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Abstract. Possessing a balanced dataset to train the segmentation mod-
els used in clinical products is hugely important to enhance the perfor-
mance in any given subset of patients. Due to demographics and uneven
distribution of conditions of the subjects, this is not usually the case.
In this work, we propose a novel method that synthetically balances a
training dataset by applying deformations to an atlas. Once the atlas is
processed, we obtain different slice cuts from it and apply style transfer
to make it appear as a real short-axis MRI scan. We then add those syn-
thetic scans to our training set for the segmentation network. We found
that using synthetic scans to balance the dataset resulted in up to a 0.05
increase in the DICE score.

Keywords: Segmentation - Medical Imaging - Cardiac MRI.

1 Introduction

Cardiac MRI has become an increasingly popular imaging modality in clinical
practice due to its ability to provide high-resolution images of the heart. The
application of machine learning algorithms to these images has the potential
to aid in diagnosis and treatment planning. However, the success of such algo-
rithms depends on the availability of high-quality training data, which can be
challenging to obtain due to the limited availability of real-world datasets |1].
Segmenting cardiac MRI images poses a specific challenge related to achiev-
ing a balanced performance across various cardiac pathologies and normal cases.
Imbalanced datasets can lead to biased machine learning models that perform
poorly on underrepresented classes [2]. Various approaches, such as data aug-
mentation and domain adaptation, have been proposed [3| to address this issue.
In this work, we explore the problem of dataset balancing in the context
of semantic segmentation for cardiac MRI. We investigated the effectiveness of
synthetic dataset balancing in improving the performance of machine learning
algorithms on CMR data with pathologies that are unseen to the model. These
synthetic datasets are generated by modelling the underlying physics of the
imaging process and simulating variations in patient anatomy, physiology, and
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imaging parameters. While synthetic datasets have the advantage of being easily
scalable and customizable, they often suffer from a lack of diversity and realism.

Our proposed method combines modifications of an existing atlas [4] that
represents a healthy patient with image-to-image style transfer 5] to produce
synthetic subsets of data that constitute additional images to train segmentation
networks.

1.1 Related Work

There are three main components we integrated into this research: (1) heart
modelling from 2D slices and cardiac atlases, (2) image style transfer and (3)
cardiac MRI segmentation.

Heart Modelling The field of heart modelling from slices has made significant
progress recently, driven by statistical models and computational efficiency [6].
Recent works have focused on improving shape modelling by refining boundary
extraction |7]. Those steps focus on the misalignment correction of the statistical
shape model (SSM) extracted from the contours of the 2D images. From the SSM,
a 3D mesh is generated and evaluated to fit plausible heart shapes [§|, building
the final reconstruction of the heart from the scanned structure.

Cardiac Atlas In the context of heart modelling and statistical parametric
mapping (SPM), a method and an atlas were proposed by [4]. The authors pro-
vided an analysis of the number of subjects and methods necessary to represent
a healthy and anatomically normal heart. This representation can be seen in the
end-diastolic frame in Figure [l

Fig. 1. 3D model of the atlas [4] at ED.
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Style transfer Image-to-image translation has attracted a lot of attention dur-
ing the last 5 years, and in particular, the topic of style transfer has remained
an important application within the computer vision community.

In particular, in unpaired image-to-image translation, recent efforts have been
made to improve the results and make them realistic [5]. CUT |[5] uses a single
direction mapping based on patches of images from both domains and benefits
from the contrastive representation learning recent advances. In Figure 2] we can
see the logic that the patch-wise contrastive loss follows.
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Fig. 2. Patchwise contrastive loss of CUT |[5]. Figure adapted from [5].

While style transfer has found applications in regular images, only recently
have a few endeavours harnessed these advances to enhance clinical applications,
as evidenced by previous research such as [9] and [10]. Notably, while these
works have successfully applied this technique, few have specifically explored its
potential in the context of cardiac MRI applications or its role in addressing
dataset imbalances |11} |12, 13| |14]. Indeed, none have tackled this imbalance
without incorporating real data into their pipeline, whereas our approach relies
solely on a single atlas.

Cardiac MRI segmentation In the last 5 years, a new paradigm has been
established in the topic of cardiac magnetic resonance segmentation, working to
extend the success of homogeneous datasets to more heterogeneous and diverse
datasets [3, 2. While the U-shaped architectures have remained a usual and
powerful backbone for deep learning-based models |15} [16], data processing has
significantly seen a prolific production of new methods [17 |18, |19, [20]. Addi-
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tionally, there have been efforts of extending the available data to increment the
number of images for training by using image registration |21]. Despite these
efforts, there are no works exploring how we can benefit from atlases that rep-
resent one type of subject to complement a dataset by applying deformations to
its 3D model.

1.2 Contributions

The contributions of this work are threefold: (1) we propose a method to modify
a representative cardiac atlas and a sampling technique to obtain new subsets of
data, in particular data from synthetic subjects with hypertrophic cardiomyopa-
thy (HCM) and dilated right ventricle (DRV); (2) we built on recent advances
in the image-to-image style transfer domain to obtain realistic MRI scans from
its labels; (3) we successfully integrated synthetic and real data to address the
imbalance in the dataset and trained segmentation networks to improve perfor-
mance in patients with diseases that were not present in the training set. These
three points constitute a novel pipeline that can be implemented in deep learn-
ing models to complement available data, similar to available data augmentation
techniques.

2 Method

The proposed method is founded on the premise that inaccuracies in model
predictions stem from the unique cardiac morphology observed in patients with
pathologies. Our hypothesis is that the absence of patients with specific patholo-
gies in the training data can cause the model to overfit to the pathologies that are
present. To mitigate this, we introduce scans that exhibit morphology similar to
the pathologies not originally represented in the training data. This augmenta-
tion increases the dataset’s diversity, resulting in enhanced segmentation model
performance. The overall structure of the method’s pipeline is depicted in Figure
Bl

To rectify the imbalance in our training data, we introduced what we re-
fer to as "synthetic patients." These synthetic patients are created by applying
deformations to an atlas, essentially simulating the heart structures of the two
previously mentioned diseases, Hypertrophic Cardiomyopathy (HCM) and Di-
lated Right Ventricle (DRV). These simulations are achieved by virtually slicing
the 3D model of the heart to generate these synthetic patient representations.

The incorporation of these synthetic patients into the dataset involves a cru-
cial style transfer phase. During this step, images that resemble labels or struc-
tural representations are transformed into realistic MRI scans. We accomplished
this transformation using a technique called "CUT" as described in the reference
[5].

Finally, a segmentation network is trained using real and synthetic data.
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Fig. 3. The pipeline of the proposed method. The three main components correspond
to: (a) the atlas deformation part, (b) the synthetic scanning component, and (c) the
style transfer part.

2.1 Atlas-based data representation

Rather than creating a model based on the existing data, which would be compu-
tationally costly and could introduce errors during the 3D reconstruction steps,
we chose to utilize the atlas described in [4]. This atlas represents over 1000
healthy subjects, providing a comprehensive and reliable reference for our pur-
poses.

2.2 3D Deformations and Virtual Scanning Techniques

For this work, we created three different deformations that represent three differ-
ent types of subjects: (1) a healthy subject, (2) 20 subjects with heart structures
similar to patients with a dilated right ventricle, and (3) 20 subjects with heart
structures similar to patients with hypertrophic cardiomyopathy. The visual rep-
resentation of these diseases is presented in Figure [4]

The synthetic patients are obtained by performing a spherical cast operation
(see Figure[5)) to the cavities of the heart model. The spherical cast consists of a
To Sphere transformation that will generate different results depending on the
number and arrangement of the elements selected. Depending on the number of
selected parts in each region (epicardium, endocardium or right ventricle) and
the range of the deformation, we obtained a more or less prominent disease in
the synthetic subject. For HCM, we enlarged the epicardium and endocardium,
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Fig. 4. Anatomical structure of the heart with: (a) healthy heart, (b) dilated ventricle,
and (c) ventricular hypertrophy. Figure adapted from .

while for the DRV, we enlarged the RV. The factor of the spherical cast ranged
between 0 and 0.5.

vVveoeoeo

a) Factor = b) Factor = 0.25 c) Factor = 0.5 d) Factor = 0.75 e) Factor =

Fig. 5. Example of spherical cast applied to a cube with different factors.

The resulting 3D models are then processed as if they were scanned by ob-
taining slices throughout the longitudinal axis, to sample the equivalent to short
axis labels. An example for each subset of data is presented in Figure [6]

2.3 Style transfer

We trained our own CUT model with the available data from M&Ms 2 ,
where one domain is the MRI scan and the other is the label from the MRI scan.

CUT was our preferred style transfer model because, besides being based on
CycleGAN , it has a contrastive term that encourages spatial consistency in
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Fig. 6. Representations of the sampled slices from the 3D heart model: (a) no defor-
mation, (b) deformations on the right ventricle representing a dilated right ventricle,
and (c) deformations on the left ventricle representing hypertrophic cardiomyopathy
in the left ventricle.

the generated image. The CUT loss function is presented by:
Laan (G, D, X,Y) + Ax Lpatehnc (G, H, X) + Ay Leatennce (G, H,Y) (1)

where Ay Lpatennce (G, H,Y) is the contrastive term that enhances spatial
consistency with the source image in X (synthetic image in our case). This term
promotes the proximity of input-output patches from a specific location in an
image within the feature space while ensuring that such patches are distant from
other patches in the image. The discriminator part of the GAN is represented
by D and the generator part as a G. The weights of a two-layer perceptron
that projects the patches to the feature space are denoted as H, and the hy-
perparameters Ax and Ay regulate the influence of the respective contrastive
terms.

The results of applying a CUT trained on the available data to the synthetic
data obtained from the previous steps are presented in Figure[7} The two domains
are: (1) the MRI scans, and (2) the labels of the MRI scans. In other words, our
CUT model learns to transfer the style of an MRI scan to a label, resulting in a
realistic MRI scan with the structure displayed in a label. We used the resulting
data as annotated data for the segmentation models.

2.4 Segmentation Network

To test the performance of the models trained with the different datasets we used
the same architecture and the same preprocessing and normalization techniques.
In particular, we implemented a standard U-Net [15] with 32 filters in the first
convolutional layer. Data normalisation was performed with z normalisation and
histogram standardisation. The preprocessing consisted in centre-cropping with
padding.
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(a) Healthy (b) DRV (¢) HCM

Fig. 7. Slices from Figure [6] processed with our trained CUT [5]: (a) no deformation,
(b) deformations on the right ventricle representing a dilated right ventricle, and (c)
deformations on the left ventricle representing hypertrophic cardiomyopathy in the left
ventricle.

Short axis Cardiac MRI Data We used the M&Ms2 dataset |2], released as
part of the Multi-Center, Multi-View & Multi-Disease Right Ventricular Segmen-
tation in Cardiac MRI Challenge. We evaluated the performance in all chambers
for the short-axis view. In particular, we compared the performance of the dif-
ferent pathologies that the subjects of the dataset have. The pathologies are
dilated left ventricle (LV), hypertrophic cardiomyopathy (HCM), congenital ar-
rhythmogenesis (ARR), tetralogy of fallot (FALL), interatrial communication
(CTA), dilated right ventricle (DRV), and tricuspidal regurgitation (TRI).

3 Experimental Methodology and Results

Our experiment consisted of evaluating the performance of four models trained
with three different sets of data: (1) normal (healthy) cases from M&Ms2 plus
the atlas sampled without deformation, (2) normal (healthy) cases from M&Ms2
plus 20 dilated right ventricle deformations applied to the atlas, (3) normal
(healthy) cases from M&Ms2 plus 20 hypertrophic cardiomyopathy deformations
applied to the atlas, and (4) normal (healthy) cases from M&Ms2 and classic
data augmentation (affine and elastic transformation). The first model serves as a
control model to compare the improvements when adding the synthetic data, and
the last one is a comparison to classic data augmentation. The augmentations
were applied with an overall probability of 0.5, and then each augmentation had
equal probabilities of being applied.

The evaluation of the models was performed over the test split of the M&Ms2.
In particular, we present the results for normal (healthy), hypertrophic cardiomy-
opathy, and dilated right ventricle; a part of overall performance. DICE scores
are provided for each region. The results are presented in Table [2|and in Figure

Bl
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Normal HCM DRV Augs

Real Patients 40 40 40 40
Synthetic Patients Healthy 1 1 1 1
Synthetic Patients HCM 0 20 0 0
Synthetic Patients DRV 0 0 20 0

Table 1. Number of real and synthetic patients used to train the segmentation model.
Synthetic refers to the atlas or its deformations with the style-transfer performed.

DICE Hausdorff (mm)
Data subset Model IV MYO RV ALL ATl
Healthy 0.9417 0.8252 0.8542 0.8737 6.311
Normal HCM  0.9400 0.8397 0.8273 0.8690 6.2916
(Healthy) DRV 0.9333 0.8380 0.8053 0.8589 6.4883
Augs 0.9477 0.8416 0.8790 0.8894 6.4223
Healthy 0.9382 0.8583 0.8284 0.8750 6.5544
HCM HCM  0.9195 0.8574 0.8317 0.8700 6.6080
DRV 0.9148 0.8450 0.8239 0.8612 6.7190
Augs 0.9089 0.8198 0.8111 0.8467 6.635
Healthy 0.7808 0.6036 0.7742 0.7195 7.3460
DRV HCM 0.7625 0.6146 0.7662 0.7149 7.1411
DRV 0.8049 0.6499 0.7723 0.7424 6.9020
Augs 0.7916 0.6243 0.7142 0.7101 6.5030
Healthy 0.8577 0.7149 0.7720 0.7815 6.8173
All HCM  0.8313 0.7137 0.7856 0.7769 6.770
DRV  0.8672 0.7388 0.7729 0.7930 6.9027
Augs 0.8581 0.7228 0.7667 0.7825 6.5474

Table 2. Segmentation performances for each subset of data. Each subset presents the
DICE score (higher is better) and Hausdorfl distance (lower is better) for each of the
four models and each of the regions (Left Ventricle, Myocardium, and Right Ventricle).
Models refer to the model trained with healthy patients of the original dataset |2| plus
the atlas or its synthetic deformed aliases. The best results are in bold.

The results show how the addition of synthetic data had a positive impact
on the performance, with a strong emphasis on the dilated right ventricle defor-
mations. Overall performance increased the DICE score in that model by 0.01,
and by 0.05 in the myocardium for the DRV subset of data, where the mean
performance was more than 0.02 better than in the healthy subset.



10 Garcia-Cabrera et al.

[
g
8
0.6 1
0.5 ke
- . E Healthy
- 1 = HCM
0.4 - I DRV
R N Augs
: T T )
Al % Myo RV

Tissue

Fig. 8. Segmentation performances for each subset of data. Each subset presents the
DICE score (higher is better) for each of the four models (Healthy, HCM, DRV, and
Augs) and each of the tissues (Left Ventricle, Myocardium, Right Ventricle and all
regions). Models refer to the model trained with healthy patients of the original dataset
plus the atlas or its synthetic deformed aliases. The mean is plotted with a red mark.

4 Conclusions

In our study, we successfully trained a style transfer model to effectively generate
synthetic cardiac MRI images that are sampled from a deformed atlas. Those
synthetic images were successfully used to balance the training dataset. The re-
sults show how the addition of this data meant an increase in the DICE score of
up to 0.05 in some regions within the target pathologies of the data. Nonethe-
less, the method was significantly less successful when simulating hypertrophic
cardiomyopathies than it was when synthesising dilated right ventricle patients.

The incorporation of synthetic data in the DRV model led to improvements
of up to 0.01 in the overall dataset and up to 0.03 on the DRV subset com-
pared to classical augmentations. This demonstrates a distinct advantage over
conventional techniques.

Future endeavours will delve into incorporating additional deformations to
synthesize a more extensive range of diseases, coupled with enhancements in the
style-transfer component of the pipeline. Moreover, extending the pipeline’s de-
sign to generate synthetic patients with pathologies identified through functional
analysis would constitute a significant advancement in the field.
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