye movement measures for estimating

reading comprehension can enhance the accuracy of predictions within reading

conditions.

In this chapter, I obtained an average classification accuracy of reading styles
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of 75.3% in a subject-dependent setting (training and testing on the same subject)

and 68.9% in a general setting (training and testing on all subjects). Furthermore,

my analysis revealed that reading and skimming styles are associated with higher

comprehension levels, whereas scanning and proofreading styles are linked to lower

comprehension levels. As a result, applying the reading conditions classification

model to predict reading style prior to estimating reading comprehension yielded

an 8.9% improvement in correlation coefficient compared to the model which was

trained with reading styles (with coefficients of 0.697 and 0.608, respectively). The

correlation coefficient between the predicted and actual comprehension levels can be

further boosted up to 0.708 when the true reading condition labels are (i.e. a perfect

classification model) used to train the model. Furthermore, I want to highlight

that the study was conducted using a low-cost eye tracker. This further advances

possibilities for what can be done in every day reading scenarios.

The remainder of this chapter is structured as follows: In Section 5.2, I describe

the dataset utilised in my study, including the data collection protocols and

experiment setup. Section 5.3 outlines the methodology employed in my research,

covering the data analysis techniques, feature extraction methods, and model

development. I investigate the integration of eye movement measures and reading

styles for estimating reading comprehension. The results of my experiments and

analysis are presented in Section 5.4. I report the results obtained for the machine

learning models in classifying reading conditions and estimating reading

comprehension levels. Finally, I conclude this chapter in Section 5.5 by

summarising the key contributions of my research and discussing the implications

of my findings. We also identify potential directions for future studies in the field

of estimating reading comprehension in real-world scenarios.
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5.2 Data Collection

Data collection was carried out with approval from Dublin City University’s Research

Ethics Committee (DCUREC/2021/138). In selecting participants, I adhered to

the following inclusion criteria: (1) no history of reading difficulties, (2) normal or

corrected-to-normal vision, (3) be able to maintain a relatively steady head position

for the duration of the experiment, and (4) comply with the instructions provided

during the experiment. A total of N = 10 participants, 6 males and 4 females were

recruited for the study. Of these, 5 were non-native English speakers (from S0 to

S4 ) where remainder were native English speakers (from S5 to S9 ). The study

involved 96 trials, with each trial consisting of reading a passage (with an average

length of 353 words) and answering multiple-choice questions (MCQs) related to the

passage. For each MCQ, participants were presented with five choices, with four

options directly related to the passage (with exactly one correct answer) and one

option labelled as "I don’t know the answer" to minimise random guessing. The

participants were instructed on how to read the passage using one of four reading

conditions (sequential reading, skimming, scanning, and proofreading) prior to the

experiment. The maximum allowed reading time for each trial was 60 seconds. The

study was designed such that there were an equal number of trials (24) for each

reading condition.

The study utilised passages selected from the RACE dataset [166] (see Appendix

A.1), which consists of 12 frequently-occurring topics such as university/education,

transportation, nature and animals, music, art, energy and climate change, sleep,

stress, and mental health. The choice of this dataset was motivated by the fact that

the texts within it were scraped from various online sources such as news articles,

blogs, leaflets, and advertisements. This diverse range of text formats closely mirrors

the types of texts that individuals encounter in their daily lives. Each participant

read an equal number of passages for each condition and topic. The set of passages

were sampled so that all passages are different and there are passages that is unique
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to one participant and passages that are common to all participants (more details in

Appendix A.1). The MCQs used to assess comprehension were chosen from the set of

MCQs provided for each passage in the dataset, excluding cloze-type questions. The

passage sampling process involved topic modelling using TF-IDF (Term Frequency

- Inverse Document Frequency [167]) and NMF (Non-negative Matrix Factorization

[168]). This is detailed in Appendix A.1. Passages were presented on a 24-inch

Phillips LCD monitor (model 240V5QDAB/00) with 1920 × 1080 resolution and

controlled by a Dell Optiplex 5060 PC powered by the Windows 10 operating system.

Experimental participants sat approximately 60cm from the screen and no chin rest

was used. Eye movements were captured using the Gazepoint GP3 HD Eye Tracking

device1 with a sampling rate of 150Hz (one sample per 6.67 milliseconds). The data-

gathering process was driven by software written in Python using Psychopy [169].

During the study, the participants were seated in a chair facing a computer

monitor, with the eye tracker positioned below the monitor to capture eye

movements. Calibration was performed using a 5-point grid, and the accuracy was

checked with a 12-point grid using the eye tracker’s software. This process takes

approximately 5 minutes. The data collection process consisted of 96 trials divided

into 4 sessions. Participants were allowed to rest for a maximum of 15 minutes

after each session was completed. Within one session, 24 passages were presented,

and after each passage, the participant was required to give a subjective evaluation

(Likert scale from 1 to 5, see Table 5.1) and answer 3 MCQs. Each trial began with

a short guideline indicating the required reading condition (i.e. read the following

text carefully, skim quickly through the following text). This was followed by the

presentation of the passage on the screen. After reading the passage, the

participant was asked to provide a subjective evaluation. Finally, the participant

was required to answer three multiple-choice comprehension questions related to

the passage. I refer to the dataset constructed in this study as the first version of

the Reading Comprehension for Information Retrieval dataset (RCIRv1).
1https://www.gazept.com/product/gp3hd/
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Figure 5.1: Upper: Visualisation of a participant’s eye movements when reading
a passage. The dots represent fixations and the lines represent saccades. Lower:
The corresponding eye movement captured by the eye-tracker, decomposed into
horizontal and vertical components. A value of 0 represents the leftmost or topmost
position of the screen, while the value of 1 represents the rightmost or bottommost
position of the screen.
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In the RCIRv1 dataset collection process, consistent instructions and guidelines

were provided to all participants. The participants were also reminded that the study

was not focused on competition with others or achieving a high MCQ score, but

rather on properly completing the tasks at hand. This was intended to minimize the

impact of extraneous variables on the study’s results and allowed the participants to

express their natural behaviour. During the study, the experimenter monitored and

recorded any unusual occurrences, such as participant yawning, sudden loud noises,

disruptions, or large movements, in order to provide additional context for each trial

and aid in the analysis of the data at a later stage for data cleaning. Additionally, the

participants were asked to provide verbal responses to subjective evaluation questions

and multiple-choice questions (MCQs) rather than entering their answers on their

own using a keyboard, in order to reduce the potential for large head displacements

and disruptions to the eye tracker calibration. Figure 5.1 shows an example of a

participant’s eye movements when reading a passage.

5.3 Methodology

This study aims to explore the relationship between eye movements, reading

conditions, and comprehension levels, within the context of different reading

strategies. To accomplish this, I investigate the pairwise associations among these

three main data sources under two distinct angles: statistical testing procedures

and machine learning analyses. Outcomes from both of these two approaches were

kept separate and served primarily to highlight and explain their differences and

similarities. In the subsequent sub-sections, I introduce the specific type of

comprehension that I studied and it can be measured. We then proceed to outline

the preprocessing procedure and feature extraction pipeline employed for analysing

eye movement data. Finally, I elaborate on the methodologies used to explore the

relationships among the aforementioned factors and come up with a pipeline for

predicting comprehension levels based on eye movements.
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5.3.1 Comprehension and Measuring Comprehension

There are many types of comprehension, such as literal comprehension, inferential,

reorganisation, prediction and evaluation [170]. The focus of this chapter is on

literal comprehension – the simplest form of comprehension, which refers to the

understanding of the explicit meaning of the text and the ability to answer questions

based on direct evidence from the text’s content. The experiment protocol is designed

to induce this type of comprehension by asking participants to answer multiple-choice

questions based on what they have read.

To measure comprehension, a comprehension score, denoted as c_score, was

generated for each text, based on the participant’s answer to the multiple-choice

questions. This score is a weighted sum of the total correct, incorrect and unknown

answers (as outlined in experiment protocol in Section 5.2). The computation of the

comprehension score is defined as follows:

c_score = 1×Nc + 0.5×Ni + 0×Nu

where Nc, Ni, and Nu represent the number of correct, incorrect and unknown

answers, respectively. The chosen weighting approach is rooted in the strict

guidelines provided to volunteers regarding how to handle multiple-choice

questions. In particular, participants were instructed to pick an answer (1, 2, 3 or

4) if and only if they found supporting evidence within the text they just read,

otherwise, they were instructed to choose option 5 – "I don’t know the answer".

This guideline was provided so that participants would provide accurate responses

based on the evidence in the text, reducing the likelihood of false comprehension

estimations resulting from random guessing.

In addition to the comprehension score, I also collected participants’ subjective

comprehension evaluations as an additional reference for comprehension, as described

in the experiment protocol in Section 5.2. This evaluation was obtained using a 5-

point Likert scale, ranging from 1 (very poor) to 5 (very good). To establish a
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baseline for participants to evaluate their comprehension, I provided them with a set

of guidelines to follow, which can be summarised as follows:

Table 5.1: Guideline for participants to report their comprehension

Score Description

1 I followed very little of the text. Besides a few keywords I noticed, I
wouldn’t be able to say what the text is about. My comprehension is
very low.

2 I got one or two points/pieces of information from the texts but overall I
wouldn’t be able to summarise what the text is about.

3 I got multiple points from the text and would be able to say what the
text is about but I know I missed a lot of specific information.

4 I got most points of information in the text and would be able to
comfortably summarise what the text is about, and answer questions on
the text

5 I got (nearly) all points from the text, and feel confident I could answer
any reasonable question asked about the text.

5.3.2 Data pre-processing and Feature Extraction

A commonly referenced set of features in the literature includes fixation, saccades,

and blinks, which are frequently employed in studies involving eye-movement

data [67]. However, the extraction of oculomotor events from eye-tracking data

involves numerous algorithms proposed to address this task. A comparison of

various well-known algorithms is summarised in [171]. Interestingly, no single

algorithm stands out as the definitive choice for detecting ocular events, as their

selection often depends on the specific task at hand [171].

In this experiment, I utilised the ocular event detection algorithm that was

already integrated into the eye-trackers software, as it has undergone manufacturer

testing and was widely used in relevant studies conducted with the same eye

tracker. Building upon the identified ocular events, I have further derived

additional features to better characterise the reading process, including measures

such as moving distance, velocity, angle of movement, and rate of regressive

movement. A comprehensive summary of these ocular events and features can be
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found in Table 5.2

Table 5.2: Summary of ocular events and features used in my experiment

Name Description Type

nfx Number of fixations scalar
nbk Number of blinks scalar
fxdur Fixation durations sequence
scdur Saccade durations sequence
scdir Saccade directions (angles) sequence
bkdur Blink durations sequence
dist L2 distances between two consecutive

fixations (i.e. one saccade)
sequence

dist_v L1 distance between two consecutive
fixations on vertical axis

sequence

dist_h L1 distance between two consecutive
fixations on horizontal axis

sequence

velo Velocity of movement sequence
velo_v Velocity of movement on vertical axis sequence
velo_h Velocity of movement on horizontal axis sequence
nregr Number of regressions scalar
regr_rate Ratio between the number of regressions

and number of fixations
scalar

Given that the reading process encompasses various ocular events, many

extracted features constitute sequence data. To facilitate analysis and leverage

machine learning algorithms, I transformed these sequence data into a standardized

dimension. Two methods were employed for this purpose: statistical encoding and

histogram encoding. In statistical encoding, I computed several statistics of the data

sequence, including trimmed max, trimmed min, mean, standard deviation,

interquartile range, skewness, and kurtosis. The use of trimmed max and min

aimed to mitigate the influence of outliers and extreme values within the data

sequence. On the other hand, in histogram encoding, I generated the histogram of

the data sequence and employed it as the feature vector. With these two encoding

methods, I was able to transform the reading samples into a fixed-length feature

vector, which can be easily analysed and fed into machine learning algorithms. In

Table 5.3, I describe the encoding methods used in my experiment. The new

features generated from these encoding methods will inherit the same name as the
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original feature, with the addition of a suffix to indicate the encoding method used.

Table 5.3: Summary of encoding methods used for sequence features, along with
their abbreviation which will be appended to the end of the corresponding feature’s
name.

Suffix Name Description

tr_max Trimmed Max
tr_min Trimmed Min
std Standard Deviation of the distribution
mean Mean value of the distribution
argmin Element that has trimmed min value
argmax Element that has trimmed max value
tr_range Trimmed Range (tr_max− tr_min)
iqr Inter-quartile Range (Q3−Q1)
kurtosis Kurtosis value of the distribution
skewness Skewness of the distribution
bin_1 to bin_n Histogram bins

5.3.3 Analysis

To understand how eye movement reflects one’s level of comprehension, I studied

the triad of eye movement features, reading condition and comprehension level

since the interaction between these is key to this study. To accomplish this, I

employed several statistical and machine learning techniques to monitor the

interconnected relationships between each pair of these factors. The proposed

methods which were used to investigate each pairwise relationship were described

in the following subsections.

Prior to these details, I would like to give a brief overview of some experiment

settings that I used in this study. Since my dataset was constructed from reading

samples of many participants, I could approach the dataset in three different ways

which I referred to as experiment settings:

• General (GE): The dataset is treated as a whole. All samples from all

participants are aggregated together to carry out the investigations and

analyses. This setting allows us to have an insight into the common

characteristics of eye movement while reading across all participants.
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• Subject-Dependent (SD): Only samples from one participant are used to

analyse at a time (e.g. a machine learning model is trained and tested on the

same participant). Analysis done in this setting would reveal the unique eye

movement features which characterise a participant’s reading.

• Subject-Independent (SI): This setting takes the entire dataset except the

samples from one participant to analyse. It explores the generalisability of eye

movement features to an unseen participant. This process can be repeated

across participants.

Moreover, to ensure the reliability of the findings, the dataset is split into

training and testing sets based on the topics obtained from the topic modelling

process as mentioned in Section 5.2 and detailed in Appendix A.1. A pooled train

set contains 720 samples (72 from each participant) and a pooled test set contains

240 samples (24 from each participant). In addition, cross-validation methodology

was employed throughout the analyses on the training set, to provide a more robust

evaluation of the models’ performance. Specifically, the training data was split into

10 distinct combinations of training and validation sets using the stratified shuffle

split technique, with a validation size of 22.22%. For conducting significance tests,

the number of splits was increased to 100 to enhance the robustness of the results.

5.3.3.1 Reading Condition and Comprehension Level

To address the question of whether different reading conditions could lead to different

levels of comprehension, I conducted some statistical analyses under the GE and SD

settings. In both settings, the comprehension scores were treated as a continuous

dependent variable and reading condition was the independent variable (Reading,

Scanning, Skimming and Proofreading). We adopted the Shapiro-Wilk test [140]

as described in Section 2.3.2 to check the normality of the comprehension scores to

choose the appropriate test for determining whether there are statistically significant

differences between reading conditions on comprehension scores (either ANOVA [139]
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or Kruskal-Wallis test [142] as outlined in Section 2.3.1). This was then followed by a

post hoc test (t-test [143] or Conover’s test [145] as discussed in 2.3.3), with p-value

adjustment for multiple comparisons [144], to further identify which pairs of reading

conditions are significantly different from each other.

5.3.3.2 Eye Movement Features and Reading Condition

In this experiment, I aimed to investigate the relationship between eye movement

features and reading conditions to gain insights into how eye movements are

influenced by different reading strategies.

Statistical Testing Procedures

We started by conducting exploratory data analysis (EDA) using statistical tests to

identify eye movement features that exhibited significant differences across reading

conditions. To ensure the appropriateness of the tests, I conducted preliminary

checks such as the Shapiro-Wilk test [140] (α = 0.05) for normality and Bartlett’s

test [141] (α = 0.05) for homoscedasticity. For the features that met the

ANOVA [139] assumptions of normality and homoscedasticity, I applied a one-way

ANOVA test to determine if there were statistically significant differences between

reading conditions. Features that did not meet the assumptions underwent a

Kruskal-Wallis test [142] instead. Post-hoc tests, such as t-tests [143] or Conover’s

test [145], were performed following a significant result to identify specific pairs of

reading conditions that differed significantly from each other.

Machine Learning Analyses

We also explored the potential of eye movement measures as indicators of reading

strategies. We approached this as a classification task, with reading conditions as

the output classes and eye movement measures and other metadata (excluding

comprehension scores) as the input features. We implemented a baseline approach

using various machine learning classifiers, including Random Forest, Extra Trees,
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Ada-Boost, ElasticNet, Ridge, Bayesian Ridge, K Nearest Neighbor, Gradient

Boosting, Light Gradient Boosting Machine, and Logistic Regression. The top-3

best-performing models were further tuned and feature selection was performed

using the Recursive Feature Elimination (RFE) method.

Feature selection was conducted in two settings: General (GE) and Subject

Dependent (SD), similar to the model training setting. The GE setting aimed to

identify common features shared by all participants, while the SD setting aimed to

identify subject-specific features unique to each participant. The selected features

were then used to retrain the models. Among the models, the one with the best

performance was selected to conduct feature analysis to gain a deeper

understanding of how the features contributed to the model’s predictions. For this

regard, the SHAP (Shapley Additive exPlanations) method was employed.

5.3.3.3 Eye Movement Features and Comprehension Level

In this experiment, my goal was to examine the efficacy of eye movement features

in predicting comprehension levels.

Statistical Testing Procedures

Following a similar procedure to the previous experiment (Section 5.3.3.2), I

conducted an exploratory data analysis (EDA) to identify eye movement features

strongly correlated with comprehension scores. Our EDA aimed to address two

main questions. Firstly, I sought to identify the eye movement features that

exhibited a strong correlation with comprehension scores for each participant.

Utilising the Spearman’s correlation test [147], I identified the top positively or

negatively correlated features. Secondly, I investigated whether a common set of

eye movement features emerged among a subset of participants. To answer this

question, I compiled the top 10 features with the strongest Spearman’s correlation

coefficients [147] from each subject, created a feature set, and determined the

frequency of each feature in the set.
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Machine Learning Analyses

To investigate how eye movement features could predict comprehension scores, I

constructed baseline models employing various regression models such as Extra

Trees, Random Forest, Gradient Boosting, Bayesian Ridge, Adaboost, and Light

Gradient Boosting Machine. Model training was conducted under GE and SD

settings, while excluding the SI setting based on previous findings (Section 5.3.3.2).

To reduce dimensionality, I employed a feature reduction process and retrained the

top 3 performing models using the reduced features to evaluate their impact on

model performance. The model with the best performance was selected for further

investigation, particularly the incorporation of reading condition prediction. We

assessed this by adding the reading condition as an additional feature obtained

through two approaches: (1) using the predicted reading condition from the model

trained in Section 5.3.3.2 and (2) using the actual reading condition from the

dataset. Lastly, I conducted an in-depth analysis of the selected model using SHAP

to gain insights into the contribution of features to the model’s predictions.

5.4 Results and Discussion

5.4.1 Reading Condition and Comprehension Level

Since the comprehension scores (c_score) were found to deviate from normal

distribution based on the Shapiro-Wilk’s test (p < 0.0001), which violates the

assumption of normality for the One-way ANOVA, I opted for the non-parametric

Kruskal-Wallis H-test. In the GE configuration, I had a total of 960 samples evenly

divided into four groups representing different reading conditions. The

Kruskal-Wallis test was performed to determine whether there were differences in

c_score between groups of samples that differed in reading conditions: Reading,

Scanning, Skimming and Proofreading (240 for each condition, across participants).

Distributions of c_score were not similar for all conditions, as assessed by visual
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Figure 5.2: Box plot of comprehension scores grouped by reading condition (pooled
across participants)

inspection of a boxplot (Figure 5.2). We found that c_score was statistically

significantly different between different reading conditions, H(3) = 430.07,

p < 0.0001, with a mean rank of 698.77 for Reading, 304.65 for Scanning, 617.71

for Skimming, and 300.87 for Proofreading. Subsequently, pairwise comparisons

were performed using Dunn’s procedure. A Bonferroni correction for multiple

comparisons was made with statistical significance accepted at the p < 0.05 level.

This post hoc analysis result was demonstrated in Table 5.4 which revealed

statistically significant differences in c_score between all group combinations

except the Scanning-Proofreading pair.

Similar procedures were carried out in the Subject Dependent (SD)

configuration, but only data samples from the same individual were used each time.

Figure 5.3 summarises the results of the post hoc test for each subject in the

dataset. In comparison to the GE configuration results, I observed that, apart from

the Scanning-Proofreading pair, there was an additional pair, Reading-Skimming,

which did not exhibit significant differences in c_score. A significant relationship

between Reading and Skimming was only observed in this particular subject’s test

results. Generally, most subjects displayed a consistent pattern where the c_score
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Table 5.4: Posthoc test results for each pair of reading conditions. Each row tests
the null hypothesis that the Condition 1 and Condition 2 distributions are the same.
Asymptotic significances (2-sided tests) are displayed. The significance level is .050.

a. Significance values have been adjusted by the Bonferroni
correction for multiple comparison tests.

Condition 1 - Condition 2 Test
Statistic

Std.
Error

Std.
Test

Statistic
Sig. Adj. Sig.a

Proofreading-Scanning 3.785 24.555 0.154 0.877 1.000
Proofreading-Skimming 316.848 24.555 12.903 <0.001 <0.001
Proofreading-Reading 397.900 24.555 16.204 <0.001 <0.001
Scanning-Skimming -313.063 24.555 -12.749 <0.001 <0.001
Scanning-Reading 394.115 24.555 16.050 <0.001 <0.001
Skimming-Reading 81.052 24.555 3.301 0.001 0.006

of four pairs, Reading-Scanning, Reading-Proofreading, Skimming-Scanning, and

Skimming-Proofreading, were statistically significantly different. However, subjects

S2, S5, and S6 did not show a significant difference in the Skimming-Scanning pair.
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Figure 5.3: Pairwise relationship of reading conditions grouped by subject (RE:
Reading, SK: Skimming, SC: Scanning, PR: Proofreading). P-values were adjusted
using Bonferroni Correction for multiple comparison tests.

These observations suggest that Reading and Skimming involve a more

comprehensive engagement with the text which requires readers to focus on

understanding the content as a whole, allowing them to extract meaning and make

accurate inferences. On the other hand, Scanning and Proofreading tasks require a

more targeted and fragmented approach, which may lead to a lower comprehension

level as readers may overlook important contextual information. The inspection of
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Figure 5.4: Counts of correct, incorrect and aborted answers of each subject and
grouped by reading condition.

the number of correct/incorrect answers also supports this pattern. As shown in

Figure 5.4, Reading tasks have a higher number of answer attempts compared to

Skimming, and both Reading and Skimming have more answer attempts than

Scanning and Proofreading. This suggested that participants are more likely to

attempt the questions in the Reading and Skimming tasks as they have a thorough

examination of the text, while in the Scanning and Proofreading task, the emphasis

on seeking specific details or errors may divert participants’ attention from

understanding the content. Regarding time spent on the reading task as displayed

in Figure 5.5, I observed a pattern that time spent on Reading was the longest

(except S4, S6 and S9), followed by Proofreading, then Skimming and Scanning.

From this, I could see that native English speakers (S5 to S9 ) are time-efficient in

reading tasks, especially in Reading and Skimming. This could explain why they

have more answer attempts, as well as correct answers, in these tasks compared to

the non-native group (S0 to S4 ). In the case of slow readers, who got cut off by

the time limit for many tasks such as S4 and S6, there is a contrast in their

comprehension levels. Specifically, S4 had the most incorrect answers in Reading

and Skimming compared to the remaining participants, while S6 maintained a

good ratio between correct and incorrect answers which is similar to the other

participants.
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Figure 5.5: Time spent on reading task of each subject (S0 to S9 ) and all participants
(Pooled), grouped by reading condition. The maximum time allowed for each task
is 60 seconds.

5.4.2 Eye Movement Features and Reading Condition

5.4.2.1 Statistical Testing Procedures

In the EDA, I observed that all eye movement features did not pass the one-way

ANOVA test’s assumption except for two fixation duration features (fxdur_bin_6

and fxdur_bin_8 ) and three velocity features (velo_v_bin_0, velo_v_bin_3 and

velo_v_bin_4 ). Therefore, the one-way ANOVA test (α = 0.05) was used to test

these five features while the remaining features were tested using the

Kruskal-Wallis test (α = 0.05). There were 175 out of 254 input features that

showed significant differences between the reading conditions and were passed to

the post-hoc test (either t-test or Conover’s test, depending on the preceeding

significance results were obtained from an ANOVA test or Kruskal-Wallis test,

respectively). The significance level was adjusted using Bonferroni Correction to

control the Family-Wise Error(FWER) rate at 0.05. Due to the large number of

features which made posthoc results difficult to interpret, I have ranked the

features based on the rate at which they showed significant differences in reading

condition pairs (i.e. number of pairs that the feature showed significant difference

divided by the total number of pairs). This was calculated on the subject level in

order to provide a more detailed breakdown of the features’ performance. Table 5.5
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Table 5.5: The top 20 features which were significantly different between reading
conditions. The significance level for multiple tests was adjusted using the Bonferroni
Correction method. Features were ranked by the number of reading condition pairs
that they showed significant differences over the total number of reading condition
pairs (16 pairs)

Features
Subjects

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

dist_bin_4 0.75 0.75 0.63 0.63 0.63 0.38 0.63 0.63 0.75 0.75
dist_iqr 0.63 0.75 0.63 0.63 0.75 0.50 0.63 0.63 0.75 0.50
dist_h_bin_4 0.75 0.75 0.63 0.50 0.63 0.38 0.63 0.63 0.75 0.63
dist_h_iqr 0.50 0.75 0.63 0.75 0.63 0.50 0.63 0.63 0.75 0.50
velo_h_bin_4 0.75 0.75 0.50 0.63 0.63 0.38 0.63 0.63 0.75 0.63
dist_skewness 0.63 0.75 0.75 0.75 - 0.50 0.63 0.75 0.75 0.63
dist_h_skewness 0.75 0.63 0.75 0.75 - 0.50 0.63 0.63 0.75 0.63
velo_bin_4 0.75 0.75 0.50 0.63 0.38 0.38 0.63 0.63 0.75 0.63
dist_kurtosis 0.63 0.63 0.75 0.75 - 0.50 0.63 0.75 0.75 0.63
dist_h_bin_3 0.75 0.75 0.63 0.63 0.63 - 0.63 0.75 0.63 0.63
velo_h_kurtosis 0.75 0.63 0.63 0.50 0.63 0.50 0.38 0.63 0.63 0.63
velo_h_skewness 0.63 0.63 0.75 0.50 0.63 0.63 0.38 0.50 0.63 0.63
fxdur_std 0.38 0.63 0.38 0.75 0.63 0.38 0.75 0.63 0.50 0.75
dist_h_kurtosis 0.63 0.63 0.75 0.75 - 0.50 0.63 0.50 0.75 0.63
velo_skewness 0.63 0.63 0.75 0.50 0.63 0.50 0.38 0.50 0.63 0.63
velo_bin_5 0.63 0.63 0.63 0.38 0.63 0.38 0.50 0.63 0.75 0.63
dist_bin_5 0.63 0.63 0.63 - 0.50 0.50 0.50 0.63 0.75 0.63
velo_mean 0.75 0.75 0.63 0.50 0.50 - 0.38 0.50 0.75 0.63
dist_h_tr_max 0.75 0.75 0.63 0.63 - 0.38 0.38 0.50 0.75 0.63
velo_kurtosis 0.75 0.63 0.63 0.63 0.38 - 0.38 0.63 0.75 0.63

Mean Score 0.58 0.58 0.58 0.53 0.52 0.45 0.46 0.57 0.62 0.56
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Figure 5.6: Demonstration of posthoc results of top 5 feature from Table 5.5.
P-values were adjusted for multiple tests using Bonferroni Correction. The
abbreviations for Reading, Skimming, Scanning and Proofreading are RE, SK, SC
and PR, respectively.

displayed the top 20 features that showed significant differences in most pairs of

reading conditions. It is worth highlighting that velocity and distance features are

most sensitive to reading conditions as their statistical features were ranked among

the top 20. Moreover, 9 out of these 20 features were derived from the horizontal

eye movement only, which suggests that by analysing the speed of left-right eye

movement, I can predict, to some extent, the reading condition.

For the subject-level analysis (i.e. SD configuration), I visualised the test results

of the 5 highest ranked features (as shown in Figure 5.6) to gain more insights into

the pairwise relationship of reading conditions reflected by these features. Although

some subjects share similar test results (e.g. subject S1 and S8 one 0.01 significance

level; or subject S4 and S6 on all features except dist_h_iqr at significance level

0.05), there were no common patterns across all subjects. This indicates that the

relationship between the features and reading conditions is subject-specific. Among

all subjects, I spotted a noticeably low score in subject S5 (with a mean score to
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be 0.45). From Figure 5.6, I observed that most features did not show significant

differences in Scanning-Skimming and Scanning-Proofreading pairs in subject S5.

Referencing back to Figure 5.3, it is also true for subject S5’s c_score in these

two pairs, which suggests that this subject performed the Scanning task differently

compared to other subjects.
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Figure 5.7: A two-dimensional t-SNE [9] visualisation of 254 eye movement features.

5.4.2.2 Machine Learning Approaches

We also approached the problem from a machine learning perspective. A variety

of machine learning classifiers were adopted to classify the reading conditions using

the same feature set. Table 5.6 illustrated the baseline result in which I observed

that the tree-based model achieved high accuracy scores compared to the others since

they can capture the complex non-linear relationship between features. In particular,

LGBM achieves the highest mean accuracy scores of 0.651 and 0.463 in both GE and

SI settings, respectively, while being slightly outperformed by ET in the SD setting
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achieving 0.738 compared to 0.726 of LGBM. Besides that, I observed that SD models

yielded higher accuracy scores than GE and SI models, which was expected since

the models were trained on data from the same subject, thus, allowing these models

to generalise better to the unique characteristic of the subject. The low accuracy

score of the SI models might be due to the variation of the eye movement feature

from subject to subject, which makes it difficult to find a general pattern that can be

applied to all. This was indeed reflected in Figure 5.7 in which I projected the high

dimensional eye movement features of the reading instances from all subjects into

a two-dimensional Euclidean space using the t-SNE [9] method. The visualisation

showed that instances from the same subject tend to cluster close to each other,

which generates difficulties for the SI models to generalise to these subjects when

they are being held out during training.
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Figure 5.8: Performance of three classifiers (ET, RF and LGBM) in the feature
selection process using Recursive Feature Elimination method under the RFE_GE
setting

As outlined in the Method section, three top-performing classifiers (highest

average mean accuracy across all training settings) were picked for further analysis,

namely LGBM, ET, and RF. A recursive feature elimination (RFE) method was
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applied to these models to identify the most important features and the result is

shown in Figure 5.8. In RFE_GE configuration, three models are compared

against each other, I found that LGBM peaked at 18-39 features and achieved the

highest accuracy of 0.674 when there were 19 features, while ET and RF fluctuated

in the accuracy range from 0.630 to 0.646 and showed a slight downward trend as

the number of features increased. Since LGBM outperformed the other two models

regardless of the number of features, the 19 features at which LGBM achieved the

highest accuracy score were selected to form the final feature set to re-train and

re-evaluate the three best models (in both GE and SD settings). Furthermore, I

also compared the performance of the three models in the RFE_SD configuration,

where the feature selection was performed separately for each subject. The features

at which the model achieved the optimal accuracy were used to re-train that model

on the subject’s data to obtain the final result. In Table 5.8, I reported the mean

accuracy score of the three models when re-trained on the selected features from

two different feature selection approaches (RFE_GE and RFE_SD).

Table 5.8: Re-training result of the three best models on the selected features using
RFE_GE (from LGBM’s best 19 features) and RFE_SD (from models’ optimal
features) settings.

Model

Feature
Selection
Setting

Training
Setting Accuracy

GE SD GE SD

ET
✓ ✓ 0.667 ± 0.031
✓ ✓ 0.748 ± 0.091

✓ ✓ 0.738 ± 0.093

LGBM
✓ ✓ 0.689 ± 0.037
✓ ✓ 0.724 ± 0.090

✓ ✓ 0.726 ± 0.103

RF
✓ ✓ 0.643 ± 0.031
✓ ✓ 0.753 ± 0.084

✓ ✓ 0.734 ± 0.084

We observed that three models performed better when trained on the SD

settings compared to GE settings, which was aligned with the observation in Table
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5.6. Moreover, a GE feature selection process followed by an SD re-training yielded

a higher accuracy score than the SD feature selection with an SD re-training

(except LGBM which was slightly lower by 0.002). This result suggested that the

original feature set can be condensed to a smaller set of features that can be used

to train a personalised model for each subject, which ultimately avoids the curse of

dimensionality and improves the generalisation ability of the model.

Examining the feature contribution to the prediction of the RF model (which

achieved the highest accuracy score after the feature selection process), using

SHAP [172], I found that the most important features were the mean velocity

(velo_mean) and interquartile range of the movement distance (dist_iqr).

Considering the top 5 features with the biggest average impact on model output, I

found that the dist_iqr is among the top 5 features in 10 out of 10 subjects, while

the velo_mean is among the top 5 features in 9 out of 10 subjects. This result is

consistent with the findings from the statistical approach in Section 5.4.2.1 as I

found that distance and speed of movement features are among the top features

having significant differences between reading conditions (more details in Table

5.5). Moreover, the velo_mean and dist_iqr are ranked among the top 20 features

in Table 5.5, with the dist_iqr being ranked second. This further confirmed the

importance of these two features in the prediction of reading conditions.

5.4.3 Eye Movement Features and Reading Comprehension

5.4.3.1 Statistical Testing Procedures

Figure 5.10 displays Spearman’s correlation coefficient between eye movement

features and reading comprehension scores. As detailed in Section 5.3.3.3, the

figure presents a feature set that is the union of the top 10 features with the

strongest correlation with c_score from each subject, sorted by frequency (i.e. the

number of subjects that the feature was selected by taking the top-10). The figure

reveals that the regression rate (regr_rate) and the distance interquartile range

(dist_iqr) had the highest frequency of 7 and were negatively correlated with
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Figure 5.9: Feature contributions to the best classifier (RF, as shown in Table 5.8)
results, explained by the SHAP method. The features are sorted by their importance
in the model. Since the classifier was trained on the SD setting, there are 10
corresponding SHAP plots for each subject.
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Figure 5.10: Spearman’s rank correlation coefficient (ρ) between the eye movement
features and the reading comprehension score. The displayed feature set is the union
of the top 10 features with the highest ρ from each participant. The top 10 features
of each participant is highlighted in orange. The features are sorted in ascending
order of their commonality across participants, which is indicated by the gradient of
the background.

c_score. This suggests that there is a common pattern in the eye movement

features that are associated with reading comprehension across subjects. However,

this pattern was not observed in subjects S6 and S7. While other subjects had top

features with frequencies ranging from 4 to 7, subjects S6 and S7 had top features

with frequencies ranging only from 1 to 3, with 6 features having a frequency of 1

(meaning that they were unique to the subject only). This indicates that these

subjects may have used a different strategy to carry out the reading tasks.

Furthermore, I found that features with a frequency of four or more were all

features obtained from statistical encoding rather than histogram encoding. This

observation implies that the feature value range, as captured by histogram bins,

might not play a significant role in determining the reading comprehension score.
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To verify this, I experimented with the machine learning approach to investigate

whether the presence of histogram features would affect the performance of the

models.

5.4.3.2 Machine Learning Approaches

Table 5.9 displayed results of the machine learning approaches described in

Section 5.3.3.3. Tree-based models showed their superiority over others in both GE

and SD settings, with ET achieving the highest mean correlation score of 0.595 in

the GE setting and the highest mean correlation score of 0.500 in the SD setting.

This was followed by BR which achieved a slightly lower correlation score in the

GE setting (0.569) but had a nearly identical correlation score as ET in the SD

setting (0.499). Considering the subject breakdown in Table 5.9, I observed that

most of the highest and second highest correlation scores (on each subject) were

achieved by ET and BR. Moreover, these high scores were observed when the

histogram features were excluded from the training data, which confirmed that the

histogram features were not as important as the statistical features in determining

the reading comprehension score. In addition, it can be seen that the mean

correlation scores of the models trained on the SD setting were lower than those

trained on the GE setting, which was opposite to the insight obtained from the

reading condition classification task. However, the subject breakdown showed that

the previous conclusion still holds since the low correlation scores in S6, S7 and S9

were the main reason for the low mean correlation scores in the SD setting. EDA

has previously suggested that these subjects may have used a different strategy to

carry out the reading tasks, which explains why the model failed to predict these

subjects’ comprehension scores.

Taking the top-3 best-performing regressors (i.e. ET, BR and RF), I conducted

a feature selection experiment to investigate whether the performance of the models

could be further improved by selecting a subset of features from the original feature

set using the Recursive Feature Elimination (RFE) method. Figure 5.11 shows
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Figure 5.11: Feature Selection using Recursive Feature Elimination.

the mean correlation scores of the models trained on the GE setting with different

numbers of features selected by RFE. ET achieved the highest mean correlation score

when the number of features surpassed 16. RF shares a similar trend with ET, but its

mean correlation score was slightly lower than ET. BR, on the other hand, witnessed

a decrease in the mean correlation score when the number of features surpassed 20.

The spot where ET peaked was at 80 features and these features were selected for re-

training the top-3 models. In Table 5.11, I reported the re-training results in which I

observed that the ET achieved the highest mean correlation score of 0.599, which was

slightly higher than its original mean correlation score of 0.595 when trained on a full

feature set. To determine whether there was a statistically significant mean difference

between the correlation scores of ET estimator pre- and post-feature-selection, I

generated 100 stratified shuffle split iterations for each setting and performed a

paired t-test on the mean correlation scores. The assumption of normality was

not violated, as assessed by Shapiro-Wilk’s test (p = 0.265). We found that the

mean correlation score of ET estimator post-feature-selection (0.608 ± 0.042) was

statistically significantly higher than its mean correlation score pre-feature-selection

(0.600± 0.044) by 0.008 (95% CI, 0.005 to 0.011), t(99) = 5.388, p < 0.0001.
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Table 5.11: Re-training result of the three best models using RFE_GE and RFE_SD
setting

Model

Feature
Selection
Setting

Training
Setting Correlation

Coefficient
GE SD GE SD

BR
✓ ✓ 0.542 ± 0.050
✓ ✓ 0.505 ± 0.199

✓ ✓ 0.505 ± 0.199

ET
✓ ✓ 0.599 ± 0.048
✓ ✓ 0.502 ± 0.153

✓ ✓ 0.502 ± 0.153

RF
✓ ✓ 0.575 ± 0.052
✓ ✓ 0.499 ± 0.165

✓ ✓ 0.499 ± 0.165

Based on the results from Section 5.3.3.1 in which I observed that there was a

relationship between reading condition and reading comprehension score, I

hypothesized that the reading condition could be used as an additional feature to

improve the performance of the models. The reading condition was obtained by

incorporating the model trained in Section 5.3.3.2 to predict each reading sample.

Next, one-hot encoding was applied to generate the reading condition feature,

which was then added to the previously selected feature set to re-train the ET

model. Table 5.12 shows the re-training results in which I observed a statistically

significant increase in mean correlation score by 0.089 (95% CI, 0.082 to 0.096)

from 0.608 ± 0.042 to 0.697 ± 0.036, t(99) = 24.760, p < 0.0001. In an ideal

scenario where the reading condition classification model was perfect, I could

expect the model to predict the comprehension score reaching a mean correlation

up to 0.708± 0.033.

Thus far, my investigation has revealed the relationship between eye movement

features, reading conditions, and reading comprehension scores, demonstrating the

predictability of reading comprehension levels based on eye movement features. In

my subsequent analysis, I will shift my focus to a different prediction target: the
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Table 5.12: Comprehension prediction result of the ET model when integrating
with identification of reading condition (none: no information about the condition,
predicted : predicted condition obtained from my best model obtained in Section
5.3.3.2, actual : actual condition labels obtained from the dataset). The table shows
the mean ρ scores on the validation and held-out test set, under two prediction
targets: c_score calculated from MCQs and se_score obtained from participant’s
subjective judgement of their own understanding.

Target Condition
Correlation Coefficient

Validation Test

c_score

none 0.608± 0.042 0.564± 0.014
predicted 0.697± 0.036 0.614± 0.012

actual 0.708± 0.033 0.693± 0.011

se_score

none 0.684± 0.040 0.608± 0.011
predicted 0.785± 0.026 0.689± 0.008

actual 0.799± 0.024 0.772± 0.008
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Figure 5.12: Monotonic relationship between the comprehension score and the
subjective evaluation score.
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subjective evaluation score (se_score). As previously mentioned in Section 5.3.1,

this score was collected from participants after they interacted with a text and

serves as an alternative measure of reading comprehension level, distinct from the

reading comprehension test (the MCQs). Preliminary analysis, visualised in Figure

5.12, revealed a monotonic relationship between c_score and se_score, further

substantiated by a statistically significant and strong positive correlation using

Spearman’s rank-order correlation (rs(718) = 0.740, p < 0.0001). Therefore, I

anticipated that the model would achieve similar performance in predicting

se_score as it did with c_score. Notably, my findings remained consistent, with

the lowest correlation score 0.684 ± 0.040 obtained when using only eye movement

features as input, which improves to 0.785 ± 0.026 when the predicted reading

condition is added as an additional feature, and further increases to 0.799 ± 0.024

when the ground-truth reading condition is employed. Interestingly, the mean

correlation scores on se_score surpass those on defined c_score, indicating that the

model performed better on se_score than on c_score, despite having the same set

of eye movement features as input. This suggested that se_score could reflect

participants’ reading comprehension levels better than c_score, which can be

attributed to the fact that se_score was formed by participants’ internal judgment

of understanding, as guided by my instructions on scoring (see Section 5.3.1), while

c_score was determined externally by the correctness of participants MCQ

answers. In addition to that, the time constraints of the experiment restricted us to

only include three MCQs per text, which may not fully capture participants’

reading comprehension levels. Nevertheless, Table 5.12 shows that the correlation

score gap between reading comprehension scores and subjective evaluation scores is

not substantial (0.091, in the setting where the reading condition is derived from

ground truth), with a 95% confidence interval of [0.084, 0.098], t(99) = 25.758,

p < 0.0001. This suggests that reading comprehension scores remain a valid

measure and can be enhanced in future studies by exploring alternative approaches

to constructing them.
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Figure 5.13: SHAP interpretation of the ET model trained on c_score with the
predicted reading condition as an additional feature. Features are ordered by their
importance. The colour represents the value of the feature where red is the highest
and blue is the lowest. A positive SHAP value means that the feature contributes
to a higher prediction score, while a negative SHAP value means that the feature
contributes to a lower prediction score.
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To gain insights into the factors influencing the model’s predictions of

comprehension levels, I conducted a feature importance analysis using the ET

model trained on the c_score target with the predicted reading condition as an

additional feature. The SHAP values of the top 20 most important features are

visualised in Figure 5.13. Notably, the reading condition, referred to as Reading

(abbr. cond_0), and Skimming (abbr. cond_2) were found to be the most

influential factors impacting the model’s decision. Instances where the reading

sample was classified as either Reading or Skimming resulted in higher predicted

comprehension scores. These findings align with my earlier observations in Section

5.4.1, where I noted that reading and skimming conditions were associated with

higher comprehension scores compared to scanning and proofreading.

Furthermore, several eye movement features that exhibited high correlations

with comprehension scores during my exploratory data analysis (EDA), such as

regr_rate, dist_iqr, scdir_kurtosis, dist_h_iqr, velo_h_skewness, and

velo_iqr, were identified as among the most important features for the model’s

predictions. A higher regression rate, indicating instances of re-reading due to

missed or misunderstood words or sentences, was found to be associated with lower

comprehension levels. Similarly, a narrow velocity range (velo_iqr) was linked to

higher comprehension scores, suggesting that a consistent reading speed correlates

with better comprehension compared to fluctuating reading speeds.

5.5 Chapter summary

In conclusion, this study aimed to advance the estimation of reading

comprehension in real-world scenarios by leveraging eye movement measures and

reading conditions. By integrating the identification of reading conditions into the

utilisation of eye movement measures, I have demonstrated improved performance

in predicting reading comprehension levels. My findings highlight the intricate

relationship between eye movement measures, reading conditions, and reading
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comprehension.

Through a series of statistical tests and machine learning approaches, I

achieved an average classification accuracy of 75.3% for reading conditions in the

subject-dependent setting and 68.9% in the general setting. These promising

outcomes were obtained by employing a feature selection method that condensed

the initial set of 254 input features down to a concise set of 19 features using the

LGBM model. Since the feature selection was conducted under the general setting,

the selected features provide generalisability across participants and serve as

valuable features for future studies on classifying reading conditions. Furthermore,

I discovered an interesting trend regarding the higher accuracy observed in the

subject-dependent setting compared to the general setting. This can be attributed

to the distinctive nature of eye movement features for each individual, even though

there is a shared feature set among participants obtained from the feature selection

process. Consequently, the model’s applicability to other participants was

somewhat limited due to the personalised nature of eye movement characteristics.

Additionally, my analysis revealed that reading and skimming styles are

associated with higher comprehension levels while scanning and proofreading styles

are linked to lower comprehension levels. Hence, applying the reading conditions

classification model to predict reading style before estimating reading

comprehension resulted in an 8.9% improvement in the correlation coefficient

compared to the model trained with reading styles alone (from 0.608 to 0.697).

Furthermore, when the true reading condition labels were utilised to train the

model, the correlation coefficient between the predicted and actual comprehension

levels increased to 0.708, which is the case of obtaining a perfect reading condition

classification model. Interestingly, my model performed better when predicting

subjective understanding (using participants’ reports on their comprehension

levels) compared to objective understanding (using comprehension scores obtained

from the comprehension test). We obtained a correlation coefficient of 0.785 when

predicting subjective understanding using reading conditions labels from the
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classification model and 0.799 using true reading conditions labels, which is an

8.8% and 9.0% improvement respectively compared to predicting objective

understanding. This discrepancy suggests a gap between participants’ subjective

understanding and their actual comprehension levels, providing a new research

direction to explore the relationship between these two measures and develop a

more comprehensive approach to measuring reading comprehension.

Overall, Research Question 2 is addressed as I showed that reading

comprehension levels can be estimated from eye movement measures effectively

with the predicted reading comprehension levels having a strong positive

correlation with the actual comprehension levels (ρ = 0.785 when predicting

subjective understanding and ρ = 0.697 when predicting objective understanding).
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Chapter 6

Longitudinal Evaluation of

Reading Comprehension

Estimation Model

6.1 Introduction

In this chapter, I address Research Question 3, which is: How robust is the

reading comprehension estimation model when applied to longitudinal

reading data?

Since my ultimate goal in this dissertation is to obtain a reading comprehension

estimation model that is effective in capturing a human’s comprehension during

their daily reading on a computer, which is a longitudinal process, it is important

to investigate the robustness of models when applied to longitudinal reading data,

hence the formulation of Research Question 3. To address this research question, I

adopt a similar research process to Chapter 5, in which I collect a longitudinal reading

dataset, then extract eye movement features from the eye-tracking data, and perform

machine learning analyses on two tasks, which are reading condition classification

and reading comprehension estimation. I also aim to confirm the finding in Chapter

5, which stated that when incorporating the predicted reading condition as extra

features to eye movement features, the reading comprehension estimation model can

achieve a better performance.

The experimental results show that both reading condition classification and
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reading comprehension estimation models can achieve a good and stable performance

when predicting future reading data. Notably, I show that the more training data

these models have, the better performance they can achieve. I was also able to

confirm the findings in the previous chapter (Chapter 5), which show that the reading

condition classification model can be used to improve the reading comprehension

estimation model. This results in an overall Spearman’s rank correlation of 0.594

and 0.516 between the predicted value and the true label on validation and test sets,

respectively.

The remainder of this chapter is organised as follows. Section 6.2 details the data

collection process, which is followed by Section 6.3 where I describe the methods used

to analyse this longitudinal reading dataset. Experimental results are presented in

Section 6.4, in which I also discuss the findings and implications of this chapter.

Finally, Section 6.5 concludes this chapter.

6.2 Data Collection

This section outlines the process of creating the longitudinal reading dataset.

While the procedure largely mirrors that of Chapter 5, modifications were made to

investigate the longitudinal aspect of reading. A detailed list of these changes is

listed at the end of this section to provide a clear description of the differences

between the two datasets. The process of data gathering received approval from

Dublin City University’s Research Ethics Committee under the reference number

DCUREC/2021/147. In selecting participants, I adhered to the following inclusion

criteria: (1) is not the participant in RCIRv1 dataset, (2) has no history of reading

difficulties, (3) has normal or corrected-to-normal vision, (4) be able to maintain a

relatively steady head position for the duration of the experiment, (5) comply with

the instructions provided during the experiment, and (6) commit to finishing all

experiment sessions, which spans 6 non-consecutive days.

We recruited a total of N = 13 participants: 5 males and 8 females. Among them,
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6 individuals (S0, S1, S2, S5, S11, and S12 ) were native English speakers, while the

remainder were non-native speakers. These participants either had natural vision

or wore corrective lenses to achieve normal vision. The study involved 6 sessions,

each of which was conducted on a different day. There was a 1-3 days gap between

consecutive sessions. Participants were required to complete all 6 sessions, failing to

do so would result in their data being excluded from the dataset. The participants

received instructions on how to complete the reading task on the first day (first

session). The following sessions were conducted directly without any reminder of

the instructions or additional training.

In each session, participants read 24 passages (with average length of 346

words), spanning across 4 different reading conditions (reading, scanning, skimming

and proofreading). The passages were sampled so that they are different from the

passages in the RCIRv1 dataset and the set of passages is different each day (i.e.,

each session). There are different maximum times allowed for performing each

reading condition, specifically, 60 seconds for scanning, 45 seconds for skimming,

120 seconds for reading, and 90 seconds for proofreading. The introduction of these

limits was based on the observation on time spent on reading tasks in the RCIRv1

dataset as shown in Figure 5.5, where most of the participants failed to finish

reading and proofreading tasks within the 60-second time limit. Moreover, this

adjustment is also in line with participants’ feedback in the previous study in which

they felt that the time limit was too short for reading and proofreading tasks. Even

though the information about the time limit is kept hidden from the participant so

that different behaviours can be induced for different reading tasks, there are two

participants reported that they had a grasp of the time limit being the same for all

tasks, but they were not sure about it and did not take advantage of it.

Upon finishing reading a passage, participants were asked to give a subjective

judgement of their own understanding (from 1 to 5, with 1 being the lowest

comprehension level), and answer 3 multiple-choice questions. There was a short

break of up to 10 minutes after reading the first 12 passages for participants to rest
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their eyes. The total duration to complete a session was approximately 1 hour (and

1.5 hours for the first session, due to the training session).

Similar to the RCIRv1 dataset (Section 5.2), passages from the RACE dataset

[166] were utilised as reading material, with the exception that there was no topic

modelling process (i.e. the passages were not clustered into topics). The MCQs were

also sampled using the same method as Chapter 5. To optimise readability, I used a

font size of 28.5pt and line spacing of 1, which was informed by findings from Luz et

al. [173] which suggested using a font size of 18pt or larger and line spacing of 1 or

larger. We also used yellow as the background colour and set the text colour to black,

which was recommended by [174]. Passages were presented on a 24-inch Phillips LCD

monitor (model 240V5QDAB/00) with 1920 × 1080 resolution and controlled by a

Dell Optiplex 5060 PC powered by the Windows 10 operating system. Experimental

participants sat approximately 60cm from the screen and no chin rest was used. Eye

movements were captured using the Gazepoint GP3 HD Eye Tracking device1 with

a sampling rate of 150Hz (one sample per 6.67 milliseconds). The data gathering

process was driven by software written in Python using Psychopy [169].

Compared to the RCIRv1 dataset in Chapter 5, these are the key differences:

• The data collection happened over several days (6 days in total), with a gap

of 1-3 days between consecutive days.

• The participants who took part in this study did not take part in the previous

study in Chapter 5 (i.e. they are not the same participants in the RCIRv1

dataset).

• There are different time limits for each reading condition, compared to the

fixed time limit of 60 seconds in RCIRv1.

• There are no topic modelling and all participants read the same set of passages.

• Background color, font size and line spacing are controlled to increase

readability.
1https://www.gazept.com/product/gp3hd/
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6.3 Methodology

This chapter aims to explore the longitudinal aspect of reading comprehension

through eye movements. The preceding chapter laid the groundwork by examining

the complex relationship between reading conditions, reading comprehension and

eye movement and developing models for reading condition classification and

reading comprehension prediction. However, these models were trained and

evaluated on the RCIRv1 dataset, which was collected in a single day for each

participant. With the constructed RCIRv2 dataset, I focus on analysing the

temporal robustness of the proposed method in Chapter 5. In addition, I also aim

to explore eye movement measures that characterise human reading behaviour over

multiple sessions, in order to identify stable (between-session) eye movement

features and examine whether they have an impact on predicting reading

comprehension. In the subsequent sections, I will first describe a revised feature

extraction process. Then, I will present the method used to investigate the reading

condition classification and reading comprehension prediction over multiple

sessions. Finally, I will conduct a separate statistical testing procedure to examine

the stability of eye movement features over multiple sessions and compare this with

the features that have significant contributions to Machine Learning models’

prediction performance.

6.3.1 Data pre-processing and Feature Extraction

Similar to the procedure described in Section 5.3.2, the oculomotor events

(fixations, saccades and blinks) were extracted from the raw eye-tracking data

using the built-in algorithm shipped with the manufacturer’s software. The same

set of additional features were also derived from the detected ocular events,

including moving distances, velocity, angle of movement, and rate of regressive

movement. However, there is a difference in some features for cases where they are

normalised by the total time spent on reading. The normalisation step was
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introduced to account for the introduction of different time limits for each reading

condition in this longitudinal dataset. Consequently, the total time spent on

reading is no longer being used as a feature in this study. Table 6.1 displays a

summary of the features used in this study and indicates which features were

calculated differently compared to the previous study.

Table 6.1: Summary of ocular events and features used in the analysis of RCIRv2
dataset. Value in Diff. column indicates whether the feature was calculated
differently compared to the previous study. These features were normalised by the
total time spent on reading.

Name Description Type Diff.

nfx_norm Normalied number of fixations scalar Yes
nbk_norm Normalised number of blinks scalar Yes
fxdur_norm Normalised fixation durations sequence Yes
scdur_norm Normalised saccade durations sequence Yes
scdir Saccade directions (angles) sequence No
bkdur_norm Normalised blink durations sequence Yes
dist L2 distances between two consecutive fixations

(i.e. one saccade)
sequence No

dist_v L1 distance between two consecutive fixations on
vertical axis

sequence No

dist_h L1 distance between two consecutive fixations on
horizontal axis

sequence No

velo Velocity of movement sequence No
velo_v Velocity of movement on vertical axis sequence No
velo_h Velocity of movement on horizontal axis sequence No
nregr_norm Normalised number of regressions scalar Yes
regr_rate Ratio between the number of regressions and

number of fixations
scalar No

The features that are sequences (as indicated in Table 6.1) were encoded into

scalar values using statistical encoding and histogram encoding methods, as described

in Section 5.3.2.

6.3.2 Machine Learning Analysis

Building upon the findings and machine learning pipelines developed in Chapter 5,

this chapter investigates the temporal robustness of the proposed method under two

ML tasks: reading condition classification and reading comprehension prediction.
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For both tasks, I approach the problem by training and evaluating the models

on different subsets of reading sessions in the RCIRv2 dataset. Let m to be the

total number of sessions. Beginning with session 0, I train the models on the first n

sessions (i.e. session 0 to session (n − 1)th), evaluate them on the nth session, the

remainders (session (n + 1)th to session (m − 1)th) are used as the test set. The

process is repeated for n from 1 to m − 2 (to guarantee that there is at least one

session for validation and one session for testing).

Since I have shortlisted the best-performing machine learning models in Chapter

5 which are Light Gradient Boosting Machine (LGBM), Random Forest (RF) and

Extra Trees (ET), these will be the main models to be examined in this study.

Furthermore, the analysis in also conducted on two training configurations as in the

preceding chapter, including General (GE) training and Subject Dependent (SE)

training, to further compare how the models perform in these settings over multiple

sessions. After identifying the best-performing baseline model, a hyperparameter

tuning process is conducted to find the best set of hyperparameters for them. To

provide a rationale for the hyperparameter decision, I also conducted a sensitivity

analysis to examine the impact of the hyperparameters on the model’s performance.

For the reading comprehension prediction task, there are two extra experiments

that are added to the aforementioned procedure. The first experiment is to confirm

the finding in Chapter 5 that the subjective evaluation se_score (i.e. the

self-reported reading comprehension score) has a strong correlation with the

objective comprehension score c_score (i.e. the score calculated based on

participants’ answers to MCQs) and can be used as an alternative to c_score in

the prediction task. The second one is to examine the integration of reading

conditions as additional features to train the prediction model. As a result, the

best baseline classifier and the best-tuned classifier from the reading condition

classification task will be employed for predicting reading comprehension scores.
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6.3.3 Eye Movement Features Inspection

This section investigates the stability of eye movement features over multiple

sessions and compares this with the features that have significant contributions to

the machine learning models’ prediction performance to check whether the features

that are important to the models are also stable over time. To identify the stable

features, I conduct a statistical testing procedure to compare the features’

distributions over multiple sessions. First, the reading samples are grouped by

participant. Next, a Shapiro-Wilk test is used to check whether the features are

normally distributed. Then Bartlett’s test is used to check whether the variances of

the features are equal. If the features are normally distributed and have equal

variances, the one-way ANOVA test is used to compare the features’ means over

multiple sessions, otherwise, the Friedman test is used. The significance level is set

to 0.05 and the Bonferroni correction is applied to ensure that the family-wise error

rate is controlled at 0.05 for multiple comparisons. The procedure is repeated for

each feature. After that, the eye movement features have no significant difference

over multiple sessions and are identified as stable features. Finally, the stable

features are compared with the features that have significant contributions to the

models’ prediction performance (obtained by using SHAP method) to check

whether the features that are important to the models are also stable over time.

6.4 Results and Discussion

6.4.1 Reading Condition Classification

Table 6.2 shows the baseline results of the condition classification task using the

General training configuration. It can be seen that for all models, the more sessions

that are used for training, the better the performance of the models. The best-

performing model is LGBM trained on the first 4 sessions, reaching the highest

mean accuracy of 0.651 with (an accuracy of 0.705 on the fifth session and 0.596
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Table 6.2: Baseline results of the condition classification task in the GE training
configuration. The T0 to T5 are abbreviations for session 0 to session 5. Each row
displays the configuration for training, validation and testing sessions. The white
cells with letter t indicate that these sessions are used for training, while cells with
symbol - represent ignored sessions. The session which is immediately after the
training sessions (i.e., the cells in white which contain a real value) displays the
classification accuracy when evaluating on the validation session. The remaining
cells in grey color are accuracy scores when evaluating on testing sessions, which are
displayed to provide an insight into the model’s performance over time.

Classifier
Sessions Mean

AccuracyT0 T1 T2 T3 T4 T5

ET t 0.516 0.497 0.558 0.587 0.519 0.535
RF t 0.503 0.542 0.561 0.567 0.529 0.540

LGBM t 0.420 0.330 0.487 0.417 0.429 0.417
ET - t 0.506 0.545 0.554 0.545 0.538
RF - t 0.516 0.545 0.554 0.548 0.541

LGBM - t 0.282 0.292 0.487 0.510 0.393
ET t t 0.532 0.603 0.599 0.558 0.573
RF t t 0.542 0.625 0.583 0.574 0.581

LGBM t t 0.353 0.439 0.535 0.622 0.487
ET - t t 0.545 0.577 0.513 0.545
RF - t t 0.545 0.596 0.532 0.558

LGBM - t t 0.436 0.590 0.465 0.497
ET t t t 0.574 0.580 0.545 0.566
RF t t t 0.590 0.615 0.551 0.585

LGBM t t t 0.465 0.631 0.535 0.544
ET - t t t 0.606 0.571 0.588
RF - t t t 0.628 0.554 0.591

LGBM - t t t 0.654 0.599 0.627
ET t t t t 0.660 0.580 0.620
RF t t t t 0.638 0.606 0.622

LGBM t t t t 0.705 0.596 0.651
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on the sixth session). This aligns with the results we obtained in Chapter 5 (Table

5.6) where LGBM also achieved the best performance on the condition classification

task on the General setting with the mean accuracy of 0.651. This indicates that

the model shows a generalisation ability across multiple sessions, as it approached a

similar performance when trained on a single session as in the case of the preceding

chapter. Moreover, I found that when excluding the first session from the training set,

the performance of the model worsens. This indicates that data from the first session

is useful for the models to learn the patterns in the data and help them to generalise

to subsequent sessions. This also shows that participants’ reading behaviour in the

first session in which they received instruction is not different from the subsequent

sessions in which they did not receive any instruction or reminder of how to perform

the tasks. We can observe this by looking at the first two iterations, where the first

one is trained on T0 and the second one is on T1. There is not much difference in

the performance of the models when comparing the two iterations on mean accuracy,

the difference is only 0.3% for ET and 0.1% for RF and, except for LGBM where

the difference is 2.4% (but accuracy score when training on T0 is higher than when

training on T1).

When examining the models when trained using the SD configuration, as

displayed in Table 6.3, we found that their performance is worse than when trained

using the GE configuration. The best-performing model (ET) only achieved a

mean accuracy of 0.628, which is 2.3% away from that of the LGBM model trained

on the GE configuration. This shows a contrast to the findings in Chapter 5 where

the models trained on the SD configuration achieved better performance than those

trained on the GE configuration. One of the reasons for this could be due to the

changes in eye movement features from one session to another. Another possible

factor would be due to the amount of data used for training the GE configuration

in this study being larger than that in the preceding chapter.

Based on the baseline results on both GE and SD training configurations, we

found that training the models on the first 4 sessions is the best option for the
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Table 6.3: Reading condition classification results of the model in the SD training
configuration. Models are trained on T0 to T3, validated on T4 and tested on T5.
The results are highlighted based on the best score for each subject.

Subject

Classifiers

ET LGBM RF

T4 T5 Mean T4 T5 Mean T4 T5 Mean

0000 0.375 0.458 0.417 0.500 0.500 0.500 0.292 0.542 0.417
0001 0.333 0.375 0.354 0.500 0.250 0.375 0.292 0.375 0.333
0002 0.500 0.542 0.521 0.542 0.583 0.563 0.542 0.583 0.563
0003 0.667 0.625 0.646 0.708 0.750 0.729 0.750 0.583 0.667
0004 0.833 0.792 0.813 0.750 0.833 0.792 0.875 0.667 0.771
0005 0.667 0.500 0.583 0.667 0.458 0.562 0.583 0.500 0.542
0006 0.625 0.625 0.625 0.667 0.625 0.646 0.625 0.667 0.646
0007 0.708 0.792 0.750 0.750 0.625 0.688 0.708 0.875 0.792
0008 0.667 0.583 0.625 0.625 0.542 0.583 0.667 0.583 0.625
0009 0.875 0.750 0.813 0.792 0.708 0.750 0.833 0.708 0.771
0010 0.750 0.583 0.667 0.583 0.583 0.583 0.625 0.500 0.563
0011 0.708 0.542 0.625 0.625 0.500 0.563 0.667 0.542 0.604
0012 0.708 0.750 0.729 0.750 0.667 0.708 0.708 0.792 0.750

Mean 0.647 0.609 0.628 0.651 0.587 0.619 0.628 0.609 0.619
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models to achieve the best performance. Moreover, the best-performing model is

LGBM which reaches an accuracy of 0.705 on the validation set (session_4 ) and

0.651 on the test set (session_5 ), making a mean accuracy of 0.651. To further

increase the model performance, we will use the best-performing model to perform

hyperparameter tuning using Optuna. The tuning process was done with 3000

iterations with objective functions to maximise the accuracy score on the

validation set, which is session_4 in this case. The list of hyperparameters and

their corresponding value ranges which were used in the tuning process is shown in

Listing 6.1.

Table 6.5: Comparison between the baseline classification model and its tuned
version. The model is trained on T0 to T3 and tuned to maximise the accuracy
score on T4, which is the validation set.

Classifier Status
Sessions

Mean Accuracy
T4 T5

LGBM
Baseline 0.705 0.596 0.651
Tuned 0.782 0.628 0.705

As shown in Table 6.5, I was able to maximise the accuracy score on the validation

set to 0.782, which is 7.7% higher than the baseline model. This tuned model also

achieved an accuracy score of 0.628 on the test set, which is also an improvement of

3.2% from the score of 0.596 of the baseline model. Overall, the tuned model boosted

the mean accuracy score by 5.4% from 0.651 to 0.705. The hyperparameters of the

tuned model are shown in Listing 6.2.
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Listing 6.1: Hyperparameters

space used for tuning process

'num_leaves': [10 : 50]

'bagging_freq': [0 : 5]

'n_estimators': [5 : 200]

'feature_fraction': [0.1 : 1.0]

'bagging_fraction': [0.1 : 1.0]

'drop_rate': [0.1 : 0.9]

'learning_rate': [0.01 : 0.2]

Listing 6.2: Hyperparameters of the best

iteration for LGBM

'num_leaves': 11,

'bagging_freq': 1,

'n_estimators': 129,

'feature_fraction': 0.9304680799819736,

'bagging_fraction': 0.6603602015327825,

'drop_rate': 0.22176058999161752,

'learning_rate': 0.031872640733368415
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Figure 6.1: Hyperparameters’ Importance of the Tuned LGBM Model

To make sense of the hyperparameters obtained from the tuning process, I

examined the importance of these hyperparameters to the performance of the

model throughout the tuning process. As displayed in Figure 6.1, the most

important hyperparameters are bagging_fraction, feature_fraction, learning_rate,

which accounts for 69%, 15%, and 10% of the total importance, respectively.

The bagging_fraction parameter specifies the fraction of data to be used for each

training iteration and is generally used to speed up the training and avoid overfitting.

Similarly, the feature_fraction parameter controls the percentage of features to be

used. According to the parallel coordinate plot in Figure 6.2, the bagging_fraction

between 0.5 and 0.8 with a bagging_freq (bagging frequency) of 1 (i.e. performs
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Figure 6.2: Parallel coordinate plot showing hyperparameter settings of all tuning
iterations. Each line represents a single iteration while each axis represents a single
hyperparameter (and its range/options for tuning as detailed in Listing 6.1). The
colour of the line represents the accuracy score of the iteration. The darker the
colour, the higher the accuracy score.

bagging for every training iteration) work best for the model. Moreover, most of the

tuning iterations achieving high accuracy (> 0.75) have feature_fraction between 0.9

and 1.0. This suggests that most eye movement features are relevant and contribute

positively to the model’s prediction power. Lowering the feature_fraction could

result in losing the important interaction between features and thus, reducing the

model’s performance. The best tuning iteration resulted in a bagging_fraction of

approximately 0.66 and a feature_fraction of approximately 0.93 (see Listing 6.2),

which are within the ranges mentioned above. All in all, I have obtained a tuned

model which predicts reading conditions based on participants’ eye movements with

an overall accuracy of 0.705 on the validation set and 0.628 on the test set.

6.4.2 Reading Comprehension Prediction

Prior to the prediction of reading comprehension, I first re-examined the

correlation between the comprehension score (c_score) and the subjective

evaluation score (se_score), as the previous chapter (Chapter 5) has shown that

there is a strong correlation between these two variables. Moreover, I also found

that using the se_score as the target variable for the prediction of reading

comprehension is more effective than using the c_score.

The Spearman’s rank correlation between c_score and se_score
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Table 6.6: Spearman’s rank correlation between c_score and se_score, aggregated
by participants and by sessions

Aggregate by subjects Aggregate by sessions

Subject ρ p-value Session ρ p-value

0000 0.468 <0.001 Trial 0 0.651 <0.001
0001 0.185 0.027 Trial 1 0.586 <0.001
0002 0.568 <0.001 Trial 2 0.556 <0.001
0003 0.650 <0.001 Trial 3 0.557 <0.001
0004 0.844 <0.001 Trial 4 0.618 <0.001
0005 0.401 <0.001 Trial 5 0.561 <0.001
0006 0.505 <0.001
0007 0.490 <0.001
0008 0.383 <0.001
0009 0.629 <0.001
0010 0.780 <0.001
0011 0.417 <0.001
0012 0.470 <0.001

Mean 0.522 - Mean 0.588 -

(rs(1870) = 0.588, p < 0.0001) over all samples in the RCIRv2 dataset show a

strong positive correlation between these two variables. The same relationship can

also be observed when the correlation is calculated for each participant and each

session (see Table 6.6). For correlation aggregated by participants, the mean

correlation is 0.522 (p < 0.0001). While most participants have a correlation

between 0.4 and 0.6, the correlation for participant 0001 is 0.185 (p = 0.027), which

is significantly lower than the mean correlation. This means that there is a small

number of mismatches between participant 0001’s performance on MCQs and their

evaluation of their performance. However, when applying the correlation to the

session level, the mean correlation is 0.588 (p < 0.0001), which equals to the

correlation over all samples. The correlation coefficients of these sessions vary

between 0.55 and 0.65 with no significant outliers. This shows that the correlation

between c_score and se_score is stable over time. Hence, this also confirms the

finding in Chapter 5 that the se_score is a good proxy for the c_score.

Based on the results in Section 5.4.3 in the preceding chapter, I used the set of
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Table 6.7: The baseline Spearman’s rank correlation coefficient score of the reading
comprehension prediction models. Session 0 to session 5 are denoted as T0 to T5,
accordingly. The white cells with letter t indicate that these sessions are used for
training. The ssion which is immediately after the trainining sessions (i.e., the cells
in white which contain a real value) displays the correlation score when evaluating on
the validation session. The remaining cells in grey color are scores when evaluating
on testing sessions. The models are trained on two different regression target, which
are c_score and se_score. The highlighted scores are the best value within each
session.

Regressor Target
Sessions

Mean ρ
T0 T1 T2 T3 T4 T5

LGBM c_score t 0.301 0.242 0.330 0.296 0.249 0.284
ET c_score t 0.307 0.239 0.389 0.338 0.345 0.324
RF c_score t 0.314 0.249 0.390 0.315 0.329 0.319
LGBM c_score t t 0.215 0.379 0.390 0.270 0.314
ET c_score t t 0.340 0.374 0.371 0.283 0.342
RF c_score t t 0.354 0.369 0.374 0.333 0.357
LGBM c_score t t t 0.397 0.348 0.246 0.330
ET c_score t t t 0.404 0.394 0.297 0.365
RF c_score t t t 0.396 0.400 0.300 0.365
LGBM c_score t t t t 0.429 0.315 0.372
ET c_score t t t t 0.434 0.365 0.399
RF c_score t t t t 0.450 0.370 0.410

LGBM se_score t 0.302 0.287 0.427 0.371 0.339 0.345
ET se_score t 0.339 0.336 0.543 0.430 0.476 0.425
RF se_score t 0.327 0.338 0.527 0.408 0.468 0.414
LGBM se_score t t 0.344 0.510 0.489 0.393 0.434
ET se_score t t 0.391 0.521 0.482 0.439 0.458
RF se_score t t 0.409 0.534 0.494 0.483 0.480
LGBM se_score t t t 0.554 0.511 0.485 0.516
ET se_score t t t 0.546 0.535 0.470 0.517
RF se_score t t t 0.536 0.539 0.494 0.523
LGBM se_score t t t t 0.550 0.521 0.536
ET se_score t t t t 0.584 0.502 0.543
RF se_score t t t t 0.545 0.544 0.545
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best-performing regressors to conduct analysis for this longitudinal dataset. The

analysis took a similar approach as in the previous Section 6.4.1, where regressors

were trained on the increasing number of sessions (beginning from session 0),

validated the next session and tested on the remainders. In addition, both the

c_score and se_score were used to evaluate the performance of the regressors, in

order to show the difference in models’ performance between these two measures.

The results are shown in Table 6.7. Similar to what was observed in the previous

section, the performance of the regressors increased as the number of training sessions

increased. Considering the best configuration, which is training with the first 4

sessions, the best-performing regressor for c_score is RF (validation score at 0.450

on session 4 ) and for se_score is ET (validation score at 0.584 on session 4 ). When

considering the mean correlation coefficient across all sessions, the best-performing

regressor is RF for both c_score and se_score (mean score at 0.410 and 0.545

respectively).

Since the performance of the regressors is the highest when trained in the first 4

sessions, I decided to use this configuration to conduct subsequent analysis, which

compares the regressors’ performance when introducing reading conditions as

additional features. In this analysis, information about reading conditions can be

obtained in three different ways: (1) using the true label of the reading condition in

the dataset, (2) using the predicted label of the reading condition from the baseline

classifier (i.e. the classifier without tuning), and (3) using the predicted label of the

reading condition from the tuned classifier. Table 6.8 shows the results of this

analysis. I observed that there is a significant increase in the performance of the

regressors when using the true label of the reading condition as additional features,

compared to the baseline (i.e. without reading condition information). The ρ score

increases from 0.434 to 0.488 on the validation set (session 4 ) on the ET model for

c_score, and from 0.545 to 0.626 on the validation set (session 4 ) on RF model for

se_score. This shows that having reading condition information as additional

features can help the regressors to better predict the c_score and se_score, which
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Table 6.8: Comparison of reading comprehension prediction models when employing
reading condition as additional training features. None means no reading condition
feature is used, while Baseline classifier and Tuned classifier indicates the condition
was predicted using the baseline classifier and the tuned classifier (described in
previous Section 6.4.1), respectively. The rows in italic display the comprehension
prediction performance when using the true label of reading condition (i.e. similar to
having a perfect reading condition classification model), which is used for reference
purpose only.

Regressor Reading Condition Target
Sessions

Mean ρ
T4 T5

RF None c_score 0.450 0.370 0.410
ET None c_score 0.434 0.365 0.399
LGBM None c_score 0.429 0.315 0.372
RF Baseline classifier c_score 0.449 0.346 0.398
ET Baseline classifier c_score 0.456 0.350 0.403
LGBM Baseline classifier c_score 0.430 0.299 0.365
RF None se_score 0.545 0.544 0.545
ET None se_score 0.584 0.502 0.543
LGBM None se_score 0.550 0.521 0.536
RF Baseline classifier se_score 0.563 0.495 0.529
ET Baseline classifier se_score 0.515 0.423 0.469
LGBM Baseline classifier se_score 0.527 0.462 0.495
RF Tuned classifier se_score 0.590 0.497 0.543
ET Tuned classifier se_score 0.546 0.451 0.498
LGBM Tuned classifier se_score 0.565 0.478 0.521
Tuned RF Tuned classifier se_score 0.594 0.516 0.555
Tuned ET Tuned classifier se_score 0.573 0.473 0.523

RF True label c_score 0.458 0.354 0.406
ET True label c_score 0.488 0.381 0.434
LGBM True label c_score 0.425 0.320 0.373
RF True label se_score 0.626 0.546 0.586
ET True label se_score 0.568 0.527 0.548
LGBM True label se_score 0.591 0.530 0.560
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aligns with what I have concluded in the preceding chapter. However, this increase

is only realised if a perfect reading condition classifier is available. When using the

predicted label from the baseline classifier, the performance of the regressors is

somewhat similar to models trained without reading condition information.

However, when using the predicted label from the tuned classifier, I managed to

achieve a ρ (Spearman’s rank correlation coefficient) score of 0.59 on the validation

set (session 4 ) on RF model for se_score. Despite that, it can be seen that the ρ

score of 0.497 on the test set (session 5 ) is lower than that of the baseline model

(without reading condition information), which is 0.544 on the RF model.

To further increase the performance of the regressors, a hyperparameter tuning

is conducted on the two best-performing regressors, which are RF and ET, with

se_score as the target and session 4 as the validation. Since these two regressors

share similar hyperparameters, I used the same hyperparameter space for both of

them (which is detailed in Listing 6.3) and tuned for 3000 iterations using Optuna.

Listing 6.3: Hyperparameters space used for tuning process

'criterion': ['squared_error', 'absolute_error', 'friedman_mse', 'poisson']

'n_estimators': [1000 : 4000]

'max_depth': [10 : 2000]

'min_samples_split': [2 : 40]

'min_weight_fraction_leaf': [0 : 0.5]

'min_impurity_decrease': [0 : 5]

'ccp_alpha': [0 : 0.5]

'max_samples': [0 : 1]

As reported in Table 6.8, the performance of the regressors is increased after

tuning. Despite tuned RF only shows a slight increase of 0.004 from its best score

of 0.590 before tunning to 0.594 on the validation set. The tuned RF achieved a ρ

score of 0.516 on the test set, which is an increase of 0.190 from the score of 0.497

before tunning. It also achieved the highest mean ρ score of 0.555 overall. More

details on the hyperparameters for this tuned RF model can be found in Listing 6.4.
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Listing 6.4: Hyperparameters of the best iteration for RF

'criterion': 'friedman_mse'

'n_estimators': 3297

'max_depth': 1761

'min_samples_split': 13

'min_weight_fraction_leaf': 0.009992585036153842

'min_impurity_decrease': 4.2580393330611885

'ccp_alpha': 0.0005973019759799459

'max_samples': 0.7578648164895252
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Figure 6.3: Hyperparameters importance of the tuned RF model

Inspecting the contribution of these hyperparameters to the models’

performances, I found that the most important hyperparameter is criterion, which

is found to be friedman_mse (Figure 6.4). This criterion is based on the approach

proposed by Jerome Friedman in his work on gradient-boosting machines. Unlike

the regular mean squared error, which simply calculates the average of the squared

differences between the predicted and actual values, Friedman’s MSE incorporates

additional statistical techniques to improve the quality of the splits in a decision

tree, which in this case also boosted the performance of the RF regressor.

Moreover, the next most important hyperparameters are ccp_alpha,

min_weight_fraction_leaf and min_impurity_decrease, which are the
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hyperparameters that control the complexity of the tree to avoid

overfitting/underfitting.
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Figure 6.4: Parallel coordinate plot showing hyperparameter settings of all tuning
iterations. Each line represents a single iteration while each axis represents a single
hyperparameter (and its range/options for tuning as detailed in Listing 6.3). The
color of the line represents the ρ score of the iteration. The darker the colour, the
higher the ρ score.

Table 6.9: Percentage of stable features for each subject, identified using the
statistical testing procedure.

Subject
Stable

features
(%)

Unstable
features

(%)

S0 38.5 61.5
S1 58.7 41.3
S2 28.8 71.2
S3 28.8 71.2
S4 39.4 60.6
S5 42.3 57.7
S6 44.2 55.8
S7 47.1 52.9
S8 48.1 51.9
S9 52.9 47.1
S10 42.3 57.7
S11 59.6 40.4
S12 43.3 56.7

6.4.3 Eye Movement Features Inspection

By adopting the statistical testing procedure as described in Section 6.3.3, I identify

for each subject, the set of eye movement features that are stable over time (i.e.
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features that show no significant difference across all sessions), with a confidence level

of 95%. As shown in Figure 6.9, most of the subjects have 38.5% to 59.6% of their eye

movement features that are stable over time, while only two subjects have only 28.8%

stable features. When investigating the stable features that are commonly observed

across subjects (displayed in Table 6.10), I found that the top stable features are the

encodings derived from the fixation duration, saccade duration and blink duration

features in eye movement. Decades of research have shown that these features are

the most important features in eye movement analysis and identified their duration

range to be 150-300ms for fixation, 20-40ms for saccade an 100-400ms for blink

[67]. It is not surprising that my findings also align with what has been reported

in the literature. Considering the second and third most common stable features,

which are not encodings of the fixation, saccade and blink duration features, there

are dist_v_iqr, nfx_norm, nregr_norm, nbk_norm, scdir_tr_min, scdir_tr_range,

velo_v_iqr, velo_v_mean, velo_v_tr_max. We started to see the emergence of

distance and velocity features, which we have found to be important in the previous

chapter in determining reading conditions. However, these distance and velocity

features are only stable on vertical movements and not horizontal movements, which

is unexpected since horizontal movements are more important for estimating reading

comprehension (as found in the previous chapter).

When applying SHAP to explain the feature contribution to the

best-performing reading comprehension prediction model (the Tuned RF in Table

6.8), I was able to conclude that the stable features do not contribute much to the

prediction of reading comprehension, as none of the top most common stable

features are listed in the most important features for the model. Instead, I

observed that the reading condition feature plays a significant role in the prediction

of reading comprehension as cond_reading being top 1 on the list. Besides,

regr_rate is also among the top most important features of which a higher value

leads to worse reading comprehension scores. This further confirms and

strengthens the findings in Chapter 5 that regression rate is a good indicator of
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Table 6.10: List of features that are identified as stable for most subjects

Count Feature names

13

bkdur_norm_mean fxdur_norm_iqr fxdur_norm_mean
fxdur_norm_std fxdur_norm_tr_max fxdur_norm_tr_min
fxdur_norm_tr_range scdur_norm_mean scdur_norm_tr_max
scdur_norm_tr_min

12 dist_v_iqr nfx_norm nregr_norm
scdur_norm_iqr scdur_norm_std scdur_norm_tr_range

11
bkdur_norm_tr_max nbk_norm scdir_tr_min
scdir_tr_range velo_v_iqr velo_v_mean
velo_v_tr_max

10 bkdur_norm_tr_min dist_h_mean dist_v_mean
dist_v_tr_max scdir_std velo_v_tr_range

9

bkdur_norm_iqr bkdur_norm_std bkdur_norm_tr_range
dist_h_tr_min dist_v_tr_range scdir_iqr
scdir_skewness scdur_norm_kurtosis scdur_norm_skewness
velo_v_std velo_v_tr_min

8 dist_v_tr_min scdir_mean velo_h_mean

7 dist_mean scdir_tr_max velo_h_tr_min
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reading comprehension.

6.5 Chapter Summary

This chapter investigates the robustness of the reading comprehension estimation

model when applied to longitudinal reading data, which is collected over six days

from 13 participants. I adopted a similar research process as in Chapter 5, which

extracts eye movement features from eye-tracking data and feeds into the training

machine learning methods to perform two tasks: reading condition classification and

reading comprehension estimation. The results show that both tasks can achieve

good and stable performance over time, with a mean accuracy of 0.705 on reading

condition classification and a mean Spearman’s rank correlation coefficient of 0.555

for reading comprehension prediction. In addition, this chapter also examines the

stability of eye movement features over multiple sessions and compares them with the

features that have significant contributions to the models’ prediction. Experimental

results show that despite the high stability of the features, they do not contribute

much to the prediction of reading comprehension. Notably, the top most important

features align with what was found in the previous chapter, which is also another

indicator of the robustness of the reading comprehension estimation model.

Overall, research question 3 is addressed since I have shown that the reading

comprehension estimation model is robust when applied to longitudinal reading

data. The model, when trained on the first four sessions, can predict reading

comprehension on the last two sessions with a mean Spearman’s rank correlation

coefficient of 0.555 between the predicted and actual subjective reading

comprehension scores (specifically, ρ = 0.594 for validation session – session 4, and

0.516 for testing session – session 5 ).
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Figure 6.5: SHAP interpretation of the RF model trained on se_score with the
predicted reading conditions as additional features. Features are ordered by their
importance. The colour represents the value of the feature where red is the highest
and blue is the lowest. A positive SHAP value means that the feature contributes
to predicting a higher target value, while a negative SHAP value means that the
feature contributes to predicting a lower target value.
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Chapter 7

Gaze-coupled

Comprehension-evidenced

Interactive Infologging Retrieval

System

7.1 Introduction

In this chapter, I address Research Question 4: To what extent does the

integration of reading comprehension estimation improve the

performance of the infologging retrieval system for on-screen

information compared to a baseline system without this feature?

To answer this question, I propose a novel retrieval system, InfoSeeker, that

indexes on-screen information and leverages the user’s eye gaze data and reading

comprehension level to improve the retrieval performance of previously viewed

information. To facilitate the evaluation of the proposed system, I collected a

dataset, which I refer to as an infolog, of on-screen information and eye gaze data

of a participant for daily computer usage over 15 days. This infolog dataset can be

viewed as a form of lifelogging that focuses on capturing on-screen information

(text) perceived by a user allowing this information to be retrieved later. The

novelty of this work lies in the integration of eye gaze data as an additional data
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source to enhance the utility of the infologging images (also lifelogging images),

enabling the infologger’s on-screen attention to be captured to aid the retrieval of

on-screen information. However, existing lifelog retrieval systems do not support

the retrieval of infologging data, nor do they exploit the rich information contained

in the eye gaze data.

In this chapter, I present the design and development of InfoSeeker, an

interactive retrieval system for infologging data. InfoSeeker integrates two novel

functionalities: a reading comprehension filter and a gaze heatmap visualisation.

The reading comprehension filter allows users to retrieve information based on the

infologger’s comprehension level, estimated from the eye movement patterns of the

infologger when engaging with the on-screen information. The estimation is

obtained by employing a comprehension estimation model that was trained on a

reading dataset which I have described in Chapter 6. The gaze heatmap

visualisation provides an intuitive representation of the infologger’s eye gaze

distribution on the information, highlighting the areas of interest and attention on

the screen. These functionalities aim to enhance the retrieval performance and user

experience of InfoSeeker.

To evaluate whether the introduction of the aforementioned functionalities

improves the retrieval performance of infologging data, two experiments were

conducted: a non-interactive retrieval experiment and an interactive retrieval

experiment via a user study. The non-interactive experiment tests the system’s

ability to retrieve and rank relevant results based on the user’s query and

comprehension level filter, compared to a baseline system that does not exploit the

eye gaze data. The interactive experiment evaluates the system in a realistic

setting, where users perform a series of retrieval tasks using both the baseline

system and the gaze-coupled system. Performance of both systems was measured

using the LSC score – a common metric in evaluating lifelog retrieval systems –

which is a single value that takes submission accuracy, task completion time, and

penalties for incorrect submissions into account. The two proposed experiments are
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inspired by the evaluation methodology of the lifelog retrieval task at

NTCIR [28–30, 85] and LSC [35–39]. Since infologging data is a form of lifelogging

data, the evaluation methodology of lifelogging retrieval systems is suitable for

evaluating the proposed system.

The results of the experiments show that InfoSeeker, with the integration of a

reading comprehension estimation filter, outperforms the baseline system in both

non-interactive and interactive settings, demonstrating the effectiveness of

gaze-coupled functionalities in enhancing the retrieval of infologging data. The

feedback from the users also confirms the utility and usability of the reading

comprehension filter and the gaze heatmap visualisation in the retrieval process.

This chapter contributes to the advancement of lifelog research by introducing a

novel retrieval system for infologging data and by exploiting eye gaze data as a

valuable source of information.

7.2 Data Collection

In this section, I will describe the process of creating the on-screen information

lifelogging dataset, or the infolog dataset in short. Similar to how most lifelog

datasets are created, which involves the use of devices to passively capture the

user’s data (e.g., wearable cameras that capture images, GPS devices that capture

location information), the infolog dataset is created by employing a software tool

that passively captures the user’s on-screen information (as screenshots) and their

corresponding eye gaze data (through an eye tracker). Inspired by the design of

Loggerman [51], a software that aims to capture as many aspects of computer

usage as possible (e.g. screenshots, keystrokes, keyboard, mouse events, clipboard,

apps transition), I came up with a design of a simpler version of Loggerman, which

serves the need of capturing on-screen information alongside eye gaze data. In the

subsequent sections, I will first re-define the unit of retrieval for the infolog dataset,

and then describe the process of creating the infolog dataset.
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7.2.1 Unit of Retrieval

In contrast to other Information Retrieval (IR) tasks such as web or blog search,

lifelogging does not have a universally accepted smallest unit of retrieval or even a

concept of a document [10]. The choice of the retrieval unit in lifelogging is highly

use-case specific [10,175]. In existing lifelog research, various units of retrieval have

been employed, such as the life event [10], a minute as a time-unit [27], or individual

data points like images, temperature readings, and location data [26]. Notably, the

minute is often the preferred unit of retrieval in many lifelog retrieval benchmarking

challenges (i.e. NTCIR [28–30], ImageCLEF Lifelog [31–34], and LSC [35–39]).

Loggerman [51], a system with functionalities similar to the infolog system, also

utilises minute as a unit of retrieval. In Loggerman, screenshots are captured at

intervals chosen by the user (every 5, 10, or 30 seconds) or by default every minute,

a mode referred to as ’smart-shooting’ to balance capture frequency and storage

use. For the infolog dataset, however, adopting a minute as the unit of retrieval

is not practical due to the inclusion of eye gaze data. Capturing screenshots at

fixed intervals, such as every minute, can lead to misalignment between the eye gaze

data and the information displayed in the screenshot, as the user might have viewed

multiple pieces of information on the screen during that time. This misalignment

would diminish the dataset’s utility for recalling previously viewed information.

To address this, the infolog dataset employs an event-based interval for screenshot

capture, with an event defined as any change in on-screen information presentation.

This approach ensures that each screenshot is accompanied by eye gaze data specific

to the period of that information’s display. Such alignment not only facilitates the

retrieval of information viewed by the user but also allows for an estimation of the

user’s reading comprehension of that information, thereby enhancing the efficiency

of information retrieval. Consequently, the chosen unit of retrieval for the infolog

dataset is each instance of change in on-screen information presentation (i.e. a

screenshot).
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7.2.2 Data Collection Process

The data collection process for this study involves an individual, referred to as the

infologger, engaging in their daily activities on a computer. During this time, the

infologging software passively records both on-screen information and the infologger’s

eye movements. Eye movements of the infologger are captured using a Gazepoint

GP3 HD eye tracker, operating at a sampling frequency of 150Hz. This device is

positioned beneath the computer monitor and connected to the infologger’s computer

via a USB 3.0 port.

Enter

Capture Subjective
Judgement

On-screen Information
Presentation Change

Left Click Scrollor

Take screenshot

Eye tracker

Screenshot

Eye-tracking data

Infologging Software

Infologs

A
nnotation

S
ubjective C

om
prehension Level

/Ctrl Alt 1 2 3 4+ + / / 5/

Annotate event

Figure 7.1: The process of logging on-screen information. The lines in blue highlight
the data sources that are presented in the infolog dataset.

Additionally, the infolog software, developed in Python, runs simultaneously on

the same computer. Its primary function is to monitor specific computer events

that signal changes in the on-screen content, capture screenshots, and log the

continuous stream of eye gaze data. For the sake of simplicity, the software is

configured to respond to a limited set of triggers: mouse clicks, mouse scrolls, and

the pressing of the enter/return key, which are considered indicators of changes in

screen presentation. Each time one of these events occurs, the infolog software
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captures a screenshot of the entire computer screen after a brief delay of 200

milliseconds, allowing time for the screen content to render fully. Simultaneously, it

marks an annotation in the stream of eye gaze data, signifying the commencement

of a new event. This process is depicted in Figure 7.1, providing a visual

representation of the data collection process.

Moreover, to assist in evaluating the reading comprehension estimation model

(detailed in Section 7.3.1), the infolog software includes a feature that allows the

infologger to subjectively annotate their comprehension level of the information

displayed on the screen instantly. This annotation is done by pressing Ctrl + Alt +

Number on the keyboard, where Number ranges from 1 to 5. Here, 1 represents the

lowest level of comprehension and 5 the highest (the same scale as the previous

study in Chapter 5 and Chapter 6). While these annotations are not compulsory,

the infologger is encouraged to annotate as frequently as possible to generate a

robust dataset for evaluation purposes.

7.2.3 Infolog Dataset Overview

Given the infologging data aims to capture the user’s everyday computer interactions,

the infologger is permitted to engage in any typical computer tasks on their personal

computer. This approach, however, presents a privacy challenge as it may involve

sensitive information that the infologger may prefer to keep private, including details

they might not wish to disclose to the researcher. To address this concern and

protect privacy, I assumed the role of the infologger and conducted the data collection

on my personal computer. This practice is not unusual in lifelogging research, as

many lifelog datasets only involve a single participant, who is also the researcher

themselves [10, 34, 36–39, 85]. This method is generally seen as the most viable

approach to gathering research data while upholding strict privacy standards.

The infologging dataset constructed in this study contains a total of 6,825

screenshots, each paired with corresponding eye gaze data. These were collected

over a span of 15 days, with an average daily usage of approximately 40 minutes.
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Among these screenshots, 118 were annotated with the infologger’s subjective

comprehension judgments, serving as a key dataset for evaluating the

comprehension estimation model.

Prior to the data analysis, I followed the principles as recommended by [10,176] to

filter out any screenshots containing personal or sensitive information. This included

images showing personal messages, private documents, and banking details of the

infologger, for instance. Consequently, 424 screenshots were identified and removed

from the dataset, leaving 6,401 screenshots available for subsequent analysis.

7.3 Methodology

In this section, I will first describe the process of extracting eye movement features

from the eye gaze data, on top of which the comprehension estimation model is

employed to estimate the infologger’s comprehension of the information displayed

on the screen. Then, I will describe the changes made to the SOTA lifelog retrieval

system – LifeSeeker – to enable the retrieval of information based on the

infologging data, which I refer to as InfoSeeker. Finally, the evaluation of

InfoSeeker through two subsequent experiments will be described, with one

focusing on a non-interactive evaluation and the other focusing on an interactive

setting through a user study, to show the effectiveness of including gaze data in

retrieving previously viewed information.

7.3.1 Feature Extraction and Evaluation of the Reading

Comprehension Estimation Model

Eye-tracking data is first split into small segments, each of which corresponds to a

screenshot. Each of these segments can be viewed as a reading instance as in the

RCIRv2 dataset (from Chapter 6). From these segments, various ocular events such

as fixations, saccades, and blinks are extracted. The set of eye movement features

derived from these events is consistent with those utilised in Chapter 6 (for a full
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list of features, please refer to Section 6.3.1).

These extracted eye movement features are inputted into the pre-trained reading

condition model (the Tuned LGBM model outlined in Table 6.5 from Section 6.4.1).

This model predicts the reading strategy employed by the infologger. As previously

discussed in Chapters 5 and 6, the identified reading condition is then used as an

additional feature alongside the eye movement features in the reading comprehension

estimation model to predict comprehension levels. Applying the Tuned RF model

from Table 6.8 in Section 6.4.2 to these features allows for the estimation of the

comprehension level for each screenshot. This comprehension level is integrated

into the metadata of each screenshot to enhance the retrieval process, which will be

elaborated upon in the following section (Section 7.3.2).

To assess the reliability of this additional metadata (i.e., reading comprehension

level) in aiding the retrieval process, an evaluation is conducted to capture its

correlation with the infologger’s actual comprehension level. The correlation

coefficient should be reasonably close to the score obtained in Table 6.8 in Chapter

6 to be considered reliable. As outlined in the data collection methodology (Section

7.2), the infologger provides subjective annotations of their comprehension level on

some screenshots, serving as ground truth for this evaluation. Spearman’s rank

correlation coefficient is utilised to facilitate the evaluation. The findings from this

experiment will be presented in Section 7.4.1

7.3.2 Development of the interactive retrieval system

In this section, the focus is on the development of an interactive retrieval system

for infologging data, named InfoSeeker. This system is an extension of

LifeSeeker [44], a state-of-the-art interactive lifelog retrieval system that my

colleagues and I developed (described in Chapter 4) The decision to base

InfoSeeker on the LifeSeeker system was due to two main reasons. Firstly, there is

a notable similarity between the infologging and lifelogging data, as both are

multimodal digital archives that represent aspects of a human’s daily life. Both
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datasets’ structures are also similar, comprising of a set of images, each of which is

paired with a set of metadata. Secondly, given LifeSeeker’s state-of-the-art

performance in lifelog retrieval, its adaptation for infologging data is not only a

straightforward process but also allows for a potential to achieve state-of-the-art

performance in this new domain – the infologging data.

Additionally, screenshots data (captured by Loggerman [51]) was once a

component of the lifelog dataset used in LSC’18 [35], in which lifelog retrieval

systems were evaluated. However, screenshots data was omitted in the later

versions of lifelog datasets and subsequent benchmarking challenges. While the

reason for this exclusion is not explicitly stated by LSC’s organisers, it could be

due to privacy concerns, as the screenshots may contain sensitive

information [10, 176]. Nonetheless, I envision that there is a possibility that

screenshots data would be re-introduced in future lifelog datasets once

privacy-preserving methods are developed to address this concern. Therefore, the

development of InfoSeeker can also be seen as a step towards the development of a

future lifelog retrieval system that supports both lifelogging and infologging data.

The structure of this section mirrors the approach in Chapter 4, where I will

initially discuss InfoSeeker’s user interface and interaction, followed by an in-depth

description of the system’s architecture and retrieval unit.

7.3.2.1 User Interface and Interaction

InfoSeeker’s user interface, as depicted in Figure 7.2, closely resembles that of

LifeSeeker, with a key addition being the functionality to view on-screen

information enhanced by gaze heatmaps. Each screenshot in the system is linked to

a specific instance of eye-tracking data, enabling the generation of a gaze heatmap

for individual screenshots. Users can toggle the heatmap on or off by clicking the

Eye icon located in the top right corner of the menu bar (refer to Figure 7.2).

These visualisations allow users to effortlessly identify moments when the

infologger was focused on particular screen areas, as the heatmap typically
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concentrates on regions containing the information that was being read.

An additional modification to the user interface is the incorporation of a

comprehension level filter, highlighted in an orange box in Figure 7.2.B. This filter

offers three levels—low, medium, and high—corresponding to the infologger’s

comprehension level as determined by the comprehension estimation model

described in Section 7.3.1. The model’s comprehension scores, ranging from 1 to 5,

are categorised into three groups for this filter: low (1-2), medium (3), and high

(4-5). Users can apply this filter based on their query context to retrieve the most

relevant results.

7.3.2.2 Search Engine

As outlined in Chapter 4, the search engine is the pivotal component of our retrieval

system, tasked with returning relevant results based on user queries. This engine

operates via two primary processes: an offline data indexing process executed once

prior to deployment, and an online query processing and retrieval process. The

following sections detail both the indexing (offline) process and the retrieval (online)

process.

7.3.2.3 Indexing

The indexing process for the infolog data, owing to its similarities with lifelog data,

largely mirrors that used in LifeSeeker, as discussed in Section 4.4.1. In LifeSeeker,

four main categories of lifelog data are indexed: time, location, visual content, and

others (e.g., activity and biometric data). For InfoSeeker, the indexing process

simplifies to process the following data:

1. Time Data: Adopting the same procedure from LifeSeeker, I extracted

various temporal features from the time data. Based on the image ID format

YYYYmmdd_HHMMSS, I parsed the timestamp to derive features such as part of

the day, day of the week, month name, and year. Given that the current

infolog data is within a single timezone, timezone and local time data are not
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(A)

(B)

(C)

Figure 7.2: The user interface of InfoSeeker. (A) The default interface shows the
list of screenshots that match the query. (B) The interface for viewing screenshots
alongside the infologger’s gaze heatmap. (C) The search results after applying a high
filter on the comprehension level.

180



Chapter 7. Gaze-coupled Comprehension-evidenced Interactive Infologging Retrieval
System

indexed but can be included for future datasets which span multiple

timezones.

2. Visual Data: The primary focus here is on extracting textual information

displayed on the computer screen. For this purpose, I employed the

state-of-the-art Optical Character Recognition (OCR) model from Meta,

Tesseract [177]. Tesseract is an open-source engine known for its accurracy

and support for a wide range of languages. It uses a combination of line

finding, feature extraction and neural nework classification to recognise text

in images. In this work, Tesseract was used with its default settings as it

provided satisfactory results for the infolog data. The recognised texts

returned by Tesseract engine are indexed as part of the screenshot’s

metadata. Additionally, for efficient retrieval, I performed text embedding on

the recognised texts, transforming them into vector representations. These

vectors (also known as embeddings) are then indexed using Milvus [156], an

open-source vector database that supports rapid vector searches, as was

previously used in LifeSeeker. These embeddings are generated using

Sentence Transformers [178], which provides a wide range of pre-trained

models for generating dense vector representations of text. The specific

model chosen was msmarco-distilbert-base-v3 1, which is a DistilBERT [179]

model fine-tuned on the Microsoft Machine Reading Comprehension (MS

MARCO) dataset [180]. This model was selected due to its strong

performance on semantic textual similarity tasks and its computational

efficiency compared to larger models. The MS MARCO dataset, on which the

model was fine-tuned, consists of over 500k questions and their corresponding

answers, making it well-suited for generating embeddings that capture

semantic meaning. Furthermore, other modalities (e.g., images) present in

the data are not focused on in this experiment but can be indexed in the

future using LifeSeeker’s approach.
1https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
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3. Reading Comprehension Data: This is a novel data source, not present

in traditional lifelog data. The comprehension level, estimated from the

infologger’s gaze data and the screenshot’s visual content (as described in

Section 7.3.1), is indexed as part of the screenshot’s metadata to aid retrieval

based on comprehension levels.

7.3.2.4 Retrieval

The retrieval process closely aligns with the one described in Section 4.4.2 in

Chapter 4. Both search and filter queries function similarly to LifeSeeker.

Specifically, search queries involve embedding query text into vector

representations, followed by performing a vector search on the indexed data using

Milvus. Filter queries, meanwhile, are processed through Elasticsearch. A notable

addition in InfoSeeker is the comprehension level filter. When applied, it refines the

search results to include only those screenshots that match the specified

comprehension level.

7.3.3 Evaluation of InfoSeeker Retrieval System

In this evaluation, I aim to explore the effectiveness of reading comprehension level

filtering gaze visualisation and in enhancing the retrieval performance of

InfoSeeker. In this section, I will first describe the process of creating the test

topics for evaluating the system in Section 7.3.3.1 and then present the detail of

the evaluation experiments in Section 7.3.3.2.

7.3.3.1 Generation of Test Topics

As discussed in Section 2.1, the information needs arise when the lifelogger wants

to recall a past event. Similarly, the information needs in infologging are created

as the infologger needs a specific piece of information, which they know that they

have seen it before. To facilitate the evaluation of the system, a test set of 10 topics

was created, with each topic consisting of a query which matches an information
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need and an associated screenshot which contains the information relevant to the

query. In lifelog, such a test set is typically generated by the owner of that lifelog to

include topics that best represent their real-life information needs [28]. However, in

this study, I – the infologger – am also the system’s developer, and thus, the process

of generating the test set has to be modified to bring in rules and guidelines that

would reduce the bias. Since the main source of bias is selecting screenshots that

favour the proposed system, I have decided to involve a third party in the process of

selecting the screenshots. The choice of the third party also needs to follow certain

criteria to ensure the quality of the test set. As a result, I have defined the following

criteria for the third party:

• The person has to be a trusted individual who the infologger is comfortable

with sharing the infolog data without any concern of privacy breach. The

third party will be given access to all screenshots in the infolog data (with are

organised in folders by date) and is free to select any screenshots that they

deem suitable for the test set.

• The person has to be an expert in the field of lifelogging and lifelog retrieval

so that they can select screenshots that are challenging to the system but not

impossible to retrieve.

• The person has no prior knowledge of the proposed system so that they would

not be biased towards selecting screenshots that favour the proposed system

• The person has to select screenshots that best represent the infologger’s

information needs. In particular, since this study focuses on retrieving the

information that the infologger has previously seen, the selected screenshots

should be those that contain information that the infologger has engaged

with. To aid the third party in this process, the dataset with the infologger’s

gaze visualisation is also made available to them. Other than that, no extra

information is provided to the third party, including the infologger’s

comprehension levels of the screenshots.
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After considering the above criteria, I have decided to involve my colleague as the

third party, who in turn has selected 10 screenshots as test topics. From these, I

begin to formulate the query for each topic. The query formulation process also

adheres to the following rules:

• The infologger has to formulate the query based on the content inside the

screenshot only. No external information is allowed to be used in the query

formulation process, including other screenshots in the infolog data and the

gaze visualisation data. Having access to only the screenshot makes the query

formulation process more similar to the real-life scenario, where the infologger

only remembers part of the information and has to recall the moment when

they saw the information.

• The infologger is not allowed to use any type of retrieval system during the

query formulation process to avoid bias.

• The query has to include cues about the infologger’s comprehension of the

information in the screenshot (i.e., "I remember this very well", "I did not pay

much attention", "I only skimmed through this", etc.). This is to facilitate the

evaluation of the comprehension level filtering feature, which is the main focus

of this study.

• The query has to be formulated in a way that it is not too easy for the system

to retrieve the screenshot. Instead, the query should begin with a general

description of the screenshot and gradually become more specific. This is

the practice that most lifelog benchmarking challenges employ, especially in

LSC [35–39].

Following the above rules, 10 queries were formulated and the test set was finalised.

The list of queries in the test set is provided in Appendix Section A.2. Of these, there

are 5 queries associated with high comprehension levels (queries Q1, Q2, Q5, Q6,

Q8), 3 queries with medium comprehension levels (queries Q4, Q9), and 2 queries
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with low comprehension levels (queries Q3, Q7). It is important to acknowledge

that the aforementioned comprehension levels are estimated by the infologger when

formulating the query and may not align with the comprehension level predicted by

the system.

7.3.3.2 Experimental Setup

The main target of this study is to compare InfoSeeker’s performance with and

without these gaze-coupled functionalities. The version of InfoSeeker without gaze

enhancement serves as the baseline system (denote as BA), while the version with

gaze-coupled functionalities is referred to as gaze-coupled system (denote as GZ). In

order to evaluate the BA and GZ systems, two distinct experiments were conducted:

• Experiment 1 - Non-interactive retrieval: Adopting the evaluation

methodology from the LSAT (Lifelog Semantic Access Task) in NTCIR

challenges [28–30], this experiment tests the system’s ability to retrieve and

rank relevant results. This experiment is conducted in an automatic manner,

in which there is no user interaction involved. For each test topic, the entire

query text is inputted into the system at once, and the system returns a

ranked list of screenshots as the results. After obtaining ranked lists from

both BA and GZ systems, precision (at 1, 5, 10, 25, 50 and 100) and recall

are calculated for both lists, on which the performance of the two systems is

compared.

• Experiment 2 - Interactive retrieval: Inspired by LSC’s evaluation

methodology of interactive retrieval systems, this experiment adopts a similar

approach to evaluate InfoSeeker, since infologging and lifelogging data are

highly similar (as discussed in Section 7.3.2). Consequently, a user study was

conducted, which mirrors the LSC format. Participants in this study perform

a series of retrieval tasks using the test topics generated in Section 7.3.3.1. In

particular, they will perform half of the test topics using the BA system and
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Table 7.1: Example of query presentation of the test topic Q1 at multiple time-points
for interactive evaluation

Time Query text

0s I clearly remember that I came across the news stating that Nvidia
has a new collaboration...

30s I clearly remember that I came across the news stating that Nvidia
has a new collaboration in the field of artificial intelligence...

60s I clearly remember that I came across the news stating that Nvidia
has a new collaboration in the field of artificial intelligence. This
project involves the use of Large Language Models (LLM) for chip
design...

90s I clearly remember that I came across the news stating that Nvidia
has a new collaboration in the field of artificial intelligence. This
project involves the use of Large Language Models (LLM) for chip
design, and it’s referred to as ChipNeMo...

120s I clearly remember that I came across the news stating that Nvidia
has a new collaboration in the field of artificial intelligence. This
project involves the use of Large Language Models (LLM) for chip
design, and it’s referred to as ChipNeMo. Unfortunately, I can’t
remember the specifics regarding the number of parameters it was
trained with...

150s I clearly remember that I came across the news stating that Nvidia
has a new collaboration in the field of artificial intelligence. This
project involves the use of Large Language Models (LLM) for chip
design, and it’s referred to as ChipNeMo. Unfortunately, I can’t
remember the specifics regarding the number of parameters it was
trained with. I recall seeing this earlier this month in the evening.
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the other half using the GZ system. Since each query is formulated so that it

begins with a general description and gradually becomes more specific (see

Section 7.3.3.1), it can be divided into 6 incremental clues revealed at

intervals (every 30 seconds), with the full query is presented at the

150-second mark. Table 7.1 provides an illustrative example of this query

presentation process. It is important to acknowledge that this type of query

presentation is adapted from the LSC competition. Additionally, I also

employed the same metric used in the LSC to evaluate the retrieval

performance, which focuses on submission accuracy, task completion time,

and penalties for incorrect submissions (described in Section 3.3.3).

7.4 Results and Discussion

7.4.1 Evaluation of Reading Comprehension Estimation Model

As described in Section 7.3.1, the predicted comprehension level is compared to the

infologger’s subjective comprehension level to assess the reliability of using the

output from the reading comprehension model as additional metadata to aid the

retrieval of on-screen information. In the infologging data, the subjective

comprehension levels of 118 screenshots are provided by the infologger.

The correlation between these subjective annotations and the predicted

comprehension levels was analysed using Spearman’s rank correlation coefficient.

The results yielded a correlation coefficient of rs(116) = 0.485 with a significance

level of p < 0.001. This correlation, when compared to the mean correlation score

of 0.555 reported in Table 6.8 from the RCIRv2 dataset in Chapter 6, shows a

modest difference of only 0.07. This variance is relatively minor, especially

considering the substantial differences in dataset settings and formats.

The RCIRv2 dataset was collected under controlled conditions with text

presented in a standardised format. In contrast, the infologging dataset was

compiled in a real-world environment where text formats vary widely and often
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appear alongside images. Given these contextual disparities, a 0.07 deviation in the

correlation score is deemed acceptable. This finding suggests that the reading

comprehension model can be effectively applied to the infologging dataset to

enhance the retrieval process, enabling the use of the existing pre-trained reading

comprehension estimation model (in Chapter 6) without having to collect

additional data for model training specific to the infologging context.

7.4.2 Evaluation of Infoseeker

7.4.2.1 Experiemnt 1 - Non-interactive Retrieval

Table 7.2 presents the evaluation scores for each query in the non-interactive

InfoSeeker retrieval system, comparing the performance of the system with and

without gaze-coupled functionalities. Generally, the gaze-coupled system (GZ)

demonstrates better performance over the baseline system (BA), which retrieves

the correct results for 9 out of 10 queries, surpassing the BA system, which

retrieves 8 out of 10. In terms of precision, the GZ system has four queries with the

correct screenshot ranked at the top position (NP@1̸=0 = 4) and six queries where

the correct screenshot is among the top 5 (NP@5̸=0 = 6). In contrast, the BA

system only has one query with the correct screenshot in the top 5 (NP@1̸=0 = 0

and NP@5̸=0 = 1).

Analysis of the queries where the GZ system achieved high P@1 scores

indicates that the system is most effective in retrieving screenshots associated with

a high level of comprehension. Applying a high comprehension level filter often

results in the correct screenshot being ranked at the top of the search results. This

outcome aligns with the system’s primary objective, which is to retrieve

information that the user recalls having previously seen and comprehended well.

However, the system’s performance is less effective when filtering for ’low’ or

’medium’ comprehension levels. This disparity can be attributed to the large

volume of screenshots in the dataset that are tagged with low and medium

comprehension levels. For instance, a screenshot captured while an infologger is
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merely scrolling through a webpage might be classified as having a low

comprehension level. This classification makes it challenging to differentiate such a

screenshot from one where the infologger actively reads content but still has low

comprehension. This issue opens up a new direction for future research to enhance

the system’s ability to accurately retrieve information based on varying levels of

comprehension. Currently, the most feasible method to distinguish between these

scenarios involves manually inspecting the screenshots, with an emphasis on

analysing the heatmap visualisation of gaze data. This approach underlines the

importance of the interactive evaluation of the InfoSeeker system, where the

integration of gaze data plays a crucial role in enhancing the retrieval process.

7.4.2.2 Experiment 2 - Interactive Retrieval through a User Study

In this section, I discuss the outcomes of a user study conducted to evaluate the

InfoSeeker system’s performance in an interactive manner. To ensure the

experimental results’ reliability, the study was constrained to participants with

prior experience in operating lifelog retrieval systems. This approach was essential

to minimize biases that could arise from the participants’ unfamiliarity with the

LSC-style evaluation format and the complexities of the retrieval system.

Consequently, the study was able to concentrate on assessing the impact of

gaze-coupled functionalities on the InfoSeeker system, without the learning curve

associated with the system. With that, five experienced users were recruited for

the study.

As mentioned in Section 7.3.3, each of the 10 queries generated for this

experiment was based on specific screenshots from the dataset. Participants were

tasked with locating the exact moment depicted in these screenshots using either

the BA or GZ system, depending on their assigned setting. To control for the

potential bias introduced by the varying difficulty levels of queries, the queries were

divided into two groups: Group A (queries with IDs from 1 to 5) and Group B

(queries with IDs from 6 to 10). Two users first interacted with Group A using the
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Table 7.4: A breakdown of participants’ LSC scores for each query using the baseline
(BA) and gaze-coupled (GZ) InfoSeeker systems.

System
Setting 1 Setting 2

Query ID U0 U1 Query ID U2 U3 U4

BA

1 73.61 4.17 6 0.00 0.00 0.00
2 0.00 0.00 7 0.00 0.00 27.22
3 0.00 0.00 8 0.00 0.00 0.00
4 0.00 0.00 9 0.00 0.00 0.00
5 0.00 19.44 10 0.00 0.00 0.00

GZ

6 48.06 56.11 1 42.50 76.39 64.17
7 0.00 0.00 2 26.11 52.50 52.78
8 65.28 85.83 3 48.33 62.78 0.00
9 0.00 82.50 4 40.56 65.28 21.39
10 0.00 0.00 5 0.56 65.83 73.33

BA system, and then with Group B using the GZ system (Setting 1). The other

three users started with Group B on the BA system before switching to Group A

on the GZ system (Setting 2). Prior to the study, participants received an

introduction to the InfoSeeker system and its functionalities, along with an

explanation of the infologging data and the types of data sources present in the

dataset. They were also given a sample query for practice on the system to

familiarise themselves with the interface and the retrieval process.

Table 7.4 shows a detailed breakdown of the results from the user study. The

GZ system not only achieved higher average LSC scores but also successfully solved

more queries compared to the BA system. This is attributed to the integration of

gaze data, which refined the search results by filtering out irrelevant screenshots and

prioritizing those aligned with the user’s comprehension levels. The gaze heatmap

visualisation provided an intuitive interface, guiding users to focus on areas of high

gaze activity and bypass those with minimal engagement.

Feedback from participants further confirmed the utility of the reading

comprehension filter and gaze heatmap visualisation in enhancing the retrieval

process. Compared to the BA system where users had to rely on other modalities

to identify the correct moment (e.g. time data), the GZ system’s heatmap feature
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allowed for quicker and more efficient retrieval. However, two out of five

participants also found the requirement of pinpointing the exact moment in the BA

system to be challenging. These users, despite being able to identify screenshots

that match the query, failed to locate the precise moment of the lifelogger’s actual

engagement with this information. This is particularly difficult when multiple

visually identical screenshots are present, but only one of them is deemed relevant

to the query.

While including all content-matching screenshots in the ground truth might

seem more inclusive for evaluation, it diverges from the system’s core objective: to

accurately retrieve the specific information the infologger has viewed in the past.

Take this example query: "It was a paper which reviews the 20-year of eye

movement research by Keith Rayner that I often refer to during my writing. I

wonder when the first time I read it was.", simply including every instance where

the paper appears on screen would not suffice. The infologger’s interest lies in

identifying the very first engagement, not the subsequent times the paper was

possibly revisited for minor references. Thus, the necessity of identifying the exact

moment becomes apparent. This requirement underscores the importance of

precision in retrieval systems, ensuring they deliver not just relevant but

contextually accurate results.

However, to not overlook the scenarios where the infologger might be more

interested in retrieving content irrespective of their past engagement, an ablation

study was conducted to evaluate the performance of the system when the

requirement to locate the exact moment is removed. For this purpose, the ground

truth for each query was expanded to include all screenshots in which the content

is relevant to the query, regardless of whether they represented the exact moment

of the infologger’s engagement. The participants’ submissions from the initial user

study were re-evaluated against this expanded ground truth. Table 7.5 details the

outcomes of this re-assessment. The results indicated that the gaze-coupled system

(GZ) continued to exhibit superior performance compared to the baseline system

192



Chapter 7. Gaze-coupled Comprehension-evidenced Interactive Infologging Retrieval
System

Table 7.5: A breakdown of participants’ LSC scores for each query using the baseline
(BA) and gaze-coupled (GZ) InfoSeeker systems on the expanded ground truth.

System
Setting 1 Setting 2

Query ID U0 U1 Query ID U2 U3 U4

BA

1 73.61 50.28 6 0.00 0.00 0.00
2 60.83 0.00 7 2.78 0.00 27.22
3 0.00 65.56 8 83.89 60.56 75.83
4 34.44 0.00 9 39.72 50.83 75.83
5 21.11 32.22 10 80.00 0.00 31.39

GZ

6 48.06 56.11 1 42.50 76.39 64.17
7 51.39 0.00 2 26.11 52.50 52.78
8 65.28 85.83 3 48.33 62.78 0.00
9 38.06 82.50 4 56.39 65.28 31.67
10 0.00 0.00 5 22.50 65.83 73.33

(BA), in both experimental settings and across all measured metrics, including the

average LSC score and the total number of queries successfully solved. This further

confirms that with gaze-coupled functions, the GZ system is able to achieve better

performance than the BA system.

Table 7.6: Overall performance of the baseline (BA) and gaze-coupled (GZ)
InfoSeeker systems using the initial and expanded ground truth. The values
presented are the mean LSC scores of the user’s submissions.

User
Initial

Ground-truth
Expanded

Ground-truth

BA GZ BA GZ

0 14.72 22.67 38.00 40.56
1 4.72 44.89 29.61 44.89
2 0.00 31.61 41.28 39.17
3 0.00 64.56 22.28 64.56
4 5.44 42.33 42.06 44.39

Mean Score 4.98 41.21 34.64 46.71

Table 7.6 shows the overall performance of the baseline systems (BA) and the

gaze-coupled (GZ) systems in both settings, with two different versions of ground

truth. The evaluation clearly demonstrates that the gaze-coupled system (GZ)

outperforms the baseline system (BA) in both settings, regardless of the ground
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truth used. Specifically, the GZ system shows a substantial improvement of 36.23%

over the BA system under the initial ground-truth setting, which focuses on

identifying only one correct screenshot. Moreover, in the expanded ground-truth

setting, where all content-relevant screenshots are considered, the GZ system still

maintains a notable lead of 12.07% over the BA system. The findings in this

section, alongside the results from the non-interactive evaluation in the preceding

section, provide strong evidence that integrating the reading comprehension filter

and gaze heatmap visualisation into the conventional retrieval system has a

significant positive impact on the system’s performance. This, in turn, addresses

research question 4 of this thesis.

7.5 Chapter Summary

This section summarises the main contributions and findings of this chapter, which

addresses the research question 4. It establishes a novel approach for capturing on-

screen information alongside gaze data, resulting in the creation of a new type of

lifelogging dataset, referred to as infolog dataset. This dataset is unique in its ability

to facilitate the retrieval of previously viewed visual content. A key development in

this research is the redefinition of the unit of retrieval for the infolog dataset. Moving

away from traditional time-based units, this new approach focuses on event-based

changes in information presentation on the screen, ensuring a total capture of on-

screen content and a more accurate mapping of associated gaze data.

The main contribution of this chapter is the introduction of InfoSeeker, an

interactive retrieval system designed for infologging data. This system exploits the

eye gaze data to enhance the retrieval of on-screen information. Utilising

pre-trained models from earlier chapters, InfoSeeker estimates the user’s

comprehension level of the displayed information, integrating this value into the

retrieval process as a filter. This allows information that the infologger previously

engaged with to be ranked higher in the retrieval results. Besides, gaze heatmap
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visualisation is also introduced to aid users in quickly identifying information that

has high gaze activity on the screen and eliminating the content that the infologger

did not engage with. This functionality is particularly useful to speed up the search

process.

The performance of InfoSeeker was tested through two key experiments: a

non-interactive retrieval experiment and an interactive retrieval experiment

conducted via a user study. These experiments were designed to compare the

system’s performance with and without the integration of gaze-coupled

functionalities. The findings from these experiments were clear and consistent. The

gaze-enhanced version of the system demonstrated superior performance across

various metrics, including precision, recall, and LSC scores, when compared to the

version without gaze data.

In conclusion, research question 4 is addressed since I have demonstrated that the

integration of gaze-coupled functionalities into the retrieval system has a significant

positive impact on the system’s performance, which is evaluated using both non-

interactive and interactive experiments.
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Conclusion

In this thesis, I proposed the hypothesis that it is possible to estimate the

comprehension level of content displayed on a computer screen and enhance the

performance of the state-of-the-art lifelog retrieval system by employing this

estimated comprehension level as a result filtering mechanism for the retrieval of

previously perceived on-screen information. To validate this, I determined four

research questions which I addressed through a series of evaluations to either prove

or disprove the hypothesis. In this final chapter, I provide a summary of how the

research questions are addressed, which ultimately shows that my hypothesis is

upheld.

8.1 Summary

For the first research question, I asked how a state-of-the-art lifelog retrieval

system can be constructed. This question is formed because I aim to explore what

components are essential for building a state-of-the-art retrieval system and apply

the insights to develop a retrieval system for the on-screen information. The choice

to focus on developing a lifelog retrieval system was driven by the similarities

between lifelogging and the proposed concept of infologging data, coupled with the

active research community in lifelogging that frequently organises retrieval

benchmarking competitions. These competitions provided a platform to develop

and benchmark a system, facilitating the evaluation of what constitutes a

state-of-the-art system. Addressing this research question involved the
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development, implementation, and evaluation of LifeSeeker, an interactive system

for multi-modal personal lifelog data. LifeSeeker’s design allows users to conduct

efficient searches and filter lifelog moments using free-text queries. The system

derives its search capabilities from the combination of a variety of SOTA

techniques, including an image-text embedding model and visual concept

extractors, crucial for precise and relevant data retrieval. LifeSeeker also

incorporates advanced engineering solutions for indexing and retrieval, utilising

tools like Milvus for fast vector similarity calculations, Elasticsearch for complex

filtering mechanism search and scalability, and Redis for effective caching. A

notable feature of LifeSeeker is its user-centric interface, specifically designed to

optimise the search and exploration experience within lifelog data. This includes

clustering methods for quick results browsing, a range of filtering options (both

active and passive), relevance feedback functionalities for refining search results,

and a search history timeline for easy reaccess of previous queries and search

results. These functionalities are the direct result of the continued improvement

throughout a series of participation in the Lifelog Search Challenge (from 2019 to

2022). LifeSeeker’s performance in these benchmarking challenges has consistently

ranked it among the top systems, affirming its status as a state-of-the-art lifelog

retrieval system. The development of LifeSeeker and the identification of the key

components contributing to its success have not only contributed to the field of

lifelogging but also laid a solid foundation for the development of a retrieval system

for infolog data. Consequently, the first research question has been addressed

through the creation and refinement of LifeSeeker.

For the second research question, I asked how reading comprehension can be

estimated through eye movement measures using machine learning models. This

question was driven by the need to investigate the extent to which human

comprehension levels can be inferred from eye movements. The ultimate goal was

to apply these findings in estimating the comprehension level of on-screen

information, thereby enhancing the retrieval of previously perceived information.
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To address this question, an experimental study was undertaken involving 10

participants. The study involved reading a series of static passages on a computer

while engaging in four distinct reading strategies: sequential reading, scanning,

skimming, and proofreading. Post-reading, participants were required to answer

multiple-choice questions and provide subjective assessments of their

comprehension, serving as labels for machine learning model evaluation. The eye

movement data collected from this experiment was then analysed using two

separate procedures: machine learning approaches and statistical testing. Initial

statistical analysis revealed a complex relationship between eye movement features,

reading conditions, and comprehension levels. On the other hand, machine learning

models were trained using these features to solve two primary tasks: (1) predicting

the reading strategy employed by participants, and (2) estimating their reading

comprehension levels. The classification models, applied in both subject-dependent

and general contexts, demonstrated an accuracy of 75.3% and 68.9%, respectively.

Importantly, the inclusion of predicted reading conditions as additional features

alongside eye movement features in training comprehension prediction models

resulted in a significant improvement in predictive performance. A Spearman’s

correlation coefficient (ρ) of 0.697 was obtained when correlating predicted

comprehension levels with actual levels derived from participants’ responses to

multiple-choice questions. In addition, I also found that when participants’

subjective assessments of understanding were used as the training target instead of

their responses to the multiple-choice questions, the correlation coefficient

increased to 0.785, indicating a stronger alignment with participants’ perceived

comprehension. This outcome demonstrates the potential of utilising eye

movement measures in training machine learning models to accurately estimate

reading comprehension levels. As a result, I conclude that it is viable to infer

reading comprehension through eye movement data, and hence, the second research

question has been addressed.

The third research question explored the temporal robustness of the reading
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comprehension estimation model developed in response to the second research

question. This investigation was crucial to confirm the model’s applicability and

consistency over time, particularly for use with longitudinal datasets like

infologging data. To address this question, a longitudinal study was conducted,

gathering eye movement data from 13 participants engaged in reading tasks over

six non-consecutive days. The experimental design closely mirrored that of the

previous study, with the primary distinction being the extension of the experiment

over multiple days. This setup allowed for the assessment of the model’s stability

and reliability over time. Eye movement features were extracted, and the

evaluation was conducted in a similar manner to the previous study. The results

from this longitudinal study were positive, demonstrating that the model retained

a consistent level of performance throughout the duration of the experiment.

Specifically, the model achieved a mean accuracy of 0.705 in classifying reading

conditions and a mean Spearman’s rank correlation coefficient of 0.555 in

predicting reading comprehension levels. In this study, I also found that the

model’s performance improved with an increase in the number of sessions used for

training. This suggests that the model benefits from exposure to a broader range of

data over time, enhancing its predictive capabilities. Furthermore, the study

examined the consistency of eye movement features across different sessions and

compared these with the features most influential in the model’s predictions. The

findings indicated more than half of the features are stable, yet these stable

features did not significantly influence the prediction of reading comprehension.

Notably, the features with the most significant contribution to the model

prediction were consistent with those identified in the previous study, which

confirms the model’s validity when training on longitudinal data. These findings

collectively demonstrate the temporal robustness of the reading comprehension

estimation model. This robustness is crucial for applying the model to longitudinal

datasets like infologging data. Thus, the third research question is addressed.

The fourth research question centered on evaluating the performance of a
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state-of-the-art lifelog retrieval system, specifically developed for infologging data,

both with and without the integration of a reading comprehension estimation

model. This question was crucial for synthesising the findings from the preceding

research questions to develop a retrieval system for infologging data. It also focuses

on assessing the performance of the proposed system. To answer this question, a

prototype retrieval system, named InfoSeeker, was developed. This system was

built upon the foundation of the state-of-the-art lifelog retrieval system outlined in

the first research question. Concurrently, an infolog dataset was created to serve

the evaluation of InfoSeeker, which captures the on-screen activities and

corresponding eye movement data of an infologger over a 15-day period. The

evaluation of the InfoSeeker system on the constructed infolog dataset was

conducted in both non-interactive and interactive settings and focused on

comparing the system’s performance with and without the incorporation of the

reading comprehension estimation model (from research question 3). In the

non-interactive setting, the evaluation involved comparing the top-100 results

retrieved by the systems against the established ground truth, utilising precision

and recall metrics. This approach provided a quantitative measure of the system’s

ability to rank relevant results high in the ranked list (allowing the user to find the

correct result quickly in the interactive mode). Meanwhile, the interactive setting

entailed a user study, structured in the format of the Lifelog Search Challenge

(LSC). Participants were asked to conduct a series of search tasks using InfoSeeker,

and their performance was evaluated based on the LSC score (see Chapter 3 for the

metric definition). This metric considers both the accuracy of the submissions and

the time taken to complete the search tasks. The findings from two evaluations

show that InfoSeeker, when enhanced with the reading comprehension estimation

model, consistently outperformed its counterpart without this integration in both

settings. This outcome confirms the substantial benefit of incorporating the

reading comprehension estimation model into the retrieval system to retrieve

previously perceived information. In summary, the successful development and
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evaluation of the InfoSeeker system, particularly with the integration of the reading

comprehension estimation model, conclusively addressed the fourth research

question.

As I have addressed the four primary research questions, I can discuss the validity

of my hypothesis. Given the limitations of this research, which are described in the

following section, I proved that it is feasible to estimate reading comprehension levels

through eye movement measures. With this, the comprehension level of on-screen

information can be estimated, which can then be used to facilitate the retrieval of

previously perceived information by employing this as a filtering mechanism in the

retrieval system. Hence, I consider my proposed hypothesis defined in Section 1.4 to

be upheld.

8.2 Contributions

8.2.1 Revisiting Research Contributions

In Chapter 1.4, I outlined the main contributions of this research. As the thesis

concludes, it is essential to revisit these contributions and demonstrate how they

have been successfully addressed throughout the work presented in this dissertation.

Chapter 4 focused on addressing RQ1 and made a significant contribution by

constructing LifeSeeker, an interactive lifelog retrieval system that has consistently

ranked among the leading state-of-the-art systems in the Lifelog Search Challenge.

This contribution laid the foundation for the subsequent research questions and

the development of the infologging retrieval system, as the key design principles and

components that make a system achieve state-of-the-art performance were identified.

In Chapter 5, I addressed RQ2 and made several key contributions. Firstly, I

constructed a novel multi-modal reading dataset, enabling the investigation of the

relationship between eye movements, reading strategies, and comprehension levels.

Secondly, I demonstrated that incorporating reading condition identification with

eye movement features can improve the performance of machine learning models in
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estimating reading comprehension levels. Lastly, I provided novel insights into the

importance of eye movement measures for classifying reading styles and estimating

comprehension levels through comprehensive statistical and feature contribution

analyses.

Chapter 6 focused on RQ3 and contributed to the field by creating a unique

longitudinal reading dataset, which allowed for the exploration of the temporal

robustness of the reading comprehension estimation model. The findings from this

chapter demonstrated the robustness of the eye movement features and the

comprehension estimation model when applied to longitudinal reading data.

Additionally, novel insights were uncovered regarding the temporal stability of eye

movement features and their limited contribution to the model’s performance in

estimating comprehension levels over time.

Finally, in Chapter 7, I addressed RQ4 by introducing InfoSeeker, a novel

interactive retrieval system designed for infologging data. This system leverages

eye gaze data to enable filtering of search results based on the user’s level of

comprehension, facilitating quick retrieval of desired information. The evaluation of

InfoSeeker, conducted through both non-interactive and interactive user studies,

demonstrated the significant improvement in the system’s performance achieved by

integrating reading comprehension estimation into the retrieval process.

The contributions made in this thesis have advanced our understanding of the

relationships between eye movements, reading strategies, and comprehension levels,

while also showcasing the potential for integrating this knowledge into practical

applications, such as lifelog and infologging retrieval systems. By revisiting these

contributions, I aim to highlight the coherence and significance of the research

presented in this dissertation, demonstrating how each piece contributes to the

overall narrative and addresses the research questions posed in Chapter 1.4.
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8.3 Limitations

In Chapter 1.6, I discussed the limitations of this research, focusing on two main

categories: the comprehension estimation model and the gaze-coupled retrieval

system. It is crucial to revisit these limitations to provide context for the

interpretation of the findings and to guide future research efforts.

Regarding the comprehension estimation model, the vertical error exhibited by

the eye tracker used in this study posed a challenge in precisely estimating the

gaze position at the word level. However, as the analysis was conducted at the

passage level, the impact of this error was minimized. Additionally, the presence of

outliers in the dataset, resulting from participants occasionally performing the wrong

reading tasks, may have slightly influenced the results. Despite these limitations, the

strong performance of the classification model on reading conditions suggests that

the impact of these issues was not substantial.

Furthermore, the limited number of sessions available for training the

comprehension estimation model on the longitudinal reading data restricted the

exploration of the model’s full potential. As discussed in Chapter 6, increasing the

number of training sessions led to improved model performance. However, due to

the constraints of the available data, the upper limit of the model’s performance

could not be determined, presenting an opportunity for future research when more

data becomes available.

Turning to the gaze-coupled retrieval system, the InfoSeeker system, being in its

early stages of development, has several areas for improvement. The current search

mechanism primarily relies on matching query text with OCR text from screenshots,

limiting its ability to handle queries that require other modalities. Additionally,

the system’s search results are directly displayed from the ranked list generated by

the cosine similarity matching algorithm, without further processing to re-organize

the results. Implementing a mechanism to group similar screenshots could enhance

user efficiency in conducting search tasks. Moreover, the reading comprehension
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model integrated into the InfoSeeker system has not been re-trained specifically on

infologging data, potentially limiting its predictive accuracy in real-world settings.

Despite these limitations, the research presented in this thesis has made

significant contributions to the fields of lifelogging, eye movement analysis, and

information retrieval. The insights gained from this work lay the foundation for

future research efforts, which can build upon the findings and address the identified

limitations. By continuing to explore the integration of eye movement data and

reading comprehension estimation in information retrieval systems, we can move

closer to the development of truly user-centric and efficient tools for managing and

accessing personal information.

8.4 Future Work

The research carried out in this thesis aimed at investigating the feasibility of

estimating reading comprehension levels through eye movement measures and the

potential of employing this model to facilitate the retrieval of previously perceived

information. As a result, there is future work that can be carried out to further

improve the proposed model and the retrieval system. In the subsequent sections, I

envision potential areas of study that can be carried out in the future.

8.4.1 Improving the Reading Comprehension Model

There are many directions in the proposed reading comprehension estimation model

can be improved.

• Addressing Current Model Limitations: A primary focus should be on

addressing the recognised limitations of the current model. This includes

investigating and rectifying the vertical shift error in the eye tracker, as

previously discussed. Implementing a method to correct these errors is crucial

for enhancing data quality. Additionally, exploring inter-trial calibration,

where calibration is conducted before each reading trial, could significantly
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refine the adjustment of eye gaze data, leading to more precise analysis.

• Exploring Feature Engineering Methods: The current feature set,

globally derived from ocular events in eye-tracking data, could be expanded

through more localised methods. For instance, word-level features like first

fixation duration on a word, number of word visits or number of refixations

could offer more granular insights. These features, however, require accurate

alignment between gaze positions and text, which is currently hindered by

the eye tracker’s vertical shift error. Another promising direction is

extracting general time-series features from eye gaze positions, which could

reveal trends in eye movements, aiding in reading condition classification and,

subsequently, comprehension estimation.

• Incorporation of Additional Modalities: Expanding the model to

include other modalities such as electrooculography (EOG) signals, facial

expressions, and textual features could offer a more holistic understanding of

reading comprehension. EOG signals, in conjunction with eye gaze data,

could assist in identifying and rectifying gaze estimation errors. Facial

expressions provide insights into the reader’s emotional state during reading,

potentially influenced by the text content. Textual features like text length,

word count, and sentence and paragraph numbers could reflect the

complexity of the text and be used alongside eye-tracking data to predict

reading comprehension.

• Exploring Deep Learning Models: While the current research primarily

employed machine learning models for their simplicity and interpretability,

deep learning models offer a more powerful alternative, especially in tasks like

natural language processing. Investigating deep learning models for reading

comprehension estimation could uncover more sophisticated relationships in

eye movement features and potentially lead to more accurate predictions.
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8.4.2 Improving the InfoSeeker System

Improvements and future developments for the InfoSeeker system can be outlined as

follows:

• Enhancing InfoSeeker’s Modality Indexing and Result

Presentation: One of the primary areas for improvement involves

expanding the system’s capability to index additional modalities found in

screenshots, such as images. This enhancement would enable InfoSeeker to

address queries recalling both images and text from the screenshots.

Furthermore, optimising the presentation of search results to group similar

screenshots could provide users with a more coherent and comprehensible

overview, facilitating easier navigation through the results.

• Re-training the Reading Comprehension Estimation Model:

Re-training the reading comprehension estimation model using samples

directly from infologging data could potentially increase the performance.

Given that real-world information in the infolog is presented in various

formats, re-training the model with infologging data would allow it to adapt

to diverse text formats and new eye movement patterns in accordance with

these formats, enhancing its robustness and applicability.

• Refining Text Embedding with Gaze Information: The current

approach to text indexing in screenshots, which involves embedding texts into

a vector space using deep learning models, could be further refined by

integrating gaze information. This proposed gaze-coupled text embedding

would involve co-registering gaze positions with word bounding boxes in the

text, assigning varying weights to words based on gaze visits. Such a method

would ensure that words receiving more attention are emphasized in the

indexing process, potentially enhancing the retrieval accuracy.

• Incorporating Large Language Models for Question-Answering:
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With the rapid advancements in large language models (LLMs) [181–185],

there is a unique opportunity to leverage these models for a

question-answering system for infologging data. Instead of users scrolling

through a ranked list of results, this list could be fed directly into an LLM to

generate precise answers to the user’s queries. This integration could

significantly elevate the user experience by streamlining the retrieval process

and delivering more direct, concise answers.
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Appendix

A.1 Obtaining Texts for Reading Task in RCIRv1

A.1.1 Overview

Texts and comprehension questions used in RCIR are extracted from the RACE

dataset [166]. The dataset contains articles collected from online websites which span

many different topical domains. The comprehension questions were constructed by

the dataset experts to assess individuals comprehension of each text. The questions

are in the form of multiple choices of two types: normal answers and embedded

answers (cloze). In addition, the RACE dataset is divided into 2 levels (middle and

high school text content). In this study, we only focus on the high-school level as our

targeted participants are undergraduates, postgraduate students, and staff members

within the department.

A.1.2 Topic-modelling

Since the texts in RACE dataset are not categorised, we have employed a topic-

modelling process (as shown in Figure A.1) to group the texts into topics.

Figure A.1: Topic-modelling process
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Firstly, we filtered the high-school level texts to select the candidate texts that

have at least three questions in the normal answer style (questions without cloze).

A vocabulary was then built for the filtered texts using the five most frequent words

from each text. Next, all candidate texts were TF-IDF [167] vectorised to fit an

NMF [168] clustering model to group these texts into multiple clusters. Twelve

clusters were selected from these and formed into topics based on the texts within

the cluster.

A.1.3 Topic Validating

Prior to the data collection process, we also conducted a topic validation process for

the text, where we had two annotators confirm for each text that it aligned with the

generated topic. A summary of the texts falling into each topic is described in Table

A.1.

A.1.4 Splitting Text Data

We divided the twelve selected topics into six topics (1, 11, 16, 19, 24, 41) for

training data and six topics for testing data (2, 7, 9, 29, 37, 40). Texts in the

training topics were further organised into two groups: consistent group and

inconsistent group. The consistent group, in contrast to the inconsistent one,

comprised of texts that would be read by all participants (i.e. a consistent 24

texts). The texts in the testing topics were in the inconsistent group only (i.e.,

each text was unique).

In particular, for one training topic, a participant is expected to read:

• (A) A set of four texts in the consistent group.

• (B) A set of four texts in the inconsistent group.

• (C) Another set of four texts in the inconsistent group (but shared with one

other participant in the experiment).
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For one testing topic, a participant will read a set (D) of four texts in the

inconsistent group. Four texts in each set correspond to the four aforementioned

reading conditions (reading, scanning, skimming, proofreading). Therefore, in

total, a participant read:

No. text to read = Ntrain ∗ (SA + SB + SC) +Ntest ∗ SD

= 6 ∗ (4 + 4 + 4) + 6 ∗ 4

= 96

(A.1)

where Ntrain is the number of training topics and Ntest is the number of testing

topics. SA, SB, SC, and SD are the number of texts in each set (A, B, C, and D).

As illustrated in Table A.3, the participant S0 will need to read 24 consistent

texts in purple (representing set A), 48 texts in two inconsistent sets B and C for

training topics (green and read highlighting correspondingly) and 24 inconsistent

texts – set D – for testing topics (highlighted in yellow). It is important to note that

while a certain proportion of texts were reused between participants for comparison

purposes in the training dataset, all texts in the testing set are unique and from an

independent set of 6 topics.

A.2 Test Topics for Evaluation of Infolog Retrieval

System

Q1 I clearly remember that I came across a news stating that Nvidia has a new

collaboration in the field of artificial intelligence. This project involves the

use of Large Language Models (LLM) for chip design, and it’s referred to

as ChipNeMo. Unfortunately, I can’t remember the specifics regarding the

number of parameters it was trained with. I recall seeing this earlier this

month in the evening.
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Q2 I want to find the article about investing, where I picked up a new concept

called meme stock and went googling it after reading that article. In that

article, the author talked about an investing strategy that is slow yet efficient.

I understand the strategy very well, but could not recall its name. I read that

on a Friday night.

Q3 I was exploring a Github project. It was something related to LLMs. I was

just skimming quickly through the text, and went through the figure on its

architecture and pseudo-code. I think LLM was used for visual encoding in

that project. It was on a Friday night.

Q4 I was looking at a news about an AI startup called Anthropic having a

partnership with Google. I did not read it thoroughly. Just knowing that the

company gained access to a new chip on Google Cloud to deploy its chatbot

named Claude. It was on a Thursday afternoon.

Q5 It was a very cool finding about light that interests me a lot. Two chinese

researchers found that light could affect water evaporation, through a solar

simulation. I remembered most of the simulation, except the material used. It

spells similar to Jelly? I recall reading it on Saturday.

Q6 One of the biggest tech event this year – OpenAI Devday, in which a new API

was released for developers to create their own assistant. These assistants are

now having access to call many new tools. I recall reading through those tools

and understanding them very well, and I just want to check them back again.

Q7 I recall seeing this person name while doing daily quiz on Bing. He is an actor

and all three questions in the quiz are related to his movies. I had to go through

his wikipedia page to find the answers. There was so much information on the

page that I cannot comprehend given a short time. It was nearly midnight

when I attempted the quiz"

Q8 I remember very clearly that I read an article about solana project, which I
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have been investing in for a long time, announcing that it will partner with

a milk tea store. Solana price went up after that. I want to recall the store

name. I read that on a Friday night.

Q9 I remember seeing a post about Huggingface. No, it’s not just huggingface

but also also pages which release dataset. There was a concern about

licensing. I can’t recall the details since I only paid medium attention at that

time. I’m trying to recall the percentage of dataset with unspecified license

on huggingface. I read that on an evening.

Q10 Reading daily news in my Gmail. The theme was about frontend development

(CSS, javascript, . . . ). I recall clearly that I saw a significant improvement was

introduced to Next.js, which enhances local deployment and production cold

start. What was the feature’s name? I read that in the afternoon.
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Table A.1: Description of the topics used in the dataset. Topics showing No in Train
column belong to the test set in the analysis in Section 5.3.3

Topic Description Top 5 Keywords Train

1
The texts mainly focus on the different
topics related to university, students
and education.

students, college,
education, student,
university

Yes

2 The texts are about the students’
school life, teaching and learning.

school, high, teacher,
teachers, schools No

7 The texts are related to animals (e.g.
their life, their abilities)

animals, animal,
elephants, wild, zoo No

9 The texts mainly focus on the public
transportation, especially trains.

train, london, station,
travel, bus No

11

The texts are about musics related,
in which most of the articles describe
bibliography of singers, composers, and
bands.

music, songs, song,
festival, listening Yes

16
The texts are related to energy in
general (e.g. green energy, clean
energy, source of energy).

energy, pollution, air,
oil, wind Yes

19
The texts mainly discussing our sleep
with most of the articles are about the
study conducted to research sleep.

sleep, night, sleeping,
hours, bed Yes

24 The texts are the story around cars and
driving cars.

car, cars, road,
driving, traffic Yes

29
The texts are mainly related to arts,
spanning different genres of art, history,
galleries and exhibitions.

art, paintings, artists,
painting, artist No

37
The texts mainly focus on discussing
climate change and global warming,
and how the wildlife is affected.

ice, sea, scientists,
antarctica, climate No

40 The texts are mainly about stress,
mental health and emotional health.

stress, health, mental,
anxiety, life No

41 The texts are related to pets, the stories
about them and their abilities.

dog, dogs, cat, pet,
pets Yes
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