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Abstract
The suppression of the effects of anisotropy on a pendulum by use of a
rotating mount was initially envisaged by Léon Foucault, based on his
observations of the vibrations of a rod clamped in a lathe. However, the
method seems to never have been tried due to the practical difficulties
involved. We report a computational study of the stabilisation of the swing
pattern of a simple pendulum, showing anisotropic behaviour in a static
configuration, by rotation of the system mount. When the mount is static, for
most initial conditions the swing patterns quickly evolves into unstable,
complex Lissajous-like patterns. When the pendulum mount is rotated faster
than the pendulum frequency effects of anisotropy are suppressed, and the
swing pattern stabilises to that of an isotropic 3D simple pendulum. Sup-
pression of mount anisotropy influence occurs for relatively low rotation rates.
We also study swing evolution in the presence of random variations in the
orientation of the mount principal axes. The use of computational techniques
confirms Foucault’s original observations and hypothesis and provides an
interesting avenue for students to engage meaningfully with this historically
important and inspiring experiment in a novel and challenging manner.
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1. Introduction

The simple pendulum is a mainstay of undergraduate courses in classical mechanics, and it
displays a range of interesting physics beyond the most basic, simple harmonic oscillator
(SHO), example [1]. One of the most famous examples of the use of a simple pendulum is the
Foucault pendulum [2]. In practice the construction of a Foucault pendulum which displays
the idealised behaviour and facilitates a demonstration of the earth’s rotation is a significant
challenge due to damping of the motion, the natural precession associated with a non-planar
swing and the anisotropy of the pendulum system. Foucault himself was well aware of all
three of these issues and conducted various studies concerning these aspects [3].

The main focus of the present report is the practically unavoidable anisotropy of the
pendulum system, which means that the pendulum essentially has two orthogonal principal
axes (PA), with slightly different natural oscillation frequencies associated with planar swing
motions along the two PA, as shown schematically in figure 1 below [4]. As is well known,
any initial condition which has components of displacement or velocity along both the PAs
will lead to a time-varying and complex Lissajous-like pattern where the initial elliptical
shape distorts as its major and minor axes change in size. This completely masks the rela-
tively small precessions associated with the rotation of the earth and those due to the natural
precession. While in principle launching the pendulum such that its motion is confined to a
single PA direction should eliminate this problem, in practice this is essentially impossible.

Figure 1. Schematic diagram of simple pendulum with anisotropy. The principal axes
(PA) are shown and the associated natural oscillation frequencies are also indicated.

Eur. J. Phys. 45 (2024) 055003 E McGlynn et al

2



There is quite a body of literature on methods to reduce anisotropy in the pendulum system
[5–7], including from Heike Kamerlingh Onnes [8].

The classical methods involve (i) a very long pendulum wire and a heavy bob, to ensure
small angle motion, small anisotropy and minimal effects of air damping and (ii) a careful
launch to ensure close to planar motion. However physically smaller systems face con-
siderable difficulties, including anisotropy, and an experienced observer and builder of such
systems, H R Crane, notes that ‘Making the mechanical system more perfect only slows the
growth; it does not prevent it from reaching an intolerable magnitude eventually’, in relation
to the growth of the minor axis of the elliptical motion, a view also shared by more recent
authors [9, 10].

It is interesting to note that Foucault himself proposed a very novel, if difficult to
implement, potential solution to this problem. The inspiration seems to have come from his
observations of the behaviour of the vibrations of a rod clamped in a lathe. This system seems
to have been a rich vein for Foucault since it also inspired his original thoughts concerning the
behaviour of his eponymous pendulum as the earth rotates [11]. In his biography of Foucault,
William Tobin mentions comments Foucault addressed to the Société Philomathique, as
follows: ‘Whatever the rod’s vibrationKit was frozen in this path and ceased to evolve when
he turned the chuck at more than a couple of revolutions per second.’ [3] Tobin further
comments that this was hardly a practical proposition, and that Foucault never seems to have
tried this approach in practice. Further evidence supporting the effectiveness in practice of an
approach whereby the mount of the oscillating system is rotated can be found in [9] of the
paper of Tobin and Pippard [2], who note that for the case of a vibrating rod in a lathe that ‘If
the rod is insufficiently isotropic there will be two (perpendicular) directions only in which
the rod will vibrate in a plane; set vibrating at other angles, with the chuck at rest, the rod
will ellipse.’ This may be read to imply that if the chuck rotates the rod will not ellipse
(‘ellipse’ here meaning the distortion of the initial vibration pattern by the growth of the
minor axis of the elliptical motion4), though this is not elaborated further.

However, this interesting proposition is readily studied using a computational approach,
using tools and techniques familiar to advanced undergraduate students, and could be used as
an open-ended assignment in a computational physics module. It is an example of a physical
system which is too complex to solve analytically due to the time variation of the pendulum
mounting orientation, but which is relatively easily solved numerically, using either a ‘home-
made’ 4th order Runge–Kutta solver, or one of the differential equation solvers available in
Python (the latter being considerably faster). As such it is an interesting example for
undergraduate students to explore and offers possibilities for interrelated computational and
experimental project work as well as for more open-ended studies, some examples of which
are suggested. These final points are relevant to a recent article by Flannery in the American
Journal of Physics [13].

The importance of this topic and its particular interest to students studying physics lies
mainly in two domains. Firstly, as mentioned above, the simple pendulum is a mainstay of
undergraduate courses in classical mechanics, and it displays a range of interesting physics
beyond the most basic, SHO, behaviour. Pendulum and oscillator systems beyond the basic
SHO are important in a range of applications, including laser physics, nonlinear dynamics and
electronics (e.g. the van der Pol oscillator, Chua diode and memristor circuitry) [14–17].
Furthermore, this example illustrates the effects of a changing environment on a physical
system, which is of relevance in a variety of areas of advanced physics. For example, in

4 The term ‘ellipsing’ is occasionally used in the literature to mean the precession of the vertices of the elliptical
trajectory of the pendulum [12], differently to the usage of Tobin and Pippard [2] and of this work.
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nuclear magnetic resonance (NMR) systems it is regularly observed that the seemingly more
chaotic environment of a liquid leads to narrower NMR spectral lines than the less chaotic
solid crystal environment (in the absence of ‘magic-angle’ spinning) [18], due to motional
narrowing of the NMR lines [18–20]. In addition, the stabilisation of particle and system
motions in unstable potentials via time variation of system parameters (including rotation) has
been reported in a variety of physical systems [21–25]. Hence introducing students to pen-
dulum and oscillator systems beyond the SHO classroom example, and to computational
methods and tools which can be used to study such systems, is an excellent way to prepare
students for these more advanced areas of physics and associated application areas.

2. Summary of mathematical and computational details

Details of the mathematical background and computational approach are provided in the
supplemental material accompanying this article. Only a knowledge of Newtonian mechanics
at the undergraduate level is required, and for the sake of brevity we provide only a summary
here. To represent the pendulum motion in 2D beyond the linear approximation we modify
the results of the analysis of Olsson [26]. For the x- and y-components in an anisotropic
system the modified equations are (with some corrections of small typographical errors in
Olsson’s work, as discussed in the supplementary material):
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The simplest way to incorporate anisotropy in the system is to modify Olsson’s original
equations to replace ω with ωx and ωy, the angular frequencies associated with the two
orthogonal PA, i.e. ωx and ωy, respectively, as shown in equations (1a). The details of the
equations are discussed in the supplemental material. A schematic diagram of the modelled
configuration is shown in figure 1.

We believe this approach appropriately captures the essential physics of the situation by
absorbing the various possible sources of system anisotropy into the parameters ωx and ωy.
The anisotropy of the system is described following Pippard’s approach [4], and is para-
metrised by the quantity δ, assuming the anisotropy is relatively small, and defining
w w d= +x

2 2 and w w d= - ,y
2 2 where ω2 is the mean of the squared frequencies for pen-

dulum motion along the two PA directions.
The crux of the computational approach is to utilise the PA frame solely for the calculation

of the acceleration components using equations (1a), since the calculation of the acceleration
is especially simple in the PA frame. At any instant in time the coordinates of the position and
velocity vectors in the inertial laboratory frame are known, and then transformed by rotations
into the PA frame. The ax and ay components of the acceleration vector are then calculated
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using equations (1a), and these are transformed back into the inertial laboratory frame, and
then used in the computational differential equation solver to increment the motion and
calculate the new position and velocity vectors in the laboratory frame. These acceleration
(and other vector) components in the laboratory frame are then used in the differential
equation solver. At each time, t, the angular rotation of the PA frame relative to the laboratory
is calculated using θ = Ω.t, where Ω is the angular velocity of rotation of the system (see
figure SI-1 in the supplemental information).

The full code used for both the linear and nonlinear regimes, with comments, is provided
in the supplemental material. In our initial approach to the problem we utilised a simple 4th
order Runge–Kutta (RK4) approach, which was programmed ab initio and this was compared
to existing Python functions to check the accuracy of the solutions. A number of initial checks
were made of the code, as described in the supplemental information, in particular figure SI-2.

3. Results and analysis

3.1. Linear regime

For the case of the linear regime described by equations (SM1) in the supplemental material,
one can see in the left-hand panel of figure 2 the evolution of the motion of an isotropic

Figure 2. Trajectories of 2D pendulum (x displacement versus y displacement) in linear
regime calculated using odeint. Left panel shows isotropic pendulum (δ = 0 rad2/s2)
with stationary mount (Ω = 0 rad s−1) at times 5 s (top), 50 s (middle) and 500 s
(bottom). The middle panel shows an anisotropic pendulum (δ = 0.01 rad2/s2) with
stationary mount (Ω = 0 rad s−1) at times 5 s (top), 50 s (middle) and 500 s (bottom).
The right panel shows an anisotropic pendulum (δ = 0.01 rad2/s2) with rotating mount
(Ω = 10 rad s−1) at times 5 s (top), 50 s (middle) and 500 s (bottom). For all these
calculations the pendulum length was set to 10 m, with initial conditions of x = 0.5 m,
vx = 0.2 m s−1, y = 0.5 m, and vy = 0.0 m s−1.
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pendulum system whose initial conditions lead to a closed elliptical orbit over a number of
time intervals (the details of the pendulum and relevant simulation parameters are provided in
the caption). The middle panel of figure 2 shows the evolution of the motion of this pendulum
when an anisotropy of ∼1% (compared to the value of ω2; ω2 ≈ 1 rad2/s2 and
δ ≈ 0.01 rad2/s2) is introduced, with the mount remaining stationary. The evolution in this
case shows a clear and growing distortion of the initial elliptical shape as the major and minor
axes change in size, and a very complex pattern of motion ensues, of the type referred to by
Crane and Schulz-Dubois [8, 9]. The right-hand panel shows the evolution of the motion of
this same anisotropic pendulum when the mount is rotated at an angular velocity (Ω) equal to
approximately ten times that of the mean pendulum swing angular frequency in the PA frame,
ω. It is immediately clear that the closed elliptical orbit pattern seen for the isotropic pen-
dulum is recovered and that the growing distortion of the initial elliptical shape seen in the
middle panel is no longer observed. The evolution is shown in more detail in the supple-
mental material, figures SI-3 and SI-4, where additional panels show (i) the transition from the
left panel to the middle panel of figure 2 (with δ = 0.005 rad2/s2; figure SI-3) and (ii) the
transition from the middle panel to the right panel (with Ω = 5 rad s−1; figure SI-4).

Figure 3 shows a comparison of the oscillations of the x- and y-axis components over time
(from 450 to 500 s after launch) for the case of the isotopic system, stationary anisotropic
system (the x- and y-axes coincide with the PA of mount), and rotating anisotropic system,
with identical parameters to those in figure 2. It is seen clearly that the oscillation frequency of
the rotating anisotropic pendulum matches that of the isotropic pendulum to a high degree of
accuracy over an extended time period (close to 500 s) and is clearly different to the two
oscillation frequencies seen for the stationary anisotropic pendulum. Data from 0 to 100 s, and
from 450 to 500 s after launch are shown in the supplemental material, figure SI-5, to allow
comparison of the behaviour at shorter and longer delays after starting the motion. Figure SI-6
shows the differences between the calculated x- and y- components over time of the isotopic
system and rotating anisotropic system presented in figure 3 and SI-5; small differences (at
the level of ∼0.1%) in the two solutions are evident, which show periodicity at both the
average oscillation frequency and at twice the mount rotation frequency as expected. Note
that the effective rotation frequency of the mount is actually 2Ω, i.e. when the PA rotate
through π radians the same physical situation is obtained as for a rotation angle of zero (it is
only the orientation of the axes, not the positive and negative axis directions, which affects the
motion).

3.2. Nonlinear regime

For the nonlinear regime described by equations (1a), we show in figure 4 results for the case
of the isotopic system, stationary anisotropic system (the x- and y-axes coincide with the PA
of mount), and rotating anisotropic system in the left-hand, middle and right-hand panels,
respectively, over a number of time intervals (the details of the pendulum parameters are
provided in the caption). The pendulum length and initial conditions are the same as for the
data in the linear regime in figure 2 and are chosen to allow comparison with the analytical
result for the natural precession which arises from an analytical solution of Olsson’s isotropic
approximate equations shown in the supplemental material (SM2).

The evolution of motion in the case of the isotropic system now clearly shows evidence of
an elliptical motion with this natural precession, which is shown in the supplemental material
to equal the theoretically expected value of /( )w ab l3 8 ,2 as mentioned below. The motion of
the stationary anisotropic system shows a much more complex evolution, again with a clear
and growing distortion of the initial motion shape which renders it impossible to recognise or
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Figure 3. X displacement in red and Y displacement in green, versus time, of 2D
pendulum from 450 to 500 s) in linear regime calculated using odeint. Top panel shows
isotropic pendulum (δ = 0 rad2/s2) with stationary mount (Ω = 0 rad s−1), middle
panel shows anisotropic pendulum (δ = 0.01 rad2/s2) with stationary mount
(Ω = 0 rad s−1) and bottom panel shows anisotropic pendulum (δ = 0.01 rad2/s2)
with rotating mount (Ω = 10 rad s−1). Pendulum length and initial conditions are the
same as for data in figure 2.
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track the natural precession for any appreciable period of time. Finally, the evolution of
motion for the case of the rotating anisotropic system is identical to that of the isotropic
system in the left-hand panel and the natural precession is again clearly observable. In both
cases the direction of the precession follows that of the elliptical motion as expected,
clockwise in the case of the example shown in figure 4.

The precession of the vertices of the motion as a function of time for both the isotopic
mount and rotating anisotropic mount pendulums, for two different initial conditions and
pendulum parameters in both cases (including differing directions of pendulum motion and
hence vertex precession, clockwise and counterclockwise), is shown in the supplemental
material (figure SI-7), and the slope of the linear best fits are compared with the expected
value from the equation /( )w ab l3 8 .2 As noted previously, we utilise initial conditions with
relatively small displacement and velocity values which allow comparison with this equation.
Excellent agreement is found with this theoretical prediction and again the rotation of the
anisotropic mount means that the orbit pattern of the isotropic mount is recovered. These
simulations all show strong evidence that the effects of the anisotropy in the system are
effectively suppressed by the rotation of the mount and that the swing pattern of an isotropic
2D pendulum is recovered.

The angular rotation frequency of the mount is clearly an important parameter. The
simulation results shown in figures 2–4 were based on the mount being rotated at angular

Figure 4. Trajectories of 2D pendulum (x displacement versus y displacement) in
nonlinear regime calculated using odeint. Left panel shows isotropic pendulum
(δ = 0 rad2/s2) with stationary mount (Ω = 0 rad s−1) at times 5 s (top), 50 s (middle)
and 500 s (bottom). The middle panel shows an anisotropic pendulum (δ = 0.01 rad2/
s2) with stationary mount (Ω = 0 rad s−1) at times 5 s (top), 50 s (middle) and 500 s
(bottom). The right panel shows an anisotropic pendulum (δ = 0.01 rad2/s2) with
rotating mount (Ω = 10 rad s−1) at times 5 s (top), 50 s (middle) and 500 s (bottom).
For all these calculations the pendulum length was set to 10 m, with initial conditions
of x = 0.5 m, vx = 0.2 m s−1, y = 0.5 m, and vy = 0.0 m s−1.
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frequency equal to approximately ten times that of the mean pendulum swing frequency in the
PA frame, ω. Similar results are obtained for larger values of the mount rotation frequency
relative to ω (i.e. the ratio Ω/ω). For values of the ratio Ω/ω close to (or less than) one, the
motion of the rotating anisotropic mount pendulum no longer shows a pattern of motion
whereby the effects of mount anisotropy are effectively suppressed, as case be seen in
figure 5. In the range 1 < Ω/ω < 3 the pattern of motion can depend on the exact value of the
ratio Ω/ω. As noted previously, the effective rotation frequency of the mount is actually 2Ω.

3.3. Examples of possible extensions for open-ended studies

3.3.1. Angular momentum (non-)conservation. The rotation of the mount could in practice
be achieved by a driving torque, the details of which are not explored in this work. In the case
of a driven anisotropic system neither the energy nor the z-component of the angular
momentum will be constant, so the motion of the anisotropic system with rotating mount will

Figure 5. Trajectories of 2D pendulum (x displacement versus y displacement) in
nonlinear regime calculated using odeint. Top image shows an anisotropic pendulum
(δ = 0.01 rad2/s2) with a rotating mount (Ω = 10 rad s−1) after 100 s while the bottom
image shows the same system with Ω = 1 rad s−1 after 100 s, where the effects of
anisotropy are clearly evident. For all these calculations the pendulum length was set to
10 m, with initial conditions of x = 0.5 m, vx = 0.2 m s−1, y = 0.5 m, and
vy = 0.0 m s−1.
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not be identical to that of the isotropic system. Since the generalisation to the case of a system
with anisotropy, as in equations (1), will depend on the specific physical origin of the
anisotropy, which can vary depending on the design of the mount, the energy of the system
will also depend on the physical origin of the asymmetry. We show the variation of the z-
component of the angular momentum for the stationary isotropic mount system and the
rotating anisotropic system in the supplemental material (figure SI-8), so that the small
differences between the two systems may be appreciated (a fluctuation of ∼0.1% in the case
of a rotating anisotropic mount, compared to variations two orders of magnitude smaller or
more for the isotropic mount, which are due to intrinsic accumulation of errors in the
numerical computations).

3.4. Random variations in PA orientation

We have explored the effects of random variations in the orientation of the PA of an ani-
sotropic system, which is another situation in which an averaging out of the effects of the
anisotropy of the pendulum system would be expected and which is quite different to that of
the steady rotation discussed above. We have compared this situation to both a stationary
anisotropic system and an anisotropic system whose mount is rotating at a constant angular
rate. These data are shown in the supplemental material (figure SI-9) where the top, middle
and bottom panels show the evolution of trajectories over a period of 400 s for a stationary
anisotropic system, for an anisotropic system with random axis orientation variations, and for
a steadily rotating anisotropic system, respectively. Some further comments on this approach
and the details of the calculations are also provided in the supplemental material. It is apparent
from these data that some suppression of the effects of mount anisotropy are also observed in
the case of a random variation of the PA orientation, but that the clear and steadily precessing
elliptical trajectory seen for a steadily rotating mount is not recovered, indicating that full
suppression of mount anisotropy is not achieved (naturally run to run variations are seen for
the simulation with random axis orientation variations).

4. Conclusion

We have presented a computational study of the effects of spinning the mount of an aniso-
tropic pendulum during the pendulum motion. It is seen that in both the small angle, linear
approximation, as well as in the case of motion beyond the small angle approximation, the
effect of spinning the pendulum mount is to effectively suppress the effects of the anisotropy
of the system, stabilising the motion of the pendulum and leading to a behaviour identical to
that of an isotropic pendulum system, in agreement with the limited experimental evidence in
the literature [2, 3]. We have also studied the effects of the anisotropy of the pendulum upon
the swing evolution in the presence of random variations in the orientation of the PA of the
mount and see that some suppression of the anisotropy is also observed in this situation.

The suppression of the effects of anisotropy in a pendulum by use of a rotating mount was
initially suggested by Léon Foucault, based on his observations of the vibrations of a rod
clamped in a lathe. It does not appear to ever have been used in practice, likely due to the
difficulties in implementing it, even for an experimentalist as skilled as Foucault undoubtedly
was. However, the use of computational techniques provides modern students with an
alternative avenue of exploration and allows confirmation of Foucault’s original observations
and hypothesis and provides an interesting avenue for students to directly engage in a
challenging and meaningful way with this historically important experiment.
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