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Mathematical models and computational details 

 

a) Mathematical models of pendulums with asymmetry in the mount 

Linear regime: 

In the linear regime, the restoring force (FR) and acceleration (a) components of the 

pendulum bob in the presence of anisotropy in the mount may be written simply in the PA 

frame, as follows[4], [8]: 
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We assume that the x- and y-axes coincide with the pendulum principal axes. The 

pendulum mass is denoted by m. The anisotropy in the mount is represented by the 

different angular frequencies associated with the two orthogonal PA, x and y, i.e. x and y, 

respectively. 

Non-linear regime: 

In order to represent the motion for larger swing angles we modify the results of the 

analysis of Olsson[13]. For the x- and y-components in an isotropic system (spherical 

pendulum) the exact results are (with some corrections of small typographical errors in 

Olsson’s work, as discussed below): 
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The length of the pendulum is denoted by l and the x- and y-components of velocity by vx 

and vy, respectively. Retaining linear and cubic terms (i.e. in an approximation assuming 

small displacements and velocities) one can show analytically that an isotropic pendulum 

launched with an elliptical path (with major and minor axes of lengths a and b, respectively, 

as shown schematically in figure 1 of the main article) exhibits a natural precession with an 

angular frequency of magnitude 3𝜔(𝑎𝑏) 8𝑙2⁄ [4], [13]. 

Unlike the linear case where there is only a single free parameter which can be adjusted 

to create anisotropy in the system (i.e. the angular frequencies for vibrations parallel to the 

PA directions), the generalisation of equations (SM2) to the case of a system with anisotropy 

is dependent on the specific physical origin of the anisotropy of the system, which can vary 

depending on the design of the mount, the cross-sectional circularity of the string and 

mounting holes through which the string is threaded, any bevelling of such holes, the 

homogeneity of the string etc.  

To incorporate anisotropy into our model, we follow the criterion that the equations 

should reduce to (SM1) when the vibration amplitudes are small (i.e. when cubic terms are 

omitted). The simplest way to do this is to modify equations (SM2) above to replace  with 

x and y in equations (2a) and (2b), respectively, as shown in equations (SM3) below 

(where again we assume that the x- and y-axes coincide with the pendulum PA). These are 



identical to equations (1) of the main article. We believe this approach appropriately 

captures the essential physics of the situation by absorbing the various possible sources of 

system anisotropy into the parameters x and y. 
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We utilise initial conditions with relatively small displacement and velocity values for the 

computational results shown in section III which allow comparison with the analytical result 

for the natural precession which arises from an analytical solution of the approximate 

equations (SM3), i.e. 3𝜔(𝑎𝑏) 8𝑙2⁄ . We note also that the initial conditions we use are 

chosen to have an appreciable elliptical swing pattern, allowing us to demonstrate the 

effects clearly; this is opposite to the situation generally sought in the operation of a 

Foucault pendulum, where motion in a single plane is desired to eliminate the natural 

precession. We also follow Pippard’s approach[4], assuming the anisotropy is relatively 

small, and define 𝜔𝑥
2 = 𝜔2 + 𝛿 and 𝜔𝑦

2 = 𝜔2 − 𝛿, where 2 is the mean of the squared 

frequencies for pendulum motion along the two PA directions.  

 

b) Modelling the effect of the rotation of the mount 

The crux of the computational approach is to utilise the PA frame solely for the 

calculation of the acceleration components using either equations (SM1) or (SM3), since the 

calculation of the acceleration is especially simple in the PA frame. At any instant in time the 

coordinates of the position and velocity vectors in the inertial laboratory frame are known, 

and then transformed by the rotations described in equations (SM4) and (SM5) into the PA 



frame. The ax and ay components of the acceleration vector are then calculated using 

equations (SM1) or (SM3), and these are transformed back into the inertial laboratory 

frame, and then used in the computational differential equation solver to increment the 

motion and calculate the new position and velocity vectors in the laboratory frame. 

In all the equations of motion shown no non-inertial (i.e. centrifugal and/or Coriolis) 

terms are introduced, despite the fact that we refer to a situation where the pendulum 

mount is rotating at a constant angular frequency. The reason is that all the calculations 

using the computational differential equation solver are done in the inertial frame of the 

laboratory. We emphasise the fact that the rotations into the PA frame of the rotating 

mount are only done to allow relatively easy calculation of the force components at that 

instant using equations (SM1) or (SM3).  

The components of the position and velocity vectors in the PA frame are then calculated 

from those in the laboratory frame using a rotation of the type shown in equation (SM4) 

below, for a general vector (P) in the two frames: 

(
𝑃𝑥
𝑃𝑦
) = (

cos⁡(𝜃) sin⁡(𝜃)
−sin⁡(𝜃) cos⁡(𝜃)
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𝑙𝑎𝑏)  (SM4) 

At each time, t, the angular rotation of the PA frame relative to the laboratory is 

calculated using  = .t, where  is the angular velocity of rotation of the system. 

These components are then used to calculate the acceleration vector components 

relative to the PA frame using equations (SM1) or (SM3). These acceleration vector 

components are then transformed back to the laboratory frame by the inverse rotation 

shown in equation (SM5) below, for a general vector (P) in the two frames: 

(
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)  (SM5) 

This is shown schematically in figure SI-1, where we equate the angle  to .t, in 

anticipation of a constant rotation of the PA frame relative to the laboratory frame at a fixed 

angular velocity, . 

The code uses the rotations from equations (SM4) and (SM5) along with equations (SM1) 

or (SM3) at each time instant. One could also derive the explicit equations for the ax and ay 

components in the laboratory frame and use those in the differential equation solver. In the 



non-linear regime represented by equations (SM3) these expressions are necessarily quite 

long, but they are considerably shorter in the linear regime and are included below for 

illustration. With the definition that that  = .t the connection between the components in 

the PA and laboratory frames is explicitly time dependent due to the mount rotation. 

These acceleration (and other vector) components in the laboratory frame are then used 

in the differential equation solver. The full code used for both the linear and non-linear 

regimes, with commenting, is provided in the supplemental material. 

In our initial approach we utilised a simple 4th order Runge-Kutta (RK4) approach, which 

was programmed ab-initio and this was compared to existing Python functions to check the 

accuracy of the solutions. An adaptive step-size was not used, and comparison with existing 

Python functions such as odeint show that a fixed step size is sufficient and produces 

identical results to the existing Python functions. One advantage of the ab-initio code in 

comparison to the existing Python odeint function was seen when we explored the effects of 

random variations in the orientation of the PA, as described below. The main difference 

between the ab-initio and existing Python functions is the significantly reduced running time 

required by the existing Python functions, typically a reduction by a factor of around 10 or 

more compared to the ab-initio code. The codes used for all the investigations are provided 

below, with commenting. 

 

Explicit equations for the ax and ay components in the laboratory frame in the linear 

regime: 

The acceleration components in the PA frame can be written as: 

(
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𝑎𝑦
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And since 
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We get: 

(
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In the laboratory frame the acceleration components alab
x and alab

y are related to those in 

the PA frame by the reverse of the 2D rotation, shown in equation (SM9): 
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Calculating the individual components of the acceleration in the laboratory frame yields: 

(
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And finally: 

(
𝑎𝑥
𝑙𝑎𝑏

𝑎𝑦
𝑙𝑎𝑏) = (

𝑓(𝑥𝑙𝑎𝑏 , 𝑦𝑙𝑎𝑏 , 𝑡)
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With: 

𝑓(𝑥, 𝑦, 𝑡) = −𝑥𝑙𝑎𝑏(𝜔𝑥
2𝑐𝑜𝑠2(𝜃) + 𝜔𝑦
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(S13a) 

𝑔(𝑥, 𝑦, 𝑡) = −𝑥𝑙𝑎𝑏(𝜔𝑥
2 sin(𝜃) cos(𝜃) − 𝜔𝑦

2 sin(𝜃) cos(𝜃)) − 𝑦𝑙𝑎𝑏(𝜔𝑥
2𝑠𝑖𝑛2(𝜃)

+ (𝜔𝑦
2𝑐𝑜𝑠2(𝜃)) 

(S13b) 

 

Typographical errors in Olsson’s paper: 

There is a typographical error in Olsson’s paper ( [14]), specifically in his equation (12) for 

𝑥̈ (written as ax in this work), and hence also relevant to the “similar equation” he mentions 

for 𝑦̈ (written as ay in this work). The last term should have l4 in the denominator (and not l2 

as in the paper). This can be verified by comparison with equation (11) of Olsson’s paper and 

following his described method of derivation, and the error is also evident from basic 

dimensional analysis considerations. This term is corrected in equations (1) of the main article, 



and (SM2) and (SM3) in the supplemental material. If this error is not corrected the total 

energy checks mentioned in the Results and Analysis of the main article (section III) yield 

results where energy is not conserved. 

We also note in passing two other typographical errors in Olsson’s paper. Firstly, the 

second term on the left-hand side of his equation (5b) should be −𝜙̇2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (and not 

−𝜃̇2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 as in the paper). Secondly, in the last term of his equation (10), the term a2 in 

the square root should be l2. The first of these two errors is relevant for the derivation leading 

to his equation (10). 

 

Further details of the calculations for the case of random variations in PA orientation: 

The random variations in the PA orientation are accomplished by giving the angle  in 

equations (SM4) and (SM5) a random value between 0 and 2 at each time step (this angle 

is assumed to be the same at each of the intermediate “internal” stages in the Runge-Kutta 

process).  

The Python odeint function did not function in a stable manner for this random mount 

reorientation, unlike the directly programmed RK4 code, which may be due to the nature of 

the odeint solver using the LSODA solvers from the Fortran ODEPACK. These use Adams 

methods (predictor-corrector) and Backward Differentiation Formula (BDF) methods, which 

are unsuitable for the random mount reorientation simulation, whereas the simple directly 

programmed RK4 code is well suited for this type of simulation. For further details see: 

K. Radhakrishnan and A. C. Hindmarsh, NASA Reference Publication 1327 Description and 

Use of LSODE, the Livermore Solver for Ordinary Differential Equations,  

https://computing.llnl.gov/sites/default/files/ODEPACK_pub2_u113855.pdf 

 

Initial checks of the code: 

A number of initial checks were made of the code, including setting the anisotropy and 

rotation of the system (parametrised by   and  respectively) equal to zero and running 

simulations of pendulum motion with various initial conditions and comparing the 

calculated frequency with that expected from the normal pendulum equation (in the linear 

https://computing.llnl.gov/sites/default/files/ODEPACK_pub2_u113855.pdf


regime), as well as checking the conservation of total energy and z component of angular 

momentum over time periods of up to an hour in the non-linear regime. We have also 

compared the existing Python functions to the ab-initio RK4 code over time periods of up to 

60 minutes, both with and without anisotropy introduced. All of these checks verify the 

physically correct operation of the various codes, the stability of the simulation over periods 

up to an hour (in terms of conservation of total energy and angular momentum for the 

isotropic mount case) and that identical results are obtained for the existing Python 

functions and the ab-initio RK4 code. A selection of the results of these checks are shown in 

the supplemental material (figure SI-2) which show (i) that the angular frequency of the 

calculated motion in the linear regime for an isotropic pendulum ( = 0 rad2/s2) very closely 

matches the expected value for the simple pendulum (√𝑔/𝑙), (ii) that the energy and z-

component of the angular momentum are both conserved to within 1 part in 10-6 using the 

Python odeint code (and to even greater accuracy using the ab-initio RK4 code, but with a 

significant increase in run time), and finally (iii) that the trajectories calculated using these 

two codes are indistinguishable. The trajectory data are shown for a 100 s evolution period 

after pendulum launch to enable easy comparison.  

 

  



Supporting information figures:  

 

 

 

 

  

 

 

Figure SI-1: Schematic representation of the orientation of the PA frame 

(r = (x, y)) to the fixed laboratory axis frame (rlab = (xlab,ylab)), related via 

a rotation through an angle , which is time-dependent with   = .t. 

xlab

ylab

 = .t



 

  

 

Figure SI-2: Top panel shows x displacement as a function of time in the linear regime (with  = 0) 

using odeint, and comparison of the value of  extracted from this plot (via a least squares fit) and 

√𝑔/𝑙. The middle panel shows the behaviour of the total energy (left) and z-component of angular 

momentum (right), with mass set to 1 kg, in the non-linear regime (with  = 0) using odeint. The 

bottom panel shows the calculated trajectories using the directly programmed RK4 code (left) and 

the Python odeint function (right) for 100 s, in the non-linear regime (with  = 0.01). For all these 

checks the pendulum length was set to 10 m, with initial conditions of x = 0.5 m, vx = 0.2 m/s, y = 

0.5 m, and vy = 0.0 m/s. The mount rotation frequency, , was zero in all these cases. 

T = 6.34374 s
 = 0.99045 rad.s-1

(g/l)1/2 = 0.99045 rad.s-1

Directly programmed 
RK4 code 

Python odeint code 



  

 

Figure SI-3: Trajectories of 2D pendulum (x displacement versus y displacement) in linear regime calculated 

using odeint. Left panel shows isotropic pendulum ( = 0 rad2/s2) with stationary mount ( = 0 rad/s) at 

times 5s (top), 50 s (middle) and 500 s (bottom). The middle panel shows an anisotropic pendulum ( = 

0.005 rad2/s2) with stationary mount ( = 0 rad/s) at times 5s (top), 50 s (middle) and 500 s (bottom). The 

right panel shows an anisotropic pendulum ( = 0.01 rad2/s2) with stationary mount ( = 0 rad/s) at times 

5s (top), 50 s (middle) and 500 s (bottom). For all these calculations the pendulum length was set to 10 m, 

with initial conditions of x = 0.5 m, vx = 0.2 m/s, y = 0.5 m, and vy = 0.0 m/s (i.e. the same conditions for the 

data in figure 2 of the paper). 
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Figure SI-4: Trajectories of 2D pendulum (x displacement versus y displacement) in linear regime calculated 

using odeint. Left panel shows an anisotropic pendulum ( = 0.01 rad2/s2) with stationary mount ( = 0 

rad/s) at times 5s (top), 50 s (middle) and 500 s (bottom). The middle panel shows an anisotropic pendulum 

( = 0.01 rad2/s2) with rotating mount ( = 5 rad/s) at times 5s (top), 50 s (middle) and 500 s (bottom). The 

right panel shows an anisotropic pendulum ( = 0.01 rad2/s2) with rotating mount ( = 10 rad/s) at times 

5s (top), 50 s (middle) and 500 s (bottom). For all these calculations the pendulum length was set to 10 m, 

with initial conditions of x = 0.5 m, vx = 0.2 m/s, y = 0.5 m, and vy = 0.0 m/s (i.e. the same conditions for the 

data in figure 2 of the paper). 
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Figure SI-5: X displacement in red and Y displacement in green, versus time, of 2D pendulum from 0 s 

to 100s, left panel, and from 450 to 500 s, right panel) in linear regime calculated using odeint. Top 

panel shows isotropic pendulum ( = 0 rad2/s2) with stationary mount ( = 0 rad/s), middle panel shows 

anisotropic pendulum ( = 0.01 rad2/s2) with stationary mount ( = 0 rad/s) and bottom panel shows 

anisotropic pendulum ( = 0.01 rad2/s2) with rotating mount ( = 10 rad/s). Pendulum length and initial 

conditions are the same as for data in figures 2 and 3 of the main text. 



  

 

Figure SI-6: Top row: calculated difference in X displacements between isotropic pendulum ( = 0 

rad2/s2) with stationary mount ( = 0 rad/s) and anisotropic pendulum ( = 0.01 rad2/s2) with rotating 

mount ( = 10 rad/s). Bottom row: calculated difference in Y displacements between isotropic 

pendulum ( = 0 rad2/s2) with stationary mount ( = 0 rad/s) and anisotropic pendulum ( = 0.01 

rad2/s2) with rotating mount ( = 10 rad/s). All calculations are for a 2D pendulum in linear regime 

using odeint. Left panels show behaviour from 0 s to 100s, and right panels from 0 s to 500s. Pendulum 

length and initial conditions are the same as for data in figures 2 and 3 of the main text. 

  



 

 

 

 

 

 

 

 

 

 

 

Figure SI-7: Precession of the vertices of the motion as a function of time for both the isotopic mount 

(top) and rotating anisotropic mount (bottom) pendulums. The data shown with red triangles is for 

a system with initial conditions of x = 0.5 m, vx = 0.2 m/s, y = 0.5 m, and vy = 0.0 m/s, and l = 10.0 

m, while the data shown with green triangles is for a system with initial conditions of x = 0.2 m, vx 

= 0.1 m/s, y = 0.0 m, and vy = 0.25 m/s, and l = 2.4 m. The solid lines are least squares fits and the 

slopes and fit uncertainties are shown in the legends. 

Slope = -3.77 ± 0.066 x 10-4 rad.s-1

(3/8)m(ab)/l2 = -3.74818 x 10-4 rad.s-1

Slope = 3.200 ± 0.034 x 10-3 rad.s-1

(3/8)m(ab)/l2 = 3.24952  x 10-3 rad.s-1

Slope = -3.77 ± 0.10 x 10-4 rad.s-1

(3/8)m(ab)/l2 = -3.74818 x 10-4 rad.s-1

Slope = 3.199 ± 0.034 x 10-3 rad.s-1

(3/8)m(ab)/l2 = 3.24952  x 10-3 rad.s-1

Isotropic system ( = 0,  = 0)

Anisotropic system with rotating mount
( = 10,  = 0.01)



  

 

Figure SI-8: The z-component of angular momentum, with mass set to 1 kg, in the non-linear regime 

for (top) a stationary isotropic mount (with  =  = 0) and (bottom) a rotating anisotropic mount (with 

 = 0.01 rad2/s2 and  = 10 rad/s). For these calculations the pendulum length was set to 10 m, with 

initial conditions of x = 0.5 m, vx = 0.2 m/s, y = 0.5 m, and vy = 0.0 m/s. 

Isotropic system with stationary mount
( = 0 rad/s,  = 0 rad2/s2)

Anisotropic system with rotating mount
( = 10 rad/s,  = 0.01 rad2/s2)



 

 

Figure SI-9:  Trajectories of 2D pendulum in non-linear regime calculated over 400 s using directly 

programmed RK4 code. Top image shows a stationary anisotropic mount ( = 0.1 rad2/s2), the middle 

image shows an anisotropic mount with random mount axis orientation variations ( = 0.1 rad2/s2), 

and the bottom image shows a steadily rotating anisotropic mount ( = 0.1 rad2/s2 and  = 10 rad/s). 

For all these calculations the pendulum length was set to 10 m, with initial conditions of x = 0.5 m, vx 

= 0.2 m/s, y = 0.5 m, and vy = 0.0 m/s.  

Anisotropic system with 
stationary mount
( = 0.1 rad2/s2)

Anisotropic system with 
random mount axis 
orientation variations
( = 0.1 rad2/s2)

Anisotropic system 
with rotating mount
( = 10 rad/s,  = 0.1 
rad2/s2)



Python codes: 

1. HM_RK4_rot (directly programmed 4th order Runge-Kutta with steady rotation of mount) 

2. HM_RK4_ran (directly programmed 4th order Runge-Kutta with random random mount axis orientation variations) 

3. Py_odeint_rot (in-built Python function odeint ordinary differential equation solver) 

  



HM_RK4_rot 

 

import time 

import numpy as np 

import scipy as sp 

import random as rd 

import matplotlib.pyplot as plt 

 

start_t = time.time() 

 

# Define parameters 

le = 10.0 #pendulum length 

 

omega = 10.0 # mount spin angular velocity 

h=0.01 # time step 

t = np.arange(0,100.0,h) #This is the time range # total time of simulation in seconds 

 

x0 = [0.5,0.2] #Initial x and vx values in laboratory frame 

xdata=np.zeros((len(t),2)) #Setting up array for x and vx data 

 

y0 = [0.5,0.0] #Initial y and vy values in laboratory frame 

ydata=np.zeros((len(t),2)) #Setting up array for x and vx data 

 

#Other parameters 

g = 9.81 # acceleration due to gravity 

w0m=np.sqrt(g/le) # pendulum mean angular frequency 

w02m=w0m**2 # square of pendulum mean angular frequency 

delta = 0.01 # deviation from symmetry of w02m 

 

#---------------------------------------------------------------------------------------------------------- 

 



#Defining restoring force in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta = omega.t) 

def acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,omegaf,tf): 

     

    r=np.matrix([[xf],[yf]]) 

    v=np.matrix([[vxf],[vyf]]) 

     

    rot1=np.matrix([[np.cos(omegaf*tf),np.sin(omegaf*tf)],[-np.sin(omegaf*tf),np.cos(omegaf*tf)]]) 

     

    rdash=rot1*r 

    xm=float(rdash[0]) 

    ym=float(rdash[1]) 

     

    vdash=rot1*v 

    vxm=float(vdash[0]) 

    vym=float(vdash[1]) 

     

    #Defining acceleration in frame of pendulum mount, either in small angle approximation or larger angle approximation (remove and replace "#" symbols 

as required) 

    #axm=-((w02mf+deltaf)*xm) 

    axm=-((w02mf+deltaf)*xm*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(xm/(lef**2))*((vxm**2)+(vym**2))-

(xm/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    #aym=-((w02mf-deltaf)*ym) 

    aym=-((w02mf-deltaf)*ym*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(ym/(lef**2))*((vxm**2)+(vym**2))-

(ym/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    adash=np.matrix([[axm],[aym]]) 

     

    rot2=np.matrix([[np.cos(omegaf*tf),-np.sin(omegaf*tf)],[np.sin(omegaf*tf),np.cos(omegaf*tf)]]) 

     

    a=rot2*adash 



     

    return a 

 

#Defining x acceleration in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta = omega.t) 

def xacc(xf,yf,vxf,vyf,w02mf,lef,deltaf,omegaf,tf): 

     

    restacc=acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,omegaf,tf) 

     

    return float(restacc[0]) 

 

#Defining y acceleration in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta = omega.t) 

def yacc(xf,yf,vxf, vyf,w02mf,lef,deltaf,omegaf,tf): 

     

    restacc=acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,omegaf,tf) 

     

    return float(restacc[1]) 

 

count = 0 

xdata[0,:]=x0 #Setting initial x and vx conditions into x and vx data array 

ydata[0,:]=y0 #Setting initial y and vy conditions into y and vy data array 

 

n = len(t) 

looparray = np.arange(1,n,1) 

 

#4th order Runge-Kutta for 2D pendulum, assuming the restoring forces depend on both x and y in laboratory frame (but not in pendulum mount frame) 

and this varies with time. The x and y variables are treated the same in the intermediate Runge-Kutta steps. 

for count in looparray:  

    Rx1=xdata[count-1,1]*h 

    Sx1=(xacc(xdata[count-1,0],ydata[count-1,0],xdata[count-1,1],ydata[count-1,1],w02m,le,delta,omega,t[count-1]))*h 

     

    Ry1=ydata[count-1,1]*h 



    Sy1=(yacc(xdata[count-1,0],ydata[count-1,0],xdata[count-1,1],ydata[count-1,1],w02m,le,delta,omega,t[count-1]))*h 

     

    Rx2=(xdata[count-1,1]+(0.5*Sx1))*h 

    Sx2=(xacc(xdata[count-1,0]+(0.5*Rx1),ydata[count-1,0]+(0.5*Ry1),xdata[count-1,1]+(0.5*Sx1),ydata[count-

1,1]+(0.5*Sy1),w02m,le,delta,omega,t[count-1]+(0.5*h)))*h 

     

    Ry2=(ydata[count-1,1]+(0.5*Sy1))*h 

    Sy2=(yacc(xdata[count-1,0]+(0.5*Rx1),ydata[count-1,0]+(0.5*Ry1),xdata[count-1,1]+(0.5*Sx1),ydata[count-

1,1]+(0.5*Sy1),w02m,le,delta,omega,t[count-1]+(0.5*h)))*h 

     

    Rx3=(xdata[count-1,1]+(0.5*Sx2))*h 

    Sx3=(xacc(xdata[count-1,0]+(0.5*Rx2),ydata[count-1,0]+(0.5*Ry2),xdata[count-1,1]+(0.5*Sx2),ydata[count-

1,1]+(0.5*Sy2),w02m,le,delta,omega,t[count-1]+(0.5*h)))*h 

     

    Ry3=(ydata[count-1,1]+(0.5*Sy2))*h 

    Sy3=(yacc(xdata[count-1,0]+(0.5*Rx2),ydata[count-1,0]+(0.5*Ry2),xdata[count-1,1]+(0.5*Sx2),ydata[count-

1,1]+(0.5*Sy2),w02m,le,delta,omega,t[count-1]+(0.5*h)))*h 

     

    Rx4=(xdata[count-1,1]+(Sx3))*h 

    Sx4=(xacc(xdata[count-1,0]+(Rx3),ydata[count-1,0]+(Ry3),xdata[count-1,1]+(Sx3),ydata[count-1,1]+(Sy3),w02m,le,delta,omega,t[count-1]+(h)))*h 

     

    Ry4=(ydata[count-1,1]+(Sy3))*h 

    Sy4=(yacc(xdata[count-1,0]+(Rx3),ydata[count-1,0]+(Ry3),xdata[count-1,1]+(Sx3),ydata[count-1,1]+(Sy3),w02m,le,delta,omega,t[count-1]+(h)))*h 

     

    delx=(Rx1+(2*Rx2)+(2*Rx3)+Rx4)/6 

    delvx=(Sx1+(2*Sx2)+(2*Sx3)+Sx4)/6 

     

    dely=(Ry1+(2*Ry2)+(2*Ry3)+Ry4)/6 

    delvy=(Sy1+(2*Sy2)+(2*Sy3)+Sy4)/6 

     

    delxa=[delx,delvx] 



    delya=[dely,delvy] 

     

    xdata[count,:]=xdata[count-1,:]+delxa 

    ydata[count,:]=ydata[count-1,:]+delya 

     

#---------------------------------------------------------------------------------------------------------- 

 

#Define relevant quantities in solution 

 

#Perpendicular distance from z-axis 

rd=((xdata[:,0]**2)+(ydata[:,0]**2))**(1/2) 

 

#Height 

z=(((le**2)-(rd**2))**(1/2)) 

 

#z velocity 

vz=(-1.0/z)*((xdata[:,0]*xdata[:,1])+(ydata[:,0]*ydata[:,1])) 

 

#Energy (assuming mass = 1 kg) 

PE=g*(le-z)  

KE=((xdata[:,1]**2)+(ydata[:,1]**2)+(vz**2))/2 

TE=PE+KE 

 

#Angular momentum 

ang_mtm=(xdata[:,0]*ydata[:,1])-(ydata[:,0]*xdata[:,1]) 

 

#---------------------------------------------------------------------------------------------------------- 

 

# Plot the solution 

plt.close('all') 

 



fig, ax = plt.subplots() 

ax.plot(xdata[:,0],ydata[:,0],'g') 

#ax.plot(t,xdata) 

#ax.plot(t,ang_mtm) 

#plt.ylim((-0.11,0.0)) 

#plt.xlim((0,100)) 

plt.xlabel('X displacement (m)') 

plt.ylabel('Y displacement (m)') 

#ax.set_aspect('equal') 

plt.show() 

 

end_t = time.time() 

print("Run Time = ", f"{end_t-start_t:.3f}") 

 

#np.savetxt('t.txt', t) 

#np.savetxt('x.txt', xdata) 

#np.savetxt('y.txt', ydata) 

#np.savetxt('mod.txt', rd) 

  



HM_RK4_ran 

 

import time 

import numpy as np 

import scipy as sp 

import random as rd 

import matplotlib.pyplot as plt 

 

start_t = time.time() 

 

# Define parameters 

le = 10.0 #pendulum length 

 

h=0.01 # time step 

t = np.arange(0,100.0,h) #This is the time range # total time of simulation in seconds 

 

x0 = [0.5,0.2] #Initial x and vx values in laboratory frame 

xdata=np.zeros((len(t),2)) #Setting up array for x and vx data 

 

y0 = [0.5,0.0] #Initial y and vy values in laboratory frame 

ydata=np.zeros((len(t),2)) #Setting up array for x and vx data 

 

#Other parameters 

g = 9.81 # acceleration due to gravity 

w0m=np.sqrt(g/le) # pendulum mean angular frequency 

w02m=w0m**2 # square of pendulum mean angular frequency 

delta = 0.01 # deviation from symmetry of w02m 

 

#---------------------------------------------------------------------------------------------------------- 

 

#Defining restoring force in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta is random) 



def acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,angf,tf): 

     

    r=np.matrix([[xf],[yf]]) 

    v=np.matrix([[vxf],[vyf]]) 

     

    rot1=np.matrix([[np.cos(angf),np.sin(angf)],[-np.sin(angf),np.cos(angf)]]) 

     

    rdash=rot1*r 

    xm=float(rdash[0]) 

    ym=float(rdash[1]) 

     

    vdash=rot1*v 

    vxm=float(vdash[0]) 

    vym=float(vdash[1]) 

     

    #Defining acceleration in frame of pendulum mount, either in small angle approximation or larger angle approximation (remove and replace "#" symbols 

as required) 

    #axm=-((w02mf+deltaf)*xm) 

    axm=-((w02mf+deltaf)*xm*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(xm/(lef**2))*((vxm**2)+(vym**2))-

(xm/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    #aym=-((w02mf-deltaf)*ym) 

    aym=-((w02mf-deltaf)*ym*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(ym/(lef**2))*((vxm**2)+(vym**2))-

(ym/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    adash=np.matrix([[axm],[aym]]) 

     

    rot2=np.matrix([[np.cos(angf),-np.sin(angf)],[np.sin(angf),np.cos(angf)]]) 

     

    a=rot2*adash 

     



    return a 

 

#Defining x acceleration in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta is random) 

def xacc(xf,yf,vxf,vyf,w02mf,lef,deltaf,angf,tf): 

     

    restacc=acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,angf,tf) 

     

    return float(restacc[0]) 

 

#Defining y acceleration in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta is random) 

def yacc(xf,yf,vxf, vyf,w02mf,lef,deltaf,angf,tf): 

     

    restacc=acc(xf,yf,vxf,vyf,w02mf,lef,deltaf,angf,tf) 

     

    return float(restacc[1]) 

 

count = 0 

xdata[0,:]=x0 #Setting initial x and vx conditions into x and vx data array 

ydata[0,:]=y0 #Setting initial y and vy conditions into y and vy data array 

 

n = len(t) 

looparray = np.arange(1,n,1) 

 

#4th order Runge-Kutta for 2D pendulum, assuming the restoring forces depend on both x and y in laboratory frame (but not in pendulum mount frame) 

and this varies with time. The x and y variables are treated the same in the intermediate Runge-Kutta steps. 

for count in looparray:  

     

    #Defining random mount angle; either with same angle value in all Runge-Kutta sub-steps, or different values at each Runge-Kutta sub-step, or set to 

a constant value of zero 

    ang1 = ang2 = ang3 = ang4 = rd.uniform(0,2*np.pi) 

     



    #ang1 = ang2 = ang3 = ang4 = 0.0 

     

    Rx1=xdata[count-1,1]*h 

    Sx1=(xacc(xdata[count-1,0],ydata[count-1,0],xdata[count-1,1],ydata[count-1,1],w02m,le,delta,ang1,t[count-1]))*h 

     

    Ry1=ydata[count-1,1]*h 

    Sy1=(yacc(xdata[count-1,0],ydata[count-1,0],xdata[count-1,1],ydata[count-1,1],w02m,le,delta,ang1,t[count-1]))*h 

     

    Rx2=(xdata[count-1,1]+(0.5*Sx1))*h 

    Sx2=(xacc(xdata[count-1,0]+(0.5*Rx1),ydata[count-1,0]+(0.5*Ry1),xdata[count-1,1]+(0.5*Sx1),ydata[count-

1,1]+(0.5*Sy1),w02m,le,delta,ang2,t[count-1]+(0.5*h)))*h 

     

    Ry2=(ydata[count-1,1]+(0.5*Sy1))*h 

    Sy2=(yacc(xdata[count-1,0]+(0.5*Rx1),ydata[count-1,0]+(0.5*Ry1),xdata[count-1,1]+(0.5*Sx1),ydata[count-

1,1]+(0.5*Sy1),w02m,le,delta,ang2,t[count-1]+(0.5*h)))*h 

     

    Rx3=(xdata[count-1,1]+(0.5*Sx2))*h 

    Sx3=(xacc(xdata[count-1,0]+(0.5*Rx2),ydata[count-1,0]+(0.5*Ry2),xdata[count-1,1]+(0.5*Sx2),ydata[count-

1,1]+(0.5*Sy2),w02m,le,delta,ang3,t[count-1]+(0.5*h)))*h 

     

    Ry3=(ydata[count-1,1]+(0.5*Sy2))*h 

    Sy3=(yacc(xdata[count-1,0]+(0.5*Rx2),ydata[count-1,0]+(0.5*Ry2),xdata[count-1,1]+(0.5*Sx2),ydata[count-

1,1]+(0.5*Sy2),w02m,le,delta,ang3,t[count-1]+(0.5*h)))*h 

     

    Rx4=(xdata[count-1,1]+(Sx3))*h 

    Sx4=(xacc(xdata[count-1,0]+(Rx3),ydata[count-1,0]+(Ry3),xdata[count-1,1]+(Sx3),ydata[count-1,1]+(Sy3),w02m,le,delta,ang4,t[count-1]+(h)))*h 

     

    Ry4=(ydata[count-1,1]+(Sy3))*h 

    Sy4=(yacc(xdata[count-1,0]+(Rx3),ydata[count-1,0]+(Ry3),xdata[count-1,1]+(Sx3),ydata[count-1,1]+(Sy3),w02m,le,delta,ang4,t[count-1]+(h)))*h 

     

    delx=(Rx1+(2*Rx2)+(2*Rx3)+Rx4)/6 



    delvx=(Sx1+(2*Sx2)+(2*Sx3)+Sx4)/6 

     

    dely=(Ry1+(2*Ry2)+(2*Ry3)+Ry4)/6 

    delvy=(Sy1+(2*Sy2)+(2*Sy3)+Sy4)/6 

     

    delxa=[delx,delvx] 

    delya=[dely,delvy] 

     

    xdata[count,:]=xdata[count-1,:]+delxa 

    ydata[count,:]=ydata[count-1,:]+delya 

     

#---------------------------------------------------------------------------------------------------------- 

 

#Define relevant quantities in solution 

 

#Perpendicular distance from z-axis 

rd=((xdata[:,0]**2)+(ydata[:,0]**2))**(1/2) 

 

#Height 

z=(((le**2)-(rd**2))**(1/2)) 

 

#z velocity 

vz=(-1.0/z)*((xdata[:,0]*xdata[:,1])+(ydata[:,0]*ydata[:,1])) 

 

#Energy (assuming mass = 1 kg) 

PE=g*(le-z)  

KE=((xdata[:,1]**2)+(ydata[:,1]**2)+(vz**2))/2 

TE=PE+KE 

 

#Angular momentum 

ang_mtm=(xdata[:,0]*ydata[:,1])-(ydata[:,0]*xdata[:,1]) 



#---------------------------------------------------------------------------------------------------------- 

 

# Plot the solution 

plt.close('all') 

 

fig, ax = plt.subplots() 

ax.plot(xdata[:,0],ydata[:,0]) 

#ax.plot(t,xdata) 

#ax.plot(t,ang_mtm) 

#plt.ylim((-0.11,0.0)) 

#plt.xlim((0,100)) 

plt.xlabel('X displacement (m)') 

plt.ylabel('Y displacement (m)') 

#ax.set_aspect('equal') 

plt.show() 

 

end_t = time.time() 

print("Run Time = ", f"{end_t-start_t:.3f}") 

 

#np.savetxt('t.txt', t) 

#np.savetxt('x.txt', xdata) 

#np.savetxt('y.txt', ydata) 

#np.savetxt('mod.txt', rd) 

 

  



Py_odeint_rot 

 

import time 

import numpy as np 

import scipy as sp 

from scipy.integrate import odeint 

import matplotlib.pyplot as plt 

 

start_t = time.time() 

 

# Define parameters 

le = 10.0 #pendulum length 

 

omega = 10.0 # mount spin angular velocity 

h=0.01 # time step 

t = np.arange(0,100.0,h) #This is the time range # total time of simulation in seconds 

 

[x0,vx0] = [0.5,0.2] #Initial x and vx values in laboratory frame 

 

[y0,vy0] = [0.5,0.0] #Initial y and vy values in laboratory frame 

 

init_state = [x0, y0, vx0, vy0] 

 

#Other parameters 

g = 9.81 # acceleration due to gravity 

w0m=np.sqrt(g/le) # pendulum mean angular frequency 

w02m=w0m**2 # square of pendulum mean angular frequency 

delta = 0.01 # deviation from symmetry of w02m 

 

#---------------------------------------------------------------------------------------------------------- 

 



#Defining restoring force in laboratory frame depending on angle of pendulum mount frame with respect to laboratory frame (theta = omega.t) 

def acc(state,tf,w02mf,lef,deltaf,omegaf): 

     

    xf, yf, vxf, vyf = state 

     

    r=np.matrix([[xf],[yf]]) 

    v=np.matrix([[vxf],[vyf]]) 

     

    rot1=np.matrix([[np.cos(omegaf*tf),np.sin(omegaf*tf)],[-np.sin(omegaf*tf),np.cos(omegaf*tf)]]) 

     

    rdash=rot1*r 

    xm=float(rdash[0]) 

    ym=float(rdash[1]) 

     

    vdash=rot1*v 

    vxm=float(vdash[0]) 

    vym=float(vdash[1]) 

     

    #Defining acceleration in frame of pendulum mount, either in small angle approximation or larger angle approximation (remove and replace "#" symbols 

as required) 

    #axm=-((w02mf+deltaf)*xm) 

    axm=-((w02mf+deltaf)*xm*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(xm/(lef**2))*((vxm**2)+(vym**2))-

(xm/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    #aym=-((w02mf-deltaf)*ym) 

    aym=-((w02mf-deltaf)*ym*((1-(((xm**2)+(ym**2))/(lef**2)))**(0.5)))-(ym/(lef**2))*((vxm**2)+(vym**2))-

(ym/(lef**4))*(((xm*vxm)+(ym*vym))**2)/(1-(((xm**2)+(ym**2))/(lef**2))) 

     

    adash=np.matrix([[axm],[aym]]) 

     

    rot2=np.matrix([[np.cos(omegaf*tf),-np.sin(omegaf*tf)],[np.sin(omegaf*tf),np.cos(omegaf*tf)]]) 



     

    a=rot2*adash 

     

    return [vxf, vyf, float(a[0]), float(a[1])] 

 

#Using odeint for 2D pendulum 

 

sol = odeint(acc, init_state, t, args = (w02m, le, delta, omega)) 

 

# Extract the solution 

 

xdata = sol[:, 0] 

ydata = sol[:, 1] 

vxdata = sol[:, 2] 

vydata = sol[:, 3] 

 

#---------------------------------------------------------------------------------------------------------- 

 

#Define relevant quantities in solution 

 

#Perpendicular distance from z-axis 

rd=((xdata**2)+(ydata**2))**(1/2) 

 

#Height 

z=(((le**2)-(rd**2))**(1/2)) 

 

#z velocity 

vz=(-1.0/z)*((xdata*vxdata)+(ydata*vydata)) 

 

#Energy (assuming mass = 1 kg) 

PE=g*(le-z)  



KE=((vxdata**2)+(vydata**2)+(vz**2))/2 

TE=PE+KE 

 

#Angular momentum 

ang_mtm=(xdata*vydata)-(ydata*vxdata) 

 

#---------------------------------------------------------------------------------------------------------- 

 

# Plot the solution 

plt.close('all') 

 

fig, ax = plt.subplots() 

ax.plot(xdata,ydata) 

#ax.plot(t,xdata) 

#ax.plot(t,ang_mtm) 

#plt.ylim((-0.11,0.0)) 

#plt.xlim((0,100)) 

plt.xlabel('X displacement (m)') 

plt.ylabel('Y displacement (m)') 

#ax.set_aspect('equal') 

plt.show() 

 

end_t = time.time() 

print("Run Time = ", f"{end_t-start_t:.3f}") 

 

#np.savetxt('t.txt', t) 

#np.savetxt('x.txt', xdata) 

#np.savetxt('y.txt', ydata) 

#np.savetxt('mod.txt', rd) 


