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Abstract 
 

The Application of Knowledge Modelling as a Decision Support Tool to 
Optimise the Design and Performance of Desalination Plants 

By 

Bashayar Al Mukhaini 

Addressing the global demand for fresh water in communities and industries is a pressing 
concern. Over the years, several investigations and advancements have been conducted in the 
field of desalination, aiming to establish highly efficient and economically viable systems. 
Seawater reverse osmosis desalination (SWRO) is well recognised as the predominant 
technology because of its relatively low energy consumption. Nevertheless, the design and 
execution of SWRO is complicated, and several factors contribute to optimising its 
effectiveness and mitigating the associated issues. Each process and subprocess in a SWRO 
desalination plant relies on the output of the previous system to deliver high-quality results, 
efficiently, and with minimal environmental impact. There is a lack of a holistic approach to 
the design process of SWRO desalination that take all design factors into considerations. This 
thesis presents a methodology for assessing system design and selection under changing 
conditions, elucidating trade-offs between capital and operational costs, environmental impact, 
geographical features, and the associated limitations of each process. In addition, it assesses 
the suitability of a design according to these specific criteria. To achieve this, a suitable 
methodology for SWRO system evaluation is necessary.  
To address this challenge, this research proposes an ontology for complex and holistic analysis 
by assimilating data from all subcomponents and representing their interconnectedness within 
a desalination system. The ontology represents standardised knowledge (terms, relationships 
and rules) related to all the major components and processes of SWRO desalination. Thus, the 
developed ontology facilitates and encourages reusability of data for a multitude of alternative 
configurations within the SWRO domain. Three case studies were used to demonstrate the 
capabilities of the ontology to effectively model complex relationships and constraints.  
However, a review of the literature has shown that integrating the life cycle cost approach 
offers a greater understanding of the actual cost of system implementation and significantly 
influences the decision-making process for plant design selection. A SWRO design and LCCA 
tool was developed to simplify system analysis in user-defined, site-specific scenarios. The 
included life cycle cost data were gathered from a diverse range of academic and industry 
sources, facilitating the development of a cost database that is both user-friendly and accessible 
for regular updates. The methodology was assessed by evaluating the design derived from the 
three case studies. This demonstrates the tool's ability to capture the engineering principles of 
these processes and to perform life cycle cost analysis. Furthermore, it demonstrates the 
influence of different pretreatment methods, water characteristics, and specific process choices 
on the total capital expenditure (CAPEX) and operational expenditure (OPEX) resulting in a 
more holistic and comprehensive understanding of SWRO as a highly complex and 
interdependent solution to water availability. 
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Chapter 1  

Introduction 

1.1 Water Scarcity 

Water is a substance essential to all known forms of life on earth. Water is used for drinking, 

cleaning, agriculture, power generation, and much more. In other words, water is a crucial 

element of life for human beings, animals and the planet they live on. Approximately 97% of 

earth’s water is saline and just under 3% is not easily accessible. The remaining percentage of 

approximately 0.014% constitutes easily accessible freshwater. This supply of freshwater is 

enough to serve our global demand and need. According to the United Nations, 200,000 cubic 

kilometres of freshwater are available for human use; this is out of a total 1.4 billion cubic 

kilometres of freshwater [1]. Although there seems to be an abundance of water on earth, 

according to the United Nations Development Programme, only an estimated one percent of 

this supply is available for use by human beings [2]. This percentage must be shared by the 

entire population on this planet, resulting in significant challenges to ensure sufficient and 

equitable global water supply. 

As a result of increased water demand for potable water, agriculture, and  industrial uses,  fresh 

water withdrawals have increased resulting in water stress and water shortages in many areas 

of the world [3]. Water scarcity can be defined in two ways: water shortages and water stress. 

The low availability of water per capita is what defines water shortage while stress is defined 

as the result of excessive water use (either consumption or withdrawal) in comparison to 

available water [3].  

Climate change, along with the unequal global distribution of freshwater, results in some 

geographical areas being increasingly wet or dry. Additionally, the increased demand for 

freshwater as result of continuous population growth and increased industrialisation has 

resulted in significant water scarcity in some regions [4]. In 2015 the World Economic Forum 

stated that the water crisis is one of the top ten risk factors that will hugely impact life over the 

next decade, both in terms of impact and likelihood as shown in Figure 1–1 (a) [5]. Also, a  

2024 report from the World Economic Forum [6] indicated that environmental risk will 
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dominate in the next 10 which included extreme weather events, critical change to earth 

systems, biodiversity loss and ecosystem collapse and natural resource shortages.  

 

 

Figure 1–1: (a) Top 10 global risk in terms of likelihood and impact [5], (b) Estimated people in 
water scarcity or stress [7] 

Water stress is experienced by a region when less than 1700 m3 of water supply is available 

per person per annum in that region. A limited or periodic shortage of water is a possible result 

seen when the level of supply per person per year is between 1000 and 1700 m3.   As the supply 

of water drops to that of less than 1000 m3 per person per year, the region or county is said to 
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face water scarcity [7]. Previous studies have estimated that around 1.7 to 3.1 billion people 

are experiencing water scarcity, and this is shown in Figure 1–1(b). However, a more recent 

study (2016) conducted by Mekonnen and Hoekstra, stated that two-thirds of the world’s 

population are facing water scarcity which indicates a more significant figure than in that of  

Figure 1–1(b). This study was carried out by analysing water scarcity on a monthly basis to 

provide an accurate estimate of the problem. The data in Figure 1–2 indicates that half a billion 

people suffer from water crises all year, and around 1.8 to 2.9 billion people face critical water 

scarcity for a period that last between 4 to 6 months per annum [4].  

 

Figure 1–2: Number of people sever from water scarcity during n month per year. Period 1996 – 
2005 [4] 

1.2 Causes of Water Scarcity  

Various reasons contribute to higher freshwater usage, including climate change, population 

growth, economic growth, water shortages, and insufficient infrastructure. Since 1900, there 

has been a significant rise, approximately six-fold, in the freshwater abstraction for industry, 

power generation and agriculture [8].  

1.2.1 Climate Change 

Climate change has significant repercussions for water resources, inducing more drought, 

diminished water quality and fluctuating weather conditions. Different regions of the globe 

have endured multiple adverse effects due to climate change. Figure 1–3 briefly outlines some 

of the main climate change-related issues faced by certain regions [9].  
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Figure 1–3: Climate change related problems in certain regions [9] 

Drought is another cause of water shortage experienced by some regions in the world. It is 

believed that approximately 11 million people have lost their lives due to drought since 1900, 

with than one billion people impacted [10]. Drought in some regions of the world has 

significantly impacted water supply in the affected area. Mexico City has 40% of its water 

supply imported although the city is built on an ancient lakebed; the increased withdrawal of 

water has resulted in the sinking of parts of the city by centimetres every year. The water system 

director in the city, Ramón Aguirre Díaz, believes heavier rainfall with increased flooding and 

prolonged and more frequent droughts are to blame [11].  Similarly, the state of California in 

the United States experienced extreme droughts between 2011 and 2016. In this period, the 

state suffered its worst droughts which resulted in the drying up of approximately 1900 wells. 

In the middle east, Syria recorded its worst droughts in history between 2007 and 2010 [11]. 

This resulted in hundreds of thousands of people in the affected rural communities leaving the 

land and moving to the main cities in the country. 

Climate change has resulted in a noticeable rise in temperature across the world at a worrying 

rate. The National Oceanic and Atmospheric Administration (NOAA) states in their Global 

Climate Summary report for 2019 that an average increase rate of temperature of 0.07°C per 

decade was observed since 1880. However, the average rate of temperature rise has more than 
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doubled to approximately 0.18°C [12]. Figure 1–4 is a geographical representation of the global 

average temperature in July 2020. 

 

Figure 1–4: Global average temperature in July 2020 [12] 

As a consequence of a rise in the incidence of heatwaves and drop in the rainfall level, the 

occurrence of wildfires increased significantly in the 20th century. For instance, 49,786 global 

fires had been recorded in 2019, which resulted in the burning and destruction of approximately 

18.74 billion m2 of land [13]. The National Interagency Fire Center reported 41,051 fires in 

2020, which is 5,665 more fires when compared to the same period of 2019. Although the 

number of fires has decreased in the last couple of years, the area of scorched lands is 

considered significantly higher [13], as shown in Figure 1–5.  
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Figure 1–5: Number of fires and acres burned between 2000 and 2019 in the world [13] 

Rises in sea level, stronger and more frequent tornadoes and hurricanes have been recorded 

across the world due to the effects of the ongoing climate change. The sea level has risen by 

20.32 cm since 1880 and climate models predict that a further increase between 30 cm and 243 

cm will occur by the year 2100 [14]. This increase will have an important impact on the ground 

water as well as posing a serious threat to life in low-lying coastal areas as a result of possible 

disastrous flooding.   

Population 

The current world population is around 7.8 billion, predicted to reach 8.6 billion in 2030 and 

9.5 billion around 2050, as seen in Figure 1–6. UNICEF estimated approximately 140 million 

are born and 58 million people die each year, meaning around an 82 million increase in world 

population every year [15]. It is apparent from Figure 1–6 that in the 20th century, the 

population increased more than fourfold. Water consumption in agriculture, municipal use and 

industrial has risen by 5, 10 and 18 percent respectively [16] resulting in increased pressure on 

water resources. For instance, the largest total freshwater withdrawal of 760 billion m3 per 

annum was recorded in India in 2014, followed by the figures of 600 billion m3 in China and 

between  480 and 490 billion m3 in the United States for that year [17]. 
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Figure 1–6: The world population projection by the United Nations from 1950 to 2100 [15] 

1.2.2 Industrial Demand and Urbanisation  

Industrialisation and increased urbanisation in the 1700s and 1800s led to a greater need for 

freshwater. The first noticeable water shortage was seen in the 1800s, which led to the 

development of the first water storage facility. 

Water is a critical resource for nations throughout the globe in order to satisfy their daily energy 

demands. However, finding adequate water resources to generate the requisite energy, and then 

distributing the remaining quantity, is becoming more problematic. Many power utilities and 

energy corporations have been affected by water-related issues in the last five years. Water 

poses a significant threat to company activities; according to survey conducted by CDP nearly 

two-thirds of surveyed companies are reducing or maintaining their freshwater withdrawal 

[18]. In the year 2035, the International Energy Agency predicts that the world's energy 

consumption will rise by 35 percent, resulting in an 85 percent increase in water usage [19]. 

For a few nations, as shown in Figure 1–7, water has a significant influence on energy 

production [19] 

 

Figure 1–7: Impact of water on energy production, adapted from [19] 
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Numerous studies have been conducted on the influence of urbanisation on water quality and 

water demand. The use of water resources in cities is one of the earliest effects of urbanisation. 

Several researchers have found a linear relationship between urbanisation and the increase in 

total water usage [20], in contrast to this, other research has suggested that the impact of  

urbanisation on water resources usage is non-linear [21].  

There have been changes in the world's coastlines due to ongoing urbanisation; these changes 

have been observed in a time frame of years up to decades. Studies demonstrate that 

urbanisation has a harmful influence on water quality [22][23]. The majority of people live in 

close proximity to rivers and coastlines. In the United States, between 1970 and 2010, coastal 

coastline counties rose in population to 125 people per square mile (48 people per km2), over 

three times the national average of 39 (15 people per km2) [24]. Waterways and aquatic 

environments generally suffer as coastal and watershed populations rise. Because of their large 

watersheds, estuaries are particularly vulnerable. Urbanisation has a number of effects on 

estuaries, including changes in streamflow and salinity, as well as consequences on plankton, 

marshes, seagrasses, shellfish, and fish present in the estuary [24]. 

1.2.3 Agriculture 

Globally, a griculture is considered the sector most responsible for the stress on freshwater 

resources. It accounts for 70% of the total water consumption, even though some developed 

countries get 60% of their agriculture production from rainfed irrigation [17]. Furthermore, 

agriculture is responsible for an average of 90% of the water use in low-income countries; this 

figure drops to approximately 79% for middle-income countries [17]. Water consumption in 

high-income countries is around 41% [25]. As of 2017, agriculture was responsible for 59% of 

water use in Europe [26]. However, in developed countries, a projected increase of 14% in 

irrigation water withdrawal is expected, in terms of volume  that is an increase from 2130 km3 

per annum to 2420 km3 by 2030 [27].  

In light of the significant current, and the predicted future, water availability challenges, this 

project focuses on desalination. Desalination is widely used to extract salts from sea and 

brackish waters. However, it is a resource intensive process, particularly in terms of energy 

consumption. There are four primary elements that dictate the energy requirements of the 

process: the influent water quality, the effluent quality requirements, the technology used, and 

the scale of the desalination plant. Many desalination technologies are well understood and 

established, and significant progress has been made to reduce the energy impact of desalination 
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processes in recent years. However, there remains the opportunity for improvement to design, 

operate and optimise desalination plants from a holistic systems perspective as opposed to the 

more common process perspective. Artificial Intelligence (AI) and Machine Learning (ML) 

technologies can potentially support this system optimisation. With this in mind, the specific 

objectives of this research are to:  

1. Review and evaluate the potential of AI and ML technologies to improve the design, 

operation and optimisation of seawater desalination plants from a holistic, system 

perspective 

2. Identify, evaluate and compile relevant information and data relating to desalination 

plant design, technology, characteristics and parameters 

3. Integrate the compiled data and information to develop, analyse and implement an 

ontology and knowledge graph approach for in-depth analysis and understanding of the 

interrelationships among various complex processes and subprocesses within the 

seawater reverse osmosis (SWRO) desalination process 

4. To develop and implement a life cost analysis tool for modelling an optimised and 

purpose-fit design of SWRO desalination plants, providing valuable insights to users.  

Figure 1–8 gives a visual overview of the chapters in this thesis and how they relate to each 

other with the aim of fulfilling the objectives above.  

A comprehensive examination of the historical background, contemporary advancements, and 

operational procedures relating to desalination and the new direction of reverse osmosis 

technology is examined in Chapter 2: “New Directions of Reverse Osmosis”. 

Chapter 3: “Artificial Intelligence & Machine Learning” shifts the focus to review the 

application of AI and ML in water treatment and desalination, while explaining the challenges 

associated with integrating these two fields. This chapter concludes by highlighting research 

gaps, defining the research problem, and presenting proposed solutions. Together these 

chapters address Objective 1 and 2.  

Chapters 4, 5 and 6 provide an in-depth exploration of the three main contributions to 

understanding the requirements, design and cost-analysis for SWRO systems and address 

Objectives 2, 3 and 4.  
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Chapter 4: “OntoSWRO” introduces the development of OntoSWRO ontology, offering 

insights into the design aspects of seawater reverse osmosis desalination plants and three 

scenarios are developed for evaluating OntoSWRO. 

Chapter 5: “SWRO Desalination Process Design” provides a deep analysis of the formulated 

equations, exploring their significance in the context of SWRO desalination facilities. 

Additionally, comprehensive equations are presented for system limits and flows that extend 

beyond the purview of this particular study.  

Moving forward to Chapter 6: “Economic Cost Assessment”, the focus is directed towards the 

life cost analysis component. This section provides further details pertaining to the functional 

unit, capital expenditure, and operational expense. The assumptions and procedures that are 

vital to this research are clearly articulated. 

The outcomes from Chapters 4, 5 and 6 form the basis of the resulting SWRO design and 

LCCA tool for holistic design of desalination. Chapter 7: “Evaluation of OntoSWRO and 

LCCA” outlines the development process of a decision support tool's user interface and 

programme architecture, presenting results from system analysis. This chapter also explores 

the integration between ontology and life cost analysis in the context of desalination plant 

design.  

Finally, Chapter 8: “Conclusions and Future Work” summarises the thesis by presenting 

conclusions, outlining contributions made by the thesis, and proposing potential directions for 

further work.  
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Figure 1–8: Thesis chapters structure flowchart  
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Chapter 2  

Literature Review: New Directions of Reverse 

Osmosis  

This chapter presents an overview of water treatment methods and offers a comprehensive 

examination of the historical background, contemporary advancements, and operational 

procedures pertaining to desalination. The primary emphasis is placed on seawater reverse 

osmosis desalination. This chapter will examine the emerging trends in reverse osmosis and 

emphasise the current research focus in the field, specifically in relation to membrane 

technology, auxiliary components, and system configurations. 

2.1 Water Treatment Technologies   

Two primary technologies for potable water treatment are available and widely in use; these 

are conventional water treatment and desalination. 

2.1.1 Conventional Water Treatment 

Conventional water treatment is an approach that is applied in treating surface water. It removes 

the turbidity and any harmful bacteria from the water using various processes, including 

flocculation, sedimentation, filtration, and chlorine disinfection. The specific energy 

consumption (SEC) of these processes is approximately between 0.2 and 0.4 kWh/m3. The 

technology is limited to only less than 3% of water resources available around the world [28]. 

2.1.2 Desalination   

Due to the factors that have been addressed in the previous section, it is necessary to establish 

an alternative solution in which the feed water source will be primarily saline or brackish water. 

Therefore, desalination technology has emerged as a feasible solution for the future. The term 

desalination refers to the process of removing total dissolved solids (TDS) from source water. 

TDS is composed of total inorganic and organic material such as salt and metal ions. The 

International Standard by World Health Organisation (WHO) outlines that the TDS in 
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freshwater should be less than 1000 mg/L [29]. In seawater, the amount of TDS is between 

35,000 mg/L and 45,000 mg/L while brackish water contains amounts between 3000 mg/L and  

20,000 mg/L [30]. Desalinating this raw water will remove the majority of the dissolved solids 

producing freshwater that can be used industrially, in agriculture and for drinking. 

Desalination plants were first established in the year 1881; however, research and development 

over the years brought about commercial distillation desalination at the beginning of the 1920s 

prior to the second world war. The goal of this technology was to cope with the water demand 

for remote areas lacking a water supply. Desalination was further developed over the years by 

the United States and other countries. The technology became commercially established in the 

year 1960, with the thermal process as the most commonly applied technology at the time. 

Membrane technology then came about in the late 1960s and was mainly involved in brackish 

water treatment. Both technologies became fully commercial by the 1980s [31]. Figure 2–1 

illustrates a timeline of the desalination plant development over the years.   

As of 2019, over 15,000 desalination plants are active around the world across a total of 177 

countries [32]. However, according to the International Desalination Association (IDA), in 

2018, the global number of contracted desalination plants was approximated as more than 

20,000 [33]. There has been a noticeable increase in the number of desalination plants and the 

water they produce recently, in the three-year period from 2016 to 2019, there was a 12.4 % 

and 41.2% increase, respectively [34]. 

 

Figure 2–1: Timeline of desalination technology adapted from [35]. Multi-effect distillation( MED) 
multistage flash (MSF), membrane distillation (MD), reverse osmosis (RO), Energy recovery device 

(ERD) 
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The municipal sector is the main utiliser of desalinated water accounting for 60% of the 

available desalinated water. About 33% is utilised by power and industrial users. The 

remainder of the desalinated water is utilised for irrigation, military as well as other 

applications as shown in Figure 2–2 [36][37].  

 

Figure 2–2: Total Global installed desalination capacity by type of use, adapted from[37] 

2.2 Desalination Technologies  

Membrane and thermal processes are the two main types of technology commonly used. With 

thermal technology, water is evaporated resulting in any dissolved solids or contaminants being 

left behind. The vapour is then condensed and clean water is produced. Membrane technology 

involves filtration of the source water through a semipermeable membrane by means of high 

pressure resulting in production of freshwater [38]. Examples of several technologies in use 

are listed in Figure 2–3. 

Nowadays, Reverse Osmosis (RO) is the most common method applied in desalination 

technology, this is followed by Multi-Stage Filtration (MSF) and Multi-Effect Distillation 

(MED) technologies. Statistics for 2018 showed that total installed capacity worldwide is 

mainly accounted for by these three technologies. The percentage of the desalination capacity 

for each of RO, MSF and MED was approximately 68.7%, 17.6% and 6.9% respectively, and 

the remaining 6.8% is composed of other technologies. The main source of water for 
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desalination around the globe is seawater at approximately 70.5% of the total capacity [39]. In 

this section, the three main technologies are discussed along with issues and challenges 

associated with them. Other technologies have been omitted as they have little application 

worldwide in comparison to RO, MSF, MED, and will not be of relevance in the next stages 

of this research. Table 2-1 discusses the available desalination technologies in terms of their 

classes, type of driving force, status and application. 

 

 

Figure 2–3: Schematic classification of desalination technologies 

2.2.1 Multi-Stage Flash (MSF)  

In MSF distillation, saline water is heated by means of a brine heater using steam at low 

pressure. The heated water is passed through a series of stages (flash chambers), each under 

lower pressure than the previous one. The temperature is always above that of boiling point for 

each pressure in all flash chambers and a small amount of the brine water turns into steam 

reducing the temperature to reach a point of equilibrium. [34], [40]. Entrainment separators 

separate high-salinity mist from low-salinity rising steam which is condensed into distillate. 

Pure water referred to as the distillate, which had condensed on the heat tubes is collected in 

distillate trays. This pure water is transferred to the water product tank.  

The brine is formed in each stage and is collected at the end to lower the volume of source 

water collected by the intake for desalination as shown in Figure 2–4. The recirculated brine  
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Table 2-1: Type of desalination technologies in terms of their driving force, status and application [36], [41] 

Technique  Technology Driving force Status Application Limitations 

Membrane  Continuous 
Electrodeionization 
(CEDI) 

Electric field  Mature Polishing RO permeate 
Non - water purification 
application 

Limited to certain feed water conditions  
Limited electrical resistance of the module  

 
Electrodialysis Electric field  Mature 

 
Ongoing research in: 
Poor economic efficiency for low salinity product water 
production 
High energy consumption 
Membrane fouling  

 
Forward Osmosis  Osmotic 

Pressure 
Commercial  Desalination application Requires additional treatment 

Draw solutes must be designed for high solubility 

 
Membrane Distillation  Vapour pressure Ongoing 

study  

 
High capital cost  
High energy consumption 
Flux inconsistency  
Cannot be applied to large scale operation 

 
Nanofiltration  Pressure Mature Softening 

Partial demineralisation of 
saltwater  
Pretreatment in RO 
desalination  

High capital cost  
Intensive pretreatment 
Insufficient rejection of pollutants 

 
Piezodialysis Pressure Limited 

commercial 
Kidney dialysis Decrease in salt separation as feed salt concentration 

increases 
 

Reverse Osmosis  Pressure  Mature Food processing 
Pharmaceutical Industrial  
Agriculture  
Water for potable use  

Intensive pretreatment 
Ongoing research in: 
Fouling resistance 
Chlorine tolerance  
Energy reduction 
Maintaining or improving rejection 
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Technique  Technology Driving force Status Application Limitations 

Thermal  Humidification 
Dehumidification 
(HDH)  

Temperature  Under 
development  

- High specific energy consumption  

 
Freezing Melting (FM) Temperature  Under 

development  
Food processing  High capital cost 

Complex process  
 

Multi-Stage Flash 
(MSF)  

Temperature Mature Desalination application High energy consumption 
Low level of flexibility in operation  
High prone to corrosion  
Slow operation start up  
Whole plant shutdown for maintenance 

 Multi-Effect 
Distillation (MED) 

Temperature Mature Desalination application Scaling  
Corrosion 

 Capacitive 
Deionization (CDI) 

Electric Field Under 
development  

- Expensive material 
Short life span 

Other  Ion Exchange  Ion charge  Mature Low salinity brackish water 
desalination 

Limited in resin capacity 
Prone to fouling quickly at high salinity may  
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eliminates the latent heat of condensation. This pre-heating of the recirculated brine helps 

recover energy from condensing vapour and reduces total heating needs of the source water. 

Each flash stage typically yields 1% of the entire desalination plant condensate volume. The 

overall MSF plant recovery is normally 19 to 28%. Comparatively, RO seawater desalination 

systems recover 40-45%. A 45-stage MSF unit may function at a 45 percent recovery rate. This 

characteristic rival RO systems in terms of recovery. 

 

Figure 2–4: Schematic of Multi Stage Flash [42] 

2.2.2 Multi-Effect Distillation (MED) 

MED functions similarly to MSF in which a series of flash chambers with pressure decreasing 

along the chambers are utilised. This setup ensures the elimination of the requirement of energy 

supply for boiling past the first chamber as feed seawater undergoes many boiling phases. 

Heated steam from the seawater is directed inside a multiple tube connection, heat resulting in 

the tubes is then transferred to the source water which flows over the heated tube as illustrated 

in Figure 2–5. The steam running through the tube results in the evaporation of the saline water. 

In summary, seawater under heat transfers into the first tube and vapour is formed and this 

process repeats along multiple chambers and in the last chamber condensed fresh water is 

produced [43][34][31].  
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Figure 2–5: Schematic of Multi Effect Distillation [42] 

Multiple factors have driven countries towards a membrane system rather than a thermal 

system, such as reduced capital cost in an RO setup as a result of cheaper construction material, 

versatility of feed sources, and the fact that RO does not require thermal energy to operate [36]. 

However, MSF and MED are cost effective in regions where energy is subsidised or in the case 

where the desalination plant is co-located in conjunction with steam generated power. Hence, 

thermal processes are common in the middle east region, although with new energy initiatives 

such as Dubai Clean Energy 2050, there is a drive to move towards membrane technology 

specifically seawater reverse osmosis (SWRO) [44]. With this in mind, the main desalination 

focus of this review will be on the RO process. Figure 2–6 specifies the advantages and 

challenges among the three most popular desalination technologies. 
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Figure 2–6: Pros and cons of the three most popular desalination technologies 

2.2.3 Reverse Osmosis 

Reverse osmosis (RO) is a demineralisation process that relies on molecule filtration through 

semipermeable membranes. Feedwater is pumped through the semipermeable membrane at an 

applied pressure greater than that of the osmotic pressure of the feedwater as illustrated in 

Figure 2–7. This results in the separation of molecules as the water passes from a high 

concentration solution to a low concentration compartment [45][46]. RO is considered to be an 

energy efficient process compared to thermal desalination processes. This is primarily due to 

the fact that the process operates at ambient temperatures and requires no heating or cooling 

during phase changes [47]. The advancement of energy recovery devices, pumps, and 

membrane technology in the last two decades has led to a significant improvement in the 

performance and cost-effectiveness of membrane based desalination [48], [49].  

 

Figure 2–7 : Schematic diagram of RO desalination plant and RO membrane  

The phenomenon of osmosis was observed in 1748 by Abbe Nollet; as a result the first 

documentation of the term semipermeable membrane was recorded that year [50]. However, 

current technology was studied in 1940s by Dr Gerald Hassler at University of California in 

Los Angeles (UCLA). Dr Hassler started to investigate the osmotic properties of cellophane 

membranes. Hasslers’ assumption was that the process of osmosis happened by evaporation 
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occurring at the membrane's surface and the vapour produced travelled through an air gap 

followed by condensation on the surface of the opposing membrane. Nowadays, it is known 

that Hassler assumption is not correct and that the most likely process of osmosis is the solution 

- diffusion model at the membrane [51]. Sourirajan developed the first asymmetric cellulose 

acetate membrane the 1960s at UCLA, Figure 2–8 illustrates the timeline of the important 

development that occurred in the history of RO. 

 

Figure 2–8: RO development timeline, adapted from [46] 

2.3 New Directions of Reverse Osmosis 

2.3.1 RO Transport Models 

Even though RO is inherently a more energy efficient technology than thermal processes, there 

has been a lot of recent research developments in the area of improved energy performance. 

An optimal energy RO operation in theory is obtained by having a consistent water flux along 

the membrane area. Flux of water is the volumetric flow rate of water through a defined 

membrane area which is proportionally dependent on the net pressure driving force applied to 

the water, represented in Eq 2.1 [46], [52]. 

𝐽/ 	= 	𝐴 XY𝑃. 	− 𝑃6[ − Y𝜋. − 𝜋6[] Eq 2.1 

Where 𝐽/ is water flux (L/m2/h), 𝐴 is the water permeability (m/min/bar), 𝑃. feed pressure 

(bar), 𝑃6 permeate pressure (bar), 𝜋. feed osmotic pressure (bar), 𝜋6 permeate osmotic pressure 

(bar). There is a common understanding with the process of membrane separation that the 
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relationship of solute flux rate through the membrane with that of the effective concentration 

difference of solute across the membrane is one of direct proportionality. As the concentration 

gradient increases, the solute flux through the membrane also increases. This concept (Eq 2.1 

and Eq 2.2) is fundamental in terms of membrane separation and one which the design and 

operation of membrane based processes depend on. 

𝐽! 	= 	𝐾(𝐶78 −	𝐶79) Eq 2.2 

Where 𝐽! is flux of solute (g/m2s), K salt permeability coefficient (kg/ m2s), 𝐶7 molar 

concentration of solute (g/kg), where 2 relates to the boundary layer, and 3 to the permeate. As 

feedwater flows across the membrane surface, pure water dissolves and diffuses across the 

membrane at a faster rate than the salt. Along the length of the membrane channel, the applied 

feed pressure and pressure on the permeate side remain generally constant. The remaining 

feedwater now has a higher concentration resulting in a higher osmotic pressure while the 

osmotic pressure of permeate remains close to zero. As a consequence, the driving force for 

pure water flow across the membrane gets maximised at the inlet of the membrane and starts 

decreasing gradually as the membrane length increases. This will cause the net pressure driving 

force to be maximised near the inlet and decrease along the membrane [53]. Figure 2–9 shows 

a schematic representation of a mass transfer model of RO. As a result of these changes in the 

water flux, reduction in the energy efficiency occurs. Consequently, to improve performance, 

process scale up and simulation, an accurate model for flux decline is essential. 

 

Figure 2–9: Schematic of mass transport model for Reverse osmosis, Cf is feed concentration, Cp 

permeate concentration, Jw water flux, Js salt flux, A is the water permeability coefficient of the 
membrane, B is the salt permeability coefficient of the membrane, CD,b and CF,b are the solute 

concentrations in the bulks, Δπ is the osmotic pressure difference between the bulks, and ΔP is the 
hydraulic pressure applied on the draw water side 
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The widely used solution-diffusion (SD) model lacks the ability to fully describe the intricate 

transport mechanisms of water molecules and ions through the membrane. In order to address 

this limitation, Wang et al. [54] proposed a novel ion transport model for RO, termed the 

solution-friction model. This approach involves a rigorous consideration of the partitioning 

mechanisms and the interactions among water, salt ions, and the membrane, leading to a more 

accurate description of ion transport through the membrane. Specifically, the author employed 

the extended Nernst-Planck equation to describe ion transport which is known as ion flux (Eq 

2.3), while accounting for the relative frictions between different species (i.e., ion, water, and 

membrane matrix). Meanwhile, water flow was modelled through the membrane using the 

hydraulic pressure gradient (Eq 2.4) and the relative frictions between water and both the 

membrane matrix and ions.  

𝐽: =	𝐾&,:𝑐:𝑣. −	𝐾%,:𝜀𝐷: a
𝑑𝑐:
𝑑𝑥 − 𝑧:𝑐:

𝑑𝜑
𝑑𝑥e Eq 2.3 

Where 𝐽: is the flux of ion i, 𝐾&,: the advective hindrance factor, 𝐾%,: the diffusional hindrance 

factors, 𝑐: the concentration of ion, 𝑣. the permeate water velocity, 𝜀 the effective membrane 

porosity, 𝐷: the bulk ion diffusivity, φ the dimensionless electrical potential inside the 

membrane, 𝑧: the ion charge and 𝑥 the dimensionless coordinate through the membrane. 

𝑑𝑃#

𝑑𝑥 = 𝑅𝑇𝑓.;<Y𝑣< − 𝑣.[ + 𝑅𝑇	g𝑓:;.𝑐:Y𝑣: − 𝑣.[
:

 Eq 2.4 

Where 𝑃! is total pressure, R	is the gas constant, T	is the absolute temperature, 𝑣= , 𝑣: , 𝑣. are 

the velocities of the membrane, ions and fluid (water) respectively, f>;=	is the frictional 

coefficient between the fluid and membrane, and and f?;> is a parameter related to the friction 

between the ions and the fluid.  

Table 2-2 shows a comparison between the two diffusion models and provides the equations 

for water and salt permeability coefficients. 

Table 2-2:Comparison between Solution-Diffusion Model and Solution-Friction Model [54] 

Parameter Solution-Diffusion 
model 

Solution-Friction 
model 

Salt permeability Constant Varies with salt concentration and 
applied pressure 

Hydraulic pressure across the membrane Constant Linear decrease 
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Parameter Solution-Diffusion 
model 

Solution-Friction 
model 

Mechanism of water transport Diffusion Hydraulic pressure gradient 
Mechanism of salt transport Diffusion Diffusion ,Advection , electromigration 
Water permeability coefficient equation 𝐴 =

𝐽!
∆𝑃 − ∆𝜋	 

𝐴 =	
𝐽!

𝑃 − 2𝑅𝑇/𝑐",! − 𝑐",$1
 

Salt permeability coefficient 
Equation (𝐵%&) 

𝐾 =
𝐽'

𝐶() −	𝐶(*
	 𝐵%& =	

𝑐",$	𝐽!
𝑐",! − 𝑐",$

 

 

2.3.2 RO Membrane 

Over the past three decades, significant improvements have been made in RO membrane 

technology, including advancements in membrane material, module design, process design, 

flux, permeability, salt passage, energy reduction, and water recovery. For example, membrane 

permeability and salt rejection have improved significantly in recent years, largely due to 

advancements in membrane material and design [55], [56], [57], [58], [59], [60]. The use of 

highly productive membranes can reduce energy consumption by approximately 5% to 15% 

[28]. 

Membrane permeability has improved through the development of thin film composite (TFC) 

membranes, which consist of a thin, selective layer of polymer on top of a support layer. The 

TFC membranes have a higher permeability than previous generations of membranes, allowing 

for higher flux rates and lower energy consumption which is due to their highly crosslinked 

and ultra-thin polyamide skin layer. Salt rejection has also improved through the use of 

improved membrane materials and design. TFC membranes have a high degree of selectivity, 

which allows them to reject salt more effectively than earlier membrane technologies. 

Additionally, improvements in module design have led to increased turbulence and shear rates 

within the membrane module, which enhances the membrane’s ability to reject salt. 

Nevertheless, there are restricted trade-offs between water permeability and salt rejection, as 

well as challenges related to membrane scaling and fouling, which must be addressed to ensure 

the sustainable implementation of polymeric membranes in desalination methods.  

In industrial applications, the RO membrane modules must have a high packing density to 

achieve a compact process, easy installation, and maintenance, as well as low capital costs. 

Among the available membrane types, TFC polyamide (PA) membrane is the most widely 

used, exhibiting a salt rejection rate of up to 99.8% in conventional seawater RO test settings 

[61]. In the past, tubular or plate and frame configurations were used in RO membranes. 
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However, these membrane modules have been removed due to undesirable low packing 

density, equipment space requirements, and high capital cost [62] [46]. These two membrane 

types are now confined to the food and dairy sectors. Nowadays, spiral wound and hollow fibre 

is the most popular membrane module. Hollow fibre membranes are more prone to particle and 

biofouling fouling compared to other configurations. To tackle this issue, either an intensive 

pretreatment must be applied to remove particle foulants from the source water or apply this 

element to a source water with low turbidity and SDI, such as water received from well intakes 

[63]. Table 2-3 is a comparison between the four modules membrane [64][46][65].  

Table 2-3: Comparison between four type of RO membrane modules [64][46][65] 

Type of membrane Packing density (m2/m3) Fouling propensity Ease of Cleaning Capital Cost 

Plate and frame 147 - 492 Moderate Good High 

Tubular 20 - 394 Low Excellent Very high 

Spiral wound 392 - 1246 High Poor Moderate 

Hollow fibre 492 - 4921 Very High Poor Low 

 

2.3.3 Auxiliary RO Equipment 

The energy efficiency of RO is an essential factor in obtaining a sustainable process. In the 

1970s the RO process consumed approximately 20 kWh/m3 (m3 refers to permeate produced) 

due to several factors: less efficient pumps, lower membrane permeability, lack of energy 

recovery device (ERDs) [66]. In recent years, a significant reduction has been observed in the 

total cost of desalinated water [67], [68] due to continuous process improvement. The actual 

SEC of the whole SWRO desalination plant varies between 2.5 and 4.0 kWh/m3 of treated 

water depending on the operating conditions [48]. A figure of 1.58 kWh/m3 was claimed by 

the Affordable Desalination Collaboration (ADC) in the United States in 2006 [69], [70], [71], 

the lowest SEC recorded for a single pass RO at operating conditions of 42.5% recovery rate, 

an average temperature of 15.2 o C and flux of 10.2 L/m2h. The SEC of MED ranges 

approximately between 6.5 and 17 kWh/m3 [72]. MSF consumes more energy than MED as 

SEC consumption is reported to range from 15 kWh/ m3 and reaches up to 20 kWh/m3 [43] 

[31]. Table 2-4 summarises the energy consumption ranges observed in medium to large 

seawater RO systems, which have been obtained from a survey of 30 distinct SWRO facilities 

constructed between 2010 and 2017. The table reveals that the average energy required for 

generating one cubic metre of fresh water from a desalination plant is approximately 
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3.1kWh/m3, with some facilities achieving energy efficiencies as low as 2.4 - 2.8 kWh/m3, 

which are considered to be the best-in-class energy performance metrics.  

Table 2-4: Current Ranges of energy consumption for medium – large SWRO systems [28] 

Classification SEC of SWRO system (kWh/m3) 

Low-end bracket 2.4–2.8 

Medium range 2.9–3.2 

High-end bracket 3.3–4.0 

 

In recent years, the advancements achieved for RO technologies in terms of membranes, pumps 

and ERDs have appeared to have reached a limit, resulting in a plateauing of energy reduction 

trends. This limit has been assessed in terms of the minimum theoretical energy required for 

desalination [28]. Minimum theoretical energy is the required amount of energy to exceed the 

osmotic pressure in order to produce desalinated water. For the RO to operate at the minimum 

therotical value, the applied pressure for the feed water must not be less than that of the osmotic 

pressure of the concentrate. This figure is calculated based on the thermodynamic constraints, 

which was found to be 1.06 kWh/m3 with total dissolved solids of 35,000 mg/L and a 50% 

recovery rate [69], [70], [71]. Small perturbations in the feed water recovery rate, pump 

efficiency, or salinity can lead to variations in the theoretical energy required by a RO system. 

However, in practical settings, the SEC of RO systems tends to exceed the theoretical limit due 

to the non-reversible nature of the process and the time-varying flux. If an RO system were to 

operate at the theoretical limit, it would require significantly longer desalination times. This 

performance gap in continuous RO is attributed to the lack of reversibility associated with high 

pumping pressures, which arise due to the need to overcome the outlet osmotic pressure, which 

is higher than the inlet pressure. The non-reversible nature of the process results in additional 

energy consumption, which must be accounted for when designing and operating RO systems 

[73]. 

Traditionally, the rejected brine underwent a throttling process to reduce its relatively high 

pressure before being discharged. This resulted in significant exergy destruction and a lost 

opportunity to do useful work as brine was ejected through the pressure control valve. This 

accounts for up to 60 percent of energy that is dissipated [74]. However, more recently, in 

seawater desalination the throttling valve has been replaced by centrifugal energy recovery 

devices, such as Pelton wheel (PT) and Francis Turbine (FT), or isobaric ERD such as PX, and 
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Dual Work Exchanger Energy Recovery (DWEER), to recover the loss in pressure and reduce 

the overall energy consumption [74], [75], [76], [77], [78]. 

Table 2-5 presents a comprehensive summary of the various types of ERDs that are currently 

available in the market. This table highlights the distinct advantages and disadvantages of each 

ERD, along with the specific equipment components that are required to operate them 

effectively. Additionally, this table provides information regarding the desalination scale that 

each ERD is capable of serving, as well as the SEC of SWRO plants that utilise these ERDs. 

The Magtaa SWRO desalination facility in Algeria is a good example of the energy savings 

possible using ERDs. In 2014, Magtaa was considered the world’s largest membrane-based 

desalination plant, with a capacity of 500,000 m3/day. The plant has 25 AT-7800 turbochargers 

in operation. Using ERDs, 40 MW of energy can be saved, equating to around $25 million in 

financial terms [75]. SEC decreases with increased capacity in desalination plants, as is well-

documented. Energy recovery devices also play a major role in reducing energy consumption. 

Use of PX ERDs instead of standard ERDs has led to a significant reduction of SEC, according 

to evidence. In ERD Inc.’s estimation, PX can recover up to 98 percent of the concentrated 

brine’s energy [79], [80].  

Many desalination facilities have shown that SEC can be improved by using PX ERDs [84], 

[85], [86]. The SWRO desalination plant in Palmachim, Israel, works at a recovery rate of 46 

percent and a flux of 13–14 L/m2h at 25 °C with a RO feed pressure of 63 bar and a high 

pressure (HP) pump efficiency of roughly 85 percent and capacity of 274,000 m³/day [87]. 

With no ERD, the total RO energy consumption of the aforementioned plant is 4.476 kWh/m3, 

of which 2.059 kWh/m3 is for permeate generation and 2.417 kWh/m3 is for brine energy waste. 

When the ERT-PX HYBRID ERD device was used, the reported energy value of 2.70 kWh/m3 

was achieved [88]. PX recovery technique showed a saving of approximately $12 million in 

yearly energy costs at the Carlsbad SWRO desalination plant in San Diego, California, 

according to an independent evaluation [89]. 

In comparison to isobaric ERD, the efficiency of centrifugal devices is known to be reliant on 

the applied pressure, which can lead to limitations. In addition, isobaric devices encounter 

major difficulties due to mixing, leakage, and over flush. The water that is directly drained to  
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Table 2-5: Summary of medium and large desalination’s ERD [74], [76], [81], [82], [83] 

Type  
ERD 

Scale 
desalination  Advantage  Disadvantage  Type Equipment Efficiency 

(%) 
SEC 
(kWh/m3) 

Francis 
Turbine  

Medium, Large Simple and easy to operate Low peak efficiency 
Inability to operate optimally when 
conditions vary  
Difficult to maintain  
Inefficient for low flow ranges  
There is no power generation until 
40% of the design condition is reached 

Centrifugal Reverse running 
pump 

75 6 - 7 

Pelton  
Wheel 

Medium, Large Flexibility: takes advantage of the 
high-pressure energy  
Very easy to operate  
More compact 
Less costly 

Loss of efficiency Centrifugal 
 

Turbine bucket 
impeller 

65 - 78 3.5–5.9 

Turbo-
charger 

Small, Medium Suitable for small scale 
Low equipment cost 
Small footprint 
Simple to operate and maintain 

Pump efficiency reversely 
proportional to the delivered pressure  
Low efficiency for large-plant-size  
Higher sensitivity of energy-recovery 
efficiency to actual operating flow and 
pressure fluctuations 

Centrifugal 
 

Turbine, 
centrifugal pump 
impeller 

50 - 71  

Pressure 
Exchanger  

Small, Medium, 
Large 

Compact design  
No limit in the flow 
Multiple parallel modes can be used,  
Less energy consumption  
High energy recovery efficiency  

Mixing 
Leakage 
Over flush 
High – low pressure differential 
Noise  
High CAPEX 
Complexity of design, operation, 
maintenance 

Isobaric Ceramic rotor, 
rotor chamber  

91 - 98 3 – 5.3* 

DWEER Small, Medium 
Large 

High efficiency 
Large capacity 
Simple processing 

Isobaric two cylinders, a 
LinX valve, a 
check seat 

up to 98 3.5 – 4.6 

* note: A SEC of plant with PX is reported to be less than 3
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remove any remaining brine from the vessel before filling it with feed is known as over flush. 

However, this over flush results in increased power consumption by the HPP, leading to 

decreased efficiency due to the need to supply more feed. In addition, a substantial amount of 

pre-treated feed water is wasted due to this, which results in additional costs for pre-treatment 

[77], [90], [91], [92].  

The term “mixing” is used to describe the process through which brine contaminates saltwater 

before it flows through the membranes. A high mixing rate has a knock-on effect of increasing 

the power consumption of the high-pressure feed pumps due to the increase in salinity [90][91]. 

In the case of the most advanced currently available isobaric ERD technology, the mixing rate 

is less than 2.5% by volume, leading to a little over 1% mixing at the membrane input. For 

Example, at a recovery rate of 45% and a permeate flow rate of 190,000 m3/h, the additional 

yearly energy cost due to mixing of 1.0 percent over an isobaric ERD is roughly $84,000. This 

is based on an assumed price of $0.142/kWh[92]. Leakage rate, which refers to the direct 

release of high-pressure brine, is an additional significant issue to consider in isobaric ERD. 

This can cause an overall decrease in the quantity of high-pressure brine from which energy 

can be recovered. For instance, isobaric ERDs have leakage rates of about 0.4% of the high-

pressure brine flow into the device. In this scenario, the plant incurs an additional yearly 

operating cost of around $283,900 for every 1% of leakage from an isobaric ERD [92]. When 

considering the total cost of ownership over a period of 25 years or more, it becomes evident 

that even a marginal change in system loss rates across different ERD designs can have a 

significant impact. 

Small desalination plants typically use 9-12 kWh/m3 of electricity [93]. In comparison to the 

volume of water that is generated, this energy expenditure is considered to be high. For smaller 

capacity desalination plants (those producing less than 100 m3/day), the number of 

commercially available ERD units is restricted. This is due to the prevailing approach in small 

plants, which involves utilising a brine valve to regulate pressure levels. However, due to 

production inconsistencies of the membranes in small RO plants, the actual production of fresh 

water can significantly vary, sometimes up to ±10%. [93], [94]. Consequently, standard energy 

recovery systems pose difficulties in terms of regulation whenever applied to smaller sites 

(ERDs). By utilising positive displacement pumps and ERDs, small plants can be optimised to 

attain an ideal operational state with regards to energy consumption. Table 2-6 summarises the 

available ERD options that currently serve small desalination plants. 
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Table 2-6: Summary of the available ERD options for small desalination plants [92], [93], [94], [95], 
[96], [97], [98], [99] 

Device Design Flow Recovery 
rate (%) 

Energy 
(kwh/m3) Efficiency Device 

characteristics 
Axial piston 
pump (APP) 
and axial 
piston motor 
(APM) 

APP and APM 
connected with 
double-shafted 
electric motor 

0.4 – 3.5 
m3/h 

32 3 - 5 94% Long life cycle 
High efficiency 
Minimum 
maintenance 
required 
High CAPEX 

Pressure 
amplifier 

Energy-recovery 
pressure-
amplification 
device 
positive 
displacement 
principle (2 piston) 

Flow 
rate up to 
10 
(m3/d) 
 

- 3.7 93 -97 High efficiency 
No requirement for 
booster pump 

RO-Boost™ 
from 
Danfoss 
 

Pressure intensifier 
(four pistons) 

Permeate 
0.72–
3 m3/d 

13 % - - Minimum pulsations 
Small and compact 
Smooth operation 

ISOBARIX Ceramic rotor 
inside pressure 
vessel, 
operating principle 
similar to PX 

Up to 
137 m3/h 

- - - Higher efficiency 
50% less mixing 
Smaller footprint 

iSave 
 

Pressure 
exchanger, booster 
pump, motor  

Up to 41 
m3/h 

- 2.10 95% High efficiency 
Smaller footprint 
Little maintenance 
Adequate pre-
treatment required 
Quite noisy 

SALINO 
Pressure  

Horizontal, 
product-lubricated 
axial piston pump 
with integrated 
energy recovery. 

7.1 – 
20.2 
m3/h 

24 – 45% - - High efficiency 
Lower CAPEX and 
OPEX 
Minimum 
maintenance 
required 
Reduce energy up to 
75% 

 

2.3.4 Fouling 

RO is a popular technology for water desalination, but membrane fouling is an unavoidable 

challenge in the membrane industry; it results from the deposition of inorganic, organic, 

biological or chemical oxidants on the membrane’s surface due to residual chlorine oxidation 

under various conditions [46]. Table 2-7 delineates three categories of membrane fouling, 

accompanied by comprehensive descriptions of their respective causes and impacts on 
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membrane processes. The consequences of fouling are significant, as demonstrated in Table 

2-7, which includes reduced permeate flux, lower water quality, decreased energy efficiency, 

and the need for frequent membrane replacements. The RO’s operational costs could 

significantly rise as a result of the previously mentioned factors [100], [101]. 

Table 2-7: Effects of fouling category on the membrane process, data from [102], [103], [104] 

Type of fouling Description Causes Impact 
Biofouling The accumulation of 

aquatic organisms and 
their metabolic products 
(EPS) on the membrane 
surface 

Bacteria, 
fungi, algae, 
and protozoa 

Increased resistance to water 
Increased pressure drop 
Flux decline 
Possible at all stage element 
Forms biofilm 

Inorganic fouling or 
scaling 

The accumulation of 
inorganic precipitates on 
the pore structure of 
membrane due to 
exceeding their 
saturation concentration 

Ca, Mg, Ba, 
Sr, Si, F, 
SO4,CO3, 
HCO3 
concentration 

Flux decline 
Loss of solute rejection 
Increase of salt passage 
Frequent in last stage tail element 

Organic fouling The formation of natural 
organic matter on the 
surface of membrane 

Natural 
organic 
matter 
(NOM) 

Flux decline 
Decrease of salt passage 
Increase feed pressure 
Possible for all elements 

 

Figure 2–10 depicts the fundamental stages of mineral scale formation in RO membrane 

systems [105] which can result in fouling over time. The blue stars signify soluble salts or ions 

that generally exist in a dissolved state in the bulk feed water at the far left side of the  

 

Figure 2–10: Schematic diagram for scaling formation steps on membrane surface, adapted from 
[105] 
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illustration. However, as these solutes are rejected by the membrane, they tend to accumulate 

in the viscous sublayer in the proximity of the membrane surface where they may surpass their 

solubility limits. This progresses from left to right in membrane elements. Termed 

supersaturation, this means a condition wherein the concentration of solute in a solution 

surpasses its equilibrium concentration at a particular temperature and pressure, resulting in a 

state where the solution contains more solute than it can dissolve. The nucleation and 

microcrystal formation occurs both in solution, primarily in the viscous sublayer, as well as on 

the membrane surface. Over time, microcrystals can increase in size and quantity, ultimately 

resulting in cohesive mineral scaling that can obstruct water transport and deteriorate the active 

semipermeable layer. RO membrane fouling induced by crystal scaling can be reduced by 

regulating the nucleation induction time. The nucleation induction time is the time interval 

between the point at which a solution becomes supersaturated and the initiation of the 

formation of crystal nuclei. During this period, the solution remains in a metastable state, and 

crystal formation is delayed due to the lack of sufficient critical nuclei [105], [106], [107]. 

In continuous RO, inorganic fouling tends to increase near the tail elements of membranes. 

Cross-flow velocity decreases as water is transferred from the feed to the permeate due to the 

build-up of concentration polarisation at the membrane surface [108]. Concentration 

polarisation (CP) occurs when rejected solutes aggregate in a thin boundary layer near the 

membrane surface, increasing solute concentration and decreasing water flux. As water travels 

across the membrane, the boundary layer and solute concentration increase, decreasing 

crossflow velocity. Laminar flow explains this behaviour. As water is flowing across the 

membrane, frictional forces generated between water and the membrane surface create a 

boundary layer. This boundary layer where solutes rejected by the membrane have 

accumulated has a concentration gradient between it and the bulk water. This concentration 

gradient causes solutes to diffuse from the boundary layer to the bulk water, decreasing the 

boundary layer solute concentration. The osmotic pressure disparity across the membrane 

increases as the boundary layer solute concentration increases, decreasing water flux and 

crossflow velocity [109]. This provides an explanation for the negative consequences that 

concentration polarisation has on RO membranes. This process is complex, and a number of 

parameters, including the rate of solute rejection by the membrane, the flow velocity, and the 

thickness of the boundary layer, all play a part in the way it operates. 
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2.3.5 New configurations of RO 

As previously mentioned, RO is a resource-intensive process, and although economies of scale 

can somewhat mitigate operating costs for large seawater desalination plants, smaller-scale 

systems with lower inlet flow rates are becoming more common in the treatment of low salinity 

water. However, these systems face technical process challenges and require operational cost 

optimisation. Batch reverse osmosis (BRO) and semi-batch reverse osmosis (SBRO) have 

emerged with potential for improved energy efficiency to address the aforementioned 

challenges. These methods depend on time-varying pressure to limit the degree of 

irreversibility of that of the high-pressure pump. 

Semi-batch reverse osmosis (SBRO) is also known as closed-circuit reverse osmosis (CCRO). 

This process operates by continuously adding feed water over a period of time. A portion of 

the feedwater is allowed to pass through the membrane, producing permeate, while the 

concentrate is recirculated and then mixed with new feedwater. The mixed water is then 

subjected to the membrane, as depicted in Figure 2–11. Consequently, the concentration of 

brine increases, resulting in a corresponding rise in the pressure required to overcome the 

osmotic pressure over time [110]. The loop cycle is repeated continually until the desired 

recovery rate is reached. At the conclusion of the process, the brine is rejected, and the system 

is flushed before replacing the feed water to initiate a new CCRO cycle. 

 

Figure 2–11:Schematic diagram of semi-batch reverse osmosis 

BRO operates on hydrostatic principles where brine is recycled in the process. Upon achieving 

the required recovery, the system will undergo a quick flush to remove the residual brine 
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allowing a new feed water batch into the loop cycle and this is a repetitive process [111], [112]. 

Various configurations for BRO or pressure-driven membrane processes have been developed 

for a variety of industries, including fine chemicals, food, and mechanical [113]. The standard 

design is to continuously recycle the brine to an unpressurised feed tank until the required 

recovery is achieved. However, BRO requires that the recirculation loop system remain 

completely pressurised, with the pressure in the loop growing as the osmotic pressure of its 

contents increases. Due to the incompressibility of water and the diminishing volume of 

retained solution throughout the course of a cycle, it is difficult to meet this requirement. 

Incorporating a pressurised headspace may overcome this problem, but this would entail 

significant complexity, cost and safety implications. BRO operates either in two or three stages 

depending on the design of the process. It is possible to implement the Batch RO in two or 

three steps, depending on the model used. Currently, four different configurations are being 

developed and tested, as summarised in Table 2-8, along with their process stages. Table 2-9 

compares conventional RO, semi-batch, and batch RO in terms of their advantages, 

disadvantages, recovery rate, TDS capacity, treated water quality, and SEC. 

2.3.5.1 Fouling  

Batch and semi-batch methods offer a significant benefit over continuous flow RO, in that they 

operate transiently, limiting the period of supersaturated conditions. They discharge all of the 

brine and replenish the system with feed water on a periodic basis. Provided no crystals have 

formed and the feed is not completely saturated, advancement toward nucleation should be 

reversed after each cycle when brine rejection from the system occurs. The graphical 

representation (Figure 2–12) illustrates the influence of alterations in the salinity cycling 

regime for BRO compared to RO, wherein the duration of exposure of the final membrane 

element to a highly-supersaturated solution is restricted. 
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Table 2-8: Summary of all BRO Configurations [112], [114] 

Diagram Stages Description 

 

3 

A variable-volume tank is included in the pressure vessel in this model. The 
permeate is passed into a flexible permeate bladder contained within the pressure 
pipe as it is produced. The external circulation pump forces flow through the 
membrane feed channels; the permeate is passed through the membranes while this 
occurs. The flush and recharge stages restore the system’s salinity and empty the 
bladder, allowing for a restart of the batch cycle. 

 

2 

The free-piston is located at the work exchanger vessel’s left end at the start of the 
pressurisation phase. Then, high pressure is produced by the supply pump which 
is delivered via the free piston to the feed water within the work exchanger. 
Permeate leaves the system once the applied pressure exceeds feed water’s osmotic 
pressure, while the recirculation pump returns the brine to the work exchanger. As 
the batch RO loop concentration steadily increases, the supply pump’s pressure 
must be adjusted to compensate for the osmotic pressure increase and maintain a 
consistent permeate flow rate. When the piston reaches the right end of the work 
exchanger, the pressurisation process is complete.  
 
Then, the purge-and-refill phase removes brine from the system and refills the 
work exchanger’s right compartment. The recirculation pump then moves the 
solution from the left to the right end of the work exchanger in order to shift the 
piston from right to left. The purging phase is carried out until the volume of brine 
collected at the brine outlet is equal to that of the volume of brine available inside 
the RO module. Now the system is ready for the next cycle. 
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Diagram Stages Description 

 
 

 

2 This model uses an atmospheric feed tank and energy recovery devices.  
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Diagram Stages Description 
 

 

3 This model is called an ideal Batch RO which is considered relatively impractical 
due to its reliance on a pressurised feed tank, which is only optimal in terms of 
energetics. The reason for this is the complete retention of the brine’s energy. 

3 stages: Pressurised stage, Flush stage, Recharge stage, 2 stages: Pressurised stage, Purge-and-Refill stage 
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Table 2-9: Comparison between continuous RO, semi-batch and batch RO 

Technology Advantages Disadvantages Recovery 
range (%) 

TDS (mg/L) Treated water 
quality 

Energy consumption 
(kWh/m3) 

Continuous 
RO  

Low energy consumption  
Membrane can achieve high salt-
rejections 
Well commercialised 
Quick start up  
Good water quality  
Increased permeability while 
maintaining salt rejection 
High production 
Could be coupled with multiple 
new renewable energy. 
Reduced footprint (up to 40%)  

Expensive membrane elements  
Membrane performance decrease 
over time 
Intensive pretreatment 
Ongoing research in: 
fouling resistance 
chlorine tolerance  
energy reduction 
 

40–50% Up to 40,000 (1) 

Up to 20,000 (2) 
 

Depends on the 
type of membrane 
element  

1.73 –2.49 (1) 
0.5 – 2.5 (2) 

Semi-batch 
RO 

Reduced energy consumption (up 
to 34%)  
Energy recovery devices are not 
required  
High recovery  
High operational flux  
Less susceptibility to fouling 
Few membrane elements 

Only pilot and demonstration scale 
testing  
Unknown impact of brine 
circulation on membrane life 
Loss energy due to the mixing  

Up to 50% (1) 
Up to 97% (2) 

Up to 45,000 
mg/L (TDS) 

Depends on the 
type membrane 
element  

1.5 – 1.8 (1) 
1.02 (2) 

Batch RO Reduced energy consumption (up 
to 53%*) 
Energy recovery devices are not 
required 
Operate at high recoveries 
Few membrane elements 

Only experiment, simulation 
Unpractical design  
Pressurised system 
Ongoing research in: 
Large scale, Applicable Design for 
batch RO, Fouling for large scale, 
Cost analysis  

Variable Up to 
90% * (2) 

Up to 80%** 
(2) 

Up to 5 
(experiment 
brackish water) 

Water quality 
varies in each 
cycle  
Further study 
required for water 
quality  

1.97 (1) 
0.14 – 0.84 (2) 
 
Under development  

(1) Seawater Desalination (2) Brackish water , * Simulation study, ** Experiment study 
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Figure 2–12: the behaviour of BRO and RO in terms of TDS over time [100] 

Several studies [59]–[61] illustrated that the time variation processes could perform at a high 

recovery rate producing a significant level of highly saturated salts that are sparingly soluble 

without any requirement for scaling inhibiters. However, in contrast a study conducted by 

Sonera et al. [118] demonstrated the viability of closed-circuit desalination in volume reduction 

applications to achieve a zero liquid discharge, as a CCD pilot used to desalinate feedwater 

with approximately half-saturation (TDS: 1,304 ppm; SiO2: 57 ppm) and recovery reaching 

93.8% under high silica supersaturation (930 ppm). The results show that no forms of fouling 

and scaling were observed in the process with the use of antiscalant ( FLOCON-260) [118]. In 

other work by Gal et al. [119], a similar outcome was noted where there was no scaling and 

fouling. However, in this study, feedwater with 32 ppm of SiO2 was utilised as a first pass for 

boiler-feed supplies at a recovery rate of 96% with the presence of antiscalant (Hydrex-4192 

and 4102). Although it is suggested that the tendency of mineral scaling in SBRO is less than 

steady-state RO with partial recycle (SBRO-PR), no published experimental data is available 

to confirm this. It is argued that monitoring the tendency of mineral scaling on the membrane 

on the bases of induction time of crystallisation on solution is questionable. Studies have shown 

that crystallisation on the membrane surfaces when seeds are present is much shorter than that 

of induction time for crystallization in solution [120], [121]. Lee et al. [122] demonstrated how 

to evaluate mineral scaling propensity in semi-batch RO (SBRO) and single-pass steady-state 

RO with partial recycling, utilising gypsum as the choice for model scalant. When mineral 

scaling was compared at equal recovery and solution saturation, it was shown that SBRO had 

a more significant scaling propensity than SSRO-PR. Specifically, SBRO had a faster rate of 
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emergence of surface crystals and a shorter observed crystallisation induction time when 

compared to SSRO-PR under the same circumstances. For batch reverse osmosis in terms of 

fouling, Warsinger et al. [100] predicted the nucleation induction time at what value of 

recovery rate the system can reach before entering the inorganic scaling phase. This was 

achieved by comparing the time between cleaning processes in continuous RO to that of batch 

RO cycle time using two popular scalants. Figure 2–13 presents a comparative analysis 

between BRO and continuous reverse osmosis (CRO) in terms of the recovery rate at which 

induction time is attained, under conditions where the system scalant is restricted to either 

calcite or gypsum. The graph clearly indicates that both processes exhibit a greater tendency 

to foul when gypsum is utilised, as opposed to calcite. Consequently, considering the extended 

induction periods associated with calcite, it is anticipated that batch systems would confer a 

lesser benefit over conventional RO as opposed to gypsum. 

 

 
Figure 2–13: A contour map for (a) - calcite (CaCO3) nucleation, (b) gypsum (CaSO4) nucleation 

overlaid with curves for residences times of continuous RO and batch RO [100] 

The number of membrane elements has an impact on scaling that occurs on the surface of 

membranes. The number of elements (NE) can be obtained by dividing the design permeate 

flow rate (Qp) by the product of the design flux and the membrane surface area (SE) for the 

desired element. Most systems that run on high-quality feed waters have a high flux value when 

correctly designed and the opposite is the case for poor quality feed water systems. 

Conventional RO for seawater uses between 6 and 8 elements per vessel [123]. However, batch 

and semi-batch employ 3 to 4 elements per vessel. Researchers have asserted that using fewer 

membrane elements reduced the likelihood of fouling in semi-batch RO [124], [125], [126]. 

The drawback of using a large number of NE is that the later elements in the vessels are more 
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susceptible to scaling as discussed earlier. This, however, would impact cost effectiveness, 

since a lower number of elements per pressure vessel would necessitate a greater number of 

pressure vessels in the system, leading to an increase in desalination’s capital costs. Thus, 

determining the primary objective of the desalination plant is critical to optimising either 

operational expenses or capital costs. 

2.3.5.2 Energy 

Energy consumption is a key challenge in desalination industries. Several factors can influence 

the SEC in a RO system as discussed in Table 2-10. Overall, minimising the SEC in an RO 

system requires a careful balance between these factors, with each influencing the other. An 

optimised RO system should be designed to maximise recovery rate, and minimise operating 

pressure and membrane fouling, while also considering feed water quality and temperature. 

The RO section highlighted the recent ranges of SEC and the theoretically predictied value. 

This section focuses on recent studies performed on BRO and CCRO to estimate SEC.  

Table 2-10: Factor impacting SEC of RO process [42]  

Factor Description 

Feed water quality Determines the amount of pre-treatment required before the water enters the RO system  

Higher levels of impurities require more pre-treatment, which can increase the SEC 

Recovery rate Higher recovery rates typically result in lower SEC as less energy is required to produce 

a given volume of permeate 

Operating 

pressure 

The operating pressure of the RO system is directly proportional to the SEC Higher 

pressures require more energy to maintain, resulting in a higher SEC 

Membrane 

performance 

If the membrane is fouled or damaged, it may require more energy to maintain the desired 

flow rate and recovery rate 

Temperature Higher temperatures generally result in lower SEC as the water viscosity decreases, 

making it easier to pump through the system 

System design including the configuration and number of stages 

A well-designed system can minimise energy losses and optimise energy recovery 

 

From an energy efficiency perspective, for batch RO systems, Warsinger et al. [112], [117] 

proposed and utilised a numerical model to analyse and compare batch RO against semi-batch 

and single stage RO to differentiate their energy efficiencies across a range of salinities and 

recovery ratios. The results illustrate that RO with pressure exchanger (PX), CCRO and BRO 

performed quite similarly at low recoveries (≤55%). However, BRO and CCRO were 
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considered more energy efficient options compared to conventional RO at high recoveries 

resulting in an energy reduction by 53% and 34%, respectively. The Batch RO and Batch with 

PX were reported to be particularly suitable options for high recoveries, as shown in Figure 2–

14. The authors reported that when recoveries are low, a greater volume of fluid is irreversibly 

depressurised per unit permeate than when recovery ratios are high. Time variant systems 

conserved the energy via pumping the permeate to a raised pressure, and therefore using ERD 

might not be beneficial for the process. The study compared the energy consumption of various 

batch and continuous RO systems, while disregarding other important process parameters such 

as salt retention.  

 
Figure 2–14: Modelled SEC for conventional and time-variant RO configurations against recovery 

ratios with 3 g/kg NaCl feed and pump efficiency 80% [112] 

2.3.5.3 Water Permeability 

The coefficient of water permeability is often assumed to remain constant in the batch and 

semi-batch models [53], [112]. It is important to note, that this assumption may oversimplify 

the relationship between permeate and salt flux over the membrane and the water and salt 

permeability coefficients. Research by Barello et al. [127] suggests that the coefficient of water 

permeability is not solely determined by pressure or its decay over time due to fouling. In fact, 

Barello’s results indicate that the coefficient of water permeability also depends on feed 

salinity, as demonstrated in Eq 2.5 in BRO. This equation follows the formatting of the original 

publication in the way it is written. 



 43 

𝑘/ =	
𝑀6

(∆𝑃 − ∆𝜋)𝐴𝐶@
 Eq 2.5 

Where 𝑘/ 	(m/min/bar) is water permeability, A the membrane area (m2), 𝐶@ conversion factor 

(=1000 L/m3) and 𝑀6	permeate flow rate (L/min). According to Figure 2–15, as the feed 

salinity of batch keeps increasing, a lower water permeability coefficient would be obtained, 

indicating that the assumption of constant water permeability may not hold. 

 

 
Figure 2–15:Water permeability trend over time at salinity = 25 g/L for batch RO [127] 

2.3.5.4 Concentration Polarisation  

Concentration polarisation is another intrinsic limitation of RO. When the applied pressure 

exceeds the osmotic pressure difference in membrane separation, water enters the membrane 

from the feed to the permeate side. CP degrades the efficacy of membrane separation processes 

significantly, as the osmotic pressure difference is dependent on the difference in concentration 

across the membrane, which is the primary determinant of the operating pressure. A model was 

developed to assess the changes that the concentration polarisation phenomenon can cause in 

spiral-wound membrane modules for batch RO using both the Kimura–Sourirajan mass-

transfer and the Film model [128]. Sherwood correlations were used to reveal the relationship 

between flow rate and the mass transfer coefficient as part of this study’s goal to systematically 

investigate mass transfer coefficients and concentration polarisation for various RO elements. 

Equation 6 is used to calculate the concentration polarisation factor CPF: 
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𝐶𝑃𝐹 = 	
𝐶< − 𝐶6
𝐶A − 𝐶6

= 𝑒𝑥𝑝 a
𝐽B
𝑘e Eq 2.6 

Where CPF is the concentration polarisation factor, 𝐶< the solute concentrations at membrane 

surface (kg·m−3), 𝐶A the concentration of the bulk solution (kg·m−3), 𝐽B the permeate flux 

(m·s−1),	𝑘 the mass transfer coefficient (m·s−1). Eq 2.6 can be rearranged as (Eq 2.7) by taking 

the natural logarithm of both sides of the equation and substituting the concentration terms with 

both the observed membrane rejection fraction (𝑅*) and the real membrane rejection fraction 

(R):  

𝐼𝑛 a
1 − 𝑅*
𝑅*

e =
𝐽B
𝑘 + 𝐼𝑛 a

1 − 𝑅
𝑅 e Eq 2.7 

Where 𝑅*	is equal to C,;C-
C,

 and 𝑅 is C.;C/
C.

. The film model is a simplified model that assumes 

a thin, stagnant layer of solute on the membrane surface, known as the concentration 

polarisation layer. The solute concentration in this layer is assumed to be constant and equal to 

the bulk concentration of the feed solution. This model assumes that the flux of water through 

the membrane is directly proportional to the osmotic pressure difference across the membrane 

and the membrane hydraulic permeability. Kimura-Sourirajan is a mechanistic membrane 

model in which solute transport through the membrane is purely through diffusion [129]. 

According to this model, solvent and solute fluxes do not interact and are transported through 

the membrane separately. Solute concentrations in the concentration polarisation layer vary 

with distance from the membrane surface, and the concentration gradient of solutes in the 

concentration polarisation layer influences water flux through the membrane. The KS model 

helps to eliminate unknown parmeters from equation 6 and determines the 𝐽B and 𝑘 using Eq 

2.8, where 𝑃! is the salt permeability coefficient (m·s−1). 

𝐽B
𝑘 = 𝐼𝑛 a

1 − 𝑅*
𝑅*

e − 	𝐼𝑛 a
𝑃!
𝐽B
e Eq 2.8 

Qiu [128] derived Sherwood correlations (Sh) to examine the relationship between flow rate 

and mass transfer coefficient in Equation 9 for unsteady batch operation due to the fact that 

either laminar or turbulent flow can explain RO membrane flow behaviour. According to the 

study, the spiral wound membrane RO element has a geometric shape that is similar to that of 

an unwound flat rectangular membrane channel. The turbulent flow is unlikely to reach full 
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development due to the narrow feed channel and low mean crossflow velocity. Therefore, 

laminar flow can be assumed; however, the emergence of recirculation regions indicates that 

the flow cannot be pure laminar and is undergoing transition. Eq 2.9 showed the derived 

Sherwood correlations from the obtained experimental data. 

𝑆ℎ = 	
𝑘 ∙ 𝑑$
𝐷 = 2.09 ∙ 𝑅𝑒D.8F ∙ 𝑆𝑐D.9G ∙ a

∅$
𝐿 e

D.99

 Eq 2.9 

Where ∅$	is hydralic diameter, D is diffusion coeffecient, 𝑅𝑒 is reynolds number, 𝑆𝑐 is schmidt 

number and 𝐿 is channel length. The results in BRO showed that the increase in concentration 

polarisation factor over time was primarily driven by a concurrent increase in permeate flow 

rate and decrease in feed flow rate. Specifically, at any given time point, CPF was observed to 

be greater for small feed flow rates, which supports the concept that higher flow rates are 

conducive to minimising CPF, as anticipated by the Sherwood correlation. Similarly, for 

continuous RO, higher crossflow velocities were found to correspond with reduced CPF values. 

This can be attributed to the increased back-diffusive transport of salt away from the membrane 

surface, which, as was covered in the ealrier, works to counteract the concentration gradient. 

The observed decrease in CPF underscores the role of velocity in promoting more efficient salt 

removal, which has important implications for enhancing the performance and efficacy of 

continuous RO systems. 

Weber et al. [130] applied analytical and numerical modelling to investigate the impact of 

realistic process inefficiencies including frictional pressure loss and concentration polarisation 

on energy efficiency for continuous, staged continuous, batch and semi-batch ROs. It was 

discovered that semi-BRO and two-stage RO resulted in equivalent and significant energy 

reductions 13% (0.29 kWh/m3) and 15% (0.34 kWh/m3), respectively, when compared to 

single-stage RO at 50% recovery for SWRO. 

2.3.5.5 Impact of Dispersion 

In BRO, the flushing and filling phases are prone to causing dispersion, which leads to 

unwelcome mixing of concentrated brine with less concentrated feedwater. This, in turn, results 

in increased salt concentration and energy consumption during the next pressurisation phase of 

the cycle. In response to this issue, Qiu and Davies [131] investigated the impact of longitudinal 

dispersion in spiral wound RO modules in BRO. The experimental work carried out by Wei et 

al. [132] further supports the findings of Qiu and Davies. Wei et al. [132] designed and 

conducted experiments to explore the effects of salt retention on batch RO (bladder batch RO) 
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energy consumption. The results of the study indicated that batch RO systems consume more 

energy than that estimated by prior theoretical models, but less than conventional RO systems 

(1.97 vs. 2.21 kWh/m3, representing an 11% reduction in SEC). Moreover, the study 

demonstrated that batch RO systems are likely to operate at higher feed salinities than the 

plant’s intake salinity due to insufficient brine flushing between cycles. For example, the feed 

salinity may be 38 g/kg instead of the intended 35 g/kg at 50% recovery. The findings highlight 

the importance of adequate brine flushing to prevent salt build-up and minimise energy 

consumption in batch RO systems. A mathematical model by Li [133] was developed to 

examine the effect of finite flux and flushing efficacy on normalized specific energy 

consumptions (NSECs) for both BRO and SBRO and a two-stage RO. The outcomes showed 

that both semi-batch and batch ROs are not as efficient as a two-stage RO based on a 95% 

flushing efficacy and typical flux (12.8 L/m2h) that is used in industrial desalination. The 

findings indicate that an ideal batch RO, which is equivalent to an infinite-stage RO, marginally 

outperforms a two-stage RO in terms of energy efficiency. However, as the number of stages 

increased, the benefit of additional stages decreased rapidly until salt retention effects 

dominate, and batch RO performance became inferior to that of two-stage RO. For typical 

fluxes used in industry, SBRO with perfect flushing was found to be not as efficient as two-

stage RO. Thus, when reduced flushing efficiency is taken into account, its performance is 

even further inferior. The author reported that this limitation could be overcome if both 

technologies operated at low flux or an elevated dimensionless membrane area (𝛾) due to 

mitigating concentration polarisation.  

2.3.5.6 System Design 

Due to the impracticality of the ideal batch RO system in terms of implementation in reality, 

researchers have been investigating the different components of the system in an effort to 

improve system design. The sizes of tanks and pipelines have an impact on the performance 

and SEC consumption of BRO. These criteria were explored in a study conducted by 

Swaminathan et al. [53]. The primary purpose of this work was to explore the effect of practical 

design factors of BRO on SEC. The aim was to assess, compare and reduce the energy 

consumption of BRO relative to RO (2.06 kWh/m3). The authors suggested that salinity in the 

membrane elements should not exceed the average brine salinity considerably; tanks and 

pipelines must be considerably smaller than the membrane components because the small size 

of the tanks and pipelines ensures that the water in the system is constantly moving, reducing 

the risk of fouling and scaling. Additionally, this minimises the energy required to pump the 
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concentrate out of the system which helps to improve the energy efficiency of the batch RO 

process, reducing operational costs and improving the overall sustainability of the desalination 

process. 

In order to avoid overflowing the tank, the intake pipe volume should be less than the outflow 

pipe’s volume, and the tank should be emptied after each cycle. Theoretically, batch RO has 

greater SEC efficiency than continuous RO; however, it has the disadvantage of not being 

productive throughout all three phases of its cyclic operation, as discussed in Table 2-8. Only 

the pressurisation phase generates output; the purge and refill stages do not. As a result, when 

batch and continuous RO processes are compared on an equal output per membrane area basis, 

the batch process’s permeate water flow will be greater. This results in a penalty in SEC, 

lessening the benefit of continuous RO [28]. Therefore, it is critical to minimise downtime 

related to the inadequate purge and refill stages. The study concluded that the rest period should 

be shorter than the batch RO operating cycle. However, a shorter cycle may result in the system 

being under-flushed, increasing the total plant recovery ratio while also raising the system feed 

salinity. Swaminathan et al. [53] also demonstrated that batch RO systems with fewer 

membrane components in series would potentially consume up to 8% less energy than 

continuous RO systems.  

To this point, there has been no reported experimental studies imlementing batch RO with 

ERDs. However, a few studies have examined the performance of batch processes that 

incorporate an energy recovery device using theoretical models. For instance, Werber et al. 

[130] discovered that batch combined with ERD is less efficient than other approaches, which 

agrees with the findings in Swaminathan et al. [53] and Warsinger et al. [112]. These studies 

showed that the efficiency of ERD in batch processes needs to be greater than 0.95 and 0.995 

to consume less energy than one-stage RO and two-stage RO, respectively. Based on the 

literature, no existing ERD can achieve such high efficiencies currently. 

2.3.5.7 Recovery Ratio 

The recovery ratio is an important parameter that impacts the efficiency and performance of 

the RO desalination process. Currently, SWRO desalination operates at a recovery rate range 

between 35% to 50% [134], with higher ratios resulting in higher product water output but also 

higher energy consumption and greater wear and tear on the plant’s components, while 

brackish desalination can be up to 90%. Unlike traditional RO, where recovery is a function of 

the number of membrane elements in series, CCRO recovery is proportional to the batch time 
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T, regardless of the number of elements per module [135]. The recovery rate (𝑅CCHI) of semi-

batch is calculated based on the following Eq 2.10: 

𝑅CCHI =	X
𝑣

𝑣 + 𝑉] × 100 Eq 2.10 

Where V (m3/h) refers to the fixed intrinsic volume of the batch reactor and v (m3/h) is the 

volume of permeate produced. In batch RO, recovery (R) is calculated based on cumulative 

permeate volume (VP) and the feed tank volume (VT) as follows R= VP / VT. 

Based on the analysis from the preceding studies, the optimal BRO technique is most effective 

when the recovery ratio exceeds 75%. Research by Nayar et al. [136] investigated the effect of 

altering the recovery ratio (50–95 percent) on the specific energy required for different types 

of brackish water desalination technologies, including RO, CCRO, and reverse electrodialysis 

(EDR). The model was developed using a feed salinity of 3 g/kg and a temperature of 20oC, 

and a target salinity of 0.2 g/kg. The results indicated that CCRO utilised significantly less 

energy for recoveries less than 92%, ranging between 0.20 and 0.83 kWh/m3. This finding is 

consistent with the Stover model, in which the SEC is determined to be 0.41 kWh/m3 for 

salinity of 1.8 g/kg and 0.67 kWh/m3 for a salinity of 2.9 g/kg, respectively [137], [138].  

2.3.5.8 Water Quality  

When designing and operating a RO desalination plant, it is crucial to take into account the 

permeate water quality and its potential uses. Permeate water quality must fulfil strict standards 

set by regulatory authorities to guarantee its suitability for consumption in specific 

applications, such as drinking water production. The quality of the permeate water in these 

applications must be consistently high, free from harmful contaminants, and have a desirable 

taste and odour. For industrial applications, the quality of permeate varies depending on the 

specific requirements of each process; some processes favour low levels of dissolved solids or 

minerals whilst other processes require water of high conductivity and pH. Continuous RO has 

advantages over other RO processes in that it has the ability to produce a consistent and high-

quality water output. Unlike batch RO, which produces water in batches resulting in varying 

salt passage as feedwater salinity increases, continuous RO operates continuously, ensuring 

that the water quality is generally consistent over time. Furthermore, continuous RO also offers 

better control over the water quality. Using a variety of sensors and instruments, the system 

can be monitored and adjusted to provide the required water quality ensuring consistency in 

achieving the desired standards. 
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On the other hand, the quality of water in a BRO system might vary significantly across cycles 

owing to the quantity of salt that is not properly drained throughout the flush and recharge 

phases. The study undertaken by Wei et al. [132] showed that the quality of permeate is poorest 

during the start of the permeate production phase due to salt passage prior to the system being 

turned on and during the flush and recharge phases. As seen in the first two rows of Table 2-11, 

permeate quality increases with longer permeate production stages, as the salty permeate is 

diluted with more fresh permeate. The initial batch RO cycle produces poorer quality permeate; 

however, this improves with future cycles owing to the quicker time between cycles. According 

to the research carried out by Davies et al. [139], the salinity of permeate increased with 

reduced pressure, and flux in batch RO. It is well-established that flux is a function of pressure; 

consequently, a reduction in flux results in salt concentration remaining relatively constant, as 

it is based on the difference in concentration, which leads to an increase in salt concentration. 

Therefore, for certain industrial uses or to meet potable water requirements, water permeate of 

high quality may be required. Further research should be conducted to see whether batch RO 

can meet those requirements. 

Table 2-11: Obtained permeate quality from batch RO cycles [132] 

Cycle 
number Feed salinity Recovery 

ratio Brine salinity Tpp/tcyc Permeate 
salinity Salt rejection 

 (g nacl/kg) (%) (g NaCl/kg) (%) (g NaCl/kg) (%) 
1 2.0 29 2.8 72 0.31 87.0 
1 2.0 48 3.8 81 0.19 93.4 
1 2.0 52 4.1 86 0.14 95.5 
2-5 2.0 52 4.1 81 - 86 0.08 97.5 

tpp: permeate production time, tcyc :batch cycle time  
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Chapter 3  

Literature review: Artificial Intelligence & 

Machine Learning 

This chapter delves into the application of AI and ML in desalination technology, highlighting 

their autonomous learning and problem-solving capabilities. It offers a comprehensive 

overview of established and recent AI and ML applications in desalination, covering topics 

such as RO, membrane morphology, salinity control, flux optimisation, energy efficiency, and 

fouling prevention. It also explores fault detection and pipe failure for desalination plant and 

water distribution monitoring. Additionally, Section 3.2.6  discusses algal prediction 

techniques for environmental mitigation. A comparative analysis of AI and ML against 

conventional engineering methods is provided in Section 3.3  to assess their effectiveness. This 

chapter addresses current challenges and unexplored research areas in AI and ML for 

desalination (Section 3.4 ), offering insights into the field's potential and limitations in tackling 

water desalination issues. The chapter concludes by identifying the gaps in existing research 

and proposing potential solutions. 

3.1 Artificial Intelligence & Machine Learning 

In recent times, many organisations have come to rely upon compiled data as a key determinant 

in their decision making processes. This data, which is often voluminous, requires a thorough 

and in-depth analysis before it can be of any use in predicting future trends or informing 

significant strategic choices. In response to this challenge, the technological advancements of 

AI, and its subset, ML, have emerged as dynamic tools for efficiently handling large datasets 

and processing them to support decision-making. 

[140]. It is also defined as the process that builds a computational system capable of improving 

with experience through the implementation of a learning process [141]. In the last two 

decades, ML has evolved as a viable solution for enhancing practical software in various 
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applications, such as computer vision, medical diagnostics, robotics, speech recognition, 

natural language processing, dosage prediction, and risk assessment [142].  

ML is considered a branch of AI. It is defined as an automated analytical model that searches 

and analyses the descriptive features and target features in the dataset to determine their 

relationship [140]. It can also be defined as the process that builds a computational system 

capable of improving with experience through the implementation of a learning process [141]. 

In the last two decades, ML has evolved as a viable solution for enhancing practical software 

in various applications, such as computer vision, medical diagnostics, robotics, speech 

recognition, natural language processing, dosage prediction, and risk assessment [142]. ML 

algorithms have been classified into four main categories, based on the desired outcome, as 

defined in Table 3-1.  

Table 3-1: Definitions of the main group classes of ML 

Types of ML Definitions and main characteristics 

Supervised learning All data is labelled 
Algorithms learn to predict the target features from the descriptive features [141] 

Unsupervised learning Objective: learn about the unlabelled data using distribution and structure of the 
dataset 
Input data is available 
Note: no output variable corresponding to this data is given [141] 

Semi-supervised learning Combination of supervised and unsupervised learning 
Algorithm learns from a combination of labelled and unlabelled data [141] 

Reinforcement learning Main features: trial and error search and delayed reward 
Method: Learning what needs to be done and how to map a situation to an action 
in order to get the highest numerical reward 
Learner is not given a specific action to follow but will have to discover the action 
by trial and observation of highest rewards [143] 

 

A typical workflow for constructing a ML model and identifying viable algorithms is illustrated 

in Figure 3–1. Typically, a project employing ML or AI can be generally categorised into six 

distinct steps. The initial two steps include defining the problem and assessing the necessary 

resources that will be required to address the issue. The subsequent two steps involve dataset 

selection and data preparation, which are fundamentals for ensuring that any ML model is 

effective. Prior to training a model, the data must be carefully inspected and prepared. The fifth 

and sixth  steps include model development, training, evaluation, and refinement, all of which 

are vital components to identify the optimal parameters for the best performance. 
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Operationalisation is the final step, which entails observing the already-deployed model in its 

working environment and estimating its impact while quantifying its success [144].  

 

 
Figure 3–1:Machine learning model workflow and algorithm classification hierarchy 

 

3.2 Application of AI & ML in Water Treatment Technologies 

AI and ML have strong potential to address the challenges that face the water treatment and 

wastewater sector. This is due to their capability in solving complex issues with competing 

priorities. Several researchers have been actively applying different AI and ML tools in water 

treatment [145], [146], [147], wastewater treatment [148], [149], [150] and desalination 

industry [151], [152], [153]. Artificial neural networks (ANNs) were applied to manage the 

variable operation of a simple SWRO for predicting and optimising processes. ANNs, genetic 

algorithms (GA) and support vector machines (SVM) have emerged as widely adopted 

predictive tools capable of predicting the removal of pollutants, flux decline, energy 

consumption, cost optimisation, water production ratio, and fault detection, and facilitating the 

dynamic simulation of the fouling process in membranes [154]. 
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3.2.1 Reverse Osmosis  

Pilot-scale RO desalination does not accurately reflect the performance of large-scale, long-

term RO desalination plants. For example, water quality variation seen during the pilot testing 

phase may not be representative of that in the future as a result of multiple factors. Factors that 

could affect the source water quality include climate change, land utilisation and agricultural 

activity changes, seasonal changes, and increased urbanisation. Moreover, newly introduced 

contaminants, including emerging pollutants and microplastics may adversely affect the quality 

of the source water. 

Since the industrial revolution, the ocean has absorbed approximately 25 to 30 percent of the 

carbon dioxide emitted as a result of human activity [155]. A recent assessment of partial ocean 

pressure of CO2 (pCO2) has shown that the acidity level of the ocean has been increasing 

gradually over the last two to three decades [155]. Due to natural causes and anthropogenic 

pressures, such as eutrophication, oxygen depletion in coastal and marine waters has increased 

in terms of both spatial extent and duration over the past few decades, with 9% of sampled sites 

exhibiting deterioration [156]. The investigation revealed that the elevation of pCO2 levels led 

to a concurrent augmentation in the biovolume of bacteria within a brief period of study [157]. 

Bacterial presence significantly influences the selection of pretreatment and RO systems, as 

well as the determination of appropriate cleaning protocols and chemical dosages required to 

mitigate bacterial growth-related concerns. Therefore, it is critical to keep track of the water 

quality and operational factors as well as data in the RO plant to assess overall performance. 

Permeate conductivity, which is impacted by pH, temperature, pressure, and other variables, is 

primally utilised in RO plants to determine the quality of the generated water. To ensure 

consistent performance, i.e. acceptable quality and quantity of the product water in a facility of 

this type, it is essential to monitor the parameters mentioned earlier, and to adapt operationally 

when required. 

Different techniques have been used to analyse the performance of full-scale RO desalination 

plants. Choi et al. [158] conducted a study to assess the long-term performance of a full-scale 

RO plant by utilising two ML models, namely ANN and M5P Tree Model (TM). The study 

considered different factors such as feed temperature, feed TDS (total dissolved solids), 

permeate TDS, operational duration, and cleaning frequency on feed pressure and differential 

pressure. The results indicated that both models were effective in predicting and capturing the 

relationship between the input and output variables. During the operation, feed TDS, flow rate, 

and pressure remained relatively constant, but feed temperature, permeate TDS, and 
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differential pressure showed significant fluctuations. The authors reported that this was because 

permeate TDS and differential pressure were highly dependent on feed temperature [46]. It is 

crucial to note that this is not necessarily a novel insight, and the impact of temperature on 

feedwater, and consequently  RO performance, is already known from science and engineering 

principles. Elevated temperature enhances salt passage, resulting in an increase in permeate 

TDS. In contrast, low temperature increases the feed water’s viscosity and consequently, the 

pressure drop in the pressure vessel.  

Furthermore, in another study, ANN and Response Surface Methodology (RSM) were 

employed to analyse and optimise the performance of a pilot-scale Nanofiltration (NF) and RO 

membrane system [159]. The study determined the optimal configuration for the treatment of 

brackish water mong three hybrid configurations (parallel NF-RO, series RO-Concentrate-NF, 

series NF-Concentrate-RO). Figure 3–2 depicts the experimental arrangement of the pilot-scale 

plant for the nanofiltration-reverse osmosis (NF-RO). The parallel NF-RO arrangement was 

found to be optimal, with recovery and salt rejection of approximately 57.18% and 44.89%, 

respectively. 

 

 

Figure 3–2: NF-RO hybrid pilot plant schematic diagram: 1.raw water pump, 2.bag filter, 3.micron 
filter, 4.HP pump, 5.pressure gauge, 6.flow meter, 7.RO membrane module, 8.NF membrane module, 
9.permeate stream, 10.concentrate stream, 11.feed tank, 12.pressure control valve, 13.hybrid NF-RO 

parallel configuration, 14.hybrid NF-RO series configuration, 15.temperature indicator, 
16.temperature regulator [159] 

The presence of certain impurities in the feed water can  have significant adverse effects on the 

treated water quality hindering desalination technology. Suitable pretreatment processes, such 

as various filtration technologies, are used to mitigate these effects. In work by Jing et al. [160], 
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the removal of sodium chloride using electrodialysis (ED) was investigated. The process was 

assisted with backpropagation neural networks and improved backpropagation techniques (the 

adaptive learning rate method and flexible backpropagation algorithm). The separation of NaCl 

was found to have a non-linear relationship with four influencing parameters: flow rate, feed 

concentration, reaction temperature, and applied voltage. The percentage separation exhibited 

a positive correlation with both voltage and temperature, while a negative correlation was 

observed with flow rate and concentration. Additionally, the improved backpropagation 

method demonstrated superior performance due to its generalisation ability, ability to manage 

high values and adapt to constantly changing learning rates and weights.  

In a recent investigation, the performance of a RO desalination plant in the Gaza Strip was 

evaluated by predicting fluctuations in TDS and permeate water flow over the course of a week 

[161]. To accomplish this, the feed water’s pressure, conductivity, and pH characteristics were 

utilised to construct and train multilayer perceptron (MLP) and radial basis function (RBF) 

neural networks. The results demonstrated that both neural networks were capable of 

accurately (R = 0.9904, R = 0.9853, respectively) forecasting the TDS level and permeate water 

output. The ANN models precisely captured the values of permeate water and TDS compared 

to other methods, as shown in Table 3-2. Nonetheless, the model somewhat underpredicted the 

permeate results while overpredicting the TDS results. The level of precision achieved in a 

desalination facility may substantially impact expectations for the subsequent processes. Thus, 

this level of precision may be acceptable in desalination in some contexts but may not be in 

others. 

Table 3-2: ANN model predictions [21] 

Permeate flowrate (m3/h) TDS (mg/L) 
Observed Predicted Observed Predicted 

20.0 23.40 147.7 134.45 
8.4 9.25 11.74 10.66 
8.3 9.27 11.45 10.49 
50 49.98 64.7 59.87 

 

Predicting the quantity of material in the source water is crucial for assessing the performance 

of RO systems and water treatment plants. Bhagat et al. [162] conducted research on 

forecasting lead (Pb) in sediment at two Australian stations, namely Bramble (BB) and 

Deception (DB), using hybrid AI models. To extract the relevant input parameters for Pb 

prediction, a feature selection (FS) technique called extreme gradient boosting (XGBoost) was 

employed and compared to principal component analysis (PCA), recursive feature elimination 
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(RFE), and the GA for performance (GA). The suggested model focused on data preparation 

prior to the training phase, as illustrated in Figure 3–3, owing to the possibility that redundant 

features may introduce more noise than meaningful information when characterising the 

phenomenon of interest. The primary advantages of this approach include minimising the 

resources required for data collection and storage, mitigating the reduction in prediction 

accuracy caused by limited training data, shortening the time required to implement that data, 

and making it easier to interpret through visualisation and analysis [163], [164]. 

 

 
Figure 3–3 : Hybrid AI model to predict lead in two station in Australia [162] 

The prediction of flux in various RO systems has become a crucial factor in ensuring proper 

membrane function, leading to several studies [135]–[138] that have investigated how AI and 

ML might help in forecasting flux and the aspects that influence its decline. As an example, 

Jawad et al. [170] developed a multi-layered neural network model to predict the permeate flux 

in forward osmosis (FO). The performance of the proposed model was compared to that of a 

multiple linear regression (MLR) model. Nine input variables were considered, based on lab-

scale experimental the orientation of the membrane, membrane type, solution and draw 

solution, molarity of feed and draw solution, as well as the crossflow velocity and temperature 



 57 

of both feed solution and draw solution. The multi-layered neural network achieved an R2 value 

of 97.3% for the trained data and 82.1% for the tested and validated data, demonstrating its 

superior performance over the MLR model, which had an R2 value of just 51.6%. 

In another study, Jawad et al. [171] investigated the ability of a combined AI and response 

surface methodology to predict and optimise the membrane flux of an FO process using 

osmotic pressure difference, velocity, and temperature of both feed solution and draw solution 

as inputs. The developed AI and RSM models obtained coefficients of determination of 

0.98036 and 0.9408, respectively.  

The complexity of equipment networks and operational conditions presents significant 

challenges in the design and optimisation of site utility systems in process industries. 

Accurately estimating cogeneration potential is essential for simulating and optimising utility 

systems. An optimisation method in the ML field has been adapted, for example, Manesh et al. 

[172] used a genetic algorithm to perform a comprehensive site analysis along with an 

exergoeconomic optimisation to design a site utility steam network combining a Multiple 

Effect Distillation (MED) & RO desalination facility. This study aimed to minimise the total 

cost and increase the hybrid system’s gain output ratio. Gain output ratio (GOR) refers to the 

ratio of the amount of freshwater produced to the amount of thermal energy input into the 

system. In other words, GOR is a measure of the efficiency of a thermal desalination process 

in converting thermal energy into freshwater. GA were used to identify the Pareto set to 

determine the global optimum for the resulting multi-objective optimisation problem. The 

outcome established the benefits of ML and GA specifically, as desalinated water production 

increased to 126,300 m3/d at a cost of $0.81/m3, with a gain output ratio of 9.1. These findings 

demonstrated that the osmotic pressure difference, feed and draw solution velocity were the 

input values with the highest impact on flux.  

Table 3-3 provides additional examples of neural network applications in estimating pollutant 

removal from RO and NF technologies, including input, output, data size, applied approach, 

and obtained results. 
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Table 3-3: Examples of applying neural networks in RO and NF technologie 

Input Output Technology Data 
size Data source Method Results Ref 

Raw water flow, Product water flow, ERD, 
TDS of source water, TDS of permeate, 
Pressure, Temp, Inverse recovery 

SEC  45 Literature 
review 

Linear regression Equation 10 [173] 

Time, Pressure, feed conductivity, feed 
flow rate and power 

Permeate recovery 
Permeate flow rate 
SEC 

NF/RO, 
NF/RO/PV 

60 Pilot testing  ANN 
Projected gradient 
decent (PGD) 

Rflow rate : 0.9992 
Rrecovery : 0.999 
 

[174] 

Feed inlet temperatures, feed flow rates, 
and membrane lengths 

Permeate flux 
Specific heat energy 
consumption 

VMD 36 Experiment Back propagation 
ANN 

R2Flux:0.9936 
R2SHEC: 0.9645 

[175] 

Salt concentration, mixture composition, 
pH 

Salt Rejection (NaCl, 
Na2SO4, MgCl2, MgSO4 
and their mixture) 

NF Time 
series  

Pilot testing Single optimised 
ANN 

- [176] 

Inlet flow rate, inlet pressure, inlet 
temperature, inlet concentration 

Chlorophenol rejection RO 70 Pilot testing Multi-layered 
artificial neural 
network (back 
propagation) 
Genetic Algorithm 

R2: 0.990 [177] 

Water temperature, pressure, pH and 
conductivity, Feed pressure, feed pH and 
feed conductivity 

TDS 
Permeate flow rate 

RO 120 Actual 
desalination 

Radial basis 
function (RBF) 
neural networks, 
Multilayer 
perceptron (MLP) 

R : 0.9904 
R: 0.9858 
 

[161] 
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Input Output Technology Data 
size Data source Method Results Ref 

TMP, pH, cross-flow velocity, 
concentration of bovine serum albumin 
(BSA) in feed 

Flux declined MF - - Pore blocking and 
feed forward ANN 
models 

R2: 0.996 

[178] 

Permeate flux and TMP, concentration of 
fluorescent nanoparticle, and the mass of 
permeate particles 

Area of the membrane 
breach 

MF - - Genetic 
programming (GP) 

 

[179] 

Membrane type, Membrane orientation, 
feed solution (FS) concentration, draw 
solution (DS) concentration, FS crossflow 
velocity (CFV) , DS CFV, FS temperature, 
DS temperature, Type DS 

Permeate flux FO 709 Laboratory-
scale FO 
experimental 
data from 
literature 

ANN R2Training: 97.3% 
R2Testing: 82.1% 

[170] 

Feed concentration, temperature, pH and 
pressure 
 

Permeate flux  
Water recovery 
Salt rejection 
SEC 

NF/RO 30 Pilot testing ANN, RSM Parallel NF-RO had a 
recovery of 57.18% 
and rejection of 
44.89% 

[159] 
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3.2.2 Energy  

Significant challenges associated with desalination technologies are now discussed, including 

high energy consumption, high energy prices, and expensive infrastructure costs. It is 

imperative to identify the factors that affect the energy usage of desalination facilities to 

improve their performance and reduce energy consumption. The energy required for RO is 

dependent on several factors, such as salinity, temperature, equipment efficiency, quality goals, 

and permeate volume [48], [180]. These aspects have been studied and analysed using AI 

techniques and optimisation approaches due to their potential to capture non-linear 

relationships. 

To identify the operational parameters that significantly impact SEC for small-scale 

membrane-based desalination (0.7 m3/day ≤ qpw ≤ 220 m3/day) and municipal-scale 

desalination (2500 m3/day ≤ qpw ≤ 368,000 m3/day) desalination, statistical analyses were 

conducted, including multiple linear regressions [173]. The linear regression model showed 

that the utilisation of energy recovery equipment and an increase in pressure, temperature, and 

product water flow rate all contributed to a reduction in SEC. This is demonstrated by Eq 3.1 

and Eq 3.2: 

𝑆𝐸𝐶 = 7.7 + 3.9 × 10;8𝑞J/ − 8.6 × 10;8𝑞6/ +	
1.7
1 − 𝑅 + 6.2 × 10

;K𝑐J/

+ 4.2 × 10;9𝑐6/	 − 0.34𝑃 − 5.4𝐸𝑅 − 0.20𝑇 
Eq 3.1 

 

𝑆𝐸𝐶 = 260 − 0.13𝑌𝑅 + 8.3 × 10!"𝑐#$ − 2.4 × 10!%𝑐&$	 
Eq 3.2 

 

Where equation parameters represent the following: SEC is estimated specific energy 

consumption (kWh/m3), rw is raw water, pw is product water, q is flow rate (m3/day), R 

recovery rate, c is TDS (mg/L), P = pressure (bar), ER is energy recovery system, T is 

temperature (℃) and YR is the initial year of operations. 

The performance of the vacuum membrane distillation (VMD) process, which includes 

permeate flux and specific heat energy consumption (SHEC), using an ANN for a variety of 

feed inlet temperatures, feed flow rates, and membrane lengths was estimated by Yang et al. 

[175]. According to the observations, the expected permeate flux increased with the rise in feed 



 61 

temperature and feed flow rate, while it decreased with the increase in membrane length. 

Increased length led to declining heat transfer coefficient and more detrimental temperature 

and concentration polarisation phenomena, which enhanced local transfer resistance and 

hindered the mass and heat transfer process. As length increased, the hot feed residency time 

in the module became longer, and the temperature drop along the membrane fibre increased 

because of the resulting larger proportion of water vapour. Furthermore, the build-up of 

permeate water vapour on the module shell side had a negative impact on maintaining high 

level of vacuum, and therefore the actual driving force of VMD process decreased. Conversely, 

in predicting energy consumption, SHEC increased with increasing membrane length but 

dropped with increasing feed intake temperature and feed flow rate. 

Energy cost models, based on logarithmic, exponential, and linear functions, are currently 

employed, but may not adequately capture all interactions between complicated parameters. 

To tackle this, Torregrossa et al. [181] utilised two ML models, Neural Networks (NN) and 

Random Forest (RF), to construct energy cost functions from a database of 317 wastewater 

treatment plants in northwest Europe. The two models were employed to predict the annual 

energy consumption of the plants in the study. ML methods were found to provide more 

accurate predictions than conventional methods. However, RF outperformed NN according to 

the coefficient of determination (R2). For the RF model, the R2 for training test and validation 

test was 0.95 and 0.82, respectively. More importantly, the study found that the pollutant load 

(COD) at the intake, total phosphorus, total nitrogen, and influent flow rate were the most 

elevated influence on the energy cost of the WWTPs, whereas the price of energy had a 

minimal impact. This means that water had to be treated irrespective of the cost of the energy.  

3.2.3 Fouling 

Comprehensive review papers on the use of AI and ML for forecasting membrane filtration 

performance and fouling behaviour were compiled by Viet et al. [182], Niu et al. [183] and 

Baghari et al. [184]. There was consensus among the reviewed publications that ANN, fuzzy 

logic, genetic algorithm, support vector machine [185], and search algorithms demonstrated 

high competence in forecasting membrane fouling, with an R2 value up to 99%.  

The optimisation of parameters that contribute to membrane fouling, such as operational 

conditions (flow rate and filtering time), particles conditions (concentration of fluorescent 

nanoparticle, mass of permeate particles, algae ) and feed water quality (turbidity, temperature, 

pH, flux, TMP), has been achieved by the utilisation of a genetic algorithm [179], [186]. 
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Different strategies that were successfully applied in membrane fouling control included 

clustering analysis [187], image recognition [188], and feature selection. Figure 3–4 illustrates 

a proposed hybrid AI and ML model that acts as an automated controller system to reduce 

membrane fouling [184]. 

 
Figure 3–4: proposed AI and ML approach to control membrane fouling, adapted from [184] 

 

3.2.4 Membrane Design 

As mentioned previously, AI and ML have been used in several aspects of the RO process, 

including membrane performance improvement and operational optimisation. Recently, focus 

has been on determining factors that influence the performance of RO and either predict or 

optimise the process. AI and ML are powerful tools that can be applied in other areas such as 

designing membranes or generating novel membranes and processes. This section highlights 

previous work in the field of membranes, particularly with regards to membrane materials, 

membrane specifications, and membrane morphology. 

The dynamics and morphology of porous membranes drive the flow and transport processes 

via these structures. Therefore, it is crucial for building new synthetic membranes to be able to 

accurately predict the velocity and pressure fields, as well as the concentration fields, of the 

components in a fluid mixture moving through a membrane. To accurately determine the best 

combinations of unknown monomers and their production circumstances, Gao et al. [189] 

presented a membrane design technique that uses machine learning-based Bayesian 
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optimisation (BO). To effectively predict water permeability and salt rejection from membrane 

monomer types (represented by the Morgan fingerprint) and fabrication circumstances, tree-

based ML models (XGBoost and CatBoost) were developed. BO was constructed on the built 

ML model to inversely discover sets of monomer/fabrication condition combinations that had 

the best chance of exceeding the theoretical maximums for Na2SO4 and NaCl selectivity and 

permeability. The BO algorithm revises its prior knowledge of the design space to account for 

the results of the latest evaluations of candidate designs. It adjusts its search approach 

depending on the acquired information, giving greater weight to areas that are more likely to 

provide enhanced performance. By iterating through these steps, the BO algorithm investigates 

and improves the monomer/fabrication settings, looking for optimal combinations that result 

in the target membrane characteristics. 

Without relying on any numerical values for training their ML models, Kamrava et al [190] 

employed 2D images as inputs to predict flow parameters. In this study, a deep network using 

Residual U-Net was developed to predict flow parameters of porous membranes based on their 

morphology, such as the spatial distributions of fluid pressure and velocity. CFD-obtained, 

high-resolution pictures of the membranes together with the pressure and velocity distributions 

in their pore space at discrete times were used to train the model. In this study, since the other 

two boundaries of the system were assumed to be impermeable and the no-slip condition on 

the solid surface was established, fluid was injected into the membrane on one side and a fixed 

pressure was applied on the other. The outcome demonstrated a high accuracy of model 

prediction that is matched with the CFD images. 

Membrane materials used in RO present several difficulties. Thin films made of polymers, 

rather than cellulose, are increasingly widely used in membrane materials. Although polymer-

based semipermeable membranes provide improved fluxes and salt rejection, they still fall 

short of the optimal performance target of carbon nanotube-based filters’ high fluxes and 

zeolites’ high rejection rates [191]. There has been some research on saltwater desalination 

using nanoporous two-dimensional materials including graphene, graphene oxide, and 

molybdenum disulfide etc; however, the observed water flows at high salt rejection rates are 

not adequate for industrial-scale deployment [191]. Therefore, membrane material and design 

optimisation models are important for determining the optimal performance of desalination. 

For instance, water flow and salt rejection rates are calculated computationally, and then a ML 

model establishes relationships between these variables and 44 additional chemical, electrical, 

and structural membrane and pore properties [192]. The most influential factors on desalination 
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performance were found to be the pore atomic number, the maximum negative/positive charge 

of the membrane, and the dielectric constant of the water model used in MD simulations [192]. 

In all, the model checks 3814 2D items from public databases. Nonmetals like halogens and 

chalcogens boost the average flux of water, whereas transition metals improve the average salt 

rejection rates. It has been hypothesised and predicted that complexes of 2D transition metal 

oxides, carbides, and nitrides (MXenes) would be beneficial in desalination [192]. 

The ability to analyse ML models and fully understand their inner workings and prediction 

methods is crucial for engineers, since these models have shown to be useful tools. In addition, 

it is critical to analyse and explain situations in which a ML model places less importance on 

a parameter that researchers had previously considered vital. To tackle these issues, Jeong et 

al. [193] utilised explainable artificial intelligence (XAI) methods to analyse in depth the 

information learned by ML models on the mechanics of ion transport across polyamide 

membranes in RO and NF processes. A total of 1,585 data points from 26 distinct membrane 

types were included in the analysis. The accuracy predictions of ML models were low, ranging 

between R2 0.55 and R2 0.72. Shapley additive explanation (SHAP) was employed as the XAI 

approach to determine how different ion and membrane parameters affected the model’s 

predictions. SHAP uses cooperative game theory to fairly distribute the “credit” or effect of 

each feature on the model’s output [194]. The use of XAI demonstrated that ML models can 

accurately represent the decisive part that size exclusion and electrostatic interactions play in 

regulating membrane separation processes. In addition, the XAI study found that cation and 

anion rejections during RO and NF filtering are accomplished by processes directing ion 

transport in various ways. Although the solution diffusion model has traditionally been used to 

describe solvent and solute transport, recent studies have led to other approaches, such as the 

Solution-Friction model [54], which takes into account the overall interactions between salt 

ions, water, and the membrane. 

The advancement of gas separation membranes, for example, is profoundly affected by the use 

of polymer materials. However, until recently, engineers had to depend on trial-and-error 

techniques to create innovative membrane materials, which required a significant amount of 

time and effort. Yang et al. [195] addressed this shortcoming by introducing a dependable and 

precise ML framework for finding high-performance new polymers. By using experimental 

data to build multitask ML models, the authors link polymer chemistry to the permeabilities of 

He, H2, O2, N2, CO2, and CH4. To better understand how various chemical moieties affect 

permeability and selectivity, it is helpful to evaluate ML models such as random forest 



 65 

regression and deep neural networks (DNNs). The frequency of chemical moieties 

(substructures) in molecules was captured using Morgan fingerprint with frequency (MFF). 

Next, feature significance was extracted from ML models using SHAP for interpretation. Using 

this information, the authors [195] searched through a database of more than 9 million 

hypothetical polymers, finding several that achieve better performance than what is currently 

possible. This included the discovery of ultrapermeable polymer membranes with O2 and CO2 

permeabilities of more than 104× 10;@D and 105 × 10;@Dmol/msPA (104 and 105 Barrers), 

respectively, which had never been observed previously. High-fidelity molecular dynamics 

simulations further verified the ML-predicted gas permeabilities, providing additional 

evidence that these potential candidates may be translated into practical applications. 

For further information, Yin et al. [196] published a comprehensive review article on ML 

approaches employed in the membrane discovery cycle, including topics such as membrane 

material design, membrane application and membrane process design for various membrane 

systems. AI and ML approaches used to select and improve membrane material design are 

promising emerging field of research that might significantly advance the membrane sector. 

Understanding and predicting membrane performance based on morphology is currently 

limited, but with the use of AI and ML, these techniques can help to improve understanding 

and applicability of various membrane materials. However, this systematic review and others 

emphasise several problems, such as the quality, quantity, and absence of well-documented 

data that restrict the spread of research in this subject, despite the rising body of research in 

this domain. 

3.2.5 Fault Detection & Equipment Failure 

Water distribution losses are a challenge that is often encountered in the water management 

network. In 2017, the average European nation lost 26% of its water due to leaks, with Ireland 

recording the highest percentage at 47% of distributed water [197]. ML approaches have been 

applied in the area of pipe and equipment fault detection in the water sector. Zukang et al. [198] 

conducted a comprehensive review of model-based and data-driven approaches for identifying 

and localising leaks in water distribution systems. The degradation of water network 

infrastructure is a factor that increases the risk of failure of treated water. These failures 

exacerbate supply-demand imbalances, reduce dependability and disrupt society. It is critical 

to identify and prioritise pipes that pose the greatest risk of catastrophic failure before 

collapsing, and they should be rehabilitated or replaced as soon as possible. 
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Data-driven models have high potential for forecasting pipe failure due to their ability to 

consider multiple variables, as pipeline deterioration is dependent on physical, environmental, 

and operational factors that are summarised and illustrated in Figure 3–5. This section 

summarises several studies that have applied AI techniques to predict pipe failure in water 

distribution systems using a variation of factors showed in Figure 3–5. 

 
Figure 3–5: Factor that impact the deterioration of pipelines based on physical, environmental, and 

operational factors 

Utilising previous failure patterns, environmental and demographic variables and pipe 

properties, Yazdekhasti et al. [199] applied different AI tools, including decision trees, random 

forests, SVM, and logistic regression to assess the future probability of water pipe failure. The 

data used in this paper is an example of the “zero inflation problem”. The zero-inflation 

problem is a common issue in modelling count data, where a significant proportion of the 

observations have a value of zero, and it is unclear whether the zeros are due to the absence of 

an event or a measurement error. In this paper, the zero-inflation problem refers to the fact that 

some water pipes have never failed in the historical data, leading to a high number of zeros in 

the dataset. This can cause issues when modelling the data since some traditional statistical 

models assume a normal distribution, which is not appropriate for count data with a large 

number of zeros.  

Therefore, the study [199] incorporates spatio-temporal features germane to the placement of 

water pipes, such as proximity to the closest river or soil type, alongside temporal features that 

relate to the time of data acquisition, including month and year. This study focused on the top 

10th percentile which denotes the process of arranging the outcomes from greatest to least 
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likelihood of failure, as determined by the positive response value of 1. The top one percentile 

of the pipe’s failure could be predicted with an accuracy of 84% by the random forest model.  

Winkler et al. [200] proposed a novel approach for modelling water distribution pipe 

degradation by using decision tree learning algorithms. The study addressed the issue of 

skewed data distribution by employing simple random sampling (SRS) and stratified sampling, 

while bagging and boosting were used to compensate for the high variance of decision tree 

classifiers. The highest performing classifier is determined to be boosted decision trees with 

random under-sampling, which is utilised to create a rehabilitation plan in which the model is 

used to forecast the pipe network status in five and ten years. 

Fang et al. [201] conducted an examination to evaluate the performance of water mains to 

optimise pipeline rehabilitation using soil properties by comparing stacking ensemble ML 

approaches to four other ML models. Although the ensemble model outperformed the other 

methods, the dataset for this model was limited and the model was not validated. Robles-

Velasco et al. [202] examined the possibility of applying ANNs to forecast breakdowns in 

water supply pipes, taking into account both physical and operational aspects. Over-sampling 

and under-sampling were used to overcome the inequality in the dataset (619 failures in 2018 

out of 89,595 pipe sections).  

On the other hand, Giraldo and Rodríguez [203] examined several statistical and ML models 

for a more complete and accurate prediction of pipe failure to obtain a better knowledge of pipe 

failure models’ performance and constraints. Linear Regression, Poisson Regression, and 

Evolutionary Polynomial Regressions (EPR) were the statistical models that were employed to 

forecast pipe failure based on the diameter, age, and length of the pipe as explanatory factors. 

Individual pipe failure rates were predicted using four ML algorithms, including Gradient-

Boosted Tree (GBT), Bayes, SVMs, and ANNs. With the statistical models, poisson regression 

performed better in predicting failures in pipes R2 (0.927) and RMSE (22.09). The accuracy 

test shows that all ML models performed very well; however, the F-measure test identifies that 

GBT outperformed the other models. This strategy has the benefit of prioritising misclassified 

pipes in each iteration rather than focusing only on properly categorising pipes that do not fail. 

In comparison to SVM, GBT results are more readable, transparent, and furthermore accurately 

identify the explanatory factors’ importance. Additionally, the unbalanced dataset greatly 

affected ANNs’ ability to accurately identify failed pipes. Table 3-4 showcases an overview of 

research that have employed AI techniques for the purpose of predicting pipe failure. The table 

provides information regarding the scale of the water network and dataset utilised in each 
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study, as well as the specific AI methodology employed and the corresponding accuracy 

achieved. 

3.2.6 Algae Detection 

The intake system is the first system of the desalination plant connecting the source water to 

the plant. Its main purpose is obtaining water of appropriate quality and quantity in response 

to the desired quality and volume of product water to be produced by the desalination plant 

during its lifespan. The intake design significantly influences the presence of foulants in the 

source water and the complexity of the pre-treatment system required to control membrane 

fouling in RO. The intake system consists of intakes, screens and pump stations [204]. The 

design and performance of RO desalination are heavily influenced by the quality of the source 

and consequently the feed water. Inadequate source water conditions increase the desalination 

process’s complexity, leading to higher capital and operating expenditures. Thus, modelling 

water quality parameters is essential in examining water systems to effectively manage and 

predict desalination behaviour, enabling the appropriate precautions to prevent pollution and 

damage to the RO membrane. 

Microscopic algae pose a significant operational challenge in seawater RO systems. Early 

prediction of algal blooms is necessary to select appropriate mitigation strategies to reduce 

their impact and prevent algal cells from reaching the RO membrane. The detrimental effect of 

algae on SWRO gained more attention in 2008-2009 following a catastrophic “red tide” bloom 

episode in the Gulf of Oman that resulted in a plant shutdown for as long as two months. This 

“red tide” (hence referred to as harmful algal blooms or HABs) prompted several SWRO 

facilities in the vicinity to scale back or shut down operations due to clogged pretreatment 

systems or unacceptably low RO feed water quality. The latter has raised concerns about 

irreversible fouling of RO membranes, leading to the closure of several plants. To put this 

problem in context, around 70% of seawater RO plants in the Middle East experience 

biofouling issues [205]. This ‘red tide’ occurrence demonstrated the significant problem that 

algal blooms could create in countries relying heavily on SWRO facilities for water supply, 

emphasising the critical nature of sufficient pre-treatment in such systems. 

Algal blooms occur naturally due to seasonal variations in water temperature, sunlight 

availability, and nutrient concentrations in the water. Toxic organic pollutants emitted by 

causative algae species can cause disease or death in humans and aquatic creatures in specific 

algal blooms due to the bacterial decomposition process of this organic material, leading to a  
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Table 3-4: Examples of applying AI and ML to estimate pipe failure and conditions 

Research Type 
Water 
network 
size (km) 

AI/ML 
method 

Dataset 
size Parameters Accuracy Recall Specificity R2 /RMSE 

Pipe failure [199] 2000 RF 600,000 

Geographical locations of each pipe segment, length, 
diameter, material, installation year, hydraulic 
characteristics, soil properties, land use, and proximity 
to transportation infrastructures (road and rails), 
climate change, engineered features. 

0.84 - - - 

Pipe conditions 
[201]  Ensemble 109 Resistivity, pH value, sulphide, moisture, thickness, 

soil type, soil corrosivity, pipe wall thickness, - - - 
R2= 0.75 
RMSE = 
0.14 

Pipe failure [203] 1819 GBT 4371 
Diameter, age, length, land use, valves hydrants, 
previous failures, moisture content, soil contraction 
and expansion potential, precipitation 

0.996 0.429 0.999 - 

Pipe failure [200] 851 Boosted 
DT 39,637 

Failure, age, type, diameter, pressure, length, material, 
connection, hydrants, valve on pipe, valve in street 
section, total failure, new failure.  

0.83-0.96 0.702-0.808 0.835-0.989 - 

Pipe failure [202]  ANN 89,595 
Material, diameter, age, length of the segment, 
connections, network type, pressure fluctuation, 
number of previous failures type 

0.783 0.817 0.73 - 
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rapid decrease in dissolved oxygen concentration in the water. Algae organic matter (AOM) 

and biomass produced by certain hazardous algal blooms (HABs) may not create dangerous 

substances, but can accumulate in high quantities near or below the water’s surface. As a result 

of the bacterial decomposition process of this organic material, the concentration of dissolving 

oxygen in water drops rapidly, resulting in the death of aquatic plants and animals [206]. If not 

properly removed by pre-treatment, particulate debris comprising algal cells, their detritus, and 

AOM can build up on the surface of SWRO membranes during the filtration of algal bloom-

influenced waters, leading to low flux and high feed channel pressure drops, resulting in 

significant permeability loss. 

Bacteria can attach, gather, and grow in RO systems, forming a slimy covering of bacteria and 

associated extracellular polymeric compounds known as a biofilm [205]. Algal blooms may 

lead to the formation of biofilms due to the elevated AOM content in seawater. Some AOM 

components, notably transparent exopolymer particles (TEP), have a tendency to attach and 

collect on the membranes and spacers due to their tendency to stick. Bacteria can successfully 

consume biodegradable nutrients from the feed water, which are contained in the accumulated 

TEP. Additionally, TEP can be partially destroyed and may serve as a substrate for bacterial 

growth in the future. A significant (> 15%) decline in normalised membrane flux, net driving 

pressure, or feed channel pressure drop can indicate an operational issue. 

Different aspects of algae have been addressed by ML approaches, including the detection of 

algal bloom occurrence, the quantification of algal cell content, and the classification of algal 

types. Forecasting and predicting algorithms for cyanobacteria blooms in freshwater lakes were 

reviewed systematically by Russo [207]. The following section highlights various approaches 

to forecasting and predicting algal blooms for different water resources and treatments. 

Detection  

In saline water, there is currently no straightforward approach to preventing HABs. However, 

the gathering and analysis of various data and parameters may assist in predicting the 

occurrence of such blooms. The schematic diagram presented in Figure 3–6 depicts the various 

factors that may potentially contribute to the occurrence of algal blooms. Recently, researchers 

have deployed ML and AI techniques to predict the early occurrence of algal blooms. Oman 

has reported that algal blooms are no longer limited to the summer months; the country has 

experienced such blooms throughout the winter months (December to March) in previous years 



 71 

[208]. Seawater desalination would benefit significantly from the ability to forecast algal 

blooms in advance. 

 

 
Figure 3–6 : Influencing factors of algal bloom 

Several researchers have employed ML techniques to forecast water quantity measurements 

and quality characteristics using correlated variables from environmental datasets. These 

methods commonly aim to predict the content of algal biomass, such as chlorophyll-a 

concentration or algal cell density, which are useful indicators of algal growth dynamics. One 

particular identification approach was utilised by Deng et al. [209] to determine the 

consequential characteristics that have a substantial impact on algal dynamics using stepwise 

and weight methods. Both approaches demonstrated that the time-lagged Chlorophyll-a 

concentration is the most influential factor in algal growth, followed by a 5-day biochemical 

oxygen demand (BDO5), total inorganic nitrogen, dissolved oxygen, and pH in the studied area. 

It was found that after implementing long-term strategies to mitigate biological oxygen demand 

(BOD) and nutrient load in the studied area, the frequency of HABs occurrences had 

significantly decreased.  

Using M5P and Extreme Machine Learning (ELM), Yi et al. [210] constructed a model to 

predict Chlorophyll-a concentrations in short-term algal blooms (1-7 days). The two models 

showed high performance in forecasting chlorophyll-a after 1-day; however, the accuracy of 

the models decreased as the number of days increased. This was a result of the increased 

complexity of the system and difficulty in the accurate prediction of long-term changes in 

environmental conditions. Furthermore, other factors not taken into consideration in the 
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models, including biological interactions and human activities, may have also contributed to 

the decreasing accuracy of the predictions over time.  

Researchers have employed various techniques, including the use of warning levels of algal 

cells to anticipate blooms. Park et al. [211] used a comprehensive approach that leveraged 

detailed water quality, hydrodynamic, and meteorological data to estimate algal alert levels for 

the early warning of blooms in a freshwater reservoir using ANN and SVM models. Sensitivity 

analysis of the input variables was achieved using the Latin-hypercube one-factor-at-a-time 

(LH-OAT) approach and using pattern search algorithm, the model parameters were optimised. 

The resulting algal alert system comprised four levels: normal (L0= <1000 cells mL-1), caution 

(L1= ≥1000 cells mL-1), warning (L2= ≥10,000 cells mL-1 and <1,000,000 cells mL-1), and 

bloom (L3= ≥1,000,000 cells mL-1). However, there were no bloom incidents in the collected 

data. The performance of the ANN and SVM models for early-warning prediction of alert 

levels at various data intervals was satisfactory in some cases and ANN was able to predict 

level 2 better than SVM. The results also revealed that the 6 and 7 day intervals were 

appropriate for early-warning periods.  

Similarly, Kim et al. [212] concentrated on developing a model for early warning of harmful 

blooms (cyanobacterial blooms) utilising ANN and SVM alongside adaptive synthetic 

(ADASYN) sampling to produce synthetic data owing to the imbalance in the alert levels of 

algal bloom (data size for each level:	𝐿D = 210, 𝐿@ = 	87, 𝐿8 = 	93). The findings 

demonstrated that ADASYN greatly improved the performance of both models in forecasting 

level 1 and level 2 despite decreasing the prediction for level zero. Again, ANN outperformed 

SVM as the optimal model for predicting early warnings. From previous research, SVM 

performed well in predicting the input parameters; however, the inclusion of nonlinear relations 

between variables and outputs was found to reduce SVM’s computing accuracy and efficiency. 

Table 3-5 provides additional instances of the utilisation of AI in the domain of algal detection 

by presenting the employed methodology, duration of time lags, origin of data, as well as the 

anticipated outcomes for both the training and testing phases. As it can be seen, when the 

interval time lag was shorter, more accurate prediction for algae was achieved. Also, SVM 

algorithm shown superior adaptability and predictive performance in comparison to other AI 

and ML algorithms. 
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Table 3-5: Examples of applying AI and ML papers to detect algal based on time interval lag 

Output Method Time 
interval lags 

data Test result Ref 

Predict Chlo-a Forward stepwise, 
simplified weight, 
SVM, ANN 

Short term  Daily 1988 – 
2018 (11293) 

SVM had the highest 
R:0.984 compared to ANN 
(R:0.97) but lower 
RMSE:0.66. 

[213
] 

Predict Chlo-a ELM, M5P Short term Daily (Jan 2013 
- Dec 2016) 

ELM had better 
performance; R2:0.87, 
RMSE:10.7 

[210
] 

Alert level  LH-OAT, pattern 
search algorithm, 
ANN, SVM 

Short term L0:165, L1: 74, 
L2: 115 

SVM outperformed ANN 
in testing phase  

[211
] 

Alert level ADASYN , ANN, 
SVM 

Short term L0: 210, L1: 87, 
L2: 93 

ANN predicted better than 
SVM  

[212
] 

Cyanobacterial 
cell density  

WNN Short term Online Daily  R2:0.986, MARE:0.07 [214
] 

Predict Chlo-a MLR, SVM, ANN Long term Monthly (2000 - 
2017) 

SVM had better prediction; 
R2:0.81,  
RMSE:1.51. 

[215
] 

 

Research to date shows that the choice of factors is crucial. Ye et al. [216] stated that early 

warning systems should be based on input variables that are easily and quickly measurable. 

The classic chemical analysis of nutrients or phosphorus is time-consuming as the process 

requires several days for on-site sampling, transportation, chemical analysis and data quality 

control in the laboratory, which can lead to a time lag. Therefore, the following studies have 

tested the possibility of using real-time online monitoring datasets to predict HAB. 

Xiao et al. [214] developed and validated an innovative single-parameter technique that 

integrates wavelet analysis with artificial neural networks (WNN) to forecast algal blooms 

utilising daily online monitoring datasets of algal density, as shown in Figure 3–7(a). The 

Wavelet neural network (WNN) model process involves breaking down the dataset into a series 

of data at n levels, with approximation at the nth level and details at the 1, 2,..., nth level, before 

feeding those into an ANN and summing the outputs to simulate the original dataset for data 

decomposition verification. Then, the first three wavelet decomposition series’ data were fed 

into an ANN with two hidden layers. The output was compared to the goal series to achieve an 

optimistic network, and the network weight (W) was adjusted between layers. The model 

provided the best forecast, as indicated by the lowest mean absolute error (MAE: 0.103× 10K 

cells mL-1) and Mean absolute relative error (MARE: 0.070) values, as well as the most 

significant correlation coefficient (R2:0.986).  
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In research conducted by Wen et al. [217], a deep learning technique based on a long-short-

term layer (LSTM) was utilised to predict future HABs. The first phase of HAB’s primary 

environmental factors extraction model (HMEM) performs dimensionality reduction to 

eliminate noise and irrelevant variables or features from a maritime station monitoring dataset. 

The Spatio-Temporal Feature Clustering Model (STFCM) differentiates numerous regional 

warning levels of HABs on the basis of space, time, and attributes according to the algal growth 

rate. The continuously obtained time series environmental parameters from Autoregressive 

Integrated Moving Average (ARIMA) are inputted to LTSM to predict algal bloom. Diagram 

(b) demonstrates the model’s steps in Figure 3–7(b). The model was 82.1% accurate in 

predicting the development of Alexandrium.  

 
Figure 3–7: AI model based on time series data to forcast algal bloom, (a)[214], (b) [217] 

 

Classification  

Microscopic examination of water samples reveals crucial information regarding the presence, 

abundance, and viability of microorganisms that can aid in selecting the most suitable treatment 

option in water technology. Convolutional neural networks (CNN) have emerged as a standard 

method capable of processing high-dimensional image data to extract sophisticated features for 

classification and regression treatment strategies. This makes this approach ideal for 
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classification and regression applications. In order to better understand the efficacy of water, 

treatment strategies and the risks connected with algae, taxonomy or classes or genus 

identification is essential.  

Li et al. [218] has demonstrated the effectiveness of a Mueller matrix imaging system coupled 

with CNN in distinguishing morphologically related algae. The dataset comprised eight algal 

species and one cyanobacterial species, with each species having 10,463 The integration of 

Mueller matrix with CNN has yielded excellent accuracy and F1 score (ACC: 97%, F1: 0.968); 

however, the research has highlighted limitations in correctly classifying Thalassiosira 

eccentrica due to an imbalance in the data, representing only 0.9% of the total data. 

The dataset consisted of 37 species of algae belonging to six biological groups. However, due 

to data imbalance, ten genera were merged into one class. The study achieved a Mean Average 

Precision (mAP) of 74.64% for algal detection based on genera and 81.17% for algal detection 

based on class. The study has also identified data quality as a critical challenge in the 

classification of algae. A significant proportion of undetected algae are transparent and fade 

into the background, while occlusion due to the overlap of algae with other objects is also a 

significant issue. Misclassification can occur due to the similarity in shape and class, as evident 

in Figure 3–8.  

 

 
Figure 3–8: Samples of the obtained algal detection where the first two rows represent accurate 

classification and detection outcomes. The last row depicts three different sorts of inaccurate 
forecasts. From left to right, unidentified algae, algal blockage, and misclassification are the three 

types of inaccuracy [219] 
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Similar challenges were observed in Qian et al.’s research [219], in which a Faster R-CNN 

architecture was utilised to categorise large-scale coloured microscopic pictures. The dataset 

consisted of 1859 high-resolution microscopic images of 37 species of algae in six biological 

groups; however, due to an imbalance in the data, ten genera were amalgamated into one class. 

The Mean average precision of predictions with IoU >= 50% (mAP) is 74.64 percent for algal 

detection based on genera and 81.17 percent for algal detection based on class. The quality of 

data was also identified as a difficulty connected with the classification of algae in this study.  

The majority of unaccounted algae after detection would transparent and faded into the 

background. Additionally, algae can overlap with that of other objects and algae present 

leading to occlusion. Another issue is misclassification that may occur as a result of similarity 

in class and shape. These previous issues are shown in the last row of Figure 3–8.  

When the deep learning-based ResNeXt CNN model was used to detect and categorise 16 algal 

families, Yadav et al. [221] observed that a few photos were misclassified due to 

commonalities, including filamentous morphological form and the presence of helical 

trichomes. Although the model achieved an impressive F1-score of 99.97%, the families 

considered in this study exhibited relatively fewer commonalities, leading to very low false-

positive values compared to true positive values. 

Deglint et al. [220] studied the viability of employing ML and fluorescence-based spectral-

morphological characteristics with Feed-Forward Neural Networks to enable the identification 

of six distinct species of algae. Initially, an algae-containing water sample was observed with 

a multi-band fluorescence imaging microscope. The data was subsequently processed using 

data processing methods to eliminate the background, as shown in Figure 3–9. The processed 

data was next split into background objects and micro-organism objects, followed by the 

isolation of individual algae. The isolated microorganism imaging data was then used to extract 

a variety of morphological and spectral fluorescence features. The retrieved characteristics 

were then utilised for training three distinct neural network models. The third model, which 

used morphological-spectral features for its training showed considerably greater average 

accuracy as well as lower standard deviations equal to 96.1%	 ± 0.8%.   
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Figure 3–9: Water sample, multi-band fluorescence image microscopy data processing, image 

segmentation, feature extraction, and neural network models are the five basic components of the 
proposed technique of automatic identification of different types of algae specie [220] 

CNN requires a substantial amount of data to train the systems. Therefore, augmentation 

methods have been applied to increase the size of data and improve the accuracy of CNN. Park 

et al. [222] conducted research on the morphological identification of algae in the management 

of drinking water treatment processes using Neural Architecture Search (NAS) for CNN. The 

Flow Cytometer and Microscope (FlowCAM) were used to acquire 1922 pictures, which were 

subsequently augmented to 7701 by mirroring, rotating, and top-down flipping. However, the 

original data in the convolutional neural network constructed by neural architecture search 

(NAS) outperformed the augmented data. In recent research carried out by Sonmez et al. [223], 

two distinct classification algorithms were employed to determine if the acquired algal picture 

belonged to the Cyanobacteria or Chlorophyta microalgae categories. Compared to the CNN 

model, the AlexNet-SVM structure with the cubic kernel function delivers greater 

generalisation and classification accuracy (Acc:99.66%) for the augmented dataset. 

 

3.3 Effectiveness of Artificial Intelligence VS Conventional 

Modelling 

The conventional engineering modelling approach necessitates the incorporation of several 

assumptions to simplify the complexity of the system. Such simplifications may lead to 

discrepancies between theoretical models and experimental observations, resulting from 

insufficient knowledge of the system’s complexity, thereby impacting model accuracy. 

Conversely, various AI applications have demonstrated their capacity to address the challenges 
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of complex modelling scenarios [147]. Furthermore, AI and ML tools eliminate the 

requirement for in-depth comprehension of the engineering process. They do not depend on 

detailed assumptions or governing equations for mathematical descriptions of engineering 

phenomena. By learning from provided dependent inputs and independent outputs, these 

algorithms can understand and model complex systems [224]. 

Research work by Khayet et al. [225] utilised both conventional modelling and ML. Response 

surface methodology (RSM) and ANN were applied to predict and optimise the performance 

index of RO. Operational conditions, including feed concentration, flow rate, feed temperature, 

and operating pressure, were presented as input variables, while the performance index defined 

as permeate flux multiplied by salt rejection, was considered as output. The response surface 

methodology (RSM) approach was not successful in developing a global model that could 

predict the performance of RO across a wide range of salt concentrations in the feed solution 

compared to an ANN, which was capable of doing so. In addition, ANN predicted the optimal 

global solution for the tested RO pilot plant.  

Algal blooms are a complex phenomenon caused by more than 180 different species of algae, 

each with unique environmental requirements. The maritime station monitoring (MSM) 

approach typically uses nitrogen and phosphorus indicators as measures, rather than other, 

more pertinent main environmental elements (MEFs). It is possible that some places where 

HABs are initiated are not being monitored because MSM measurement points are not only 

spread out over the ocean but also have an extended period [217]. Remarkably, AI and ML 

have demonstrated the ability to forecast and differentiate between various types of algae using 

different techniques, as highlighted in the literature review of algal studies. This is a noteworthy 

accomplishment, considering the intricate interactions between marine environments and their 

constituent parts. 

Continuous monitoring of Transmembrane pressure (TMP) and permeate flux helps prevent 

membrane fouling. Most model-based control systems compare flow drops to data simulated 

by mechanistic models like cake filtration and total blocking in an attempt to identify the 

overall membrane fouling process based on real-time data. Once the primary fouling 

mechanism for the system has been identified, the optimum control actions can be adopted. On 

the other hand, there are potential downsides to using online data in this manner, as the 

membrane permeate flux may be affected by factors other than the mixed liquid filterability, 

such as membrane history. Given that it is unclear whether the current high fouling propensity 
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or the cumulative effect of earlier fouling occurrences is responsible for the decrease in 

membrane permeability, the optimum decision may not be taken [184].  

A CNN is a possible approach that can provide the possibility of identifying, using image 

simulation and segmentation, the causes of fouling and the beginning of particle accumulation 

on the membrane surface. Using in-situ fouling image data from optical coherence tomography 

(OCT), Park et al. [169] trained a deep neural network (DNN) to simulate membrane fouling 

and flux decline in NF and RO. OCT is a non-invasive imaging technique that has been recently 

applied in the field of membrane fouling monitoring. It involves the use of a light beam that is 

split into a membrane cell and a reference arm. The backscattered beam from the membrane 

cell is then combined with the reference beam to create an interference spectrum which is 

subsequently Fourier-transformed to obtain a 3D view of the fouled surface [64]. By providing 

a high-resolution image of the membrane surface, this method can be utilised to monitor any 

type of fouling and detect small changes to the membrane’s structure. OCT has substantial 

potential for improving membrane-based processes’ efficiency and performance by monitoring 

and analysing membrane fouling in real time.  

The use of OCT to monitor and analyse membrane fouling in real time has great promise for 

improving the efficacy and performance of membrane-based processes in a wide range of 

applications. In this study, a comparison was made between the DNN model’s results and those 

of pre-existing mathematical models. Totalling 13,708 photos, high-resolution photographs of 

the fouling layer were used to train and test the DNN model. The DNN model recreated two-

dimensional and three-dimensional representations of organic fouling growth after it was 

trained to simulate both the development of organic fouling and the reduction of flux, as 

illustrated in Figure 3–10. The DNN model outperformed the prior mathematical models in 

terms of the accuracy of predictions. For fouling increase, it achieved an R2 of 0.99 and RMSE 

of 2.82 µm; for flux reduction, it achieved an R2 of 0.99 and RMSE of 0.30 Lm-2h-1. According 

to the model, both cases exhibited a comparable pattern at the initial phase of fouling 

development, while distinctions in the patterns surfaced in later stages. Therefore, the model 

has demonstrated its capacity to deliver estimations of fouling growth with reasonable 

accuracy, at least for short-term projections. 
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Figure 3–10: Comparison of 3D simulated and observed fouling images regarding thickness 

estimation for NF membrane (NE 90, Toray, Japan) and an RO membrane (RE SHF, Toray)[169] 

The synergistic integration of AI and desalination and water treatment technologies has sparked 

great interest in recent years, holding significant promise for predictive and classification 

applications in certain areas of the field. Nonetheless, while initial results in some areas have 

been encouraging such as algae and membrane morphology, the majority of the 

aforementioned findings on RO performance could be anticipated by virtue of the well-

established and accurately modelled underlying engineering principles, rendering conventional 

approaches sufficient for this purpose. 

 

3.4 Challenges of Adapting AI in Water Technologies  

The integration of AI into water treatment technologies presents substantial obstacles in 

achieving sustainable operational efficiency. The following discussion explores the limitations 

between these two sectors based on recent publications and observations. 
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The adoption of ML algorithms faces limitations attributed to their inclination to deviate from 

intended outcomes in response to unanticipated changes. For example, the effectiveness of 

ANNs is contingent upon the quality of input data, which may lead to imperfections in their 

prediction processes under specific circumstances. Furthermore, the reproducibility of ANNs 

is unsatisfactory as the weights and biases among neurons tend to converge upon suboptimal 

solutions arbitrarily [226]. 

In engineering fields, the abundance of available data obtained from instruments and sensors 

is a commonality. However, this is not the case for the water treatment industry. The lack of 

annotated, informative datasets in the water sector presents a challenge for the precise 

application of AI and ML in optimising water treatment technologies, such as desalination. 

Many water treatment and desalination plants are operational worldwide and generate large 

volumes of observed data. Water utilities receive data from supervisory control and data 

acquisition (SCADA) systems, such as flow statistics, online monitoring, sensor 

measurements, dissolved oxygen (DO) measurements, and air flows, as well as data from 

laboratory information management systems (LIMS) and computerised maintenance 

management systems (CMMS) [227]. Although this data provides significant insights into 

fundamental operations, it is commercially valuable and not readily available to the public. 

Consequently, most of the available data originates from small-scale experiments conducted in 

different studies. This compromises the precision and reliability of any ML models developed. 

Therefore, having effortless and uniform access to data from existing plants that are operational 

could significantly improve the application of AI and ML in the sector.  

In the field of engineering, data collection involves various methods. Three commonly adopted 

techniques include retrospective studies, observational studies, and designed experiments. 

Retrospective studies employ historical data collected from various research studies to examine 

the relationship between variables [228]. However, such studies may include irrelevant 

information and overlook critical data, rendering the approach inappropriate for data collection 

related to a specific problem or relationship. Thus, it is crucial to ensure that retrospectively 

obtained data is still applicable to the case and that the objectives to be achieved are not 

significantly different to avoid inaccuracies. Moreover, different experiments, tasks, and 

businesses may require distinct approaches to data collection, including real-time analysis or 

the selection of the most accurate data collection and transmission intervals. Setting the 

appropriate time interval in data collection is crucial, as long intervals might compromise 

capturing the changes occurring while running the experiments, or shorter intervals can 
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overload the system with a large amount of data. Sampling frequency should be representative 

of system and seasonal changes. 

In the domain of data collection, sensors have a strong contribution to the quality of data. The 

type of sensor selected for a given application has a direct impact on the accuracy of data 

collected and the data cleaning process. Failure to use an appropriate sensor type can result in 

erroneous data that requires additional cleaning steps. Additionally, sensors are susceptible to 

malfunction, resulting in the collection of irrelevant or irrational data. Over time, sensors may 

experience drift, which can lead to a drop in sensitivity and reading capability [229]. 

Occasionally, sensors may collect incorrect or missing data without an obvious explanation. In 

such cases, the researcher must use common-sense judgement to determine whether the error 

is due to sensor issues or other factors related to the experiment setup. The use of appropriate 

sensors is critical for the smooth operation of desalination facilities. Taweelah, a desalination 

plant located in the UAE, utilises more than 300 sensors, including specialised sensors 

designed to function in brine [230]. To ensure reliable data collection, regular cleaning, 

calibration, and validation of these sensors are necessary. However, this can be a costly process 

that may hinder the development of advanced AI and ML techniques. 

Insufficient data quality is a common issue that manifests through numerous defects such as 

missing data, inconsistencies, errors, repetitions, and age, which reduces the credibility and 

reliability of data for decision-making. Despite advancements in computing technologies, 

many organisations still struggle with data quality issues that have persisted for years. The 

acquisition and upkeep of precise consumer data require substantial time and labour 

investments. It is also challenging and costly to combine customer data from different sources, 

resulting in data silos and duplications. Organisations often overestimate the quality of their 

data and underestimate the consequences of its shortcomings. Misleading data can have severe 

repercussions, including project cancellations, revenue loss, strained customer relationships, 

and customer churn. According to a report by the Data Warehousing Institute (TDWI), 

inadequate data quality costs American businesses an estimated $700 billion annually [231], 

in 2016 IBM estimated that these data cost $3.1 trillion [232]. Hence, it is imperative to 

recognise the consequences of  planning, implementation, and long-term of AI technologies in  

operation of desalination and water treatment plants.  

The quality of source water can be influenced by the environment surrounding it. Researchers 

have extensively investigated the seasonal variations in water quality parameters, fouling 

deposition, and operation costs of desalination plants [233], [234], [235]. Such applications 
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demand a dataset that captures all changes occurring throughout the year. For example, in an 

attempt to estimate trihalomethanes (THMs) in drinking water, Mahato and Gupta [236] 

evaluated the applicability of three different models, namely neural networks, SVM, and 

multivariate linear regression. Data from five major water utilities situated in distinct states 

across India was gathered for two seasons: pre-monsoon (PrM) and post-monsoon (PoM). The 

data were divided into two sets, PrM and PoM, for model development and validation, 

respectively. However, the results of the study revealed that the models failed to accurately 

predict the THMs, which necessitated a change in approach. Consequently, separate models 

were constructed to predict THMs for each of the two seasons, PrM and PoM. This study 

underscores the significant impact of dataset size, quality, variety, and structure on the 

performance of ML and AI models. 

It is essential, that in the field of ML, model performance should be optimal and maintained to 

perform well throughout the stages of development, testing and production. This requires a 

training dataset that accurately represents the actual datasets that the model is expected to 

encounter. In the context of algae classification, it is estimated that there are anywhere from 

30,000 to over a million species, with diatoms alone comprising over 200 thousand species 

[237]. The classification of these algae species is based on their distinct characteristics and 

environmental factors. However, the parameters used to differentiate these species can vary 

depending on the study, including the location of the area analysed or the source from which 

the data was collected [217]. This introduces the possibility that ML models may not capture 

the relevant information needed to generalise and accurately predict new data if the training 

dataset is not comprehensive enough or if important parameters are omitted. Additionally, 

different governing bodies may have different strategies and specific parameters for collecting 

data. These strategies may not capture the correct information that can help ML develop a 

model that can generalise or predict accurately when given new data. 

Another limitation is that ML and ANN models are time-consuming and require a large amount 

of data to be able to give an accurate estimation [226]. Insufficient data may lead to a poorly 

fitted model, resulting in underfitting or overfitting. Over-constrained and under-constrained 

models will result in underfitting and overfitting of a small training dataset, respectively. 

Therefore, both conditions have poor performance. In a study, Zhang et al. [238] carried out 

an investigation on whether the water quality of the source has an influence on the water 

production capacity of drinking water treatment plants using a hybrid statistical model named 

HANN that combines ANN and GA algorithms. Four hundred and ninety-eight datasets from 
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45 DWTPs were used to train the model; however, the result showed that feeding more training 

datasets significantly increased the model’s prediction from 0.71 to 0.93 (R2) [238]. 

The processing of an extensive dataset typically necessitates the use of specialised data storage 

techniques or cloud computing. Nonetheless, large subsets can complicate infrastructure 

building and lengthen training periods. Processing very large quantities of data or records might 

likewise take very long periods of time [239]. In another study, Roccetti et al. [239] attempted 

to predict the failure or replacement of water meters using a recurrent deep neural network. 

The work involved 15 million readings collected from one million water meters across North 

Italy to train the model. The comprehensive dataset resulted in nonpositive prediction due to 

poor attention given to the quality of analysed data [239]. Therefore, a new methodology was 

established based on new semantics that were enforced on the training data. This allowed only 

representative samples of the complicated phenomena of faulty water meters to be extracted. 

By utilising data sets of the appropriate size and diversity, ML models’ efficacy in the water 

domain can be improved.  

ML holds great potential for identifying pipe failures, but its accuracy in prediction is currently 

hindered by challenges associated with the data’s nature and complexities linked to imbalanced 

data, as well as various components associated with the cause of pipe failure. Studies [200], 

[203] demonstrate that characteristics such as age, material, length, and diameter play a critical 

role in predicting pipe failure. The other environmental and operational factors utilised for 

modelling were found to be irrelevant throughout the studies. However, it is important to note 

that each material has unique properties that contribute to pipe failure and distinguish it from 

other pipe materials [240], [241]. Fault detection and anomaly detection also involve a 

significant amount of unbalanced data due to the likelihood of fault occurrence. Consequently, 

the precision of ML models may be reduced, particularly in comparison to conventional 

management techniques. Before applying ML algorithms, it is important to consider additional 

factors to prevent poor fault prediction for pipe failure, detect anomalies, and select input 

parameters that can capture the correct relationship. 

The water treatment process is vulnerable to the risks associated with AI’s unexplained aspects. 

A lack of transparency and explainability in an AI system, for instance, can make it difficult 

for operators to grasp how the system is generating decisions and spot any faults or biases it 

may have. There is also the risk associated with data breaches and cyberattacks if the data used 

by the AI system is not adequately protected. To mitigate risks while maximising advantages, 
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the desalination and water treatment industries must apply AI in a transparent, explainable, and 

ethical manner. 

In conclusion, despite the significant progress accomplished in applying ML to water treatment 

and desalination technologies, several challenges still remain to be addressed and overcome 

before these models can be effectively implemented in real-world settings. One of these 

challenges concerns the lack of exposure of these models to actual operating conditions. Due 

to variation in demand by consumers as well as other factors,  desalination and water treatment 

facilities face major impacts, and in turn affect the performance of ML models. It is necessary 

to test models with real-world scenarios to determine the validity and optimal deployment of 

such models. Furthermore, it is important to consider user-friendliness of the model; 

researchers must aim to develop easily accessible tools for their utilisation by operators of 

water treatment systems. To this end, the ACCIONA [242] company’s AI initiative in the Umm 

Al Houl desalination plant provides a promising example of how ML models can be 

implemented in a practical context. The Maestro AI platform processes operational data in real-

time, allowing for predictive, autonomous, and continuous optimisation at scale, which in turn 

lowers operational costs while simultaneously improving output, plant dependability, and 

water quality. However, there is no clear documentation regarding the followed approach and 

the advancement of the model in the desalination plant. At this stage, it remains unclear how 

the operators of treatment systems can utilise these introduced models to improve the 

performance of treatment systems. 

3.5 Research Gap and Problem 

Desalination technology is a continuously growing approach in coping with water supply 

shortages in many regions of the world [36], [243]. The establishment of a desalination plant 

is a complex and extensive process in selecting the most suitable system configuration given 

the environmental and economic conditions to deliver both a sufficient and a sustainable supply 

of clean water [40], [204], [244]. There is a lack of a standardised approach in this selection 

and design process. Consequently, there is a need to develop a standardised approach with 

user-friendly tool support to enable system design that takes account of site-specific conditions 

and that is flexible with regard to data availability limitations commonly seen in the sector. AI 

and ML tools have not been utilised to their greatest capability to potentially create an 

algorithm that would factor in multiple aspects and parameters in the design of a desalination 
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plant employing the most appropriate and cost-effective technology suited to the region and its 

needs. 

Several academic publications [30], [36], [46], [245], [246], [247] have researched the 

theoretical and practical aspects of the key stages in the SWRO process: the intake system, 

pretreatment, RO, and posttreatment stages However, there is an absence of tools that can 

effectively establish connections and dependencies between these sub-systems and other 

influential factors, including water quality, geographical features, environmental 

considerations, technical constraints, and the other potential challenges faced by the available 

technologies. . Figure 3–11 shows some examples of possible configurations of these sub-

systems. It is not currently possible to represent, and interrogate, the entire desalination system 

with all its inherent interdependencies and complexities; this research seeks to address that gap.  

 

Figure 3–11: Examples of different possible configurations of SWRO desalination plant 

The literature research (Chapter 2) indicates a gap in the field of life cost analysis for SWRO 

desalination plants. The current tools exhibit several constraints, which can be attributed to 

either their outdated structure or their reliance on empirical data. Outdated tools may not 

accurately reflect the current technological landscape and advancements in SWRO 

desalination. On the other hand, tools based on empirical data may lack the capability to 

provide a detailed and comprehensive understanding of the various cost factors involved in 

SWRO desalination plant design and operation. There is an opportunity to enhance the current 
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life cost analysis tools that can effectively handle the complexities of SWRO desalination 

processes. This tool should take into account many elements like advancing technologies, 

operational parameters, and emerging cost considerations. 

3.6 Proposed Solution 

A data-driven approach can provide a holistic, analytical perspective to desalination plant 

design. By utilising real-time sensor data, historical operational datasets, and standard rules 

and principles identified by previous studies, algorithms can be developed to advise on each 

step of the desalination design process. The inputs of water quality, location attributes, 

regulations, costs, and technical specifications can be used to tailor configuration process and 

operational parameters. As the plant operates, continuous measurement, monitoring, and 

optimisation guided by models further improves performance and reliability. This data-centric 

approach combines both domain expertise and data analytics to standardise desalination 

process selection and operation. It enables customisation to unique project conditions while 

maintaining consistency and efficiency. 

In this research, a data-driven approach is proposed, using an ontology – a formal 

representation of concepts and relationships within one particular domain. While traditional 

relational data models have proven useful for capturing and organising operational data from 

desalination facilities, an ontological approach provides additional advantages for a 

comprehensive process selection and optimisation system. An ontology represents knowledge 

of the desalination domain as a graph of interconnected entities and rules, mirroring how 

human experts conceptualise information. With an ontology, the interdependent relationships 

between intake methods, pre-treatment steps, membrane types, post-treatment needs, and the 

multitude of influencing factors can be encoded, enabling more complex analytical reasoning 

to be performed. Therefore, a knowledge representation can be developed that ensures a 

common understanding of information and unified domain assumptions within the SWRO 

desalination plant. The main objective is to produce a standard knowledge base for modelling 

within the SWRO desalination domain that could be further reused for other use cases. 

This research also demonstrates an intuitive life cost analysis model, implemented in Python, 

for designing each process and subprocess within the SWRO desalination plant. The tool will 

allow users to select specific parameters for the process, generating detailed designs 

encompassing structural aspects, operational parameters, and a comprehensive breakdown of 
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costs, including both capital and operational expenditures. Additionally, the tool conducts a 

sensitivity analysis tailored to the user's case, enhancing its functionality and adaptability. 

This chapter has reviewed the relevant literature utilising AI and ML techniques to address 

related issues in the water treatment and desalination domains. It is clear that such technologies 

have great potential to improve our ability to understand, assimilate and model desalination 

processes with the outcome of improving the holistic design of such systems and ultimately 

their effectiveness and economic viability. The next chapter presents the ontology created to 

model the complex systems, ontoSWRO. 
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Chapter 4  

OntoSWRO  

This chapter describes the process of developing OntoSWRO and evaluates its potential utility 

using two distinct case studies. Section 4.1 outlines the specific advantages that knowledge 

modelling using ontologies offers and summarises previous work in domains related to 

desalination. Section 4.2 outlines the methodology used to develop OntoSWRO including the 

use of the Protégé tool, Section 4.3 presents the approached followed in building the 

vocabulary,  while Section 4.4 provides an overview of the ontology, which can also be 

accessed online. Case studies are used to demonstrate the utility of the proposed ontology in 

understanding design decisions for a holistic view of SWRO (Section 4.5 ). The graphs 

presented in the cases will not cover all the detail and information that are captured by the 

ontology due to the limitation of size of picture and clarity. OntoSWRO is available at 

http://github.com/suzannelittle/ontoswro  

 

4.1 Ontology 

Ontologies offer a systematic and standardised vocabulary for defining concepts, relationships, 

and properties in a particular field. More than a controlled vocabulary, ontologies are intended 

to enable intelligent web-based agents to comprehend and process information [248]. This is 

achieved using standards to create a shared framework for expressing and capturing knowledge 

that is accessible to both machines (software agents) and humans [249]. An ontology is, 

therefore, a formal and explicit description of a domain of knowledge that enables better 

integration, richer search and reasoning capabilities using data. 

Ontologies are typically coded using a formal language like the Web Ontology Language 

(OWL) and recorded in a syntax like the Resource Description Framework (RDF) [250]. This 

enables the description of resources (concepts) using subject-predicate-object triples to capture 

the relationships (predicate)[251]. OWL therefore enables the formal and structured definition 

of classes, properties, individuals and relationships, and supports different levels of 

expressivity from basic taxonomies to advanced logical reasoning. Ontologies can either be 

http://github.com/suzannelittle/ontoswro
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integrated with software, e.g., for decision support and reasoning, using APIs (e.g., Owlready2) 

or the RDF representation can be queried directly using a query language like SPARQL 

(SPARQL Protocol and RDF Query Language [252]) to retrieve matching patterns [253]. 

Additionally, inference engines and reasoning systems employ logical rules to deduce new 

information from existing data, relying on the axioms of the ontology [254]. This enables the 

automated deduction and discovery of implicit relationships. 

Ontologies provide additional functionality that enables the capturing of more expressive 

semantic relations, better integration by using unified concepts, rich inferencing and reasoning 

capabilities and the flexibility to grow and adapt data models. These advantages have been 

exploited in various domains related to water treatment, including water [255], [256], [257], 

wastewater treatment [258], [259], [260] and environmental evaluation [261], [262], [263]. 

Cabezut-Boo and Sánchez-Aguilar [264] constructed a knowledge base with the purpose of 

generating a domain ontology for waste water treatment plants (WWTP). Their attention was 

specifically on two technologies: an activated sludge facility and a stabilisation lagoon. Sottara 

[265] conducted an examination of WWTP and developed a tailored framework for the WWTP 

field, aiming to offer a coherent depiction of the instrumentation (including sensors and 

probes), actuators, and data gathering systems [265]. The objective of this study was to develop 

an ontology that could provide the necessary concepts and terminology for the formalisation 

of a domain expert’s expertise in the field of plants and their management strategies. 

Furthermore, this technology enables the expression of knowledge in a standardised format 

that can be easily exchanged and utilised across various industrial facilities and their automated 

control systems.  

In other research, a semantic framework was devised to enhance the management of water 

quality [266] by improving data integration options. This study involved the integration of 

three distinct ontologies, namely the ontology for real-time observational water quality data, 

the regulations ontology, and the polluters ontology, along with the incorporation of water 

expert rules. These individual ontologies were merged into a unified ontology, another key 

advantage of ontologies. Xiaomin et al. [267] developed an ontology model specifically 

tailored for the purpose of monitoring river water quality. This model aimed to describe river 

water quality data using semantic features, thereby establishing semantic connections among 

various concepts within the area of river water quality monitoring.  Similarly, Grimaldi [268] 

proposed a data model that employs an ontological approach to cater to the distinct 

requirements of the Integrated Water Service (Italian Ministry of Infrastructures and 
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Transport). The purpose of this model is to facilitate the assessment of key macro-indicators 

and the creation of compatible datasets, in accordance with the specifications outlined in the 

ARERA resolution. This model also supports the overarching objective of the Sistema 

Informativo Nazionale Federato delle Infrastrutture (SINFI) to effectively oversee and 

supervise all infrastructure and underground utilities interventions through a unified dashboard.  

4.2 Knowledge Modelling and Ontology Development 

An approach was applied to utilise linked data and graph database technologies to capture the 

knowledge and relationships related to SWRO desalination facilities. The employment of 

ontologies is anticipated to yield the creation of a standardised and user-friendly model of the 

terminology and relationships that can be used for more complex applications. Figure 4–1 

presents a graphical illustration of the phases involved in the process of constructing the 

ontology, highlighting the data structuring processes. Subsequently, the last step involved the 

translation of data to software capable of facilitating the creation of the ontology structure.  

Section 4.3 explained in detail the type of information that were gathered to develop 

OntoSWRO. 

The initial phase (1) of developing the SWRO ontology was the gathering of a substantial and 

diverse array of pertinent material from reputable sources. Thorough research was conducted 

on each sub-system and process of the desalination plant, encompassing a comprehensive 

examination of all relevant aspects, including scientific and engineering first principles models. 

Following this, a preliminary brainstorming session was conducted to capture specific details 

related to these processes (2). 

Subsequently, the data was systematically arranged into numerous tables to combine relevant 

parameters (3). However, the utilisation of tables as the primary form of visualisation presented 

difficulties in comprehending the interconnections and integration between these processes. 

Additionally, it was challenging to establish the necessary data properties, relationships, and 

categories.  

As a result, a diagrammatic approach was employed, wherein each class was represented as 

nodes and their interconnections were indicated by arrows Figure 4–1 (4). The meaning of each 

arrow and the arrangement of information beneath these nodes were carefully established. By 

following these steps, a thorough examination of the existing data, its interconnections, and 

any gaps in the connection between data and processes was conducted. This approach 
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facilitated the identification of further data that required collection. During this phase, the 

vocabulary and taxonomy of the SWRO ontology were systematically organised and 

structured. The process encompassed the establishment, grouping, and optimising of relations 

and data properties and determining which elements should be classed as classes and which 

should be designated as data properties.  

 

Figure 4–1: Phases involved in data structuring processes.1. Data gathering, 2. Brain storming 3. 
Structuring the data into table and 4. Organising the data into node and relationship. 

Protégé (version 5.5.0) is an ontology editor and framework that is freely available and open-

source. The purpose of this tool is to facilitate the development and administration of 

knowledge frameworks [269]. This feature is particularly advantageous for tasks related to 

semantic web development, knowledge representation, and ontology modelling. The software 

offers a comprehensive platform that enables users to establish definitions for concepts, 

entities, relationships, and constraints within a structured framework. Protégé is equipped with 

the capability to accommodate a range of ontology languages, one of which is OWL [270].  
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Protégé was used to create nodes and relationships, where each node represents an entire sub-

system or process of the desalination process, and within each sub-system are multiple nodes 

representing the parameters and factors associated with those. The classes generated in Protégé 

were structured in a manner similar to Figure 4–2 and up to Figure 4–6. The various colours in 

these diagrams indicate the distinct categories of parents and children within the hierarchical 

structure of the desalination ontology. This structure facilitates understanding of the ontology, 

ensuring that users from diverse backgrounds may easily grasp the logical progression. 

In this research, the ontology structure developed, referred to as OntoSWRO, was rigorously 

validated and assessed within Protégé. Due to challenges in acquiring detailed design 

information for large-scale implementations, real-world desalination cases at a smaller scale 

were utilised as the basis for evaluation. To thoroughly test the capabilities of OntoSWRO, 

three specific cases were constructed. These cases were designed to reflect complex scenarios 

that a desalination plant might encounter, allowing observation of how the ontology could 

handle these challenges and offer feasible solutions. 

To carry out the evaluations, various features and tools available in Protégé were employed. 

These tools enabled effective simulation of the scenarios and analysis of the ontology’s 

response to each situation. The specific tools and methods used in these evaluations are detailed 

in Section 4.4, where it is explained how each feature contributed to the assessment process 

and helped validate the functionality and applicability of OntoSWRO in practical settings. 

 

4.3 Vocabulary Development and Data Structuring  

This section will provide an overview of the steps involved in the development of the ontology, 

with a specific emphasis on the vocabulary and knowledge that were examined and acquired. 

The data collection procedure started by aggregating data from many sources, including a 

variety of relevant books, papers, and other scholarly works. The primary emphasis was placed 

on the examination of water quality and the many equipment choices available for each step of 

SWRO desalination. These sub-systems and processes include the intake system/discharge, 

pretreatment, chemicals, RO, and posttreatment as illustrated in Figure 3–11. 
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4.3.1 Scale of Desalination Plant 

The size of a SWRO desalination plant can be categorised into one of three scales: small, 

medium and large. Studies and books have varied in their classifications of desalination plants 

in terms of their scale (i.e. providing different range definitions for the terms small, medium or 

large). Based on an extensive survey of existing research [87], [271], [272], [273], [274], a 

small-scale desalination plant is defined as a capacity under 5000 m3/day, medium scale 

capacity ranges between 5000 and 80,000 m3/day and any capacity above 80,000 m3/day is 

regarded as large scale.  

4.3.2 Intake and Discharge Sub-systems 

The design of the intake system plays a crucial role in determining both the quantity and quality 

of the feed water. It is essential for this design to strike a balance between the requirements and 

priorities of the local community and the surrounding ecology. The factors considered are: site 

circumstances, technology options, permit requirements, environmental implications, 

stakeholder values, and utility limitations and interests [204]. This research was placed on 

examining the factors of site circumstances, technology alternatives, and environmental 

implications. This choice was motivated by the recognition that regulations and contractual 

agreements pertaining to desalination may vary across different countries [275], [276], [277]. 

The same approach was implemented for the discharge process. The permissible maximum of 

salinity concentration that can be discharged into the sea differs across different countries, 

resulting in varying regulations and permitting processes. 

Constructing the ontology for the intake system entailed the collection of an extensive array of 

data points, including several facets of the system’s design and operational as depicted in 

Figure 4–2. The information encompasses several aspects linked to water intake, including 

water quality, geographical coordinates, desalination scale and type, TDS levels, depth, 

performance metrics, environmental effect evaluations, and accessibility for cleaning and 

maintenance [204], [272], [273], [278], [279], [280], [281].  

Furthermore, comprehensive data was gathered pertaining to the screen component of the 

desalination plant [282], [283], [284]. This data encompassed the scale of the plant, the type of 

screen utilised, the type of intake employed, the precise location and orientation of the screen, 

its installation position, its function within the system, the specifications of its mesh (including 

opening, width, and length), its head loss characteristics, the accessibility for cleaning 

purposes, the flow rate it can accommodate, and any distinctive properties that set it apart from 
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alternative screen options. In addition, the pump station [278] [30] entails other significant 

aspects, including the type of intake, its position, the depth of the well, the layout of the intake 

pump, the advantages it offers, the dangers associated with corrosion, the maintenance 

requirements, the types of pumps utilised, and the provisions for accessing maintenance. 

Within the domain of chemical systems, pertinent details comprise chemical dosage and 

concentration, duration and frequency of administration, as well as the desired aim of the 

chemical treatment. 

 

  

Figure 4–2: Intake system structure 

A discharge system may use various methods for the disposal of brine. However, the selection 

of these methods (shown in Figure 4–3) has been restricted to three prevalent processes that 

manage the salinity levels of brine. The ontology related to the discharge management system 

was developed through the compilation and organisation of a dataset. The dataset included 

important data such as the discharge system type, brine concentrate characteristics, brine 

quality parameters, desalination operation scale, environmental impact assessments, 

geographical locations, design criteria, outfall pipe specifications, outfall diffuser features, 

maintenance requirements, dilution processes, water quality considerations, and TDS 

measurements [285][286][30]. 
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Figure 4–3: Discharge management system 

4.3.3 Pretreatment System  

The process of constructing the ontology for pretreatment involved the systematic collection 

and arrangement of a comprehensive set of essential data points. The aforementioned factors 

encompassed various critical parameters pertaining to water quality, the influence of intake 

type on pretreatment processes, the scale of desalination, functional aspects, design 

specifications, chemical classifications, maintenance procedures, cleaning protocols, surface 

loading rates, performance metrics, the number of filter cells, flux characteristics, 

supplementary prerequisites, and other criteria. In addition, these criteria included 

considerations such as the composition of the filtration media layer, its dimensions, thickness, 

elevation, and the effective size for filtration media. The provided information encompassed 

many aspects such as flow rates, loading rates, diameters, and backwash procedures, among 

other relevant characteristics [40], [245], [271], [287], [288], [289], [290], [291], [292]  

 

  

Figure 4–4: Pretreatment system structure  



 97 

4.3.4 RO System 

To develop the ontology for RO, a comprehensive set of data points was gathered and 

organised. These data points encompassed various aspects of the RO system, including 

information on the filtered transfer pump (such as its type, location, operating pressure, and 

performance), the high-pressure pumps (covering details such as type, capacity, efficiency, 

location, and other relevant factors), the RO elements (including configuration, flow rate, 

rejection, water quality, and various membrane specifications), the pressure vessels (including 

information on pressure and material type), the RO system piping (with considerations for 

quality, salinity, and other relevant factors), and the energy recovery devices (ERD) 

(encompassing details such as type, efficiency, coupling position, working mechanism, and 

footprint). 

  

Figure 4–5: RO system structure 

4.3.5 Posttreatment System 

The posttreatment sub-system consists of two distinct steps, namely remineralisation and 

disinfection. This system took into account and examined various factors to acquire a 

comprehensive understanding of the underlying processes. These factors encompassed the type 

of consumable, the percentage concentration and the quantity of chemical involved at each 

process stage, relevant chemical equations for dosing, methods to enhance solubility, cost 

considerations, the system’s footprint, pH levels, maintenance requirements, and specific 

design criteria for the system [30], [293], [294]. 
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Figure 4–6: Posttreatment system structure 

To augment the level of detail associated with individual classes in the ontology, data 

properties and object properties are employed. Figure 4–7 shows examples of object properties 

establishing connections between classes. Additionally, the accompanying table (APPENDIX 

A) give a comprehensive description of each object property, including the potential classes 

with which it may link. This ontology does not include specification of the domain and range 

for these object properties to avoid imposing additional constraints and adding unnecessary 

complexity to the model [295]. 

 

Figure 4–7: Representation of classes and relationships used to build up SWRO desalination 
ontology. 

In the SWRO process, any vocabulary that has numerical value (float or integer numbers) and 

is susceptible to changes in each process or technology has been designated as a data property. 

The ontology encompasses a total of 120 data properties, which serve as representations for 
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various parameters including turbidity, temperature, depth, and so on. The logical axioms were 

formulated based on the data and object properties and classes.  

4.4 Ontology Specification and Verification 

To capture the knowledge modelled in the previous section, a formal ontology was constructed 

using the Protégé tool [269] and defined using OWL. The resulting ontology contains 1,991 

axioms that define the relationships between entities and concepts previously identified. Of 

these, 1,403 axioms are specifically allocated for logical reasoning, which serves to maintain 

the consistency and coherence of the ontology’s conceptual structure. There are 452 declaration 

axioms that explicitly introduce and define classes, properties, and individuals, including 306 

classes that represent different concepts or categories related to SWRO desalination (such as 

classes shown in images in Section 4.3). The ontology includes 131 data properties (such as 

depth, detention time, temperature, etc) that describe attributes and characteristics of classes. 

There are 16 object properties that describe relationships and connections between entities or 

classes in the ontology (such as hasScale). This represents the highly complex 

interdependencies and interactions in the SWRO desalination domain. The OntoSWRO 

ontology is available for public access at https://github.com/suzannelittle/ontoswro 

To examine and verify the coherence of the ontology the Pellet reasoner was used. This step 

was key for the ontology engineering process to guarantee the logical coherence of the defined 

OntoSWRO model. The Pellet reasoner performs an automatic analysis of the ontology, 

detecting and highlighting any inconsistencies, contradictions, or errors present in the axioms, 

classes, properties, and relationships of the ontology. The aforementioned procedure improved 

the correctness of the ontology in terms of representing knowledge, making inferences, and 

facilitating compatibility across different applications and domains. 

The OntoGraf plugin in Protégé was utilised to visually explore the ontology, improving 

comprehension of its structure and relationships and aiming to improve the correctness and 

completeness of the knowledge capture. OntoGraf’s graphical visualisation and search feature 

is highly valuable for understanding ontologies. By utilising the search feature, efficient 

retrieval of a comprehensive list of classes whilst exploring their interconnectedness within the 

ontology was achieved. This facilitated a thorough analysis of the relationships between 

classes, shedding light on the semantic connections among different entities in the ontology 

leading to a deeper comprehension of its knowledge structure.  

https://github.com/suzannelittle/ontoswro
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OntoGraf is primarily used for visualising classes and relationships to understand data 

properties. Therefore, to obtain additional information about constraints and data properties 

associated with classes, simple queries were performed using the Owlready2 library for 

ontology-oriented programming in Python [296]. 

To verify the validity of OntoSWRO, various small cases were employed during the 

development of each system component. Given the challenge of finding detailed, real-world 

desalination scenarios that encompass all necessary data for plant design, these small cases 

were crucial. They ensured that the input data accurately reflected desalination knowledge and 

that the tool was capable of capturing this information to suggest appropriate designs. 

For example, one specific scenario tested the intake system design. The test involved a plant 

with a capacity of 85,000 and design specifications matching those of a vertical well intake 

system, as detailed in APPENDIX F. Despite the expectation of a vertical well being the 

suggested outcome, OntoSWRO recommended an open intake system instead. This 

discrepancy prompted further investigation, revealing that selecting a vertical well for this 

capacity would likely lead to significant environmental impacts and require extensive land for 

the construction of the necessary wells. 

Further research was conducted to understand why vertical wells are uncommon in desalination 

plants with capacities exceeding 80,000, as this contradicted the information found in published 

research [87], [271], [272], [273], [278], [279], [281]. However, no relevant studies provided 

details on the reasons for this choice or any operational implications it might entail. This 

investigation demonstrated that OntoSWRO was successful in capturing the design 

specifications and highlighting potential consequences of selecting a vertical well under such 

conditions. 

4.5  Case Studies 

To evaluate the utility of OntoSWRO and demonstrate the viability of the knowledge 

modelling to assist in holistic design of SWRO plants, three hypothetical cases studies with 

increasing complexity are presented that show scenarios that would be challenging to capture 

and evaluate without the concepts and relationships defined in OntoSWRO. This approach was 

necessitated by the absence of comprehensive, real-world desalination plant scenarios suitable 

for use in this study. As a result, these hypothetical scenarios designed to reflect realistic 

conditions. 
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The first scenario relied solely on OntoGraf, utilising the “expand” feature to establish and link 

relationships between classes. In contrast, the second and third scenarios involved a more 

intricate approach, combining simple querying and graphical representation.  

4.5.1 Case Study 1  

Case 1 Information: 

The first scenario of a SWRO desalination system design requires a production scale of 

25,000m3/day and a recovery rate of 45%. The water quality characteristics include an algal 

count of 30,000 cell/L, a total organic carbon level of 0.8 mg/L, and Silt Density Index value 

of 18, turbidity at 20 NTU, a TDS concentration of 35,000 mg/L, temperature of 25℃	and 

an iron content of 5 mg/L. 

Location-specific features further constrain the design: plant site has a maximum construction 

depth of 40 m and is in proximity to possible ship traffic, approximately 500 meters away from 

the seawater source, with no nearby power plant. The geographical area is characterised by a 

ground transmissivity of 2000 m3/day/m, no space limitation, non-muddy terrain, natural 

wave flushing dynamics, and the presence of limestone while not experiencing beach erosion. 

These essential objectives should be considered while minimising construction costs, 

ensuring a plant lifecycle of 20 years, low energy consumption, minimising solid handling 

requirements, and mitigating environmental impacts.  

Case 1 Analysis: 

The initial design step involves assessing the equipment options for desalination based on the 

scale required. A desalination capacity of 25,000 m3/day falls within the medium scale range. 

Figure 4–8 displays the equipment suitable for medium-scale operations. While some of these 

equipment options may also be suitable for other scales, the focus of the figure is on the 

medium class, thus excluding other scales from the illustration. In the case of the discharge 

system, surface discharge is the only viable option due to the absence of a nearby power plant 

in the surrounding of the desalination plant. 



 102 

 

Figure 4–8: Recommended classes for Case 1 

The water quality assessment indicates the presence of an algal bloom based on the turbidity, 

SDI and higher algal counts compared to standard seawater conditions. These values were used 

to identify the specific classes that exhibit these characteristics. Figure 4–9 shows how the class 

ModerateAlgalBloom is defined and relates to other classes (Algae, ParticlesType). 

 

 

Figure 4–9: Defining specific algal bloom class from connection and data properties 
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The ontology analysis (Figure 4–10) suggests that the subsurface intake method, particularly 

the vertical well, is suitable based on the relevant geographical criteria. The high transmissivity 

of the land makes this approach the preferred solution, as supported by the accompanying 

graphical representation that highlights the challenges of this design [272]. It is important to 

acknowledge that the long-term sustainability of vertical well design poses inherent risks, 

particularly related to increased contamination risks from algae and bacteria [297].  

In this scenario, chemical intake systems and screening mechanisms is considered unnecessary, 

resulting in decreased construction expenses (as observed in Figure 4–10). The cost-saving 

attribute of the vertical well mechanism is due to its inherent filtration capabilities [298]. 

However, it is crucial to acknowledge the elevated iron levels in the water source; therefore 

direct pumping of source water to the RO system can present a significant risk of membrane 

fouling. Pre-treatment measures are crucial for ensuring the effectiveness and durability of 

desalination plants [299]. The OntoSWRO proposed single media filter and cartridge filter that 

can be utilised for this purpose (Figure 4–10). 

 

Figure 4–10: Recommended full design for Case 1 

The selection of the filter type for granular media filtration and posttreatment was based on 

two key factors: low energy consumption and effective solids handling. This inquiry also 

identified two types of RO membrane elements that can be effectively used in the system. The 

graphical representation establishes a relationship between these elements and the low energy 

consumption class, denoted as “hasFeatureOf”. However, the colour of this relationship is 

different due to the particular class expression that was used as shown in Figure 4–11. The 

‘SW30XL400’ membrane element is used for low energy consumption, while the 
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‘SW30HRLE400’ element has both low energy consumption and high rejection rates features. 

This demonstrates the advantages of using class expressions such as “some” and “only” in an 

ontology to specify constraints on relationships between classes. Existential quantification 

(Some), represented as “someValuesFrom” states that there exists at least one individual that 

fulfils a specific condition. The concept of universal quantification (Only), denoted by 

allValuesFrom, asserts that all individuals must satisfy a certain condition. 

 

Figure 4–11:  Ontology’s features in capturing class expression 

4.5.2 Case Study 2 

The water quality was historically studied and assessed over many varying seasons. This was 

carried out to capture and understand the behaviour of the water characteristics to predict any 

feature occurrences. This water quality in this scenario indicates an occurrences of high algal 

bloom, with an algal count of 48,000 cell/L, Chlorophyll-a concentration of 4.8 𝜇𝑔, and  

particle size 90 𝜇𝑚. Other water quality parameters include turbidity levels, which have an 

average value of 32 NTU and reached 100 NTU on specific occasions. The TOC is measured 

at 4 ppm, the SDI is 13, the TDS is 38,000 mg/L, the iron content is 0.8 mg/L, and the 

temperature ranges from 28 to 32°C. The plant is situated on a 32,000 m2 plot of land and is 

about 800 m away from the shoreline. The plant site is an abandoned commercial property 

with an elevation of 12 m above sea level. The location includes seasonal rain patterns that 

contribute to water flowing from a valley into the sea. The desalination plant is located in a 
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Middle East North Africa (MENA) country. The geographical attributes include a ground 

transmissivity of 800 m3/day/m, shallow sand depth, and limited availability of land. 

The desalination plant has a daily production capacity of 120,000 m3. Its main goals are to 

provide consistent water quality, be easy to maintain and operate, use corrosion-resistant 

materials, have a lifespan of at least 20 years, consume low energy, and achieve high rejection 

rates. 

 

Figure 4–12: Equipment recommendation from OntoSWRO based on desalination capacity 

Figure 4–12 presents a suitable equipment recommendation that is specifically designed for the 

scale of this particular scenario. The equipment selection approach in this context followed 

matrix decision-making as seen in Figure 4–13. The method entails assessing each equipment 

option based on specific criteria derived from the scenario’s information. This evaluation 

determines the extent to which the options align with the requirements and their potential 

outcomes. The process involves systematically identifying the optimal equipment 

configurations based on specified parameters and desired outcomes. The matrix for this 

scenario is provided in APPENDIX B. 
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Figure 4–13:Assessing approach followed in Case 2 

 

A visualisation of an example of the Owlready2 querying approach is shown in Figure 4–14. 

 

Figure 4–14: Example of steps for Owlready2 querying approach followed in this scenario 

The final result showed that there are two feasible designs: 

1. First suggestion: Offshore – coarse screen – band screen – dry well pump station – 

Sodium Hypochlorite and Sulfuric Acid – Coagulation – Lamella – gravity dual media 

filtration – Cartridge Membrane –Scale Inhibitors -  RO system – Calcium Addition – 

CO2 -Chlorination – Sulfuric Acid 

2. Second suggestion: Offshore – coarse screen – microscreen screen – dry well pump 

station – Sodium Hypochlorite and Sulfuric Acid – Coagulation – Lamella – UF –Scale 

Inhibitors -  RO system – Calcium Addition – CO2 -Chlorination – Sulfuric Acid 

Both of these designs demonstrate the capability to operate effectively, as evidenced by the 

knowledge captured in the OntoSWRO. When considering these scenarios, designers should 
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take into account the prioritisation and sustainability of the design, potential long-term 

concerns, and the impact of capital and operational cost to make an informed decision.  

4.5.3 Case Study 3 

This scenario differs from the previous two scenarios in several aspects. In this case, the process 

design is in its preliminary stages with limited information available regarding water quality, 

which is described qualitatively rather than quantitatively. The proposed design involves an 

offshore intake facility, including membrane pretreatment, RO, and sewer discharge, as a 

sewage treatment plant is located near the desalination plant. The desalination plant has a daily 

capacity of 5000 m³/day and is situated in an industrial area. The TDS of seawater is 

35,000mg/L. 

The intake structure is estimated to be approximately 1200 m away from the sea, and there 

are space constraints that necessitate a solution with a small footprint. The primary objectives 

for this scenario are to identify the features and potential issues associated with this design and 

develop a comprehensive design that aligns with these considerations while providing practical 

suggestions. 

One noteworthy aspect is the need to minimise environmental impact and ensure resistance 

to fouling. Although the overall water quality is good, there is a recurring issue with oil leaks 

that require special attention in the design process. 

According to OntoSWRO, a daily capacity of 5000 m3 is categorised as small-scale. When the 

phrase “small” is queried using OntoGraf, all classes that include the term “small” are 

presented. Considering the requirement for a small footprint, equipment with small footprint 

features is shown on the right side of the figure, while equipment suitable for small scale is 

presented on the left side.  When the figure is examined, it is apparent that all intake structures 

are suitable for this design. However, in Figure 4–15, it can be observed that vertical wells and 

horizontal directional drilling require more spacious land. 

OntoGraf has limitations when it comes to visualising complex OWL restrictions, particularly 

those involving the “not” keyword, which represents the opposite in OWL ontologies, as shown 

in Figure 4–16. Visualising opposites within constraints can be challenging because it involves 

representing the absence of something. For instance, “hasGeographicalFeature some (not 

(SpaciousLand))” signifies that the class should have geographical features that do not include 

"SpaciousLand”. The visualisation of opposites using graphical tools such as OntoGraf may 
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not always offer an easy or obvious approach, particularly when dealing with complex class 

expressions that contain embedded opposites. 

 

Figure 4–15: All classes with phrase “small” 

 

Figure 4–16:OntoGraf limitation 

In the ontology “OffshoreStructure” is a subclass of “SubsurfaceIntake”, meaning the 

constraints associated with subsurface intakes are inherited by it. This relationship is visually 

represented in the Figure 4–17. The implementation of a screen system is required for an 

“OffshoreStructure”, including a velocity cap and a fine screen to minimise impingement and 

entrainment. In the context of low environmental impact, a suitable choice that meets the 

specified criteria is represented by the “WedgewireScreen” (Figure 4–18). Additionally, 

equipment such as cleaning systems, chemical systems, and mixers should be incorporated 
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with this structure. However, it's important to note that the lack of water quality information 

poses challenges related to algae. Consequently, special consideration should be given to the 

depth at which the intake is installed to minimise the impact of algae on the system [206]. 

 

Figure 4–17: Offshore visualisation 

 

Figure 4–18: Equipment that has low environmental impact 

Membrane pretreatment is one of the systems that was selected and it is an option that is 

suitable for this scale that can deliver good quality and high rejection. Something to be noted 

in that these systems must be equipped with microscreen as a fine screen (Figure 4–20) 

therefore the previous screening system must be updated. Membrane pretreatment have two 
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disadvantaged high construction cost and high energy consumption and require an extensive 

cleaning process. Since, there is a limitation in spaces, submerged system is more compatible 

with small land site, easy to inspect and consume less energy compare to the other system. 

However, pretreatment system cannot handle the presence of oil in water therefore it must be 

removed and the only process that capable for that is DAF as shown in Figure 4–20.  

 

 

Figure 4–19:Membrane pretreatment visualisation 

 

Figure 4–20: Visual representation of DAF with further details about the data properties associated 
with DAF 

In terms of the discharge system, utilising a sanitary sewer discharge proves advantageous if 

the desalination plant is located in close proximity to a wastewater treatment facility, thereby 
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saving construction costs associated with building a new discharge system. However, this 

solution presents challenges, as seawater with high salinity can adversely affect anaerobic 

bacteria and the wastewater treatment plant. Additionally, this method is capable of handling 

only TDS with a maximum value of 3000 mg/l (Figure 4–21). Given that the feed seawater has 

a salinity of 35,000 mg/l and assuming a recovery rate of 45%, the salinity of the brine would 

reach around 63,000 mg/l. also, both the chlorine and sodium must be at specific threshold. 

Consequently, a critical consideration arises: whether the wastewater treatment plant has 

sufficient water to dilute this salinity or if the desalination plant needs to establish a dilution 

system before directing it to the wastewater plant. 

 

Figure 4–21: Sanitery sewer discarge visualisation 

Regarding the proposed design, membrane pretreatment appears as a viable option, although 

its suitability for this small capacity may be influenced by the associated construction and 

operational expenses. The ontology facilitates integration between various processes and 

subprocesses, highlighting both the benefits and limitations of the solution; however, the 

ultimate decision rests with the user. Notably, membrane pretreatment is more prevalent in 

large desalination plants, with limited implementation in SWRO desalination plants. Some 

ontology classes feature annotations providing additional information, such as the annotation 

for DissolvedAirFlotation, indicating its potential coupling with GranularMediaFiltration, 

contingent on supplier verification for specific scenarios. Consequently, granular media 

filtration and DAF present an alternative solution, addressing concerns about space constraints. 

Notably, granular media filtration offers advantages, including low construction costs, ease of 

operation, and minimal energy consumption, making it a viable consideration for pretreatment 

in this plant design. 

Based on this Case, the following conclusions should be taken into consideration: 



 112 

1. The offshore design proves to be suitable for this case, yet two other subsurface intake 

options could also be explored if additional criteria are met. The user is advised to delve 

deeper into these alternatives, considering the limitations of the current scenario. 

2. Membrane pretreatment is a potential implementation; however, a thorough cost 

analysis of construction and operation is necessary to evaluate its impact on the overall 

water cost. Additionally, DAF and granular media present viable alternative solutions 

worth considering. 

3. The sewer discharge option comes with various challenges that require careful 

consideration by the user. It is essential to assess how these challenges can be addressed 

and whether this solution offers advantages or falls on the disadvantageous side. 

4.6 Summary 

The case studies presented here help to verify and validate the proposed OntoSWRO as a 

critical requirement for developing a full understanding of the design and deployment of 

seawater desalination plants that can take into account key considerations including geographic 

constraints, energy efficiency, cost mitigation and effective production of potable water. As an 

aid to identifying key decision points, unrealised constraints or unrecognised solutions the 

ontology model provides a suitable formal structure to integrate into future decision support or 

design systems. A challenge encountered during the construction of this ontology was the 

limited access to actual raw data, which necessitated reliance on literature reviews. High and 

low were occasionally employed to elucidate the influence of particular features or issues. The 

issue lies in the subjectivity of relative terms such as “high” and “low” It would be more 

preferable to have quantifiable definitions for these terms. For example, the sedimentation 

classes is characterised by low energy consumption, while another sibling class, DAF, 

consumes a higher amount of energy. Although this statement holds true in reality, various 

factors affecting power consumption make it difficult to provide a specific quantification of 

the energy or power consumed by DAF. The statement would vary depending on these factors, 

and in some cases, DAF would not be considered a high energy consumer, relatively speaking. 

Multiple factors should be taken into account when making the final decision, rather than 

relying on only one or two features.  

The forthcoming chapters explore the engineering components and life cycle costs of the 

SWRO desalination plant in depth. By integrating insights gained from the ontology with the 

detailed analyses provided in these chapters, a SWRO design and LCCA tool is being 
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developed to facilitate the holistic design of desalination systems. This tool aims to tackle the 

interaction  of ontology, SWRO design process and life cost analysis, enabling the 

determination of the most effective SWRO desalination design tailored to user-specific 

requirements.   
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Chapter 5  

SWRO Desalination Process Design 

Chapter 5 presents a thorough analysis of the design process for the SWRO desalination plant. 

It starts by establishing the fundamental principles, such as water density and viscosity, in 

Section 5.1 . It then proceeds to examine the essential processes and subprocesses of the SWRO 

plant. The intake system design is outlined in Section 5.2 , followed by a discussion on the 

chemical and posttreatment systems in Section 5.3 . In Section 5.4 , the chapter provides more 

detailed information about the pretreatment system, specifically focusing on each subprocess 

from clarifiers to membrane filtration. In Section 5.6 , the RO system is thoroughly examined 

which includes a detailed evaluation of the basic plant parameters, membrane system design, 

and the important factors that determine its performance. The chapter ends by providing 

information on the discharge system in Section 5.7 5.8 , power calculations in Section 5.8 , and 

an in-depth evaluation of the RO model in Section 5.9 . This leads to a complete grasp of 

SWRO plant design and its operating dynamics.  

The equations utilised for SWRO desalination plant design were primarily derived from the 

literature sources mentioned earlier [30], [40], [245], [278], [281], [283], [292], [300], [301], 

and additional references will be cited within the respective chapters. 

5.1 Water Density and Viscosity  

The consideration of density as a significant thermodynamic property of water is crucial, as it 

directly affects various aspects of plant operation, as well as the processes of mixing and 

dispersion. The density of seawater is a function of salinity, temperature, and pressure. 

However, it is assumed in this model that the pressure is at atmospheric levels, and therefore it 

is neglected in the determination of density. The seawater density (Eq 5.1) model utilised in 

this study was formulated by El-Dessouky and Ettouney [302]. 

𝜌 = (𝐴@𝐹@ + 𝐴8𝐹8 + 𝐴9𝐹9 + 𝐴K𝐹K) × 109 Eq 5.1 
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The variable 𝜌 represents the density of seawater, measured in 𝑘𝑔 𝑚9⁄ . The parameters 

outlined below are utilised in the calculation of seawater density based on temperature and 

salinity. 

• 𝐴@ = 4.032219𝐺@ + 0.115313𝐺8 + 3.26 × 10;K𝐺9 

• 𝐴8 = −0.108199𝐺@ + 1.571 × 10;9𝐺8 − 4.23 × 10;K𝐺9 

• 𝐴9 = −0.012247𝐺@ + 1.74 × 10;9𝐺8 − 9 × 10;F𝐺9 

• 𝐴K = 6.92 × 10;KG@ − 8.7 × 10;MG8 − 5.3 × 10;MG9 

• 𝐹@ = 0.5 

• 𝐹8 = 	𝐴 

• 𝐹9 = 	2𝐴8 − 1 

• 𝐹K = 	4𝐴9 − 3𝐴 

• 𝐴 = (2𝑇 − 200) 160⁄  

• G@ = 0.5 

• G8 = 𝐵 

• G9 = 	2𝐵8 − 1 

• 𝐵 = (8O @DDD⁄ );@MD
@MD

 

Where the variable 𝑋 denotes the salinity of seawater, expressed in parts per million (ppm), 

and T is temperature of seawater (℃). The validity of this correlation extends to the specified 

ranges: 𝑋 is constrained to a range between 0 and 160,000 ppm, while the T is limited to a 

range between 10 and 180 ℃. The dynamic viscosity and kinematic viscosity of seawater is 

calculated as follows using Eq 5.2 and Eq 5.3 respectively: 

𝜇 =
𝜇R𝜇-
1000 Eq 5.2 

𝜈 =
𝜇
𝜌 Eq 5.3 

Where 𝜇 is dynamic viscosity of fluid is measured in (kg 𝑚𝑠⁄ ), 𝜈 is kinematic viscosity of fluid 

in (m8 𝑠⁄ ),  T ranges between 10℃ and 180℃ and 𝑋 ranges between 0 and 130,000 ppm.  

• ln 𝜇- = −3.79418 + FDK.@8S
@9S.@GTU

 

• 𝜇R = 1 + 𝐴𝑋 + 𝐵𝑋8 
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• 𝑤ℎ𝑒𝑟𝑒 

• 𝐴 = 1.474 × 10;9 + 1.5 × 10;M𝑇 − 3.927 × 10;G𝑇8 

• 𝐵 = 1.0734 × 10;M − 8.5 × 10;G𝑇 − 2.23 × 10;@D𝑇8 

5.2 Intake System  

The performance of seawater desalination facilities depends on reliable and consistent seawater 

intake. Despite this, the dynamic nature of the ocean, which is constantly changing due to a 

variety of factors like strong waves, shifting currents, fluctuating water depths, and varying 

water quality, makes this objective more challenging. Further, seawater is highly corrosive, 

and marine organisms can foul equipment and systems, resulting in additional problems. To 

overcome these challenges, intake systems must be designed to be robust and reliable, 

accounting for ocean changes. Establishing the plant’s capacity is the first step in the design of 

the intake system for desalination plants, followed by choosing the intake system that optimally 

suits the plant’s structure. It is recommended to employ screens of various sizes to reduce 

impingement and entrainment. In addition, a pump station with sufficient capacity must be 

installed to ensure required water flow. Chemical treatment is also ultimately required to 

prevent further bacterial development in the intake system. The following section presents the 

relevant equations for each sub-system and process used in desalination plant design. 

5.2.1 Intake Capacity 

The determination of the intake capacity for desalination processes requires computation at the 

required maximum capacity. One commonly employed equation for estimating intake capacity 

is, V-
@;H

,	where 𝑄6 is permeate flow rate (𝑚9/𝑑𝑎𝑦), and 𝑅 is recovery rate (%), defined as the 

ratio of permeate flow rate to influent seawater. Nevertheless, it is essential to consider the 

influence of backwash and additional water for the plant on the capacity of intake. The 

relationship between the variables is established by the equation provided below:  

𝑄.4WHI
=	

𝑄6
1 − 𝑅 ×

1 + 𝑏𝑤 + 𝑎𝑤
100  Eq 5.4 

In the equation, 𝑏𝑤 is volume of backwash (%), and 𝑎𝑤 is additional water (%). The volume 

of backwash can exhibit variability based on the particular pretreatment system utilised. For 

instance, media filtration typically results in lower backwash volumes, typically falling within 

the range of 3% to 6%. In contrast, membrane filtration systems generally necessitate backwash 
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volumes ranging from 5% to 10% [30]. The equation takes into account an additional volume 

of water equal to 1% [30]. 

5.2.2 Intake Structure 

Three necessary components must be installed to ensure the effective functioning of an intake 

structure: inlet structure, pump station and screening. The first is the inlet structure, responsible 

for delivering the fluid to the desalination plant. The subsurface intake is situated along the 

shoreline, while the offshore intake is located at a considerable distance from the facility. The 

use of screens is necessary in the design of offshore intakes to minimise impingement and 

entrainment. The initial screen, known as the velocity cap, is positioned at the bottom of the 

sea and serves as the inlet for the intake structure. To design the velocity cap, it is necessary to 

determine the number of intake structures.  

The dimensions of a cylindrical velocity cap and the calculation of its extraction flow can be 

achieved by utilising Eq 5.5. However, it is necessary to determine the feed water approached 

velocity (𝑣.) upon which the design intake relies. This velocity is determined based on the 

maximum through-velocity (𝑣#$J*XY$) passing through the intake screen, typically ranging 

between 0.1 and 0.15 m/s [278]. The velocity can be determined by use Eq 5.7.  

𝐴B& =
𝑄.4WHI

86.4 × 109𝑁6:60 ∗ 𝑣.
 Eq 5.5 

∅() =
𝑄*+,-.

86.4 × 10%𝑁&/&0 ∗ 𝑣* ∗ 𝜋 ∗ ℎ()
 

Eq 5.6 

𝑣. = 𝑣#$J*XY$ ∗ 	 �1 − a
𝑤A

𝑠A +𝑤A
+ 𝑓<Ye� 

Eq 5.7 

Where 𝐴B& is the intake head structure in (m2), 𝑁6:60 is number of intake pipes,  ∅B& is the inner 

diameter of velocity cap in m, ℎ𝑣𝑐 is height of velocity cap in m,  𝑤A is the width of screen bars 

(mm) is assumed to be 25 mm, 𝑠A is space between the bars in mm and 𝑓<Y is a correction 

factor for reduction of area due to marine growth which ranges from 0.3 to 0.5. The internal 

diameter of the bottom of intake structure (∅A!+), the internal diameter of the riser pipe (∅J6+) 

and the internal diameter of the conveyance pipe (∅&6+) can be calculated using Eq 5.8, Eq 5.9, 

Eq 5.10 respectively: 
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∅A!+ = �
4 ∗ 𝑄.+

86.4 × 109𝑣A! ∗ 𝜋
 Eq 5.8 

∅J6+ = �
4 ∗ 𝑄.+

86.4 × 109𝑣J6 ∗ 𝜋
 Eq 5.9 

∅&6+ = �
4 ∗ 𝑄.4WHI

86.4 × 109𝑣&6 ∗ 𝜋
 Eq 5.10 

Where, 𝑄.+is the flow per intake structure (m3/day), 𝑣𝑏𝑠 is flow velocity in the bottom structure 

(0.8 m/s), 𝑣J6, 𝑣&6 are flow velocities in the riser pipe and conveyance pipe, respectively and 

their values ranges between 2.0 and 2.5 m/s. Figure 5–1 illustrates the configuration of the 

velocity cap located at the inlet of the intake structure, along with the suggested dimensions. 

 
Figure 5–1: Velocity cap inlet offshore intake structure 

The design of subsurface intake systems is challenging due to the complex relationship 

between ground filtration and various geological and hydrogeological parameters [303]. 

Developing an engineering model for subsurface intake is particularly difficult because 

parameters such as hydraulic conductivity and transmissivity etc, cannot be assumed or readily 
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obtained from existing literature. Hence, only the number of wells will be considered in this 

study, excluding other calculations. For further information, Ludwig [301] has provided 

detailed calculations for designing vertical wells only based on known information and detailed 

design knowledge, Bennett [304] discussed the infiltration galleries. 

The number of wells or subsurface intake structures needed is determined by dividing the 

required plant intake capacity by the combined capacity of a single well X𝑄./0))] and its 

reduction capacity (𝑓)*!!)	which typically falls between 0.2 and 0.4. The factor in question is 

dependent on the quality of the effluent water, the age of the well, and the frequency of 

maintenance. Table 5-1 provide the ranges of 𝑄./0)) for different configurations of subsurface 

intake. The equation for calculating 𝑄./0)), which is dependent on aquifer drawdown and 

transmissivity, can be expressed as follows in Eq 5.12. 

𝑁/0)) =
𝑄.4WHI

𝑄./0)) ∗ (1 − 𝑓)*!!)
 Eq 5.11 

𝑄./0)) =
𝑇% × 𝐴%
4.4  Eq 5.12 

where 𝑇% is transmissivity (𝑚8 𝑠⁄ ) which is calculated as the product of aquifer permeability 

(𝑘) in 𝑚/𝑠 and thickness of the aquifer (ℎ) in m. Aquifer drawdown (𝐴𝑑), measured in m, is 

observed in a vertical well when water is pumped from the well, resulting in a decrease in the 

groundwater level in the adjacent aquifer which results a formation of a cone of depression in 

the surrounding aquifer. The cone visually represents the water level’s reduction caused by 

pumping. Aquifer drawdown is the result of a decrease in hydraulic head within a well due to 

water extraction. This reduction in hydraulic head causes groundwater to flow towards the well 

to replenish the extracted water [275].  

Table 5-1: Capacity of different subsurface intake systems [305][281] 

 Capacity (m3/day) 

Vertical Well 6048 –  8640 

Horizontal Ranney Well 7776 – 38,880 

Horizontal Directionally Drilled 4320 – 12,960 

Infiltration Galleries Up to 19,000 
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5.3 Chemical System and Posttreatment 

The desalination process relies on the use of chemicals to, either enhance the process or 

introduce supplementary minerals to the desalinated water during the post-treatment process. 

Table 5-2 comprehensively presents an overview of the chemicals employed in a SWRO 

desalination plant. The table provides information on the purpose of each chemical, its 

application location, dosage, and concentration.  

The determination of chemical requirements in desalination entails a series of essential 

procedures, which vary based on the particular stage or process of the overall desalination 

system. Two methodologies are employed, one for the initial processes encompassing intake 

to RO process, and another for the subsequent post-treatment process. 

The quantity of chemical (kg/day) required in the desalination process is determined by a 

formula (Eq 5.13) that takes into account the dose, which refers to the amount of chemical to 

be added, as well as the flow rate of plant (𝑚9 𝑑𝑎𝑦⁄ ). 

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑢𝑠𝑒 =
𝑑𝑜𝑠𝑎𝑔𝑒 × 𝑄.

1000  Eq 5.13 

Eq 5.14 presented below serves to determine the requisite quantity of chemical substance that 

must be stored within the facility (𝐴𝑠𝑡) in kg. The analysis considers both the utilisation of 

chemicals and the concentration of the product, in addition to the duration of storage. The 

typical duration for storing chemicals is from 14 to 28 days. However, in challenging 

circumstances or when facing extended and highly variable ordering and delivery timelines, 

the storage period may exceed three to four weeks [300]. Hence, it is assumed in this study that 

the storage duration for all compounds is 30 days. 

𝐴𝑠𝑡 =
𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑢𝑠𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑡𝑜𝑟𝑎𝑔𝑒	𝑡𝑖𝑚𝑒 Eq 5.14 

After determining the value of Ast, the following formula (Eq 5.15) is utilised to calculate the 

actual storage volume (Vst) in m3, taking into account the chemical’s bulk density. 

𝑉𝑠𝑡 =
𝐴𝑠𝑡

𝑏𝑢𝑙𝑘	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 Eq 5.15 



 121 

To guarantee a sufficient supply, it is common practise to augment the storage volume by a 

range of 10% to 15% to accommodate any unanticipated fluctuations or surges in demand as 

indicated in Eq 5.16. 

𝑉𝑠𝑡 = 𝑉𝑠𝑡 × 1.15 Eq 5.16 

The depth of the storage tank (d) in m can be determined using the following formula (Eq 5.17), 

which takes into account the intended volume (Vst), the number of tanks (n), and the radius of 

the tank (r). 

𝑑 =
𝑉𝑠𝑡 𝑛⁄
𝜋𝑟  Eq 5.17 

In the context of a SWRO desalination plant, it is essential to implement a dilution process for 

specific chemicals before their utilisation (Eq 5.18) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝑓𝑙𝑜𝑤

=
𝑐ℎ𝑒𝑚𝑐𝑖𝑎𝑙	𝑢𝑠𝑒 × � 𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 −
1

𝑏𝑢𝑙𝑘	𝑑𝑒𝑛𝑠𝑖𝑡𝑦�

24  
Eq 5.18 

Eq 5.19 calculates the optimal rate at which a chemical metering pump should operate, hence 

guaranteeing accurate and consistent dosing of chemicals during a 24-hour timeframe. The 

analysis considers both the chemical utilisation and the bulk density. 

𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑔	𝑝𝑢𝑚𝑝 =
𝑐ℎ𝑒𝑚𝑐𝑖𝑎𝑙	𝑢𝑠𝑒

𝑏𝑢𝑙𝑘	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	 × 	24 Eq 5.19 

During posttreatment process, the main goal is to adjust the alkalinity of the water to fulfil 

particular criteria according to WHO standard or the state’s regulations. The chemical 

employed for post-treatment (Eq 5.20) is contingent upon the desired level of alkalinity, the 

dosage required, and the degree of chemical purity.  

𝑐ℎ𝑒𝑚𝑐𝑖𝑎𝑙	𝑢𝑠𝑒 = 	
𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 × 𝑑𝑜𝑠𝑎𝑔𝑒

𝑝𝑢𝑟𝑖𝑡𝑦 	 Eq 5.20 

The aforementioned calculations collectively contribute to the optimisation of chemical usage 

in the desalination process, hence enhancing the efficiency and effectiveness of the process and 

ultimately resulting in the production of desalinated water of superior quality. 
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Table 5-2: Chemical used in SWRO plant [306] 

Chemical  Purpose  Location  Typical product 
concentration 
(%) 

Bulk 
density 
(kg/L) 

Application 
concentration 
(%) 

Dosage 
(mg/L)  

Storage 
time (days) 

Cost 
(US$/kg) 

Sodium hypochlorite Suppress bio-logical growth Open intake structure 
Offshore pipeline 

13 1.23 5 4* - 6** 30  2.2 - 3.5 

Sulfuric Acid (93% 
h2so4) 

Suppress bio-logical growth 
pH adjustment 

Open intake structure 
Offshore pipeline  

98 1.83 20 100* -
140** 

30 0.06 - 0.1 

Ferric sulfate  Coagulant 
Reduces colloidal fouling and 
natural organic matter 

Pretreatment 
Sedimentation tanks 
Dissolved air flotation 
units or filters 

40 1.55  5 5 - 30  30 0.4 - 1.2 

Ferric chloride Coagulant  
Reduces colloidal fouling and 
natural organic matter 

Pretreatment 
Sedimentation tanks 
Dissolved air flotation 
units, or filters 

40 1.42 5 15 - 50 30 1.67 

Flocculation 
(polymer) 

Improve seawater pretreatment Pretreatment    0.2 - 0.5 30  

Sodium 
hexametaphosphate 

Scale inhibitors  
Prevent scaling fouling 

Prior to RO system 99 1 20 0.25 - 4  30 1.6 - 4.0 

Chlorine dioxide Suppress the 
growth of aquatic organisms, 
disinfection 

Intake pipes 
Equipment  
Tanks 
Distribution channels 
Other structures in contact 
with the source seawater 

 1.5 30 0.18-0.2  30 3.0 - 5.5 

Sulfuric acid Adjust pH Posttreatment  
Chemical backwash  

   1.02*  0.06 - 0.1 
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Chemical  Purpose  Location  Typical product 
concentration 
(%) 

Bulk 
density 
(kg/L) 

Application 
concentration 
(%) 

Dosage 
(mg/L)  

Storage 
time (days) 

Cost 
(US$/kg) 

Sodium hydroxide  Adjust the pH of the feed 
seawater 
Backwash 

Prior to RO system 
Pretreatment backwash 

50 1.525 20 5 - 8 24 months 0.65 - 0.85 

Sodium bisulfite Reduce membrane degradation  
Dichlorination 
Removal of oxidant residual 

After cartridge filter  99 1.48 20 3   0.35 - 0.55 

Hydrated lime Remineralisation  
Add alkalinity 

Posttreatment  50 1.44 - 0.74 48 months 0.3 - 0.4 

Calcite Remineralisation 
Add alkalinity 

Posttreatment 50 1.493 - 1 12 months 0.05 - 0.08 

Carbon dioxide Adjust pH Posttreatment 40 1.87 - 0.88, 
0.44 

28 0.08 - 0.12 

Other cleaning 
chemicals (US$/m³ of 
permeate) 

       0.005 - 0.008 
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5.4 Pretreatment System  

5.4.1 Clarifiers  

Clarifiers are generally used for the continuous removal of solid particulates or suspended 

solids from source water prior to the granular media filtration or ultrafiltration. In SWRO 

desalination, sand removal, conventional sedimentation tanks, lamellar sedimentation settlers, 

and dissolved air flotation (DAF) are used to apply additional pretreatment depending on the 

source water quality. Sand removal devices are not  commonly used in desalination plant as a 

well-designed intake systems should help the sand and silt content to settle and be removed. 

However, in cases where the water quality is good and turbidity is low, but the sand content is 

high due to the plant location, then sand removal devices would be a viable option instead of 

other clarifier systems. These devices are applicable only in small and medium desalination 

plants where the capacity is equal or less than 20,000 m3/day [30]. Due to their declining use 

in the desalination area and subsequent replacement by other clarifier technologies, these 

devices will not be incorporated into the study. 

5.4.1.1 Sedimentation Tank 

In sedimentation tanks, which are also referred to as settling tanks, solids are collected and 

disposed of as they settled to the bottom of the basin due to the density differences and gravity. 

The technique is predicated on slowing the velocity of water, to a settling velocity that allows 

suspended particles to settle and be removed. The settling velocity is typically between 0.3 and 

1.1 m/min [307]. It is possible to use standard sedimentation tanks if the turbidity of the source 

water is above 20 NTU and below 50 NTU [40] The addition of lamella plates to these tanks 

increases their turbidity-treating capacity fourfold, to 200 NTU [291]. In addition to their 

various benefits, lamella settlers have found widespread use in the desalination industry 

because of their small footprint due to the inclined plates. A CFD study  was conducted by 

Tarpagkou and Pantokratoras [291] to simulate the dynamics and flow structure of a 

rectangular sedimentation tank and lamella tank for potable water through a multiphase 

approach. Based on the findings, it was observed that particles were concentrated at the bottom 

of lamella settlers as opposed to conventional settlers. As a result of the lamella plate 

configuration, unsettled particles are redirected so that they can be collected in the sludge 

hopper located at the base of the system, resulting in 93% efficiency compared to 75% for 

conventional designs [291]. Sedimentation tanks can be either rectangular or circular in shape. 
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While circular shapes are commonly used for wastewater treatment, rectangular shapes are 

more common in water treatment. Consequently, a rectangular regular and lamellar 

sedimentation tank were chosen for this research. 

Principle of Sedimentation: 

The effectiveness of a clarifier system in collecting suspended solids is influenced by several 

factors, including the particle size (as seen in Table 5-3.), temperature, viscosity, and the size 

and shape of the tanks. 

Table 5-3: Settling Time for different type of particles [308] 

Diameter of particles Type of particles Settling time 

10 mm Gravel 1 s 

1 mm Sand 10 s 

0.1 mm Fine sand 2 min 

10 micron Protozoa, Algae, Clay  2 h 

1 micron Bacteria, Algae 8 days 

0.1 micron Viruses, colloids 2 years 

10 nm Viruses, colloids 20 years 

1 nm Viruses, colloids 200 years 

 

Stokes' law [309] provides insights into the settling velocity (𝑣!) of particles, stating that it is 

directly proportional to the density difference between the solid phase and the liquid phase, 

inversely proportional to the viscosity of the liquid, and directly proportional to the square of 

the particle diameter as shown in Eq 5.21 

𝑣! =	
𝑔(𝜌! − 𝜌)∅𝑝

2

18µ/
 Eq 5.21 

Where 𝜌 is density of fluid which is dependent on temperature; 𝜌! density of particles removed 

(2650 kg/m3), g gravitational acceleration (m/s), ∅$ particle’s diameter (m) and µ𝑤	 kinematic 

viscosity of water. Table 5-4 demonstrates the settling velocity based on particles diameter and 

type of flow and Reynolds number. Calculating the settling velocity aids in determining the 

threshold of sedimentation tank overflow velocity. 



 126 

Table 5-4: Settling Velocity equation in terms of particles diameter and type of flow [310][311]. 𝐶1 is 
drag coefficient which is obtained by determining the Reynolds number 

Type of flow 𝑑$ (mm) Settling velocity Drag coefficient Re 

Turbulent > 1	 𝑣' = 7
3.33𝑔(𝜌' − 𝜌)∅$

𝜌  
𝐶2 = 0.44 500 < 	𝑅𝑒

≤ 2 × 103 

Transitional  0.1 − 1 𝑣' = 7
4𝑔(𝜌' − 𝜌)∅$

3𝐶2𝜌
 

𝐶2 =
24
𝑅𝑒 +

3
√𝑅𝑒

+ 0.34 2 ≤ 𝑅𝑒
≤ 500 

Laminar  < 0.1 𝑣' =
𝑔(𝜌' − 𝜌)∅$

)

18µ!
 𝐶2 =

24
𝑅𝑒 𝑅𝑒 < 1 

 

In the sedimentation tank, the critical particle-settling velocity, or surface overflow rate, refers 

to the velocity at which the clarified effluent is discharged which aids in determining hydraulic 

loading on the sedimentation tank. In the presence of too high overflow velocity, suspended 

particles can be carried over, causing turbulence while low overflow velocity may lead to short-

circuiting. As a consequence, it is essential that the overflow velocity is lower than the settling 

velocity to avoid both conditions. The overflow rate of a sedimentation tank is influenced by 

the basin’s depth (Eq 5.22). In the case of a continuous flow basin, it is essential to ensure that 

the length and duration for which a unit volume of water remains within the basin, are such 

that, particles traveling at the prescribed velocity settle completely to the tank’s bottom. 

Consequently, the following equation can be used to calculate the overflow velocity [312]: 

𝑣& =
𝑄&
𝐴 = 	

𝑑
𝑡  Eq 5.22 

Where 𝑣& is the overflow velocity (m3/m2h), 𝑄& the flow rate per tank (m3/h), A the surface 

area (m2), d is depth (m) and t is the detention period (h). Detention period, residence time, or 

settling time is the typical amount of time it takes for water to settle in the sedimentation tank 

which help to determines the time available for sedimentation to occur. Usually settling time 

ranges from 1 to 4 h [312] in sedimentation while lamella have shorter settling times, ranging 

between 0.2 to 0.4 h [245], [281]. Assuming the number of tanks at the start of the process 

helps in the determination of the flow rate per the Eq 5.23. 

𝑄& =	
𝑄.	
𝑛  Eq 5.23 
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Subsequently, the surface area of the sedimentation tank can be calculated based on the 

relationship between the flowrate per tank and the surface loading rate. The surface loading 

(LR) rate typically falls within the range of 1 to 2 m3/m2h, as indicated by Eq 5.24. 

𝐴 =
𝑄&
𝐿𝑅 Eq 5.24 

Then the volume of a tank (m3) is obtained by multiplying the flow rate per tank by the 

detention time since it is assumed that sludge is automatically removed [310] which is 

calculated using Eq 5.25.  

𝑉 = 𝑄&𝑡 Eq 5.25 

The dimensions of the tank, including depth (𝑑), width (𝑤), and length (𝑙), can be determined 

using the following equations: Eq 5.26, Eq 5.27, Eq 5.28. It is worth noting that the length-to-

width ratio is maintained at a minimum value of 4:1[245], and the depth of the tank must fall 

within the range of 2 to 4.9 m [245], [281]. The total depth would be the sum of the calculated 

depth, 1 m for sludge and 0.5 m for a free board or venting space [313]. Free board is known 

as the vertical distance between the top of tank and water level. if the calculated depth is less 

than 2, it implies that the number of tanks should be decreased, whereas if the calculated depth 

exceeds the maximum value, the number of tanks should be increased. 

𝑑 = 	
𝑉
𝐴 Eq 5.26 

𝑤 = � 𝑉
4𝑑	 

Eq 5.27 

𝑙 = 	4𝑤 Eq 5.28 

The overflow velocity can be calculated using Eq 5.22, the acceptable value is below or equal 

to 0.3 m/min [58]. Figure 5–3 illustrates the flow chart for designing the sedimentation tank in 

this research.  
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Table 5-5: Supplementary information for conventional and lamella sedimentation [245], [301], [314] 

 Sedimentation  Lamella Sedimentation 

Overflow velocity (m/min) ≤ 0.3 0.01 – 0.025 

Detention time (h) 1 - 4 0.2 – 0.4,  ≤ 0.2 

Length (m) Length to width ratio 2.5 – 3.25 

Width (m) Length to width ratio 1.25 – 1.5 

Depth (m) 2 – 4.9 3.5 - 5 

Sludge zone (m) 1 1.5 

Min number of tanks 4 2 

Lamella surface loading rate (m3/m2h) - 1 - 2 

Clarifier surface loading rate (m3/m2h) 1 - 2 7.5 - 25 

 

Due to the presence of inclined lamella plates, the design approach for a lamellar tank differs 

slightly. These plates are inclined to facilitate the sedimentation procedure. There are three 

different arrangements in which the untreated water can pass through the separation units of 

lamella in relation to the sludge discharge direction resulting from solids separation, including 

counter-current, co-current, and cross-flow configurations. The counter-current design is 

widely employed in practical applications; therefore, the design calculation is based on this 

[310]. 

The optimal angle of inclination for lamella plates lies between 45 and 60 degrees [310]. If the 

angle is below this threshold, particulates have a tendency to accumulate on the plates, which 

may impede the settling process. In contrast, angles exceeding the maximum recommended 

limit may reduce sedimentation efficiency. In practical applications, it is common to add 

multiple rows of lamella plates to the sedimentation basin to increase the settling capacity. The 

number of lamella rows is typically between 2 and 8, with 3 or 4 rows being the norm [315]. 

This arrangement enhances particle separation and sedimentation within the tank. Nominal 

spacing between plates (𝑑&$) is 40 – 100 mm, with an inclined length of 1 to 2 m  [310] [315]. 

Eq 5.29 is utilised to compute the allowable velocity (𝑣&$) within the plate channel, which is 

dependent on the supplied plate parameters and the chosen Hazen velocity (𝑣&). The Hazen 

velocity frequently varies between 0.6 and 1.5 m/h, with the utilisation of greater rates (>1.0 

m/h) primarily in cases when the water exhibits elevated levels of turbidity [314]. 
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𝑣&$ =
𝑣&𝑙6,,&#:B0 𝑐𝑜𝑠 𝜃

3600𝑑&$
 Eq 5.29 

Where 𝑣&$ is allowable velocity in lamella channel (m/s), 𝜃 is inclination angel of plates (°), 

𝑑&$ is the depth of the lamella channel (m), 𝑙6 the plate length (m), and 𝑙6,,&#:B0 is the active 

plate length (m) which is determined by = 𝑙6 ∗ 𝑓6 where 𝑓6 is factor of active plate length which 

ranges between 0.75 and 0.85 [301]. 

The calculation of the maximum flow rate (𝑄),<) across the plate channel, which is determined 

by the allowable flow rate 𝑣&$, is performed by utilising Eq 5.30 in relation to the cross-

sectional areas 𝐴&$ of the channel. 

𝑄),< = 3600𝑣&$𝑤6)𝑑&$ Eq 5.30 

The variables 𝑄),< represent the feed flow to the channel of the lamella unit in m3/h and 𝑤6) 

is the width of the plates in m. The estimation of the total number of lamella units, denoted as 

𝑁),<, is determined by two factors (Eq 5.31): the flow rate of the raw water (𝑄4WHI) that needs 

to be treated by the reactor, and the allowable flow rate (𝑄),<), via each individual lamella 

channel. 

𝑁),< =
𝑄4WHI

𝑄),<
 Eq 5.31 

The surface area of the lamella packs in a solids separator is determined by the pack depth 

(𝑑),<) and the lamella width (𝑤6)) according to Eq 5.32. 

𝐴),< = 𝑑),<𝑤6) Eq 5.32 

The dimensions of the pack depth (Eq 5.33) are influenced by various factors including the 

distance between the inclined plates (𝑑&$,(), calculated using Eq 5.34, the thickness of the 

plates (𝑡6)), the number of lamella units in the pack (𝑁),<), and an additional length. Figure 5–

2 is an illustration of the counter-current flow pattern and parameters for lamella sedimentation 

tank. 

𝑑),< = Y𝑑&$,( + 𝑡6)[ × 𝑁),< + (𝑙6 × 𝑐𝑜𝑠 𝜃) Eq 5.33 
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𝑑&$,( =
𝑑&$
𝑠𝑖𝑛 𝜃 Eq 5.34 

 

Figure 5–2: Flow pattern and parameters for lamella sedimentation, adapted from[301][310] 

Finally, the surface loading rate of the lamella process can be determined using the following 

equation (Eq 5.35): 

𝐿𝑅),< =
𝑄4WHI

𝐴),<
 Eq 5.35 

The efficiency of the lamella sedimentation process (𝑒𝑓𝑓),<) is determined by Eq 5.36. This 

efficiency is measured in terms of the suspended solid content in seawater (𝑆𝑆4W), with a 

targeted range of 2-10 mg/L [310] for the suspended solids in the lamella (𝑆𝑆),<). Additionally, 

Metcalf and Eddy [316] proposed an equation that evaluates the performance data for removing 

of biological oxygen demand (BOD) and TSS in sedimentation tanks. This equation takes 

into account the detention time and constituent concentration and is generated from 

observations of the actual performance of sedimentation processes. 
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𝑒𝑓𝑓),< =
𝑆𝑆4W − 𝑆𝑆),<

𝑆𝑆4W
× 100 Eq 5.36 

𝑒𝑓𝑓),< =
𝑡

𝑎 + 𝑏 Eq 5.37 

Where, t is detention time (h), a and b are empirical constants: a for TSS = 0.0075, and BOD 

= 0.018; b: for TSS = 0.014, and BOD = 0.02. Eq 5.38 is employed to ascertain the quantity of 

solids separated during the sedimentation process (∆!!), whilst Eq 5.39 is utilised to compute 

the quantity of sludge generated within the sludge chamber of the reactor (∆!)X%Y0). 

∆!!=
𝑄.,4WJ*𝑆𝑆4W𝑒𝑓𝑓),<

100,000  Eq 5.38 

∆!)X%Y0=
∆!! × 100
𝑆𝐶!)X%Y0

 Eq 5.39 

Where ∆!! is the amount of solids removed by lamella sedimentation in kg/h, 𝑆𝑆4W is 

suspended solid content in seawater (mg/L), ∆!)X%Y0 is amount of sludge produced in kg/h and 

𝑆𝐶!)X%Y0 is the solids content of sludge which ranges between 1 and 2 %.  Eq 5.55.  to  Eq 5.39 

can be applied as well to determine the sludge removal by the conventional sedimentation 

process. Figure 5–3 illustrate the process that can be followed to design the two types of 

sedimentation tanks. 
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Figure 5–3: Flow chart for designing a. conventional sedimentation tanks, b. lamella sedimentation 

tank 

5.4.1.2 Dissolved Air Flotation 

The efficiency of the flotation process is heavily influenced by factors such as the surface 

characteristics of the particles, the air system, the quantity of air, and the velocity at which the 

particles rise [ref]. The DAF design process is one that is complex and involves variable 

equations depending on the various shapes of particles in seawater, hence it falls beyond the 

scope of this study’s focus. Ludwig [300], [301] has presented a set of equations and 

accompanying explanations, along with a required graph. However, to effectively utilise these 

equations, it is necessary to gather specific information regarding the plant case, such as air 

density, particle shape, and other relevant factors. Table 5-6 provides an overview of the design 

criteria for DAF system components. 

To determine the quantity of sludge that can be eliminated using DAF, equations Eq 5.36 to 

Eq 5.39 can be employed. It should be noted that the concentration of solids in the flotation 

effluent typically falls between the range of 1 to 10 mg/l, with an average of 5 mg/l. The solids 

percentage of the 𝑆𝐶!)X%Y0 might reach a maximum of 3 - 4% [301]. 
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Table 5-6: Overview of DAF chambers and corresponding available values [30] 

DAF  Parameters Values 
Mixer or coagulation chamber Velocity gradient 500 - 1600 

Flocculation chamber    
Contact time 10 – 20 min 
Number of flocculation chamber 2 - 4  
Water depth 3.5 – 4.5 m  
Blade area as percentage of tank 0.1 to 0.2 percent 
Shaft speed 40 to 60 r/min 

DAF chamber   
Min number of tank 2 
Tank width 3 – 10 m 
Tank length 8 – 12 m 
Tank depth 2.5 – 5 m 
Surface loading rate 10 – 40 m3/ m2L 
Hydraulic detention time 10 – 20 min 

 Area  120 – 180 m2 

Treated water recycle system   
Recycle rate 8 – 15 % of intake flow 
Maximum air loading   10 g/ m3 
Saturator loading rate 60 - 65 
Operating pressure 6 – 8 bar 

 

5.4.2 Granular Media Filtration 

Granular media filtration involves filtering water at its source through a series of layers of filter 

mediums. Commonly employed granular media include: anthracite coal, silica sand, and 

garnet. During the filtration process, water is treated by traversing through a filter medium, 

which effectively retains coagulated particles and impurities present in the water, resulting in 

clarified water. Passes through the filter to remove particles but can only pass through the filter 

once the particles are removed. 

 The conventional filters utilised for pretreating saline water typically consist of rapid single- 

stage, dual media units, incorporating both anthracite and sand layers. However, there are 

circumstances in which the implementation of a two-stage filtration system is required, 

particularly when the source water exhibits elevated levels of organic compounds (with a total 

organic carbon concentration exceeding 6 mg/L) and suspended solids (with a monthly average 

turbidity surpassing 20 NTU) [40], [245], [271]. 

The selection of the appropriate filtration system, whether single-stage or two-stage, depends 

on various factors, such as the quality of the source water, the specific requirements of the 

treatment process, the desired effluent quality, size, type, depth and uniformity of the filter bed. 
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This filtration is only suitable for removing particulates larger than 50 𝜇𝑚 from source water. 

Media filtration provides a SDI15 less than 5 [245]. Based on extensive field observations 

conducted at various full-scale granular media pretreatment filter installations, source-water 

turbidity has been consistently reduced to levels below 0.1 NTU [245].  

There are two main types of granular media filters, distinguished by the force used to filter the 

water: gravity and pressure. These two varieties of filters are distinguished from one another 

by the filtering rate at which they operate, the type of vessel used to house the media, and the 

required head to assist the flow of water through the media bed. Small and medium-capacity 

RO plants frequently use pressure filters due to the high costs associated with creating large 

pressure vessels with sufficient corrosion-resistant surfaces. However, gravity pretreatment 

filters are useful in small, medium, and large RO-desalination systems. Table 5-7 illustrates 

the differences between gravity and pressure media filtration in terms of dimensions, 

applications and materials. 

Table 5-7: Comparison between gravity and pressure granular media filtration [317][318][245] 

 Gravity Cell Pressure Cell 

Material  Reinforced concrete  Steel or plastic 
Size of desalination plant Small, medium, large Small - medium 
Surface loading rate  8 – 15 m3/m2h 24 – 45 m3/m2h 
Life span 50 – 100 years ≤25 years 
Depth 4.5 – 7.5  0.6 – 1.5 
Width/ Diameter 3 - 8 1.2 - 6 
Max surface area  25 - 100 25 - 100 
Length  - 2.5 - 15 
Length-to-width ratio 2:1 – 4:1 1:1 -  4:1 

Water level 1.8 – 2.5 15 – 30 m 

*Length-to-diameter ration 

The number of filter cells is primarily determined by the total flow that these filters are 

designed to handle. There are several crucial factors to consider when determining the 

minimum number of filters to employ. There are practical limits to the size of each individual 

filter bed, which makes it difficult to use larger area filters as they are prone to uneven 

backwashing. The second factor is that if one or two filters are in the backwash mode, the 

remaining filters in operation have a higher filtration rate. Lastly, how the RO system is 

configured, including the number of individual trains and the intended operational mode, plays 

an important role in deciding how many filters are needed [245]. 
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Calculating the surface area of filtration system (Eq 5.40) with a projected value from the 

surface loading rate range is the first step in determining how many filters are needed for each 

request. 

𝐴 = 	
𝑄.
𝐿𝑅 Eq 5.40 

This amount can be used in Eq 5.41 to calculate the optimal number of tanks by dividing the 

required area for the specified plant capacity by the maximum surface area per filter. 

𝑛 = 	
𝐴

𝑚𝑎𝑥 𝐴60J	.:)#0J 	
 Eq 5.41 

The total filter count is determined by Eq 5.41, with the addition of a standby filter unit. This 

assumption simplifies calculations and accounts for scenarios where filters may be undergoing 

backwashing or are temporarily offline for maintenance. In these situations, the number of 

operational filters decreases, requiring higher surface loading rate for the remaining units. The 

standby unit serves as a contingency, ensuring the system’s continuous and normal operation. 

Then, the surface area per filter is recalculated to double check that the user selected the right 

value in the previous step, and the Eq 5.42 can be used: 

𝐴60J	.:)#0J 	= 	
𝐴
𝑛 Eq 5.42 

After that the width and length are calculated using the length-to-width ratio using Eq 5.43. 

𝑤 =	�
𝐴

𝑙 − 𝑡𝑜 − 𝑤	𝑟𝑎𝑡𝑖𝑜 Eq 5.43 

The overall depth of the filter bed is determined by the cumulative depth of its many layers, 

which include the supporting layer and the filter layer in the case of single-medium filters. In 

the case of multi-media filters, the total depth is influenced by several filter layers, in addition 

to the water level as seen in Eq 5.44:  

	𝑑#*#,) = 𝑑),-0J! + 𝑑/ + 𝑑!X66*J#	),-0J Eq 5.44 

The depth of each layer in this study is determined using a commonly accepted guideline that 

assumes a ratio between 1000 and 1500 [319]multiplied by the effective size of the material in 
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each layer, as presented in Table 5-8. The depth of the support layer includes both the 

supporting layer and the underdrain system, with a range typically between 0.3 to 0.5 m [245]. 

Table 5-8: Features of material that applied in granular media filtration [319], [320] 

Material 
 

Position of layer Effective size (mm) Specific density 
(tons/ m3) 

Uniformity 
coefficient 

Pumice First layer 0.8 – 2 1.2 1.3 – 1.8 
Anthracite First layer 0.8 – 2 1.4 – 1.7 1.3 – 1.8 
Silica sand Second layer 0.4 – 0.8 2.6 – 2.65 1.2 – 1.6 
Garnet Third layer 0.2 – 0.6 3.5 – 4.3 1.5 – 1.8 
GAC Top layer 0.8 – 2 1.43 – 1.87 1.3 – 2.4 

 

To eliminate the suspended solids that have accumulated between the layers, the filters have to 

go through a backwash process. The backwash method employed in this study is a hybrid 

system that utilises both air and water. To determine the necessary backwash flow rate (in 

m3/min) and the required volume per filter (in m3), the following two equations (Eq 5.45 and 

Eq 5.46) are employed: 

𝑄A/ =	
𝐿𝑅A/ 	× 	𝐴

60  Eq 5.45 

	𝑉A//.:)#0J 	= 𝑄A/ × (𝑡	 + 𝑡%J,:`	)	 Eq 5.46 

The LRab typically ranges from 45 to 60 m3/m2h, with a process length (t) of 10 to 15 min 

[30]. The period for draining the water down (t%J,:`) for each cycle falls between 5 to 10 min 

[30]. Figure 5–4 shows the steps for designing granular media filtration. 
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Figure 5–4: Flowchart of granular media filter design 

 

5.4.3 Membrane Filtration 

When designing a membrane filter plant for a specific membrane type, it is necessary to 

calculate the system membrane area, determine the appropriate number of membrane modules 

of the selected module type, and establish the required feed pressure. This process involves 

considering the specific properties and operating parameters of the module type, including: 

• The surface area of the membrane per module 

• The maximum allowable system feed pressure  

• The maximum allowable transmembrane pressure (TMP) 

• Membrane Flux 

• The duration of the filtration cycle.  

• The frequency at which chemically enhanced backwash (CEB) and cleaning-in-place 

(CIP) processes are conducted. 

Table 5-9 presents a comprehensive range of values pertaining to the principal parameters 

involved in membrane filtration. In this research, it is not possible to recommend a single UF 

membrane due to the existence of several alternatives that are suitable for specific instances. 

Therefore, it is advised that the user carefully selects the membrane that best suits their 

individual case and utilises its corresponding values for performing the calculation. 
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Table 5-9: Supplementary information for membrane filtration [301] 

Parameter  Unit Values  
Membrane surface area per module  m2 30 - 105 
Feed pressure  bar 3 - 6 

TMP bar Submerged system = 1.5 - 3 
pressurised system = 0.2 – 0.8 

Backwash pressure  bar 1.4 - 3 
Strainer mesh size  𝜇𝑚 100–500 

Recommended Flux  Lmh Submerged system = 30 - 60 
pressurised system = 45 - 100 

Filtration cycle length for SWRO Plant  min 20 – 90  

 

The procedures involved in designing the membrane filtration system, specifically in relation 

to the membrane filtration area, number of membrane modules, and membrane flow, are 

presented in Table 5-10. 

 

Table 5-10: Steps for designing membrane filtration system [301] 

Steps Unit Equation 

Filtration surface area of 

membrane system 
𝑚) A =

𝑄4 × 1000
𝐽5 × 24

 Eq 5.47 
 

Number of elements of 

membrane system 
 𝑁5 =

A
𝐴5

 Eq 5.48 
 

Number of vessels of membrane 

system 
 𝑁$6 =

𝑁5
𝑁5/$6

 Eq 5.49 
 

Number of trains of membrane 

system 
 𝑁8 =

𝑁$6
𝑁$6/8

 Eq 5.50 
 

Area of train  𝐴8 = 𝐴5 ×𝑁5/$6 ×𝑁$6/8 Eq 5.51 
 

Flow rate per train m3/h 𝑄4/8 =
𝐴8 × 𝐽5
1000  Eq 5.52 

 

 

Where 𝐴U is filtration surface area of a train, the subscript 𝑒 is element, 𝑝𝑣 is vessel and T is 

train. Another crucial aspect that must be taken into consideration while constructing UF 

systems is the cleaning process, which encompasses the following sequential steps (Figure 5–

5): 
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Figure 5–5: Cleaning steps for UF process 

The OntoSWRO framework would offer guidance regarding the appropriate duration and 

frequency for implementing each cleaning step. 

5.5 Cartridge Filter  

Cartridge filters are commonly positioned in the downstream section of the granular media 

filtering system and their primary function is to effectively capture and retain fine sand, 

particles, and silt that may be present in the water after undergoing pretreatment and protect 

RO’s pump. The cartridge filtering systems have been specifically engineered to accommodate 

hydraulic loading rates ranging from 0.2 to 0.3 L/s per 250 mm of length [30], [40], [245], 

[271]. The normal length of standard cartridge filters used in desalination plants ranges from 

101.6 to 1524 cm. These filters are commonly mounted in pressure vessels, either horizontally 

or vertically. Cartridges are assigned ratings for the filtration of particles measuring 1, 2, 5, 10, 

or 25 µm [30], [40], [245], [271], with the size most commonly employed being 5 µm. 

therefore, number of cartridge filter (𝑁&,J#J:%Y0) and number of cartridge filter per vessel 

(𝑁&,J#J:%Y0/23) can be determined using Eq 5.53 and Eq 5.54, respectively.  

𝑁&,J#J:%Y0 =
1000 × 𝑄.

86400 × X𝐿𝑅 × 𝐿
250]

 Eq 5.53 

𝑁&,J#J:%Y0/23 =
𝑁&,J#J:%Y0
𝑁23

 Eq 5.54 

 

5.6 Reverse Osmosis System 

The methodical design of a RO system is substantially aided by having a firm understanding 

of the system’s core function. There are three primary objectives that have been identified when 

it comes to membrane selection: achieving high rejection rates, decreasing the potential of 
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fouling, and energy efficient while achieving an acceptable flux as well as the salinity of the 

water. The optimal selection of one of these objectives enables the determination of a RO 

membrane type that corresponds to the desired result. This research followed the 

recommendations of DUPONT membranes [321] and employed four distinct varieties of 

membrane, which are the preferred membranes for the three aforementioned objectives: 

FILMTEC SW30HR-320 for applications with high potential of fouling; FILMTEC 

SW30XLE-400i for reducing energy consumption; FILMTEC SW30HRLE-400i for 

establishing an appropriate compromise between low energy consumption and high rejection; 

and FILMTEC SW30HR-380, chosen for its rejection capabilities. However, FILMTEC 

SW30HR-320 is being discontinued therefore, and therefore FILMTEC SW30XFR-400 is used 

instead [322]. Figure 5–6 provides the performance and geometrical information for the RO 

membranes that are employed in this research. 

 
Figure 5–6: Selected membrane type for this research 

The initial objective was to develop an RO system and conduct a number of experiments in the 

Wave software, and collect data under different operating conditions. A possible limitation of 

this method is that it is only applicable to the tested scenarios, limiting its usefulness to a subset 

of use cases. The reliability of the model could be impacted as a result, especially in regards to 

the RO system which is the foundation of the desalination plant. Furthermore, the first 

principles engineering of the WAVE software (further information, Section 6.6.5.4 ) was 
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challenging to reverse due to the lack of clarity in the documentation pertaining to the equations 

utilised throughout the development of this model.  

Therefore, as depicted in Figure 5–7, this study adapted the mathematical model developed by 

Salini-Rodriguez et al. [323]. However, it was necessary to make several changes to enhance 

the overall accuracy and the principle of this model. Several equations in the published steps 

[323] utilised the rule of thumb for the equivalence of osmotic pressure; therefore, to improve 

the model from a theoretical engineering perspective, the Van’t Hoff equation (Eq 5.55) was 

utilised instead. 

𝜋 = 	𝑖𝑅𝑇g𝑚+ Eq 5.55 

 

 
Figure 5–7: The steps followed in designing RO system. 

where, 𝜋 is osmotic pressure in Pa, 𝑅 is the ideal gas constant (8.303 𝐽/(𝑚𝑜𝑙 · 𝐾)), 𝑇 is the 

absolute temperature in K, 𝑚+ is the sum of molarity of all ionic and non-ionic constituents in 

water which is in 𝑚𝑜𝑙/𝑚9 and 𝑖 is the Van’t Hoff factor that accounts for both the 

stoichiometric dissociation and the degree of dissociation of a single electrolyte in solution. 
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5.6.1 Identify Initial Plant Parameters  

The initial step in the design of a RO system involves the determination of the characteristics 

and quantities of the influent and effluent streams of a desalination facility. Equations that were 

employed in the process of completing this step are shown in the Table 5-11. 

Typically, the formula 𝐶& = 𝐶. (1 − 𝑅)	⁄ is utilised for determining the salinity of brine, 

assuming perfect salt rejection of 100 percent. However, in practise, complete salt rejection 

(𝑆𝑅) is not feasible for single pass RO, resulting in salt ion passage into the permeate. Therefore 

Eq 5.58 is utilised instead; this formula’s derivation is presented in the APPENDIX C. The 

variation in salinity between the feed and brine boundaries is taken into consideration when 

determining the salinity of the permeate using Eq 5.59 and Eq 5.60. 

Table 5-11:Equations for identify initial plant parameters [323] 

Parameters Unit Equations 

Feed flowrate m3/h 𝑄4 =
𝑄$
𝑅  Eq 5.56 

 

Concentrate flowrate m3/h 𝑄9 = 𝑄4 − 𝑄$ Eq 5.57 
 

Concentration of concentrate mg/l 𝐶9 =
𝐶4/1 − 𝑅(1 − 𝑆𝑅)1

1 − 𝑅  Eq 5.58 
 

Average feed-concentrate concentration mg/l 𝐶49 =
𝐶4 + 𝐶9
2  Eq 5.59 

 

Permeate concentration mg/l 𝐶$ = 𝐶49(1 − 𝑆𝑅) Eq 5.60 
 

 

5.6.2 Design RO Membrane System 

The average flux of a system relates the permeate flow rate of the system to the active 

membrane area of the system. System flux is useful for estimating the number of required 

elements for a project. The majority of systems that operate on high-quality feed water tend to 

have a high flux value, while the converse is true for low-quality feed water systems. Systems 

utilising the same category of input water can be designed with higher or lower flux values, 

depending on whether the objective is to minimise initial investment costs or long-term 

operating costs. To determine the appropriate average flux, for different types of intake systems 

using an 8-inch FILMTEC element, Table 5-12 serves as a useful reference.  
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Table 5-12: Design guidelines for 8-inch FilmTech elements in water treatment applications [321]  

 Well or open intake 

with UF 

Open intake with 

advanced pretreatment* 

Open intake generic 

conventional 

pretreatment 

SDI SDI < 2.5 SDI < 3 SDI < 5 

Average flux (Lmh) 15 -19 14 - 17 12 - 17 

Maximum element flux 36 34 32 

Maximum element recovery 15 14 13 

Max 𝑄4 for 34.4m2 element  14 13.5 13 

Max 𝑄4 for 35.3m2 element 16 15 14 

Max 𝑄4 for 37.2m2 element 16 15 14 

*advanced pretreatment: this means membrane filtration or advanced conventional pretreatment. 

As shown in Eq 5.62, the number of elements (𝑁0) in a system can be determined by dividing 

the design permeate flow rate (𝑄6) by the input flow rate per element. To compute the feed 

flow rate per element, the selected flux value from Table 5-12 is multiplied by the membrane 

surface area (𝐴0) corresponding to the element of interest (options shown in Figure 5–6). After 

obtaining the necessary number of elements, the number of pressure vessels (𝑁6B) is computed. 

As shown in Eq 5.63, this calculation entails dividing 𝑁0 by the number of elements per 

pressure vessel (𝑁0/6B). It is essential to determine the number of elements per pressure vessel 

which range between 6 and 8. 𝑁6B must be rounded to the nearest integer, and 𝑁0 must be 

recalculated using the amended 𝑁6B value.  

In addition, it is necessary to recalculate the flux and flow per element to evaluate the 

alterations caused by the preceding step. Notably, the difference between the calculated flux 

and the presumed flux should not exceed 0.5 LMH during the calculation procedure. If this 

threshold is exceeded, the calculation must be repeated with a different presumed flux. Finally, 

it is viable to ascertain the feed, permeate, and concentrate flow rates per pressure vessel. Step 

2 can be carried out by following Table 5-13’s outlined sequence. The final evaluation consists 

of determining whether the feed flow per pressure vessel is less than the maximum feed flow 

per element (as shown in Table 5-12). In the event that this is not the case, the calculation must 

be repeated using a different flux value. 
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Table 5-13: Equations and steps for design RO membrane [323] 

Steps Unit Equations 

Flow per element m3/h 𝑄5 =
𝐽:'';<52𝐴5
1000  Eq 5.61 

 

Number of elements required in the plant 
 𝑁5 =

𝑄$
𝑄5

 Eq 5.62 
 

Number of pressure vessels required in the plant 
 𝑁$6 =

𝑁5
𝑁5/$6

 Eq 5.63 
 

Recalculate number of elements  𝑁5 = 𝑁$6𝑁5/$6  
 

Recalculate new flux  

 

l/m2h 
𝐽:6= =

>!
?!(!

 , 

If: 𝐽:6= − 𝐽:'';<52 <

0.5, ′𝑜𝑘′, '𝑁𝑜𝑡	𝑜𝑘′ 

Eq 5.64 

 

Check the flow per element   Eq 5.61 

Feed flow per pressure vessel 
m3/h 𝑄4"# =

𝑄4
𝑁$6

 Eq 5.65 
 

Permeate flow per pressure vessel m3/h 𝑄$"# = 𝑅𝑄4"# Eq 5.66 
 

Brine flow per pressure vessel m3/h 𝑄9"# = 𝑄4"# − 𝑄$"# Eq 5.67 
 

Number of trains 
 𝑁8 =

𝑁$6
𝑁$6/8

 Eq 5.68 
 

  

5.6.3 Water and Salt Membrane Permeability Coefficient  

The water permeability (𝐾/) is not available directly from the manufacturer; however, it can 

be calculated using the membrane test results under standard conditions. Figure 5–6 provides 

information regarding the parameters and value used in the standard test conditions. 𝐾/ is 

defined as follows: 

𝐾/ =
𝑄!

𝑁𝐷𝑃!𝐴0
 Eq 5.69 

Where, 𝐾/ is water permeability (L/bar	m2h), 𝑁𝐷𝑃! is net driving pressure (bar), 𝐴0 is element 

surface area (𝑚8) and s indicates that these parameters are at standard test conditions for the 

membrane element. 

The NDP (bar) of a membrane system is the difference between the feed pressure and the 

osmotic pressure. It provides a numerical representation of the actual driving force that forces 

water through a membrane. The determination of net driving pressure involves the 
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measurement of the feed pressure itself, pressure drop, osmotic pressure, and permeate pressure 

which presented as follows: 

𝑁𝐷𝑃 =	𝑃.@ − �
∆𝑃0
2 + ∆𝜋.&;6 + 𝑃6@� Eq 5.70 

Where 𝑃.@is feed pressure, ∆𝑃0 is pressure drop, ∆𝜋.&;6 is equal to the difference between the 

feed-concentrate osmotic pressure (𝜋.&) and the permeate osmotic pressure (𝜋6). The pressure 

drop term represents the decrease in pressure that occurs along the direction from the feed end 

to the concentration end within the housing pressure vessel. Typically, this value falls within 

or below the threshold of 0.35 bar for a given membrane element while the maximum 

permissible pressure loss per pressure vessel should not exceed 3.5 bar [324], [325]; according 

to another reference, the range is reported to be between 1.2 and 2 bar [323] which can be 

determined using the following equation (Eq 5.71): 

∆𝑃0 = 0.01𝑛 a
𝑄. + 𝑄&

2 e
@.c

 Eq 5.71 

Where, 𝑄is feed flow rate (m3/h) for feed (𝑓 and brine (𝑐), 𝐿6Bis the length of pressure vessels 

(m) which calculated by number of elements within the pressure vessels by the length of 

element (𝑛𝐿0), 𝜇 water viscosity (𝑃𝑎 ∙ 𝑠), w is membrane width (m) and d is thickness of spacer 

(m). 

The determination of the osmotic pressure of the feed-concentrate entails a sequential process. 

The calculation of osmotic feed pressure and brine feed pressure is performed Eq 5.55. 

Subsequently, the mean value of these two pressures is determined. The permeate osmotic 

pressure is also calculated using Eq 5.55. After determining the aforementioned values, the 

flux is computed using  Eq 5.76. However, in this case, the nominal capacity for permeate 

(𝑄/@) is utilised, which denotes the permeate flow rate of the element divided by a period of 

24 hours. At this step, all parameters have been determined, thereby enabling the calculation 

of water permeability and permeability productivity (Eq 5.77, Eq 5.78 respectively). Table 

5-14 presents a guideline that should be followed to achieve step 3. The DuPont technical report 

[326] states that the membrane permeability (𝐴̅) was determined based on the average 

concentration-side osmotic pressure, ∆𝜋.&, which can be computed using the following 

equations (Eq 5.74). The water permeability,	𝐾/, typically exhibits a range of 1 to 2 Lmh/bar 
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[66]; however, in the event that the osmotic pressure exceeds the upper limit, the resulting 

equation will yield a negative value for permeability. 

𝐴̅(𝜋�) = 0.125;	𝜋� ≤ 25	𝑝𝑠𝑖 

𝐴̅(𝜋�) = 0.125 − 0.011 a
𝜋� − 25
35 e ; 25 ≤ 𝜋� ≤ 200	𝑝𝑠𝑖 

𝐴̅(𝜋�) = 0.07 − 0.0001(𝜋� − 200); 200 ≤ 𝜋� ≤ 400	𝑝𝑠𝑖 

Eq 5.72 

The calculation of salt permeability can be determined utilising Eq 5.79. It is important to 

recognise that the calculations regarding water and salt permeability are performed under 

standardised conditions, specifically at a temperature of 25°C. Nevertheless, it is crucial to 

acknowledge that these analyses may necessitate execution at varying temperatures, which can 

be either lower or higher than the standard. To accommodate variations in temperature, it is 

possible to employ a temperature correction factor (TCF) by multiplying the membrane 

permeability by the correction factor. In order to ascertain the suitable temperature correction, 

one can employ the following equations; in Eq 5.73, T is the temperature in degrees Celsius. 

𝑇𝐶𝐹 = 𝑒
d8FKDe @

8SG	;
@

	8c9TUfg; 𝑇 ≥ 25℃ 

𝑇𝐶𝐹 = 𝑒
d9D8De @

8SG	;	
@

8c9TUfg; 𝑇 ≤ 25℃ 

Eq 5.73 

 

Table 5-14: Steps for obtaining the coefficient factor of water and salt permeability [323] 

Steps Unit Equation 

Brine concentration  
mg/L 𝐶9$ =

𝐶4$/1 − 𝑅5(1 − 𝑆𝑅)1
1 − 𝑅5

 

Permeate concentration  mg/L 𝐶$$ = 𝐶49$(1 − 𝑆𝑅) 

Osmotic feed pressure, Osmotic 
concentrate pressure, Osmotic 
Permeate Pressure 

bar 
Eq 5.55, assume that 

seawater consist of NaCl 

Osmotic feed/concentration 
average  bar 

 

𝜋49$ =	
𝜋4$ + 𝜋9$

2  Eq 5.74 
 

Osmotic pressure difference bar ∆𝝅𝒇𝒄𝒔D𝒇𝒑𝒔 =	𝝅𝒇𝒄𝒔 −	𝝅𝒑𝒔 Eq 5.75 
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Steps Unit Equation 

Permeate pressure  bar 𝑃$$= 0 

Net driving Pressure  bar Eq 5.70 

Flux under standard conditions 
L/m2h 𝐽!$ =

𝑄!$
𝐴5

× 1000 Eq 5.76 
 

Water permeability 
L/bar	m2h 𝐾! =

𝐽!$
𝑁𝐷𝑃'

 Eq 5.77 
 

Permeability Productivity  m3/h/bar 𝐾!𝐴5 Eq 5.78 
 

Salt permeability 
L/m2h 𝐾' = 𝐽' \

𝐶$$
𝐶49$

] Eq 5.79 
 

Permeability correction  𝐾', 𝐾! × 𝑇𝐹𝐶 Eq 5.80 
 

 

5.6.4 Determination of Feed Pressure 

This step involves evaluating the feed pressure applied in the RO system. It is imperative to 

recognise a constraint of this model, specifically the underlying assumption that the 

composition of seawater is exclusively comprised of sodium chloride. Seawater, in actuality, 

comprises a diverse array of ions and solutes. Consequently, this assumption has the potential 

to undermine the precision of the computed feed pressure. The calculated flux from step 2 and 

water permeability from step 3 are used to determine the NDP: 

𝑁𝐷𝑃 =
𝐽,BY
𝐾/

 Eq 5.81 

Then step 3 to 6 in Table 5-14 should be repeated to determine the average side-concentrate 

osmotic pressure using the value for the study case. After that, the headloss per pressure vessel 

should be calculated by multiplying the obtained value from Eq 5.71 by the number of elements 

per pressure vessels. 

∆𝑃6B = ∆𝑃0𝑁0/6B Eq 5.82 

The estimated feed pressure can be calculated using the following equation and the value 

should be rounded to the nearest number. 
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𝑃. = 𝑁𝐷𝑃 + �
∆𝑃0
2 + ∆𝜋.&;6 + 𝑃6@� Eq 5.83 

 

5.6.5 Parameters Determination for Each Element 

Throughout this specific step, the determination of the recovery, feed flow rate, and permeate 

flow rate is conducted for each individual element. The schematic diagram in Figure 5–8 shows 

the flow pattern of the feed water within the pressure vessels, encompassing the configuration 

of a maximum number of elements interconnected in series. 

 

 
Figure 5–8: Illustration of the flow stream inside pressure vessels with 8 elements in series 

Figure 5–9 depicts a series of sequential steps that are executed for every individual component 

within the pressure vessels. The majority of information and equations regarding water feed 

flow rate, concentration, and applied feed pressure for each pressure vessel have already been 

determined. As a result, it is recommended that steps 1 to 8 follow the similar procedure and 

calculations employed in step 4. In the ninth step, a newly equation is utilised to calculate the 

permeate flow rate for the element, which is represented as (𝑄6F). This equation is expressed 

as: 

𝑄6F = 𝑁𝐷𝑃:𝐾/𝐴0 Eq 5.84 

The calculation of the recovery rate for the element involves the division of the permeate flow 

rate by the feed flow rate of the element. If the recovery rate that has been calculated is 

consistent with the assumed recovery rate, then the subsequent step can be carried out. In the 

event of a disagreement the calculated recovery rate is adopted as the new assumed recovery 

rate, necessitating a repetition of the process starting from step 5 in the diagram. The iterative 

loop continues until the assumed recovery rate is equivalent to the calculated recovery rate. 

Step 12 involves the assessment of various parameters, including the brine flow rate (𝑄&F), the 
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average flow rate between the concentrate and feed sides (𝑄.&F), the concentration of the brine, 

and the brine pressure of the first element (𝑃&F). This objective is achieved by employing the 

subsequent equations: 

𝑄&F = 𝑄.F − 𝑄6F 

𝑄.&F =
𝑄.F + 𝑄&F

2  

𝐶.&F =
𝐶.F + 𝐶&F

2  

𝑃)# = 𝑃*# − ∆𝑃0# 

Eq 5.85 

In the context of a sequential process, the output of the preceding element is utilised as the 

input for the subsequent element. Consequently, the acquired information in step 12 is 

employed as the input for the next element, necessitating the repetition of the procedure from 

step 5 onwards. The aforementioned procedure is implemented for all elements integrated 

within the design of the RO system. 

 

 
Figure 5–9: Flowchart for determining parameters for each element in pressure vessel 

5.6.6 Concentration Polarisation Factor 

The concentration polarisation factor (CPF) can be determined for each element by utilising 

the obtained results per element, employing the following formula: 

𝐶𝑃𝐹 = 𝑒D.cH Eq 5.86 
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It is important to note that the formula provided is specifically applicable to Dow membranes. 

If a different type of membrane is utilised, it is necessary to verify the validity of this equation 

for the specific case and element being considered. For instance, the calculation of 

concentration polarisation using Hydranautics membranes is performed using a different 

equation X𝛽 = 0.99𝑒hV-F VGF⁄ i], as opposed to DOW’s equation. To prevent the occurrence of 

membrane fouling, it is advisable to ensure that the CPF does not exceed the recommended 

upper limit of 1.2 [327]. 

5.6.7 Salt Rejection for Permeate  

From Figure 5–9, the final permeate concentration per pressure vessel can be found by 

determining the product of the permeate concentration and the permeate flowrate for each 

element. The product is then divided by the sum of the element flow rates This means that the 

permeate concentration of each element YCjH[ is dependent on the salt rejection of element 

(CjH = C>kH(1 − 𝑆𝑅). 

𝐶6J*%X&# =
∑ 𝐶6F𝑄:
`
:

∑ 𝑄:`
:

 Eq 5.87 

However, other factors such as flux and concentration polarisation will hinder salt rejection 

along the membrane which means some salt will pass to the permeate. Therefore, a more 

suitable approach should be used to take account of these parameters. The methods used to 

determine the permeate concentration of each pressure vessel in Salini-Rodriguez et al. [323] 

model are represented below in Eq 5.89: 

𝐽: =
𝑄6F
𝐴0

 

𝐶6F =
𝐾!𝐶.&F
𝐽:

 

𝐶6J*%X&# =
∑ 𝐶6F𝐽:
`
:

∑ 𝐽:`
:

 

Eq 5.88 

However, these equations do not consider the impact of concentration polarisation, and 

therefore Eq 5.89, which takes this into account, is proposed and recommended.  
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𝐶6F = 𝐾!𝐶.&F𝐶𝑃𝐹������ 𝐴0
𝑄:

 Eq 5.89 

5.6.8 Crossflow Velocity Calculation 

In the context of maintaining system functionality, crossflow velocity emerges as a significant 

determinant. The utilisation of crossflow operation is employed within the field of external 

membrane systems to induce a high shear environment on the surface layer of the membrane. 

The reduction of concentration polarisation and cake layer resistance can be significantly 

mitigated through the utilisation of a high crossflow velocity that is oriented perpendicular to 

the surface of membrane [109]. Based on the results of a prior investigation [109], the examined 

cross-flow velocity values were documented to range between 0.35 and 0.65 m/s. In contrast, 

Salini-Rodriguez et al.  [323] suggested that it is advisable to maintain the cross-flow velocity 

within the range of 0.1 to 0.2 m/s. 

𝑣.&F =
𝑄.&F

𝐴0..0&#:B0 × 3600
 Eq 5.90 

Where v>kH is crossflow velocity (𝑚/𝑠), Al>>lkm?nl	is the effective surface area (𝑚8) which can 

be found using the following equations: 

𝐴0..0&#:B0 = 𝜀𝑤ℎ0 

𝑤 =
𝐴0
𝑙0

 
Eq 5.91 

Where ε is the porosity (0.85 m), 𝑤 is total spacer width and hl is height of feed spacer. 

Porosity is an intrinsic characteristic that delineates the existence of empty spaces within a 

substance and is commonly measured as the proportion of void volume to the overall volume 

of the substance. In the context of spiral-wound membrane systems, the porosity of the feed 

channel pertains to the proportion of void volume within the channel relative to the overall 

volume of the spacer. The porosity value in question exhibits a range between 0 and 1[328], 

with 0 denoting the complete absence of voids and 1 indicating a structure that is entirely 

porous. In practical applications, feed spacer porosity values of 0.8 or 0.85 [329] are frequently 

employed. 



 152 

5.6.9 Specific Energy Consumption 

The literature review examines and emphasises the issue related to the SEC associated with 

RO systems, as well as the projected energy rate. The calculation of SEC can be theoretically 

determined using Eq 5.92. However, it is important to note that this equation does not 

incorporate the ERD equation. 

𝑆𝐸𝐶 =
0.0275𝑃.
𝜂2𝜂1𝑅

 Eq 5.92 

Where 0.0275 is the required energy to raise the pressure of 1 𝑚9 water to 1 bar,  𝑎𝑛𝑑	𝑃. is 

the applied feed pressure for the RO process, 𝜂2𝜂1 is the efficiency of pump and motor 

respectively. R is recovery rate since in RO and NF, the recovery is less than 100%. To 

integrate the effectiveness of ERD and minimise the impact of high SEC, the following 

equation can be employed: 

𝑆𝐸𝐶 =
0.0275𝑃.
𝜂2𝑅

−
0.0275(1 − 𝑅)𝑃&𝜂oH5

𝑅  Eq 5.93 

Where, 𝑃& is the brine pressure of the last element in the pressure vessel, 𝜂oH5 is the efficiency 

of ERD. 

5.7 Discharge System  

Three important factors that should be considered when designing the discharge system, 

including: 

1. Quality and quantity of effluent 

2. Diffuser system design characteristics 

3. Jet and dilution properties  

The overall discharge volume encompasses the combined discharges originating from the 

pretreatment system and the RO system, including both the brine and the membrane cleaning 

solution. Figure 5–10 illustrates the various sources of effluent within a plant. This section 

provides a discussion on the formulas used to determine the quantity derived from various 

sources. 
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Figure 5–10: A flowchart of the discharge sources in the SWRO facility 

The volume of the brine obtained from RO system is determined by Eq 5.94. 

𝑄& = 𝑄6 ×
1 − 𝑅
𝑅  Eq 5.94 

  

To eliminate accumulated foulants on the surface of membranes during ordinary plant 

operations, it is necessary to routinely clean the membranes used RO separation using chemical 

agents. Therefore, the RO sub-system must undergo a cleaning process that includes cleaning-

in-place (CIP) and flush water.  

The estimation of the typical volume of a cleaning solution (𝑉Cp2) involves the summation of 

the volume of the RO system (𝑉HI;!-!#0<) and the volume of the interconnecting pipes (𝑉6:60). 

In general, the quantities of cleaning solution (𝑉X`:#;&)0,`:`Y) produced during a CIP procedure 

for RO membranes range from 1.0 to 1.8 L/m2 of membrane surface area [30], a value of 1.50 

L/m2  is assumed in this research. Hence, the overall volume of cleaning solution required for 

the RO system can be determined using Eq 5.95, whereas the volume of the interconnecting 
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pipes can be computed using Eq 5.96, where the diameter, ∅, is assumed to be 0.2 m and the 

length, L, is 1500 m [30]. 

It is worth mentioning that these equations solely illustrate the theoretical logic underlying the 

process and may not be applicable to all membrane elements from different manufacturers, as 

their membranes are specifically developed to address specific membrane fouling. Hence, it is 

advisable to verify the prescribed methodology for CIP. 

𝑉HI;!-!#0< =
𝑁6B𝑁0/6B𝐴o𝑉X`:#;&)0,`:`Y

1000  Eq 5.95 

𝑉6:60 = 1000𝜋
∅8

4 𝐿 Eq 5.96 

𝑉Cp2 = 𝑉HI;!-!#0< + 𝑉6:60 Eq 5.97 

The quantity of flushing water (𝑉.)X!$_/,#0J) in required for the cleaning of RO is contingent 

upon the dimensions of the RO system, as a general guideline, the volume of flushing water 

should be approximately 5 to 10 times greater than the volume of the cleaning chemicals 

utilised; this is accounted for by using a factor c in Eq 5.98 . 

𝑉.)X!$_/,#0J = 𝑉HI;!-!#0<(1 + 𝑐) Eq 5.98 

The backwash water (𝑄A/) obtained from pretreatment is calculated using the following 

equation (Eq 5.99): 

𝑄A/ = 𝑄6 ×
𝑏𝑤
𝑅  Eq 5.99 

This study proposes the inclusion of an additional step, namely the installation of a Dilution 

Tank into the discharge system as shown in Figure 5–11. In certain geographical areas, there 

may exist regulations regarding the permissible concentration of dissolved solids that can be 

released into seawater. Consequently, the incorporation of a dilution tank can serve as a means 

to adjust the TDS content of the effluent, which is calculated using Eq 5.100. This step requires 

obtaining TDS values for both the input and output to determine the necessary flow rate (𝑄%) 

for achieving the desired target TDS (𝑇𝐷𝑆A). 
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𝑄% =
(𝑄& + 𝑄A/)𝑇𝐷𝑆A − (𝑄&𝑇𝐷𝑆& + 𝑄A/𝑇𝐷𝑆A/)

𝑇𝐷𝑆% − 𝑇𝐷𝑆A
 

Eq 

5.100 

 

 
Figure 5–11: Suggested dilution tank 

The total flow rate of the discharge system comprises the combined quantities of backwash 

water, brine, CIP, and dilution, if the last option was chosen. 

𝑄%:!&$,JY0 =	𝑄% + 𝑄& + 𝑄A/ + 𝑄Cp2 + 𝑄.)X!$_/,#0J 
Eq 

5.101 

The diffuser system design characteristics are developed from the following papers [301], 

[330], [331], [332]. The sequence of computational steps is presented in Table 5-15, 

accompanied by a separate  

Table 5-16 containing suggested initial values for doing these calculations. 

First, the discharge angle, offshore slope angle, number of diffuser openings, port diameter and 

port height and diffuser offshore location should be selected. The effluent from the SWRO 

systems descends and settles on the seabed, where the magnitude of the sinking phenomenon 

can be described by the buoyant acceleration (𝑔*)¡ , as represented in Eq 5.102. The formation 

of the liquid jet from the diffuser’s nozzle is influenced by the exit speed (𝑣%:..) and the 

diameter (∅%:..) of the nozzle. The densimetric Froude number 𝐹𝑟*, as defined in Eq 5.103, 

characterises both parameters. 𝑄6*J# (m3/s) is flow at the port of the nozzle which can be 

calculated by divining brine flow rate by number of ports. The Reynolds number of jet is 

calculated to check that the discharge jet achieves a good mixing with the seawater and its 

Reynolds number of jet to be in the turbulent range of > 4000; 𝜈%:!&$,JY0 is the kinematic 

viscosity of the discharge in (m8 𝑠⁄ ). 
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Table 5-15: Equations for calculating diffuser system design characteristics [301], [330], [333], [334] 

Steps Unit Equations 

Buoyant acceleration 𝑚)/𝑠 𝑔Í = 𝑔
𝜌2"'9&:J=5 − 𝜌'!

𝜌2"'9&:J=5
 Eq 5.102 

 

Velocity at diffuser port 
𝑚/𝑠 𝑣2"44 =

4𝑄$IJ%
𝜋∅2"44

) Eq 5.103 

 

Froude number  
 

𝐹𝑟I =
𝑣2"44

b∅2"44 × |𝑔Í|
 

Eq 5.104 

 

Reynold’s number of jet 
 𝑅I =

𝑣2"44∅2"44
𝜈2"'9&:J=5

 Eq 5.105 
 

Buoyancy flux  𝑚K/𝑠* 𝐽I = 𝑔Í𝑄$IJ% Eq 5.106 
 

Momentum flux 𝑚K/𝑠* 𝑀I = 𝑣2"44𝑄$IJ% Eq 5.107 
 

Discharge length 
𝑚 𝐿I = 7𝜋𝐷

)

4  Eq 5.108 

 

Momentum length scale  
𝑚 𝐿L =

(𝑀I)
*
K

g𝐽I
 Eq 5.109 

 

 

Table 5-16: Recommended value for designing diffuser system  [301], [330], [333], [334] 

Parameters  unit Recommended value 

Froude number (𝐹𝑟I)  ≥ 10, recommended 20–25 

Velocity at diffuser port (𝑣2"44) 𝑚/𝑠 4–6 

Nozzle exit diameter (∅2"44) m 0.1–1, recommended ≥0.25 

Reynolds number of jet (𝑅I)  > 4000 

Discharge angle (ΘI) degrees 30–60, for deep water 60 

Port height (ℎ$IJ%) m 0.5 - 1 

 

Extensive laboratory tests were conducted to investigate the geometry of the discharge jet at 

different Froude numbers, nozzle diameters, and nozzle angles. The tests were performed under 

defined Froude numbers and flow conditions in the discharge area of diffuser ports. The 

diffusers were of single-port, multiport, and rosette configurations [331], [332], [333], [334], 

[335]. The investigations result in equations containing empirical coefficients, which are 
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presented in Table 5-17[4]. These equations pertain to a diffuser with a single port and stagnant 

flow conditions at discharge. For complex calculation, there are multiple software such as 

CORMIX, VISJET software and Delft 3D [4].  

 

Table 5-17: Design C-factor values for dimensions and potential dilution rate of single-jet diffusers in 
stagnant conditions [4], [331], [332], [333], [334], [335] 

Parameter dilution at 
Unit 

Equation 
Nozzle angle/ C factor 

 30° 45° 60° 75° 

Impact point (𝑠") - 𝐹𝑟I𝐶M 1.2 1.6 1.65 1.5 

Near field (𝑠N) - 𝐹𝑟I𝐶) 1.85 2.5 2.6 2.1 

Location of impact point (𝑥") m ∅2"44𝐹𝑟I𝐶* 3.5 3.6 2.75 1.9 

Near – field length (𝑥N) m ∅2"44𝐹𝑟I𝐶K 10.3 11.0 9.5 8.4 

Height of jet rise (𝑦") m ∅2"44𝐹𝑟I𝐶3 1.18 1.8 2.25 2.64 

 

5.8 Power Calculation 

The power demand of an intake system utilising direct extraction can be calculated by adding 

the power demands of the SWRO supply pumps and the intake screening systems. The power 

demand of active screening equipment is determined by the contributions of: 

1. Power for driving the moving screening elements or the rotating drum 
2. Power for the pressurised water spray that dislodges solids from the screens’ surfaces  
3. Power to activate the compressor, which generates compressed air for the purpose of 

flushing the screen elements of its extraction heads. 

Hence, there is no specific equation in the literature that can be utilised to calculate this power. 

Therefore, only the power requirements of the SWRO supply pumps is considered for the  

intake system power, which can be determined using Eq 5.110. 

 

𝑃p`#,r0 =
𝑔𝜌𝑄.4WHI

∆𝐻
3.6 × 10F𝜂1𝜂2𝜂345

 Eq 5.110 

Where, 𝑃p`#,r0 is power demand of intake system (kW), 𝜌 is density of seawater (kg/m3), ∆𝐻 

head of seawater supply pump (m), 𝜂2 , 𝜂1 𝜂345is efficiency of the pump, motor and variable 
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speeds drive respectively. In practise, the head of a pump must take into account various 

factors, including the depth of the intake, and the overall pressure head losses in the feed pipe 

and suction pipe. These losses encompass both minor losses (such as those caused by valves 

and bends) and major losses (caused by friction) [336]. This calculation necessitates extensive 

data and graphs pertaining to the material and shape of the pipe, which pose challenges in their 

consideration. Hence, the system losses are neglected and the intake power requirement is 

determined solely by the intake system’s depth.  

Table 5-18 provides the expected SEC for different configurations of the pretreatment 

subsystem and Eq 5.93 calculates the SEC for the RO subsystem. 

Table 5-18: SEC consumption for pretreatment configurations [30], [301] 

Pretreatment process 
Pretreatment 

recovery % SEC (kWh/m3) 

Mechanical mixer    

Conventional sedimentation - 0.0012 – 0.0017 

Lamella sedimentation - - 

DAF - 0.006 – 0.0072 

Static mixer and gravity granular media filtration 0.95 0.02 

Static mixer and two stage gravity granular filter media 0.94 0.03 – 0.05 

Gravity granular media filtration + floc basins 0.95 0.1 

Two stage gravity granular media filtration + floc basins 0.94 0.12 

Static mixer and pressure granular media filtration  0.95 0.1 

Static mixer + two stage pressure granular media filtration  0.95 0.2 – 0.4 

Sedimentation and granular media filtration 0.95 0.14 

Sedimentation and two stage granular media filtration 0.94 0.15 

DAF and granular media filtration 0.95 0.15 

DAF and two stage granular media filtration 0.94 0.16 

Membrane filtration and static mixer 0.93 0.1 – 0.2 

DAF and membrane filtration 0.92 0.25 

 

The posttreatment and product water delivery only contribute approximately 5% of the total 

SEC of SWRO desalination plant, therefore, in this research the study would assume that the 

value of SEC is 0.18 kWh per m3 of treated water [28]. The power demand of a discharge 

system is contingent upon the specific configuration employed. A recent study found that the 

SEC for discharge systems falls within the range of 0.01 to 0.03 kWh per cubic metre of treated 

water [337]. However, another research study reported a higher value of approximately 0.27 
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kWh per cubic metre of treated water, which encompasses the power required for solid 

handling as well [28].  

To determine pump efficiency, a comprehensive dataset was gathered from various sources, 

encompassing a wide range of pump capacities. This extensive data collection was undertaken 

to facilitate the selection of the most suitable pump for each unique scenario. The dataset 

comprises approximately 6,575 individual pumps, each with a flow rate ranging from 46 m3/h 

to 9791 m3/h. Data for these pumps was collected within an operational range that extends up 

to ±30% from their respective best efficiency points. The dataset includes crucial information 

such as flow rate, head, rated power, efficiency, Net Positive Suction Head Required (nsph), 

diameter, and maximum suction pressure for each pump. This diverse dataset provides valuable 

insights into the performance characteristics of different pumps and aids in making informed 

pump selections for various applications. In the future, when coupled with a more complex 

energy model, this dataset has the potential to provide significant insights into the SEC patterns 

observed in different sections of the system. These insights can be valuable in identifying areas 

that require process modifications. It is imperative to acknowledge that within this study, the 

utilisation of the aforementioned data will be limited to particular system components, namely 

the intake, RO, and discharge systems. 

To assess the motor's efficiency, it is essential to comply with EU Commission Regulation 

[338], which mandates that all pumps and motors must meet a minimum IE3 efficiency 

standard. For 50 Hz motors with rated outputs falling between 0.12 and 200 kW [338] and not 

explicitly listed in Table 5-19 and  

 

 

 

 

 

Table 5-20, the following equation can be applied: 

𝜂< = 𝐴 a𝑙𝑜𝑔@D a
𝑃<
1𝑘𝑊ee

9

+ 𝐵 a𝑙𝑜𝑔@D a
𝑃<
1𝑘𝑊ee

8

+ 𝐶 a𝑙𝑜𝑔@D a
𝑃<
1𝑘𝑊ee + 𝐷 

Eq 

5.111 
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Given the known rated power of the pump, a general guideline is followed, which states that 

the motor output must be greater than the shaft head work. Consequently, data from Table 5-19 

and  

 

 

 

 

 

Table 5-20, are utilised to select a value that aligns with this guideline. As per the EU 

Commission Regulation [338], the efficiency of Variable Speed Drives (VSD), denoted as 

(𝜂345) should fall within the range of 79% to 87%. In this study, an assumed average value of 

83% is employed to comply with this requirement. 

 

 

Table 5-19: Minimum efficiencies ηm for IE3 efficiency level at 50 Hz (%) 

Rated output power Pm (kW) 
Number of poles 

2 4 6 8 

0.12 60.8 64.8 57.7 50.7 

0.18 65.9 69.9 63.9 58.7 

0.2 67.2 71.1 65.4 60.6 

0.25 69.7 73.5 68.6 64.1 

0.37 73.8 77.3 73.5 69.3 

0.4 74.6 78 74.4 70.1 

0.55 77.8 80.8 77.2 73 

0.75 80.7 82.5 78.9 75 

1.1 82.7 84.1 81 77.7 

1.5 84.2 85.3 82.5 79.7 

2.2 85.9 86.7 84.3 81.9 

3 87.1 87.7 85.6 83.5 

4 88.1 88.6 86.8 84.8 

5.5 89.2 89.6 88 86.2 

7.5 90.1 90.4 89.1 87.3 

11 91.2 91.4 90.3 88.6 
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Rated output power Pm (kW) 
Number of poles 

2 4 6 8 

15 91.9 92.1 91.2 89.6 

18.5 92.4 92.6 91.7 90.1 

22 92.7 93 92.2 90.6 

30 93.3 93.6 92.9 91.3 

37 93.7 93.9 93.3 91.8 

45 94 94.2 93.7 92.2 

55 94.3 94.6 94.1 92.5 

75 94.7 95 94.6 93.1 

90 95 95.2 94.9 93.4 

110 95.2 95.4 95.1 93.7 

132 95.4 95.6 95.4 94 

160 95.6 95.8 95.6 94.3 

200 up to 1 000 95.8 96 95.8 94.6 

 

 

 

 

 

 

Table 5-20: Minimum efficiencies ηm for IE4 efficiency level 50 Hz (%) 

Rated output power Pm (kW) 
Number of poles 

2 4 6 8 

0.12 66.5 69.8 64.9 62.3 

0.18 70.8 74.7 70.1 67.2 

0.2 71.9 75.8 71.4 68.4 

0.25 74.3 77.9 74.1 70.8 

0.37 78.1 81.1 78 74.3 

0.4 78.9 81.7 78.7 74.9 

0.55 81.5 83.9 80.9 77 

0.75 83.5 85.7 82.7 78.4 

1.1 85.2 87.2 84.5 80.8 

1.5 86.5 88.2 85.9 82.6 

2.2 88 89.5 87.4 84.5 
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Rated output power Pm (kW) 
Number of poles 

2 4 6 8 

3 89.1 90.4 88.6 85.9 

4 90 91.1 89.5 87.1 

5.5 90.9 91.9 90.5 88.3 

7.5 91.7 92.6 91.3 89.3 

11 92.6 93.3 92.3 90.4 

15 93.3 93.9 92.9 91.2 

18.5 93.7 94.2 93.4 91.7 

22 94 94.5 93.7 92.1 

30 94.5 94.9 94.2 92.7 

37 94.8 95.2 94.5 93.1 

45 95 95.4 94.8 93.4 

55 95.3 95.7 95.1 93.7 

75 95.6 96 95.4 94.2 

90 95.8 96.1 95.6 94.4 

110 96 96.3 95.8 94.7 

132 96.2 96.4 96 94.9 

160 96.3 96.6 96.2 95.1 

200 up to 249 96.5 96.7 96.3 95.4 

250 up to 314 96.5 96.7 96.5 95.4 

315 up to 1 000 96.5 96.7 96.6 95.4 

 

 

 

 

The interpolation coefficients A, B, C, and D in Eq 5.111 are to be determined based on the 

information provided in Table 5-21 and Table 5-22. 

Table 5-21: Interpolation coefficients for motors with rated power output P from 0.12 kW up to 0.55 
kW 

 
IE code Coefficients 

  
2 poles 4 poles 6 poles 8 poles 

IE3 

A 6.8532 7.6356 -17.361 -0.5896 
B 6.2006 4.8236 -44.538 -25.526 
C 25.1317 21.0903 -3.0554 4.2884 
D 84.0392 86.0998 79.1318 75.831 

IE4 A -8.8538 8.432 -13.0355 -4.9735 
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B -20.3352 2.6888 -36.9497 -21.453 
C 8.9002 14.6236 -4.3621 2.6653 
D 85.0641 87.6153 82.0009 79.055 

 

Table 5-22: Interpolation coefficients for motors with rated power output P from 0,75 kW up to 200 
kW 

 IE code Coefficients 
  2 poles 4 poles 6 poles 8 poles 
IE3 A 0.3569 0.0773 0.1252 0.7189 
  B -3.3076 -1.8951 -2.613 -5.1678 
  C 11.6108 9.2984 11.9963 15.705 
  D 82.2503 83.7025 80.4769 77.074 
IE4 A 0.34 0.2412 0.3598 0.6556 
 B -3.0479 -2.3608 -3.2107 -4.7229 
 C 10.293 8.446 10.7933 13.977 
 D 84.8208 86.8321 84.107 80.247 

 

5.9 RO Model Evaluation 

The validation of the modified RO system model developed in this research involved a detailed 

comparative analysis against the model established by Salini-Rodriguez et al  [323] and the 

widely used WAVE software as discussed in Section 5.6 . The objective of this validation was 

to assess the impacts of specific modifications introduced in RO model on key performance 

metrics. This process is systematically documented through two main analyses, with all 

relevant data tables provided in APPENDIX D. 

Analysis 1: Temperature Variation Impact 

The first phase of validation focused on evaluating how temperature variations affect 

performance indicators such as applied pressure, energy consumption, and permeate salinity. 

For this analysis, a consistent scenario was maintained across all models: the plant operates at 

a capacity of 5000 m³/h, with a seawater salinity of 36,045 mg/L, a plant recovery rate of 45%, 

and temperatures ranging from 15°C to 34°C. This setup allowed for a direct comparison under 

varying thermal conditions to observe how each model predicts changes in system 

performance. 

Analysis 2: Salinity Level Impact 
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The second phase examined the impact of varying salinity levels on the Specific Energy 

Consumption (SEC). In this setup, while the plant capacity and recovery rate remained constant 

as in the first analysis, the salinity levels were altered. The models were evaluated at three 

different salinity concentrations: 32,945 mg/L, 36,039 mg/L, and 41,199 mg/L, all at a constant 

temperature of 25°C. This approach provided insights into the robustness of the models under 

different ionic stress conditions. 

Membrane Specification 

Throughout both analytical phases, the SW30XLE-440i membrane was used consistently to 

ensure that performance variations were attributable to model differences and not membrane 

characteristics. 

 

Impact of Temperature: 

The Salini-Rodriguez et al. model proposed in the research [323] demonstrates a capability in 

computing multiple parameters associated with the RO process. Nevertheless, it has been 

shown that the values of all relevant parameters stay constant when subjected to different 

temperatures, as depicted in Figure 5–12c. The Salini-Rodriguez et al. model doesn’t take into 

consideration the impact of the temperature on water and salt permeability parameters, as well 

as the applied pressure. To address this constraint, a modification was implemented as a 

component of this PhD research, with the objective of integrating the dynamic impacts of 

temperature, as discussed in the previous section. Additionally, it is essential to acknowledge 

that the comparative analysis presented in model validation does not incorporate the impact of 

ERD on SEC values, despite the meticulous consideration of ERD in step 9 of the research, as 

detailed in section 5.6.9 . The reason for this exclusion is due to the limitation of the WAVE 

software, which only provides SEC values without the inclusion of ERD. 

A summary of the results of this comparison are shown Figure 5–12. The finding from the 

WAVE model and modified model indicates that an elevation in temperature typically results 

in a corresponding rise in the concentration of permeate (Cp). The underlying cause for this 

phenomenon is that variations in temperature have an impact on the solubility of solutes in 

water. In the majority of instances, it can be observed that an increase in temperature leads to 

a increase in the solubility of salts and other dissolved substances. This means that at higher 

temperatures, the water can hold more dissolved solids (salts) before reaching the point of 

saturation, leading to a higher concentration in the permeate [339]. Moreover, the viscosity of 
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water exhibits a decrease in value as the temperature increases. A decrease in viscosity 

facilitates the passage of water through the membrane. Consequently, the applied pressure 

required would decrease due to the previous mentioned phenomenon, resulting in a subsequent 

drop in the SEC. The captured behaviour is evident in both models, as depicted in Figure 5–

12a to Figure 5–12b. 

 

Figure 5–12: Impact of temperature variation on applied pressure and permeate concentration for 
the three models. 
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The increase in temperature leads to a graduate increase in the water permeability coefficient. 

This phenomenon can be attributed to various variables that have been previously explained, 

including the diffusion rate and thermodynamic effects. Significantly, elevated temperatures 

result in greater kinetic energy within water molecules, leading to enhanced rates of diffusion. 

Consequently, this accelerates the movement of water molecules across the membrane. 

Furthermore, it is imperative to recognise the impact of temperature on the osmotic pressure of 

the feedwater. Increasing the temperature leads to a simultaneous decrease in osmotic pressure, 

which in turn reduces the pressure gradient necessary for water to pass through the membrane 

[51]. 

Figure 5–13 exhibits a noticeable difference in the values of parameter A obtained from WAVE 

and the values acquired from the updated model. In the WAVE system, the parameter A 

exhibits fluctuations between 0.819 and a maximum value of 1.061 LMH/bar as the 

temperature increases. On the other hand, the modified model’s parameter A shows a range of 

values from 1.0 to 1.85 LMH/bar as the temperature rises. It is important to acknowledge that 

the specific method utilised by WAVE to compute coefficient A lacks detailed documentation. 

The determination of the value of A was carried out using Equation 5.112, as the report 

provided by WAVE outlines the definitions of flux and NDP values. The calculated value of 

parameter A obtained from the adjusted model corresponds to the established range of water 

permeability commonly observed in commercial TFC RO membranes specifically developed 

for SWRO. This range typically falls between 1 and 2 LMH/bar, as reported in previous studies 

[340]. 

 

Figure 5–13: Impact of temperature on permeability for wave and designed model 
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The aforementioned results indicate a significant relationship between the increase in water 

permeability in a RO membrane component and a decrease in SEC. This phenomenon is 

supported by the principle that a RO membrane element with greater water permeability can 

reduce the requirement for extra pressure beyond the osmotic pressure of the brine, particularly 

when aiming to maintain a consistent average permeate flux. Moreover, it has the potential to 

enhance the rate at which water permeates through a membrane, leading to an increased 

recovery rate by raising the average flux of permeate water, while maintaining a constant feed 

pressure [66]. Nevertheless, in the last ten years, numerous scholars [341], [342], [343] have 

proposed that the current water permeability of RO membranes has approached a point near 

the limits imposed by thermodynamics and transport. As a result, additional increases in the 

permeability of the membrane may only result in minimal decreases in the amount of energy 

consumed per unit. As stated in the literature TFC has low permeability which may hinder the 

efficiency of SWRO membrane. However, a lot of studies found that when the water membrane 

permeability goes above the 3 LMH/bar, there has negligible benefit for the process 

productivity [341], [342], [343]. 

Werber et al. [341] reviewed module-scale modelling research to determine how membrane 

water permeability affects process efficiency. The salt mass transfer coefficient at the 

membrane surface on the feed side path was maintained at 2.77 × 10−5 m/s in their model. 

Osmotic pressure was computed using the Van't Hoff equation, with a Van't Hoff constant of 

2. The model assumed 0% pressure loss in a RO module and 100% pump and ERD efficiency. 

For SWRO, set input concentration at 35,000 ppm NaCl, recovery rate at 50%, and average 

system flow at 15 LMH were set. An increase in membrane water permeability from 0.2 to 1 

LMH/bar reduced SEC by 45%, or 1.55 kWh/m3 and by 3.7 for permeability between 2 to 10 

LMH/bar . The WAVE model demonstrated a 12% reduction in energy consumption, while 

the modified model exhibited a more significant 28% reduction, as shown in the accompanying 

Figure 5–14. It is important to note that this analysis accounted for inefficiency variables and 

maintained the pump efficiency at a constant 80%. 
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Figure 5–14: Impact of water membrane permeability coefficient on SEC, where energy model is 

value of SEC at different temperature, A is water permeability. 

 

Impact of varying salinity 

The elevation of input water salinity can result in an significant increase in SEC in desalination 

process as can be seen in Figure 5–15, as a consequence of various interconnected factors: 

1. Osmotic pressure has a positive correlation with the salinity of the feed water, whereby 

an increase in salinity leads to a corresponding elevation in osmotic pressure which 
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consequently requires a greater amount of energy to facilitate the movement of water 

across the membrane against this pressure. 

2. In the case of feed water with elevated salinity levels, the RO membrane is subjected 

to increased effort to effectively separate the salts from the water. This necessitates a 

greater amount of energy input to counteract the heightened driving force resulting from 

the high salinity. 

3. In systems characterised by feed water with elevated salinity levels, the permeate flux 

tends to decrease. The decrease in permeate flux results in a reduction in the recovery 

rate, necessitating the allocation of extra energy to sustain a stable production of 

freshwater. 

4. The phenomenon of membrane fouling can be accelerated as the presence of more 

salinity in the feed water has a negative impact of lowering the permeate flux, hence 

necessitating increased SEC to compensate for the compromised system performance. 

 

Figure 5–15: Impact of varying salinity on SEC 

The results of the investigations demonstrate that both models provide similar outcomes. 

However, it is important to note that, overall, the WAVE model consistently generated lower 

values (SEC, Cp, kw, applied pressure, concentration pressure) compared to the modified 

model. In addition, as the temperature approached 28 ℃ and beyond, all the examined 

parameters exhibited a plateau-like behaviour. In contrast, the adjusted model exhibited a 

consistent decrease in the examined parameters, with little variations observed from 28 ℃ 
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onwards. Koutsou et al. [339] conducted a thorough study on the influence of temperature on 

SEC in SWRO desalination processes. The findings indicate that there was a decrease in the 

SEC as the temperature increased. However, this decrease reached a plateau state at 35 ℃ and 

beyond, which their values remained relatively stable with slight drop. This result align with 

the result obtained in this study as shown in Figure 5–13. 

Behaviour of CPF, Cross Velocity and Flux Through Membrane 

The observed data in Figure 5–16, Figure 5–17 and Figure 5–18 indicates a decline in cross 

velocity, flux , and concentration polarisation factor across the membranes in pressure vessels 

as the elements advance from the inlet (Element 1) to the outlet (Element 7). The observed 

phenomena can be ascribed to multiple variables, in accordance with established principles of 

membrane separation processes. 

 

Figure 5–16: Behaviour of cross velocity along the pressure vessel 

The reduction in cross velocity is predominantly linked to the presence of non-uniform flow 

distribution within the pressure vessel. As the feed water flows through the vessel, it 

experiences different levels of resistance due to many factors, including the vessel's 

architecture and the arrangement of membrane parts. As a result, it is common for the middle 

area of the vessel to encounter elevated cross velocities, whereas the outer areas have 

diminished cross velocities. The presence of non-uniform flow distribution results in a 

reduction in cross velocity in proximity to the membrane surface. 
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The drop in cross velocity is intricately linked to the reduction in flux. A decrease in cross 

velocity in close proximity to the membrane surface leads to an increase in the thickness of the 

boundary layer that is adjacent to the membrane. The presence of a thicker boundary layer 

impedes the efficient transportation of solute molecules towards the surface of the membrane, 

resulting in a reduction in the rate at which solutes flow through the membrane. This 

phenomenon is consistent with the established principles of mass transfer in membrane-based 

systems. 

 
Figure 5–17: Behaviour of flux inside the pressure vessel 

Simultaneously, the concentration polarisation factor (CPF) likewise decreases across the 

membrane elements. Concentration polarisation is a phenomenon characterised by the build-

up of solute molecules in close proximity to the surface of a membrane, resulting from 

disparities in solute concentrations. As the velocity of the flow perpendicular to the membrane 

surface decreases, the effectiveness of the flow in removing solute molecules decreases. As a 

result, a high concentration polarisation phenomenon arises, leading to the accumulation of 

dissolved salts, organic compounds, colloidal materials, and suspended particles on the surface 

of the membrane. The occurrence of high concentration polarisation can result in several 

unfavourable outcomes, such as the formation of sparingly soluble compounds, enhanced 

accumulation of colloidal and suspended particles, heightened salt permeation caused by 

elevated concentrations at the membrane interface, and a decrease in the overall driving force 

due to increased osmotic pressure. It is recommended to keep the CPF < 1.2 to minimise the 

fouling, and the values shown in Figure 5–18 are below the threshold since the recommended 
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recovery (by DOW membranes) varies with the quality of the feed water, for example 

membrane used for seawater should have recoveries between 10 and 12 %.  

 

Figure 5–18: Behaviour of CPF along the membrane elements 

The non-uniform distribution of cross-flow velocity in a RO pressure vessel is also evident in 

the non-uniform flux distribution along the vessel. The front elements, which are located closer 

to the inlet, have a greater production rate as compared to the rear elements situated in 

proximity to the outlet. The observed disparity in production rates can be attributed to the 

aforementioned parameters that impact cross velocity and concentration polarisation. 

5.10 Summary 

This chapter researched the design perspective of SWRO desalination, focusing on engineering 

the parameters critical to the process. It systematically developed the engineering equations 

that encompass not only the RO system but also the integral processes such as intake, 

pretreatment, discharge, and posttreatment. The developed RO system investigated in this 

research demonstrated behaviour and results that are consistent with established systems like 

WAVE, as well as aligning with the theoretical frameworks of RO systems. Also, it was noted 

that, overall, the WAVE model consistently generated lower values (SEC, Cp, kw, applied 

pressure, concentration pressure) compared to the modified model. Furthermore, a dataset of 

pumps was created to increase the efficiency of energy calculations and select proper pumps 

with the best efficiencies. 
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The forthcoming chapter explore the life cycle cost analysis of SWRO desalination, outlining 

the methodologies used to calculate the capital expenditures and operational expenditures. This 

analysis also details the approaches adopted in this research to provide a comprehensive 

understanding of the economic aspects associated with SWRO desalination.  
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Chapter 6  

Economic Cost Assessment 

This chapter focuses on analysing the economic factors of SWRO desalination plant through a 

thorough life cost analysis. This explores the several factors that play a crucial role in 

determining the life cycle expenses of the plant. This chapter explains the methods used in life 

cycle cost analysis, focusing on SWRO, in an effort to establish the foundation for the 

development of a user-friendly tool in Chapter 7. 

6.1 Financial Aspect of Desalination 

As a result of growing demand for freshwater in areas with limited freshwater sources, 

desalination plants have become an increasingly popular solution to the global water crisis. 

When designing a desalination technology, it is crucial to evaluate its cost-effectiveness in 

order to ensure the successful implementation of a well-designed plant within a reasonable 

budget. The financial aspects of establishing and operating a desalination facility can be 

divided into two categories: capital expenditure (CAPEX) and operational expenditure 

(OPEX).  The selection of desalination technology type significantly impacts the operational 

costs of the facility. Figure 6–1 shows a graphical comparison of CAPEX and OPEX across 

different desalination technologies. The data shown in this graph was sources from DesalData 

[344] which then utilised to construct the graph. 
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Figure 6–1: CAPEX and OPEX based on desalination technologies 

The cost of freshwater production through desalination has decreased over time due to 

technological advancements and refinements. According to Karagiannis and Soldatos [67], 

historical data shows a significant decrease in the costs of RO desalination. The 1988 report 

from the US Congress stated that unit costs ranged from $1.57/m3 to $3.55/m3 of produced 

freshwater. The field has made significant progress, resulting in a substantial decrease in costs. 

Reported figures in 2004 ranged from $0.5 to $0.7/m3[67]. Diverse viewpoints on costs can be 

observed, as indicated by the American Membrane Technology Association (AMTA), which 

provides cost estimates ranging from $0.75/m3 to $2.0/m3 [67]. Moreover, it is expected that 

desalination costs will continue to decrease as the technology advances. However, it is difficult 

to predict whether this trend will continue in the future. As it can be seen in Figure 6–1, a 

consistent increase trend in both CAPEX and OPEX for RO technologies as the years progress. 

It is essential to keep in mind that initial performance enhancements frequently involve 

relatively simple, and cost effective measures. Nonetheless, as these initial gains are realised, 

the subsequent pursuit of additional improvements may encounter the law of diminishing 
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returns, wherein attaining additional advancements requires larger economic investments and 

becomes increasingly difficult to implement.  

6.2 Life Cycle Cost Analysis  

The concept of Life Cycle Cost (LCC) pertains to the comprehensive expenditure incurred 

during the whole lifespan of an asset where the approach for assessing LCC is known as life 

cycle cost analysis (LCCA).  This encompasses many elements such as pre-production 

planning, design, procurement, as well as any related support expenses, in addition to 

expenditures directly linked to the ownership and utilisation of such asset. According to the 

International Standard BS ISO 15686-5 [345], LCC is defined as the  

“Cost of an asset or its parts throughout its life cycle, while fulfilling the performance 

requirements”. 

This methodology enables the identification of the most economically efficient solution from 

a variety of options by comprehensively evaluating all monetary inflows and outflows over the 

lifespan of the system. Moreover, it empowers professionals to recognise potential benefits and 

compromises between upfront capital and long-term financial expenditures. 

6.3 LCC Concept  

LCC was initially created by the United States Department of Defence (DOD) in the 1960s and 

has since been employed as a valuable resource for managing extensive construction 

endeavours, including military installations, architectural constructions, and petroleum refining 

plants. During the period spanning from the 1980s to the early 1990s, many cost models were 

formulated to estimate LCC. One notable model that emerged during this time was Activity-

Based Life Cycle Costing, which was introduced in 2001 [346].  

The study of LCC has uncovered additional expenses associated with the proposed item during 

its entire lifespan, indicating that the total cost of ownership might significantly exceed the 

initial acquisition cost. Therefore, LCC provides a comprehensive assessment of the efficiency, 

financial viability, and economic implications pertaining to the asset under analysis. The 

application of LCC analysis facilitates the selection of the most economically efficient 

technique for the establishment and utilisation of an asset. According to Flanagan and Norman 

[347], LCC places emphasis on four primary aims:  

• To enhance the evaluation of objective options in a more efficient manner  
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• To consider the comprehensive impact of all expenses, rather than focusing primarily 

on the original capital cost  

• To facilitate the proper management of buildings and projects after their completion.  

• To provide the opportunity to choose among competing alternatives. 

6.4 LCC Procedure  

Since the first introduction of LCC, several aspects of LCC have undergone development and 

refinement, culminating in the establishment of a standard as outlined in a specific paragraph 

pertaining to LCC procedures for building and built assets under ISO 15686 (2008) [345]. In 

line with ISO 15686, Figure 6–2 provides a graphical representation of the expenses that are to 

be incorporated in life-cycle costing, as well as the broader costs and revenues that are to be 

referred to as whole-life costs. An externality refers to a measurable cost or benefit that arises 

when the activities of individuals or organisations impact persons or entities outside those 

directly involved. 

 

 
Figure 6–2:Whole life cycle cost according to ISO15686 [345] 

Nevertheless, a standard LCC study often consists of a sequence of steps that entail carrying 

out critical evaluations, e.g. performing essential sensitivity analysis, and assessing potential 

risks. The significance of these two assessments relates to the presence of uncertainties 

pertaining to both input and quantities, as well as the corresponding particular costs. Figure 6–

3 presents a process to perform Life Cycle Cost (LCC) analysis, as outlined by Greene and 

Shaw [348]. 
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Figure 6–3:Ten steps of life cycle cost developed by Greene and Shaw [348] 

6.5 LCC Methodology  

Due to the dynamic nature of the time value of money, it becomes challenging to directly 

compare expenses that occur at various future periods in time. As a consequence of this 

complexity, it is necessary to compute the expenses in a manner that accurately reflects their 

worth using a standardised reference date. 

Several techniques of life cycle economic evaluation have been defined such as Real Cash-

Flow, Net Present Value (NPV), Annual Equivalent Cost (AEC), Payback Period (PB), Net 

Savings (NS), Savings to Investment Ratio (SIR), and Internal Rate of Return (IRR). The 



 179 

concept of the AEC is employed to convert all forthcoming expenses into a uniform annual 

cost. This enables the evaluation of LCC based on a singular value that reflects the average 

yearly expenditure during a specified duration of analysis. The PB denotes the duration 

necessary for the anticipated yearly savings to recoup the initial expenditure. The NS is a 

straightforward method used to quantify the disparity between the earnings derived from an 

investment and the initial CAPEX associated with that investment. The IRR and the 

profitability index (PI), also known as the benefit-cost ratio, are conventional financial 

evaluation methods. These approaches yield a percentage and a ratio, respectively, to assess 

the performance of an initial investment over a specified timeframe by considering the 

relationship between income and investment [349]. 

The NPV technique is often regarded as a robust and preferred approach due to its emphasis 

on cash flow analysis. This method is advantageous in the assessment of design decisions, as 

it avoids the limitations of relying just on a single percentage or ratio that may oversimplify 

the complexities of cash flow [349]. 

6.5.1 Present Value  

The concept of present value (PV) refers to the current monetary worth of a forthcoming 

quantity of money or a series of cash flows, taking into account a certain rate of return. PV is 

determined by discounting the future value (FV) using a discount rate (𝑑𝑟) over a period of n 

years. The formula presented below (Eq 6.1), is commonly referred to as the Single Present 

Value (SPV) formula which does not allow adjustment to the inflation rate. This method may 

be utilised to discount the nominal cost, which refers to costs that already incorporate inflation, 

associated with a certain year to its current value [350]. 

𝑃𝑉 =
𝐹𝑉

(1 + 𝑑𝑟)` Eq 6.1 

In projects pertaining to construction, capital budgeting, and investment planning, a 

supplementary Eq 6.2  is employed to compute the net present value (NPV). The NPV signifies 

the cumulative future cost and is determined by the following formula [345], where 

𝐶`represents the cash inflow in year n and 𝑝 is the period of analysis : 

𝑁𝑃𝑉 =g
𝐶`

(1 + 𝑑𝑟)`

6

:sD

 Eq 6.2 
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In scenarios where the fixed uniform  sum  increases annually and is discounted proportionately 

throughout the duration of the building's life cycle, it is appropriate to utilise the uniform 

present value (UPV), as represented by Eq 6.3. 

𝑈𝑃𝑉 = 	
(1 + 𝑑𝑟)` − 1
𝑑𝑟(1 + 𝑑𝑟)`  Eq 6.3 

6.5.2 Discounting  

The discount rate serves as a measure of the present value of future cash flows, taking into 

account the time value of money. It is employed in the computation of the NPV. The selection 

of either a real discount rate or a nominal discount rate for the calculation of NPV is contingent 

upon the specific objectives of the costing study. In contrast to the real discount rate, the 

nominal discount rate does not take into account the impact of any deflation or inflation. 

Therefore, it is recommended to apply a real discount rate [351]. 

In the context of performing a LCCA to compare competing systems, it is sufficient to employ 

a real discount rate [352]. At present, the prevailing discount rate employed in Ireland is a 

nominal rate of 3.96% for projects spanning a duration of 10 to 20 years. The discount rate for 

cost benefit analysis (CBA) was amended by the department of finance in 2007, decreasing 

from 5% to 4% [353]. Nonetheless, as indicated by the department of public spending and 

reform, the discount rate utilised for the assessment and evaluation of projects is at 5% in real 

terms [354]. 

Indeed, a significant proportion of the literature on desalination costs has adopted a certain 

estimate, often ranging from 5% to 8% [355], [356], [357], [358], [359], [360]. The discount 

rate exhibits significant variability based on numerous criteria, and is subject to variation across 

different countries, as seen in Figure 6–4. Hermelink and de Jager [361] conducted an 

assessment to examine the influence of discount rates on the appraisal of various energy and 

climate policy alternatives within the European Union (EU). The study revealed that there 

exists an inverse relationship between the discount rate and the attractiveness of high-energy-

efficiency investments and supporting policies. It is recommended that the discount rate be 

maintained within the range of 3% to a maximum of 6%. 
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Figure 6–4: Discount rate for different countries according to central bank [362] 

6.5.3 Sensitivity Analysis 

Sensitivity analysis is a method employed to evaluate the degree of sensitivity exhibited by the 

outcome of a capital budgeting decision in response to alterations in a single critical input 

variable, while maintaining all other variables at a fixed level. One can do sensitivity analysis 

to examine the impact of altering the discount rate, growth rate, initial investment, or running 

expenses on the NPV or IRR of a project. This approach is a valuable tool for discerning the 

key factors that exert the most influence on decision-making processes. Additionally, it aids in 

determining the range of values within which a choice remains viable or becomes untenable. 

6.6 Life Cycle Costing and SWRO 

6.6.1 System Lifetime and Availability 

The determination of the plant lifespan (	
𝐿6), which refers to the duration for which future cash flows are considered, is a fundamental 

requirement in all approaches used to assess the viability of desalination plants. The 

determination of the time period for calculating the return on investment is often established 

by the individuals responsible for making decisions. These decision makers must consider the 

technical limitations of the plant and its components when setting the duration. Typically, it is 

common to select a time span ranging from 15 to 25 years, with a preference for a 20-year 

duration in the majority of instances. Figure 6–5 presents a histogram showing the age of 1640 

SWRO facilities currently in operation. The data was acquired through the DesalData platform 

[344]. The histogram indicates that there has been limited implementation of desalination 

plants since 1978 (40 years), with the majority of these plants having an operational lifespan 
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of 20 to 27 years. When considering the anticipated continuous operation of the technology 

over an extended duration, it is advisable to consider its potential for reducing water costs on 

average. However, it is crucial to acknowledge the maintenance and equipment replacement 

obligations that will arise periodically throughout the 30-year lifespan. 

 

Figure 6–5: Histogram representation of lifetime of 1640 SWRO desalination that still operating 

6.6.2 Capital Expenditure 

Capital costs are considered a primary cost when designing or implementing a SWRO 

desalination plant. Capital costs include all costs associated with the plant construction, 

including land, equipment, materials, etc. A plant’s size, complexity, as well as its location, 

can have significant impact on the capital cost. For example, plants built in remote areas may 

have higher capital costs due to the need for additional infrastructure and transportation 

expenses [363]. In 2014, Loutatidou et al. [364] stated that CAPEX will fall by 2.25% every 

year in the Gulf Cooperation Council (GCC) from 2013 to 2030. Voutchkov [28] estimated 

that the unit cost of RO desalination plant would decrease by 20% due to the potential 

improvement in the RO and desalination technology. According to the estimation by 

Voutchkov, the CAPEX of SWRO plants would be around $1,032–$1,717 per cubic metre per 

day (m3/d) in 2015 and expected to drop further to $528–$924 for every m3/d by 2030. 

However, in 2017 a learning curve was applied to predict the CAPEX of a SWRO desalination 

plant [365]. Over the study period of 1977-2015, 4,237 SWRO plants were analysed. As 

worldwide SWRO plant capacity doubled, the average capital cost decreased by 15%. 
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Although this decline in capital expenditures is encouraging, it is difficult to predict whether 

this trend will continue in the future. It is essential to keep in mind that initial performance 

enhancements frequently involve relatively simple and cost-effective measures. Nonetheless, 

as these initial gains are realised, the subsequent pursuit of additional improvements may 

encounter the law of diminishing returns, wherein attaining additional advancements requires 

larger economic investments and becomes increasingly difficult to implement. Based on a 10% 

annual growth rate, the average CAPEX would drop to $1,580 USD/m3/d and to $1,340 

USD/m3/d at a 20% annual growth rate [365].  

6.6.3 Operational Expenditure  

Expenses involved in operating and maintaining a desalination plant throughout its life cycle 

are commonly referred to using the term operational expenditure. The main factors that 

contribute to total OPEX are energy, chemical, labour, maintenance and membrane 

replacement, comprising 80 % of total OPEX. Energy is the single most crucial factor in OPEX 

costs. It is estimated that electrical energy expenditures account for at least 45% of overall 

operating costs on average [366]. This varies depending on the region due to the variability in 

the cost of electricity. 

Table 6-1 summarises the current and forecasted energy usage and water cost values for 

medium and large RO desalination plants. According to  Table 6-1, the cost of electricity is 

expected to fall in the coming years; however, according to Eurostat [367], as of January 2022, 

energy inflation in the EU has reached 27%, continuing a pattern of steady increase. Other 

energy sources costs increased for fuel by +26% and electricity by +24% while gas reached an 

all-time high of approximately 41%, a gain of 13.5 percentage points (pp) compared to that of 

the earlier month as shown in Figure 6–6. The significance and urgency of exploring how 

desalination plants can manage the increasing energy costs in the future cannot be overstated. 

This may prompt a shift in the focus of future research endeavours. 

Table 6-1 : Forecast of energy use and cost for medium and large RO desalination plant [243] 

Parameter for Desalination 
Plants  2018 2022 2030 

Total Electrical Energy Use  (kWh/m3) 3.5 – 4.0 2.8 –3.2 2.1 – 2.4 

Cost of Water  (US$/m3) 0.8 – 1.2 0.6 –1.0 0.3 – 0.5 

Construction Cost  (US$/MLD) 1.2 – 2.2 1.0 –1.8 0.5 – 0.9 

Membrane Productivity  (m3/membrane) 28 – 48 55 – 75 95 – 120 
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Figure 6–6: Inflation analysis of energy sources in EU [367] 

It is essential for the desalination sector to research and explore techniques to raise the usage 

of renewable energy in powering desalination plants. In 2021, it was reported by the 

International Renewable Energy Agency [368] that over the past number of years there has 

been a steady decrease in renewable energy cost with an approximate 62% of the renewable 

energy added in 2020 coming at a cost lower than that of the cheapest fossil fuel options. Using 

renewable energy resources will lead to a reduction in energy costs as well as carbon footprints 

in powering desalination plants. At the moment, renewable energy has been deemed feasible 

in small to medium scale desalination applications [369], [370], [371], yet it is still absent in 

large scale desalination plants [372], [373]. There is no cost analysis for batch RO in the 

literature currently, therefore it is uncertain if the predicted energy savings would be sufficient 

to offset any potential increase in capital costs. 

6.6.4 Factors Influencing Desalination Cost  

6.6.4.1 Water Quality for Feeding 

The quality of water used in desalination affects the necessary pretreatment and energy 

requirements, which are directly influenced by the multivalent TDS level and water impurities. 

Therefore, the presence of these solids in feed water necessitates extensive pretreatment 

measures, leading to higher operating expenses [292]. Additionally, this increases the 

susceptibility of the RO membrane to scaling and fouling. 
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6.6.4.2 Determination of Plant Capacity 

The quantification of the desalination plant's capacity is determined by the quantity of water, 

defined in gallons or cubic metres, that is treated during a specific duration. The capacity of a 

desalination plant is determined by several elements, including the feed water system, 

pretreatment capacity, membrane processing size, and distillation capacity, among others. 

Plants with a smaller capacity need a reduced level of initial CAPEX in comparison to their 

larger capacity counterparts. The unit cost of a bigger facility is expected to be cheaper due to 

the concept of economies of scale. As an illustration, it can be observed that a plant with a 

capacity below 1000 m3/day would generate water at a unit cost varying from $2.62 to $13.23 

(estimated conversion) per m3, but in plants with a capacity above 60,000 m3/day, the unit cost 

ranges from $0.5 to $1.0 per m3 [67].  

6.6.4.3 Characteristics of the Site 

The selection of the desalination plant's site should be carefully evaluated, taking into account 

the presence of intake structures and the pre-treatment medium [31]. The criteria that are 

influenced by the location include the quality of the feed water, the capacity of the water, the 

chemistry of the water, and the environmental conditions. The aforementioned factors exert an 

impact on the overall desalination process. It is advisable for the plant to be situated in 

proximity to a dependable power source derived from a stable grid system, or alternatively, 

include its own autonomous power generation facility [277]. Furthermore, it is imperative that 

the geometry and size of the space are designed in a manner that allows for the efficient 

installation and maintenance of the supporting systems for both the feed water and power 

supply [277]. The optimal placement of the desalination plant necessitates proximity to either 

the source of the feed water or a reservoir with an ample supply. The consideration of waste 

disposal appropriateness is an essential aspect in the development of the plant design, 

particularly with regards to the waste generated by the desalination process. When considering 

the selection of site features, it is important to adopt a meticulous and efficient methodology 

[277]. Figure 6–7 depicts the sequential process involved in the selection of a suitable location 

for the construction of a desalination plant. 



 186 

 
Figure 6–7: Flow chart for the process of selecting site [277] 

6.6.4.4 Regulatory Requirement 

Regulatory Requirements refer to the set of rules and regulations that an entity must comply 

with in order to operate within a certain industry or jurisdiction. This includes the permissions 

and regulations imposed by the state, as well as the related costs required to comply with these 

stipulations [17]. 

6.6.5 Life Cycle Cost Model 

6.6.5.1 Empirical Model 

Several researchers [364], [374], [375] have disseminated capital cost data for seawater 

desalination facilities, accompanied by corresponding empirical cost models. These numerical 
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values are commonly employed to formulate practical cost approximations that are frequently 

utilised in the initial phase of a project's planning process. Typically, regression analysis in 

these models involves the use of either a polynomial equation, log-log model, or semi-log 

model. For instance, Wittholz et al. [374] established a basic linear regression equation (Eq 

6.4) employing a power law model. This equation was utilised to establish the correlation 

between capital cost and plant capacity, based on a dataset comprising 331 desalination plants 

employing various technologies. The values of the constant and m vary across different 

desalination technologies. One potential constraint of this study is that the reported margin of 

error for both the capital and unit manufacturing cost is around 50%. However, in accordance 

with the commonly accepted guideline for approximating capital costs, a margin of error of 

around ±30% is often considered [23]. This error can be attributed to the fact that, during the 

analysis of the data, it was noted that there frequently existed a significant disparity in capital 

cost data across facilities of identical size and utilising identical technology, often differing by 

an order of magnitude. The quality of the data had a significant role in contributing to this 

outcome. The inclusion of pertinent information, such as the incorporation of land and civil 

works into the capital cost, was not consistently documented.  

𝑙𝑛(𝐶𝐴𝑃𝐸𝑋) = 	𝑚 × 𝑙𝑛(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Eq 6.4 

Park et al. [376] proposed a stochastic cost estimation methodology for the construction and 

operation of a SWRO desalination plant. This approach aims to enhance the decision-making 

process by accounting for the growing uncertainty in future energy costs, specifically 

electricity prices, as well as finance costs such as interest rates and inflation rates.  

The implementation of empirical models has various challenges, principally arising from the 

inherent vulnerability to errors linked to statistical computations. The aforementioned 

challenges are exacerbated by the utilisation of empirical data, hence introducing a degree of 

reliance on the quality and accuracy of the data that is available. As a result, the data utilised 

in these models may not comprehensively capture the complex and diverse characteristics of 

CAPEX estimates. Upon examining previous academic studies, it was noted that empirical 

models frequently provide rough estimates of CAPEX without offering a comprehensive 

explanation of the specific cost elements involved. 
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6.6.5.2 Water Treatment Cost Estimation Program (WTCost) 

The WTCost model is a flexible framework for estimating costs associated with the 

construction, capital investment, operation and maintenance of desalination plants that use 

seawater and brackish water. This includes additional different desalination methods like 

MVC, MED, MSF, NF and EDR. WTCost is a visual basic programme developed by the 

Bureau of Reclamation in collaboration with I. Moch & Associates and Boulder Research 

Enterprises [377]. This computer model is built upon cost curves created by the US 

Environmental Protection Agency (USEPA) in 1979 and revised in 2001 [378]. The system 

allows consumers to choose various characteristics, including the type of pretreatment system, 

pretreatment chemicals, and the method of salt separation (RO, ion exchange, or 

electrodialysis). The programme allows users to consider various factors, such as the input and 

output system, post-treatment technology, and the quality of the source and product water. 

Users have the ability to modify default input data settings. This involves the capacity to 

modify various factors, such as the quality of the source water, expenses related to electricity 

and chemicals, charges for labour, indexes for construction, and capital costs. However, it is 

important to note that the software's unit cost assumptions are based on data from 2008 and 

have not been updated since then [377].  

6.6.5.3 Desalination Economic Evaluation Programme (DEEP) 

The Desalination Economic Evaluation Programme (DEEP) is a software tool developed by 

the International Atomic Energy Agency (IAEA) for estimating costs in desalination projects. 

The DEEP software, developed in 1989, allows users to evaluate the performance and costs of 

different power and seawater desalination co-generation configurations. DEEP utilises a hybrid 

approach that combines Microsoft Excel spreadsheets with Visual Basic methodology. DEEP 

5.1, released in late 2014, introduces various improvements such as a comprehensive cash flow 

analysis feature for “bankable” feasibility studies, a scenario manager screen for comparing 

scenarios and data import/export, and an enhanced user-friendly interface. DEEP facilitates 

comparative analysis of various power generation plants, fuels, and desalination methods, 

including MED, MSF, RO, and hybrid approaches. However, it does not encompass the entire 

process of constructing a desalination plant from start to finish. Users have the ability to model 

different configurations, backup heat sources, intermediate loops, water transport costs, and 

carbon tax implications. 
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In 2016, a research study was undertaken to assess the water production cost of RO desalination 

plants with varying capacities (1000, 50,000, and 100,000 m3/day) [379]. Various cost analysis 

methods, including DEEP, WTCost, and empirical models, were employed to estimate these 

costs. Subsequently, these models were validated and compared against three existing 

desalination plants to evaluate their accuracy and reliability. Figure 6–8 illustrates the observed 

discrepancies between the generated results and the actual performance of the desalination 

plant. Specifically, in the case of smaller scenarios, the DEEP estimation closely approximated 

the real cost. However, for medium capacity scenarios, the DEEP estimation fell below the 

actual cost. Among the considered approaches, DEEP was found to be the closest in terms of 

its ability to estimate the CAPEX of large capacity desalination plants, while the remaining 

options were more than 43% higher than the actual value. When considering the estimation of 

unit water production cost, both DEEP and WTCost exhibited a similar level of proximity. It 

is important to consider that validating the capital cost in comparison to other costs can be 

challenging due to the numerous aspects involved in capital spending, some of which may not 

be adequately recorded in the publication. Various factors, including regulations, testing 

protocols, interest rates, and taxes, significantly influence the design of desalination plants. It 

is important to note that these factors vary among countries, resulting in differing cost 

structures for such projects. 

 

Figure 6–8: Capital cost comparison between real cases and obtained results by the empirical model, 
DEEP, and WTCost [379] 



 190 

6.6.5.4 Water Application Value Engine (WAVE) 

The Water Application Value Engine (WAVE) is a freely available software programme 

designed to combine several technologies created by DuPont, including UF, RO, IX, and the 

recently included DesaliTec™ SOAR CCRO. This comprehensive tool aims to provide a 

unified platform for modelling and analysis in the field of water applications [380]. The tool 

provided is a user-friendly application that enables users to construct various configurations of 

pretreatment and RO systems tailored to diverse water sources. This programme also offers 

users with an estimated cost for chemical and energy usage based on their design. One 

restriction of this strategy is its restricted capability to exclusively pick products developed by 

the corporation, hence limiting the building of alternative desalination processes inside the 

programme. Additionally, it is exclusively compatible with Windows operating systems. 

6.7 Methodology 

In this study, more detailed calculations for CAPEX and OPEX will be considered. Figure 6–

9 below shows the structure of capital and operational expenditure that is followed in this 

research.  



 191 

 
Figure 6–9: Structure of CAPEX and OPEX used in this research 

6.7.1 Capital Expenditure 

The total CAPEX is the sum of indirect and direct capital expenses as expressed in Eq 6.5. 

𝐶C72oO = g 𝐶C72oOOFPQRS +g𝐶C72oOTUOFPQRS

`sc

+

`s@@

+

 Eq 6.5 

In the evaluation of direct and indirect capital expenses in the context of constructing a 

desalination plant, the standard approach is multiplying the individual cost elements by the 

plant's production capacity. This approach facilitates the assessment of expenses related to 

different components of a plant, while accounting for the magnitude of production. However, 
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in this research, there are exceptions for certain components encompassed by the construction 

framework, specifically the intake, pretreatment, RO, posttreatment, and discharge systems 

employed in the plant. The justification for these exceptions is based on the distinct complexity 

of each system's design, as well as the possible requirement to incorporate supplementary steps 

to the process, which may subsequently influence the total cost framework.  

In 2018, Nikolay [381] devised a construction cost graph to represent the expenses associated 

with these systems, as well as the many types of technology that can be employed. The building 

cost graphs are conceptualised within the framework of functions, where the independent 

variable is represented by the plant's intake flow rate. Significantly, the depicted cost graphs 

cover the entire system, including the entire process from the intake system to the RO unit. In 

addition, the expenses associated with posttreatment are dependent on the rate at which 

permeate flows, whereas the costs of the discharge system are dependent on its capacity to 

handle brine. The utilisation of these tools facilitates a detailed examination that encompasses 

the financial consequences of diverse intake rates and alternative technological choices. In 

order to enhance practical implementation, the cost graphs were afterwards converted into a 

data format using PlotDigitizer [382]. This conversion was performed to ensure that the 

information may be easily accessed and applied in the wider context of desalination project 

planning and cost evaluation. Utilising data instead of a graphical representation enables 

seamless incorporation of future modifications, such as substituting an actual desalination plant 

or adjusting the present value according to the relevant year. All construction costs for these 

systems are available in APPENDIX E. 

The costs connected with intake construction encompass the financial outlays for many 

components, such as plant saline water intake structures (including intake towers, wells, 

onshore forebays, etc.), pipeline infrastructure, intake pump station, and the necessary coarse 

and fine screening facilities. The expenses associated with source seawater intake can differ 

based on the specific type of intake method employed; the following equation (Eq 6.6) is used: 

𝐶I44'&IJ5	"N%:V5 	= 𝐿$"$5 ×	𝐶"N%:V5/< 

𝐶WN'&IJ5	"N%:V5 = 𝐶"N%:V5 

CXYZ[Y\]^_`	"N%:V5 = 𝑁	!5aa 	× 	𝐶	!5aa 

Eq 6.6 

Where L6:60 is the length of pipe in metres, C:`#,r0/< is the cost of intake structure per metre, 

C:`#,r0 is the cost of intake structure, 𝑁	/0)) is number of wells and 𝐶	/0)) is cost of an 
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individual well. Note that, C:`#,r0 for offshore intake represent the cost for the whole structure. 

The cost of screening can be calculated by adding the cost of the fine screen to the cost of the 

mechanical screen, as shown in Eq 6.7 

𝐶𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 = 𝐶4"N5 +	𝐶<59&:N"9:a Eq 6.7 

The total cost of the intake system is the sum of the intake structure, pumping station and 

screening. Within the domain of pretreatment, the building phase encompasses the 

establishment of clarifiers, along with the implementation of granular or membrane filtering 

and cartridge filters. It is imperative to acknowledge that, within the context of the RO system, 

there is an absence of distinct graphical cost allocation for different components. In contrast, 

the entirety of a single-pass RO system is subject to a single graphical construction cost for 

two salinities only at 35,000 mg/L and 46,000 mg/L. The building of the RO system follows a 

methodical approach (Eq 6.9), involving multiple steps, each of which contributes to the final 

expenditure and their corresponding cost ranges:  

𝐶5 =	𝐶; 	× 	𝑁5 

𝐶$6 =	𝐶; 	× 	𝑁$6 

𝐶bW	8J:"N	c"$"N =	𝐶; 	× 	𝑁%J:"N 

𝐶bW	%J:"N	';$$IJ%	4J:<5	 =	𝐶; 	× 	𝑁%J:"N 

𝐶bW	%J:"N	d&f	 =	𝐶; 	× 	𝑁%J:"N 

𝐶gc	$;<$ =	𝐶; 	× 	𝑁%J:"N 

𝐶hbi =	𝐶; 	× 	𝑁hbi 

Eq 6.8 

Where, 𝐶; is the cost rate per auxiliary equipment.  The expenses related to posttreatment 

construction (Eq 6.9) involve the integration of two essential subprocess: remineralisation 

system and disinfection system. In the field of permeate remineralisation, two often employed 

approaches may be identified: the combination of lime and carbon dioxide, and the use of 

calcite (limestone) and carbon dioxide. The calculation of the construction costs for each 

project is based on graphical representations of cost data. Further, the cost analysis 

encompasses the expenditures associated with the building and installation of the feed and 

storage facilities of the disinfection system, namely bulk sodium hypochlorite and chlorine 

dioxide.  
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𝐶𝑃𝑜𝑠𝑡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛	𝑆𝑦𝑠𝑡𝑒𝑚	 =	𝐶𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 +	𝐶𝑑𝑖𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑠𝑦𝑠𝑡𝑒𝑚 Eq 6.9 

Table 6-2 presents an in-depth breakdown of both direct and indirect CAPEXs, including cost 

ranges and associated parameters for each factor. Obtaining cost information pertaining to 

specific factors such as indirect cost, start-up, commissioning, building and utilities, in CAPEX 

from actual examples of SWRO desalination in practise is challenging, as there is limited 

documentation available on numerous factors. Hence, the cost ranges presented in the Table 

will be utilised for the computation of the remaining element in the CAPEX analysis. The 

following equation is a general one and which would be used to calculate the other factors in 

CAPEX: 

𝐶. = 𝐶 × 𝑄6 Eq 6.10 

6.7.2 Operational Expenditure   

Table 6-3 provides a comprehensive overview on the components of operational expenditure, 

encompassing both fixed and variable aspects. The subsequent section will examine the 

approach in which these parameters will be taken into account and computed within the scope 

of this research. The total OPEX is calculated by adding up the factors outlined in Eq 6.11 

𝐶I2oO =g𝐶I2oOjkPFk,lQ +g𝐶I2oOGFmQO
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+
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+

 Eq 6.11 
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Table 6-2: Breakdown for the factors included in direct and Indirect CAPEX in terms cost ranges and associated parameters for each factor [49], [366], 
[383], [384] 

Cost item Parameter & facilities included in the 

construction cost  

 
Percentage 

Cost range 

($/m3/day) 

Direct cost    70.0 –8 5.0  

Site preparation Land cost 

Clearing site 

Grubbing 

Fill  

Fencing  

Road construction inside and outside 

1.5 – 2.0 10.0 – 30 

Intake system  Intake structure  

Screening 

Pumping system  
4.0 – 6.5 90.0 – 120.0 

Pretreatment system Clarifiers filtration 

Chemical conditions  

Granular media or membrane 
8.5 – 9.5 150.0 – 230.0 

RO system Cartridge filters 

High-pressure 

Pumps and motors to feed the RO system 

Energy recovery system 

Interconnecting piping 

RO pressure membrane vessels and 

racks 

SWRO membrane elements 

Membrane cleaning system 

Membrane flush system 

38.0 – 40.0 450.0 – 520.0 

Posttreatment  Chemical conditioning system for permeate 

remineralisation  

Disinfection system 

Facilities for product water quality 

polishing 

1.5 – 2.5 30.0 – 70.0 

Concentrate disposal Conveyance and disposal of the concentrate Other waste streams generated at the 

desalination plan 2.5 – 3.5  
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Cost item Parameter & facilities included in the 

construction cost  

 
Percentage 

Cost range 

($/m3/day) 

Waste and solid handling Collection 

Storage tank and equipment for the waste 

membrane cleaning chemicals and flush 

water 

Solids handling system for treatment 

and disposal of residuals generated 

during the pretreatment process  

Disposal of solid waste from cartridge 

& membrane 

1.5 – 2.5 20.0 – 40.0 

Electrical and instrumentation Desalination plant’s electrical supply 

system (electrical substation; equipment 

and conduits connecting the desalination 

plant to the electrical grid or to a power 

generation facility) 

Transformers equipment  

Motor control centres 

Emergency power generation 

equipment 3.5 – 8.5 40.0 – 110.0 

Auxiliary service equipment 

utilities 

Plant chemical storage and feed systems  

Process air and water supply facilities  

The plant fire protection system 

Sanitary wastewater collection system 

Storm water management system 

All utilities needed for the normal plant 

operation (potable and utility water 

telephone, gas, etc.) 
2.5 – 3.0 15.0 - 35.0 
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Cost item Parameter & facilities included in the 

construction cost  

 
Percentage 

Cost range 

($/m3/day) 

Start-up, commissioning & accept 

test  

Labour Consumable Equipment used 

during this phase 

Initial training of the permanent 

desalination plant O&M staff 

Permitting and insurance 

Preparation of plant operation and 

maintenance manuals 1.5 – 2.5 10.0 – 30.0 

Building Plant administration & management 

Operator locker & shower facility 

Laboratory 

Maintenance shop 

Equipment & chemical storage 

Key equipment of SWRO system 

4.5 –5.5 40.0 – 80.0 

Indirect cost      

Preliminary engineering Initial assessment of project feasibility 

Studies required to determine plant location 

Define project scope and size 

Type of intake and equipment 

configuration 
0.5 – 1.0 15.0 – 35.0 

Pilot testing Build pilot plant to assess the location water quality and compare performance between 

technologies 
0.0 – 0.5 

5.0 – 15.0 

10,000–20,000* 

Detailed design Development of detailed project drawings 

and specifications 

Document deviations from the original 

design during construction 
3.5 – 4.5 80.0 – 100.0 

Construction management oversight Engineering activities associated with 

project construction  

Management of construction contractors  

Management of equipment and material 

suppliers involved in project 

implementation 

1.0–2.0 30.0 - 60 

     



 198 

Cost item Parameter & facilities included in the 

construction cost  

 
Percentage 

Cost range 

($/m3/day) 

Environmental permitting Fees for preparation of environmental 

studies and engineering analysis needed to 

obtain environmental permits 

Fees associated with environmental 

permit filing and processing 0.5 – 3.5 30.0 – 65.0 

Administration, contracting, 

management 

It is owner responsibility which involves : 

In-house expenditures for owner staff and 

overhead associated with project  

Implementation costs for contracting of 

outside engineering consultants  

Other advisers to provide specialized 

support services to project owner as 

needed 

1.0 – 1.5 20.0 – 60.0 

Legal services Legal review 

 processing of environmental permits,  

Reviewing and processing desalination 

plant land acquisition contracts 

Negotiate power supply contracts 

Preparation and negotiation of contracts for 

water supply 

Engineering, construction, and O&M 

services 

Obtain easements for source and 

product water pipelines and electrical 

supply lines 

Prepare contracts for services, 

equipment, and goods for desalination 

plant construction and operation 

0.5 – 1.0 15.0 – 35.0 

*per month of expenditures for pilot operations and maintenance
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Table 6-3:Breakdown for Operational Expenditure [49], [384], [385], [386] 

Cost item  Parameter included  Percentage  Cost range (US$/m3) 

Variable cost  45.0 – 75.0 0.30 

Power Annual desalination plant power costs 35.0 – 55.0 0.22 

Chemical  Annual chemical usage 3.0 – 7.5 0.03 – 0.07 

Replacement of membrane & cartridge 

filters 

Cost for membrane replacement  

Cost for cartridge replacement 
5.0 – 8.0 0.02 – 0.06 

Waste stream disposal Operation and maintenance of the outfall facilities 

Disposal generated during the filter backwash treatment 
2.0 – 4.5 0.01 – 0.02 

Fixed Cost  25.0 – 55.0 0.42 

Labour Annual labour cost 10.0 – 15.0 0.015 – 0.045 

Maintenance Routine operation 

Preventive and emergency maintenance of plant equipment, structures, 

buildings, and piping 

9.5 – 22.0 0.025 – 0.07 

Environmental & performance 

monitoring 

Plant discharge monitoring 

Plant performance and product water quality monitoring 
0.5 – 3.0 

0.002 – 0.005 

0.004 – 0.008 

Indirect O&M costs Staff training 

Professional development and certification 

Consumables and maintenance of plant service vehicles  

Administrative and utility/service (water, sewer, telephone, etc.) expenses  

Operations insurance 

5.0 – 15.0 0.02 – 0.06 

Capital recovery cost Capital recovery cost is assumed at 25 years payment term at 5 percent 

interest rate 
44 0.32 
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6.7.2.1 Labour  

The operation of desalination plants necessitates the engagement of a wide range of experts. In 

order to ensure optimal performance and adherence to rigorous standards, it is imperative that 

the administration, operation, laboratory, and maintenance departments possess the necessary 

expertise to effectively manage a desalination plant. The allocation of labour costs across 

various regions constitutes approximately 11-12% of the overall operational expenditure. The 

labour costs associated with treating water vary from $ 0.05 to 0.10 /m3 [49], [358], [387].  

This research developed a tailored labour methodology due to the significant variability in 

worldwide labour costs, which may be a 30-fold difference, potentially leading to an increase 

in overall expenses. For example, the water tariff at Bahrain's Al Dur SWRO facility, with a 

capacity of 218 million litres per day, is priced at US$0.89 per cubic metre. The construction 

cost of this facility amounted to US$236 million, while the operational expenses reached 

US$27.2 million. The aforementioned turnkey contractor was responsible for the design and 

construction of a 200 MLD SWRO plant in Barcelona, Spain, at a total cost of US$380 million. 

Additionally, an annual expenditure of US$52 million was allocated for capital, operation and 

maintenance (O&M) purposes. Consequently, the cost of water production amounted to 

US$1.42 per cubic metre. The allocation of labour costs for the development of the Al Dur 

plant amounted to 11 percent of the total operational costs, whereas the creation of the 

Barcelona Plant incurred a higher labour cost of 32 percent [49]. 

There is no clear correlation between the number of staff in a desalination plant and its 

production capacity in the literature. However, the staffing level at a desalination plant may 

exhibit slight variations depending on factors such as the plant's dimensions, design, location 

and operational schedule. According to the literature, the number of staff of different skill 

levels varies according to the plant capacity as seen in Table 6-4. In the field of desalination 

plants, staff required for operations can display notable fluctuations, which are impacted by 

several factors such as the size of the plant and its geographical location. An example of 

empirical evidence is derived from the Campo de Cartagena desalination plant in Spain. This 

facility, known for its daily capacity of 140,000 cubic metres, demonstrates that it can 

effectively operate with a workforce consisting of only 18 employees [384]. In contrast, the 

Carlsbad Desalination facility located in the United States, having a daily capacity of 190,000 

cubic metres, employs 36 individuals to ensure continuous operation throughout the day [388]. 
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An important factor to take into account when assessing staffing needs is the specific 

geographical location of a desalination facility. The MENA region has a significant presence 

of desalination facilities, which has resulted in a great deal of knowledge and expertise in the 

operation of these plants. As a result, the ratio of employees to output in these areas tends to 

be more optimised. On the other hand, in areas where RO plants have had less historical 

implementation, such as the United States, attaining operational efficiency may require 

increased employee levels to offset the lack of institutional familiarity. 

Table 6-4: The staffing requirements for a SWRO desalination plant, categorised by plant capacity 
and skill level [381] 

Plant capacity (m3/day) High Skill Low Skill 

1000 2 - 3 4 - 6 

5000 4 - 6 8 - 10 

10,000 7 - 10 12 - 14 

20,000 9 - 12 16 - 18 

40,000 12 - 16 18 - 20 

100,000 14 - 18 20 - 25 

200,000 18 - 28 30 - 40 

300,000 35 - 50 60 - 80 

 

Figure 6–10 shows the employee structure that is proposed in this research; the number of 

employees are selected from Table 6-4 and are then distributed among these roles. Working 

hours and number of shifts depend on the level and type of plant automation and the capacity 

of the plant. Eq 6.12 refers to the the yearly total costs of labour (C��) in SWRO desalination 

plant. 

𝐶oo = 𝑁oo × 𝐶$/$ × 𝐻𝑃𝐷 × 𝑃𝑂%,-! Eq 6.12 

Where N��	is	number	of	employees,	C$/� is hourly wage rate, HPD is working hours per day 

and PO���� is the total duration of plant operation in days.  
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Figure 6–10: Recommended labour structure for SWRO desalination plant 

Empirical labour costs for systems, in terms of hours, level of expertise, or individual wages, 

were not available. The majority of studies present an aggregate labour cost without providing 

detailed costs for individual categories. Therefore, the values utilised in this study are derived 

from a survey conducted based on estimate pay scale in Ireland from various websites [389], 

[390], [391] that provide information on job and salary scales which may not reflect actual 

figures across different regions. These values have the potential to be modified easily upon the 

specific geographical context. To simplify the process of estimating costs in the study, the 

labour type has been categorised into five distinct categories: head of plant, managers, 

engineers, operators, additional and others. The corresponding costs associated with each 

category are presented in Table 6-5. 

Table 6-5: Labour categories, roles, and associated costs 

Labour category Roles 
 

Cost per hour 
($/h) 

Head of plant Head of plant 40.0 
Mangers Operation manger, maintenance manager, administration manger, 

accountant 
30.0 

Engineers Mechanical engineer, electrical/instrumentation engineer, IT 
engineer, and safety engineer 

25.0 

Operators Local control room operator, local operator, and laboratory 20.0 
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Labour category Roles 
 

Cost per hour 
($/h) 

Other  Storage assistant, secretary 18.0 

Additional Cleaner, security 13.0 

 

6.7.2.2 Chemical  

Determining the specific consumption of chemical dosing in a SWRO desalination plant is 

quite difficult due to many factors including the quality and type of water, water source and 

the method used to operate the desalination technology. These factors affect the level and 

dosage that should be used in the process. The increase in installation of desalination plants in 

the world results in a great demand on the chemical market. The President and chief operating 

officer in the US based BWA Water Additives estimated that $500 million is the total cost of 

consumption of chemicals in desalination plants around the globally [392]. The IHS chemical 

company estimated that the overall global chemical consumption in the water treatment sector 

increased by approximately 3.2% per year between 2010 and 2015 [392], [393]. According to 

Almar Water Solution, the cost of chemical dosing is 11% of the total cost of OPEX in MENA 

region as unit cost is ranging from $0.025 - $0.075 /m3 [394][395]. Chapter 5 discussed the 

approach that would be used to calculate the chemical requirement per process (and 

subprocesses) and their associated cost.  

	𝐶C$0< =g𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑑𝑜𝑠𝑎𝑔𝑒
`

+s@

𝐶$ rY⁄ 𝑃𝑂%,-! Eq 6.13 

6.7.2.3 Energy 

The most significant aspect of variable OPEX in the operation of a SWRO plant is its annual 

energy expenditure. The values are derived from Eq 6.14 which calculates the SEC cost 

(𝐶4oCSnSkl) by summing the product of the volume of water processed at each process (𝑄:), the 

specific energy consumption at that process (𝑆𝐸𝐶+), the cost of energy (𝐶 $
pqr

), and the total 

duration of plant operation in days.  

𝐶4oCSnSkl = g𝑄+𝑆𝐸𝐶+𝐶 $
r/$

𝑃𝑂%,-!

`sM

+sD

 Eq 6.14 



 204 

Determining the precise cost of electrical power presents difficulties owing to its inherent 

fluctuations, as illustrated in Figure 6–11, which displays the 2023 businesses’ electricity rates 

in several counties. In this research, the electricity rate can be determined by user input and is 

not predetermined. However, any figure from the graph can be utilised if it aligns with the 

user's specific scenario. 

 

Figure 6–11: Electricity prices across a selection of countries utilising SWRO desalination 

6.7.2.4 Maintenance and Repairs 

Maintenance and repair are essential aspects of desalination plant operations. A well-structured 

scheduling system is necessary for this practise. A prudent method for estimating maintenance 

costs is to calculate the average annual expenses based on the projected lifespan of the 

equipment. Typically, the lifespan of equipment in desalination plants ranges from 25 to 50 

years [45]. Maintenance costs are usually allocated between 2% [358] and 4% [396] of the total 

capital cost of the installed equipment only (𝐶C72oO). In addition, the yearly expenses for 

maintaining structural components and piping infrastructure usually range from 1% to 2% of 

their initial construction expenses [397][45]. In this study, a 2% rate was used to calculate 

maintenance expenses (𝐶<,:`#) as shown in Eq 6.15.  

𝐶<,:`# = 0.02𝐶C72oO Eq 6.15 
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6.7.2.5 Equipment Replacement  

The lifespan of certain components in SWRO systems, such as cartridges filters, UF and RO 

membranes, as well as granular media filtration, is relatively shorter compared to that of other 

equipment. Cartridge filters typically have a lifespan Y𝐿&,J#J:%Y0[ ranging from two to three 

months [398], with a maximum potential lifespan of six months. The cost of cartridge filters 

Y𝐶$/&,J#J:%Y0[ can range from $8 to $30 per filter. In the case of RO membranes, their life spans 

(𝐿0) from five to seven years [399]. However, with recent advancements in maintenance and 

improved pretreatment, the useful life of RO membranes can be extended up to ten years 

[397][40]. The replacement cost for cartridge filters X𝐶H2�RkPSPFOsQ] and RO elements or UF 

elements Y𝐶H2�Q[ can be calculated using Eq 6.16 and Eq 6.17 respectively. 

	𝐶J06)RkPSPFOsQ =	𝑁&,J#J:%Y0 	
12	𝑚𝑜𝑛𝑡ℎ𝑠
𝐿&,J#J:%Y0

𝐶$/&,J#J:%Y0 Eq 6.16 

	𝐶J06)Q = 𝑁0 	
𝐿4WHI

𝐿0
𝐶$/0 Eq 6.17 

Where, 𝐿+ is the expected useful life of equipment (𝑗) which can be in months or years, 𝐶$/0 is 

cost in dollars per element. There are two methods of maintaining granular media filtration, 

either cleaning or replacement. The cost associated with replacing any filter media is 

determined by three factors: the volume of the filter material used in the filtration plant, the 

annual replacement rate, and the cost of the specific filter medium. The granular filter media 

infill is typically replaced entirely every 10-20 years [271][301], resulting in an annual 

replacement rate of approximately 5-10% [40]. Eq 6.18 and Eq 6.19 are used to determine the 

variables 𝐶J06)GFlSQP_F and 𝐶J06)GFlSQP which represent the cost of the filter media layer and the 

total replacement cost of the media filter, respectively: 

	𝐶J06)GFlSQP_u = 𝑉+𝑓.:)#0J𝐶J06)u Eq 6.18 

𝐶J06)GFlSQP =g𝐶J06)GFlSQP_u

`

+

𝑁.:)#0J!
𝐿4WHI

𝐸𝑈𝐿.:)#0J
 Eq 6.19 
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Where 𝑉+ is the volume of the layer; 𝑓.:)#0J represents the number of replacements (ranging 

from 0.05 to 0.1); and 𝑛 indicates the number of layers in the filter media. To perform the 

cleaning process, Eq 6.20 is used, with the additional step of multiplying it by 𝑉+. 

𝐶&)0,`:`YGFlSQP =g𝐶&)0,`:`YGFlSQP_u𝑉+𝑁.:)#0J!
𝐿4WHI

𝐿.:)#0J

`

+

 Eq 6.20 

Table 6-6 presents the expenses associated with the cleaning and replacement of a media filter 

per unit volume of 0.028 m3. The cost associated with cleaning encompasses the average 

expenses for labour and shipping, whilst the replacement cost comprises the expenses for 

catalyst, neutralisation process, and average shipping. 

 

Table 6-6: Cost comparison of media cleaning and full media replacement [400] 

Filter type Cleaning ($/0.028m3) Replacement ($/0.028m3) 

Filter sand 48  40 

Anthracite 18 55 

Greensand 20 65 

GAC 28 80 

 

6.7.2.6 Disposal and Waste Management  

In relation to cost, the expense associated with brine disposal ranges from 5% to 33% of the 

overall cost of the operations [401]. This cost fluctuates based on factors such as the properties 

and quantity of the brine, the extent of pretreatment, the method of disposal, and the 

environmental conditions in which the disposal takes place. However, it has been reported in 

other research[402] that the disposal of brine only constitutes a maximum of 5% of the overall 

operational costs. The values provided in Table 6-3 is for general estimation of disposal and 

waste management; however, these values might differ based on the technology used in 

disposal discharge. For instance, surface discharge costs (𝐶$/<v) between US $0.05 – 0.3 per 

m3 of brine rejected while sewer discharge (𝐶$/<v) $0.32–0.66/m3 of brine rejected [403][401]. 

The annual disposal and waste management cost is determined using Eq 6.21. 

𝐶5:!6*!,) = 𝑄%:!6*!,)𝐶$/<v𝑃𝑂%,-! Eq 6.21 
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6.7.2.7 NPV and Sensitivity analysis 

The interest rate is assumed to be 6% according to the literature. The cost estimates for CAPEX 

and OPEX pertaining to the desalination plant can be formulated as a basic design cost 

estimate, with an approximate accuracy of ± 15%. Therefore, a sensitivity analysis should be  

conducted to assess the impact of varying OPEX. Thus, to determine the influence of 

fluctuating energy costs on OPEX, this study implemented a sensitivity analysis using a 

variation range of ±5%, ±10%, and 20%.  

6.7.3 Unit Product Cost 

The cost of water production comprises of all expenditures related to the implementation, 

operation, maintenance, finance, and consists of both fixed and variable components. The 

calculation of the specific water production costs (WPC) during the cost accounting period (𝑡) 

involves determining the expenses associated with producing a certain quantity of water [301]. 

This cost is computed using Eq 6.22 

𝑊𝑃𝐶# =
𝐶C72oO + 	𝐶I2oO

𝑄6#
 Eq 6.22 

Where 𝑊𝑃𝐶# is the cost of water produced by the desalination plant in ($/m3) and 𝑄6# is the 

total permeate water that produced by the plant during a period (𝑡). 

6.8 Summary  

This chapter provided a comprehensive analysis of the CAPEX and OPEX associated with 

SWRO desalination plants. The CAPEX analysis was based on an adaptable cost database 

covering various processes and subprocesses, allowing for easy updates to reflect current 

market prices. Detailed cost ranges for both direct and indirect CAPEX components were also 

established, providing a flexible framework for future adjustments based on specific project 

needs. 

Furthermore, the chapter developed systematic steps for calculating OPEX, offering suggested 

cost ranges for these expenses. This approach provides a dual utility, serving both as a guideline 

and as a customizable input model, where users can substitute their own values as necessary. 

The contributions of this chapter extend to the development of a robust cost database for SWRO 

desalination. This includes detailed calculations of CAPEX and OPEX, which have been 

integrated into a Life Cycle Cost Analysis (LCCA) tool. This tool is designed to enhance 
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decision-making processes by providing a comprehensive economic assessment platform, 

which will be further explained in the subsequent chapter.  
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Chapter 7  

Evaluation of OntoSWRO and LCCA TOOL 

This chapter outlines the development of a SWRO design and LCCA tool, based on the domain 

knowledge assimilated and aggregated in Chapter 5 and Chapter 6 The main objective is to 

validate the methodology and outcomes derived from analysis of the three use cases presented 

in Chapter 4. The outputs obtained from this tool will be analysed, and a thorough examination 

of the integrated results from these three chapters will be presented here. 

To effectively assess the utility of the knowledge modelling performed here for the purpose of 

designing improved SWRO systems, three complex use cases were outlined in section 4.5 . To 

exploit the knowledge modelling (Chapter 4)  and the data gathered (Chapter 5 and Chapter 6), 

a  SWRO design and LCCA tool was implemented that provided a graphical user interface to 

define and explore configurations and produces. Section 7.1 outlines the development and 

implementation of the prototype  SWRO design and LCCA tool while section 7.2  performs an 

evaluation of the outcomes using the three cases studies. Section 7.3 discusses the 

consequences of integrating an ontology for SWRO with life cost analysis in this way. 

7.1 Model Development and Implementation 

The tool was built on the Dash Plotly platform (v2.17.0), a freely available Python web 

framework developed by Plotly, that allows for the production of interactive, web-based data 

visualisations. It emphasises simplicity and flexibility. Dash applications are commonly 

organised as a composition of layout components and callback methods. 

The layout components determine the structure of the interface and visual presentation of the 

data, defining how graphs, charts, and other HTML elements are positioned and displayed. 

Callback methods in Python are functions that are activated in response to changes in the layout 

components, such as button clicks or slider adjustments. These functions have the ability to 

dynamically update the content of the application, resulting in a user experience that is both 

responsive and interactive. Dash facilitates the seamless exchange of information between the 

frontend (web browser) and the backend (Python server) and was chosen as the prototyping 

framework here due to the ability to generate interactive data visualisations without significant 
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web development. Figure 7–1 gives a visual overview of the SWRO design and LCCA tool as 

implemented in Dash. 

 

 

Figure 7–1: Dash plotly frameworks for  SWRO design and LCCA tool 

 



 211 

 

Figure 7–2: Screenshot from the model interface 

 

Figure 7–2 presents a screenshot of the model interface, illustrating how the responsive design 

of the dashboard dynamically populates the results in accordance with user input. The 

following process flowcharts (Figure 7–3 - Figure 7–11) illustrate a sophisticated approach 

designed to calculate various aspects of SWRO desalination plant that was developed based on 

the knowledge from Chapter 5 and Chapter 6.  It presents a structured approach where the user 

can navigate through different components and parameters to define and evaluate the system. 
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The elements in blue represent dropdown menus that provide predefined options for the user 

to select from, thereby simplifying the choice of components such as surface or subsurface 

intake types etc. The orange elements signify the input fields where the user must enter specific 

data, such as the volume of intake pipes or the permeability of wells etc. These inputs are 

crucial as they directly affect the calculations and the outcomes of the model. The outputs of 

the model are highlighted in green and are the result of the calculations based on the selected 

options and entered inputs. They offer valuable information such as number of elements 

pressure vessels, intake capacity, diffuser design, enabling the user to gauge the viability of the 

SWRO systems. The red lines indicate the flow of the process, guiding the user from one step 

to the next.
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Figure 7–3: Intake system framework for support decision tool 
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Figure 7–4: pretreatment system framework for support decision tool 
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Figure 7–5:Pretreatment system framework for support decision tool 
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Figure 7–6: RO system framework for support decision tool 
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Figure 7–7: Discharge system framework for support decision tool 
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Figure 7–8: Chemical calculation framework for support decision tool. 

 
Figure 7–9: SEC framework for support decision tool 
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Figure 7–10: CAPEX framework for support decision tool 
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Figure 7–11: OPEX framework for support decision tool 
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The model has been developed in accordance with the layouts provided in the previous 

diagrams, as depicted in the figure illustrating the model's interface. This model is intended for 

the evaluation of three cases form Chapter 4 

7.2  Model Analysis and Evaluation  

This section details the outcomes derived from the model, along with an analysis and 

assessment of these findings. The following tables are color-coded for ease of interpretation: 

blue indicates values that are linked to the scenarios outlined in Chapter 4, yellow indicates 

assumed values selected from OntoSWRO, and green denotes outputs generated by the 

decision support tool. All tables related to the following evaluation are provided in APPENDIX 

F. 

7.2.1 Analysis and Evaluation for Case 1 

Table 7-1 outlined the design parameters for case one of the SWRO desalination, as generated 

by the SWRO design tool. For a detailed breakdown of each process, refer to APPENDIX F. 

Table 7-1: Summary of SWRO design specifications for Case 1 

Plant design Summary Value Unit 

Product  25,000.00 m3/day 

Recovery  45.00 % 

Salinity  35,000.00 mg/L 

Temperature  25.00 ℃ 

Intake capacity  57,805.56 m3/day 

Ro feed flow  55,556.00 m3/day 

Brine flow rate 30,556.00 m3/day 

Total discharge flow rate  32,778.96  m3/day 

Brine salinity  63,579.00 mg/L 

Permeate salinity 99.00  

Capacity per well 5,223.27 m3/day 

Number of wells 16.00  

Required surface area of filters 161.00 m2 

Number of filters + standby 4.00  

Number of cartridges 659.00  

Number of cartridges per PV 82.00  

Number of pressure vessels 228.000  

Number of elements 1,824.000  

Number of trains 3.000  
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Plant design Summary Value Unit 

Number of ERD 14.000  

Water permeability coefficient at design 1.431 L/m2.bar.h 

Salt permeability coefficient at design 0.076 L/m2h 

Applied feed pressure 52.000 bar 

Brine pressure 50.320 bar 

Intake system SEC  0.13  kWh/m3 

Pretreatment system SEC  0.100  kWh/m3 

RO system SEC  2.390  kWh/m3 

Discharge SEC  0.270  kWh/m3 

Posttreatment SEC  0.170  kWh/m3 

Total SEC  3.01  kWh/m3 

 

According to the suggested design from OntoSWRO, it is determined that to meet the intake 

capacity outlined in Table -  17, the plant will need 16 beach wells, with each expected to 

produce 5,233.27 m3/day (Table -  18). This calculation is predicated on the anticipation of a 

3% loss in production efficiency for the beach wells. Nonetheless, deploying 16 wells would 

slightly exceed the plant's maximum intake capacity, while 15 wells would not suffice to meet 

the required capacity. Table -  16, found in the APPENDIX F, illustrates that a plant with a 

daily capacity ranging from 54,600 to 60,000 m3 would typically operate with 11 to 12 wells 

[303]. The reported literature values, however, must be tempered with the understanding that 

variations in ground permeability and transmissivity, which are crucial to these calculations, 

are not fully documented, nor is it clear if the potential production losses have been fully 

accounted for. 

Table -  19 and Table -  20 detail the recommended pretreatment system options, highlighting 

the design specifications for single media pressure filtration and cartridge filters, respectively. 

The design calls for 659 cartridge filters, based on the stipulation that each pressure vessel 

houses 8 cartridges, aligning with the number of elements in the RO system. 

The RO system is calculated to require 1,824 elements across 228 pressure vessels (Table -  

21) to achieve a production of 25,000 m³/day. The design's water and salt permeability 

coefficients are documented as 1.431 L/m2.bar.h and 0.076 L/m2.h, respectively, as indicated 

in Table -  22. An applied pressure of 52 bar is required to separate a solution with a salinity 

of 35,000 mg/L and produce permeate with a salinity of 106.32 mg/L, as indicated in Table -  

23. 
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 Table -  24 provides the performance of individual elements within the pressure vessels, noting 

that the first element achieves a recovery rate of 11.7%, while the final element has a recovery 

rate of 1.6%. The reasons for the decline in membrane recovery across the pressure vessels are 

explained in Sections 2.3.1  and 5.9  Ultimately, the decision to utilise 8 elements per pressure 

vessel is left to the discretion of the user.  

The discharge system is engineered to accept a flow rate of 33,045.23 m3/day, a figure that 

exceeds the one presented in Table -  25(row 12). This value accounts for the inclusion of both 

backwash and CIP water. This figure represents the upper threshold of discharge that the 

desalination plant is capable of handling which happens once or twice per year. Otherwise, the 

daily discharge capacity is 32,778.22 m3/day; it is integral to the calculations for both OPEX 

and CAPEX. Additionally, Table -  25 outlines the specifications for the jet diffuser design, 

which ensures effective dilution of brine with seawater to mitigate the environmental footprint 

of the brine discharge. 

The detailed SEC breakdown (Table -  26) shows that the RO system is the most energy-

intensive process of the overall desalination system, consuming 2.39 kWh/m3, which is 

expected due to the high pressures required for reverse osmosis. The intake system SEC and 

pretreatment system SEC are comparatively lower at 0.13 kWh/m3 and 0.1 kWh/m3, while the 

posttreatment and discharge SECs are 0.17 kWh/m³ and 0.27 kWh/m3 respectively. 

Collectively, these components yield a total SEC of 3.01 kWh/m3. This total SEC that is 

computed by the model is in alignment with the values discussed in the literature review. The 

rated power for the intake system's pumps, sourced from the pump dataset, aligns with the 

design requirements of the intake system. The selected pump possesses a rated power of 314 

kW, and is capable of delivering a flow rate of 2,423 m3/h at a head of 40.6 metres. 

Table 7-2 provided a comprehensive summary of the CAPEX and OPEX for Case 1. For a 

more detailed analysis and breakdown of these financial metrics, APPENDIX F contains 

extensive supplementary data and specifics obtained from LCCA tool. 

Table 7-2: Summary of CAPEX and OPEX for Case 1 

Parameters 
OPEX cost 

($millions/year) 

Cost ($M/20 

years) 

Note  

Discounting rate  5%   

Power  4.58   91.69  Cost rate = $0.15 

Chemicals  0.50   9.97   
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Parameters 
OPEX cost 

($millions/year) 

Cost ($M/20 

years) 

Note  

Replacement of membranes and cartridge 

filter 

 0.19   4.12  Cost rate = $30.0*, 

$40.0**, $500.0*** 

Waste stream disposal  1.77   35.40  Cost rate = $0.15 

Labour  1.16   23.27  No of staff = 18 

Maintenance  0.84   16.76   

Environmental and performance monitoring  0.04   0.72  Cost rate = $0.004 

Indirect O&M cost  0.36   7.20  Cost rate = $0.04 

Total OPEX ($M/20 years)  9.45   189.14   

Total CAPEX ($)  48.56   

*cartridge replacement price, ** pretreatment replacement price, *** RO replacement price 

Table -  27 presents a breakdown of CAPEX for a desalination project for Case 1, including 

direct CAPEX and indirect CAPEX, along with the NPV of the investment. 

The Direct CAPEX, amounting to $41.91 million, encompasses the primary costs directly 

associated with the construction and installation of the desalination plant. For instance, the RO 

system and discharge system are the most expensive components, due to their complex 

technology and energy requirements, and these account for a significant portion of the budget 

at $13.95 million and $13.11 million respectively. Similar to Table 6-2, the RO system has the 

highest CAPEX contribution. However, contrary to Table 6-2, the contribution of the discharge 

system in Case 1 is relatively more significant.  

The Indirect CAPEX, totalling $6.65 million, accounts for the supportive and additional 

expenses such as project management, detailed design, construction management oversight, 

and environmental permitting. The NPV calculated at $32.87 million is a measure of the 

profitability of the project. A positive NPV, such as the one presented, indicates that the 

projected earnings, discounted for the time value of money at a discount rate of 5%, exceed the 

initial investment outlays. This suggests that the project is financially viable given the 

parameters and assumptions used in the NPV calculation. 

This desalination plant requires 18 employees (Table -  28); their expertise level was selected, 

and salary calculated, according to the approach in the methodology presented in Chapter 6. 

Regarding chemical alkalinity, most desalination plants are specifically built to generate 

finished water with a total hardness (calcium and magnesium) ranging from 80 to 120 mg/L as 

CaCO3 [404], therefore, 80 mg/L of CaCO3 was used for these cases. 
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Labour and maintenance costs are relatively moderate. Environmental and performance 

monitoring, along with indirect O&M costs, are comparatively low (Table -  29). Energy costs, 

often the most significant portion of OPEX in desalination plants due to the energy-intensive 

nature of the process, are listed at $4.58 million/year. Chemical costs, at $0.50 million/year, 

and the replacement of membranes, media filter and cartridge filters, at $0.19 million/year, are 

also significant recurring costs. Waste stream disposal is another notable expense at $1.77 

million/year, highlighting the environmental management aspect of desalination operations, 

which often involves the handling of brine and other waste by products. The Total OPEX, 

summing up to $9.45 million/year, and $189.14 million over 20 years of operation. This design 

will lead to water production cost of $1.32  

Table -  32 illustrates the results of a sensitivity analysis. This sensitivity analysis was 

conducted by altering the cost of energy, both increases and decreases, with electricity prices 

being identified as the major factor that would vary over years. The energy prices were assessed 

at ±5%; ±10% and +20%. The total operational expenditure, when subjected to a -10% 

sensitivity analysis, dropped to $198.3 million, which represents an increase of approximately 

$207.47 million over the period of 20 years, reflecting a 20% increase.  

Figure 7–12 and Figure 7–13 presents the breakdown for CAPEX and OPEX for the Case 1 

desalination plant, respectively. The most substantial portion of OPEX is energy, reflecting the 

high energy requirements for the reverse osmosis process, which in turn is the most expensive 

system in the CAPEX, especially at such a scale. These findings are consistent across the 

literature.  
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Figure 7–12: CAPEX breakdown for Case 1 

 

Figure 7–13:OPEX breakdown for Case 1 
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7.2.2 Analysis and Evaluation for Case 2 

In this scenario, OntoSWRO has presented two potential solutions that are identical in all 

aspects except for the pretreatment system. The first approach recommends using gravity dual 

media filtration, while the second recommends UF. These two options are now analysed and 

compared to assess their respective impacts on design and cost. Table 7-3 presented a summary 

of the SWRO desalination design parameters for case 2, summarised from the SWRO design 

tool. Detailed designs for each process can be found in  APPENDIX F. 

Table 7-3: Summary of SWRO design specifications for Case 2 

Plant water design Solution 1 Solution 2 Unit 

Product  120,000.00 120,000.00 m3/day 

Recovery  40.00 40.00 % 

Salinity  38,000.00 38,000.00 mg/L 

Temperature  28-32 28-32 ℃ 

Intake capacity   318,000.00  330,000.00 m3/day 

Ro feed flow   300,000.00  300,000.00 m3/day 

Brine flow rate  180,000.00  180,000.00 m3/day 

Brine salinity   63,283.00  63,283.00 mg/L 

Permeate salinity  101.00  101.00  

Feed water density 1023.62 1023.62 kg/m3 

Number of intake pipes 2.00 2.00  

Lamella settling velocity 0.015 0.015 m/s 

Number of media filters + standby 16.00   

Media filter depth 5.15 - m 

Number of Cartridges 3,418.00 -  

Number of UF Element  - 5,980.00   

Number of UF Vessel - 1,495.00  

Number of UF Train - 31  

Number of RO elements  9,653.000   8,449.000   

Number of RO pressure vessels  1,379.000   1,207.000   

Number of ERD  80.000   80.000   

Number of RO trains  14.000   12.000   

Water permeability coefficient 1.369 1.372 L/m2.bar.h 

Salt permeability coefficient  0.073 0.073 L/m2h 

Applied feed pressure 54.000 56.000 bar 

Brine pressure 52.88 54.53 bar 

Salinity in permeate water 200.07 200.03 mg/L 

Total discharge flow rate  195,003.35   208,041.69  m3/day 
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Plant water design Solution 1 Solution 2 Unit 

Intake system SEC  0.042   0.042 kWh/m3 
Pretreatment system SEC  0.150   0.202  kWh/m3 

RO system SEC  2.530   2.630  kWh/m3 

Discharge SEC  0.270   0.270  kWh/m3 

Posttreatment SEC  0.180   0.180  kWh/m3 

Other facilities 0.1 0.1 kWh/m3 

Total SEC  3.27   3.424 kWh/m3 

 

According to Case 2: 

Table -  33, the UF-equipped plant requires a higher intake capacity than its media filtration 

counterpart by 12,000 m3/day, attributed to the UF system's need for more frequent 

backwashing [245], [405]. Consequently, costs related to the intake and discharge systems are 

higher for the UF solution, as reflected in Table -  34 and Table -  43. Moreover, the lamella in 

the UF solution (Table -  35) removes more solids due to the increased intake capacity which 

results in a higher sludge disposal . The gravity filtration solution requires 16 gravity filters, 

whereas the UF system necessitates 5,980 elements across 31 trains. 

The media filtration solution entails an additional pretreatment step using 3,418 cartridge filters 

to eliminate finer particles, thus protecting the RO system, a step that the UF solution does not 

require. Furthermore, the media filtration will consume more chemicals than UF, as indicated 

in Table -  49 and Table -  50. However, since the UF solution process requires a larger volume 

of intake water, the expected cost advantage is negated, resulting in higher overall costs for the 

UF system. 

In the RO system design, the UF solution calls for fewer membrane elements, pressure vessels, 

and trains due to its ability to operate at a higher flux, as seen in Table -  38, resulting from a 

higher water permeability coefficient (Table -  39) compared to the media filtration solution. 

Nonetheless, the UF system experiences greater pressure loss per element, necessitating a feed 

pressure that is 2 bar higher than that of the media filtration solution (54 bar). 

The salinity in permeate for both solution is approximately 200 mg/L which is clearly higher 

than Table -  33 because this value takes into account the RO transport equations. 

Table -  44 illustrates that both solutions report the same SEC for intake system, which is a 

contradiction given the higher capacity of the UF system. This arises because there was no 

available pump in the dataset that met the necessary capacity and head criteria; therefore, Eq 
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5.110 was employed to estimate the power, neglecting pipe losses and considering only 

capacity and depth. Research [387] has noted that offshore intake has an SEC of 0.05 kWh/m3 

of desalinated water, suggesting the model's calculated values are not significantly divergent 

from those documented. Overall, the UF solution acquires a higher SEC at 3.424 kWh/m3, with 

the media filtration solution being more energy-efficient by 0.154 kWh/m3. 

Table 7-4: Summary of CAPEX and OPEX for Case 2 

 
Cost solution 1 

($M/year) 

Cost solution 

2 ($M/year) 

Note  

Discounting rate  4%   

Power 12.60  13.64  Cost rate = $0.08 

Chemicals 2.88  4.1   

Replacement of membranes and cartridge 

filter 

 1.83   1.2   

Waste stream disposal  14.04   14.90 Cost rate = $0.2 

Labour  1.59   1.77 No of staff = 25, 28 

Maintenance  5.82  5.84  

Environmental and performance monitoring  0.22  0.22 Cost rate = $0.005 

Indirect O&M cost 2.16 2.16 Cost rate = $0.05 

Total OPEX ($M/20 years) 41.13  43.82  

Total CAPEX ($) 322.13 328.3   

 

Table 7-4 showcases a summarised view of both the CAPEX and OPEX associated with Case 

2. To explore the detailed components and individual calculations that underpin these figures, 

refer to APPENDIX F, where these elements are explored in greater depth. For instance, Table 

-  45 outlines the CAPEX for two distinct desalination plant scenarios which are summarised 

as follows:  

1. In both scenarios, the intake system, discharge system followed by RO system represent 

significant portions of the initial investment as seen in Figure 7–14, reflective of their 

vital role in the desalination process. The UF scenario shows a slightly higher 

investment in these systems, but not in the RO system. 

2. The posttreatment system, auxiliary service equipment, and waste solid handling costs 

are comparable across both scenarios, suggesting that these processes are not heavily 

influenced by the choice of pretreatment technology. However, building construction 

expenses as well as preliminary engineering, construction management oversight, and 
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project management are notably higher in the UF scenario due to the additional 

infrastructure required to support the more complex UF system. Therefore, the cost rate 

for Case 2, scenario 2 was lower than scenario 1. 

Comparing the OPEX tables (Table -  53 and Table -  54) for the two desalination plants, 

several conclusions were drawn about the cost implications of each pretreatment method on 

overall operational expenses: 

1. The UF pretreatment plant incurs slightly higher energy costs ($13.64 million/year) 

compared to the media filtration plant ($12.6 million/year) as shown in Table -  48 and 

Table -  48. This is due to the higher energy requirements of UF systems, which require 

electricity to maintain transmembrane pressure [406]. 

2. The UF plant also has higher chemical costs ($4.10 million/year) relative to the media 

filtration plant ($2.88 million/year) (Table -  50 and Table -  49).  

3. Table -  52 shows a lower expense ($1.20 million/year) in replacing equipment than the 

media filtration plant ($1.83 million/year), see Table -  51, even though UF membranes 

may be more costly or need to be replaced more frequently due to the fine pore size and 

susceptibility to clogging [271]. However, in recent years the life span of RO and UF 

membrane has extended up to 10 years [40] with proper maintenance while cartridge 

filters still have a relatively short life span requiring more frequent replacement [398]. 

4. Waste stream disposal costs are notably higher for the UF plant ($14.9 million/year) 

compared to the media filtration plant ($14.04 million/year). The UF process typically 

generates a more concentrated waste stream, which can increase disposal costs [292] 

5. Labour costs are higher in the UF plant ($1.77 million/year) than in the media filtration 

plant ($1.59 million/year), suggesting that UF operations require more specialised skills 

or intensive labour; therefore, the number of staff was higher in UF (Table -  46). 

6. Maintenance costs are significantly higher in scenario 2 ($5.52 million/year) than in 

scenario 1 ($5.39 million/year) due to the complexity and sensitivity of the membrane 

components.  

7. Both plants have similar costs for environmental and performance monitoring, 

suggesting that this expense is not heavily influenced by the type of pretreatment used. 

Additionally, this parameter is determined by multiplying the cost rate by the plant's 

production capacity, which remains consistent in both scenarios. 
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8. Overall, the total OPEX for the UF plant ($43.82 million/year) is higher than the media 

filtration plant ($41.13 million/year), reflecting the cumulative effect of the higher costs 

associated with the UF process. 

 

Figure 7–14:CAPEX breakdown for solution1 
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Figure 7–15: OPEX breakdown for solution 1. 

 

Figure 7–16: CAPEX breakdown for solution 2 
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Figure 7–17: OPEX breakdown for solution 2 

In conclusion, the UF system requires a slightly higher initial investment, both in direct and 

indirect CAPEX ($328.3 million). The media filtration scenario is expensive by almost $6.164 

million. The comparison suggests that while UF pretreatment can offer higher water quality 

and possibly reduce downstream costs, it results in higher OPEX costs due to increased energy, 

chemical, and maintenance requirements. Conversely, media filtration has lower OPEX by 

almost $2.69 million/year but may not provide the same level of water quality or might result 

in higher costs in other areas of the plant operation not reflected in the OPEX [407].  

Figure 7–14 to Figure 7–17 reveal that intake and discharge systems, as well as waste stream 

management, play a substantial role in both CAPEX and OPEX. This finding contradicts the 

generally held opinion that the RO system and energy costs are the main contributing cost 

factors. This anomaly is mainly noticed in plants with large capacities. Contrary to the typical 

findings presented in the literature review, which estimate the costs of the discharge system by 

considering the volume of brine produced from the RO process, this study uses an additional 

method. By factoring in the additional volume produced by backwash activities, the expenses 

related to the discharge and intake systems in this study surpass those usually documented, 

leading to a higher overall cost. 

When examining production costs, there is a slight difference between the two scenarios. The 

cost of producing desalinated water in the second scenario is $1.36 per unit, whereas the first 
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scenario incurs a substantially lower production cost of $1.28 per unit. This notable difference 

highlights the impact that the chosen pretreatment technology has on the operational economics 

of desalination which was also observed in this research [408]. 

7.2.3 Analysis and Evaluation for Case 3 

In the third case, which features a smaller-capacity plant, the operating costs are inherently 

higher relative to larger plants, as supported by the referenced literature. This is consistent with 

the industry understanding that smaller plants often lack the economies of scale that contribute 

to cost efficiency [409]. A similar analytical approach to those used in the previous cases was 

applied to the smaller plant and Table 7-5 provided a summary report for design specification 

for case 3. 

Table 7-5: Summary of SWRO design specifications for Case 3 

Plant design Summary Value Unit 

Product   5,000.00  m3/day 

Recovery   47.00  % 

Salinity   35,000.00  mg/L 

Temperature  25.00 ℃ 

Intake capacity   11,595.75  m3/day 

Ro feed flow   10,638.00  m3/day 

Brine flow rate  5,638.00  m3/day 

Total discharge flow rate   m3/day 

Brine salinity  65,976.00 mg/L 

Permeate salinity 99.00  

Number of Intake pipes  1.00   

Eff DAF suspended solid 84.615 % 

Removal of DAF suspended solid 10.629 kg/h 

sludge produced from DAF 3 kg/h 

Number of UF Element  189.00   

Number of Vessel  47.00   

Number of Train 1  

Number of pressure vessels  47.000   

Number of RO elements  342.000   

Number of trains 2.000  

Number of ERD 7.000  

Water permeability coefficient at design  1.431  L/m2.bar.h 

Salt permeability coefficient at design  0.075  L/m2h 

Applied feed pressure 54.000 bar 
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Plant design Summary Value Unit 

Brine pressure 53.40 bar 

Intake system SEC  0.032  kWh/m3 

Pretreatment system SEC  0.250  kWh/m3 

RO system SEC  2.340  kWh/m3 

Discharge SEC  0.010  kWh/m3 

Posttreatment SEC  0.100  kWh/m3 

Total SEC 2.732 kWh/m3 

 

A key finding for Case 3 is the slightly higher recovery rate in the desalination process, which 

consequently requires an increase in the feed pressure for the RO system. This is a direct 

consequence of the smaller volume throughput, which necessitates higher efficiency in the 

recovery of fresh water to make the process economically viable. 

The recommended pretreatment system in this third case, which consists of DAF and UF, 

exhibits a high SEC, as detailed in Table -  64. High SEC is a characteristic concern for such 

technologies, especially in plants with smaller scales, where the energy costs per unit of 

produced water tend to be higher. In terms of CAPEX and OPEX, Table 7-6 summarises the 

main parameters for Case 3, derived from the detailed breakdown obtained from the LCCA 

tool. This information can be found in APPENDIX F. 

 

Table 7-6: Summary of CAPEX and OPEX for Case 3 

 
OPEX cost 

($millions/year) 

Cost ($M/22 

years) 

Note  

Discounting rate  5%   

Power  0.73   14.66  Cost rate = $0.13 

Chemicals  0.15   3.09   

Replacement of membranes and UF filter 
 0.04   0.75  Cost rate = $400.0, 

$1000.0 

Waste stream disposal  1.17   23.46  Cost rate = $0.49 

Labour  0.62   12.33  No of staff = 10 

Maintenance  0.00   0.04   

Environmental and performance monitoring  0.01   0.18  Cost rate = $0.005 

Indirect O&M cost  0.09   1.82  Cost rate = $0.05 

Total OPEX ($M/20 years)  2.82   56.33   

Total CAPEX ($)  18.49   
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Interestingly, the discharge system's impact on CAPEX is minor due to the plant's utilisation 

of sewer discharge. While this might be seen as a cost-saving measure in terms of initial 

investment, it has led to disproportionately high OPEX, accounting for nearly 42% of the total. 

In most desalination operations, energy consumption is the dominant OPEX cost. However, in 

this small-scale case, the required integration with sewer discharge systems seems to have 

shifted the cost burden. 

The unit product cost for Case 3 stands at $2.06, marking it as the most expensive among the 

reviewed scenarios. Finding unit product cost data for desalination facilities with a capacity of 

5000 m3/day was difficult to find in the literature. However, this value exceeds the world 

average unit product cost, which ranges between $0.5 – 0.66/m3 [408] and the data documented 

in the literature review which reports a range of $0.75 to $2 per cubic metre  [67]. Furthermore, 

a recent LCA of two SWRO desalination plants with differing configurations in Kuwait 

reported unit costs ranging from $1.26 to $1.46/m3 [408]. This highlights the challenge of 

operating smaller-scale desalination plants efficiently and raises questions about the long-term 

economic sustainability of such models without strategic measures to control and mitigate 

operational costs [410]. Additionally, the variance in unit production costs across the three 

distinct cases underscores the significant influence that system configurations, location and 

cost rate selection have on economic outcomes. Figure 7–18 and Figure 7–19 present the 

breakdown for CAPEX and OPEX for Case 3. 
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Figure 7–18: CAPEX breakdown for Case 3. 

 

Figure 7–19: OPEX breakdown for Case 3 
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7.2.4 Benefit of SWRO Design and LCCA TOOL 

The analysed cases highlight the crucial need of life cost analysis in evaluating and deciding 

the worth of various methods for SWRO desalination plants. An examination of this nature is 

essential for making well-informed decisions regarding the practicality and economic 

sustainability of different desalination processes. 

Specifically, the Wave programme is limited to the design and analysis of equipment created 

by the DuPont firm [380], indicating that it does not provide a comprehensive solution for the 

entire design of an SWRO desalination plant. This constraint confines users to DuPont's 

selection of items, hence prohibiting them from integrating products from alternative 

manufacturers into their designs for reverse osmosis systems. 

Conversely, the decision assistance tool created in this study provides users with increased 

adaptability. Users are given the option to either utilise predefined values from the ontology or 

integrate their own design data. This capability sets the tool apart from other options in the 

industry, such as WTCost and DEEP, which are exclusively LCCA tools and do not include 

design requirements. For example, reviewing the CAPEX obtained from current literature with 

the three scenarios described in this thesis, it became clear that these studies underestimate the 

capital expenses especially for small and large desalination capacity (Table 7-7). This 

difference highlights the constraints of regression cost estimation models or cost ranges 

reported in the literature, which may not comprehensively encompass all the factors that 

influence the outcome. Furthermore, the absence of clear access to the original data supporting 

these estimates adds complexity to the task of assessing their accuracy, raising doubts about 

the accuracy of these statistics for predicting cost. Hence, a  SWRO design and LCCA tool that 

allows for individual factor customisation in accordance with each specific scenario and user 

is highly advantageous. 

Table 7-7: Comparison between the literature and result obtained from the thesis 

 Ref 5000 (m3/day) 25,000 (m3/day) 120,000 (m3/day) 

CAPEX 

($million) 

[39] 
5.16 - 8.585 25.8 - 42.93 123.84 - 206.04 

2.64 - 4.62 13.2 - 23.1 63.36 - 110.88 

[365] 7.9 - 6.7 39.5 - 33.5 189.6- 160.8 

Thesis 18.49 27.59 
322.13 and 

328.3 
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An evident benefit of this developed model is its integration of current cost data and pump 

data, which not only accurately represents present market conditions but can also be easily 

modified to adapt to future changes. This characteristic provides a substantial advantage in 

comparison to other techniques examined in the literature study. 

Moreover, the model's thoroughness enables a detailed assessment of every element involved 

in the desalination process, guaranteeing that no part is disregarded when calculating the 

overall cost during the lifespan. The model incorporates a flexible platform that can adjust to 

changes in technology design and cost considerations, such as fluctuations in energy prices, 

developments in membrane technology, or modifications in environmental legislation affecting 

waste disposal methods.  

The research tool's adaptability allows users to perform comprehensive cost evaluations and 

customise design parameters according to their individual requirements, hence promoting a 

more personalised and potentially more streamlined design process. The high degree of 

customisation guarantees that the  SWRO design and LCCA tool can adapt to various design 

circumstances, rendering it a valuable resource for engineers and decision-makers in the 

desalination business. For instance, the following review [411] demonstrated the existence of 

two desalination plants with almost comparable output capacities, although they differ in terms 

of CAPEX, OPEX and unit production cost. This demonstrates that various factors contribute 

to these differences, and it is imperative to utilise a technology that can accurately record them. 

However, the developed model has some limitations in terms of designing some common 

technologies such as DAF, and would benefit from more accurate specific energy consumption 

values for the pretreatment system. When it comes to the cost, the developed dataset has cost 

for specific equipment and not all equipment is included. For instance, Case 1 features the 

choice of single media filtration for pretreatment, yet the cost dataset developed only has data 

for dual media filtration. Consequently, it was assumed that the costs for both filtration types 

would be comparable. However, this assumption may introduce a degree of inaccuracy. 

Additionally, the model is developed to design solely single-pass RO systems and does not 

accommodate second-pass RO systems. However, this is standard operation in SWRO 

desalination. As a result, it may not be appropriate for treating feedwater with lower or higher 

salinity levels.  
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7.3 Integration between OntoSWRO, SWRO Design and LCCA 

Tool 

Integrating an ontology for SWRO with life cost analysis offers a potent tool to improve 

decision-making in the desalination business. The ontology functions as a systematic 

framework that contains organised information on SWRO, encompassing its constituents, 

operations, and factors. The integration of life cost analysis with a desalination plant's financial 

perspective yields a comprehensive decision support system that can yield substantial 

advantages. 

Discussion Points for the Integration of Ontology and Life Cost Analysis: 

1. Enhanced Decision-Making: The ontology facilitates a methodical comprehension of 

the SWRO processes, guaranteeing the inclusion of all relevant factors which clearly 

how captured the integration between the process and the parameters related about these 

sub-processes in the desalination plant which was very useful when the three cases were 

applied. The data highlighted in yellow in the preceding table were all sourced through 

a unified approach facilitated by the ontology. Furthermore, the SWRO design and 

LCCA tool is capable of computing parameters that can subsequently be assessed 

against the acceptable ranges established in the literature review, ranges that have also 

been integrated into the ontology. When combined with life cost analysis, it facilitates 

the process of making well-informed decisions by taking into account not only the 

technical feasibility but also the long-term financial consequences.  

2. Holistic Approach: The ontology's structured knowledge base, coupled with the 

economic insights from life cost analysis, provides a holistic view. This combination 

ensures that decisions are not made in silos but consider the interplay between technical 

performance and cost-efficiency over the entire lifecycle of the plant. 

3. Predictive analysis involves utilising a well-defined framework and established cost 

criteria to employ an integrated technology that can accurately simulate different 

situations and forecast potential results. By utilising this predictive capability, 

stakeholders are able to anticipate the long-term impact of their original design 

decisions, operational strategies, and maintenance schedules on the economic 

performance of the plant. 

4. Enhanced Communication: the ontology facilitates effective communication by 

establishing a shared vocabulary among all participants engaged in the SWRO process. 
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When combined with life cost analysis, it guarantees that the financial team and the 

technical team are in agreement, promoting improved communication and mutual 

comprehension. 

5. Dynamic Optimisation: As new data become available or conditions change, the 

ontology can be updated to reflect the most current knowledge, which can then be used 

to recalibrate the life cost analysis. This dynamic adaptability ensures that the SWRO 

design and LCCA tool remains relevant and accurate throughout the plant's operational 

life. 

6. Cost-Benefit Analysis: The plant can do thorough cost-benefit assessments by 

evaluating the expenses linked to various configurations or operational modifications 

using the ontology as a framework. This can result in optimisations that decrease 

expenses without impacting the integrity or efficiency of the SWRO process. 

7. Knowledge Sharing and Transfer: the ontology tool can be utilised for training or 

teaching purpose or shared with new plants. This promotes the exchange of knowledge 

and the sharing of best practices within the sector with more simplified language and 

can visualise the interconnection between the process and subprocess. 

In conclusion, the symbiotic relationship between the SWRO ontology and life cost analysis 

can significantly enhance the capability to plan, execute, and manage desalination projects 

effectively. It embodies a comprehensive approach that considers the fine differences of 

SWRO systems and their financial aspects, thereby leading to more sustainable and 

economically viable desalination practices. 
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Chapter 8  

Conclusion and Future Work  

8.1 Conclusion 

The objective of this research was to review innovations in reverse osmosis desalination and 

AI and ML, in an effort to integrate relevant learnings from both research disciplines to 

improve and optimise seawater desalination plants from a systems perspective. It was evident 

that although a variety of achievements had been made, there remain several, current 

challenges facing the implementation of AI and ML in the area of SWRO desalination. The 

review in Chapter 2 showed that RO has rapidly evolved into a well-developed and optimised 

desalination process, despite being commercialised only 50 years ago. Its relatively low 

specific energy and high reliability have made it the preferred method over thermal desalination 

techniques. This remarkable achievement is the result of significant improvements in the 

technology, including enhanced membrane characteristics and performance, high equipment 

efficiency, and the use of energy recovery devices. The technology has been developed to the 

extent that the thermodynamic limit of the lowest possible energy consumption is now almost 

within reach, albeit under specific, controlled operating conditions.  

In addition to these advancements, a new configuration of the RO process, called batch reverse 

osmosis, has been developed. This process aims to recycle the brine until the desired recovery 

level is attained, gradually increasing the pressure to reduce energy usage. However, further 

research and real-world implementation are necessary to determine whether the technology can 

deliver the anticipated benefits over a continuous RO process and overcome specific 

challenges. This includes investigating optimal design configurations, addressing variations in 

water quality, and determining the appropriate duration of the flushing phase to achieve desired 

water quality and minimise scaling. Furthermore, a cost analysis would be valuable to quantify 

the potential savings of this approach.  
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It was found that AI  and ML holds transformative potential across water industry sectors, 

offering insights in fouling prediction, water quality, efficiency, cost optimization, and 

performance issue resolution. A key challenge is the availability of accurate data with critical 

operating parameters over a representative duration. In current RO research, the focus is mainly 

on AI's applicability, particularly in membrane design. While engineering models provide 

information and facilitate numerous observations similar to AI, the integration of AI and 

membrane design shows particular promise by evaluating diverse designs and novel materials, 

reducing the need for trial-and-error experimentation. 

AI and ML also demonstrate success in fault detection, algae detection, failure prediction, and 

maintenance scheduling. Challenges of applying AI and ML include limited data availability 

in the RO and energy fields, hindering comprehensive model training, especially considering 

the inherent dynamic water quality variations. Collaboration between researchers and 

desalination plants is crucial for model validation across diverse cases. Publicly inaccessible 

data on water technology and desalination poses a significant barrier to researching alternative 

AI methodologies and estimating computational resources for practical testing. Increased 

collaboration and data sharing are essential for advancing AI integration in water treatment 

technologies. 

It was postulated that variation is site-specific and water quality conditions would influence 

the design, operation, and economic performance of SWRO desalination systems in different 

ways, and that each system should be evaluated under these conditions to assess their  

implementation and performance suitability. The development of a SWRO desalination plant 

is a complex and extensive design process that involves selecting the most suitable system 

configuration, given the environmental and economic conditions, to deliver both a sufficient 

and a sustainable supply of clean water. To address this complexity and to evaluate SWRO 

desalination design in terms of multiple factors such as water quality, geographical factors, 

geological factors, operation and design features and challenges, the research was carried out 

in two stages. 

A data-driven approach using an ontology was undertaken to identify, evaluate, test and 

analyse the interrelationships among various processes and subprocesses within the SWRO 

desalination process. The objective of this approach was to produce a standard knowledge base 

within the SWRO desalination domain that could be reused for other cases within this domain. 

Using the developed approach, system analysis was carried out on a range of predetermined 
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scenarios to assess the utility and effectiveness methodology and the effect of parameter 

variation. The main findings from the preliminary study were that: 

1. OntoSWRO is a detailed framework that encompasses the complex knowledge related 

to the SWRO desalination process, offering a thorough understanding of the entire 

system.  

2. Through OntoSWRO, the interconnected nature of the SWRO process and its various 

subprocesses has been meticulously documented, revealing the constraints and 

advantages of each, as well as elucidating their mutual influences. Beyond merely 

cataloguing terminology, OntoSWRO possesses the capability to illustrate the 

interrelations among processes and, furthermore, to graphically represent the entire 

architectural layout of an SWRO desalination facility.  

3. OntoSWRO has established a uniform vocabulary for SWRO, facilitating the 

organisation of data in an efficient manner that can be easily understood and processed 

by both humans and computational systems.  

A preliminary LCCA study was conducted then to assess the design and operation parameters 

based on engineering first principles and empirical data. Following the preliminary LCCA 

study, it was postulated that the variation in design options obtained from the OntoSWRO 

should be evaluated in terms of economic costs over systems lifetime to understand the true 

cost of system ownership. Life cost analysis and LCCA approaches were determined as being 

the most appropriate economic assessment tool for system evaluation. The tool was then 

combined into a methodological framework and integrated into a SWRO design and LCCA 

tool designed to assess the performance and economic evaluation of SWRO desalination plants. 

The  SWRO design and LCCA tool provides a platform to assess the performance of a selection 

of SWRO desalination plants under a set of user-defined, site-specific conditions. Economic 

costs are presented also with the aim of providing a more holistic overview of system 

performance, but without aggregation of weighted indicators into a single result or score. This 

allows the user to identify any economic trade-offs that may exist. It provides a detailed 

breakdown of several categories of design parameters. It also outputs  cost distributions 

associated with a given system in a given scenario, and facilitates comparisons of systems' 

CAPEX and OPEX. The  SWRO design and LCCA tool captures the engineering principles of 

RO systems and other related processes, as well as providing a life cycle cost analysis for the 

three cases with different scenarios, however, the programme does have some limitations. The 
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CAPEX estimations provided in the toolkit are based on data from 2018 and different years 

which are prone to some level of uncertainty. Life cycle cost estimations provided by the  

SWRO design and LCCA tool would benefit from a more comprehensive, region-specific, 

CAPEX estimation methodology. Furthermore, the cost of replacement parts can only be 

assessed with an itemised bill of quantities, and details of a parts replacement regime. However, 

this approach involves a significant data collection exercise that may not produce a much 

higher level of accuracy to warrant such an undertaking. 

8.2 Thesis Contribution  

This thesis has made contribution to the seawater reverse osmosis desalination knowledge. 

1. This thesis makes notable contributions by summarising recent advancements and 

current challenges in the field of RO systems. Additionally, it investigates into various 

applications of AI and ML across different aspects of water treatment and desalination, 

evaluating both the advantages and drawbacks of these tools. The comprehensive 

review sheds light on specific challenges identified across multiple research endeavours 

and explain how these challenges may hinder progress in this field. 

2. The creation of the SWRO desalination plant ontology (OntoSWRO) represents a 

significant contribution to the field of desalination and water treatment. This ontology 

function as a systematic and comprehensive knowledge framework, capturing the 

interaction between SWRO processes and subprocess, design factors, features, 

limitations and operational issues. The formalisation of relationships and classifications 

within the area of SWRO desalination enables a more sophisticated understanding of 

the diverse factors associated with this process. This ontology serves as a basis for 

enhancing decision-making procedures. In addition, the utilisation of ontology 

contributes to the establishment of consistent terminology and concepts, hence 

promoting enhanced precision and logical consistency in communication among the 

desalination community. 

3. The creation of the SWRO design and LCCA tool for SWRO desalination plant 

represents an important step forward in this field, as it combines many processes into a 

single, user-friendly interface. This tool not only includes the design elements of 

diverse desalination processes within a single platform, but also integrates a 

comprehensive LCCA component. The incorporation of this feature enables users to 

enhance the design and also evaluate the financial consequences throughout the whole 
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lifecycle of the project. The tool is notable in its user-friendliness, providing a seamless 

experience for users to modify values and input data effortlessly. The integrated 

OntoSWRO and LCCA model presented here offers enhanced accessibility and 

versatility, making it a valuable resource for professionals and researchers in the field 

of desalination who is looking for designing and economic evaluation. 

8.3 Limitation  

While conducting this research, a notable limitation emerged concerning the challenge of 

obtaining values for numerous parameters associated with the design of SWRO desalination 

processes and subprocesses. The aim was to create a comprehensive tool that not only relied 

on cost estimation but also incorporated design calculations. Developing a robust energy model 

based on engineering first principles posed a significant challenge due to the multitude of 

factors. The unavailability of these data, compounded by factors such as the scale of 

desalination plants and the proprietary nature of information held by private companies, 

hindered accessibility. 

Additionally, the tool was tailored to design SWRO desalination facilities up to a specific scale 

of 400,000 m3/day. Limitations arose in addressing mega-scale desalination plants, as acquiring 

relevant cost analysis for this scale proved to be challenging.  

Furthermore, the SWRO design and LCCA tool is designed with the specific adaptation of the 

RO design to match DOW equipment. While the tool allows users to easily modify values and 

input data, it is important to note that certain equations are specifically suitable for DOW 

equipment. If alternative membranes are employed, these equations may need to be adjusted 

accordingly. 

. 

8.4 Future Work 

Potential areas for future research lie in enhancing the precision of the OntoSWRO 

and decision tool: 

1. Enhance and expand the data contained in OntoSWRO by integrating knowledge 

acquired from real-world desalination plant cases and integrate further desalination 

technologies. The documentation of practical experiences and decision-making 
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processes in the construction and operation of complex structures holds significant 

value, as it is beyond the simple capture of theoretical insights from literature. 

2. Establish a direct link between OntoSWRO and life cycle cost analysis SWRO design 

and LCCA tool to provide easy accessibility and enhance the comprehensive 

understanding of the economic implications associated with desalination plant 

operations and the integration and knowledge gained from OntoSWRO in one tool. 

3. Adopt a more robust first principles power calculation for other process in SWRO 

desalination plant such as pretreatment and posttreatment, moving beyond reliance on 

empirical values. This approach ensures a more accurate assessment of energy 

efficiency. 

4. Expand the design approach for desalination processes for other subprocesses such as 

DAF and backwash system. The design process for DAF is complicated,  requiring 

consideration of multiple factors and graphs, such as Henry solubility, air bubble size, 

particle size, and functions relating air solubility changes with temperature and salinity.  

5. Expand the dataset pertaining to the costs associated with SWRO desalination plants 

by incorporating real-world case studies as well as expanding the pump dataset. This 

augmentation aims to provide a more realistic and comprehensive perspective on the 

financial aspects of implementing and maintaining such facilities. 

6. Integrate environmental assessments, offering a holistic evaluation of design selections. 

Additionally, refine the calculation of chemical treatment requirements by utilising 

actual water quality specifications, thereby moving away from rough estimations for a 

more precise evaluation. 
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APPENDIX A : ONTOSWRO DESCRIPTION 

Table - 1:An overview of object properties utilised in OntoSWRO, focusing on their definitions, classes, and subclasses 

Object Properties definition Class Subclasses 

hasScale “Plant Scale Relation” is utilised to establish the 
quantitative scale of a desalination facility, 
specifically pertaining to its capacity. 

Scale Small, Medium, Large 

hasGeographicalFeature The “Geographical Relation” aims to build the spatial 
context surrounding a desalination plant, taking into 
account different geographical elements that may 
have an influence on its operation or impact. 

GeographicalFeature BeachErosion, HighSandDepth, Limestone 

Muddy, NaturalWaveFlushing, PermeableSand, Shallow, 
SpaciousLand, StableSandBeach 

hasIssueOf The “Issue Association Relation” is a relationship 
that links classes in the desalination ontology with 
probable obstacles or problems that may occur during 
the desalination process 

issue HardInspection, HighDisposableSolid, Hypersaline 
HighLongTermMaintenance, HighToxic, LowQuality , 
HighNoise, HighEnergyConsumption, 
HighConstructionCost, AnaerobicBacteria, 
HighMaintenance, ComplexToOperate, LargeFootprint, 
LowChlorineResistance, Leakage, LowDurability, 
LowFlexibility, LowPermeability, 
LowPressureSurgeHandling, Medium-
HighFoulingPotential, None-LowFoulingPotential, 
OverFlush, PlantShutDown, ReduceCartridgeLifespan, 
ReduceROLifespan, SeashoreBedContamination, 
VariableWaterQuality, Vegetation, 

hasLocation The class “Location relation” refers to the precise 
physical or position of a class within the 
infrastructure of a desalination plant. 

Location IndustrialSites, OilLeaks, SeasonalRain 

SandyCoastWithLowGradient, OffSeaShore, 
RockyCoast, AdditionalLayer, AboveSeaFloor, Forebay, 
PowerPlant, Port, SecondLayer, River, 
NearshoreOilStorageTank, MENA, ParkingLots, 
Seashore, ThirdLayer, ShipChannel. TopLayer, 
UnderSea, UnderSeaFloor, WasteDischarge, 
WastewaterTreatmentPlant 
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Object Properties definition Class Subclasses 

hasEnvironmentalImpact Relation of “Environmental Impact” specification 
provides clarification on the category or type of 
environmental consequences that can be caused by 
other classes inside the ontology 

EnvironmentalImpact ExposeJellyfish, High, Low, LowEntrainment, 
LowImpingement, MarineLife, Moderate, 
ModerateEntrainment, ModerateImpingement 

hasPump This Relation outline type of pump that suitable for 
specific classes 

Pump HorizontalCentrifugal, HorizontalTurbine, 
ReciprocatingHP, SegmentedRingMultistage, 
SplitCaseMultistageCentrifugal, Submersible, 
VerticalTurbine 

hasFeatureOf The “Feature Relation” refers to the integration of 
special features or unique attributes that are related 
with a specific class. 

 Feature LowToxic, HighPurity, LowMaintenance, 
EasyToOperate, HighCorrosion, NoConstructionCost, 
HighChlorineResistance, HighPermeability, 
EasyInspection, HighStrength, MediumStrength, 
MediumFlexibility, HighRejection, LowDisposableSolid, 
LowEnergyConsumption, 

LowConstructionCost, HighDurability 

HighQuality, HighPressureSurgeHandling, LowFouling, 
LowCorrosion, LowPurity, ReduceBiogrowth, 
ReducepH, SeparateStructure, SmallFootprint 

hasComponent The “Component” relation serves to construct 
connections between classes related to desalination 
and their individual parts or components 

Component CaissonScreen, CollectorPipe, Diffuser, FilterPack, 
InletAndSuctionWell, Lateral, OilSpillLeakDetection, 
PumpRoom, RefrigerationUnit, SuctionBellVelocity, 
PumpHead1, PumpHead2, PumpHead3, SurfaceSeal, 
VaporHeater, Vaporiser, WellScreen, WellCasing, 
WellSeal 

IsCausedby This relation elucidates the various aspects and 
sources that contribute to the presence of fouling 
agents in the desalination process. 

FoulantType Colloidal, NaturalOrganicMatter, Organic, Particulate, 
Scaling 
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Object Properties definition Class Subclasses 

hasMaterialOf Relation pertains to the explicit material composition 
of specified categories, providing an account of the 
components utilised in their construction.. 

Material HDPE, Polypropylene, Polyethersulfone, Metal, 
GlassReinforcedPlastic, PolyvinylideneDifluoride, 
Concrete, JettiesStoneRock, Steel 

hasSedimentOf The Sedimentation relation refers to the specific 
sedimentation approach utilised in the design and 
operation of certain equipment within the context of 
desalination. 

SedimentType Anthracite, Clay, CoarseSand, Garnet, 
GranularActivatedCarbon, Gravel, Sand, Pumice  

hasImpactOn This relation is utilised to explicate the effect or 
implications that one class may exert on another 
inside the ontology. 

  

IsAppliedWith Relation is established to delineate the classes that 
need be concurrently applied or utilised together to 
ensure the effectiveness of desalination operations 

  

isNotSuitableFor Relation outlines cases in which certain classes are 
not suited for particular settings, places, material 
types, or owing to specific concerns 

ParticlesType Algae, Bacteria, Detritus, FineDebris, Fungi, Plankton, 
Silt 

isSuitableFor Refers to the limited the suitability of some classes, 
which restricts their relevance to specific and 
specialised scenarios or circumstances. 
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APPENDIX B : OntoSWRO Matrix 

Table -  2: Matrix for Case 2. 
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APPENDIX C : EQUATION EXPLANATION  

The determination of brine salinity in membrane processes can be achieved through the 

application of mass balance principles. Assuming that the feed flow rate is the sum of the 

permeate flow rate and brine flow rate, and assuming also that salt is not deposited within the 

RO system. Therefore, the mass balance equation is expressed as follows: 

𝑄.𝐶. =	𝑄6𝐶6 + 𝑄&𝐶& Eq 0.1 

  

However, in practical RO systems, some salt deposition occurs, and the membrane rejection is 

not 100%. Therefore, an alternate formula is employed. Introducing parameters that are known, 

for instance, the recovery rate relationship is established as follows: 

𝑅 =
𝑄6
𝑄.

=
𝑄. − 𝑄&
𝑄.

 Eq 0.2 

  

In the context of membrane separation, salt rejection (SR) refers to a membrane’s capacity to 

restrict the passage of dissolved salts and other solutes while permitting the passage of the 

solvent. It is a measurement of the membrane's efficiency in producing desalinated or purified 

water by retaining salts on one side of the membrane while allowing the pure solvent to pass 

through. The proportion of salt rejected is determined by finding the difference between the 

salt concentrations in the feed solution and the permeate solution over feed concentration as 

presented below. 

𝑆𝑅 = 1 − 	𝑆𝑃 Eq 0.3 

  

 Salt passage (SP) is the opposite of salt rejection which known as the proportion of salt or 

dissolved ions that pass through the membrane during a separation process that can be 

calculated using Equation 0.4 

𝑆𝑃 = 	
𝐶6
𝐶.

 Eq 0.4 
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By dividing both sides of the mass balance equation by 𝑄., the obtained equation is represented 

as follows: 

𝐶. =	
𝑄6
𝑄.
𝐶6 +

𝑄&
𝑄.
𝐶& Eq 0.5 

  

Utilising Equation 0.2 and substituting Equation 0.4 into Equation 0.3 to eliminate 𝐶6, Equation 

0.5 can be rearranged as follows: To rearrange the equation to include more known parameters, 

equation 0.2 would be utilised and equation 0.4 would be substituted in equation 0.3, which 

will be employed to replace the parameter Cp. 

𝐶. −	𝐶.𝑅(1 − 𝑆𝑅) =
𝑄&
𝑄.
𝐶& Eq 0.6 

  

 Furthermore, the recovery is also equal to 𝑅 = 1 − VR
VG

, therefore:  

𝐶. −	𝐶.𝑅(1 − 𝑆𝑅) = (1 − 𝑅)𝐶& Eq 0.7 

 Finally, the equation for brine concentration can be derived as follows: 

𝐶& =
𝐶.Y1 − 𝑅(1 − 𝑆𝑅)[

(1 − 𝑅)  Eq 0.8 
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APPENDIX D : RO MODEL EVALUATION 

Table -  3: Obtained result from WAVE model for different temperature 

WAVE 

Model 
        

Temp Salinity SEC 
(kWh/m3) B A Cp (mg/L) 

Applied 

pressure 
concentration 

pressure 
pressure 

drop 
15 36045. 4.1 - 0.8187 124.0 52.9 51.5 1.4 
18 36043 4.06 - 0.8696 147.8 52.5 51.0 1.5 
20 36041 4.03 - 0.8974 165.8 52.2 50.7 1.5 
22 36041 4.01 - 0.9272 185.7 51.9 50.5 1.4 
24 36039 4 - 0.9589 207.6 51.7 50.4 1.3 
25 36039 3.99 - 0.9722 219.4 51.6 50.3 1.3 
28 36039 3.98 - 1.0000 257.9 51.6 50.3 1.3 
30 36039 3.98 - 1.0219 286.6 51.5 50.3 1.2 
32 36037 3.98 - 1.0448 318.0 51.5 50.3 1.2 
34 36037 3.98 - 1.0606 353.3 51.5 50.4 1.1 

 

Table -  4: Obtained result from research model for different temperature 

Research 

Model 
        

 

Temp Salinity SEC 
(kWh/m3) B A 

Cp 

(mg/L) 

Applied 

pressure 

concentration 

pressure 

pressure 

drop 

CPF 

15.00 36045.00 4.29 0.0560 1.00 171.87 55.99 54.937 1.05 1.055 

18.00 36043.00 4.21 0.0655 1.12 188.68 54.99 53.941 1.05 1.053 

20.00 36041.00 4.17 0.0655 1.20 200.55 54.42 53.372 1.05 1.055 

22.00 36041.00 4.13 0.0696 1.29 212.99 53.93 52.874 1.06 1.054 

24.00 36039.00 4.10 0.0740 1.38 226.01 53.49 52.437 1.05 1.051 

25.00 36039.00 4.08 0.0762 1.43 232.74 53.29 52.241 1.05 1.051 

28.00 36039.00 4.05 0.0832 1.56 253.90 52.90 51.846 1.05 1.051 

30.00 36039.00 4.03 0.0882 1.65 268.79 52.68 51.630 1.05 1.050 

32.00 36037.00 4.02 0.0934 1.75 284.66 52.50 51.446 1.05 1.049 

34.00 36037.00 4.01 0.0988 1.85 300.55 52.35 51.296 1.05 1.049 
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Table -  5: Obtained result from Salini-Rodriguez et al model for different temperature 

Salini-Rodriguez et al Model 

Temp Salinity Energy B A Cp (mg/L) Applied pressure Brine pressure CPF 

15.00 36045 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
18.00 36043 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
20.00 36039 3.97 0.0762 1.39 304.4 51.83 50.773 1.055 
22.00 36041 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
24.00 36039 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
25.00 36039 3.97 0.0762 1.39 304.4 51.83 50.773 1.055 
28.00 36039 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
30.00 36039 3.97 0.0762 1.39 304.4 51.83 50.779 1.055 
32.00 36039 3.97 0.0762 1.39 304.4 51.83 50.773 1.055 
34.00 36039 3.97 0.0762 1.39 304.4 51.83 50.773 1.055 

 

Table -  6: Obtained result from WAVE and this research model for different salinities 

Temp Salinity Energy B A Cp (mg/L) 
Applied 

pressure 

Brine 

pressure 

pressure 

drop 

Research 

model 
        

25.00 32,945 3.71 0.0762 1.43 206.94 48.48 47.425 1.055 

25.00 36039.00 4.08 0.0762 1.43 232.74 53.29 52.241 1.05 

25.00 41,199 4.55 0.0762 1.43 265.61 59.45 58.394 1.06 

Wave          

25.00 32,945 3.66 - 1.045 199.8 47.3 46 1.3 

25.00 36039 3.99 - 0.972 219.4 51.6 50.3 1.3 

25.00 41,199 4.57 - 0.854 252.1 59.1 57.8 1.3 
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APPENDIX E COST DATABASE 

Table -  7: CAPEX for surface intake system 

Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

1000 142,033.86 1,120.34 386.49 

2000 243,890.73 1,934.61 600.41 

5000 498,412.00 3,983.00 1,074.86 

7000 647,990.09 5,192.46 1,331.12 

8,000 719,121.18 5,768.69 1,449.02 

10,000 855,838.64 6,877.83 1,669.79 

12,000 986,627.60 7,940.62 1,874.92 

14,000 1,112,683.78 8,966.34 2,067.90 

16,000 1,234,825.18 9,961.36 2,251.05 

18,000 1,353,643.94 10,930.30 2,426.02 

20,000 1,469,586.95 11,876.64 2,594.02 

22,000 1,583,002.43 12,803.10 2,756.00 

24,000 1,694,168.72 13,711.85 2,912.70 

26,000 1,803,312.95 14,604.68 3,064.69 

28,000 1,910,623.67 15,483.06 3,212.49 

30,000 2,016,259.70 16,348.24 3,356.48 

32,000 2,120,356.44 17,201.27 3,497.01 

34,000 2,223,030.62 18,043.06 3,634.37 

36,000 2,324,383.81 18,874.42 3,768.82 

38,000 2,424,505.06 19,696.05 3,900.57 

40,000 2,523,473.12 20,508.56 4,029.82 

42,000 2,621,358.00 21,312.50 4,156.73 

44,000 2,718,222.34 22,108.37 4,281.45 

46,000 2,814,122.50 22,896.61 4,404.13 

48,000 2,909,109.41 23,677.61 4,524.88 

50,000 3,003,229.31 24,451.75 4,643.80 

52,000 3,096,524.34 25,219.35 4,761.01 

54,000 3,189,033.07 25,980.72 4,876.58 

56,000 3,280,790.90 26,736.14 4,990.60 

58,000 3,371,830.43 27,485.86 5,103.15 

60,000 3,462,181.77 28,230.12 5,214.29 

62,000 3,551,872.83 28,969.14 5,324.09 

64,000 3,640,929.50 29,703.12 5,432.61 

66,000 3,729,375.90 30,432.26 5,539.89 
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Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

68,000 3,817,234.52 31,156.74 5,646.00 

70,000 3,904,526.38 31,876.71 5,750.98 

72,000 3,991,271.19 32,592.33 5,854.87 

74,000 4,077,487.44 33,303.76 5,957.71 

76,000 4,163,192.50 34,011.12 6,059.54 

78,000 4,248,402.74 34,714.54 6,160.40 

80,000 4,333,133.61 35,414.16 6,260.33 

82,000 4,417,399.68 36,110.07 6,359.34 

84,000 4,501,214.75 36,802.40 6,457.48 

86,000 4,584,591.90 37,491.25 6,554.77 

88,000 4,667,543.51 38,176.71 6,651.25 

90,000 4,750,081.35 38,858.87 6,746.92 

92,000 4,832,216.63 39,537.83 6,841.82 

94,000 4,913,959.99 40,213.67 6,935.98 

96,000 4,995,321.58 40,886.47 7,029.40 

98,000 5,076,311.09 41,556.31 7,122.12 

100,000 5,156,937.77 42,223.25 7,214.16 

102,000 5,237,210.43 42,887.38 7,305.52 

104,000 5,317,137.55 43,548.75 7,396.23 

106,000 5,396,727.20 44,207.43 7,486.31 

108,000 5,475,987.14 44,863.48 7,575.78 

110,000 5,554,924.81 45,516.96 7,664.64 

112,000 5,633,547.34 46,167.93 7,752.91 

114,000 5,711,861.58 46,816.44 7,840.61 

116,000 5,789,874.12 47,462.55 7,927.75 

118,000 5,867,591.30 48,106.29 8,014.35 

120,000 5,945,019.21 48,747.73 8,100.41 

122,000 6,022,163.72 49,386.91 8,185.95 

124,000 6,099,030.49 50,023.87 8,270.99 

126,000 6,175,624.98 50,658.66 8,355.52 

128,000 6,251,952.46 51,291.32 8,439.56 

130,000 6,328,017.99 51,921.88 8,523.13 

132,000 6,403,826.50 52,550.40 8,606.23 

134,000 6,479,382.72 53,176.90 8,688.88 

136,000 6,554,691.24 53,801.42 8,771.07 

138,000 6,629,756.50 54,423.99 8,852.83 

140,000 6,704,582.79 55,044.66 8,934.15 

142,000 6,779,174.28 55,663.45 9,015.06 
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Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

144,000 6,853,534.99 56,280.40 9,095.54 

146,000 6,927,668.82 56,895.53 9,175.63 

148,000 7,001,579.56 57,508.89 9,255.31 

150,000 7,075,270.89 58,120.48 9,334.60 

152,000 7,148,746.37 58,730.35 9,413.51 

154,000 7,222,009.45 59,338.53 9,492.04 

156,000 7,295,063.51 59,945.03 9,570.20 

158,000 7,367,911.80 60,549.89 9,647.99 

160,000 7,440,557.49 61,153.12 9,725.43 

162,000 7,513,003.68 61,754.77 9,802.51 

164,000 7,585,253.36 62,354.83 9,879.25 

166,000 7,657,309.46 62,953.35 9,955.65 

168,000 7,729,174.81 63,550.35 10,031.71 

170,000 7,800,852.19 64,145.84 10,107.44 

172,000 7,872,344.28 64,739.85 10,182.85 

174,000 7,943,653.72 65,332.39 10,257.94 

176,000 8,014,783.05 65,923.50 10,332.72 

178,000 8,085,734.78 66,513.18 10,407.19 

180,000 8,156,511.34 67,101.46 10,481.35 

182,000 8,227,115.09 67,688.35 10,555.22 

184,000 8,297,548.36 68,273.89 10,628.78 

186,000 8,367,813.40 68,858.07 10,702.06 

188,000 8,437,912.41 69,440.92 10,775.05 

190,000 8,507,847.55 70,022.47 10,847.76 

192,000 8,577,620.91 70,602.71 10,920.19 

194,000 8,647,234.56 71,181.68 10,992.35 

196,000 8,716,690.50 71,759.38 11,064.23 

198,000 8,785,990.69 72,335.84 11,135.85 

200,000 8,855,137.05 72,911.06 11,207.20 

202,000 8,924,131.45 73,485.07 11,278.30 

204,000 8,992,975.72 74,057.87 11,349.14 

206,000 9,061,671.67 74,629.49 11,419.73 

208,000 9,130,221.04 75,199.92 11,490.06 

210,000 9,198,625.55 75,769.20 11,560.15 

212,000 9,266,886.88 76,337.33 11,630.00 

214,000 9,335,006.69 76,904.33 11,699.61 

216,000 9,402,986.58 77,470.20 11,768.98 

218,000 9,470,828.13 78,034.97 11,838.12 



 304 

Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

220,000 9,538,532.89 78,598.64 11,907.03 

222,000 9,606,102.37 79,161.22 11,975.71 

224,000 9,673,538.06 79,722.73 12,044.16 

226,000 9,740,841.41 80,283.18 12,112.39 

228,000 9,808,013.86 80,842.58 12,180.40 

230,000 9,875,056.80 81,400.94 12,248.20 

232,000 9,941,971.61 81,958.27 12,315.78 

234,000 10,008,759.62 82,514.58 12,383.15 

236,000 10,075,422.17 83,069.89 12,450.31 

238,000 10,141,960.55 83,624.20 12,517.26 

240,000 10,208,376.02 84,177.53 12,584.00 

242,000 10,274,669.85 84,729.88 12,650.55 

244,000 10,340,843.25 85,281.26 12,716.89 

246,000 10,406,897.42 85,831.69 12,783.04 

248,000 10,472,833.56 86,381.17 12,848.99 

250,000 10,538,652.81 86,929.71 12,914.75 

252,000 10,604,356.32 87,477.32 12,980.31 

254,000 10,669,945.21 88,024.01 13,045.69 

256,000 10,735,420.58 88,569.79 13,110.88 

258,000 10,800,783.50 89,114.67 13,175.88 

260,000 10,866,035.05 89,658.65 13,240.70 

262,000 10,931,176.27 90,201.75 13,305.34 

264,000 10,996,208.18 90,743.96 13,369.80 

266,000 11,061,131.79 91,285.31 13,434.08 

268,000 11,125,948.10 91,825.80 13,498.19 

270,000 11,190,658.08 92,365.43 13,562.12 

272,000 11,255,262.69 92,904.22 13,625.88 

274,000 11,319,762.87 93,442.17 13,689.47 

276,000 11,384,159.56 93,979.29 13,752.88 

278,000 11,448,453.67 94,515.58 13,816.14 

280,000 11,512,646.10 95,051.05 13,879.22 

282,000 11,576,737.74 95,585.72 13,942.15 

284,000 11,640,729.45 96,119.58 14,004.91 

286,000 11,704,622.09 96,652.65 14,067.50 

288,000 11,768,416.51 97,184.93 14,129.94 

290,000 11,832,113.55 97,716.42 14,192.23 

292,000 11,895,714.01 98,247.14 14,254.35 

294,000 11,959,218.70 98,777.09 14,316.32 
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Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

296,000 12,022,628.43 99,306.27 14,378.14 

298,000 12,085,943.96 99,834.70 14,439.80 

300,000 12,149,166.08 100,362.38 14,501.32 

302,000 12,212,295.54 100,889.31 14,562.68 

304,000 12,275,333.09 101,415.51 14,623.90 

306,000 12,338,279.47 101,940.97 14,684.97 

308,000 12,401,135.40 102,465.70 14,745.90 

310,000 12,463,901.60 102,989.71 14,806.68 

312,000 12,526,578.77 103,513.01 14,867.32 

314,000 12,589,167.61 104,035.59 14,927.81 

316,000 12,651,668.81 104,557.47 14,988.17 

318,000 12,714,083.05 105,078.66 15,048.39 

320,000 12,776,410.98 105,599.14 15,108.47 

322,000 12,838,653.27 106,118.94 15,168.41 

324,000 12,900,810.57 106,638.05 15,228.22 

326,000 12,962,883.51 107,156.49 15,287.89 

328,000 13,024,872.73 107,674.25 15,347.43 

330,000 13,086,778.85 108,191.35 15,406.84 

332,000 13,148,602.48 108,707.78 15,466.12 

334,000 13,210,344.23 109,223.55 15,525.26 

336,000 13,272,004.70 109,738.67 15,584.28 

338,000 13,333,584.47 110,253.13 15,643.17 

340,000 13,395,084.13 110,766.96 15,701.93 

342,000 13,456,504.25 111,280.14 15,760.57 

344,000 13,517,845.41 111,792.69 15,819.08 

346,000 13,579,108.15 112,304.61 15,877.47 

348,000 13,640,293.04 112,815.90 15,935.73 

350,000 13,701,400.62 113,326.56 15,993.88 

352,000 13,762,431.42 113,836.61 16,051.90 

354,000 13,823,385.98 114,346.05 16,109.80 

356,000 13,884,264.83 114,854.88 16,167.59 

358,000 13,945,068.47 115,363.10 16,225.25 

360,000 14,005,797.44 115,870.72 16,282.80 

362,000 14,066,452.22 116,377.74 16,340.23 

364,000 14,127,033.32 116,884.17 16,397.55 

366,000 14,187,541.24 117,390.01 16,454.75 

368,000 14,247,976.46 117,895.26 16,511.84 

370,000 14,308,339.46 118,399.94 16,568.81 
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Desalinisation plant intake 

flow (m3/day) 

Onshore intake  

($) 

Offshore intake concrete 

($/meter) 

Offshore intake HDPE 

($/metre) 

372,000 14,368,630.72 118,904.03 16,625.67 

374,000 14,428,850.71 119,407.55 16,682.42 

376,000 14,488,999.90 119,910.51 16,739.06 

378,000 14,549,078.74 120,412.89 16,795.59 

380,000 14,609,087.68 120,914.71 16,852.02 

382,000 14,669,027.18 121,415.97 16,908.33 

384,000 14,728,897.68 121,916.68 16,964.54 

386,000 14,788,699.62 122,416.84 17,020.64 

388,000 14,848,433.43 122,916.44 17,076.63 

390,000 14,908,099.54 123,415.50 17,132.52 

392,000 14,967,698.37 123,914.02 17,188.30 

394,000 15,027,230.34 124,412.00 17,243.98 

396,000 15,086,695.86 124,909.44 17,299.56 

398,000 15,146,095.35 125,406.35 17,355.04 

400,000 15,205,429.21 125,902.74 17,410.41 

 

Table -  8: CAPEX for subsurface intake system 

Well type Typical production capacity of 
individual well (m3/day) 

Cost of individual well ($ 
million) 

Vertical  100.0 - 8640 0.2 - 1.5 
Horizontal radial collector 500 - 38,880 1.3 - 6.0 
Slant  500 - 12,960 0.8 - 2.8 
HDD 100 - 5000 0.4 - 2.0 
Infiltration galleries 100 - 50,000 0.5 - 27.0 

 

Table -  9: CAPEX for pump station 

Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

1000 29,535.44 14,051.34 

2000 54,040.72 26,579.39 

5000 120,106.26 61,729.20 

7000 161,038.91 84,114.33 

8,000 180,915.85 95,104.13 

10,000 219,757.34 116,766.39 

12,000 257,607.06 138,080.68 

14,000 294,651.45 159,109.89 

16,000 331,020.10 179,898.10 
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Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

18,000 366,808.08 200,477.87 

20,000 402,088.01 220,874.22 

22,000 436,917.05 241,106.96 

24,000 471,341.31 261,192.14 

26,000 505,398.74 281,143.04 

28,000 539,121.09 300,970.81 

30,000 572,535.30 320,684.93 

32,000 605,664.48 340,293.59 

34,000 638,528.68 359,803.89 

36,000 671,145.44 379,222.09 

38,000 703,530.23 398,553.70 

40,000 735,696.81 417,803.63 

42,000 767,657.44 436,976.31 

44,000 799,423.18 456,075.69 

46,000 831,003.99 475,105.38 

48,000 862,408.93 494,068.64 

50,000 893,646.25 512,968.46 

52,000 924,723.51 531,807.58 

54,000 955,647.62 550,588.51 

56,000 986,424.99 569,313.60 

58,000 1,017,061.52 587,984.97 

60,000 1,047,562.67 606,604.65 

62,000 1,077,933.53 625,174.48 

64,000 1,108,178.83 643,696.21 

66,000 1,138,302.99 662,171.44 

68,000 1,168,310.16 680,601.72 

70,000 1,198,204.19 698,988.46 

72,000 1,227,988.75 717,333.00 

74,000 1,257,667.25 735,636.61 

76,000 1,287,242.92 753,900.49 

78,000 1,316,718.81 772,125.76 

80,000 1,346,097.81 790,313.49 

82,000 1,375,382.64 808,464.70 

84,000 1,404,575.89 826,580.35 

86,000 1,433,680.02 844,661.35 

88,000 1,462,697.37 862,708.57 

90,000 1,491,630.16 880,722.84 

92,000 1,520,480.50 898,704.94 

94,000 1,549,250.41 916,655.65 
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Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

96,000 1,577,941.83 934,575.67 

98,000 1,606,556.60 952,465.70 

100,000 1,635,096.48 970,326.39 

102,000 1,663,563.16 988,158.39 

104,000 1,691,958.25 1,005,962.30 

106,000 1,720,283.31 1,023,738.69 

108,000 1,748,539.83 1,041,488.14 

110,000 1,776,729.23 1,059,211.19 

112,000 1,804,852.90 1,076,908.34 

114,000 1,832,912.16 1,094,580.10 

116,000 1,860,908.27 1,112,226.94 

118,000 1,888,842.48 1,129,849.35 

120,000 1,916,715.95 1,147,447.75 

122,000 1,944,529.84 1,165,022.59 

124,000 1,972,285.24 1,182,574.27 

126,000 1,999,983.21 1,200,103.21 

128,000 2,027,624.79 1,217,609.80 

130,000 2,055,210.97 1,235,094.40 

132,000 2,082,742.70 1,252,557.39 

134,000 2,110,220.93 1,269,999.11 

136,000 2,137,646.54 1,287,419.92 

138,000 2,165,020.41 1,304,820.14 

140,000 2,192,343.39 1,322,200.10 

142,000 2,219,616.29 1,339,560.11 

144,000 2,246,839.92 1,356,900.47 

146,000 2,274,015.04 1,374,221.48 

148,000 2,301,142.40 1,391,523.42 

150,000 2,328,222.73 1,408,806.57 

152,000 2,355,256.74 1,426,071.20 

154,000 2,382,245.11 1,443,317.58 

156,000 2,409,188.51 1,460,545.95 

158,000 2,436,087.60 1,477,756.58 

160,000 2,462,943.00 1,494,949.70 

162,000 2,489,755.33 1,512,125.55 

164,000 2,516,525.19 1,529,284.36 

166,000 2,543,253.16 1,546,426.36 

168,000 2,569,939.82 1,563,551.75 

170,000 2,596,585.71 1,580,660.76 

172,000 2,623,191.39 1,597,753.60 
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Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

174,000 2,649,757.37 1,614,830.46 

176,000 2,676,284.17 1,631,891.55 

178,000 2,702,772.29 1,648,937.06 

180,000 2,729,222.22 1,665,967.18 

182,000 2,755,634.45 1,682,982.09 

184,000 2,782,009.43 1,699,981.97 

186,000 2,808,347.63 1,716,967.00 

188,000 2,834,649.49 1,733,937.36 

190,000 2,860,915.44 1,750,893.20 

192,000 2,887,145.92 1,767,834.70 

194,000 2,913,341.34 1,784,762.02 

196,000 2,939,502.10 1,801,675.32 

198,000 2,965,628.61 1,818,574.74 

200,000 2,991,721.26 1,835,460.44 

202,000 3,017,780.42 1,852,332.58 

204,000 3,043,806.48 1,869,191.28 

206,000 3,069,799.79 1,886,036.71 

208,000 3,095,760.72 1,902,868.99 

210,000 3,121,689.62 1,919,688.26 

212,000 3,147,586.83 1,936,494.66 

214,000 3,173,452.69 1,953,288.31 

216,000 3,199,287.53 1,970,069.35 

218,000 3,225,091.67 1,986,837.90 

220,000 3,250,865.43 2,003,594.09 

222,000 3,276,609.12 2,020,338.04 

224,000 3,302,323.05 2,037,069.86 

226,000 3,328,007.52 2,053,789.67 

228,000 3,353,662.82 2,070,497.60 

230,000 3,379,289.24 2,087,193.74 

232,000 3,404,887.06 2,103,878.21 

234,000 3,430,456.56 2,120,551.13 

236,000 3,455,998.02 2,137,212.59 

238,000 3,481,511.70 2,153,862.70 

240,000 3,506,997.87 2,170,501.56 

242,000 3,532,456.78 2,187,129.29 

244,000 3,557,888.68 2,203,745.96 

246,000 3,583,293.84 2,220,351.69 

248,000 3,608,672.49 2,236,946.57 

250,000 3,634,024.87 2,253,530.69 
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Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

252,000 3,659,351.22 2,270,104.15 

254,000 3,684,651.78 2,286,667.04 

256,000 3,709,926.77 2,303,219.44 

258,000 3,735,176.42 2,319,761.45 

260,000 3,760,400.95 2,336,293.15 

262,000 3,785,600.58 2,352,814.63 

264,000 3,810,775.51 2,369,325.98 

266,000 3,835,925.98 2,385,827.27 

268,000 3,861,052.17 2,402,318.59 

270,000 3,886,154.30 2,418,800.02 

272,000 3,911,232.56 2,435,271.63 

274,000 3,936,287.16 2,451,733.51 

276,000 3,961,318.29 2,468,185.73 

278,000 3,986,326.14 2,484,628.37 

280,000 4,011,310.90 2,501,061.50 

282,000 4,036,272.75 2,517,485.19 

284,000 4,061,211.89 2,533,899.53 

286,000 4,086,128.48 2,550,304.57 

288,000 4,111,022.71 2,566,700.39 

290,000 4,135,894.75 2,583,087.06 

292,000 4,160,744.78 2,599,464.65 

294,000 4,185,572.96 2,615,833.22 

296,000 4,210,379.46 2,632,192.84 

298,000 4,235,164.46 2,648,543.57 

300,000 4,259,928.10 2,664,885.48 

302,000 4,284,670.55 2,681,218.64 

304,000 4,309,391.98 2,697,543.10 

306,000 4,334,092.53 2,713,858.93 

308,000 4,358,772.36 2,730,166.19 

310,000 4,383,431.62 2,746,464.94 

312,000 4,408,070.46 2,762,755.23 

314,000 4,432,689.03 2,779,037.13 

316,000 4,457,287.47 2,795,310.70 

318,000 4,481,865.93 2,811,575.98 

320,000 4,506,424.55 2,827,833.05 

322,000 4,530,963.47 2,844,081.94 

324,000 4,555,482.83 2,860,322.72 

326,000 4,579,982.76 2,876,555.45 

328,000 4,604,463.40 2,892,780.17 
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Desalinisation plant intake flow (m3/day) Dry well pump ($) Wet well pump ($) 

330,000 4,628,924.89 2,908,996.94 

332,000 4,653,367.34 2,925,205.81 

334,000 4,677,790.89 2,941,406.83 

336,000 4,702,195.67 2,957,600.05 

338,000 4,726,581.81 2,973,785.52 

340,000 4,750,949.43 2,989,963.30 

342,000 4,775,298.65 3,006,133.42 

344,000 4,799,629.59 3,022,295.95 

346,000 4,823,942.37 3,038,450.92 

348,000 4,848,237.12 3,054,598.39 

350,000 4,872,513.95 3,070,738.39 

352,000 4,896,772.97 3,086,870.98 

354,000 4,921,014.29 3,102,996.21 

356,000 4,945,238.04 3,119,114.11 

358,000 4,969,444.33 3,135,224.73 

360,000 4,993,633.25 3,151,328.12 

362,000 5,017,804.93 3,167,424.32 

364,000 5,041,959.46 3,183,513.37 

366,000 5,066,096.96 3,199,595.31 

368,000 5,090,217.53 3,215,670.19 

370,000 5,114,321.27 3,231,738.04 

372,000 5,138,408.29 3,247,798.92 

374,000 5,162,478.69 3,263,852.85 

376,000 5,186,532.56 3,279,899.88 

378,000 5,210,570.02 3,295,940.05 

380,000 5,234,591.15 3,311,973.40 

382,000 5,258,596.05 3,327,999.97 

384,000 5,282,584.81 3,344,019.79 

386,000 5,306,557.55 3,360,032.91 

388,000 5,330,514.33 3,376,039.35 

390,000 5,354,455.27 3,392,039.16 

392,000 5,378,380.45 3,408,032.38 

394,000 5,402,289.96 3,424,019.04 

396,000 5,426,183.89 3,439,999.17 

398,000 5,450,062.33 3,455,972.82 

400,000 5,473,925.37 3,471,940.01 
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Table -  10: CAPEX for screening equipments 

Desalinisation plant intake 
flow (m3/day) Drum screen ($) Band screen  

($) 
Wedgewire  

($) 
Microscreen  

($) 

1000 12,148.37 4,248.97 14,391.80 20,456.80 
2000 24,521.77 9,527.60 22,400.60 31,212.80 
5000 62,056.10 27,706.61 46,367.00 63,408.80 
7000 87,268.19 41,003.66 62,294.60 84,812.80 
8,000 99,912.36 47,905.26 70,243.40 95,496.80 
10,000 125,261.66 62,127.43 86,111.00 116,828.80 
12,000 150,678.92 76,829.77 101,938.60 138,112.80 
14,000 176,152.85 91,943.82 117,726.20 159,348.80 
16,000 201,675.40 107,419.50 133,473.80 180,536.80 
18,000 227,240.52 123,218.48 149,181.40 201,676.80 
20,000 252,843.53 139,310.33 164,849.00 222,768.80 
22,000 278,480.67 155,670.31 180,476.60 243,812.80 
24,000 304,148.86 172,277.86 196,064.20 264,808.80 
26,000 329,845.56 189,115.58 211,611.80 285,756.80 
28,000 355,568.58 206,168.58 227,119.40 306,656.80 
30,000 381,316.07 223,423.90 242,587.00 327,508.80 
32,000 407,086.42 240,870.21 258,014.60 348,312.80 
34,000 432,878.22 258,497.47 273,402.20 369,068.80 
36,000 458,690.21 276,296.75 288,749.80 389,776.80 
38,000 484,521.29 294,260.02 304,057.40 410,436.80 
40,000 510,370.47 312,380.03 319,325.00 431,048.80 
42,000 536,236.85 330,650.20 334,552.60 451,612.80 
44,000 562,119.62 349,064.54 349,740.20 472,128.80 
46,000 588,018.05 367,617.55 364,887.80 492,596.80 
48,000 613,931.46 386,304.18 379,995.40 513,016.80 
50,000 639,859.25 405,119.75 395,063.00 533,388.80 
52,000 665,800.83 424,059.95 410,090.60 553,712.80 
54,000 691,755.69 443,120.76 425,078.20 573,988.80 
56,000 717,723.35 462,298.43 440,025.80 594,216.80 
58,000 743,703.34 481,589.47 454,933.40 614,396.80 
60,000 769,695.25 500,990.59 469,801.00 634,528.80 
62,000 795,698.69 520,498.74 484,628.60 654,612.80 
64,000 821,713.29 540,111.02 499,416.20 674,648.80 
66,000 847,738.71 559,824.69 514,163.80 694,636.80 
68,000 873,774.62 579,637.20 528,871.40 714,576.80 
70,000 899,820.72 599,546.10 543,539.00 734,468.80 
72,000 925,876.72 619,549.09 558,166.60 754,312.80 
74,000 951,942.35 639,643.98 572,754.20 774,108.80 
76,000 978,017.35 659,828.70 587,301.80 793,856.80 
78,000 1,004,101.48 680,101.26 601,809.40 813,556.80 
80,000 1,030,194.51 700,459.78 616,277.00 833,208.80 
82,000 1,056,296.21 720,902.45 630,704.60 852,812.80 
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Desalinisation plant intake 
flow (m3/day) Drum screen ($) Band screen  

($) 
Wedgewire  

($) 
Microscreen  

($) 

84,000 1,082,406.39 741,427.57 645,092.20 872,368.80 
86,000 1,108,524.83 762,033.50 659,439.80 891,876.80 
88,000 1,134,651.36 782,718.64 673,747.40 911,336.80 
90,000 1,160,785.78 803,481.51 688,015.00 930,748.80 
92,000 1,186,927.93 824,320.66 702,242.60 950,112.80 
94,000 1,213,077.65 845,234.69 716,430.20 969,428.80 
96,000 1,239,234.76 866,222.28 730,577.80 988,696.80 
98,000 1,265,399.12 887,282.15 744,685.40 1,007,916.80 
100,000 1,291,570.59 908,413.05 758,753.00 1,027,088.80 
102,000 1,317,749.01 929,613.81 772,780.60 1,046,212.80 
104,000 1,343,934.27 950,883.27 786,768.20 1,065,288.80 
106,000 1,370,126.23 972,220.33 800,715.80 1,084,316.80 
108,000 1,396,324.75 993,623.93 814,623.40 1,103,296.80 
110,000 1,422,529.74 1,015,093.03 828,491.00 1,122,228.80 
112,000 1,448,741.06 1,036,626.63 842,318.60 1,141,112.80 
114,000 1,474,958.60 1,058,223.78 856,106.20 1,159,948.80 
116,000 1,501,182.27 1,079,883.54 869,853.80 1,178,736.80 
118,000 1,527,411.95 1,101,605.02 883,561.40 1,197,476.80 
120,000 1,553,647.54 1,123,387.32 897,229.00 1,216,168.80 
122,000 1,579,888.95 1,145,229.61 910,856.60 1,234,812.80 
124,000 1,606,136.08 1,167,131.07 924,444.20 1,253,408.80 
126,000 1,632,388.85 1,189,090.89 937,991.80 1,271,956.80 
128,000 1,658,647.15 1,211,108.30 951,499.40 1,290,456.80 
130,000 1,684,910.92 1,233,182.55 964,967.00 1,308,908.80 
132,000 1,711,180.06 1,255,312.91 978,394.60 1,327,312.80 
134,000 1,737,454.49 1,277,498.67 991,782.20 1,345,668.80 
136,000 1,763,734.14 1,299,739.13 1,005,129.80 1,363,976.80 
138,000 1,790,018.93 1,322,033.63 1,018,437.40 1,382,236.80 
140,000 1,816,308.79 1,344,381.50 1,031,705.00 1,400,448.80 
142,000 1,842,603.64 1,366,782.11 1,044,932.60 1,418,612.80 
144,000 1,868,903.42 1,389,234.85 1,058,120.20 1,436,728.80 
146,000 1,895,208.06 1,411,739.10 1,071,267.80 1,454,796.80 
148,000 1,921,517.49 1,434,294.27 1,084,375.40 1,472,816.80 
150,000 1,947,831.65 1,456,899.80 1,097,443.00 1,490,788.80 
152,000 1,974,150.48 1,479,555.11 1,110,470.60 1,508,712.80 
154,000 2,000,473.91 1,502,259.66 1,123,458.20 1,526,588.80 
156,000 2,026,801.89 1,525,012.92 1,136,405.80 1,544,416.80 
158,000 2,053,134.36 1,547,814.36 1,149,313.40 1,562,196.80 
160,000 2,079,471.27 1,570,663.48 1,162,181.00 1,579,928.80 
162,000 2,105,812.55 1,593,559.77 1,175,008.60 1,597,612.80 
164,000 2,132,158.16 1,616,502.75 1,187,796.20 1,615,248.80 
166,000 2,158,508.04 1,639,491.95 1,200,543.80 1,632,836.80 
168,000 2,184,862.15 1,662,526.89 1,213,251.40 1,650,376.80 
170,000 2,211,220.43 1,685,607.13 1,225,919.00 1,667,868.80 
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Desalinisation plant intake 
flow (m3/day) Drum screen ($) Band screen  

($) 
Wedgewire  

($) 
Microscreen  

($) 

172,000 2,237,582.83 1,708,732.21 1,238,546.60 1,685,312.80 
174,000 2,263,949.31 1,731,901.71 1,251,134.20 1,702,708.80 
176,000 2,290,319.82 1,755,115.19 1,263,681.80 1,720,056.80 
178,000 2,316,694.32 1,778,372.23 1,276,189.40 1,737,356.80 
180,000 2,343,072.76 1,801,672.44 1,288,657.00 1,754,608.80 
182,000 2,369,455.10 1,825,015.40 1,301,084.60 1,771,812.80 
184,000 2,395,841.29 1,848,400.72 1,313,472.20 1,788,968.80 
186,000 2,422,231.30 1,871,828.03 1,325,819.80 1,806,076.80 
188,000 2,448,625.09 1,895,296.93 1,338,127.40 1,823,136.80 
190,000 2,475,022.60 1,918,807.07 1,350,395.00 1,840,148.80 
192,000 2,501,423.82 1,942,358.08 1,362,622.60 1,857,112.80 
194,000 2,527,828.69 1,965,949.61 1,374,810.20 1,874,028.80 
196,000 2,554,237.18 1,989,581.29 1,386,957.80 1,890,896.80 
198,000 2,580,649.26 2,013,252.80 1,399,065.40 1,907,716.80 
200,000 2,607,064.89 2,036,963.80 1,411,133.00 1,924,488.80 
202,000 2,633,484.03 2,060,713.95 1,423,160.60 1,941,212.80 
204,000 2,659,906.65 2,084,502.93 1,435,148.20 1,957,888.80 
206,000 2,686,332.71 2,108,330.43 1,447,095.80 1,974,516.80 
208,000 2,712,762.19 2,132,196.13 1,459,003.40 1,991,096.80 
210,000 2,739,195.04 2,156,099.73 1,470,871.00 2,007,628.80 
212,000 2,765,631.25 2,180,040.91 1,482,698.60 2,024,112.80 
214,000 2,792,070.77 2,204,019.39 1,494,486.20 2,040,548.80 
216,000 2,818,513.58 2,228,034.88 1,506,233.80 2,056,936.80 
218,000 2,844,959.65 2,252,087.09 1,517,941.40 2,073,276.80 
220,000 2,871,408.94 2,276,175.73 1,529,609.00 2,089,568.80 
222,000 2,897,861.43 2,300,300.54 1,541,236.60 2,105,812.80 
224,000 2,924,317.09 2,324,461.23 1,552,824.20 2,122,008.80 
226,000 2,950,775.90 2,348,657.55 1,564,371.80 2,138,156.80 
228,000 2,977,237.81 2,372,889.22 1,575,879.40 2,154,256.80 
230,000 3,003,702.82 2,397,155.98 1,587,347.00 2,170,308.80 
232,000 3,030,170.88 2,421,457.60 1,598,774.60 2,186,312.80 
234,000 3,056,641.98 2,445,793.80 1,610,162.20 2,202,268.80 
236,000 3,083,116.10 2,470,164.35 1,621,509.80 2,218,176.80 
238,000 3,109,593.19 2,494,569.00 1,632,817.40 2,234,036.80 
240,000 3,136,073.24 2,519,007.51 1,644,085.00 2,249,848.80 
242,000 3,162,556.23 2,543,479.65 1,655,312.60 2,265,612.80 
244,000 3,189,042.13 2,567,985.18 1,666,500.20 2,281,328.80 
246,000 3,215,530.92 2,592,523.88 1,677,647.80 2,296,996.80 
248,000 3,242,022.57 2,617,095.52 1,688,755.40 2,312,616.80 
250,000 3,268,517.06 2,641,699.88 1,699,823.00 2,328,188.80 
252,000 3,295,014.38 2,666,336.73 1,710,850.60 2,343,712.80 
254,000 3,321,514.49 2,691,005.87 1,721,838.20 2,359,188.80 
256,000 3,348,017.37 2,715,707.09 1,732,785.80 2,374,616.80 
258,000 3,374,523.01 2,740,440.16 1,743,693.40 2,389,996.80 
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Desalinisation plant intake 
flow (m3/day) Drum screen ($) Band screen  

($) 
Wedgewire  

($) 
Microscreen  

($) 

260,000 3,401,031.38 2,765,204.89 1,754,561.00 2,405,328.80 
262,000 3,427,542.47 2,790,001.07 1,765,388.60 2,420,612.80 
264,000 3,454,056.24 2,814,828.51 1,776,176.20 2,435,848.80 
266,000 3,480,572.69 2,839,687.00 1,786,923.80 2,451,036.80 
268,000 3,507,091.79 2,864,576.34 1,797,631.40 2,466,176.80 
270,000 3,533,613.52 2,889,496.36 1,808,299.00 2,481,268.80 
272,000 3,560,137.87 2,914,446.85 1,818,926.60 2,496,312.80 
274,000 3,586,664.80 2,939,427.63 1,829,514.20 2,511,308.80 
276,000 3,613,194.32 2,964,438.51 1,840,061.80 2,526,256.80 
278,000 3,639,726.39 2,989,479.32 1,850,569.40 2,541,156.80 
280,000 3,666,261.00 3,014,549.87 1,861,037.00 2,556,008.80 
282,000 3,692,798.13 3,039,649.98 1,871,464.60 2,570,812.80 
284,000 3,719,337.76 3,064,779.49 1,881,852.20 2,585,568.80 
286,000 3,745,879.88 3,089,938.21 1,892,199.80 2,600,276.80 
288,000 3,772,424.47 3,115,125.97 1,902,507.40 2,614,936.80 
290,000 3,798,971.51 3,140,342.62 1,912,775.00 2,629,548.80 
292,000 3,825,520.99 3,165,587.98 1,923,002.60 2,644,112.80 
294,000 3,852,072.88 3,190,861.88 1,933,190.20 2,658,628.80 
296,000 3,878,627.18 3,216,164.17 1,943,337.80 2,673,096.80 
298,000 3,905,183.86 3,241,494.68 1,953,445.40 2,687,516.80 
300,000 3,931,742.92 3,266,853.26 1,963,513.00 2,701,888.80 
302,000 3,958,304.33 3,292,239.75 1,973,540.60 2,716,212.80 
304,000 3,984,868.08 3,317,654.00 1,983,528.20 2,730,488.80 
306,000 4,011,434.15 3,343,095.84 1,993,475.80 2,744,716.80 
308,000 4,038,002.53 3,368,565.14 2,003,383.40 2,758,896.80 
310,000 4,064,573.21 3,394,061.75 2,013,251.00 2,773,028.80 
312,000 4,091,146.17 3,419,585.51 2,023,078.60 2,787,112.80 
314,000 4,117,721.39 3,445,136.28 2,032,866.20 2,801,148.80 
316,000 4,144,298.86 3,470,713.92 2,042,613.80 2,815,136.80 
318,000 4,170,878.57 3,496,318.28 2,052,321.40 2,829,076.80 
320,000 4,197,460.51 3,521,949.23 2,061,989.00 2,842,968.80 
322,000 4,224,044.65 3,547,606.62 2,071,616.60 2,856,812.80 
324,000 4,250,630.99 3,573,290.32 2,081,204.20 2,870,608.80 
326,000 4,277,219.52 3,599,000.19 2,090,751.80 2,884,356.80 
328,000 4,303,810.21 3,624,736.11 2,100,259.40 2,898,056.80 
330,000 4,330,403.06 3,650,497.92 2,109,727.00 2,911,708.80 
332,000 4,356,998.05 3,676,285.52 2,119,154.60 2,925,312.80 
334,000 4,383,595.18 3,702,098.76 2,128,542.20 2,938,868.80 
336,000 4,410,194.42 3,727,937.51 2,137,889.80 2,952,376.80 
338,000 4,436,795.77 3,753,801.66 2,147,197.40 2,965,836.80 
340,000 4,463,399.21 3,779,691.07 2,156,465.00 2,979,248.80 
342,000 4,490,004.74 3,805,605.62 2,165,692.60 2,992,612.80 
344,000 4,516,612.33 3,831,545.18 2,174,880.20 3,005,928.80 
346,000 4,543,221.98 3,857,509.65 2,184,027.80 3,019,196.80 
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Desalinisation plant intake 
flow (m3/day) Drum screen ($) Band screen  

($) 
Wedgewire  

($) 
Microscreen  

($) 

348,000 4,569,833.68 3,883,498.89 2,193,135.40 3,032,416.80 
350,000 4,596,447.41 3,909,512.78 2,202,203.00 3,045,588.80 
352,000 4,623,063.16 3,935,551.22 2,211,230.60 3,058,712.80 
354,000 4,649,680.92 3,961,614.08 2,220,218.20 3,071,788.80 
356,000 4,676,300.69 3,987,701.24 2,229,165.80 3,084,816.80 
358,000 4,702,922.44 4,013,812.60 2,238,073.40 3,097,796.80 
360,000 4,729,546.17 4,039,948.04 2,246,941.00 3,110,728.80 
362,000 4,756,171.87 4,066,107.45 2,255,768.60 3,123,612.80 
364,000 4,782,799.53 4,092,290.71 2,264,556.20 3,136,448.80 
366,000 4,809,429.13 4,118,497.72 2,273,303.80 3,149,236.80 
368,000 4,836,060.67 4,144,728.38 2,282,011.40 3,161,976.80 
370,000 4,862,694.13 4,170,982.56 2,290,679.00 3,174,668.80 
372,000 4,889,329.51 4,197,260.18 2,299,306.60 3,187,312.80 
374,000 4,915,966.79 4,223,561.11 2,307,894.20 3,199,908.80 
376,000 4,942,605.97 4,249,885.26 2,316,441.80 3,212,456.80 
378,000 4,969,247.03 4,276,232.53 2,324,949.40 3,224,956.80 
380,000 4,995,889.96 4,302,602.80 2,333,417.00 3,237,408.80 
382,000 5,022,534.76 4,328,995.99 2,341,844.60 3,249,812.80 
384,000 5,049,181.42 4,355,411.99 2,350,232.20 3,262,168.80 
386,000 5,075,829.92 4,381,850.70 2,358,579.80 3,274,476.80 
388,000 5,102,480.26 4,408,312.02 2,366,887.40 3,286,736.80 
390,000 5,129,132.43 4,434,795.86 2,375,155.00 3,298,948.80 
392,000 5,155,786.41 4,461,302.11 2,383,382.60 3,311,112.80 
394,000 5,182,442.20 4,487,830.69 2,391,570.20 3,323,228.80 
396,000 5,209,099.80 4,514,381.50 2,399,717.80 3,335,296.80 
398,000 5,235,759.18 4,540,954.44 2,407,825.40 3,347,316.80 
400,000 5,262,420.34 4,567,549.43 2,415,893.00 3,359,288.80 
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Table -  11: CAPEX for pretreatment subprocesses 

Desalinisation 
plant intake 
flow (m3/day) 

DAF clarifier  
($) 

Lamella settlers 
($) 

Gravity granular 
dual media filters 

($) 

Pressure granular 
dual media filters 

($) 

Membrane 
pretreatment  (upper 

cost bracket) ($) 

Membrane 
pretreatment  (lower 

cost bracket) ($) 

Cartridge filter 
($) 

1000 63,228.69 53,171.46 477,201.00 76,196.61 255,551.92 163,991.68 41,417.43 
2000 115,536.70 95,278.58 546,764.00 138,654.91 454,637.41 287,153.59 70,544.72 
5000 256,335.28 205,997.44 755,093.00 305,939.84 973,628.13 602,184.22 142,627.02 
7000 343,475.64 273,418.92 893,679.00 409,116.34 1,287,775.39 790,369.27 184,702.17 
8,000 385,772.74 305,934.73 962,882.00 459,128.73 1,438,921.92 880,438.73 204,657.28 
10,000 468,397.07 369,129.33 1,101,108.00 556,718.49 1,732,124.65 1,054,439.85 242,931.13 
12,000 548,880.88 430,337.88 1,239,094.00 651,665.14 2,015,517.97 1,221,844.94 279,459.01 
14,000 627,627.15 489,942.71 1,376,840.00 744,468.68 2,291,005.61 1,383,956.66 314,596.10 
16,000 704,915.92 548,208.19 1,514,346.00 835,476.19 2,559,901.53 1,541,670.56 348,584.88 
18,000 780,952.59 605,327.45 1,651,612.00 924,942.02 2,823,164.09 1,695,637.64 381,600.58 
20,000 855,893.96 661,447.38 1,788,638.00 1,013,060.20 3,081,521.28 1,846,350.94 413,775.25 
22,000 929,863.45 716,683.23 1,925,424.00 1,099,983.36 3,335,543.68 1,994,195.91 445,211.64 
24,000 1,002,960.64 771,127.72 2,061,970.00 1,185,834.54 3,585,689.71 2,139,481.50 475,991.79 
26,000 1,075,267.43 824,856.93 2,198,276.00 1,270,714.91 3,832,335.23 2,282,460.50 506,182.57 
28,000 1,146,852.36 877,934.35 2,334,342.00 1,354,709.07 4,075,793.59 2,423,343.24 535,839.45 
30,000 1,217,773.52 930,413.69 2,470,168.00 1,437,888.71 4,316,329.76 2,562,307.27 565,009.08 
32,000 1,288,080.80 982,340.98 2,605,754.00 1,520,315.36 4,554,170.53 2,699,504.29 593,731.23 
34,000 1,357,817.45 1,033,756.05 2,741,100.00 1,602,042.33 4,789,512.04 2,835,065.33 622,040.15 
36,000 1,427,021.30 1,084,693.68 2,876,206.00 1,683,116.26 5,022,525.50 2,969,104.56 649,965.61 
38,000 1,495,725.73 1,135,184.50 3,011,072.00 1,763,578.27 5,253,361.52 3,101,722.30 677,533.70 
40,000 1,563,960.38 1,185,255.66 3,145,698.00 1,843,464.85 5,482,153.61 3,233,007.37 704,767.48 
42,000 1,631,751.72 1,234,931.40 3,280,084.00 1,922,808.61 5,709,020.82 3,363,038.87 731,687.43 
44,000 1,699,123.57 1,284,233.47 3,414,230.00 2,001,638.86 5,934,069.95 3,491,887.66 758,311.88 
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Desalinisation 
plant intake 
flow (m3/day) 

DAF clarifier  
($) 

Lamella settlers 
($) 

Gravity granular 
dual media filters 

($) 

Pressure granular 
dual media filters 

($) 

Membrane 
pretreatment  (upper 

cost bracket) ($) 

Membrane 
pretreatment  (lower 

cost bracket) ($) 

Cartridge filter 
($) 

46,000 1,766,097.43 1,333,181.48 3,548,136.00 2,079,982.04 6,157,397.28 3,619,617.59 784,657.28 
48,000 1,832,692.81 1,381,793.22 3,681,802.00 2,157,862.18 6,379,090.07 3,746,286.42 810,738.52 
50,000 1,898,927.50 1,430,084.88 3,815,228.00 2,235,301.14 6,599,227.68 3,871,946.68 836,569.10 
52,000 1,964,817.78 1,478,071.25 3,948,414.00 2,312,318.93 6,817,882.63 3,996,646.27 862,161.32 
54,000 2,030,378.59 1,525,765.90 4,081,360.00 2,388,933.92 7,035,121.39 4,120,429.11 887,526.42 
56,000 2,095,623.69 1,573,181.32 4,214,066.00 2,465,163.03 7,251,005.10 4,243,335.53 912,674.73 
58,000 2,160,565.80 1,620,329.03 4,346,532.00 2,541,021.88 7,465,590.20 4,365,402.72 937,615.75 
60,000 2,225,216.72 1,667,219.70 4,478,758.00 2,616,524.96 7,678,928.89 4,486,665.07 962,358.24 
62,000 2,289,587.39 1,713,863.24 4,610,744.00 2,691,685.71 7,891,069.62 4,607,154.47 986,910.34 
64,000 2,353,688.01 1,760,268.85 4,742,490.00 2,766,516.66 8,102,057.44 4,726,900.55 1,011,279.58 
66,000 2,417,528.11 1,806,445.14 4,873,996.00 2,841,029.50 8,311,934.39 4,845,930.92 1,035,472.98 
68,000 2,481,116.59 1,852,400.15 5,005,262.00 2,915,235.17 8,520,739.71 4,964,271.36 1,059,497.08 
70,000 2,544,461.81 1,898,141.38 5,136,288.00 2,989,143.91 8,728,510.18 5,081,946.00 1,083,357.99 
72,000 2,607,571.61 1,943,675.91 5,267,074.00 3,062,765.34 8,935,280.27 5,198,977.45 1,107,061.44 
74,000 2,670,453.37 1,989,010.38 5,397,620.00 3,136,108.52 9,141,082.40 5,315,386.95 1,130,612.80 
76,000 2,733,114.04 2,034,151.03 5,527,926.00 3,209,181.99 9,345,947.09 5,431,194.49 1,154,017.11 
78,000 2,795,560.19 2,079,103.76 5,657,992.00 3,281,993.79 9,549,903.12 5,546,418.91 1,177,279.14 
80,000 2,857,798.04 2,123,874.16 5,787,818.00 3,354,551.54 9,752,977.67 5,661,077.99 1,200,403.36 
82,000 2,919,833.45 2,168,467.48 5,917,404.00 3,426,862.44 9,955,196.45 5,775,188.52 1,223,394.01 
84,000 2,981,672.00 2,212,888.72 6,046,750.00 3,498,933.32 10,156,583.80 5,888,766.43 1,246,255.08 
86,000 3,043,318.98 2,257,142.63 6,175,856.00 3,570,770.67 10,357,162.84 6,001,826.80 1,268,990.37 
88,000 3,104,779.43 2,301,233.70 6,304,722.00 3,642,380.65 10,556,955.49 6,114,383.94 1,291,603.47 
90,000 3,166,058.12 2,345,166.21 6,433,348.00 3,713,769.13 10,755,982.61 6,226,451.45 1,314,097.79 
92,000 3,227,159.61 2,388,944.24 6,561,734.00 3,784,941.69 10,954,264.04 6,338,042.28 1,336,476.58 
94,000 3,288,088.26 2,432,571.67 6,689,880.00 3,855,903.65 11,151,818.71 6,449,168.76 1,358,742.92 
96,000 3,348,848.21 2,476,052.22 6,817,786.00 3,926,660.11 11,348,664.66 6,559,842.63 1,380,899.76 
98,000 3,409,443.44 2,519,389.41 6,945,452.00 3,997,215.92 11,544,819.13 6,670,075.11 1,402,949.89 
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Desalinisation 
plant intake 
flow (m3/day) 

DAF clarifier  
($) 

Lamella settlers 
($) 

Gravity granular 
dual media filters 

($) 

Pressure granular 
dual media filters 

($) 

Membrane 
pretreatment  (upper 

cost bracket) ($) 

Membrane 
pretreatment  (lower 

cost bracket) ($) 

Cartridge filter 
($) 

100,000 3,469,877.73 2,562,586.63 7,072,878.00 4,067,575.72 11,740,298.57 6,779,876.92 1,424,896.00 
102,000 3,530,154.73 2,605,647.13 7,200,064.00 4,137,743.97 11,935,118.75 6,889,258.31 1,446,740.63 
104,000 3,590,277.91 2,648,574.00 7,327,010.00 4,207,724.94 12,129,294.75 6,998,229.09 1,468,486.24 
106,000 3,650,250.62 2,691,370.22 7,453,716.00 4,277,522.70 12,322,841.04 7,106,798.64 1,490,135.16 
108,000 3,710,076.05 2,734,038.63 7,580,182.00 4,347,141.17 12,515,771.48 7,214,975.98 1,511,689.64 
110,000 3,769,757.29 2,776,581.98 7,706,408.00 4,416,584.14 12,708,099.37 7,322,769.74 1,533,151.83 
112,000 3,829,297.31 2,819,002.90 7,832,394.00 4,485,855.22 12,899,837.52 7,430,188.23 1,554,523.79 
114,000 3,888,698.94 2,861,303.91 7,958,140.00 4,554,957.89 13,090,998.21 7,537,239.42 1,575,807.50 
116,000 3,947,964.92 2,903,487.46 8,083,646.00 4,623,895.52 13,281,593.27 7,643,930.98 1,597,004.86 
118,000 4,007,097.91 2,945,555.88 8,208,912.00 4,692,671.31 13,471,634.08 7,750,270.28 1,618,117.71 
120,000 4,066,100.43 2,987,511.43 8,333,938.00 4,761,288.41 13,661,131.61 7,856,264.44 1,639,147.81 
122,000 4,124,974.96 3,029,356.28 8,458,724.00 4,829,749.79 13,850,096.42 7,961,920.29 1,660,096.84 
124,000 4,183,723.86 3,071,092.55 8,583,270.00 4,898,058.37 14,038,538.72 8,067,244.43 1,680,966.45 
126,000 4,242,349.41 3,112,722.25 8,707,576.00 4,966,216.93 14,226,468.34 8,172,243.24 1,701,758.21 
128,000 4,300,853.83 3,154,247.34 8,831,642.00 5,034,228.19 14,413,894.78 8,276,922.86 1,722,473.64 
130,000 4,359,239.25 3,195,669.72 8,955,468.00 5,102,094.76 14,600,827.22 8,381,289.22 1,743,114.21 
132,000 4,417,507.75 3,236,991.21 9,079,054.00 5,169,819.15 14,787,274.53 8,485,348.06 1,763,681.33 
134,000 4,475,661.32 3,278,213.57 9,202,400.00 5,237,403.82 14,973,245.30 8,589,104.93 1,784,176.37 
136,000 4,533,701.90 3,319,338.53 9,325,506.00 5,304,851.14 15,158,747.83 8,692,565.18 1,804,600.65 
138,000 4,591,631.36 3,360,367.75 9,448,372.00 5,372,163.40 15,343,790.15 8,795,734.02 1,824,955.45 
140,000 4,649,451.53 3,401,302.81 9,570,998.00 5,439,342.81 15,528,380.06 8,898,616.46 1,845,242.02 
142,000 4,707,164.17 3,442,145.29 9,693,384.00 5,506,391.54 15,712,525.11 9,001,217.38 1,865,461.54 
144,000 4,764,770.98 3,482,896.70 9,815,530.00 5,573,311.68 15,896,232.60 9,103,541.50 1,885,615.19 
146,000 4,822,273.64 3,523,558.49 9,937,436.00 5,640,105.25 16,079,509.63 9,205,593.39 1,905,704.08 
148,000 4,879,673.74 3,564,132.08 10,059,102.00 5,706,774.21 16,262,363.09 9,307,377.49 1,925,729.32 
150,000 4,936,972.86 3,604,618.86 10,180,528.00 5,773,320.49 16,444,799.66 9,408,898.11 1,945,691.94 
152,000 4,994,172.52 3,645,020.17 10,301,714.00 5,839,745.94 16,626,825.83 9,510,159.44 1,965,592.99 
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Desalinisation 
plant intake 
flow (m3/day) 

DAF clarifier  
($) 

Lamella settlers 
($) 

Gravity granular 
dual media filters 

($) 

Pressure granular 
dual media filters 

($) 

Membrane 
pretreatment  (upper 

cost bracket) ($) 

Membrane 
pretreatment  (lower 

cost bracket) ($) 

Cartridge filter 
($) 

154,000 5,051,274.19 3,685,337.30 10,422,660.00 5,906,052.36 16,808,447.92 9,611,165.52 1,985,433.46 
156,000 5,108,279.31 3,725,571.53 10,543,366.00 5,972,241.52 16,989,672.03 9,711,920.32 2,005,214.31 
158,000 5,165,189.27 3,765,724.08 10,663,832.00 6,038,315.10 17,170,504.14 9,812,427.66 2,024,936.49 
160,000 5,222,005.45 3,805,796.14 10,784,058.00 6,104,274.79 17,350,950.04 9,912,691.27 2,044,600.90 
162,000 5,278,729.16 3,845,788.90 10,904,044.00 6,170,122.19 17,531,015.36 10,012,714.77 2,064,208.45 
164,000 5,335,361.70 3,885,703.46 11,023,790.00 6,235,858.88 17,710,705.59 10,112,501.71 2,083,759.99 
166,000 5,391,904.31 3,925,540.95 11,143,296.00 6,301,486.38 17,890,026.08 10,212,055.51 2,103,256.36 
168,000 5,448,358.22 3,965,302.44 11,262,562.00 6,367,006.21 18,068,982.02 10,311,379.52 2,122,698.37 
170,000 5,504,724.63 4,004,988.96 11,381,588.00 6,432,419.80 18,247,578.48 10,410,476.99 2,142,086.83 
172,000 5,561,004.70 4,044,601.55 11,500,374.00 6,497,728.58 18,425,820.41 10,509,351.09 2,161,422.52 
174,000 5,617,199.56 4,084,141.20 11,618,920.00 6,562,933.93 18,603,712.61 10,608,004.92 2,180,706.17 
176,000 5,673,310.32 4,123,608.88 11,737,226.00 6,628,037.21 18,781,259.78 10,706,441.50 2,199,938.54 
178,000 5,729,338.05 4,163,005.54 11,855,292.00 6,693,039.72 18,958,466.50 10,804,663.75 2,219,120.34 
180,000 5,785,283.82 4,202,332.09 11,973,118.00 6,757,942.76 19,135,337.24 10,902,674.56 2,238,252.26 
182,000 5,841,148.64 4,241,589.44 12,090,704.00 6,822,747.59 19,311,876.36 11,000,476.71 2,257,334.99 
184,000 5,896,933.53 4,280,778.48 12,208,050.00 6,887,455.41 19,488,088.10 11,098,072.94 2,276,369.19 
186,000 5,952,639.47 4,319,900.05 12,325,156.00 6,952,067.44 19,663,976.64 11,195,465.90 2,295,355.52 
188,000 6,008,267.41 4,358,955.01 12,442,022.00 7,016,584.84 19,839,546.02 11,292,658.21 2,314,294.60 
190,000 6,063,818.29 4,397,944.17 12,558,648.00 7,081,008.76 20,014,800.21 11,389,652.41 2,333,187.05 
192,000 6,119,293.03 4,436,868.33 12,675,034.00 7,145,340.31 20,189,743.10 11,486,450.97 2,352,033.48 
194,000 6,174,692.53 4,475,728.27 12,791,180.00 7,209,580.59 20,364,378.45 11,583,056.33 2,370,834.48 
196,000 6,230,017.65 4,514,524.77 12,907,086.00 7,273,730.66 20,538,709.99 11,679,470.85 2,389,590.62 
198,000 6,285,269.27 4,553,258.57 13,022,752.00 7,337,791.57 20,712,741.32 11,775,696.85 2,408,302.47 
200,000 6,340,448.21 4,591,930.41 13,138,178.00 7,401,764.34 20,886,475.99 11,871,736.61 2,426,970.58 
202,000 6,395,555.29 4,630,541.00 13,253,364.00 7,465,649.98 21,059,917.46 11,967,592.33 2,445,595.48 
204,000 6,450,591.33 4,669,091.04 13,368,310.00 7,529,449.45 21,233,069.13 12,063,266.20 2,464,177.70 
206,000 6,505,557.11 4,707,581.23 13,483,016.00 7,593,163.73 21,405,934.32 12,158,760.32 2,482,717.76 
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208,000 6,560,453.39 4,746,012.23 13,597,482.00 7,656,793.76 21,578,516.26 12,254,076.79 2,501,216.16 
210,000 6,615,280.94 4,784,384.70 13,711,708.00 7,720,340.44 21,750,818.15 12,349,217.63 2,519,673.39 
212,000 6,670,040.49 4,822,699.29 13,825,694.00 7,783,804.68 21,922,843.10 12,444,184.83 2,538,089.94 
214,000 6,724,732.77 4,860,956.63 13,939,440.00 7,847,187.37 22,094,594.16 12,538,980.35 2,556,466.27 
216,000 6,779,358.48 4,899,157.35 14,052,946.00 7,910,489.37 22,266,074.31 12,633,606.09 2,574,802.86 
218,000 6,833,918.33 4,937,302.04 14,166,212.00 7,973,711.53 22,437,286.50 12,728,063.94 2,593,100.15 
220,000 6,888,413.00 4,975,391.30 14,279,238.00 8,036,854.69 22,608,233.59 12,822,355.71 2,611,358.58 
222,000 6,942,843.15 5,013,425.72 14,392,024.00 8,099,919.65 22,778,918.39 12,916,483.22 2,629,578.60 
224,000 6,997,209.44 5,051,405.86 14,504,570.00 8,162,907.21 22,949,343.67 13,010,448.22 2,647,760.62 
226,000 7,051,512.52 5,089,332.29 14,616,876.00 8,225,818.17 23,119,512.13 13,104,252.44 2,665,905.06 
228,000 7,105,753.02 5,127,205.57 14,728,942.00 8,288,653.29 23,289,426.43 13,197,897.57 2,684,012.34 
230,000 7,159,931.56 5,165,026.22 14,840,768.00 8,351,413.33 23,459,089.18 13,291,385.28 2,702,082.86 
232,000 7,214,048.74 5,202,794.78 14,952,354.00 8,414,099.03 23,628,502.91 13,384,717.20 2,720,117.00 
234,000 7,268,105.17 5,240,511.77 15,063,700.00 8,476,711.11 23,797,670.15 13,477,894.92 2,738,115.16 
236,000 7,322,101.43 5,278,177.69 15,174,806.00 8,539,250.30 23,966,593.36 13,570,920.02 2,756,077.70 
238,000 7,376,038.10 5,315,793.06 15,285,672.00 8,601,717.29 24,135,274.95 13,663,794.03 2,774,005.02 
240,000 7,429,915.75 5,353,358.36 15,396,298.00 8,664,112.76 24,303,717.29 13,756,518.47 2,791,897.45 
242,000 7,483,734.92 5,390,874.07 15,506,684.00 8,726,437.41 24,471,922.71 13,849,094.83 2,809,755.38 
244,000 7,537,496.16 5,428,340.67 15,616,830.00 8,788,691.89 24,639,893.50 13,941,524.55 2,827,579.14 
246,000 7,591,200.02 5,465,758.63 15,726,736.00 8,850,876.86 24,807,631.90 14,033,809.07 2,845,369.08 
248,000 7,644,847.01 5,503,128.40 15,836,402.00 8,912,992.96 24,975,140.13 14,125,949.80 2,863,125.55 
250,000 7,698,437.66 5,540,450.43 15,945,828.00 8,975,040.81 25,142,420.34 14,217,948.12 2,880,848.86 
252,000 7,751,972.48 5,577,725.17 16,055,014.00 9,037,021.05 25,309,474.68 14,309,805.38 2,898,539.35 
254,000 7,805,451.96 5,614,953.05 16,163,960.00 9,098,934.27 25,476,305.23 14,401,522.92 2,916,197.35 
256,000 7,858,876.61 5,652,134.49 16,272,666.00 9,160,781.08 25,642,914.06 14,493,102.05 2,933,823.15 
258,000 7,912,246.89 5,689,269.92 16,381,132.00 9,222,562.07 25,809,303.18 14,584,544.05 2,951,417.08 
260,000 7,965,563.29 5,726,359.75 16,489,358.00 9,284,277.81 25,975,474.59 14,675,850.19 2,968,979.43 
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262,000 8,018,826.28 5,763,404.39 16,597,344.00 9,345,928.88 26,141,430.24 14,767,021.72 2,986,510.51 
264,000 8,072,036.32 5,800,404.23 16,705,090.00 9,407,515.84 26,307,172.06 14,858,059.86 3,004,010.61 
266,000 8,125,193.85 5,837,359.67 16,812,596.00 9,469,039.24 26,472,701.94 14,948,965.82 3,021,480.02 
268,000 8,178,299.34 5,874,271.10 16,919,862.00 9,530,499.62 26,638,021.74 15,039,740.77 3,038,919.03 
270,000 8,231,353.21 5,911,138.89 17,026,888.00 9,591,897.51 26,803,133.29 15,130,385.88 3,056,327.90 
272,000 8,284,355.89 5,947,963.42 17,133,674.00 9,653,233.45 26,968,038.39 15,220,902.30 3,073,706.92 
274,000 8,337,307.82 5,984,745.06 17,240,220.00 9,714,507.94 27,132,738.82 15,311,291.16 3,091,056.36 
276,000 8,390,209.41 6,021,484.17 17,346,526.00 9,775,721.51 27,297,236.33 15,401,553.55 3,108,376.48 
278,000 8,443,061.08 6,058,181.11 17,452,592.00 9,836,874.64 27,461,532.63 15,491,690.58 3,125,667.54 
280,000 8,495,863.22 6,094,836.22 17,558,418.00 9,897,967.84 27,625,629.40 15,581,703.32 3,142,929.80 
282,000 8,548,616.24 6,131,449.86 17,664,004.00 9,959,001.58 27,789,528.33 15,671,592.83 3,160,163.52 
284,000 8,601,320.54 6,168,022.36 17,769,350.00 10,019,976.36 27,953,231.04 15,761,360.14 3,177,368.94 
286,000 8,653,976.49 6,204,554.07 17,874,456.00 10,080,892.64 28,116,739.15 15,851,006.28 3,194,546.32 
288,000 8,706,584.49 6,241,045.30 17,979,322.00 10,141,750.88 28,280,054.25 15,940,532.27 3,211,695.88 
290,000 8,759,144.90 6,277,496.39 18,083,948.00 10,202,551.54 28,443,177.90 16,029,939.09 3,228,817.87 
292,000 8,811,658.10 6,313,907.66 18,188,334.00 10,263,295.08 28,606,111.66 16,119,227.72 3,245,912.52 
294,000 8,864,124.46 6,350,279.42 18,292,480.00 10,323,981.93 28,768,857.03 16,208,399.13 3,262,980.06 
296,000 8,916,544.33 6,386,611.98 18,396,386.00 10,384,612.55 28,931,415.51 16,297,454.27 3,280,020.72 
298,000 8,968,918.07 6,422,905.65 18,500,052.00 10,445,187.34 29,093,788.59 16,386,394.07 3,297,034.73 
300,000 9,021,246.03 6,459,160.74 18,603,478.00 10,505,706.76 29,255,977.71 16,475,219.45 3,314,022.29 
302,000 9,073,528.55 6,495,377.53 18,706,664.00 10,566,171.20 29,417,984.30 16,563,931.33 3,330,983.64 
304,000 9,125,765.98 6,531,556.33 18,809,610.00 10,626,581.09 29,579,809.79 16,652,530.60 3,347,918.98 
306,000 9,177,958.65 6,567,697.43 18,912,316.00 10,686,936.84 29,741,455.55 16,741,018.14 3,364,828.53 
308,000 9,230,106.88 6,603,801.10 19,014,782.00 10,747,238.84 29,902,922.97 16,829,394.82 3,381,712.49 
310,000 9,282,211.01 6,639,867.63 19,117,008.00 10,807,487.49 30,064,213.40 16,917,661.50 3,398,571.06 
312,000 9,334,271.36 6,675,897.30 19,218,994.00 10,867,683.19 30,225,328.16 17,005,819.02 3,415,404.45 
314,000 9,386,288.25 6,711,890.39 19,320,740.00 10,927,826.31 30,386,268.58 17,093,868.23 3,432,212.86 
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316,000 9,438,261.97 6,747,847.15 19,422,246.00 10,987,917.24 30,547,035.95 17,181,809.92 3,448,996.48 
318,000 9,490,192.86 6,783,767.86 19,523,512.00 11,047,956.36 30,707,631.55 17,269,644.93 3,465,755.51 
320,000 9,542,081.20 6,819,652.78 19,624,538.00 11,107,944.03 30,868,056.65 17,357,374.05 3,482,490.13 
322,000 9,593,927.31 6,855,502.17 19,725,324.00 11,167,880.62 31,028,312.49 17,444,998.07 3,499,200.53 
324,000 9,645,731.47 6,891,316.28 19,825,870.00 11,227,766.49 31,188,400.29 17,532,517.76 3,515,886.91 
326,000 9,697,493.98 6,927,095.37 19,926,176.00 11,287,602.00 31,348,321.28 17,619,933.89 3,532,549.43 
328,000 9,749,215.13 6,962,839.68 20,026,242.00 11,347,387.49 31,508,076.64 17,707,247.22 3,549,188.29 
330,000 9,800,895.20 6,998,549.47 20,126,068.00 11,407,123.32 31,667,667.55 17,794,458.49 3,565,803.65 
332,000 9,852,534.48 7,034,224.97 20,225,654.00 11,466,809.82 31,827,095.19 17,881,568.45 3,582,395.70 
334,000 9,904,133.24 7,069,866.42 20,325,000.00 11,526,447.33 31,986,360.69 17,968,577.81 3,598,964.61 
336,000 9,955,691.75 7,105,474.06 20,424,106.00 11,586,036.18 32,145,465.20 18,055,487.30 3,615,510.55 
338,000 10,007,210.29 7,141,048.12 20,522,972.00 11,645,576.71 32,304,409.82 18,142,297.63 3,632,033.68 
340,000 10,058,689.13 7,176,588.83 20,621,598.00 11,705,069.25 32,463,195.68 18,229,009.48 3,648,534.17 
342,000 10,110,128.52 7,212,096.43 20,719,984.00 11,764,514.10 32,621,823.86 18,315,623.57 3,665,012.19 
344,000 10,161,528.73 7,247,571.12 20,818,130.00 11,823,911.58 32,780,295.43 18,402,140.55 3,681,467.89 
346,000 10,212,890.02 7,283,013.14 20,916,036.00 11,883,262.02 32,938,611.46 18,488,561.11 3,697,901.45 
348,000 10,264,212.64 7,318,422.70 21,013,702.00 11,942,565.71 33,096,773.00 18,574,885.92 3,714,313.00 
350,000 10,315,496.84 7,353,800.02 21,111,128.00 12,001,822.97 33,254,781.09 18,661,115.62 3,730,702.72 
352,000 10,366,742.86 7,389,145.32 21,208,314.00 12,061,034.09 33,412,636.75 18,747,250.86 3,747,070.76 
354,000 10,417,950.97 7,424,458.80 21,305,260.00 12,120,199.38 33,570,341.00 18,833,292.28 3,763,417.26 
356,000 10,469,121.38 7,459,740.67 21,401,966.00 12,179,319.12 33,727,894.83 18,919,240.52 3,779,742.37 
358,000 10,520,254.36 7,494,991.13 21,498,432.00 12,238,393.61 33,885,299.23 19,005,096.20 3,796,046.25 
360,000 10,571,350.12 7,530,210.40 21,594,658.00 12,297,423.13 34,042,555.17 19,090,859.93 3,812,329.04 
362,000 10,622,408.92 7,565,398.67 21,690,644.00 12,356,407.97 34,199,663.63 19,176,532.32 3,828,590.88 
364,000 10,673,430.96 7,600,556.13 21,786,390.00 12,415,348.41 34,356,625.55 19,262,113.98 3,844,831.92 
366,000 10,724,416.50 7,635,682.99 21,881,896.00 12,474,244.73 34,513,441.87 19,347,605.49 3,861,052.29 
368,000 10,775,365.74 7,670,779.44 21,977,162.00 12,533,097.19 34,670,113.53 19,433,007.45 3,877,252.14 
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370,000 10,826,278.91 7,705,845.68 22,072,188.00 12,591,906.08 34,826,641.43 19,518,320.43 3,893,431.61 
372,000 10,877,156.24 7,740,881.88 22,166,974.00 12,650,671.65 34,983,026.49 19,603,545.01 3,909,590.82 
374,000 10,927,997.94 7,775,888.23 22,261,520.00 12,709,394.18 35,139,269.61 19,688,681.75 3,925,729.92 
376,000 10,978,804.22 7,810,864.93 22,355,826.00 12,768,073.92 35,295,371.67 19,773,731.21 3,941,849.03 
378,000 11,029,575.31 7,845,812.15 22,449,892.00 12,826,711.13 35,451,333.56 19,858,693.95 3,957,948.29 
380,000 11,080,311.40 7,880,730.08 22,543,718.00 12,885,306.07 35,607,156.12 19,943,570.51 3,974,027.82 
382,000 11,131,012.71 7,915,618.89 22,637,304.00 12,943,858.99 35,762,840.23 20,028,361.43 3,990,087.76 
384,000 11,181,679.45 7,950,478.76 22,730,650.00 13,002,370.14 35,918,386.73 20,113,067.25 4,006,128.22 
386,000 11,232,311.81 7,985,309.86 22,823,756.00 13,060,839.77 36,073,796.46 20,197,688.49 4,022,149.34 
388,000 11,282,910.00 8,020,112.37 22,916,622.00 13,119,268.12 36,229,070.24 20,282,225.68 4,038,151.24 
390,000 11,333,474.21 8,054,886.46 23,009,248.00 13,177,655.44 36,384,208.90 20,366,679.33 4,054,134.04 
392,000 11,384,004.65 8,089,632.30 23,101,634.00 13,236,001.96 36,539,213.24 20,451,049.95 4,070,097.86 
394,000 11,434,501.51 8,124,350.04 23,193,780.00 13,294,307.91 36,694,084.07 20,535,338.05 4,086,042.82 
396,000 11,484,964.98 8,159,039.87 23,285,686.00 13,352,573.54 36,848,822.17 20,619,544.13 4,101,969.03 
398,000 11,535,395.25 8,193,701.94 23,377,352.00 13,410,799.08 37,003,428.33 20,703,668.68 4,117,876.62 
400,000 11,585,792.51 8,228,336.41 23,468,778.00 13,468,984.75 37,157,903.32 20,787,712.18 4,133,765.70 
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Table -  12: CAPEX for RO system equipment 

Item Construction cost (US$/item or as indicated) 

8-inch SWRO membrane elements 400.00 600.00 Per element 

16-inch SWRO membrane elements 2,900.00 3,400.00 Per element 

SWRO pressure vessels for 8-inch elements 1,400.00 1,800.00 Per vessel 

SWRO pressure vessels for 16-inch elements 3,700.00 5,200.00 Per vessel 

RO train piping 260,000.00 620,000.00 Per train 

RO train support frame 160,000.00 360,000.00 Per train 

RO train instrumentation and controls 32,000.00 110,000.00 Per train 

High-pressure pumps 160,000.00 2,500,000.00 Per train 

UF element  1000.0 Per element 

Energy recovery devices (PX-Q300)  25,625.0 Per PX 

 

Table -  13: CAPEX for discharge subprocesses 

Type of post treatment  Disposal construction 

cost - low price 

($/m³/day) 

Disposal construction 

cost - high price 

($/m³/day) 

New surface water discharge (new outfall with diffusers) 40.0 800.0 

Collocation of desalination plant and power plant discharge  20.0 40.0 

Co-disposal with wastewater treatment plant discharge  30.0 160.0 

 

Table -  14: CAPEX for posttreatment subprocesses 

Permeate 

(m³/day) 

Lime and carbon 

dioxide ($) 

Calcite and carbon 

dioxide ($) 

Chlorine dioxide 

disinfection ($) 

Sodium hypochlorite 

disinfection ($) 

5,000.00 1,006,434.10 546,178.57 126,111.94 82,175.11 

10,000.00 1,535,653.48 828,713.10 191,906.68 124,752.91 

15,000.00 1,966,248.75 1,057,604.02 245,328.81 159,261.37 

20,000.00 2,343,155.51 1,257,400.83 292,027.63 189,391.75 

25,000.00 2,684,586.84 1,438,020.63 334,289.20 216,635.66 

30,000.00 3,000,173.32 1,604,695.51 373,321.00 241,780.25 

35,000.00 3,295,771.60 1,760,601.76 409,856.75 265,303.43 

40,000.00 3,575,271.26 1,907,845.87 444,383.39 287,522.22 

45,000.00 3,841,418.08 2,047,913.12 477,244.47 308,660.16 

50,000.00 4,096,239.51 2,181,899.08 508,693.53 328,882.16 

55,000.00 4,341,285.25 2,310,640.39 538,924.30 348,314.16 

60,000.00 4,577,772.75 2,434,793.75 568,088.89 367,055.03 
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Permeate 

(m³/day) 

Lime and carbon 

dioxide ($) 

Calcite and carbon 

dioxide ($) 

Chlorine dioxide 

disinfection ($) 

Sodium hypochlorite 

disinfection ($) 

65,000.00 4,806,679.99 2,554,886.35 596,309.46 385,184.14 

70,000.00 5,028,807.28 2,671,349.26 623,685.96 402,766.40 

75,000.00 5,244,819.82 2,784,540.58 650,301.40 419,855.73 

80,000.00 5,455,277.95 2,894,761.77 676,225.72 436,497.52 

85,000.00 5,660,659.14 3,002,269.58 701,518.49 452,730.45 

90,000.00 5,861,374.37 3,107,284.88 726,230.98 468,587.77 

95,000.00 6,057,780.56 3,209,999.39 750,407.68 484,098.36 

100,000.00 6,250,190.11 3,310,580.88 774,087.55 499,287.49 

105,000.00 6,438,878.41 3,409,177.12 797,304.91 514,177.42 

110,000.00 6,624,089.75 3,505,919.19 820,090.22 528,787.89 

115,000.00 6,806,042.09 3,600,923.98 842,470.62 543,136.50 

120,000.00 6,984,930.91 3,694,296.27 864,470.47 557,239.06 

125,000.00 7,160,932.35 3,786,130.46 886,111.71 571,109.76 

130,000.00 7,334,205.84 3,876,511.96 907,414.20 584,761.49 

135,000.00 7,504,896.24 3,965,518.35 928,395.97 598,205.93 

140,000.00 7,673,135.68 4,053,220.36 949,073.47 611,453.73 

145,000.00 7,839,045.07 4,139,682.71 969,461.75 624,514.65 

150,000.00 8,002,735.42 4,224,964.79 989,574.64 637,397.64 

155,000.00 8,164,308.94 4,309,121.29 1,009,424.85 650,110.93 

160,000.00 8,323,860.03 4,392,202.67 1,029,024.12 662,662.12 

165,000.00 8,481,476.04 4,474,255.64 1,048,383.33 675,058.27 

170,000.00 8,637,238.06 4,555,323.54 1,067,512.56 687,305.89 

175,000.00 8,791,221.48 4,635,446.66 1,086,421.19 699,411.07 

180,000.00 8,943,496.60 4,714,662.55 1,105,117.96 711,379.45 

185,000.00 9,094,129.05 4,793,006.26 1,123,611.04 723,216.31 

190,000.00 9,243,180.25 4,870,510.60 1,141,908.06 734,926.62 

195,000.00 9,390,707.78 4,947,206.30 1,160,016.18 746,514.98 

200,000.00 9,536,765.69 5,023,122.21 1,177,942.12 757,985.76 

 

Table -  15: Chemical cost 

Chemical Cost (US$/kg) 

Sodium Hypochlorite 2.2 - 3.5 

Sulfuric Acid (93% H2so4) 0.06 - 0.1 

Ferric Sulfate 0.4 - 1.2 

Ferric Chloride 1.67 

Sodium Hexametaphosphate 1.6 - 4.0 
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Chemical Cost (US$/kg) 

Chlorine Dioxide 3.0 - 5.5 

Sodium Hydroxide 0.65 - 0.85 

Sodium Bisulfite 0.35 - 0.55 

Hydrated Lime 0.3 - 0.4 

Calcite 0.05 - 0.08 

Carbon Dioxide 0.08 - 0.12 

Other Cleaning Chemicals (US$/M³ Of Permeate) 0.005 - 0.008 
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APPENDIX F LIFE COST ANALYSIS EVALUATION  

Case 1: 

Table -  16: Selected seawater RO facilities using well intake systems [303] 

Facility name Location Capacity (m3/d) No. of wells 

Sur Oman 160,000 28 

Alicante (combined for two 

facilities) 
Spain 130,000 30 

Tordera Blanes, Spain 128,000 10 

Bajo Almanzora Almeria, Spain 120,000 14 

Bay of Palma Mallorca, Spain 89,600 16 

WEB Aruba 80,000 10 

Lanzarote IV Canary Islands, Spain 60,000 11 

Blue Hills New Providence 1., Bahamas 54,600 12 

Santa Cruz de Tenerife Canary Islands, Spain 50,000 8 

Ghar Lapsi Malta 45,000 18 

SAWACO Jeddah, Saudi Arabia 31,250 10 

Dahab Red Sea, Egypt 25,000 15 

Turks & Caicos Water Providenciales, Turks 23,260 6 

Ibiza Spain 15,000 8 

Al-Birk Saudi Arabia 5100-8700 3 

Lower Valley Grand Cayman 8000 3 

Britannia Grand Cayman 5400 4 

Morro Bay California, USA 4500 5 

 

Table -  17: Design specification of Plant intake and brine specifications for Case 1 

Plant water design Value Unit 

Product  25,000.00 m3/day 

Recovery  45.00 % 

Salinity  35,000.00 mg/L 

Temperature  25.00 ℃ 

Backwash 4.00 % 

Additional water 0.50 % 

Life scale  20.00 Year 

Operation days 360 Days 

Intake capacity  57,805.56 m3/day 

Ro feed flow  55,556.00 m3/day 
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Brine flow rate 30,556.00 m3/day 

Brine salinity  63,579.00 mg/L 

Brine average salinity 49,289.50  

Permeate salinity 99.00  

Feed water density 1023.03 kg/m3 

Sweater dynamic viscosity 0.00096 kg/ms 

Seawater kinematic viscosity 9.37 × 10Dw m2/s 

 

Table -  18: Design specification of Vertical well for Case 1 

Intake design  Vertical well value Unit 

Ground permeability 0.0005 m/s 

Depth 38.00 m 

Aquifer drawdown 14.00 m 

Reduction capacity loss 0.30 
 

Transmissivity 0.019 m2/s 

Capacity per well 5,223.27 m3/day 

Number of wells 16.00 
 

 

Table -  19: Design specification of Pressure granular media filtration for Case 1 

Pretreatment system Single pressure granular media filtration Unit 

Loading rate 15.00 m3/m2/h 

Length to width ratio 4.00  

Max surface area per filter 50.00 m2 

Backwash loading rate 40.00 m3/m2/h 

Duration 10.00 min 

Downflow rinse 5.00 min 

Sediment type Sand  

Effective size  1.6  

Required surface area 161.00 m2 

Number of filters + standby 4.00  

Surface area per filter 40.00 m2 

Length 9.03 m 

Width/diameter 2.26 m 

Media loading rate 29.55 m3/m2h 

Backwash flow rate 128.80 m3/min 

Volume per filter 1,932.00 m3 
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Table -  20: Design specification of Cartridge filter for Case 1 

Pretreatment system Cartridge filter Unit 

Loading rate 0.25 m3/m2h 

Length 1,016.00 mm 

N cartridge per PV 8.00  

Number of cartridges 659.00  

Number of cartridges per PV 82.00  

Actual loading rate per 250 mm 0.25  

 

Table -  21: Design specification of RO system for Case 1 

Ro system SW30XL400 Unit 

Flux 14.00 Lmh 

Element type  SW30XLE-440i  

Number pressure vessel per train 80.000  

Flow rate ERD 93.500 m3/h 

Flow per element 0.573 m3/h 

Number of elements 1,819.000  

Number of pressure vessels 228.000  

Number of elements 1,824.000  

Flux 14.000  

Flow per element 0.573 m3/h 

Feed flow per pressure vessel 10.153 m3/h 

Permeate flow per pressure vessel 4.569 m3/h 

Concentrate flow per pressure vessel 5.584 m3/h 

Number of trains 3.000  

Number of ERD 14.000  

 

Table -  22: Water and salt permeability coefficient for Case 1 

RO system 
Membrane permeability coefficient for 

water 
Unit 

Pressure loss per element 0.210 bar 

Concentrate concentration test 34,777.043 mg/L 

Average concentration test 33,388.522 mg/L 

Permeate concentration test 66.777 mg/L 
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RO system 
Membrane permeability coefficient for 

water 
Unit 

Osmotic feed pressure test 27.147 bar 

Osmotic concentrate pressure test 29.502 bar 

Average osmotic pressure test 28.325 bar 

Osmotic permeate pressure test 0.057 bar 

Osmotic pressure difference test 28.268 bar 

Permeate pressure test - bar 

NDPs test 26.657 bar 

Water flux test 38.093 Lmh 

Water permeability coefficient test 1.431 L/m2.bar.h 

Permeability productivity test 0.059 m3/bar.h 

Salt permeability coefficient test 0.076 L/m2h 

Water permeability coefficient at design 1.431 L/m2.bar.h 

Salt permeability coefficient at design 0.076 L/m2h 

 

Table -  23: RO feed pressure for Case 1 

RO system Feed pressure Unit 

Osmotic feed pressure 29.692 bar 

Osmotic concentrate pressure 53.936 bar 

Osmotic permeate pressure 0.084 bar 

Applied feed pressure 52.000 bar 

Salinity of permeate water  106.32 mg/L 
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Table -  24: Elements performance analysis in PV for Case 1 

RO system Calculation for RO element performance 
Parameters 1 2 3 4 5 6 7 8 

𝑃.: 52.000 51.790 51.580 51.370 51.160 50.950 50.740 50.530 
∆𝑃0 0.210 0.210 0.210 0.210 0.210 0.210 0.210 0.210 
𝑄4" 10.153 8.965 8.020 7.075 6.388 5.925 5.636 5.469 
𝐶4" 35,000.000 39,628.324 44,317.587 44,317.587 49,068.648 52,868.084 55,586.649 57,302.385 
𝐶$" 74.628 83.946 83.946 93.386 101.937 108.455 112.889 115.535 
𝐶9" 39,628.324 44,317.587 44,317.587 49,068.648 52,868.084 55,586.649 57,302.385 58,232.268 
𝐶49" 37,314.162 41,972.955 44,317.587 46,693.118 50,968.366 54,227.367 56,444.517 57,767.326 
𝜋4" 29.692 33.618 33.618 37.596 41.626 44.850 47.156 48.611 
𝜋9" 33.618 37.596 37.596 41.626 44.850 47.156 48.611 49.400 
𝜋49" 31.655 35.607 35.607 39.611 43.238 46.003 47.883 49.005 
𝜋$" 0.063 0.071 0.071 0.079 0.086 0.092 0.096 0.098 

∆𝝅𝒇𝒄𝒔D𝒇𝒑𝒔 31.592 35.536 35.536 39.532 43.152 45.911 47.787 48.907 
𝑁𝐷𝑃: 20.303 16.149 16.149 11.733 7.903 4.934 2.848 1.518 
𝑄9" 8.965 8.020 7.075 6.388 5.925 5.636 5.469 5.380 
𝑄$" 1.188 0.945 0.945 0.687 0.463 0.289 0.167 0.089 
𝑅: 0.117 0.106 0.106 0.097 0.072 0.049 0.030 0.016 
𝑃&: 51.790 51.580 51.370 51.160 50.950 50.740 50.530 50.320 
CPF: 1.085 1.077 1.077 1.070 1.052 1.035 1.021 1.011 

CPF: < 1.2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
v: 0.220 0.190 0.170 0.150 0.140 0.130 0.130 0.120 
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Table -  25: Design specification of Discharge system for Case 1 

Discharge System Surface Discharge Unit 

Cleaning volume 1.40 L/m2 

Ro pipe radius 0.10 m 

Ro pipe length 1,500.00 m 

C value 5.00  

Volume RO system  109,939.20  L/day 

Volume of Pipe  47,123.89  L/day 

CIP solution volume  157,063.09  L/day 

Total flush water volume  109,945.20  L/day 

Total membrane flush water  0.74  m3/day 

Backwash volume  2,222.22  m3/day 

Total discharge flow rate  32,778.96  m3/day 

  Diffuser design  

Number of diffuser port 2.00  

Discharge angle  45.00 degree 

Diameter of Diffuser  0.23 m 

Viscosity discharge 9.71E-07 m2/s 

Brine density  1,044.65  kg/m3 

Seawater density   1,023.03  kg/m3 

Buoyant acceleration  0.197  m2/s 

Flow per port  0.190  m3/s 

Velocity at diffuser port  4.573  m/s 

Froude number  21.483   

Reynold’s number 1.08E+06  

Buoyancy flux  0.04  m4/s3 

Momentum flux  0.87  m4/s3 

Discharge length  0.20  m 

Momentum length scale  4.68  m 

Dilution at Impact Point  34.37   

Dilution at Near Field  53.71   

Location of Impact Point  17.79  m 

Near – field length  54.35  m 

Height of Jet Rise  8.89  m 
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Table -  26: SEC breakdown for Case 1 

System  Value Unit 

ERD efficiency 0.97 % 

Intake system pump efficiency 0.83 % 

RO system pump efficiency 0.8 % 

Intake system SEC  0.13  kWh/m3 

Pretreatment system SEC  0.100  kWh/m3 

RO system SEC  2.390  kWh/m3 

Discharge SEC  0.270  kWh/m3 

Posttreatment SEC  0.170  kWh/m3 

Total SEC  3.01  kWh/m3 

 

Table -  27: CAPEX breakdown for Case 1 

CAPEX parameters Cost rate ($) Cost ($) 

n 8  

Discounting rate  5%  

Site preparation  15.00  375,000.00  

Intake system 2000  4,217,061.52  

Pretreatment system   3,478,637.63  

RO system (Element ,  PV, train piping, train support 

frame, train instrument and control, HP pump, ERD) 

500, 1600, 440,000, 

260,000, 

71,000, 

2,500,000, 

25,625, 

 13,948,550.00  

Discharge system 300  13,111,584.68  

Posttreatment system   1,654,656.29  

Waste solid handling  30.00  750,000.00  

Electrical instrumentation  75.00  1,875,000.00  

Auxiliary service equipment  25.00  625,000.00  

Building  60.00  1,500,000.00  

Start-up commissioning acceptance test  15.00  375,000.00  

Preliminary engineering  25.00  625,000.00  

Pilot construction  10.00  250,000.00  

Pilot testing  15,000.00  150,000.00  

Period of testing 10.00  

Detailed design  90.00  2,250,000.00  

Construction management oversight  40.00  1,000,000.00  

Project management  30.00  750,000.00  
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CAPEX parameters Cost rate ($) Cost ($) 

Environmental permitting  45.00  1,125,000.00  

Legal cost 20.00  500,000.00  

Direct CAPEX   41,910,490.12  

Indirect CAPEX   6,650,000.00  

Total CAPEX   48,560,490.12  

NPV   32,867,651.15  

 

Table -  28:Staff breakdown and yearly salary for Case 1 

Staff Number of staff Cost ($US/year) 

Head of plant 1 115,200.00 

Mangers 2 172,800.00 

Engineers 3 216,000.00 

Operators 9 518,400.00 

Other staff 2 103,680.00 

Additional staff 1 37,440.00 

Total 18 1,163,520.00 

Total for 20 years  23,270,400.00 
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Table -  29: SEC and cost  breakdown for Case 1 

  Total energy (kWh/day) 
Total energy 

(kWh/year) 
Cost ($ /day) Cost ($ /year) Cost ($/20 year) 

SEC cost rate 0.15      

Intake  0.130  7514.72  2,705,300.00   1,127.21   405,795.00   8,115,900.00  

Pretreatment  0.100  5780.56  2,081,000.00   867.08   312,150.00   6,243,000.00  

RO  2.390  59750  21,510,000.00   8,962.50   3,226,500.00   64,530,000.00  

Discharge  0.270  8850.32  3,186,115.08   1,327.55   477,917.26   9,558,345.23  

Posttreatment  0.120  3000  1,080,000.00   450.00   162,000.00   3,240,000.00  

Total 3.01  84,895.60   30,562,415.08   12,734.34   4,584,362.26   91,687,245.23  

 

Table -  30: Chemical cost breakdown for Case 1 

Chemical Chemical 
dosage 
(mg/L) 

Chemical 
use 

(kg/day) 

Amount of 
chemical 

(kg) 

Actual 
storage 
volume 

(m3) 

Average 
dilution flow 

(m3/h) 

Chemical 
metering 

pump 
(m3/h) 

Cost ($/day) Cost ($/year) Cost($/20year) 

Sodium hypochlorite 4.00 231.22 53358.923 49.888 0.017 0.0078 658.983 68,534.23 1,370,684.64 
Ferric sulfate  5.00 289.03 21677.1 16.083 0.089 0.0078 231.222 83,239.92 1,664,798.40 
Sodium 
hexametaphosphate 

2.13 122.84 3722.333 4.28 0.02 0.0051 343.944 123,819.84 2,476,396.80 

Chlorine dioxide 0.19 10.98 332.818 0.255 0.001 0.0003 46.678 16,804.08 336,081.60 
Sodium hydroxide  6.00 346.83 20809.98 15.693 0.027 0.0095 260.125 93,645.00 1,872,900.00 
Sodium bisulfite 3.00 173.42 5255.061 4.084 0.031 0.0049 78.038 28,093.68 561,873.60 
Sulfuric acid 1.02 58.96 1804.959 1.134 0.011 0.0013 4.717 1,698.12 33,962.40 
Calcite 80.81 2,020.20 - - - - 141.414 50,909.09 1,018,181.82 
Carbon dioxide 35.20 880.00 - - - - 88.00 31,680.00 633,600.00 
Total  4,133.48     1,853.12 498,423.96 9,968,479.26 
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Table -  31:Equipment replacement cost breakdown for Case 1 

Equipment replacement Selected life span Cost ($/filter) Cost ($/year) Cost ($/ 20 year) 

Cartridge filter 4.00  months 30 49,425.00 988,500.00 

Media filtration * 10.00 year 40 31,360.90 627,217.98 

RO membrane 8.00 year 500 114,000.00 2,508,000.00 

Total   194,785.90 4,123,717.98 

* Replacement price = 40 / 0.028 m3 

 

Table -  32: OPEX breakdown for Case 1 

 
OPEX cost 

($millions/year) 
Cost ($M/20 years) Sensitivity Analysis 

Variable O&M   -10 -5 5 10 20 

Power  4.58   91.69   82.52   87.10   96.27   100.86   110.02  

Chemicals  0.50   9.97   9.97   9.97   9.97   9.97   9.97  

Replacement of membranes and cartridge 

filter 

 0.19   4.12   4.12   4.12   4.12   4.12   4.12  

Waste stream disposal  1.77   35.40   35.40   35.40   35.40   35.40   35.40  

Fixed O&M costs        -     -     -    

Labour  1.16   23.27   23.27   23.27   23.27   23.27   23.27  

Maintenance  0.84   16.76   16.76   16.76   16.76   16.76   16.76  

Environmental and performance monitoring  0.04   0.72   0.72   0.72   0.72   0.72   0.72  
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OPEX cost 

($millions/year) 
Cost ($M/20 years) Sensitivity Analysis 

Indirect O&M cost  0.36   7.20   7.20   7.20   7.20   7.20   7.20  

Total OPEX  9.45   189.14   179.97   184.55   193.72   198.30   207.47  

NPV  9.00   71.28   67.83   69.56   73.01   74.74   78.19  
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Case 2: 

 

Table -  33: Design specification for Plant intake and brine specification for Case 2 

Plant water design Solution 1 Solution 2 Unit 

Product  120,000.00 

40.00 

38,000.00 

28-32 

m3/day 

Recovery  % 

Salinity  mg/L 

Temperature  ℃ 

Backwash 4.00 8.00 % 

Additional water 1.00 1.00 % 

Life scale  22.00 22.00 Year 

Intake capacity   318,000.00  330,000.00 m3/day 

Ro feed flow   300,000.00  300,000.00 m3/day 

Brine flow rate  180,000.00  180,000.00 m3/day 

Brine salinity   63,283.00  63,283.00 mg/L 

Brine average salinity  50,641.50  50,641.50  

Permeate salinity  101.00  101.00  

Feed water density 1023.62 1023.62 kg/m3 

Sweater dynamic viscosity 0.00087 0.00087 kg/ms 

Seawater kinematic viscosity 8.47 × 10Dw 8.47 × 10Dw m2/s 

 

 

Table -  34:Design specification of Offshore intake for Case 2 

Intake Design  Solution 1 Solution 2 Unit 

Number of pipes 2.00 2.00  

Approached velocity 0.15 0.15 m/s 

Width of screen bars  25.00 25.00 mm 

Space between the bars 100.00 100.00 mm 

Reduction of area factor 0.40 0.40  

Velocity in the bottom structure  0.80 0.80 m/s 

Velocity in intake riser pipe 2.00 2.00 m/s 

Velocity in conveyance pipe 2.00 2.00 m/s 

Height of velocity cap  2 2 m 

Area of velocity cap 30.67 31.83 m2 

Through velocity  0.06 0.06 m/s 

Inner diameter of velocity cap 4.88 5.07 m/s 



 340 

Internal diameter of the bottom of intake structure 1.71 1.74 m 

Internal diameter of the riser pipe 1.08 1.10 m 

Internal diameter of the conveyance pipe 1.53 1.56 m 

 

Table -  35:Design specification of Lamella sedimentation for Case 2 

Pretreatment System  Solution 1 Solution 2 Unit 

Particle density 2650 2650 kg/m3 

Particle diameter 9.0E-05 9.00E-05 𝜇𝑚 

Length of plate  2.50 2.50 m  

Factor active plate  0.80 0.80  

Hazen velocity  0.80 0.80 m/s 

Angle 60.00 60.00 Degree 

Space between plates 0.06 0.06 m 

Plate width  1.25 1.25 m 

Thickness of plates  0.01 0.01 m 

Suspended solid in seawater  29.90 29.90 mg/L 

Suspended solid lam  5.00 5.00 mg/L 

Detention time  0.20 0.20 h 

Solid content sludge 2.00 2.00 % 

Settling velocity 0.015 0.015 m/s 

Reynolds number  3.49 3.49  

Active length 2 2 m 

Velocity in lamella channel 0.0037 0.0037 m/s 

Q lam 1 1 m3/h 

Number lam 13250 13750  

Distance between inclined plates 0.069 0.069 m 

Pack depth lam 981.75 1018.75 m  

Area of lam package 1227.188 1273.438 m2 

Loading rate lam 10.797 10.798 m3/m2h 

Eff lam suspended solid 83.278 83.278 % 

Eff lam bod 5.263 5.263  

Removal of suspended solid 329.927 342.377 kg/h 

Sludge produced 16496.35 17118.85 kg/h 
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Table -  36: Design specification of Pretreatment system for solution 1 in Case 2 

Pretreatment System Dual gravity granular media  Unit 

Loading rate 12.00 m3/m2/h 

Length to width ratio 3.00  

Max surface area per filter 70.00 m2 

Backwash loading rate 50.00 m3/m2/h 

Duration 15.00 min 

Downflow rinse 8.00 min 

Sediment type (effective size) Sand  (0.6), Anthracite (1.5)  

Required surface area 1,104.00 m2 

Number of filters + standby 16.00  

Surface area per filter 70.00 m2 

Length 14.40 m 

Width/diameter 4.80 m 

Media loading rate 11.98 m3/m2/h 

Backwash flow rate 1,104.00 m3/h 

Volume per filter 25,392.00 m3 

Depth 5.15 m 

Pretreatment System Cartridge filter  

Loading rate 0.25 m3/m2/h 

Length 1,016.00 mm 

N cartridge per PV 7.00  

Number of Cartridges 3,418.00  

Number of Cartridges per PV 488.00  

Actual loading rate per 250 mm 0.25 m3/m2/h 

 

Table -  37: Design specification of UF for solution 2 in Case 2 

Pretreatment System  Membrane Filtration  Unit 

Element type ZeeWeed 1500 Module  

Average flux 45.00 Lmh 

Element area  51.10 m2 

Number of Element Per Module 4.00  

Number module per train 48.00  

Temperature  30.00 ℃ 

Flux at Design Temperature  38.88 Lmh 

Filtration area membrane system 305,555.56 m2 

Number of Element 5,980.00  
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Number of Vessel 1,495.00  

Number of Train 31  

Area train 9811.2  

Flow rate per train 441.504 m3/h 

 

Table -  38: Design specification of RO system for Case 2 

RO system Solution 1 Solution 2 Unit 

Element type  SW30XL400 SW30XL400  

Flux 14  16.00  Lmh 

Number pressure vessel per train 100  100.00   

Flow rate ERD 93.5  93.500  m3/h 

Flow per element  0.518   0.592  m3/h 

Number of elements  9,653.000   8,446.000   

Number of pressure vessels  1,379.000   1,207.000   

Number of elements  9,653.000   8,449.000   

Flux  14.000   16.000   

Flow per element  0.518   0.592  m3/h 

Feed flow per pressure vessel  9.065   10.356  m3/h 

Permeate flow per pressure vessel  3.626   4.142  m3/h 

Concentrate flow per pressure vessel  5.439   6.214  m3/h 

Number of trains  14.000   12.000   

Number of ERD  80.000   80.000   

 

 

Table -  39: Water and salt permeability for Case 2 

RO system Solution 1 Solution 2 Unit 

Pressure loss per element 0.160 0.210 bar 

Concentrate concentration test 34,777.043 34,777.043 mg/L 

Average concentration test 33,388.522 33,388.522 mg/L 

Permeate concentration test 66.777 66.777 mg/L 

Osmotic feed pressure test 27.147 27.147 bar 

Osmotic concentrate pressure test 29.502 29.502 bar 

Average osmotic pressure test 28.325 28.325 bar 

Osmotic permeate pressure test 0.057 0.057 bar 

Osmotic pressure difference test 28.268 28.268 bar 

Permeate pressure test - - bar 
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RO system Solution 1 Solution 2 Unit 

NDP test 26.652 26.657 bar 

Water flux test 31.541 31.541 Lmh 

Water permeability coefficient test 1.183 1.185 L/m2.bar.h 

Permeability productivity test 0.044 0.044 m3/bar.h 

Salt permeability coefficient test 0.063 0.063 L/m2h 

Water permeability coefficient at design 1.369 1.372 L/m2.bar.h 

Salt permeability coefficient at design 0.073 0.073 L/m2h 

 

Table -  40: Applied feed pressure for Case 2 

RO System Solution 1 Solution 2 Unit 

Osmotic feed pressure  32.777   32.777  bar 

Osmotic concentrate pressure  54.585   54.585  bar 

Osmotic permeate pressure  0.087   0.087  bar 

Applied feed pressure  54.000   56.000  bar 

Salinity in permeate water 200.07 200.03 mg/L 
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Table -  41: Elements performance analysis in PV for solution 1 

RO system Calculation for RO element performance 

Parameters 1 2 3 4 5 6 7 

𝑃4" 54 53.84 53.68 53.52 53.36 53.2 53.04 

∆𝑃5 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

𝑄4" 9.065 8.091 7.322 6.746 6.339 6.065 5.889 

𝐶4" 38000 42591.695 47053.705 51081.727 54393.498 56832.623 58526.598 

𝐶$" 80.592 89.645 98.135 105.475 111.226 115.359 118.124 

𝐶9" 42591.695 47053.705 51081.727 54393.498 56832.623 58526.598 59597.241 

𝐶49" 40295.848 44822.7 49067.716 52737.613 55613.06 57679.61 59061.92 

𝜋4" 32.777 36.738 40.586 44.061 46.917 49.021 50.482 

𝜋9" 36.738 40.586 44.061 46.917 49.021 50.482 51.406 

𝜋49" 34.758 38.662 42.323 45.489 47.969 49.752 50.944 

𝜋$" 0.07 0.077 0.085 0.091 0.096 0.1 0.102 

∆𝝅𝒇𝒄𝒔D𝒇𝒑𝒔 34.688 38.585 42.238 45.398 47.873 49.652 50.842 

𝑁𝐷𝑃" 19.232 15.175 11.362 8.042 5.407 3.468 2.118 

𝑄9" 8.091 7.322 6.746 6.339 6.065 5.889 5.782 

𝑄$" 0.974 0.769 0.576 0.407 0.274 0.176 0.107 

𝑅" 0.108 0.095 0.079 0.061 0.043 0.029 0.018 

𝑃9" 53.84 53.68 53.52 53.36 53.2 53.04 52.88 

CPF" 1.0785 1.0688 1.0569 1.0436 1.0306 1.0205 1.0127 

CPF" < 1.2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

v" 0.22 0.19 0.18 0.17 0.16 0.15 0.15 
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Table -  42: Elements performance analysis in PV for solution 2 

RO System Calculation for RO Element Performance 

Parameters 1 2 3 4 5 6 7 

𝑃4" 56 55.79 55.58 55.37 55.16 54.95 54.74 

∆𝑃5 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

𝑄4" 10.356 9.275 8.398 7.719 7.218 6.866 6.63 

𝐶4" 38000 42401.893 46844.018 50964.559 54500.464 57302.968 59315.809 

𝐶$" 80.402 89.246 97.809 105.465 111.803 116.619 120.025 

𝐶9" 42401.893 46844.018 50964.559 54500.464 57302.968 59315.809 60709.397 

𝐶49" 40200.946 44622.955 48904.288 52732.512 55901.716 58309.389 60012.603 

𝜋4" 32.777 36.574 40.406 43.96 47.01 49.427 51.163 

𝜋9" 36.574 40.406 43.96 47.01 49.427 51.163 52.365 

𝜋49" 34.675 38.49 42.183 45.485 48.218 50.295 51.764 

𝜋$" 0.069 0.077 0.084 0.091 0.096 0.101 0.104 

∆𝝅𝒇𝒄𝒔D𝒇𝒑𝒔 34.606 38.413 42.099 45.394 48.122 50.194 51.66 

𝑁𝐷𝑃" 21.289 17.272 13.376 9.871 6.933 4.651 2.975 

𝑄9" 9.275 8.398 7.719 7.218 6.866 6.63 6.478 

𝑄$" 1.081 0.877 0.679 0.501 0.352 0.236 0.151 

𝑅" 0.104 0.095 0.081 0.065 0.049 0.034 0.023 

𝑃9" 55.79 55.58 55.37 55.16 54.95 54.74 54.53 

CPF" 1.0755 1.0688 1.0583 1.0466 1.0349 1.0241 1.0162 

CPF" < 1.2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

v" 0.25 0.22 0.2 0.19 0.18 0.17 0.17 
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Table -  43: Design specification of Discharge system for Case 2 

Discharge System Solution 1 Solution 2 Unit 

Cleaning volume  1.50   1.60  L/m2 

Ro pipe radius  0.10   0.10  m 

Ro pipe length  1,500.00   1,500.00  m 

C value  5.00   5.00   

Volume RO system  580,160.00   497,280.00  L/day 

Volume of Pipe  47,123.89   47,123.89  L/day 

CIP solution volume  627,283.89   544,403.89  L/day 

Total flush water volume  580,166.00   497,286.00  L/day 

Total membrane flush water  3.35   1,041.69  m3/day 

Backwash volume  15,000.00   27,000.00  m3/day 

Total discharge flow rate  195,003.35   208,041.69  m3/day 

Diffuser Design    

Number of diffuser port  10.00   10.00   

Discharge angle   50.00   50.00  degree 

Diameter of Diffuser   0.25   0.25  m 

Viscosity discharge 8.85E-07 8.85E-07 m2/s 

Brine density  1,042.68   1,042.68  kg/m3 

Seawater density   1,023.62   1,023.62  kg/m3 

Buoyant acceleration  0.179   0.179  m2/s 

Flow per port  0.226   0.241  m3/s 

Velocity at diffuser port  4.604   4.910  m/s 

Froude number  21.764   23.211   

Reynold’s number 1.30E+06 1.39E+06  

Buoyancy flux  0.04   0.04  m4/s3 

Momentum flux  1.04   1.18  m4/s3 

Discharge length  0.22   0.22  m 

Momentum length scale  5.15   5.47  m 

Dilution at Impact Point  35.37   37.72   

Dilution at Near Field  55.50   59.19   

Location of Impact Point  17.28   18.42  m 

Near – field length  55.77   59.48  m 

Height of Jet Rise  11.02   11.75  m 
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Table -  44: SEC breakdown for Case 2 

System  Solution 1 Solution 2 Unit 

ERD efficiency 0.97 0.97 % 

Intake System pump efficiency 0.8 0.8 % 

RO System pump efficiency 0.8 0.8 % 

Intake system SEC  0.042   0.042 kWh/m3 

Pretreatment system SEC  0.150   0.202  kWh/m3 

RO system SEC  2.530   2.630  kWh/m3 

Discharge SEC  0.270   0.270  kWh/m3 

Posttreatment SEC  0.180   0.180  kWh/m3 

Other facilities 0.1 0.1 kWh/m3 

Total SEC  3.27   3.424 kWh/m3 

 

Table -  45: CAPEX breakdown for Case 2 

CAPEX Parameters Cost Rate 

($) 

Cost solution 1 ($) Cost solution 2 ($) 

n 8   

Discounting rate  4%   

Site preparation  15, 20  1,800,000.00   2,400,000.00  

Intake system   96,211,990.78   97,521,291.97  

Pretreatment system   26,307,279.86   24,793,007.96  

RO system   52,083,300.00   44,388,900.00  

Posttreatment system    7,849,401.38   7,849,401.38  

Discharge system   81,901,408.69   86,941,215.31  

Waste solid handling  30, 40  3,600,000.00   4,800,000.00  

Electrical instrumentation  75, 90  9,000,000.00   10,800,000.00  

Auxiliary service equipment  25, 30  3,000,000.00   3,600,000.00  

Building  60, 75  7,200,000.00   9,000,000.00  

Start-up commissioning acceptance test  15, 15  1,800,000.00   1,800,000.00  

Preliminary engineering  25, 30  3,000,000.00   3,600,000.00  

Pilot construction  10, 15  1,200,000.00   1,800,000.00  

Pilot testing  15,000, 

17000 
  

Period of testing 12.00 180,000.00  204,000.00  

Detailed design  90, 100 10,800,000.00  12,000,000.00  

Construction management oversight  40, 45 4,800,000.00  5,400,000.00  

Project management  30 3,600,000.00  3,600,000.00  

Environmental permitting  45 5,400,000.00  5,400,000.00  
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CAPEX Parameters Cost Rate 

($) 

Cost solution 1 ($) Cost solution 2 ($) 

Legal cost 20 2,400,000.00  2,400,000.00  

Direct capex  290,753,380.71  292,093,816.62  

Indirect capex  31,380,000.00  36,204,000.00  

Total capex  322,133,380.71  328,297,816.62  

NPV  235,379,705.99  239,883,998.92  

 

Table -  46: Staff breakdown and yearly salary for Case 2 

 Solution 1 Solution 2 

Staff NO of staff Cost ($US/year) NO of staff Cost ($US/year) 

Head of plant 1  115,200.00  1 115,200.00 

Mangers 4  345,600.00  4 345,600.00 

Engineers 4  288,000.00  4 288,000.00 

Operators 10  576,000.00  13 748,800.00 

Other staff 3  155,520.00  3 155,520.00 

Additional staff 3  112,320.00  2 112,320.00 

Total 25  1,592,640.00  28 1,765,440.00 

Total for 20 years   35,038,080.00   38,839,680.00 
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Table -  47: SEC and cost breakdown for solution 1 

  Total energy (kWh/day) 
Total energy 

(kWh/year) 
Cost ($ /day) Cost ($ /year) Cost ($ for/22 year) 

SEC cost rate 0.08      

Intake  0.042   13,292.40   4,785,264.00   1,063.39   382,821.12   8,422,064.64  

Pretreatment  0.150   47,700.00   17,172,000.00   3,816.00   1,373,760.00   30,222,720.00  

RO  2.530   303,600.00   109,296,000.00   24,288.00   8,743,680.00   192,360,960.00  

Discharge  0.270   52,650.91   18,954,326.01   4,212.07   1,516,346.08   33,359,613.78  

Posttreatment  0.170   20,400.00   7,344,000.00   1,632.00   587,520.00   12,925,440.00  

Total 3.162  437,643.31   157,551,590.01   35,011.46   12,604,127.20   277,290,798.42  

 

Table -  48: SEC and cost breakdown for solution 2 

  Total energy (kWh/day) 
Total energy 

(kWh/year) 
Cost ($ /day) Cost ($/year) Cost ($ /22 year) 

SEC cost rate 0.08      

Intake  0.042  13794  4,965,840.00   1,103.52   397,267.20   8,739,878.40  

Pretreatment  0.202  66561  23,961,960.00   5,324.88   1,916,956.80   42,173,049.60  

RO  2.630  315600  113,616,000.00   25,248.00   9,089,280.00   199,964,160.00  

Discharge  0.270  55890.78  20,120,681.26   4,471.26   1,609,654.50   35,412,399.01  

Posttreatment  0.180  21600  7,776,000.00   1,728.00   622,080.00   13,685,760.00  

Total 3.324  473,445.78   170,440,481.26   37,875.66   13,635,238.50   299,975,247.01  
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Table -  49: Chemical cost breakdown for solution 1 

Chemical Chemical 

dosage 

(mg/L) 

Chemical 

use 

(kg/day) 

Amount of 

chemical (kg) 

Actual 

storage 

volume 

(m3) 

Average 

dilution 

flow 

(m3/h) 

Chemical 

metering 

pump 

(m3/h) 

Cost ($/day) Cost ($/year) Cost($/22year) 

Sodium hypochlorite 4.00 1,272.00 293,538.46 274.45 0.10 0.04 3,625.20 377,020.80 8,294,457.60 

Sulfuric Acid (93% 

h2so4) 
120.00 38,160.00 1,168,163.27 734.09 6.92 0.87 3,052.80 122,112.00 2,686,464.00 

Ferric sulfate  10.00 3,180.00 238,500.00 176.95 0.98 0.09 2,544.00 915,840.00 20,148,480.00 

Sodium 

hexametaphosphate 
2.13 675.75 20,477.27 23.55 0.11 0.03 1,892.10 681,156.00 14,985,432.00 

Chlorine dioxide 0.19 60.42 1,830.91 1.40 0.01 0.00 256.79 92,442.60 2,033,737.20 

Sodium hydroxide  6.00 1,908.00 114,480.00 86.33 0.15 0.05 1,431.00 515,160.00 11,333,520.00 

Sodium bisulfite 3.00 954.00 28,909.09 22.46 0.17 0.03 429.30 154,548.00 3,400,056.00 

Sulfuric acid 1.02 324.36 9,929.39 6.24 0.06 0.01 25.95 9,341.64 205,516.08 

Hydrated lime 62.98 7,557.45     18.89 6,801.70 149,637.45 

Carbon dioxide 70.40 8,448.00     7.04 2,534.40 55,756.80 

Total  62,539.98     13,283.07 2,876,957.14 63,293,057.13 
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Table -  50: Chemical cost breakdown for solution 2 

Chemical Chemical 

dosage 

(mg/L) 

Chemical use 

(kg/day) 

Amount of 

chemical (kg) 

Actual 

storage 

volume 

(m3) 

Average 

dilution 

flow 

(m3/h) 

Chemical 

metering 

pump 

(m3/h) 

Cost ($/day) Cost ($kg/year) Cost($/22 year) 

Sodium hypochlorite 4 1,320.00 304,615.39 284.80 0.10 0.04 3,762.00 391,248.00 8,607,456.00 

Sulfuric Acid (93% 

h2so4) 
120 39,600.00 1,212,244.90 761.79 7.18 0.90 3,168.00 126,720.00 2,787,840.00 

Ferric sulfate  5 3,300.00 247,500.00 183.63 1.01 0.09 2,640.00 950,400.00 20,908,800.00 

Sodium 

hexametaphosphate 
2.125 701.25 21,250.00 24.44 0.12 0.03 1,963.50 706,860.00 15,550,920.00 

Chlorine dioxide 0.19 62.70 1,900.00 1.46 0.01 0.00 266.48 95,931.00 2,110,482.00 

Sodium hydroxide  6 1,980.00 118,800.00 89.59 0.15 0.05 1,485.00 534,600.00 11,761,200.00 

Sodium bisulfite 3 990.00 30,000.00 23.31 0.18 0.03 445.50 160,380.00 3,528,360.00 

Sulfuric acid 1.02 336.60 10,304.08 6.48 0.06 0.01 26.93 9,694.08 213,269.76 

Hydrated lime  7,557.45     2,267.23 816,204.26 17,956,493.62 

Carbon dioxide  8,448.00     844.80 304,128.00 6,690,816.00 

total  64,296.00     16,869.44 4,096,165.34 90,115,637.38 
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Table -  51: Equipment replacement cost breakdown for solution 1 

Equipment replacement Selected life span Cost ($/filter) Cost ($/year) Cost ($/ 22 year) 

Cartridge filter  5.00  30  256,350.00   5,639,700.00  

Media filtration *  10.00  40  879,471.82   8,794,718.21  

RO membrane  7.00  500  689,500.00   15,169,000.00  

Total    1,825,321.82   29,603,418.21  

* Replacement price = 40 / 0.028 m3 

Table -  52: Equipment replacement cost breakdown for solution 2 

Equipment replacement Selected life span Cost ($/filter) Cost ($/year) Cost ($/ 22 year) 

UF  10.00  1000  598,000.00   13,156,000.00  

RO membrane  7.00  500  603,500.00   13,277,000.00  

Total    1,201,500.00   26,433,000.00  

* Replacement price = 40 / 0.028 m3 

Table -  53: OPEX breakdown for solution 1 

 
OPEX Cost 

($M/year) 
Cost ($M/22 years) Sensitivity Analysis 

Variable O&M   -10 -5 5 10 20 

Power  12.60   277.29   249.56   263.43   291.16   305.02   332.75  

Chemicals  2.88   63.29   63.29   63.29   63.29   63.29   63.29  

Replacement of membranes and cartridge 

filter 

 1.83   29.60   29.60   29.60   29.60   29.60   29.60  

Waste stream disposal  14.04   308.89   308.89   308.89   308.89   308.89   308.89  
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Fixed O&M costs        -    

Labour  1.59   35.04   35.04   35.04   35.04   35.04   35.04  

Maintenance  5.82   127.93   127.93   127.93   127.93   127.93   127.93  

Environmental and performance monitoring  0.22   4.75   4.75   4.75   4.75   4.75   4.75  

Indirect O&M cost  2.16   47.52   47.52   47.52   47.52   47.52   47.52  

Total OPEX  41.13   894.31   866.59   880.45   908.18   922.04   949.77  

NPV  39.17   305.72   326.61   331.83   342.28   389.06   400.76  

 

Table -  54: OPEX breakdown for solution 2 

 
OPEX Cost 

($M/year) 
Cost ($M/22 years) Sensitivity Analysis 

Variable O&M   -10 -5 5 10 20 

Power 13.64 299.98 269.98 284.98 314.97 329.97 359.97 

Chemicals 4.10 90.12 90.12 90.12 90.12 90.12 90.12 

Replacement of membranes and cartridge 

filter 
1.20 26.43 26.43 26.43 26.43 26.43 26.43 

Waste stream disposal 14.90 327.89 327.89 327.89 327.89 327.89 327.89 

Fixed O&M costs        

Labour 1.77 38.84 38.84 38.84 38.84 38.84 38.84 

Maintenance 5.84 128.52 128.52 128.52 128.52 128.52 128.52 

Environmental and performance monitoring 0.22 4.75 4.75 4.75 4.75 4.75 4.75 

Indirect O&M cost 2.16 47.52 47.52 47.52 47.52 47.52 47.52 

Total OPEX 43.82 964.05 934.05 949.05 979.05 994.05 1,024.04 

NPV 41.73 329.56 352.03 357.69 368.99 419.44 432.10 
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Case 3: 

Table -  55: Plant water quality specification for Case 3 

Plant water design Value Unit 

Product   5,000.00  m3/day 

Recovery   47.00  % 

Salinity   35,000.00  mg/L 

Temperature   25.00  ℃ 

Backwash  6.00  % 

Additional water  1.00  % 

Life scale   20.00  Year 

Intake capacity   11,595.75  m3/day 

Ro feed flow   10,638.00  m3/day 

Brine flow rate  5,638.00  m3/day 

Brine salinity   65,976.00  mg/L 

Brine average salinity  50,488.00   

Permeate salinity  101.00   

Feed water density 1023.03 kg/m3 

Sweater dynamic viscosity 0.00096 kg/ms 

Seawater kinematic viscosity 9.37 × 10Dw m2/s 

 

Table -  56: Design specification of Offshore Intake system for Case 3 

Intake Design  Value Unit 

Number of pipes  1.00   

Approached velocity  0.15  m/s 

Width of screen bars   25.00  mm 

Space between the bars  100.00  mm 

Reduction of area factor  0.40   

Velocity in the bottom structure   0.80  m/s 

Velocity in intake riser pipe  2.00  m/s 

Velocity in conveyance pipe  2.00  m/s 

Height of velocity cap  2 m 

Area of velocity cap  2.24  m2 

Through velocity   0.06  m/s 

Inner diameter of velocity cap  0.36  m/s 

Internal diameter of the bottom of intake structure  0.46  m 

Internal diameter of the riser pipe  0.29  m 

Internal diameter of the conveyance pipe  0.29  m 
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Table -  57: Design specification of DAF for Case 3 

DAF Parameters  unit 

Mixer or Coagulation Chamber Velocity gradient 900  

Flocculation Chamber    

 Contact time 15 min 

 Number of flocculation chamber 2  

 Water depth 3.5 m 

 Blade area as percentage of tank 0.1 % 

 Shaft speed 50 r/min 

DAF Chamber    

 Min number of tank 2  

 Tank width 6 m 

 Tank length 10 m 

 Tank depth 3 m 

 Surface loading rate 25 m3/m2h 

 Hydraulic detention time 15 min 

 Area 180 m2 

Treated water Recycle System    

 Recycle rate 9 % 

 Maximum air loading 10 g/m3 

 Saturator loading rate 62 m3/m2h 

 Operating pressure 7 bar 

DAF sludge performance Suspended solid SW 26 mg/L 

 Suspended solid DAF 4 mg/L 

 Solid content sludge 3  

 Eff DAF suspended solid 84.615 % 

 Removal of suspended solid 10.629 kg/h 

 sludge produced 3 kg/h 

 

Table -  58: Design specification of UF for Case 3 

Pretreatment System  Membrane Filtration  Unit 

Element type ZeeWeed 1500 Module  

Average flux  50.00  Lmh 

Element area   51.10  m2 

Number of Element Per Module  4.00   
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Pretreatment System  Membrane Filtration  Unit 

Number module per train  48.00   

Temperature   25.00  ℃ 

Flux at Design Temperature   50.00  Lmh 

Filtration area membrane system  9,663.13  m2 

Number of Element  189.00   

Number of Vessel  47.00   

Number of Train 1  

Area train 9811.2  

Flow rate per train 490.56 m3/h 

 

Table -  59: Design specification of RO system for Case 3 

RO System SW30XL400 Unit 

Flux 15.00 Lmh 

Element Type  SW30XLE-440i  

Number pressure vessel per train  25.000   

Flow rate ERD  93.500  m3/h 

Flow per element  0.614  m3/h 

Number of elements  340.000   

Number of pressure vessels  47.000   

Number of elements  342.000   

Flux  15.000   

Flow per element  0.614  m3/h 

Feed flow per pressure vessel  7.776  m3/h 

Permeate flow per pressure vessel  3.655  m3/h 

Concentrate flow per pressure vessel  4.121  m3/h 

Number of trains  2.000   

Number of ERD  7.000   

 

Table -  60: RO membrane permeability coefficients for Case 3 

RO system Membrane permeability coefficients  Unit 

Pressure loss per element  0.100  bar 

Concentrate concentration test  34,777.043  mg/L 

Average concentration test  33,388.522  mg/L 

Permeate concentration test  66.777  mg/L 

Osmotic feed pressure test  27.147  bar 
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RO system Membrane permeability coefficients  Unit 

Osmotic concentrate pressure test  29.502  bar 

Average osmotic pressure test  28.325  bar 

Osmotic permeate pressure test  0.057  bar 

Osmotic pressure difference test  28.268  bar 

Permeate pressure test  -    bar 

NDP test  28.682  bar 

Water flux test  37.702  Lmh 

Water permeability coefficient test  1.431  L/m2.bar.h 

Permeability productivity test  0.058  m3/bar.h 

Salt permeability coefficient test  0.075  L/m2h 

Water permeability coefficient at design  1.431  L/m2.bar.h 

Salt permeability coefficient at design  0.075  L/m2h 

 

Table -  61: Applied feed pressure for Case 3 

RO System Feed Pressure Unit 

Osmotic feed pressure  29.692  bar 

Osmotic concentrate pressure  55.969  bar 

Osmotic permeate pressure  0.086  bar 

Applied feed pressure  54.000  bar 
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Table -  62: RO Elements Performance for Case 3 

RO System Calculation for RO Element Performance 

Parameters 1 2 3 4 5 6 

𝑃4" 54 53.9 53.8 53.7 53.6 53.5 

∆𝑃5 0.1 0.1 0.1 0.1 0.1 0.1 

𝑄4" 7.776 6.52 5.605 5.008 4.66 4.476 

𝐶4" 35000 41752.578 48535.915 54339.897 58359.182 60722.82 

𝐶$" 76.753 90.288 102.876 112.699 119.082 122.682 

𝐶9" 41752.578 48535.915 54339.897 58359.182 60722.82 61959.583 

𝐶49" 38376.289 45144.247 51437.906 56349.539 59541.001 61341.201 

𝜋4" 29.692 35.42 41.174 46.098 49.508 51.513 

𝜋9" 35.42 41.174 46.098 49.508 51.513 52.562 

𝜋49" 32.556 38.297 43.636 47.803 50.511 52.037 

𝜋$" 0.065 0.077 0.087 0.096 0.101 0.104 

∆𝝅𝒇𝒄𝒔D𝒇𝒑𝒔 32.491 38.22 43.549 47.707 50.41 51.933 

𝑁𝐷𝑃" 21.459 15.63 10.201 5.943 3.14 1.517 

𝑄9" 6.52 5.605 5.008 4.66 4.476 4.387 

𝑄$" 1.256 0.915 0.597 0.348 0.184 0.089 

𝑅" 0.162 0.14 0.107 0.069 0.039 0.02 

𝑃9" 53.9 53.8 53.7 53.6 53.5 53.4 

CPF" 1.1201 1.103 1.0778 1.0495 1.0277 1.0141 

CPF" < 1.2 TRUE TRUE TRUE TRUE TRUE TRUE 

v" 0.16 0.14 0.12 0.11 0.1 0.1 
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Table -  63:Design specification of Dilution tank for Case 3 

Dilution tank Value Unit 

Backwash TDS 25000 mg/L 

Diluted TDS 3000 mg/L 

Required diluted water  9713.19 m3/day 

 
Table -  64: SEC breakdown for Case 3 

System  Value Unit 

ERD efficiency 0.97 % 

Intake system pump efficiency 0.7 % 

RO system pump efficiency 0.8 % 

Intake system SEC  0.032  kWh/m3 

Pretreatment system SEC  0.250  kWh/m3 

RO system SEC  2.340  kWh/m3 

Discharge SEC  0.010  kWh/m3 

Posttreatment SEC  0.100  kWh/m3 

Total SEC 2.732 kWh/m3 

 

Table -  65: CAPEX breakdown for Case 3 

CAPEX Parameters Cost rate ($) Cost ($) 

n 8  

Discounting rate  3%  

Site preparation   20.00   100,000.00  

Intake system  2,628,036.08   2,628,036.08  

Pretreatment system  2,564,398.85   2,564,398.85  

RO system  6,978,103.00   9,467,575.00  

Discharge system  63,000.00   628,353.69  

Posttreatment system 628,353.69  593,617.05  

Waste solid handling   30.00   150,000.00  

Electrical instrumentation   75.00   375,000.00  

Auxiliary service equipment   25.00   125,000.00  

Building   60.00   300,000.00  

Start-up commissioning acceptance test   15.00   75,000.00  

Preliminary engineering   25.00   125,000.00  

Pilot construction   10.00   50,000.00  

Pilot testing   15,000.00   

Period of testing  12.00   180,000.00  
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CAPEX Parameters Cost rate ($) Cost ($) 

Detailed design   90.00   450,000.00  

Construction management oversight   40.00   200,000.00  

Project management   30.00   150,000.00  

Environmental permitting   45.00   225,000.00  

Legal cost  20.00   100,000.00  

Direct capex   17,006,980.67  

Indirect capex   1,480,000.00  

Total capex   18,486,980.67  

NPV   14,593,793.25  

 
Table -  66:Staff breakdown and yearly salary for Case 3 

Staff Number of staff Cost ($US/year) 

Head of plant 1  115,200.00  

Mangers 0 0    

Engineers 2  144,000.00  

Operators 4  230,400.00  

Other staff 1  51,840.00  

Additional staff 2  74,880.00  

Total 10  616,320.00  

Total for 20 years   12,326,400.00  
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Table -  67: SEC breakdown for Case 3 

  Total energy (kwh/day) 
Total energy 

(kwh/year) 
Cost ($/day) Cost ($ /year) Cost ($/20 year) 

SEC cost rate 0.13      

Intake  0.032   369.90   134,275.25   48.09   17,455.78   349,115.65  

Pretreatment  0.250   2,898.94   289.89   376.86   136,800.80   2,736,016.03  

RO  2.340   11,700.00   1,170.00   1,521.00   552,123.00   11,042,460.00  

Discharge  0.010   65.96   6.60   8.57   3,112.53   62,250.64  

Posttreatment  0.100   500.00   50.00   65.00   23,595.00   471,900.00  

Total  2.732   15,534.80   135,791.74   2,019.52   733,087.12   14,661,742.32  

 

Table -  68: Chemical cost breakdown for Case 3 

Chemical Chemical 

dosage 

(mg/L) 

Chemical 

use 

(kg/day) 

Amount of 

chemical 

(kg) 

Actual 

storage 

volume 

(m3) 

Average 

dilution flow 

(m3/h) 

Chemical 

metering 

pump 

(m3/h) 

Cost ($/day) Cost ($/year) Cost($/20year) 

Sodium hypochlorite 4.00 46.38 10,703.77 10.01 0.00 0.00 132.19 13,747.97 274,959.36 

Sulfuric Acid (93% 

h2so4) 
100.00 1,391.49 42,596.63 26.77 0.25 0.03 111.32 4,452.76 89,055.20 

Ferric sulfate  5.00 115.96 8,696.78 6.45 0.04 0.00 92.77 33,395.76 667,915.20 

Sodium 

hexametaphosphate 
1.00 24.64 746.70 0.86 0.00 0.00 69.00 24,838.20 496,764.00 
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Chemical Chemical 

dosage 

(mg/L) 

Chemical 

use 

(kg/day) 

Amount of 

chemical 

(kg) 

Actual 

storage 

volume 

(m3) 

Average 

dilution flow 

(m3/h) 

Chemical 

metering 

pump 

(m3/h) 

Cost ($/day) Cost ($/year) Cost($/20year) 

Chlorine dioxide 0.18 2.20 66.76 0.05 0.00 0.00 9.36 3,370.68 67,413.60 

Sodium hydroxide  5.00 69.58 4,174.50 3.15 0.01 0.00 52.18 18,785.16 375,703.20 

Sodium bisulfite 3.00 34.79 1,054.15 0.82 0.01 0.00 15.65 5,635.44 112,708.80 

Sulfuric acid 1.02 11.83 362.08 0.23 0.00 0.00 0.95 340.56 6,811.20 

Calcite 80.81 404.04     121.21 43,636.36 872,727.27 

Carbon dioxide 35.20 176.00     17.60 6,336.00 126,720.00 

total       622.23 154,538.89 3,090,777.83 

 

Table -  69: Equipment replacement cost breakdown for Case 3 

Equipment replacement Selected life span Cost ($/filter) Cost ($/year) Cost ($/ 20 year) 

UF  8.00  1000  23,625.00   472,500.00  

RO membrane  10.00  400 13680  273,600.00  

Total    37,305.00   746,100.00  

* Replacement price = 40 / 0.028 m3 
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Table -  70: OPEX breakdown for solution 2 

 
OPEX Cost 

($M/year) 
Cost ($M/20 years) Sensitivity Analysis 

Variable O&M   -10 -5 5 10 20 

Power  0.73   14.66   13.20   13.93   15.39   16.13   17.59  

Chemicals  0.15   3.09   3.09   3.09   3.09   3.09   3.09  

Replacement of membranes and cartridge 

filter 

 0.04   0.75   0.75   0.75   0.75   0.75   0.75  

Waste stream disposal  1.17   23.46   23.46   23.46   23.46   23.46   23.46  

Fixed O&M costs    -     -     -     -     -    

Labour  0.62   12.33   12.33   12.33   12.33   12.33   12.33  

Maintenance  0.00   0.04   0.04   0.04   0.04   0.04   0.04  

Environmental and performance monitoring  0.01   0.18   0.18   0.18   0.18   0.18   0.18  

Indirect O&M cost  0.09   1.82   1.82   1.82   1.82   1.82   1.82  

Total OPEX  2.82   56.33   54.86   55.59   57.06   57.79   59.26  

NPV  2.73   29.40   20.68   20.95   21.50   30.16   30.93  
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