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Abstract

An adaptive human-in-the-loop approach to continuous
understanding of Additive Manufacturing processes with

computer vision Xiao Liu

In Additive Manufacturing (AM), recent developments in in-situ monitoring and
process control allow the collection of large amounts of emissions data during the
build and modification process of the parts being manufactured. This data then
can be used as source to further construct 2D and 3D representations of the printed
parts. However, the inspection, labeling and analysis as well as the characterisation
of this data still remains a manual process. The aim of this research is to determine
if and how Machine Learning techniques can automatically inspect and annotate
this generated data, thereby reducing manual workload and associated costs. More
specifically, this work will look at two scenarios: firstly, using convolutional neural
networks (CNNs) to inspect and classify the data collected by in-situ monitoring
and secondly, applying Active Learning and Semi-supervised learning to accelerate
the data labeling process while continuously gaining understanding about the man-
ufactured object from the data generated during the AM process. Ultimately this
work could be used to help with decisions made by an AM operator during the AM
process allowing modification of the output during the actual manufacture process.
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Chapter 1

Introduction

Additive manufacturing (AM), also known as 3D printing, is an important manufac-

turing technology that has emerged at a level of scale only very recently. According

to [1] it offers multiple advantages including on-demand manufacturing, thus mak-

ing it cost-effective, manufacturing which can be personalised thus making it flexible

and even sustainable precisely because manufacture is done only when needed. AM

operates by using a laser which scans and burns or melts some input material and a

melt-pool is created at the laser-material interaction point. This forms a layer of the

overall object or part being manufactured, and the process continues layer by layer

from the bottom up, until the manufacture of the overall object or part is complete.

The formation of defects in the resulting manufactured parts such as tensile

weakness, is typically related to the stability of the melt-pool during manufacture.

Due to thermal instability, the melt-pool can create different levels of emissions.

A more unstable and volatile melt-pool will typically emit a greater number of

emissions [2], leading to the formation of defects in the resulting part, and this is a

serious problem in the more widespread use of AM [3].

Recent developments in monitoring and process control in the AM process it-

self have resulted in a significant enhancement of the quality of the AM process and

reduced the amount of inter-build variation and interruption in material manufactur-

ing [4]. Furthermore, given recent advances in computer vision and the availability of

potentially large amounts of data collected from in-situ monitoring of emissions from
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melt-pools during additive manufacturing, it may be possible to use computer vision

and machine learning techniques on this data to automatically identify key features

during manufacturing and to predict the likely presence of defects in manufactured

products as a result of melt-pool instability.

As a parallel development in another field, deep learning which is an advanced

form of machine learning and based on neural networks, is now sufficiently mature to

allow consideration of its deployment in large scale real-world applications including

inspection of AM processes. This could result in applying neural networks to au-

tomated inspection of the optical datasets collected from an in-situ AM monitoring

system.

In this section of this introductory chapter, we will introduce the areas that will

be discussing throughout the rest of this thesis, the motivation to work on them and

the research questions derived for each. These are then used to frame the research

hypothesis and the several research questions which make up the contribution of

this thesis, and the experiments that are carried out and reported on later.

1.1 Overview of In-situ Monitoring of Additive

Manufacturing

In-situ monitoring facilitates the collection of large amounts of data during the build

process in AM. This is illustrated in Figure 1.1 which shows the architecture of the

Renishaw InfiniAM Spectral equipped AM system. Each structure in the Fusion

module and the InfiniAM Spectral module are numbered and labelled as well as the

routes that the input laser and the feedback emissions travel through the system

during the manufacturing and monitoring process. Specifically, the monitoring data

includes feedback on energy input to the laser and emissions from the AM build

process around the melt-pool. It is typically done through two sensor modules: the

Fusion optical module that is implemented with the LaserVIEW photodiode and

the InfiniAM Spectral module where the MeltVIEW photodiodes are installed.

3



Figure 1.1: The anatomy of an InfiniAM Spectral equipped AM system includ-
ing input laser, melt-pools, emissions and structures of sensor modules during the
manufacturing and monitoring process

In the diagram we can see a laser (1) which is reflected from a 45 degree mirror

(2), then focused by a lens (3) before being reflected a second time by another 45

degree mirror (5). Some of the laser will transmit through the first mirror and

a photodiode will sense and measure characteristics of the laser (4). When the

laser is reflected by the second mirror (5) it hits the melt-pool where it melts the

raw material being used and this fuses with the rest of the object or part being

manufactured as another layer. Part of the laser is reflected from the melt-pool and

back through the mirrors (5) and (2) and the lens (3) and onto another lens (8)
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where two MeltVIEW photodiodes measure the state of the melt-pool using plasma

and near-infrared photodiodes.

The two sensor modules are named LaserVIEW and MeltVIEW and each uses

photodiodes as internal sensors for their measurements as follows:

• LaserVIEW: The LaserVIEW sensor captures the energy level in the laser

pulse during the manufacturing and measures the intensity of the laser. It is

embedded within the Fusion optical module of the Renishaw InfiniAM ma-

chine, and captures the filtered light passing through a fixed mirror to gives

a relative measurement of laser power to help indicating laser performance

during a build.

• MeltVIEW: The MeltVIEW monitors the optical emissions that feedback from

the laser melting process during the manufacturing. The two photodiodes of

the MeltVIEW are used to measure emissions from the melt-pool. The sensors

detect near infra-red plasma emissions in the range 700 nm to 1040 nm and

melt-pool emissions in the near-infrared spectrum in the range 1090 nm to

1700 nm.

We now present a more description of the InfiniAM Spectral equipped in-situ

monitoring AM system. The monitoring process starts with the tracing of the input

Laser beams which are indicated as red lines in Figure 1.1. The laser beams are

generated with a power level of 500W from the device at position (1) using ytterbium

fibre. Then the laser beams are redirected by a fixed optical mirror at (2) to a group

of dynamic focussing lens at (3). During this process, the power levels contained in

every laser pulse during a build are detected by the LaserVIEW photodiode located

at (4) in order to measure the output intensity of the laser beams. The focused

laser beams after passing the lens are further redirected by Galvanometer mirrors

(5) so the beams can precisely exit the fusion optical module through the Optical

window, which is marked as (6), then focus on the surface of the material being

used, thus creating melt-pools (7) and consequently generate optical emissions in

the process of the manufacturing. The blue lines in Figure 1.1 are used to indicate
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the optical emissions, mainly near infra-red plasma emissions and near-infrared melt-

pool emissions. The feedback optical emissions travel through the optical window

and are then adjusted by the Galvanometer mirrors, the dynamic focussing lens and

the optical mirror (marked as (5), (3) and (2) respectively in the figure). After the

collection by the Collimation lens positioned at point (8), the emission arrives at the

MeltVIEW hardware module. In the MeltVIEW module the emissions are directed

again by a set of mirrors (9) to a set of focussing lens (10). Finally, the emissions are

detected and measured by the two photodiode sensors of the MeltVIEW module. As

mentioned earlier, near-infrared plasma and near-infrared melt-pool emissions are

received by the corresponding sensors located at points (11) and (12) as raw data.

For further processing, the DataHUB of the in-situ monitoring system will com-

pile and collate raw data from the LaserVIEW and MeltVIEW sensors in combina-

tion with information from the system controller, into a volume that is rendered and

stored for viewing and analysis using InfiniAM Spectral software. More specifically,

the InfiniAM Spectral software provides 2D and 3D representations of the melt-pool

during the AM process for visualisation and further analysis. Further illustrations

of these 2D and 3D representations will be included in the next section.

1.2 Introduction to Melt-view Monitoring Data

Representation and Research Hypothesis

The data streams collected from the modules which are used in the AM process can

be used to build 2D and 3D representations of some of the characteristics or features

of the melt-pools for objects being manufactured. Figure 1.2 shows examples of

images formed by analysis of the emissions monitoring data from the AM process,

shown in 2D and 3D part representations.

Originally, the emissions data collected by the sensors such as those described in

Figure 1.1 are formed into 3D point clouds shown as the 3D representation of the

emissions features of the objects or parts being built. These 3D representations can
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Figure 1.2: 3D and 2D representations of emissions data gathered during the AM
manufacture process

be further examined as a series of 2D representations, detailing vertical and/or hori-

zontal cutting surfaces to the level of single layers which have been generated during

the printing process. These are in the form of 2D images of melt-pool emissions. By

Further zooming in on the 2D images of a single layer, the emissions image of each

part for the current layer can be obtained individually and can be used to create

an image dataset for further investigation and research into possible defects in the

final object, such as the variations in tensile strength mentioned earlier.

Despite the abundance of this type of sensor data from the melt-pool, the analysis

and characterisation of emissions data as well as their correlation with defects in the

eventual manufactured object, is still a manual process that involves examining the

representations produced by the monitoring software. As the performance of human
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assessors in such tasks can vary, along with fatigue and the associated costs of labor,

there is an opportunity for the automation of such inspection. In addition to the

cost of labour, defects in manufacturing usually mean a waste of time, energy, and

other resources used during the manufacture. Ideally, a real time prediction of a

possible or likely defect during the actual manufacturing process itself could tell an

operator to either shut down and stop production of the object at an early stage

and then to discard or re-cycle the object or to intervene if possible to prevent

further defects from happening or even to compensate for defects already present

and detected. The end result would be a saving in terms of energy, time, and raw

material costs. Achieving this requires not only the ability to better understand and

automatically analyse monitoring data, model it, and correlate it with defects, but

also the continuous adjustment of such models as new monitoring data is generated.

Deep learning [5], which was briefly mentioned earlier, is a powerful approach to

machine learning that applies Neural Network (NN) models to recognise complex

patterns and to perform further tasks such as data analysis and automated optical

inspection, with high accuracy. However, as the deep learning approach is data-

driven, one associated challenge is the demand for properly classified and labelled

datasets for the training of the NN model. Unlike many other application areas

that have the advantage of large, open datasets for training deep learning models

for particular tasks (e.g. ImageNet [6] for image recognition, MNIST [7] for optical

character recognition and COCO [8] for object detection), currently there is no large

labelled dataset for Additive Manufacturing. In fact, it is expensive and usually not

practical in an industry setup to collect such emissions monitoring data and to label

it to create datasets for deep learning. It thus follows that better accessibility to

labelled data would accelerate the research area of applying deep learning in AM

processes. This situation leads us to formulate a research hypothesis for this thesis

which can be stated quite simply as follows:
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Given recent advances in computer vision and the availability of potentially large

amounts of data, or in other words, big data, that are too large and complex to be

processed using traditional data processing applications, such as 3D point cloud data

with a volume over 1 trillion bytes (1 terabyte), collected from in-situ monitoring

of emissions from melt-pools during additive manufacturing, it is possible to use

machine learning on this data to automatically identify key features and to predict

the presence of defects in manufactured products.

The overall research hypothesis can be broken into three sub-hypotheses as follows:

1. Hypothesis 1 (H1): It is possible to use transfer learning and fine-tuning to

create an effective classifier that can perform classification with high accuracy

on the emissions monitoring images generated during the AM process for defect

detection, even with very little initial training data.

2. Hypothesis 2 (H2): Active learning techniques are a promising approach to

automatic labeling of large amounts of unlabeled data collected during the AM

process, so that such data can be used for further training and active learning

can be used to improve classification accuracy in AM processes.

3. Hypothesis 3 (H3): H3 follows from H1 and H2, and relates to the fact that

a systematic combination of transfer learning/fine tuning with active learning

can progressively improve the accuracy of deep learning models, specifically

for classes of defects where the classification accuracy using conventional ap-

proaches is already quite poor.

The research hypotheses which this thesis addresses have also given rise to a

number of specific research questions which we address in the next section.

1.3 Research Questions

To evaluate the hypotheses stated earlier, the research in this thesis will focus on

the following three specific research questions:
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1. RQ1: How can we develop a machine learning model to accurately, (For exam-

ple, with over 95% classification accuracy) and efficiently classify the problem-

atic and challenging representation of melt-pool monitoring data even with

a limited amount of labeled training data? It should be noted that due to

variations in data structures, complexity, and applications, there is no strict

threshold for defining what constitutes a “limited amount” of data. This cri-

terion needs to be defined according to specific tasks and requirements.

2. RQ2: Starting with a limited amount of labelled data available, how can we

create sufficiently large labeled datasets for training deep learning algorithms

without spending a large amount of human resources on the labelling task?

Once more, due to differences in data structures, complexity, and application,

there is no strict threshold for defining what constitutes a “sufficiently large”

dataset.

3. RQ3: How can we build and evaluate a framework combining transfer learning

and fine tuning with active learning for continuously improving the quality of

training data and the resulting accuracy of AM defect detection from moni-

toring images?

The aim of the research is to investigate how to leverage Deep Learning tech-

niques to support automatic inspection of generated data, specifically for defect

detection, as well as the automatic generation and curation of high quality training

data, thus reducing manual workload and associated costs.

More specifically, this work will examine two scenarios. For the first scenario, a

transfer learning and fine-tuning approach is applied on a pre-trained CNN model

to train a deep learning model with only a small labelled dataset. This model would

be used to inspect and classify the data collected by the in-situ monitoring suite.

For the second scenario, based on the deep learning model developed in the first

scenario, Active Learning methods are applied to build a framework in order to

automate the data labelling process and to facilitate the generation of more high
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quality data. Ultimately, the aim is to see this used to help with decisions made by

an AM operator during the AM process allowing modification of the output, during

the actual manufacture.

1.4 Thesis Structure

This thesis consists of the following nine chapters:

(i) Introduction: this is the current chapter, which presents some of the context

for the work reported later.

(ii) Background and Review: this chapter also presents background informa-

tion on AM processes with more focus on automatic defect detection. It ex-

plores state-of-the-art research in feature extraction from AM process monitor-

ing using machine learning and active learning as represented in the literature.

One of the conclusions is that there appears to be very little if any, available

datasets to support investigations into automatic defect detection which leads

to the systematic search in the next chapter.

(iii) Systematic Review of Available Additive Manufacturing Datasets:

here we carry out a detailed search of many sources in an attempt to identify

datasets in the AM area which we could use for our experiments. Our findings

are that there is only one suitable dataset and in order not to overfit our

own experiments to just that dataset we will initially use our own dataset for

experiments and development, and return to this one outside dataset later.

(iv) The Design of an Overall System Architecture: here we introduce the

overall architecture of the framework we developed for the research work and

it is illustrated in this chapter.

(v) Defect Detection from AM Emission Images: this chapter gives an

overview of some of the known approaches to improving the performance of
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machine learning models in order to complete the tasks of feature extraction

and classification.

(vi) Combining Transfer Learning and Active Learning Feedback in De-

fect Detection: building on the previous chapters, the methodology of using

Active Learning techniques is presented.

(vii) Evaluation of Our Overall Architecture: this chapter presents the meth-

ods and the results from the experimennts we perform to evaluate the frame-

work introduced earlier.

(viii) A case study on object detection: The experiments on our defect classi-

fication architecture up to this point are carried out on our own data. This

chapter presents an evaluation of our framework for object detection using

deep learning on the images of microstructures from AM using an outside

dataset.

(ix) Conclusions: the final chapter summarises the research presented, revisits

the research questions and research hypotheses and discusses whether they

have been answered. It also proposes future directions for further research.
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Chapter 2

Background and Review

During the AM process, as layers are built up or deposited one on top of the previous

in order to make a component or part, the height of each layer and the classification

of this height is hugely important, as the next layer on top of this layer will be

impacted if the height of previous layers is not within certain tolerances. Thus, an

optical or visual inspection task is often used to detect variations in size, orientation

of patterns, and other characteristics that could reflect any physical or positional

defects in a layer just after it has been deposited. It is also important to develop

flexible inspection approaches that can easily be reconfigured for different AM tasks.

Many of the conventional approaches to optical or visual inspection of parts are

based on feature extraction and further clustering or classification. Over the last

decade, advances in deep learning, especially for computer vision applications, have

made it possible to apply neural network architectures to automatically inspect the

surface of a component and the layers printed during the AM process and to label

them using machine learning algorithms. In this chapter, a review of the literature

presents work in this area from two aspects: 1. approaches for (visual) classification

of the layers in AM and 2. machine learning algorithms for data labeling.
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2.1 The Development of Automatic Classification

in Additive Manufacturing

2.1.1 Feature-based Approaches to AM Classification

Conventional approaches to AM inspection employ human-engineered feature ex-

traction to find defective patterns in an image. The authors of [9] presented a

strategy using thresholds derived from a histogram of gray values for segmentation

and further computing the shape describing those features, which were then used in

classification. In the work presented later in [10], several types of wavelet models

have been introduced to extract features from a surface topography. Subsequently,

[11] proposed an approach for defect detection in texture images with an average ac-

curacy of 97% by evaluating the distribution of local gradient magnitudes based on

a Weibull fit. There are also other methods for feature extraction based on machine

learning in the optical inspection in AM, such as a histogram of oriented gradient

(HOG) [12], local binary patterns (LBP) [13], and a gray-level co-occurrence matrix

(GLCM) [14].

These approaches represent a broad range of feature extraction methods, and the

results generated by these algorithms for feature extraction and defect detection in

AM are high in accuracy. However, each of them has limitations in that they often

rely on thresholding as part of the classification process. As thresholds are sensitive

to variations in background, colors and light, when conditions such as these change,

as they sometimes do in AM processes, adjustment of the thresholds will be needed,

and that sets back the inspection process. Also, such human-engineered methods

are limited by the fact that the features need to be customized to specific AM tasks.

In some complex AM conditions, these methods are not robust and discriminative

enough to generate results with sufficient accuracy for the associated specific tasks.
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2.1.2 Applying CNNs to Inspection During AM Processes

To develop approaches to automatic inspection during the AM process that are both

good in adaptability and high in accuracy, several methods based on convolutional

neural networks (CNNs) have been proposed. In the work presented in [15] and

[16], the authors have applied CNNs in their work and achieved higher classification

accuracy than when using conventional machine learning algorithms. However, a

major problem with that prior work is that trainung a deep CNN from scratch will

require a large amount of data for training. This is one of the characteristics of deep

learning, the need for a lot of training data [17]. Thus, one of the challenges in this

work is to find a solution that allows the application of deep CNNs when only a

limited amount of labelled data is available for training.

In [18], [19] and [20] the authors have used transfer learning to address the

problem of little training data availability by using pre-trained weights from a source

network to set the weights of a target network and then using the target network

to fulfil the task of feature extraction. However, the performance improvements

with these approaches to using transfer learning depend on the fact that there is

similarity between the source and target domains in their tasks. The authors of

[21] have pointed out that if there is a significant difference between the source and

target domains, then such transfer learning with fixed transfer weights can yield less

accurate results, and this is the case in the work reported to date when applied to

the AM inspection process.

2.1.3 Transfer Learning with Fine-tuning

To address the problem of the performance of transfer learning when using dissimilar

target and source data, the authors of [22] proposed a method that applies fine-

tuning on a VGG-16 network [23]. In their approach, both the source and target

networks were based on VGG-16. The only modification on the VGG-16 architecture

was reducing the 1,000 node outputs (as used in the source network) to 12 nodes on

the target network. For that data, the authors used the ImageNet 2012 dataset as
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the source dataset and an industrial optical inspection dataset DAGM [24] provided

by the German Association for Pattern Recognition, as their target dataset. The

overall process of fine-tuning in their approach is illustrated in Figure 2.1.

Figure 2.1: Applying fine-tuning on a VGG-16 network from 1,000-class output to
12-class output, taken from [22]

The results show significant improvements on the overall classification perfor-

mance for all 6 types of AM defects1 with only 150 positive samples and 1,000

negative samples used in training and achieves 100% on the TNR and almost 100%

on the TPR with a lowest value of 99.80 (±0.1) at the third epoch (refers to the

one entire passing of training data through the algorithm.) of training, as shown in

Table 2.1.

Examining this in more detail, the results show that for certain classes, such as

classes 1 and 6 in Table 2.1, training from scratch can result in high performance

classification where some of the results approach 100% both in TPR and TNR. The

exception to this is for class 4 where classification results are relatively inaccurate as

42.40% (TPR) and 76.00% (TNR) which is not reliable for real world applications.

The performance on class 2 is even worse than for class 4 as the TNR is only 1.33%

which means after training from scratch using data from class 2, the model was still

not be able to verify the true negative samples and “guess” nearly all the uncertain

1In this example there are 6 types of AM defects yielding 12 classes, 2 classes (defect / non-
defect) for each of the 6 defect types.
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Table 2.1: Classification accuracy at the third epoch, results taken from [22].

Texture
Methods

Training from
scratch

Frozen network Fine-tuning

TPR (%)

Class 1 99.73 (±0.2) 91.60 (±1.4) 99.80 (±0.1)
Class 2 95.67 (±2.2) 93.87 (±2.2) 100 (±0.0)
Class 3 85.20 (±9.0) 19.93 (±3.1) 100 (±0.0)
Class 4 42.40 (±17.1) 86.67 (±4.4) 99.93 (±0.1)
Class 5 94.67 (±3.9) 100 (±0.0) 100 (±0.0)
Class 6 98.87 (±0.5) 84.40 (±2.0) 100 (±0.0)

TNR (%)

Class 1 100 (±0.0) 94.67 (±1.2) 100 (±0.0)
Class 2 1.33 (±1.2) 96.00 (±1.5) 100 (±0.0)
Class 3 99.55 (±0.4) 90.67 (±2.4) 100 (±0.0)
Class 4 76.00 (±10.3) 96.44 (±1.6) 100 (±0.0)
Class 5 99.11 (±0.5) 98.67 (±0.8) 100 (±0.0)
Class 6 100 (±0.0) 98.67 (±0.8) 100 (±0.0)

results as positive samples. After all, when the training dataset is limited in size, it

can not ensure the dataset is sufficient for the model to fully understand the pattern

from the samples involved.

On the other hand, the general performance of the frozen network that used

the transferred weights from the other image domain (in this case, the ImageNet

2012 dataset) is not as high as the good classification results of the training from

scratch method. This indeed is a significant improvement on the performance on

class 2, though it turns out that the pattern and features of the source domain of

the transfer learning for the frozen network can be far from dataset class 3, thus

the classification performance falls to 19.93% in TPR, much lower than the value

from the previous method. All these problems in the last two methods are solved by

further introducing a fine-tuning technique into the data processing, where in the

table all the classification accuracy results are quite high values that achieve or are

approaching 100%.
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2.1.4 Application of Transfer Learning and Fine-tuning in

Addititive Manufacturing defect detection

In 2021, the authors of [25] presented their work, which is a machine learning method

for defect detection and visualisation in SLS based on convolutional neural networks.

In the work, they stated that their best result for defect classification was from

a VGG-16 based CNN model and the related dataset which has been used in the

classification task in their experiments was openly available to the public. It is worth

noting that the data used in this work is from a polymer additive manufacturing

machine rather than a metal powder bed machine such as we focus on here, but this

is still useful from a data analytics perspective as process prediction and control

is required within polymer additive manufacturing as well as within metal additive

manufacturing. The work in [25] illustrated a method for non-destructive quality

assurance in additive manufacturing processes where they used 2 types of CNN,

VGG-16 and Xception networks, and three sets of experiments were reported. These

compare the performance of the CNN based models under several experimental

setups namely a first experiment with data augmentation, a second experiment

without data augmentation and a third experiment with networks that were not

previously trained which means transfer learning was not applied to the model. The

results of their experiments are shown in Table 2.2.2

According to the results presented, performance measures for different machine

learning architectures show the effectiveness of defect detection. The experiments

proved the pre-trained weights, in the case where they used the weights from Ima-

geNet for the transfer learning process, are important and necessary to successfully

train a classifier with a small traning dataset. The authors of [25] also indicated

that though Xception is supposed to be a more advanced CNN model than VGG-16,

the results in the experiments show that VGG-16 has better performances with the

highest value of overall accuracy of 0.971.

2This is the first time where the thesis includes confusion matrices in results tables and such
confusion matrices will appear in several future Tables and they are denoted by blue background
shading.
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Table 2.2: Results of the 3 sets of experiments from [25]

Experiment Model
Confusion

matrix
Accuracy Precision

Recall
(TPR)

FPR F1-Score
ROC
-AUC

490 10
VGG-16

32 468
0.958 0.939 0.980 0.064 0.959 0.982

459 411st
Xception

65 435
0.894 0.876 0.918 0.130 0.897 0.934

496 19
VGG-16

10 481
0.971 0.963 0.980 0.038 0.972 0.993

500 02nd
Xception

500 0
0.500 1.000 0.500 0.500 0.667 0.514

180 320
VGG-16

165 335
0.515 0.360 0.522 0.489 0.426 0.525

500 03rd
Xception

500 0
0.500 1.000 0.500 0.500 0.667 0.526

More importantly, the dataset that was used in the research in [25] is open access

to the public. Thus it would be possible for us to use this dataset from AM and

carry out further experiments that involve implementing our methods and testing

performance. More detail on this will be given in a later chapter of this thesis but

for now we will continue with the review of releated work.

2.2 Dataset Labelling

Although applying machine learning in image-based inspection of AM processes can

be a powerful approach to high accuracy defect detection, a major challenge is to

create sufficiently large labelled datasets for the training process. Manually creating

large training datasets is time consuming, expensive, and often infeasible in indus-

trial production settings. Thus, it is important to have an alternative approach

to address this problem. For this, two learning methods (i) Active Learning and

(ii) Semi-supervised Learning can be considered to allow us to start with a lim-

ited amount of labelled training data and enlarge the labeled dataset based on the

learning outcome in previous steps.
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2.2.1 Active Learning

Active learning [26] is a machine learning technique in which we use smaller amounts

of labelled data and a human interactively labels new data points to improve the

performance of a model. In recent years Active Learning has been applied in several

research areas. For example, the authors of [27] have proposed a novel method

called AIFT to naturally integrate Active Learning and transfer learning into a

single framework to dramatically reduce the cost of annotation of large datasets of

biomedical imaging. Similar approaches were also applied in [28], [29], [30] and [31]

in the areas of image database categorisation, segmentation, object recognition and

face recognition respectively.

In Active Learning, usually, a small amount of data are labelled and used as

the initial training dataset. The rest of the unlabelled data points are referred

as the Pool, from which unlabelled data points will be labelled through the Active

Learning process. When given an insufficient number of labelled samples in a dataset

in which the majority is unlabelled, Active Learning is an algorithm of sample-query-

suggestion [26] that can help classifiers to suggest parts of unlabelled samples for

active annotation. Initially, it trains a classifier on a small labelled dataset and then

the algorithm selects a small number of informative samples based on the current

prediction, labels these samples and then enlarges the labelled dataset for further

training to improve the accuracy.

In the literature of Active Learning, there are three main scenarios that are

considered for the learner to query the existing instances of labels in order to improve

the labelling. The three scenarios are referred to as MQS, SBSS and PBS. These 3

scenarios will be described in the next subsection.

2.2.2 Scenarios for Active Learning

In this section, we summarise the major contents associated with each of the three

scenarios for Active Learning in which the labels of already existing instances can

be queried by the learner. As mentioned previously, these scenarios are Membership
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Query Synthesis (MQS), Stream-Based Selective Sampling (SBSS) and Pool-Based

Sampling (PBS). In the different scenarios, unlabeled instances are queried to be

labeled by the oracle which is normally referred to as the human annotator or

simulated annotator in some situations. The three scenarios can be summarised

as shown in Figure 2.2.

Figure 2.2: Three scenarios in Active Learning: MQS, SBSS and PBS

Membership Query Synthesis (MQS):

Membership query synthesis was first introduced early in 1988 in the research work

of Angluin [32] where their model was used to generate new queries instead of se-

lecting existing ones. As further explanation, in the Active learning process, the

under-training model, also known as the learner, generates instances that are sim-

ilar to the instances of current learning target following certain underlying natural

distributions. The generated instances are then sent to the oracle as a query to

label. This Active Learning scenario has been applied to experiments and tasks

for processing text and numerical symbols. For example, the authors of [33] have

applied MQS in their approach on MNIST and CIFAR-10; [34] have presented a

working model for textual Membership Query Synthesis and in [35] the authors

have developed a methodology for Semi-supervised sentence classification based on

Active Learning via Membership Query Synthesis.

However, the MQS scenario has a limitation in that the queried instances gen-

erated by the learner can be difficult or even impossible to interpret for a human

annotator. In the research of Lang and Baum [36], they employed MQS with hu-

21



man oracles to train a neural network for the classification of handwritten characters.

Many of the query images of characters generated by the learner are not recognis-

able by the human annotator and cannot be labelled properly. In fact this is also an

issue that similarly happens in the application of Generative Adversarial Networks

(GANs) [37]. To address this problem, [38] proposed a synthesis strategy that in-

cludes a search for the observed nearest neighbours in a feature space, which can

synthesise instances close to and spreading along the decision boundary. In recent

years, There are also several researches that leverage the advantages of the Varia-

tional Autoencoders (VAE) [39] to learn structural information from unlabeled data

and use it as an additional criterion in conventional Active Learning to make it more

robust against outliers and noise, such as [40] and [35]

Stream-Based Selective Sampling (SBSS):

The concept of Stream-Based Selective Sampling (SBSS) can be tracked back to over

three decades ago when the method was first referred as “selective sampling” by the

authors of [41]. After that, this scenario was further studied in research from dif-

ferent areas, for instance sensor scheduling [42], learning ranking functions [43] and

Neural Information Processing Systems [44]. In recent research, [45] have proposed

an approach using blind adaptation in the form of a sliding window to examine the

influence of verification latency on the performance of SBSS related Active Learning

in order to gain deeper understanding of such effects of the verification latency.

In general, Stream-Based Selective Sampling is based on the assumption that

getting an unlabelled instance is free of cost or at worst it is minimal cost. Under

this assumption, we then select each unlabelled instance, one at a time. According to

the informativeness of the selected instance, the learner will determine whether the

label of the instance should be queried. The methods that are used to evaluate the

informativeness of samples are the query strategies, which will be further illustrated

and discussed in Section 2.2.3.
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Pool-Based Sampling (PBS):

Pool-Based Sampling (PBS) was first proposed by [46] in their work as an algorithm

for the training of text classifiers. This scenario has since been popularly applied to

many real-world research topics and applications of machine or deep learning, and

involving Active Learning with classification-related tasks on text [47] [48], images

[49] [50] and videos [51] and also extended to regression [52] and ranking tasks [53].

Pool-Based Sampling assumes that there is a large pool of unlabelled data, ac-

cording to some informativeness measure, also known as query strategies, from which

instances are drawn from the pool to be queried. The informativeness measure is

applied to all instances in the pool to select the most informative instances of which

labels will be requested and this selection activity will continue in iterations until

the classifier (or the learner) reaches a certain level of performance, for instance,

when overall classification accuracy is over 95% or the budget for queried samples

is exhausted.

As further discussion, SBSS and PBS do overcome the major difficulty associated

with the MQS method. The main difference between stream-based and pool-based

Active Learning is that SBSS scans through the data sequentially and makes query

decisions individually, whereas the PBS evaluates and ranks the entire collection

before selecting the best query to ask of the dataset and then to present the result

of that query for manual annotation. While the pool-based scenario appears to

be much more common among application papers, there are settings where the

stream-based approach is more appropriate. An example of this is where memory

or processing power may be limited, as with mobile and embedded devices. In this

thesis the dataset of interest is relatively small in terms of the numbers of samples

and the volume of individual samples in this dataset is also small enough to avoid

system memory issues. As further consideration, the computational power required

for the experiments in our investigations are relatively low as well. Thus, we will

focus on the category of Active Learning with pool-based sampling.
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2.2.3 Uncertainty Sampling Query Strategies

The main difference between Active Learning and passive learning is the action of

the query. Thus it is very important to have proper strategies that can be used

to measure the informativeness of the unlabelled instances from the pool in order

to create the best query from which to identify further instances to be annotated

manually. As stated in [26], uncertainty sampling is the most commonly used query

strategy. In this section, three methodologies that are used in uncertainty sampling

query strategies are illustrated.

The first method to be introduced is called the least confidence query strategy.

Least confidence takes the highest probability for the prediction of each data point,

then sorts them from smaller to larger. The formal expression to prioritise using

least confidence is defined as:

x∗LC = argmax
x

1− Pθ(ŷ|x)

where:

ŷ = argmaxy Pθ(y|x)

Margin sampling, as the second method, considers the difference between the first

and the second highest probability. The data points with the lower margin sampling

score would be the ones labelled first. These are the data points the model is

least certain about between the most probabe and the next-to-most probable class.

Formally, the expression of Margin sampling is defined as:

x∗M = argmin
x

Pθ(ŷ1|x)− Pθ(ŷ2|x)

where:

ŷ1andŷ2
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are the first and second most probable classes.

Entropy is a concept that originates in thermodynamics and the concept can be

re-used to measure the certainty of a model. If a model is highly certain about a class

for a given data point, it will probably have a high certainty for a particular class,

whereas all the other classes will have low probability. In the case of high entropy

it would mean that the model distributes the probabilities for all classes equally

as it is not certain at all which class that data point belongs to. It is therefore

straightforward to prioritise data points with higher entropy to the ones with lower

entropy. Formally, the expression of the entropy score prioritisation is:

x∗H = argmax
x

−
∑
i

Pθ(yi|x) logPθ(yi|x)

Uncertainty sampling is one of the most popular sampling strategies in the literature

[54] due to its simplicity and intuitiveness. It assumes that getting the labels of

the least certain samples is more helpful to improving a classifier’s performance

compared to getting the labels of others. It is considered that the sample having

the smallest distance to the decision hyperplane is most uncertain to label and these

most uncertain samples are sent to human annotators. To list more examples using

the Uncertainty Sampling query strategies, in [55] a confidence value is used as

the measure of uncertainty sampling while in [27] entropy is used to evaluate the

certainty of classification output for multiple classes. However, in Active Learning

there are also alternative query strategies available. The next subsection will further

describe some of these alternative approaches that have been used to obtain the most

informative instance during the Active Learning process.

2.2.4 Alternative Query Strategies in Active Learning

Although in this thesis we will mainly focus on previous work using the Uncertainty

Sampling Query Strategies, it is still worthwhile to have a brief study of additional

Query Strategies of Active Learning, which can be potentially useful in the future
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development of this topic. This also helps us to gain a better understanding of the

general methodologies used in Active Learning.

The QBC algorithm was originally proposed by the author of [56]. As it is

named, the QBC query strategy involves a committee of the models and all the

models of this committee are trained using the current labeled dataset. To have

the most informative query, each model in the committee will vote on the label of

the current queried instance and then according to the level of disagreement of the

votes, the best query will be selected by having the least disagreement among the

committee. There are two main approaches to measure the level of disagreement:

Vote Entropy [57] and Kullback-Leibler divergence [58].

1. As a further illustration of Vote Entropy, assume a committee with a size C,

the range of possible labels yi and the number of votes that a label receives

from the committee V(yi). Formally, the expression of Vote Entropy x∗V E is:

x∗V E = argmax
x

−
∑
i

V(yi)
C

log
V(yi)
C

2. As further illustration of Kullback-Leibler divergence, assume a committee

C = {θ(1)....θ(c)} and θ(c) is an individual model of the committee and yi is

the true label of the instance. Formally, the expression of Kullback-Leibler

divergence x∗KL is:

x∗KL = argmax
x

1

C

C∑
c=1

D(Pθ(c)||PC))

where:

D(Pθ(c)||PC)) =
∑
i

Pθ(c)(yi|x) log
Pθ(c)(yi|x)

PC(yi|x)

There more query strategies, such as Expected Model Change [59] that selects in-

stances which induce the largest change in the classifier, Expected Error Reduction
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[60] maximising the decrease of loss by adding new data samples, and Variance

Reduction [61] minimising the variance of the model in order to obtain the most

informative instance. In fact, Active Learning algorithms is a big research topic. To

maintain the direction of the study be to relevant to our topic of research, our in-

vestigation of Active Learning will pause at this point and the next step will further

explore semi-supervised learning, which will be addressed in the next Section.

2.2.5 Semi-Supervised Learning

Compared to Active Learning, semi-supervised learning can also make a classifier

learn from both labelled and unlabelled data. Moreover, semi-supervised learning

can independently annotate unlabelled samples based on certain rules to improve

the performance of the classifier. There are several approaches to semi-supervised

learning such as self-training [62], co-training [63] and generative models [64]. The

self-training approach is also one of the most simple, efficient, and widely-used ap-

proaches and can be used as a wrapper method that applies to existing classifiers.

An example of a self-training algorithm is given as pseudo-code as Algorithm 1

Algorithm 1 Example of self-training semi-supervised learning

1: Initialize:
2: Given (Xtrain, ytrian) = (Xl,yl)
3: while Stopping criteria not met do
4: Train classifier Cint from (Xtrain, ytrian)
5: Use Cint to predict class Label yu of Xu

6: Select confidence sample (Xconf ,yconf ); (Xconf ,yconf ) ∈ (Xu,yu)
7: Remove selected unlabeled data Xu ← Xu-Xconf

8: Combine newly labeled data (Xtrain, ytrian) ← (Xl,yl)
⋃

(Xconf ,yconf )
9: end while

However, as self-training is based on the assumption that one’s own high confidence

predictions are correct, a major problem with self-training is that early incorrect

labelling by the initial classifier could reinforce the mistakes and this can degrade

the performance of a classifier.

To address the problem of self-training following an incorrect line of early mis-

classifications, [65], [66] and [67] have each tried to avoid such mislabelling of data
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using post-processing by applying a noise-filtering method. This is based on self-

training with editing and nearest neighbour rules respectively but post-processing

may edit the class of correctly labelled data into incorrectly labelled data or it

may filter out correct data and let incorrect data get into the training process. To

further solve the problem, the authors of [68] have proposed two methods, the active

labelling method and the co-labelling method.

Active labelling operates as follows: with an Active Learning style, we select the

most informative and representative data from among the unknown clusters and

then manually give a class label to the selected data. Results show this method can

significantly improve the performance of semi-supervised classification. A pseudo-

code representation of active labelling is given as Algorithm 2.

Algorithm 2 Active labelling

1: procedure Activelabelling()
2: Cu =SemiSupervisedClustering (Xl,Xu)
3: for all ci ∈ Cu do
4: Select xcen ∈ ci at the centroid of ci
5: Give class label ynew for selected xcen from User
6: Combine newly labeled data (Xtrain,ytrain)← (Xl,yl)

⋃
(Xcen,ynew)

7: end for
8: end procedure

Co-labelling is a self-supervised learning method which was developed to overcome

the limits of requiring manually labelling as in the active labelling approach by

applying an efficient classifier to automatically label selected data in the unknown

cluster. The overall performance of this method is not better than active labelling

and thus there is a trade-off between automation and accuracy. Pseudo-code for

co-labelling is given as Algorithm 3.

In their paper [68] the authors present the performance of the conventional self-

training method, the active labelling method and the co-labelling method and com-

pare them using the UCI repository of machine learning, from which 16 datasets

were used in their experiments. The results are shown in Table 2.3. The results in

Table 2.3 show that, out of the total 16 datasets, active labelling leads to 13 relatively

big improvements and 1 relatively small improvement, while the best performances
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Algorithm 3 Co-labelling

1: procedure Co-labelling()
2: Cu =SemiSupervisedClustering (Xl,Xu)
3: Train co-classifier Aco

4: for all ci ∈ Cu do
5: Select xcen ∈ ci at the centroid of ci
6: Give class label ynew for selected xcen by Aco

7: Combine newly labeled data (Xtrain,ytrain)← (Xl,yl)
⋃

(Xcen,ynew)
8: end for
9: end procedure

(with Random Forest classifier) when co-labelling is used are 7 improvements but 1

degradation. Because of these results, both of these methods should be considered

in the work addressed in this thesis. Starting with active labelling could be more

effective as it is currently a more stable approach than co-labelling, but co-labelling

can also be an option in the later stages of the experiments.

Based on the known advantages of Active Learning and semi-supervised learn-

ing, [55] present a clustering-based active semi-supervised classification framework

for the inspection of soldering defects, which is illustrated in Figure 2.3. In this

work the features of data representation in image format were extracted by a CNN

architecture from [23].

The whole of the data set is analysed by k-means clustering algorithm and an

initial SVM classifier is trained on the labelled data set. The results of the classifier

are then used to evaluate the output from clustering. A simplified homogeneity

value decided by the variance of the label distribution is used for the measurement

of confidence though the work in [55] only classifies the input data into two classes:

qualified and defective. The simplified Homogeneity value is defined as:

homogeneity(Si) =
1

N i
|nip − nin|

where the dataset X = {X1,X2,X3...Xn} is separated into k clusters S = {S1,S2,S3...Sn}

using k-means, and each sample belongs to the cluster S∗ whose centroid C∗ is closest

to the sample, where Ni is the size of the cluster Si, and nip and nin are the numbers
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Table 2.3: Part of the results from [68] for the comparison of classification accuracy
by self-training with originally labeled data, active labelling, and co-labelling with
16 datasets taken from UCI.

Dataset
Accuracy of self-training with . . .

Original labeled data Active labelling Co-labelling (Random forest)
adult 55.24 59.49+++ 57.19+++
bankmarket 68.79 74.32+++ 72.11+++
banknote 88.31 93.73+++ 88.23
bioNRB 56.05 60.41+++ 57.65++
eeg 71.63 78.08+++ 71.07
magicgamma 67.14 69.57+++ 69.65+++
mnist17 98.08 98.71+++ 98.55+++
mnist27 95.88 96.86+ 95.81
mnist38 92.24 94.27+++ 92.56
mnist49 86.41 89.95+++ 88.99+++
mnist79 91.21 93.19+++ 90.87
mnist89 95.36 96.05+++ 95.06
mushroom 96.33 98.90+++ 96.65
skin 96.93 97.54 96.83
spam 64.07 64.27 64.66
splice 56.45 57.31 53.29–
wilt 67.23 77.70+++ 71.89+++
Increase 14 7
Decrease 0 1

of the predicted positive and negative samples in this cluster respectively. So the

homogeneity value is between 0 and 1 for evaluating the confidence of the clusters.

Following that, according to the rules of Active Learning and semi-supervised learn-

ing, two groups of unlabelled samples are manually and automatically annotated.

Then, the initial classifier is retrained on the enlarged labelled dataset and then the

process enters the next iteration of labelling and annotation of the samples.

This approach does present a novel classification framework for areas of interest

of solder defects based on active and semi-supervised learning concepts and supports

human annotators by suggesting parts of the redundant and the informative samples

in the labelling process with a relatively small error rate. However, as they did

point out, the classifier used is just a binary classifier based on SVM and the feature

extractor is directly adopted from the convolutional layers of a pre-trained VGG-16

net. The following points can be improved upon based the work in [55]:

1. The feature extraction architecture of this method was not updated during

30



Figure 2.3: A clustering-based active semi-supervised classification framework from
[55]

the whole process. As the amount of labelled data grows, this can be used for

fine-tuning the feature extractor to potentially give better data representation

and accelerate the overall labelling process.

2. At a later stage with sufficient labeled data, the binary classifier can be re-

placed by other classifiers for better performance and further extending the

identification to multiple classes of certain defects rather than only classify the

parts as qualified or defective.

This is something we shall incorporate into this thesis later.

2.2.6 Background Literature for Pseudo-Labelling

In the scenario of the “small data challenge” where there are a limited number

of labeled examples compared to a vast pool of unlabeled data, Semi-Supervised

Learning [69] approaches have proven highly effective. Semi-Supervised Learning

leverages both labeled and unlabeled data to improve model performance. Among
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Semi-Supervised Learning techniques, Pseudo-Labeling [70], stands out as a simple

but highly efficient method in deep learning.

Pseudo-Labeling involves utilising a model trained on labeled data to predict

labels for the unlabeled data. These predicted labels are referred to as “Pseudo la-

bels”. It’s important to note that these labels are considered “pseudo” because they

may or may not align with the real labels of the samples. In other words, Pseudo-La-

beling uses the predictions of the model on unlabeled data as substitutes for actual

labels, using the learned representations of the model to assign pseudo labels to the

unlabeled samples. This technique effectively enlarges the labeled dataset and intro-

duces semi-supervised learning principles to enhance model performance in the case

of limited availability of labeled data. The conventional pseudo-labeling method can

be summarised in two distinct stages:

1. Initial Model Training: In the first stage, a model is initially trained using the

dataset that contains labeled examples. This initial training phase involves

using the available labeled data to build an initial model;

2. Pseudo-Label Generation and Further Training: Once the initial model is

trained, it is deployed to generate pseudo labels for the unlabeled dataset.

These pseudo labels are essentially predictions made by the model on the un-

labeled data points. After generating pseudo labels, both the originally labeled

dataset and the dataset augmented with these pseudo labels are combined.

This merged dataset, now containing both the original labels and pseudo la-

bels, is used for further training of the model. This additional training phase

fine-tunes the model based on the augmented dataset, which includes the orig-

inal labeled data and the pseudo-labeled data from the unlabeled dataset.

Pseudo-labeling is indeed a powerful Semi-Supervised Learning technique that

can improve model performance by leveraging both labeled and unlabeled data.

However, it has some drawbacks and limitations as follows:

1. Reliance on Initial Model Quality: Pseudo-labeling assumes that the initial
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model trained on the limited labeled data is reasonably accurate. If the initial

model is poor or biased, pseudo-labels generated from it may also be inaccu-

rate, leading to a propagation of errors in the semi-supervised learning process;

2. Class imbalance issue: Pseudo-labeling assumes that the distribution of labeled

and unlabeled data is similar. A significant distribution mismatch between the

two sets may lead to a class imbalance issue in the generated dataset with

pseudo-labels;

3. Limited Guidance: If the initial model makes incorrect predictions on the un-

labeled data, pseudo-labeling can propagate these errors and amplify noise in

the dataset. This can result in a less reliable semi-supervised model. It does

not offer explicit feedback or correction mechanisms for the mistakes on labels.

This can bring the risk of noise amplification issue when the initial performance

of the model is far from optimal.

2.2.7 Background Literature around the Class Imbalance

Issue

In a binary classification task with data from two classes, a class imbalance occurs

when one class contains significantly fewer samples (minority class) than the other

class (majority class).

As has been mentioned above, in many real world applications, abnormal events

occurs with relatively lower frequency than normal events, due to the fact that sam-

ples of the positive class usually appear and are collected with reduced frequency in

contrast to negative samples and this fact naturally leads to skewed data distribu-

tions.

Class imbalance issues have be found in various domains, including fraud detec-

tion [71], [72], [73], medical science [72], [73], [74], information security [75], [76],

and weather forecasting [77].

In the area of machine learning algorithms employed for classification tasks, it
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is commonly assumed that there is an even distribution of training examples across

all classes. Consequently, such models show a bias towards the majority class, using

the greater amount of data associated with it. As a result, the trained model tends

to show an over-classification of instances within the majority class because of the

higher prior probability associated with it, and simultaneously, instances belonging

to the minority class tend to misclassification at a greater rate. This phenomenon is

particularly problematic when the class of interest corresponds to the minority class,

a scenario frequently occurring when conducting classification tasks using machine

learning models on AM datasets. In these datasets defects mostly show within the

minority subset of the total data population [78]. For this reason, when forming a

new set of training data from the results of pseudo-labelling, the class imbalance

problem should be considered in order to avoid over emphasis on the major class

during the tuning process that updates the classification model.

Generally, to address the class imbalance issue, common approaches for address-

ing class imbalance can be summarised into 2 main categories, which are also usually

referred as having 2 levels in relevant review articles, such as in [79] and in [78].

1. The first category is data level methods that aim to operate on the distribu-

tion of the classes in the training set alter dataset in order to reduce the data

imbalance effects during the training;

2. The other category is algorithmic level methods that keep the training dataset

unchanged but adjust training or inference algorithms where the learning or

decision process is adjusted in a way that increases the importance of the pos-

itive class. Most commonly, algorithms are modified to take a class penalty or

weight into consideration, or the decision threshold is shifted in a way that

reduces bias towards the negative class.

One of the common approaches to class imbalance was to use a re-sampling tech-

nique, which is a data level method, to make the dataset balanced. This method can

be applied either by undersampling or oversampling the dataset [80].
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1. Undersampling involves reducing the number of instances in the majority class

to match the number of instances in the minority class. The goal is to balance

the class distribution by discarding some of the majority class samples. Under-

sampling can help prevent the model from being biased toward the majority

class and can lead to better overall model performance. However, it does mean

that the model loses useful information;

2. Oversampling involves increasing the number of instances in the minority class

to match or approximate the number of instances in the majority class. This

is done by either duplicating the existing minority class samples or generating

synthetic samples. Oversampling helps ensure that the model has enough data

to learn from the minority class but may also cause an overfitting problem.

Additionally, a more advanced sampling method, SMOTE [81], has been used

to address the class imbalance issue. This technique generates synthetic samples for

the minority class based on the Self-Organising Map algorithm, ensuring a more

balanced distribution between the two classes in the training data. However, it is

originally designed for oversampling tabular data. So this approach may not fully

capture the complex patterns and structures present in image data, particularly

when the images are high-dimensional and contain intricate patterns, textures, and

structures. This limitation is especially pertinent in images from additive manufac-

turing processes, where such complexity is common.

2.3 Literature Survey on Object Detection

We now switch to another topic as part of the background and related work described

in this thesis, the techniques for automatically detecting objects in images using

computer vision.
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2.3.1 Conventional Approaches to Object Detection

Conventional approaches to vision-based object detection employ feature descriptors

and feature extraction to find one or many objects in an image. The authors of [82]

presented a strategy using SIFT in which a feature is composed of several key points

in the image with an orientation and the corresponding descriptor of the area around

the selected key points. SIFT key points are searched for through different image

scales, known as the DoG pyramid.

A similar method based on machine learning that counts occurrences of gradient

orientation in the localised portion of an image is called the HOG [12]. As HOG uses

magnitude as well as angle of the gradient to compute its features, its performance

is superior than any edge descriptor. These conventional approaches for object de-

tection have been commonly used in many computer vision related tasks such as

mitosis detection in biomedical images [83], feature representation and object mea-

surements in microscopy images [84] [85], face recognition [86] and sign recognition

[87].

To date, conventional approaches are still effective in various research applica-

tions. Yet in spite of that, the rapid developments in deep learning in recent years

has raised the performance of techniques which can be used for object detection to an

even more powerful level that involves deep learning and R-CNN based architectures

as examples of types of deep learning models.

2.3.2 Evolution of R-CNNs

We now illustrate some of the literature marking out progress on the development

of R-CNN based architectures. Since 2014 when the R-CNN was first proposed,

this type of deep learning model has drawn the attention of many researchers. The

model has been further modified and developed with various algorithms to enhance

performance and functionalities. Figure 2.4 shows a brief overview of the time steps

of the evolution of R-CNN based architectures, which will also be illustrated through

the remainder of this section.
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Figure 2.4: Time steps of the evolution of R-CNN based architectures

Region proposals with CNN features

During the period 2010-2012, many conventional visual recognition tasks were based

on the SIFT and HOG models, which rely on blockwise orientated histograms. Two

years later, [88] proposed research that combines region proposals with CNN fea-

tures and named it R-CNN. Compared with the conventional methods, R-CNN is an

hierarchical, multi-stage processes for computing features that are even more infor-

mative for visual recognition than previously. In the research they solved the CNN

localisation problem by leveraging the method develop by [89]. That recognition

uses regions of the images and has been proved successful both for object detection

and semantic segmentation. The architecture of an R-CNN is shown in Figure 2.5

and its work can be summarised as 4 steps:

1. Take an image as input;

2. Extract around 2,000 bottom-up region proposals;

3. Compute features for each proposal using a large convolutional neural network;

4. Classify regions using class-specific linear SVM as well as using liner regression

for the related bounding box offset.

However, in its earliest version, R-CNNs also have several drawbacks as follows, each

of which need to be addressed:

1. Training a model is a multi-stage pipeline, and this includes the tuning of the

CNNs, the training of linear SVMs and the training for bounding box liner

regression;

2. The time required for training is long and it also demands space on disk to save

the information on features, which in some cases can be as large as hundreds

of gigabytes;
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Figure 2.5: The architecture of an R-CNN and its operation in steps illustration
from [88]

3. Features are then extracted from each object proposal in the test images.

There are up to 2,000 ROI for each of the input images and the computation

during the forward pass of the object proposals are not shared among the

CNNs. These facts result in comparatively slow object detection.

Fast R-CNN

R-CNN when used for object detection is slow in terms of computation because it

performs a forward pass for each object proposal in the convolutional network, with-

out sharing computation. To address this problem, the authors of [90] presented Fast

R-CNN which applies further modification based on the original R-CNN. Compared

to the original R-CNN, Fast R-CNN employs several innovations to improve train-

ing and testing speed while also increasing detection accuracy. In their testing, the

model of the Fast R-CNN trains significantly faster than the original R-CNN. More
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specifically, there are 3 important differences between R-CNN and Fast R-CNN.

Firstly, Fast R-CNN uses a single deep convolutional neural network for feature ex-

traction and this speeds up the image processing significantly while R-CNN uses up

to 2,000 CNNs for each region of the image. Secondly, Fast R-CNN uses softmax

for object classification instead of the SVM classifiers which are used in the origi-

nal R-CNN for the reason that Softmax has better performance than SVM for the

classification in this application. Finally, Fast R-CNN uses multi-task loss in the

training of CNNs to increase detection accuracy.

In the architecture of a Fast R-CNN (refer to Figure 2.6), an input image and

multiple regions of interest (RoIs) are input into a fully convolutional network. Each

RoI is pooled into a fixed-size feature map and then mapped to a feature vector by

fully connected layers. The network has two output vectors per RoI which are

softmax probabilities and per-class bounding-box regression offsets.

Figure 2.6: The architecture of a Fast R-CNN by [90]

With these improvements, compared to the original R-CNN, the Fast R-CNN has

advantages as listed below:

1. Higher detection quality than R-CNN;

2. Training is single-stage, using a multi-task loss;

3. Training can update all network layers;

4. No disk storage is required for feature caching.
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At this point we should mention that the RoI pooling layer is a key modification

to achieve the usage of a single CNN architecture for all the region proposals in

Fast R-CNN. In the RoI pooling layer, max pooling are used to convert the features

inside any valid region of interest into a small feature map with a fixed spatial extent

with layer hyper-parameters that are independent of any particular RoI. Thus all

the input from any RoI can be forwarded to the full connected layer after the RoI

pooling layer. However, RoI pooling may cause information loss or misalignment

and this issue is addressed later on in the Mask R-CNN technique.

Faster R-CNN

Although Fast R-CNN has significantly reduced the time spent on the object detec-

tion process compared to its predecessor, the region proposal step in Fast R-CNN

consumes as much runtime as the original R-CNN. The region proposal methods

used in Fast R-CNN are still implemented on the CPU and do not effectively ex-

ploit GPU power for computing.

To address this problem, Faster R-CNN [91] introduces the RPNs that share

convolutional layers with state-of-the-art object detection networks to greatly reduce

the marginal cost for computing region proposals. The architecture of Faster R-CNN

involves three different neural networks which are the deep convolutional neural

network for generating the feature maps from the input image; the Region Proposal

Network (RPN) that are used to generate the region proposal that replaces the

selective search step in R-CNN and Fast R-CNN; the detection Network which

is similar to the Fast R-CNN where it takes input as the feature maps from the

convolutional layer and the RPN network in order to generates the bounding boxes

and determine the class of the object.

The RPN is the new and key component in the Faster R-CNN. RPN takes an

image of any size as input and outputs a set of rectangular object proposals. The

input for RPN is the feature map that is generated by the CNN from the input

images. Then, features that are further generated from RPN are fed into two sibling
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fully connected layers one of which is a box-classification layer and the other is a box

regression layer for the bounding box to estimate the probability of an object or not

object for each proposal and encoding the coordinates of the relevant bonding box

respectively. During this process, RPN uses anchor boxes for each sliding window

to calculate the relevant scores and coordinates and also helps with translational

invariance.

The leveraging of RPN further accelerated the speed of object detection of Faster

R-CNN. However, as it still uses RoI pooling, which is the same algorithm used

in the previous version (Fast R-CNN), there is possible information lost through

the pooling layer. Furthermore, the architecture of Faster R-CNN is capable of

generating bounding boxes for objects but it cannot precisely segment each instance

of the objects and this is the point where Mask R-CNN takes place.

Mask R-CNN

The Mask R-CNN technique for object detection was proposed by [92] in 2017. It is

a new version of an R-CNN-type of deep learning model that can efficiently detect

objects in an image while simultaneously generating a high-quality segmentation

mask for each instance. Extended from the Faster R-CNN, the Mask R-CNN adds

a branch for predicting an object mask in parallel with the existing branch for

bounding box recognition. Due to the limit of RoI pooling, Faster R-CNN was not

designed for pixel-to-pixel alignment between network inputs and outputs. Mask

R-CNN addressed this issue by introducing a new algorithm, namely, RoI Align.

With this new feature, the third branch of the Mask R-CNN takes the output from

the RoI Align layer and predicts binary class masks. The masks are then used in

the task of instance segmentation.

When dealing with floating point numbers in RoI, the RoI pooling algorithm

quantises the RoI and this results in inaccurate coordinate prediction. This problem

may not be obvious when only a bounding box is required for object detection, but

for object segmentation tasks it can be an issue that generates unnecessary offsets
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because the prediction of an object mask as opposed to a bounding box, requires

high accuracy.

To avoid quantisation, the RoI Align algorithm uses bilinear interpolation to

compute the exact values of the input features at four regularly sampled locations

in each RoI bin, and aggregates the result. The Mask R-CNN was used as the

framework by the three best performing teams in the Common Object in Context

(COCO) 2017 instance segmentation benchmark, each of which significantly outper-

formed the previous state of the art.

2.4 ML Applications and the Small Data Chal-

lenge in other Industry Domains

The small data challenge in machine learning arises when the available dataset for

training a model is relatively limited, containing only a small number of examples

or instances. Researchers and practitioners often employ various strategies, such as

data augmentation, transfer learning, and regularisation techniques, to address these

challenges and build effective models with limited data. For instance, in electron-

ics manufacturing, machine learning is utilised to detect faults in printed circuit

boards (PCBs) or semiconductor chips. In a survey conducted by [93], deep learn-

ing was highlighted as being widely used in recent years for printed circuit board

defect detection due to its excellent performance. However, these approaches often

encounter the overfitting problem due to the insufficient training data in real-world

applications. To address such issues, [94] employed transfer learning and data aug-

mentation techniques to expand the input dataset and avoid overfitting. Similarly,

[95] achieved training with limited samples by utilising a deep siamese semantic

segmentation network. Additionally, [96] utilised synthetic data when faced with an

inadequate initial training dataset.

The examples provided highlight the challenges faced by electronics manufactur-

ing, in dealing with the limitations of small data within the context of the big data
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era. Despite the recent successes of deep learning, particularly in computer vision

applications, these industries encounter difficulties in developing and deploying ma-

chine learning applications due to the scarcity of properly labeled data required for

training the models. Solutions such as data augmentation and transfer learning are

often employed in the related research to address these challenges.

In additive manufacturing, deep learning applications, particularly those based

on computer vision for classification and detection, face similar challenges related to

small data availability. Despite the potential for data collection provided by in-situ

monitoring, the bottleneck lies in the annotation and labeling of data samples, lim-

iting the application of ML in AM. However, insufficient attention has been given

to addressing this challenge, and there has been limited investigation into potential

solutions.

2.5 Specific Characteristics of Defect Detection

in AM

Defect detection in the additive manufacturing (AM) domain presents several spe-

cific characteristics that distinguish it from defect detection in other domains. Some

of these characteristics include:

• Complexity of Defects: The defects may manifest differently depending on the

AM process parameters, material properties, and geometry of the printed part.

this the reason why investigate the patterns at the level of microstructures such

as melt-pool and porosity which regardless of the geometry of the printed part.

• Layered Structure: Additive manufacturing builds parts layer by layer, which

can pose unique challenges for defect detection. Defects may occur at any

layer and propagate throughout the build, requiring comprehensive inspection

techniques to detect them across the entire part.

• Material Variability: AM processes use a wide range of materials, each with

43



its own unique properties and potential defects. Detecting defects in materi-

als like metals, polymers, or ceramics requires specialised inspection methods

tailored to the material’s characteristics.

• Process Sensitivity: AM processes are sensitive to variations in process param-

eters, environmental conditions, and machine performance. Small deviations

in parameters such as temperature, powder quality, or laser power can lead to

defects, emphasising the need for precise monitoring and control systems.

• Data Complexity: The vast amount of data generated during the AM process,

including sensor readings, imaging data, and simulation outputs, adds com-

plexity to defect detection. Analysing and interpreting this multi-modal data

require advanced data analytics and machine learning approaches tailored to

AM applications.

• Non-Destructive Testing (NDT): Traditional NDT techniques used in conven-

tional manufacturing may not be directly applicable to AM due to the unique

nature of printed parts. Developing NDT methods specifically tailored to AM

materials and processes is essential for accurate defect detection without dam-

aging the part.

In summary, defect detection in the AM domain involves addressing the complex-

ities of layered manufacturing, material variability, process sensitivity, and inherent

defects, while leveraging advanced inspection techniques and data analytics to en-

sure the quality and reliability of printed parts.

2.6 Chapter Summary

In this chapter, several approaches based on feature extraction of optical inspection

and labelling algorithms have been outlined. Based on the prior work in the area, it

is clear that it is possible to design a framework for an analysis of the data generated
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from in-situ monitoring of the AM process. Indeed there are other methods asso-

ciated with semi-supervised learning that could potentially apply to the structures

in such a framework and there will be further investigation into these as the thesis

develops.

A more detailed illustration of the initial architecture design will be given in the

next section. However before we do that, in assessing the literature in automatic

defect detection using in-situ data from monitoring of the melt-pool, we have found

that there appears to be very little if any, available datasets to support investigations.

Thus there is a concern about the public availability of data appropriate for our

needs. While we have the capacity to generate and use our own data from our

access to AM machinery it is worthwhile carrying out a systematic review of available

datasets which is what we do in the next Chapter.
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Chapter 3

Systematic Review of Available

Additive Manufacturing Datasets

3.1 Introduction to Systematic Reviews

A systematic review of scientific literature is defined as “a review of the evidence on

a clearly formulated question that uses systematic and explicit methods to identify,

select and critically appraise relevant primary research, and to extract and analyse

data from the studies that are included in the review” [97]. The methods used in

completing a systematic review must be reproducible and transparent in order that

the outputs from the review can be verified independently by others.

While systematic reviews are commonly associated with literature reviews, they

can also focus on datasets. However, systematic reviews of datasets differ from sys-

tematic reviews of literature in several key aspects, including their focus, method-

ology, and outcomes.

About the focus, a systematic review of datasets centers on identifying and syn-

thesising existing datasets relevant to specific research questions or topics. The pri-

mary goal is to evaluate the quality, completeness, and relevance of available datasets

for analysis or research purposes. In contrast, a systematic review of literature aims

to identify, evaluate, and synthesise existing research studies and publications re-
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lated to a specific topic or research question. The focus is on analysing findings,

methodologies, and conclusions presented in peer-reviewed articles, books, and other

scholarly sources.

The methodology involves systematically searching databases, repositories, and

other sources for datasets relevant to the research question. Criteria for inclusion

and exclusion of datasets are established, and each dataset is evaluated based on

predefined criteria. In contrast, the methodology of a systematic review of literature

typically involves searching academic databases, journals, and other sources for rel-

evant research studies and publications. Inclusion and exclusion criteria are set to

determine which studies to include in the review. The quality of included studies

is assessed using standardised tools, and data from selected studies are synthesised

and analysed.

Furthermore, the outcome of a systematic review of datasets may include a list

of available datasets relevant to the research question, along with an assessment of

the description, limitations, and potential applications of the dataset. This type of

review provides researchers with valuable resources for conducting further analyses

or investigations, whicle the outcome of a systematic review of literature usually in-

cludes a synthesis of findings from existing research studies, highlighting key themes,

trends, gaps, and areas for future research.

There are 7 stages of conducting a systematic review according to [98]:

1. Team formation: a systematic review must have a team of two or more; it

cannot be completed by one person working alone. In the case of this review,

the team consists of the student, with overview of material for the review and

outputs from analysis, provided by the supervisors.

2. Questioning: this step usually defines a narrow question which is the subject

of the review. [99] describes one common format used to refine the research

question into one that is a searchable query which, can be formatted as a

question. Since this review is to explore and learn about availability of datasets

in AM, as well as to summarise what is available, the question is broader than
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usual.

3. Planning methods & strategies: this examines questions such as

• If the review is feasible

• Make sure there are no conflicting reviews

• Planning to carry out each stage of the review

• Setting goals and timelines for the review

• Documenting the protocol. Sometimes, in some disciplines this can in-

volve registering the protocol in an open forum such as a journal but this

is optional and does not apply.

• The protocol defines the selection criteria (inclusion and exclusion) for

topics to be covered and included in the systematic review.

4. Searching/screening: this is an active step during which the main part of the

literature search takes place and it involves the following

• Searching multiple databases, including the grey literature. This is be-

cause systematic reviews should include both published and unpublished

literature to avoid a type of publication bias, this is called positive out-

comes bias.

• Once the searching is completed there are then two phases, the first being

a screening of the retrieved articles by examining their titles/abstracts

(together) and eliminating those that are deemed out of scope. The

second phase is a more detailed screening of the full texts of those articles

which remain after the first phase and involves confirming that the articles

are within scope of the question posed in the review.

5. Managing & reporting: All methods and steps in gathering articles, screening,

selecting and summarising, must be fully reported, transparent and repro-

ducible by any third party.
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6. Data extraction/synthesising the evidence: Once the relevant articles from the

literature are identified and are examined in detail, this phase involves apprais-

ing the evidence from those articles, interpreting the results, and performing

a qualitative (narrative analysis) and/or a quantitative/meta-analysis.

7. Drawing conclusions, writing and publishing are the final stages of the sys-

tematic review.

While some of the above 7 steps described in [98] are not applicable in the case

of this thesis, we will follow that general structure of performing a systematic review

of image datasets in AM.

3.1.1 Aim of this Systematic Review of Datasets in AM

This systematic review of datasets aims to demonstrate that readily available image

datasets from additive manufacturing, which are properly annotated or labeled and

openly accessible for training machine learning applications, are insufficient. This in-

sufficiency leads to the small data challenge within the context of the big data era in

the field of AM. Further more, the complexity of AM processes leads to variations in

the data generated across different applications and laboratory setups. As a result,

datasets collected from one AM environment may not be directly applicable to other

machine learning tasks or experiments. Even if a labeled dataset is openly available,

it may be highly specific to a particular task and less applicable for general training

of ML applications. This challenge arises due to the unique characteristics of each

AM process, such as variations in materials, printing parameters, and part geome-

tries, which influence the features present in the data. The variability and specificity

of datasets collected from different AM environments results in limited availability

of labeled data suitable for training machine learning models. This scarcity of di-

verse and representative data hampers the development and generalisation of ML

algorithms for various AM applications. Consequently, researchers face challenges

in acquiring sufficient data to train robust models capable of accurately detecting
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defects, optimising process parameters, or predicting part performance across differ-

ent AM processes and materials. Thus, addressing the issue of data variability and

specificity is crucial for overcoming the small data challenge in AM and advancing

the development of ML based solutions for AM.

3.2 Background

Large and open-source datasets of annotated images containing up to millions of

training examples such as ImageNet [6], COCO (Common Objects in Context) [8]

and Pascal VOC [100] are readily available to machine learning and deep learning

researchers. ImageNet for example contains more than 14 million annotated images

and the datasets have allowed machine learning to develop hugely over recent years,

especially the fact that the datasets are open, easily available and re-used by many

researchers. These datasets are usually not specific to any single domain, they are

general purpose though there are also many examples of annotated image datasets

which are in specific domains. Examples of such domain-specific datasets are in areas

like medical imaging with the Cancer Imaging Archive (TCIA) [101], Breast Can-

cer Digital Repository (BCDR) and Medical Imaging Multimodality Breast Cancer

Diagnosis User Interface (MIMBCD-UI) [102] which are images of cancer that have

been used extensively. Another example is in the area of recognition of birds where

the Caltech-UCSD Birds-200-2011dataset [103] contains images of 200 different bird

species.

Given that this thesis addresses defect detection in additive manufacturing, it is

reasonable to question the availability of datasets of annotated images taken from

the AM process. Acquiring such data is cost-prohibitive in the AM area as shown

very recently (in 2022) by Manan and Shao [104]. Several very recent (2020-2022)

survey/review papers on the topic of image datasets [105][106][69] each clearly state

that labelled samples are often difficult, expensive, or time-consuming to obtain

in general. By contrast, unlabelled data can be easily or inexpensively obtained.

Consequently, it is desirable to leverage a large number of unlabelled image data for
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improving the learning performance when this can be combined with a small number

of labelled samples. Some researchers have named this as “Small Data Challenges

in Big Data Era” [107].

In summary, by carrying out a systematic review we want to see if there is a gap

between the currently available image datasets on AM processes and what would

normally be available in other areas, namely a large number of standard open-

source datasets which can be used in other applications of ML. One reason why this

is important is the labelling and annotation work in creating such datasets is a very

important but expensive process in the development of additive manufacturing.

As we set out to complete a systematic review on available datasets in AM we

have some assumptions which we want to investigate and these form stage 2 of the 7-

stage process mentioned earlier, the stage known as “questioning”. The assumptions

are as follows:

1. A1: There are not many open image datasets from AM processing available

for ML/DL training;

2. A2: Existing open datasets from AM are in different online locations and

formats, and usually need further processing in order to be used in ML;

3. A3: Manual work for annotation is still required for the majority of datasets

when further processing the image datasets;

4. A4: Existing ML applications in AM mainly focus on classification/detection

of defects but not in the direction of the “small data change”.

These 4 assumptions can also be presented as the following set of specific points

to investigate which will help guide the systematic review. To avoid confusion, it

worth noting that the points below are regarding the “questioning” stage of this

systematic review in this very chapter rather than the main research questions of

the thesis.

1. Point 1: Is the current availability of image datasets from AM adequate for

computer vision applications? (Corresponding to A1)
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2. Point2: For existing open AM image datasets, are they suitable or readily

available to machine learning and deep learning researchers? (Corresponding

to A2)

3. Point3: Are there many research programs and applications proposed for the

development of image datasets that are specified to AM? (Corresponding to

A3 and A4)

3.3 Methods

This section defines the selection criteria for the systematic review of the literature.

It is an important part of stage 3 of the 7-stage process mentioned earlier, which

has been described as “methods and strategies”.

3.3.1 Selection Criteria

For inclusion of a dataset in the resulting selection, the datasets should meet the

following 5 eligibility criteria:

1. Must be open and accessible;

2. Should be in the format of images datasets (numerical datasets and videos

will be excluded and the selection must be valid image datasets and not only

images of figures or charts);

3. Must be related to the domain of additive manufacturing, not other 3D-printed

work;

4. ML/DL related applications must be involved in using the datasets which may

result in different categories;

5. Should be readily available for ML/DL practices i.e. there should be no need

for heavy computational processing before putting them into use.
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3.3.2 Search Strategy

This section illustrates the search strategy of the “Searching” process, which is part

of stage 4 in the 7-stage process. The content of this section involves a description

of the search terms and query syntax and the databases where the searching has

been carried out.

The databases that have been chosen in the searching stage are DOE Data

Explorer, Mendeley, Figshare, Zenodo, AmeriGEO, NIST, Kaggle, DataCite and

Google Dataset Search. The names of the involved databases in the searching stage

and the corresponding URLs can also be found in Table 3.1

Table 3.1: Websites used in the searching stage

Name URL

DOE Data Explorer https://www.osti.gov/dataexplorer/
Mendeley https://data.mendeley.com/
Figshare https://figshare.com/
Zenodo https://zenodo.org/

AmeriGEO https://data.amerigeoss.org/
NIST https://data.nist.gov/

Kaggle https://www.kaggle.com/
DataCite https://datacite.org/

Google Dataset Search https://datasetsearch.research.google.com/

Unlike search engines for bibliographic databases which have structures like ti-

tle, author, abstract, affiliations and other components, most engines for dataset

searches do not have these structures. For this reason, the queries that were used in

the searches in this section are plain text that contains key words such as: “additive

manufacturing” to specify the domain; “image” to define the type of data; “com-

puter vision”, “machine learning” and “deep learning” to further indicate the desired

applications. Boolean operators such as ‘AND’ are used to combine the terms to

form full queries and filter options have been applied in the relevant databases in

order to limit the category and type of results. In some databases, basic searches

may not be adequate to retrieve results in a reasonable range and the results usually

contain too many non-relevant items. In such situations, advanced searches were

conducted to obtain results with better precision.
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The initial searches were carried out on May 2th, 2023, and the dates of the

search results are up to May 8th, 2023. The search stage is a back and forth process

that executes the queries with different combinations of keywords on the selected

databases in order to retrieve relevant results.

We now present the results from searching the 9 individual databases and the

summary numbers of retrieved results are shown later.

1. From DOE Data Explorer:

• “additive manufacturing” AND image:41

• additive AND manufacturing AND image: 41

• additive manufacturing image:41

• “additive manufacturing” AND image AND “machine learning”:3

• “additive manufacturing” AND “machine learning”: 3

• “additive manufacturing” AND image AND “deep learning”: 0

• “additive manufacturing” AND “deep learning”:0

In summary, the results from DOE Data Explorer are 41 results with 3 of them

appearing to be duplicated datasets due to version difference. The resulting

38 datasets may not be in the additive manufacturing domain but this is

something we examine in the screening phase of the systematic review process.

2. From Mendeley:

Basic searches: Filter: Data Types: Dataset

• additive manufacturing image: 40,299 (the range of searching should be

further narrowed down to reduce the number of non-relevant results)

• additive AND manufacturing AND image: 1,008 (range is decreased but

still many non-relevant results)

• “additive manufacturing” AND image: 176

• “additive manufacturing” AND “machine learning”: 83
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• “additive manufacturing” AND image AND “machine learning”: 67

• “additive manufacturing” AND image AND “deep learning”: 47

• “additive manufacturing” AND image AND “machine learning” AND

“deep learning”: 46

Advanced search on Mendeley Using keywords: any item with keywords “ad-

ditive manufacturing” AND “machine learning”

• KEYWORDS (“additive manufacturing” AND “machine learning”): 2

(the 2 results are relevant)

• KEYWORDS (“additive manufacturing” AND “deep learning”): 0

Results from basic searches on Mendeley initially yield large numbers of re-

trieved datasets but mostly highly non-relevant. The scope was narrowed down

by applying additional terms such as “machine learning” and “deep learning”,

to limit the number of results. However, even doing so there are still a great

proportion of the results that are non-relevant, Thus some advanced searches

were carried out and 2 relevant results were obtained, but this scope may be

too narrow for the current stage.

Summary of results from Mendeley: we take the resulting number of 83

datasets which include the 2 datasets from the advanced search, but this out-

put may contain many non-relevant results.

3. From Figshare:

The basic search function on Figshare does not support Boolean operators.

For example, if “AND” appears in the searching string it will be treated as

a search term. To utilise Boolean operators on Figshare, an advanced search

must be conducted. Furthermore, after testing, it shows that the category filter

for additive manufacturing on Figshare is case sensitive, so there are 3 terms

(additive manufacturing, Additive manufacturing, Additive Manufacturing)
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to be selected in order to specify the search within the category of additive

manufacturing.

(a) Basic search 1:

Category: Deep learning, Item Type:dataset

Searching string: “additive manufacturing”: 2

This basic search is to retrieve datasets with the term “additive manufac-

turing” from the Deep learning category. In fact, the only 2 results are

the emission datasets from our research, one is the emission image dataset

of positive samples and the other is the dataset of negative samples.

(b) basic search 2: Figshare does not provide a Machine learning category,

instead it gives 3 separated categories which are:

Category: Knowledge representation and machine learning, Item Type:

dataset

Searching string: additive manufacturing: 39 (results highly non-relevant)

Category: Adversarial machine learning; Item Type: dataset

Searching string: additive manufacturing: 1

Category: machine learning not elsewhere classified; Item Type: dataset

Searching string: additive manufacturing: 6

There are many non-relevant results from the 39+1+6 = 46 results due

to the fact that the terms used are additive manufacturing which are

regarded as 2 terms as there is no “” surrounding them to make them

into a phrase to search on.

We then use a single term “additive manufacturing” under the same filter

conditions and obtain the following results.

Category: Knowledge representation and machine learning; Item Type:

dataset

Searching string: additive manufacturing: 0

Category: Adversarial machine learning; Item Type: dataset
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Searching string: additive manufacturing: 0

Category: machine learning not elsewhere classified; Item Type: dataset

Searching string: additive manufacturing: 2

(c) Basic search 3: filter: Category: additive manufacturing, Additive man-

ufacturing, Additive Manufacturing; Item Type: dataset:

Searching string:

• “deep learning”: 3

• “machine learning”:5

Even if the data type is not limited to images, there are only 8 results

obtained.

(d) Basic search 4: Item Type: dataset

Searching string: additive manufacturing image: 270,179

The results from this search are any item with additive or manufacturing

or image. The number of results obtained is huge but the contents are

not relevant. This result is listed here only to record the search history

and for investigation purposes.

(e) Advanced search on Figshare: The aim of the advanced search is to

use operator and syntax, such as AND and keyword, to precisely obtain

datasets with desired terms and fulfil the task that cannot be done using

only basic search. The only filter used in this advanced search is Item

Type: dataset

• :keyword:“additive manufacturing” AND :keyword:“machine learn-

ing”: 2

• :keyword:“additive manufacturing” AND :keyword:“deep learning”:

3

• :keyword:“additive manufacturing” AND :keyword:“deep learning”

OR “machine learning”: 3

3 results have been obtained that have the required keywords.
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Summary of results from Figshare: we may take as output, the resulting num-

ber of 46 datasets from the basic search 2.

4. From Zenodo: Basic search on Zenodo, filter: Typedataset Access Rightopen

The basic search conducted using the following search strings:

• additive manufacturing image: 6,625

• “additive manufacturing” AND image: 10

• additive AND manufacturing AND image: 4

• “additive manufacturing” AND “machine learning”: 0

• “additive manufacturing” AND “deep learning”: 0

• “additive manufacturing” AND image AND “machine learning”: 0

The basic search on Zenodo supports search operators and keywords can be

directly searched using string and “”.

Summary of results from Zenodo: 10 datasets from the second search can be

considered as an initial search output for further screening.

5. From AmeriGEO: Filters:None, but when the search is specified to datasets

these are the results:

• “additive manufacturing” AND image: 32

• additive AND manufacturing AND image: 290 (there are too many non-

relevent datasets in this)

• additive manufacturing image: 6,410 (the range of searching should be

further narrowed down to reduce the number of non-relevant results)

• “additive manufacturing” AND image AND “machine learning”: 0

• “additive manufacturing” AND image AND “deep learning”: 0

• “additive manufacturing” AND image AND “machine learning” OR “deep

learning”: 0
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• “additive manufacturing” AND image AND “machine learning” AND

“deep learning”: 0

• “additive manufacturing” AND ”machine learning”: 0

Summary of results from AmeriGEO: 32 datasets can be considered for screen-

ing.

6. From NIST (with filter: manufacturing and dataset):

(a) Basic search Filter:Research TopicManufacturing, TypeDataset

• additive manufacturing image: 77 (the range of searching should be

further narrowed down to reduce the number of non-relevant results)

• “additive manufacturing” image: 35 (reduced the range)

• “additive manufacturing” image “machine learning”: 0

• “additive manufacturing” image “machine learning” “deep learning”:0

Without filter:

• “additive manufacturing” “machine learning”:0

• “additive manufacturing” “deep learning”:0

(b) Advanced search on NIST: As the basic search on NIST does not sup-

port Boolean operators. To utilise Boolean operators on NIST, advanced

search must be conducted.

• keyword=“additive manufacturing” AND keyword=“machine learn-

ing”: 0

• keyword=“additive manufacturing” AND keyword=“deep learning”:

0

The results from NIST are stable in numbers when the terms are additive

manufacturing and image, but when further limiting the application to

“machine learning” it drops to 0. When using advanced search, it turns

out that there is no item that carries the keywords “additive manufac-

turing” and “machine learning” or “deep learning” at the same time.
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Summary of results from NIST: there are 35 results found in the advanced

search on NIST.

7. From Kaggle: There is no filter option, but searching is specified to a dataset

type. The terms on Kaggle date search are treated as tags. It also seems to

apply an AND logic between the tags by default. That is the reason why when

more terms are added, the number of results are reduced.

• “additive manufacturing”: 6 (the page indicates 7 results, but in fact,

only 6 results shown)

• “additive manufacturing” image: 3 (the page indicates 4 results, but in

fact, only 3 results shown)

• additive AND manufacturing AND image: 3 (same as above)

• additive manufacturing image: 3 (same as above)

• “additive manufacturing” “machine learning”: 0

• “additive manufacturing” AND image AND “machine learning”: 0

• “additive manufacturing” AND image AND “machine learning” AND

“deep learning”: 0

Overall, on Kaggle the results obtained from the search is much less than

Mendeley and Figshare. Even when just a single tag “additive manufacturing”

was used, the number of results obtained is still as small as 6 and the queries

retrieved the same datasets so there were duplicates and overlaps in the results

from individual queries.

Summary of results from Kaggle: 6 datasets can be considered for screening

8. From DataCite: The filter applied in this search is Work Type: Dataset

• additive AND manufacturing AND image: 43

• additive manufacturing image: 40

• additive+manufacturing image: 40
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• “additive manufacturing” AND image: 57

• “additive manufacturing”+image: 57

• “additive manufacturing” and image and “machine learning”: 6

• “additive manufacturing” and image and “machine learning” and “deep

learning”: 1

Overall, as with previous search systems there are overlapping datasets among

the results from different queries.

Summary of results from DataCite: 57 datasets can be considered for screening

9. From Google Dataset Search:

• additive and manufacturing and computer vision: 10

• “additive manufacturing” and image:25

• additive and manufacturing and image: 32

• additive manufacturing image: 42

Summary of results from Google Dataset Search: 42 unique and non-duplicated

datasets will be input into the next stage

In Table 3.2 we present the summary of outputs from the database searches.

Table 3.2: The numbers of results after searching on the databases

Name
Number of retrieved results

(this is likely to include duplicates)

DOE Data Explorer 41
Mendeley 83
Figshare 46
Zenodo 10

AmeriGEO 32
NIST 35

Kaggle 6
DataCite 57

Google Dataset Search 42
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3.3.3 Screening and Data Extraction

Based on the search results, screening of those results was then carried out. This step

is another essential part in stage 4 “Searching/Screening” from the 7-stage process

for carrying out a systematic review and during this stage we examined each dataset

retrieved from each of the 9 dataset search system outputs, we checked for duplicates

across the search results and we examined each result for relevance to the topic of

our systematic review and only those which satisfy the criteria presented earlier in

Section 3.3.1 are kept. For each dataset the following details from the search results

were recorded as the output from the screening and data extraction process:

1. bibliographic information (study title, authors, year of publication)

2. information about datasets generation (Technical background, collection)

3. information about data processing (labelling, annotation)

4. dataset characteristics (size, format)

5. information about the experiment/applications (type of ML/DL involved in

the related dataset)

6. impact measures (the number of citations. This may not be an exact value

because some of the datasets have no published information/documentation,

thus there is no reliable way to know if a dataset has been cited. The aim

of including this term is to show when datasets have been effectively used by

other research.)

We now present the screening results from each of the databases in turn:

From DOE Data Explorer After screening the 41 results from the search, there

are 3 results found from DOE Data Explorer which are all provided by Scime,

who is the first author of these datasets. The 3 datasets have similar names

but differ in version numbers and the associated DOIs, which are [108], [109]

and [110].
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Following closer examination, the last 2 datasets [109] and [110] are quite

similar, so we may consider to merge them into one which is [110] though

currently they are separate DOIs, so we do not treat them as duplicates.

Another issue with these datasets is that the access is open but they are

not directly accessible. Globus data transfer (https://www.globus.org/data-

transfer) is required in order to browse and download these datasets, though

this is not against the selection criteria as the access to the dataset is still

counted as open.

From Mendeley After screening the 83 results from the search, [108] [109] [110]

are duplicates and will not be counted so there are only 4 datasets that meet

the criteria, as follows.

Qualified results (1): This dataset [111] is labelled, open for access and a

manuscript is provided in the early version.

Possible results (3):

• [112] is not images, but used for a CNN based machine learning applica-

tion;

• [113] This dataset is small as only 4 images, “The example data should

help researchers understand the code and functionality, but you may need

to obtain a larger dataset to analyse” – comment by the author of the

dataset.

• [114] This dataset is described as large with 1,272,273 images in total, but

the original URL link is no longer working, if searched through Apollo,

the University of Cambridge Repository. Several datasets with a very

similar name can be found and all point to the same author, Douglas.

There is more detail on this dataset illustrated in Section 3.4.1

The issue with the results from Mendeley is that there were many non-relevant

results among the 83, it also turns out that some of the results are missing

authors and some results have been marked as dataset only providing some
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text work but we are not able to access the actual dataset. For the 3 possible

datasets they are highly specific to their original tasks for supporting the

purpose and limited approaches to be used, rather than providing general

images that can be flexibly used or are sufficient for common ML/DL tasks.

Overall, there are 4 outputs from the screening process.

From Figshare: From the 46 searchresults, 2 datasets are selected, which are [115]

and [116] as none of the others pass the screening criteria. We should mention

that the dataset in [117] is not properly labelled, thus not qualified at the

screening stage.

Overall, from Figshare there are 2 outputs that will be considered.

From Zenodo: Out of the 10 datasets from Zenodo, only one result [118] shows

potential to meet our requirements. However, after looking into the related

article, it is not an image dataset, but a numerical dataset with some images

that are not for ML/DL applications. So there are no suitable outputs that

can be obtained from Zenodo.

From AmeriGEO: The 32 datasets from the search output have been screened.

However, none of the results are related to ML/DL, none show potential to

meet the selection criteria. Thus 0 output from AmeriGEO.

From NIST: The situation with NIST is very similar to that with AmeriGEO.

Initially, there were 35 results retrieved as input into the screening stage.

Most of the results are related to AM, but none of these datasets are designed

for ML/DL applications. Thus 0 output from NIST.

From Kaggle: There are 6 results obtained from searching on Kaggle to be further

screened out of which there is just 1 dataset [119] that meets the selection

criteria. This dataset is open to the public but it does not have publication

information, such as a DOI, as it is not officially published. But this does not
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go against the selection criteria therefore it is included. Thus, the screening

output from Kaggle is 1.

From DataCite: There are 57 datasets can be considered for screening from Dat-

aCite and after screening through all the search results, there are 2 datasets

that meet the criteria. However these are duplicate results already included

from DOE Data Explorer [108] and Mendeley [111]. For this reason, the re-

sults will not be counted again to avoid duplication. The final output of new

datasets, not already discovered elsewhere, from DataCite is thus 0.

From Google Dataset Search: As Google Dataset Search is a meta-search en-

gine, the 42 results from the searching stage highly overlap with the previous

8 database searches. After applying the selection criteria, there is no non-

duplicated result, i.e. each of the results from Google dataset has already

been discovered from one of the other search services.

As a summary from the screening process we repeat the entries from the earlier

Table 3.2 and add a column indicating the number of datasets after screening and

this is shown as Table 3.3. Details of each of the individual datasets are shown in

Table 3.4. In the next section we will summarise the usefulness of these 10 datasets

for this thesis.

Table 3.3: Numbers of datasets retrieved from the searching and from the screening
process

Name
Number of retrieved results

(this is likely to include duplicates)
Number of results

following dataset screening

DOE Data Explorer 41 3
Mendeley 83 4
Figshare 46 2
Zenodo 10 0

AmeriGEO 32 0
NIST 35 0

Kaggle 6 1
DataCite 57 0

Google Dataset Search 42 0

Total (no duplicates included) 10
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Table 3.4: Summary information on the results from screening

Reference
Technical
background

Processing Size Format(s)
Type of
ML/DL
Applications

Number
of citations

[108]
layer-wise powder
bed images
from 20 layers

Labelled,
Manual

140 images
and files of
annotations

.tif

.npy
Segmentation 5

[109]
layer-wise powder bed images
from two different powder bed
printing technologies

Labelled,
Manual

6 datasets
and files of
annotations

.tif

.npy
Segmentation 4

[110] later version of the dataset above
Labelled,
Manual

dataset
above

.tif

.npy
Segmentation 3

[111]

3D point cloud is pre-processed to
achieve the target surface of the part.
then converted to a 2D depth
image

Labelled,
Manual

43.4k images .tif Classification no info

[112]
Feature-based CNN network and data for
laser powder bed fusion process

Labelled,
no images.
Converted
to .npy

.npy
Training of
CNN

no info

[113]

Using machine learning to predict
dimensions and qualify diverse part
designs across multiple additive
machines and materials

Labelled, 4 images
.tif
.csv

Predictions no info

[114]
Images of the extrusion
3D printing process

Labelled
1,272,273
images

.jpg

.csv
Error detection no info

[115]
emission images from in-situ monitoring
of additive manufacturing

Labelled,
Manual

150 images .png
Training,
Testing

no info

[116]
emission images from in-situ monitoring
of additive manufacturing

Labelled,
Manual

150 images .png
Training,
Testing

no info

[119]
Stainless Steel 316L printed
on an ExONE printer

Labelled 336 images .png
Detection,
Segmentation

no info

3.4 Critical Appraisal of Screening Output

From the searching and screening process, it can be seen that there are only a lim-

ited number of datasets associated with additive manufacturing which are findable

using dataset search engines – 10 in total. Our finding is that even for a dataset

which is about the process of AM and which uses ML in some way, the related

application is very specific to particular AM tasks or to the manufacture of specific

AM outputs that may not be applicable to other processes or outputs in AM. For

example, the shapes of manufactured parts in the AM builds can be quite different,

thus a dataset for detection and segmentation tasks for building gears, for example,

may not be helpful or applicable when the object that needs to be justified changes

significantly in shape to a type of gear, for example. In other words, there is a lack

of utility across the manufacture of different objects in re-using images. This may

also explain the reason why the number of citations to the datasets we have found

is low because they are too specific and are not used in other research.

Unfortunately, in the screening results which yielded the pointers to these 10
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datasets, the majority of these datasets are used for the detection and segmentation

of large components in the manufacture rather than for the detection of microstruc-

tures such as melt-pools and porosities which is the focus of this thesis as described

earlier in the research questions presented in Section 1.3 of Chapter 1. Detecting de-

fects such microstructures in the melt-pool can be still done even when the geometry

of the part changes for example from one gear part to a different gear part. Most of

the datasets from the screening results have been created and are available as open

access to support some other research question specific to the parts being manu-

factured rather than focusing on general issues such as porosity and microstructure

faults as we do here. In fact, from these 10 screened results only [111] and [110]

provided detailed manuscripts which give a description the dataset and describe the

value of the development of such a dataset to support microstructure detection in

melt-pools.

Apart from the two datasets mentioned above, only one other dataset meets

our criteria and that is [116] which is work published from this thesis and which

is described later. This shows that there are no openly available databases from

the AM process which could be used in ML applications to detect microstructures

in melt-pools, apart from the database published from this thesis, and this gives

justification for this thesis to create our own dataset in order to apply ML to AM

processes and we describe this later in the thesis.

3.4.1 Further Detail on Datasets from the Screening Pro-

cess

This section delves into each dataset identified during the screening process to pro-

vide insights into their characteristics and utility. The discussion on each covers a

description, potential applications, accessibility, and any related code or functions, if

available. This should be read in conjunction with the results presented in Table 3.4.

1. Dataset[108]
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• Description: contains layer-wise powder bed images from three powder

bed printing technologies: laser powder bed fusion, electron beam pow-

der bed fusion and binder jetting. There are 60 .npy files with manual

pixel-wise labelling and 140 top-down layer images from different type of

parts, originally used for training and evaluation of deep learning models

in [108].

• Potential: has potential to support the advancement of deep learning

models for object detection and segmentation however the labelling presents

challenges as it requires AM domain expertise to categorise the data. Ad-

ditionally, classification accuracy remains around or below 50% indicating

that the dataset may lack a sufficient sample size.

• Accessibility: openly available but only accessed via Globus, a research

cyberinfrastructure developed and operated as a not-for-profit service by

the University of Chicago. Information regarding citation and download

statistics is not provided.

• Code and Functions: no associated code or functions are available.

2. Datasets[109] and [110]

• Description: [109] and [110] refer to different versions of the same dataset

series sourced from laser powder bed fusion (EOS M290 and AddUp

FormUp 350 printers) binder jet (ExOne M-Flex printer). Materials in-

clude 17-4 PH Stainless Steel, GammaPrint-700, Inconel 718, Maraging

Steel, and H13 Steel. Dataset contains top-down layer images from differ-

ent types of part with corresponding ground truth pixel masks, primarily

used for training and evaluation of deep learning models for anomaly and

defect detection algorithms.

• Potential: Similar to the dataset in [108], this dataset facilitates the de-

velopment and testing of computer vision and machine learning-based

anomaly and defect detection algorithms and potentially for object de-

68



tection and segmentation. Similar to the challenges in [108], the content

and arrangement of the dataset are highly specific to the original research,

presenting challenges for re-use in other scenarios as well as also requiring

AM domain expertise.

• Accessibility: openly available but only accessed via Globus, where down-

load statistics are not provided.

• Code and Functions: no associated code or functions are available.

3. Dataset[111]

• Description: contains images from Fused Deposition Modeling (FDM),

also known as Fused Filament Fabrication (FFF) and consists of 434

scan files as heightmap images from the top surface of the 3D printed

parts. Each heightmap image is divided into a 10 by 10 grid (100 seg-

ments in total) resulting in 43,400 images which are manually labelled

and divided into 4 categories: (a) Over Printing Situation, (b) Normally

Printed Situation, (c) Under Printing Situation, (d) Empty.

• Potential: manually labelled and categorised and divided into training,

testing and validation sets. Compared to [108] [109] [110], this dataset is

more easily re-used in ML applications and can be used for the develop-

ment of deep learning applications for classification and segmentation in

AM.

• Accessibility: openly accessible on on Mendeley data, providing good ac-

cessibility.

• Code and Functions: the labelling tool (UI) based on MATLAB are avail-

able with the dataset but there is no associated function presented.

4. Dataset[112]

• Description: sourced from computer-aided design rather than images cap-

tured from an AM monitoring process and not in the format of images.
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Dataset is a set of binary files storing numpy arrays (.npy) consisting of

features that are combinations of struts with circular and square cross-

sections and rectangular walls that are generated by FreeCAD software

and a Python script.

• Potential: this dataset focuses on the features of geometries designed us-

ing FreeCAD. The dataset with the code for training is open however the

format and structure is specific to the original research meaning it can

not be conveniently re-used in other common ML tasks without further

processing.

• Accessibility: dataset and code openly accessible on on Mendeley data.

• Code and Functions: code for configuration and training of the model

in the original paper are available and there is no associated function

available.

5. Dataset[113]

• Description: only 4 example images are included to help researchers un-

derstand the code and functionality illustrated in the original paper which

is about ML models to predict the geometric accuracy and quality of AM

parts using feature descriptors such as nominal dimension and feature

shape.

• Potential: the provided 4 images are very limited for ML applications and

are not categorised.

• Accessibility: Dataset and code openly accessible on on Mendeley data.

• Code and Functions: code for configuration and training of the model pre-

sented in the original paper are available. There is no associated function

available.

6. Dataset[114]
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• Description: dataset comprises 1,272,273 labeled images depicting the ex-

trusion 3D printing process. Images primarily capture the printer’s nozzle

during operation, rather than the manufactured part. Each image is anno-

tated with parameters including flow rate, lateral speed, Z offset, hotend

temperature, hotend target temperature, bed temperature, timestamp,

and nozzle tip X-Y coordinates. Annotations serve as training data for a

multi-head deep residual attention network designed to forecast current

printing parameters within the extrusion process.

• Potential: dataset holds significant potential due to its size, however, for

broader adoption in machine learning applications several challenges must

be addressed. Firstly, the lack of documentation and clear instructions

regarding the dataset structure poses a barrier. Secondly, the labeling

method and data organisation are closely tied to the original research’s

approach and model, necessitating additional processing to adapt the

dataset for other machine learning applications similar to those encoun-

tered in other datasets and highlighting a common challenge in the field.

• Accessibility: Dataset and code openly accessible on on Mendeley data.

• Code and Functions: code to generate results in the original paper are

available. There is no associated function available.

7. Datasets[115] and [116]

• Description: these are subsets of an emission images dataset generated

from selective laser melting (SLM) developed from 2D representations of

emission information generated and collected by an InfiniAM monitoring

suite from a Renishaw 3D printer. Images represent the melt-pool con-

ditions of the printed layers in manufacturing parts of Titanium alloy

(Ti6Al4V) during the AM process. Images are manually inspected to se-

lect 150 images as defected [116] and 150 images as normal samples [115]
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for use as ground truth.

• Potential: this is a valuable resource for computer vision-based machine

learning applications, particularly in classifying melt-pool emissions. Com-

pared to previously listed datasets, this dataset is less complex in struc-

ture but smaller in volume though its compactness enhances practical

utilisation in image-based computer vision ML applications. This dataset

also boasts the highest download count among those listed in Table 3,

with over 2800 downloads in total.

• Accessibility: Dataset and code openly accessible on on Figshare data.

• Code and Functions: no associated code or functions are available.

8. Dataset[119]

• Description: this comprises 336 images of Stainless Steel 316L, printed

using a Binder Jetting additive manufacturing process on an ExONE

printer. Images capture the grain boundaries of the material and are

originally intended for training deep learning models to develop universal

segmentation methods for grain boundaries. Each of the 336 grain images

is paired with a segmentation mask making the dataset readily usable for

training machine learning models.

• Potential: this dataset holds potential for computer vision-based machine

learning applications on grain structure segmentation and on applications

related to grain size and grain boundary analysis. With a size comparable

to the datasets of emission images from [115] and [116], the structure of

this dataset facilitates use in machine learning without significant obsta-

cles in terms of domain expertise.

• Accessibility: Dataset and code openly accessible on kaggle

• Code and Functions: code used to perform boundary segmentation are

available on kaggle. No associated function is available.
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3.4.2 Summary of the Screening Results

The screening results which yielded the 10 datasets showed that the majority are

used for detection and segmentation of large components in the manufacture rather

than for detection of microstructures such as melt-pools with variable porosities

which could be used in computer vision-based classification and detection tasks.

This issue is observed across datasets [108][109][110][114] where their specificity

to some original research results in difficulties when attempting to apply them to

other general machine learning applications in AM. Yet detecting microstructure

defects in a melt-pool can still be done even when the geometry of the part changes,

for example from one gear part to a different one. Of the 10 screened results only

[111] and [110] provide detailed manuscripts which give a description the dataset

and describe their value to support microstructure detection in melt-pools, while

the dataset that is [116] is of emission images generated from the melt-pools of

an AM process. These findings show the limited availability of open and suitable

image datasets from the AM domain that meet the requirements for use in machine

learning applications, particularly in the context of microstructure detection.

Even though we searched and screened datasets from 9 individual databases,

those searches may not have been exhaustive because the 9 databases that we used

index only data repositories. There is the possibility of available datasets which are

not indexed by the dataset search engines we used and are thus missing from our

search. In order to investigate this as a possibility, we searched through the supple-

mentary information in journal articles where research data is sometimes provided

by authors. For this we focused on Elsevier’s journal “Additive Manufacturing” [120]

which is the top-ranked journal in the AM field. In the next section we describe

our results when searching the archives of that journal for papers with associated

datasets.

Even though we searched and screened datasets from 9 individual databases, that

searching for datasets may not have been exhaustive because those 9 databases that

we used index data repositories only. There could also be some available datasets
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which are not indexed by the 9 dataset search engines we used here and thus are

missing in the outcome of the searching process. In order to close off this as a

possibility, we sought advice from domain experts and, as recommend, we searched

through the supplementary information in journal articles and for this we focused on

Elsevier’s journal “Additive Manufacturing” [120] which is the top-ranked journal

in the field . In the next section we describe our results when searching the archives

of that journal.

3.5 Additive Manufacturing Datasets as Supple-

mentary Information in Journal Articles

The journal “Additive Manufacturing” is published by Elsevier currently has 72 vol-

umes and the latest issue at the time of writing is 5 June 2023. It is a peer-reviewed

journal that provides academia and world-leading industry with high quality research

papers and reviews in additive manufacturing. The scope of the journal comprises

new technologies, processes, methods, materials, systems, and applications in AM

and the journal’s impact factor is 11.632 making it Q1.

The total number of articles included in the journal is 3,261 as of May 2023, which

is relatively large, and all those articles are searchable on the Scopus website. The

searching and screening process, similar to the method used earlier in Section 3.3,

was repeated in order to discover articles which satisfy the selection criteria described

below.

3.5.1 Selection Criteria for Journal Articles

There are 4 criteria that should be considered in the searching and selecting process

in order to be included in the outcome when searching journal papers. Because the

journal is already in the domain of additive manufacturing, it is no longer necessary

to specify the domain in the criteria. Thus, we can directly focus on the aspect of

datasets and machine learning applications. The 4 selection criteria are shown as
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follows:

1. The articles and related datasets must be open and accessible;

2. Datasets should be in the format of image datasets. Numerical datasets and

videos will be excluded and the selection must be of valid image datasets and

not only images of figures or charts;

3. ML/DL related applications must be involved in the article for which the

dataset is provided;

4. Should be readily available for ML/DL practices i.e. there should be no need

for heavy computational processing before putting the dataset into use.

3.5.2 Search Strategy for Journal Articles

The Elsevier journal “Additive Manufacturing” is available on the ScienceDirect

website of which the searching engine supports Boolean operators and phrases. The

initial searches on ScienceDirect were carried out on May 22nd, 2023, using different

combinations of keywords and operators in an iterative manner. When the search

process was completed the results were up to date as of May 24th, 2023. To ensure

the searching process is reproducible, the filter options as well as the final set of

search queries and the associated number of relevant results retrieved per query

with no filtering option selected, are shown as follows:

• “machine learning”: 204

• “deep learning”: 68

• “machine learning” OR “deep learning”: 217

• image AND “machine learning”: 177

• image AND “deep learning”: 64

• image AND (“machine learning” OR “deep learning”): 188
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These results indicate many papers published in this journal which address or use

some form of machine learning, but we are only interested in those papers which

have included a freely available dataset as supplementary information to the paper.

On the ScienceDirect search engine, where searching was conducted, there is a

filter option that limits the searching results to be open access and open archives.

Although many of the articles are not marked as open, the full text of the articles

are still accessible via institution subscriptions, for example, Dublin City University.

Thus, we consider such articles still count as open access and we leave the “open

access” criteria to be verified in the next step where a further insight will be given

on the searching results in order to valid relevant datasets. Searches were then

conducted without the “open access” filter option in order to retrieve as many

potentially qualified results as possible. Then, the scope was narrowed down by

applying additional terms such as “machine learning”,“deep learning”, image and

dataset with operators to limit the number of results and retrieve articles that are

potentially relevant to the next step, which is screening. The results of this are

shown below.

• dataset AND “machine learning”: 93

• dataset AND “deep learning”: 43

• dataset AND (“machine learning” OR “deep learning”): 96

Summary of results from the Additive Manufacturing journal:

We take the resulting number of 96 articles from the search with no restriction

or filter, as the number of articles obtained from search results for further manual

screening. This output may contain many non-relevant results but we used this

outcome with the aim to not miss possible articles that can further support our

research.

For further details, the distribution of the number of the retrieved articles which

span the years 2016 to 2023 is shown in Table 3.5. The numbers in the table indi-

cated that prior to the year 2020 there are only 7 research papers related to machine
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learning or deep learning in the additive manufacturing journal with datasets pro-

vided. Since 2020, the number of articles about ML or DL increases each year. Due

to the fact that volumes in 2023 are still in progress, there are only 11 results found

in 2023 in Table 3.5.

Table 3.5: The numbers of articles in each year from journal searching

Year Number of retrieved results

2023 11
2022 32
2021 25
2020 20
2019 4
2018 3
2016 1

Total 96

3.5.3 Screening of Journal Articles

Screening journal articles for accessibility

All 96 retrieved articles from the Additive Manufacturing journal have been individ-

ually manually checked in order to ensure that information on the related datasets

can be obtained from those articles. During this process, due to the fact that infor-

mation on available dataset access can be hidden in certain parts of a paper such as

sections that describe methods, results, discussions, conclusions and supplementary

documents, each paper was examined until confirmation that the associated dataset

can or cannot be accessed. As a consequence, compared to the screening process

for datasets in Section 3.3.3 screening all search results from journal articles took

longer to complete. After the screening process we found that most articles from

the journal focused on illustrating their methods, experiments and results, but only

a minority of them clearly indicted how to access the datasets used in their research.

Of the total of 96 papers, the authors of 2 research papers declared that the

datasets involved in their work are confidential or they do not have permission to

publish the datasets. In another 13 research papers, the authors stated that datasets
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will only be available on request, which means these datasets are not open to public

currently. There are 58 papers that described their datasets or mentioned that

datasets were used in their experiments, but they did not indicate the way to access

the related datasets. A further 8 articles are review papers with no specific dataset

to be screened, and furthermore, there are 4 results are not relevant to the topic

of this thesis along with 1 duplicated result that has already been shown earlier in

Table 3.4.

At this stage, 86 results have been excluded for reasons of accessibility, non

relevance or duplication. The remaining 10 results that provided links to their

related datasets are further examined according to the criteria that have been stated

in Section 3.5.1, and described in the next sub-section.

Screening journal articles for eligibility

There are 10 journal articles for the final round of screening inspection, during which

we will decide if their associated datasets are suitable to be used in this thesis.

Table 3.6 shows information on the 10 remaining results in the terms of technical

background or topic, the way in which data is labelled (processed), dataset size,

format, machine learning applications and the number of citations to the paper.

The eligibility of each dataset was verified and analysed in terms of data types

and characteristics for the application of machine learning. During the screening

process, 9 of the papers and their datasets were further excluded and only 1 dataset

remained in the final outcome. The full process of screening is also illustrated in

the flow diagram shown in Figure 3.1. In the next section, which is section 3.5.4,

we will conduct critical appraisal of the 10 journal articles related datasets to give

a further detailed descriptions on these 10 datasets and illustrate the reason for the

exclusion and inclusion of each dataset.
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Table 3.6: Screening results and related information on the 10 papers with accessible
datasets from the journal Addititive Manufacturing.

Reference
Technical
background

Data processing Size Format
Type of
ML/DL
Applications

Cited
by

[121]
Automated detection of part quality
during two-photon lithography
via deep learning

manully labeled
over
5GB

tiff,
csv,
npy

classification 16

[122]
Machine learning for the intelligent
analysis of 3D printing
conditions using environmental sensor

not image datasets 8MB csv classification 8

[123]
MeltpoolNet: Melt-pool characteristic
prediction in Metal Additive Manufacturing
using machine learning

not image datasets 588kb csv classification 8

[124]
Machine learning-based identification
of interpretable process-structure linkages
in metal additive manufacturing

not image datasets 1.93MB csv regression 0

[25]
A machine learning method for defect detection
and visualisation in selective laser sintering
based on convolutional neural networks

manully labeled 604MB jpeg classification 55

[125]
Machine learning and knowledge graph
based design rule construction for
additive manufacturing

not image datasets
25MB
(all files)

x3p
knowledge graph
based design

53

[126]
Correlations between thermal history
and keyhole porosity in laser powder
bed fusion

labeled with
parameters

over
10GB

tiff,
csv,
xlsx

feature extraction,
regression

52

[127]
Deep-learned generators of porosity
distributions produced during metal
Additive Manufacturing

genreated data
by GAN

678MB tiff
Generative
Adversarial
Networks

1

[128]
Linking process parameters with
lack-of-fusion porosity for laser powder
bed fusion metal additive manufacturing

not image datasets 16.4KB csv regression 0

[129]
Parametric analysis to quantify process
input influence on the printed densities
of binder jetted alumina ceramics

not image datasets 11KB xlsx regression 29

3.5.4 Critical Appraisal of Journal Articles

For a more detailed discussion on the screening results which reduced 10 possible

articles with datasets to just 1, during the examination process it was discovered that

6 out of the 10 datasets are not image datasets, such as [122] which uses numerical

sensor data that was gathered to record the manufacturing process; [123] and [125]

record the (numeric) parameters that describe the characteristic of the melt-pool;

datasets descried in [124], [128] and [129] are series of processing parameters of the

AM processes. The numbers and terms in these datasets are very specified to the

related individual research topic. Because these 6 datasets do not meet the selection

criteria that being in the format of images, they have been excluded from the final

result.

For the remaining 4 datasets, they contain images and they are open access, but

not all of them are ready to be used by other research without further processing.

For example, the dataset in [121] is generated from two-photon lithography and
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Figure 3.1: An overview of the screening process for articles in the Additive Manu-
facturing journal

the dataset from [126] is based on X-ray and infrared imaging. The methods and

experiments in these research papers are novel, but the data structures and the way

of labelling are very specific to the associated research. Thus, these datasets are
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difficult to be used generally and some of the labelling can be hard to achieve or

interpret without communication with the experts in the original research team. For

this reason, we consider these 2 image datasets are not within the selection criteria

of readily available for general practice of machine learning research.

In 1 of the 2 remaining articles, the author of [127] used Generative Adversarial

Networks (GAN) [130] to create stochastic realisations of synthetic parts from a

limited dataset of experimental parts. This research can be considered as a good at-

tempt to address the “small data challenge”. However the dataset that is published

corresponding to this research only contains the GAN generated images as their

experimental results. The ground truth image data that are used to develop their

machine learning model, which we are really interested in, are not included. Fur-

thermore, the GAN generated image datasets only include sample images of pores,

resulting in only a single class in the dataset. Due to this fact, the usage of the

dataset is very limited for general practice in machine learning. In addition, for bet-

ter reliability, real datasets from additive manufacturing are preferred rather than

datasets generated via deep learning models. For these stated reasons, we consider

this GAN generated dataset in [127] is not suitable to be included in our further

research in this thesis.

Additional detail of resulting image datasets

To provide additional detail of datasets [121], [25], [126] and [127], they each contain

images and are open access, but not all are usable in other research without further

processing. For further insight, the descriptions, potential usage, and accessibility of

the 4 remaining datasets are illustrated below:

1. Dataset[121]

• Description: contains raw and processed videos capturing three univer-

sally encountered polymerisation states of a two-photon lithography (TPL)

process. The dataset includes Python scripts which read the video clips

and crop out and save regions of interest from every frame.
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• Potential: shows potential for benefiting researchers in the fields of addi-

tive manufacturing and applied machine learning, particularly in image

processing and real-time detection applications. However, the limitations

are that the videos lack feature labelling thus requiring human annotators

with domain expertise and the TPL process used here is not yet widely

adopted on an industrial scale.

• Accessibility: openly accessible on Mendeley data.

• Code and Functions: python script to process video frames and extract

RoI as images.

2. Dataset[25]

• Description: comprises images of the powder bed surface of a selective

laser sintering (SLS) system, obtained during real manufacturing pro-

cesses. The 8514 powder bed images monitor and document the quality of

the printing process and are labelled into two classes: ”OK” and ”DEF.”

The dataset is organised into subgroups, including balanced datasets for

training, testing, and validation, enhancing its suitability for common

machine learning applications.

• Potential: primarily used in research aimed at developing machine learn-

ing-based methods for non-destructive quality assurance in SLS additive

manufacturing processes. This dataset contributes valuable sample im-

ages of SLS powder beds. The post-processing and organisation of the

dataset facilitates its use by others in applications such as defect classi-

fications and object detection, without requiring high levels of expertise

in the AM domain.

• Accessibility: openly accessible on Mendeley data.

• Code and Functions: no related code or functions are available.

3. Dataset[126]
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• Description: consists of simultaneous X-ray and infrared (IR) imaging of

laser powder bed fusion of Ti-6Al-4V powder. Fifteen experimental runs

were performed at different scan speeds, power levels, and numbers of

passes to investigate porosity formation in real time and correlate with

the IR signature of the top surface.

• Potential: the dataset comprises raw images, partially labelled with pro-

cessing parameters from experiments. The total dataset is extensive, and

both images and parameters offer valuable information for studying the

AM process. However the labelling method and data structures are closely

tied to the original research and this requires additional processing to

adapt the dataset for other machine learning or deep learning applica-

tions. Similar challenges have been observed in previously mentioned

datasets [14][15][16] and [20], highlighting a common issue in the field

where data may be openly available, but expertise in AM or knowledge

from the original research is required before they can be used in ML-based

applications.

• Accessibility: The dataset is openly available but can only be accessed

via Globus.

• Code and Functions: no related code or functions are available.

4. Dataset[127]

• Description: comprises segmented CT scans of 12 Al-10Si-Mg tensile sam-

ples produced using Laser Powder Bed Fusion on a SLM 280HL L-PBF

printer. The dataset was used for the development of a Generative Ad-

versarial Network (GAN)-based deep learning model and while the CT

scan images are not available this dataset contains the GAN-generated

images as experimental output.

• Potential: The approach shows promise in generating synthetic parts with

porosity, holding the potential to generate more synthetic image data that
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can be utilised by other machine learning applications. However, the cur-

rent output is limited to cylindrical geometry, which may restrict its use

by other ML applications in additive manufacturing, as manufactured

parts can vary in geometries.

• Accessibility: Code and sample images openly accessible on GitHub

• Code and Functions: code for the GAN based deep learning model is

available on GitHub, but this is not within the scope of this review.

Finally, the last article [25] from the searching result proposed a machine learning

method based on convolutional neural networks for defect detection in selective laser

sintering, which is an additive manufacturing technology that uses a high-power laser

to sinter powder of materials into a solid part [131]. The dataset involved in this

research paper contains 4,000 images manually divided into 2 different classes for

defect detection tasks. The images in this dataset are also clearly separated into 3

categories for training, testing and validation that are ready to be used in the practice

of machine learning by other researchers such as in this thesis. In addition, there are

total of 8,514 raw images available in the dataset for further potential usage. This

paper, which was published in 2021, also has been cited 55 times according to the

statistics shown on the Elsevier website, which is the highest number of citations

among all papers in Table 3.6. As this dataset of defect detection in AM shows very

good potential that can be further unitised, we consider it can be used in this thesis

as part of a case study.

In summary, originally we targeted datasets which are images of microstructures,

such as in the melt-pool, from a monitored AM process. However, after scanning

through all relevant articles in the journal, we find there are no image datasets of the

melt-pool that are open access and readily available as supplementary information

from the journal. During the searching and screening process we discovered some

papers, such as [123] and [125] that described datasets related to the melt-pool,

as well as [128] that mentioned research related to lack-of-fusion porosity. How-

ever, these datasets are in numerical format which record processing parameters

84



and characteristics of melt-pools during the AM process. These datasets may be

good support in some other machine learning or deep learning applications but are

not suitable for computer vision based ML/DL approaches and tasks.

Thus, we can not utilise these datasets directly in our computer vision based

research and experiments. Furthermore, out of the 96 results from the selection

stage, there are 58 papers that did not provide information on access to their re-

lated datasets. This fact could be considered as evidence proving that not enough

attention has been paid to providing open datasets in the AM domain.

3.6 Chapter summary

This systematic review of available datasets for image-based defect detection in

additive manufacturing processes comprised two primary investigations. The first

investigation covered a comprehensive search across nine dataset databases, while

the second focused on the highly-regarded Additive Manufacturing journal. We have

conducted thorough searches through the dataset databases and the journal archives,

followed by manual examination and screenings of identified datasets, according to

a set of selection criteria. The review reveals a significant gap in the availability of

open and readily available image datasets in the field of defect detection in additive

manufacturing.

Our conclusion is that it is essential to have appropriately annotated datasets

for the effective application of machine learning, particularly computer vision-based

deep learning in the context of additive manufacturing. Without such datasets we

will not see improvements in automatic defect detection in AM processes and the

potential that this brings in terms of improved quality control and savings during

manufacture when defects are detected and can be rectified or manufacturing of the

remaining deposition layers prevented, will not be realised. The search results indi-

cate a scarcity of publicly available datasets that meet the criteria of being open,

accessible, in the appropriate format, relevant to AM defects, and robustly adaptable

to various ML applications.
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After extensive and structured searching of both dataset repositories and journal

article supplementary information for a high-impact journal in the field we found

just one suitable dataset, described in [25]. This result supports our preliminary

conclusion from Chapter 2 that there are few datasets for applying machine learn-

ing to defect detection using in-situ monitoring of the melt-pool which are open

and available. While the dataset in [25] is from a polymer additive manufacturing

machine rather than a metal powder bed machine, this is still good from a data

analytics perspective as process prediction and control is required within polymer

as well as in metal additive manufacturing. The experimental method used to col-

lect the data in [25] is reasonably well defined however to repeat their experiments

precisely the authors would also have to have detailed the geometry of the part

being manufactured, the hatch spacing, laser scan pattern, and the power setting

used during production. While the paper gives total power of the machine it does

not give the power that was used during part production and image capturing. This

absence of sufficient data to repeat the experiment is not uncommon in the area

even for papers in the Additive Manufacturing journal which is as high impact as

it gets in manufacturing journals. The absence of this additional data would be a

problem if the research was purely focused on the effect of manufacturing process

parameters but it is not an issue in this thesis as we focus on defect detection, not

the effects of such defects on the manufactured part.

In summary we believe it is OK for us to use this dataset in this thesis because

there is a stochastic nature to the additive manufacturing process and our focus is

on data analytics of the dataset which has already been classified into non-defective

/ defective subcategories. We intend to use this discovered dataset in experiments

where we use it as a case study later in the thesis and our first application is to use

data that we gather outselves.

In the next chapter we will describe the architecture of our proposed system.
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Chapter 4

The Design of an Overall System

Architecture

This chapter will introduce and present the conceptual design of the overall ar-

chitecture for the proposed framework to address the research questions listed in

Section 1.3 and contribute to validating the hypothesis presented in Section 3.2.

Although the overall architecture is designed to work as a whole framework,

the design process has been carried out step-by-step. At each step, we reviewed

and identified state-of-the-art approaches for addressing a specific challenge, then

according to the outcome of such analysis and the availability of necessary materials

and facilities, we finalised the associated design, implementation and test as well as

further adjustment of the overall development of the architecture. Ultimately, the

conceptual design was the result of an iterative process aimed at the validation of

our hypothesis. Mainly, we would like to divide this conceptual analysis work into

three steps as listed below:

1. In the first step, we focus on the problem caused by the limited size of the

dataset. The target is to design an approach that leverages the advantages

of deep learning models rather than conventional machine learning models in

order to develop a classifier which is not only efficient with limited available

resources including data and computational power, but also to generate a
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solution that can be easily adapted to different types of image patterns.

2. In the second step, we further improve our approach but in another direction.

We still target the development of the classification model, but we build upon

the outcome of the first step to improve the effectiveness of the training process

using active learning techniques. Improvements in performance are determined

by using active selection of samples from the dataset and continuously fine-

tuning the model by performing active query and learning iterations.

3. In the final step, we focus on how the conceptual design can support automated

labelling and we run validation using different available datasets and collect

performances metrics for evaluations.

4.1 Step One: Deep Learning Model with Trans-

fer Learning and Fine-tuning

To design a defect detection and automated labelling framework, the first challenge

is to address that our research is limited by the available data samples for the basic

training process as mentioned as the first research question in section 1.3. Indeed,

a substantial amount of work had to be devoted to accessing the raw data and

preparing them to be used, with multiple challenges.

The raw data used in this study were collected from the InfiniAM Spectral soft-

ware, specifically designed to operate in conjunction with Renishaw’s additive man-

ufacturing process monitoring system. The raw data are sensor data collected and

stored in the format of 3D point clouds that can only be accessed and visualised

through the InfiniAM Spectral software. Thus, they need to be further processed

before being utilised in any applications. A detailed description of this monitoring

system can be found in Section 1.1, as depicted in Figure 1.1. The specific Renishaw

machine employed is the RenAM 500Q. Detailed operational information about this

machine can be accessed online at https://www.renishaw.com/ The material used
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in the manufacturing process is a titanium alloy powder, Ti6Al4V. The printed

parts consisted of 117 dog bone-shaped testing pieces, although the recorded data

primarily pertains to the cutting surface printing layer wised. Consequently, all the

testing pieces appear as rectangles with dimensions of length (L) measuring 1 cm and

width (W) measuring 0.5 cm. Due to the limitation of accessibility, comprehensive

details regarding the dimensions of the dog bone-shaped parts are not accessible.

The process for developing the emission image dataset from the video record will be

described in the following paragraphs.

At the time of our initial access to the data source, although it was possible

to observe the 3D and 2D representations of the emission data via the monitoring

window, the spectral software which is the data processing and visualisation tool

associated with the in-situ monitoring system of the InfiniAM machine had not been

developed to have functionality to properly export the captured data into images in

a standard format. In order to export the emission images with a semi-automatic

method, we used a clicker macro to advance the monitored layers one by one in a

selected sequence in the monitoring window with a short time delay between each

clicking. Meanwhile, we also activated a screen capture software application to

record all the emission images continuously appearing in the window of the spectral

software.

As a result, we had to go through a relatively large number of emission images of

the 2D representations originally stored internally in the Spectral software and then

transform the relevant emission images from the 2D representations in the monitor-

ing window into a video. The video had to be further processed and separated into

single frames and duplicated frames had to be removed to only keep a single image

for each AM layer. Only at this point were the images are finally exported into a

set of Portable Network Graphics (PNG) files with a resolution of 440× 840 pixels.

These images still need to be manually labelled to create the initial training dataset

for the development of the classifier (see Figure 4.1).

The created dataset is highly unbalanced due to the fact that positive (or abnor-
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mal) samples are a minority. This means that the initially created dataset becomes

relatively small in size if we want to restore the balance between positive and nega-

tive samples.

Figure 4.1: Steps to export emission images from the original data source

The work reported earlier in Section 2.1.3 showed the effectiveness of an approach

that applies transfer learning with fine-tuning on a VGG-16 deep architecture for

classification when training data is very limited. This is the point where our basic

model design and development begins. The initial classifier in the overall architec-

ture of the framework is designed based on the convolutional layers of a VGG-16

model with transfer learning for feature detection and extraction, modified with
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custom neural layers for the classification task and output results according to the

extracted features. The approach will be presented in detail in Chapter 5, including

the creation of the initial datasets, the comparison of the performances between dif-

ferent setups and modifications of the classification model as well as the research for

the implementation of the CNN based initial classifier. It will also include the exper-

iments on the emission image dataset along with other different industrial patterns

in order to investigate the relevant performances and to apply relevant modifications

to improve the model.

In the early stages of the architecture design in this research, we have also con-

sidered another type of deep learning model, namely autoencoders [132]. However,

there are several problems associated with autoencoder based approaches.

Autoencoders are mainly designed to encode their input into a compressed and

meaningful representation, and to then decode it back such that the reconstructed

input is similar to the original one. In this way the Autoencoder approach generates

new samples and is able to augment the dataset. However, the generated samples

may not follow the real patterns that can be formed during the manufacturing pro-

cess. In addition, there can be situations where the generated samples are difficult

to judge and annotate even for human experts. This can bring too much noise and

uncertainty into the output and can make it difficult to successfully train the model.

Furthermore, the process of encoding and decoding for the generation of new sam-

ples would consume additional computational power and possibly demand a larger

amount of resources and increased training time.

For all the above reasons, we decided to focus on transfer learning and fine-tuning

to increase the number of labelled data based on the existing real samples from the

additive manufacturing process rather than increasing the size of the dataset by

adding generated samples. Should it be necessary to increase the total number

of training samples, we would consider data augmentation rather than generating

samples via approaches based on autoencoders.
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4.2 Step Two: Improving Training with Active

Learning

Once the concept of an initial classifier is finalised, we tackle research question 2 from

Section 1.3, and we aim to discover methods and algorithms to increase the number

of properly labelled samples in the dataset but without spending a large amount of

human resources on the labelling task. As discussed in the literature review, active

learning techniques can be a powerful approach to accomplish such a kind of task.

We estimate that by combining active learning with fine-tuning techniques, we can

further develop our framework into a human-in-the-loop mechanism that involves a

human annotator in the training process of the classification model (referred to as

the “learner”), in order to further improve the efficiency of data usage in the overall

training process and obtain classification results with a higher level of accuracy.

Figure 4.2 shows the data flow in the conceptual design including the active

learning process. In this development stage, the trained classifier is used for predict-

ing labels and evaluating the confidence via query strategies in the active learning

route. This is also the stage where the most informative samples are selected as

high priority and queried for annotation. In fact, at this stage, the approach al-

ready begins to help with labeling in an active manner by indicating which samples

can be more effective for the training of models if labeled and additionally included

in training. This in turns accelerates the creation and growth of a high quality

training dataset speeding up convergence in the training process.

This is an important step to support the functionality of this framework which

enables automatic labelling. As the samples classified by the deep learning model will

be added to the labelled dataset, the newly obtained samples are also involved in the

next cycle of fine-tuning or retraining. A classification outcome with low accuracy

may result in labelling failure that possibly reinforces itself through subsequent

similar errors in the subsequent labelling tasks. Details of this particular component

of the framework, including the implementation and setup are described later in
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Figure 4.2: Data flow in the concept of the active learning process.

Chapter 6.

4.3 Auto-labeling

Auto-labeling is the final step in the design of the framework’s architecture and is

concerned with the auto-labeling capability. The initial classifier is based on the

model outcome from the previous two stages. At this stage, we aim to evaluate the

performance of the architecture using relevant metrics and test the capability of this

framework using both the emission images and the DAGM dataset [24] for different

levels of complexities in the image patterns. The DAGM dataset was mentioned

earlier in Section 2.1.3 as being an an industrial optical inspection dataset provided

by the German Association for Pattern Recognition. We will also discuss some
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considerations around the stopping criteria for the active learning stage where the

auto-labeling begins.

4.4 Overview and Conclusions

In this chapter we have presented the key steps in the conceptual design of our

framework including the way the model can be trained with a small amount of

annotated data, the way active learning is used to determine which data samples

need to be labelled to improve the model’s training, and the value of automatic

labelling to improve the size and quality of the annotated data.

To give an overview of the overall architecture for the proposed framework, a

flow chart has been created as shown in Figure 4.3. This illustrates the flow of

data (blue and purple arrows) and processing (black arrows); the corresponding

numbered steps are listed and further explained below.

1. The total samples in the original dataset are separated into 2 groups namely

labelled (the left route) and unlabelled (right route). Data flows along the

blue arrows; The original dataset mentioned here is a general concept for all

the image samples on which the method can be directly applied. They are

already in the format of images that can be assigned labels. This is different

from the raw data described earlier in Section 4.1 where the raw data were as

3D point clouds, a format that needs to be further processed into individual

images and grouped into datasets. After this step, the dataset can be treated

as the original dataset for labeling.

2. The initial training of the classifier uses the labelled data that has not yet been

enlarged at this stage; data flows along the the purple arrow to the classifier

in this step;

3. A group of data samples are selected out of the pool of unlabelled data ac-

cording to the results of the active learning algorithms in this step;

4. The selected samples from the last step are passed to the (human) annotator

to identify their proper label(s);
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5. Samples labelled by the annotator flow to the collection of labelled dataset

(purple box). This step enlarges the size of the labelled dataset to include

manually annotated ones;

6. With the enlarged labeled dataset, fine-tuning is applied to the classifier to

improve the deep representation and therefore the classification performance.

This is also a step where the data flows from the labelled dataset to the

classifier, following the same purple arrow as in step 2;

7. As a result of further fine-tuning in the last step, the performance of the

updated classifier is examined. If the performance does not meet the stopping

criteria of the active learning process (this could be a certain performance

threshold or a certain number of labelled samples), the iteration will carry on

from step 3. In this step there is no data flow, therefore the connection is

indicated by black arrows;

8. If the performance is good enough, the resulting classifier will be used for

automatically labelling (also referred to as pseudo-labeling) and the labelled

data will further increase the size of the labelled training data.

We have now illustrated the design concepts around the overall architecture

framework. Based on the content of this chapter, development and research work has

been carried out on the relevant components as detailed in the next three chapters.
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Figure 4.3: Overview of the architecture with data flow and processing steps.
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Chapter 5

Defect Detection from Additive

Manufacturing Emission Images

This chapter will illustrate the proposed classification method where we apply trans-

fer learning with fine-tuning techniques to a deep learning model which is based on

convolutional neural networks (CNNs). The classification method is tested using a

combination of (a) an emission dataset in image format which was generated based

on a 2D representation exported from the in-situ monitoring system as mentioned

in the earlier chapters along with (b) the DAGM [24] dataset of images mentioned

earlier in Section 2.1.3, for additional data support.

In this chapter, firstly, descriptions of the initial dataset and the experimental

setup are provided in order to clarify the formation and arrangement of all the

datasets used in the experiments. Secondly, the performance of two different types

of classifiers is investigated: a Support Vector Machine (SVM) based classifier and

a CNNs based deep learning model classifier, each used for detecting whether the

input image is normal or has a defect in it. Thirdly, the chapter includes a section

that illustrates further modifications to the architecture and layers of the CNN based

deep learning model to improve classification accuracy, where all the datasets are

processed by the improved model with a comparison of performance. Finally, the

chapter also provides a list of specific parameters and settings used in the overall deep
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learning model and in the training process in order to support the reproducibility

of the classification work.

In addition, this chapter further illustrates the approach used for the initial train-

ing and fine-tuning of a deep learning model, specifically focusing on the Classifier

block shown earlier in Figure 4.3 in Chapter 4.

5.1 Creation of Initial Datasets

The first set of data to be used in our experiments was collected from the 2D

representations of the emission images generated by the in-situ monitoring suite.

The images represent the melt-pool conditions of the printed layers when printing

a group of dog-bone shaped testing parts of Titanium alloy (Ti6Al4V) during the

AM process. A total of 11,000 images were manually exported from the InfiniAM

monitoring software as described in Chapter 4 of the thesis. Initially, all the raw

image data are unlabelled and thus these raw data are not suitable to be used

directly for training. The 11,000 sample images were manually inspected in order to

select 150 images as defected samples and another 150 images as normal samples.

These were labeled and used to create a dataset considered as the ground truth in

the tests. The size of this labelled dataset is relatively small for the training of the

machine learning models. We acknowledge that the manual selection of the samples

could be better analysed and automatic methods could be used to select the most

representative samples or investigate the impact of sample selection in the training

process. However, in this investigation, we aim at demonstrating the feasibility of

the approach with limited training data and we postpone the analysis of sample

selection to future work.

As the currently available labelled data from the emission dataset are limited,

we also used a well-known industrial optical inspection dataset provided by DAGM

for testing purposes. The DAGM dataset contains 6 patterns of texture with each

texture pattern containing 1,000 non-defective and 150 defective images, resulting in

6,900 images in 12 classes. Based on the original DAGM dataset, from each pattern,
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150 non-defective sample images were selected from the original 1,000 non-defective

samples to create new groups of testing datasets that involve 6 patterns and each

pattern includes 150 defective and 150 non-defective samples. This dataset was

used in conjunction with the manually labeled emission image dataset generated

from the InfiniAM 3D model. In total, there are 7 patterns used in the experiments

along with the 6 patterns from the DAGM dataset. The emission dataset is used as

the 7th pattern and it contains samples of both defective and non-defective classes.

Figure 5.1 shows a set of examples for normal and defective AM processing from

each pattern. All the tests in the following sections are based on these datasets.

Figure 5.1: Sample images marked as Class 1-6 from the DAGM industrial optical
inspection dataset [24]. The 6 texture patterns contain normal and defective in a
particular location, marked with red ellipsoids. Images marked as pattern 7 are
those we generated from the InfiniAM emission dataset.
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5.2 Combining VGG-16 and SVM Classifiers

In this test, the image datasets are used as input for feature extraction. The features

are extracted by the CNN architecture from a VGG-16 model using transferred

weights trained using ImageNet data [6] without fine-tuning. Features are then

passed to a Support Vector Machine (SVM) classifier to detect whether the input

image is normal or has a defect. The architecture of this model is shown in Figure 5.2.

Figure 5.2: Architecture of the model using a combination of VGG-16 and SVM.

5.2.1 Hyperparameter Tuning for SVM Models

The SVM classifier divides the dataset into classes by creating virtual hyperplanes

in a multi-dimensional space. The SVM classifier in this paper is implemented using

the C-Support Vector Classification functions from the Python ML package Scikit-

learn [133]. The hyperparameters used for the SVM classifier are the type of kernel,

the regularisation parameter C and the kernel coefficient Gamma. Table 5.1 lists

the hyperparameters used in our experiments, and a brief description of what these

parameters are. In addition, some of the commonly used kernels are summarised

below:

1. Linear Kernel (linear): This kernel is used for linear separation of data.

2. Radial Basis Function Kernel (rbf): Also known as the Gaussian kernel, it is

used for non-linear separation.
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3. Polynomial Kernel (poly): This kernel is used when the data is not linearly

separable and transforms the data into higher-dimensional space using poly-

nomial functions.

4. Sigmoid Kernel (sigmoid): This kernel is often used for neural networks and is

similar to the sigmoid activation function.

Table 5.1: Parameters for the SVM classifier.

Name of
Hyperparameter

Type or Value Description

Kernel rbf, linear, poly, sigmoid
The main function of the kernel to
transform the given input data into
the required form.

Regularisation
parameter C

0.1, 1, 10, 100, 1000

C is the penalty parameter, which
is used to maintain regularisation.
It represents misclassification or error
term of the SVM classifier.

Gamma 1, 0.1, 0.01, 0.001, 0.0001
The kernel coefficient for the
RBF, the value of Gamma depends
on the number of features from the data

The grid search function from Scikit-learn is used to conduct the tuning of the

hyperparameters for the SVM model. For a further illustration, this is a method

provided by scikit-learn for hyperparameter tuning in machine learning models. It

performs an exhaustive search over a specified parameter grid to determine the

best combination of hyperparameters for a given model. This technique is useful for

optimising model performance by selecting the hyperparameters that result in the

highest cross-validated score. The following steps illustrious the process of tuning:

1. Define a grid of hyperparameters: The grid is defined as Kernel:[rbf, linear,

poly, sigmoid]; C: [0.1, 1, 10, 100, 1000]; gamma: [1, 0.1, 0.01, 0.001, 0.0001].

2. Then the grid search function trains and evaluates the model using each com-

bination of hyperparameters in the grid. The performance of each model con-

figuration is evaluated using a 5-fold cross-validation.
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3. After evaluating all combinations of hyperparameters, the best combination is

selected according to the best cross-validated score. this is automatically done

by the grid search function from Scikit-learn. In this way, the model with the

best combination of hyperparameters is obtained.

5.2.2 Classification Performance of the SVM Model

During the training and validation process, the 7 patterns were individually passed

through the model. As illustrated previously, the dataset includes 300 samples for

each pattern, which are further divided into 2 classes: 150 positive samples and 150

negative samples. 70% of the samples were used for training and the remaining 30%

were used for validation. After the grid search and training, the classification results

from the best model for each pattern and the best combination of hyperparameters

are shown in Table 5.2

Table 5.2: Classification results from an SVM classifier with hyperparameters

Pattern Class Precision Recall F1-score Accuracy Kernel C Gamma

Pattern 1
Defect 0.60 0.71 0.65

0.64 rbf 1000 0.1
Normal 0.69 0.58 0.63

Pattern 2
Defect 0.78 1.00 0.88

0.88 poly 0.1 1
Normal 1.00 0.78 0.87

Pattern 3
Defect 0.72 0.74 0.73

0.74 linear 100 1
Normal 0.75 0.73 0.74

Pattern 4
Defect 0.83 0.76 0.79

0.82 poly 1 0.1
Normal 0.81 0.87 0.84

Pattern 5
Defect 0.86 0.92 0.98

0.88 rbf 1000 0.1
Normal 0.90 0.82 0.86

Pattern 6
Defect 0.88 0.79 0.83

0.83 rbf 100 0.1
Normal 0.79 0.88 0.83

Pattern 7
Defect 0.97 0.95 0.96

0.96 poly 0.1 1
Normal 0.94 0.97 0.96

As the size of each labeled dataset is relatively small, it is remarkable to observe

how, even with limited training data, the classification results for certain patterns,

such as pattern 7, exhibit relatively high accuracy rates, achieving an overall clas-
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sification accuracy of about 96%. This is followed by pattern 2 (88%), pattern 5

(88%), pattern 6 (83%), and pattern 4 (82%). Despite these positive outcomes, the

approach still demonstrates relatively lower performance on pattern 1 (64%) and

pattern 3 (74%).

There are three possible reasons to explain such low performance. First, the

number of samples for training is not sufficient to train the SVM classifier; second,

some of the features extracted from the datasets may not be representative enough

and may contain too much unnecessary information; third, SVM may not be a

suitable classifier for certain patterns in the test data. To address these issues

and try to improve results, we propose and test a different approach based solely

on CNNs, which relies on the VGG-16 architecture extended and modified for our

specific use case.

5.3 Extending VGG-16 for Classification Using

Dense Layers

This approach to classification relies on a transfer learning method in which the

13 convolutional layers from the pre-trained convolutional layers of VGG-16 from

the previous model are still used for feature extraction and the weights in these

layers are unchanged. To modify the classifier, the SVM classifier is replaced by

fully connected layers. As illustrated in Figure 5.3, after the convolutional layers, 2

dense layers with ReLU activation function are added and followed by 1 dense layer

as the output layer using Sigmoid as the activation function, since detecting normal

or defect individually for each pattern is a binary classification task.

In this experiment, rather than directly testing on all the image groups, three

patterns which are considered to be the most challenging, the average and the easiest

according to the earlier results, are selected for further exploration. As illustrated

in Table 5.2, the selected patterns are: pattern 6, with average performance in the

previous test; pattern 4, with one of the worst performances in the previous test;
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Figure 5.3: Architecture of the model based on VGG-16 and fully connected layers.

pattern 7, with the best performance in the previous test.

5.3.1 Testing Pattern 6 with Average Performance

The initial investigation of the performance of this new model began with the dataset

from pattern 6 (refer to Figure 5.1) for binary classification and the length of training

in this test was set to 200 epochs. Accuracy and loss are the metrics used to trace

and evaluate the training and validation process. Figure 5.4 shows the curves for

accuracy and loss for both training and validation for pattern 6.

Figure 5.4: Accuracy and loss over 200 epochs (the horizontal axis shows the number
of epochs) with transfer-learning and without fine-tuning. The vertical axis in the
left chart represents accuracy while the vertical axis in the right chart represents
loss.

In Figure 5.4, the lines show an overall increase in accuracy (the left image)

and a decrease in loss (the right image) both for training and validation but with
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significant fluctuation. The results do not show overfitting as the validation loss is

not significantly larger than the training loss. Regarding the problem of extremely

high fluctuation in the validation, the following points are relevant:

1. The number of samples for the test is relatively small and as the loss is still

relatively high and unstable, even a small number of classification results will

cause major changes in the overall accuracy;

2. There may be too much noise considered as features. To address this problem,

adding a pooling layer between the convolutional and the dense layers could

be a solution;

3. According to Kim et al. (2017) [22] with a frozen network for the convolutional

layers, the results should have a level of accuracy in the range of 78%-85%.

This means that using the setup without fine-tuning, the fluctuation should be

around 80%. Fine-tuning has therefore been applied as discussed in the next

sub-section to reduce the fluctuation and improve the overall classification

accuracy.

To further improve the performance of the model, an average pooling layer was

added between the convolutional layers and the dense layers to reduce the spatial

dimension of the output from the convolutional layers. We performed a test by

training a new model for only 50 epochs to show that the modified architecture can

effectively and quickly reduce the fluctuation for accuracy and loss in both training

and validation, as shown in Figure 5.5.

After improving the model with the addition of a pooling layer, fine-tuning was

then applied in order to increase classification accuracy and reduce the loss. Based on

this new configuration, the last 3 convolutional layers from the VGG-16 architecture

are unlocked for fine-tuning. The weights in the unlocked layers are modified by the

training replications using the image datasets. Using the updated model and pattern

6, the training and validation are re-executed for 200 epochs to ensure the process

reaches convergence. The curves for training and validation are shown in Figure 5.6.
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Figure 5.5: Reduction of fluctuation in the curves of overall accuracy and loss after
adding the pooling layers (top-right and bottom-right) compared to results without
pooling a layer (top-left and bottom-left).

Around epoch 200, the training accuracy is over 97% while the validation accuracy

is around 95%. The training loss starts to converge at about the 100th epoch with

a value around 0.1 while the training loss continues to drop slightly.

5.3.2 Testing Pattern 4 with Worst Performance

Similar tests were also applied on pattern 4 and with the updated setup the valida-

tion accuracy at about the 200th epoch is also over 96% with a relatively stable value

of the validation loss of 0.1 (refer to Figure 5.7). This result is significantly more

accurate than the one obtained from the SVM classifier in the previous experiment,

where the model was not able to identify the classes for pattern 4.
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Figure 5.6: Accuracy and loss for pattern 6, using a model with pooling and fine
tuning on the last 3 convolutional layers.

5.3.3 Testing Pattern 7 with Best Performance

Pattern 7 is the emission dataset of images generated from the 2D presentation

collected and converted from the InfiniAM in-situ monitoring system. This dataset

is the one we specifically collected for this research. The model is trained using

the dataset for pattern 7 for 200 epochs. The output of the classification shows

considerably high values in accuracy for both training and validation. As shown in

Figure 5.8, the training process reaches convergence after around the 130th epoch

with a training accuracy around 99% and a validation accuracy over 98%.

5.3.4 Testing On All Patterns

The results of the classification by the model we introduced with fine-tuning has

shown significant improvement in overall accuracy across different patterns. To

complete this investigation, the remaining patterns 1, 2, 3 and 5 were also tested

individually using our modified VGG-16 architecture with transfer learning and fine-

tuning. Results for all 7 patterns are shown in Table 5.3, including the average values

(after convergence) of training accuracy, training loss, validation accuracy, validation

loss and the training duration (in epochs) for each corresponding pattern.
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Figure 5.7: Accuracy and loss for pattern 4 using a model with pooling and finetun-
ing on the last 3 convolutional layers.

5.4 Parameters and Settings

We now present the values of the parameters used in the overall model for defect

classification, as well as settings for the training process. The deep learning model

illustrated in this chapter is implemented using the Python deep learning package

Keras. Figure 5.9 describes the architecture of the model layer by layer, and the

shape of input/output tensors in each layer. Table 5.4 contains a listing of the

hyperparameters used for the training of the model.

Stopping criterion: In the tests, the numbers of epochs set for the stopping

criterion were simply set to be large enough for the curves of validation accuracy

and loss to reach convergence and where the curves would not have any significant

change with a longer duration of training. Because the input dataset is different in

each test, the number of epochs required will also be different. For example, to reach

convergence in the training process the tests for dataset 1 requires more epochs than

that required for the test of dataset 7.
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Figure 5.8: Accuracy and loss for pattern 7 using the model with pooling and fine
tuning on the last 3 convolutional layers.

Pooling layer: To reduce the spatial dimension of the output of the feature

extraction model based on VGG-16, a Global Average Pooling 2D (GAP2D) layer

was added between the outcome of the VGG-16 model used for feature extraction

and the dense layers of the classifier. The GAP2D layer receives the output tenser

from the VGG-16 model and applies a global average pooling operation for spatial

data. By doing this the number of total channels in the output of the GAP2D layer

is reduced to 512 and makes it ready to be processed in the dense layers. This is

shown in Figure 5.9.

Dense layers: We added three dense layers (also known as fully connected

layers) to our model. The activation function used in the first two layers is the

ReLU activation function, while a Sigmoid activation function is used in the third

dense layer for binary classification.
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Table 5.3: classification results from the modified VGG-16 architecture with transfer
learning and fine-tuning

Patterns
Avg.
Training
Accuracy

Avg.
Training
Loss

Avg.
Validation
Accuracy

Avg.
Validation
Loss

Training
Duration
(epochs)

Pattern 1 0.98 0.03 0.96 0.09 800
Pattern 2 0.99 0.02 0.98 0.03 400
Pattern 3 0.98 0.04 0.96 0.09 600
Pattern 4 0.97 0.05 0.96 0.10 200
Pattern 5 0.99 0.02 0.98 0.04 400
Pattern 6 0.97 0.05 0.95 0.09 200
Pattern 7 0.99 0.03 0.98 0.03 200

Table 5.4: Hyperparameters used for training the deep learning model.

Name Type / Value Description

Optimiser
Stochastic Gradient

Descent (SGD)

Optimisers are used to change the
attributes of the neural network
to reduce the losses

Loss function Binary cross entropy
The loss function computes the
quantity that a model should seek
to minimise during training

Learning rate 0.001
The step size at each iteration
while moving toward a minimum of
a loss function during the training

Evaluation metric Accuracy, Loss
The metric is a function to judge the
performance of the model

5.5 Discussion

From the results obtained it is clear that the deep learning model introduced in our

approach which leverages transfer learning and fine-tuning has relatively good clas-

sification performance on all 7 patterns in the initial dataset. For certain patterns,

such as pattern 5 and pattern 7 the results show higher values in accuracy even

before any optimisation. More importantly, by replacing the SVM with fully con-

nected layers as a classifier, the approach allows the overall model to be fine-tuned

using a relatively small amount of data to further adjust the weights in both the

convolutional and fully connected layers for low performance patterns. The appli-

cation of fine-tuning greatly improved the accuracy in the classifications for those
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Figure 5.9: Overall model including the VGG-16 architecture layers, the GAP2D
layer and the dense layers for classification. The value “None” in the shape of tensors
indicates the dimension is a variable.

patterns and it is also expected to allow the model to be continuously improved as

the available datasets grow in size.

With the aid of transfer learning, this approach greatly reduces the required

amount of labelled data and computational power needed for training. In fact,

manually creating large training databases is time consuming, expensive, and often

infeasible in industrial production settings. The lack of properly labelled data is a

common issue for the application of ML, especially in AM processes.
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5.6 Experiments on Images from Additive Man-

ufacturing

In the previous sections we illustrated the feasibility of transfer learning and fine-

tuning by applying relevant techniques to a convolutional neural network based

deep learning model. Following that we performed classification related tasks on an

industrial dataset, the DAGM dataset and on our own emission images dataset. So

far, all the work that has been done has been focused on the study, investigation

and experiments on the task of classification.

Although classification methodologies can be developed into effective approaches

for various applications in real industrial setups such as monitoring of the printing

process of additive manufacturing, in certain circumstances the object of interest

that is to be verified will require further detailed and higher level information which

can be beyond the scope of classification techniques. This occurs when the tech-

niques of object detection take over the work in order to provide desired properties

and detailed information about objects detected in the emission images in order

to support subsequent analysis, control and modification tasks. In this section, we

test several approaches for object detection and segmentation using computer vision

including the conventional approaches as well as some of the recent deep learning

based approaches.

5.6.1 Object Detection Using Conventional Approaches

This section aims to investigate the performance of some of the conventional ap-

proaches to object or blob detection from images generated during the additive

manufacturing process. In this we use LoG, Difference of Gaussian (DoG) and DoH

techniques. For illustration of the different techniques we use a sample colour image

which is an original image before it is then converted to grayscale. We show the

colour version as the RGB image is much easier for manual observation of the stages

of processing. The colour version of the image is shown in Figure 5.10.
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Figure 5.10: Sample image used for illustrating blob detection via conventional
approaches.

To further process the image, it was converted to grayscale as shown in Fig-

ure 5.11 and then we applied a threshold of the mean intensity value of the total

of all pixels and this is shown in Figure 5.12. This threshold may not be the best

solution, but here it is just used for testing purposes for blob detection.

Figure 5.11: Greyscale version of image used to illustrate performance of algorithms.

For blob or object detection, the scikit-image Python package was used. To

investigate the performance of different algorithms, blobs are detected using 3 algo-

rithms and for illustration, all blobs are marked using red circles. This is represented

as a triple (x, y, r) where x and y are the position of the centre of the detected blobs
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Figure 5.12: Result after applying thresholding on the greyscale version of image.

and r is the radius as illustrated in the following subsections.

Testing using Laplacian of Gaussian (LoG)

This is the most accurate and slowest approach. It computes the Laplacian of

Gaussian images with successively increasing standard deviation and stacks them

up in a cube. Blobs are the local maxima in this cube. Detecting larger blobs is

especially slower because of larger kernel sizes during convolution. Only bright blobs

on dark backgrounds are detected. The output is shown in Figure 5.13.

Testing using Difference of Gaussian (DoG)

This is a faster approximation compared to the LoG approach. In this case the

image is blurred with increasing standard deviations and the difference between two

successively blurred images are stacked up in a cube. This method suffers from

the same disadvantage as the LoG approach for detecting larger blobs. Blobs are

again assumed to be bright on dark and the output on the sample image is shown

in Figure 5.13.
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Figure 5.13: Comparison of the performance of different algorithms for blob detec-
tion

Tesing using Determinant of Hessian (DoH)

This is the fastest approach. It detects blobs by finding maxima in the matrix of the

Determinant of Hessian of the image. The detection speed is independent of the size

of blobs as internally the implementation uses box filters instead of convolutions.
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Bright on dark as well as dark on bright blobs are detected. The downside of DoH

is that small blobs (smaller than 3 pixels) are not detected accurately. The output

on the sample image, along with the output from the other 2 approaches, is shown

in Figure 5.13.

5.6.2 Discussion on Conventional Approaches to Blob/Object

Detection

To further improve the detection performance using conventional approaches we

can consider three points. First, we can apply filters to reduce noise in the image

before applying the filtering threshold. Second, we can find a more appropriate

threshold to better segment the grayscale image and thirdly we can select the most

suitable algorithm for blob detection tasks. In practise all these improvements can

be time-consuming to evaluate multiple detection algorithms and to compare their

performances.

Furthermore, as shown in the illustrating images in Figure 5.13, there is a com-

mon issue across the three algorithms we used that the blob detection algorithms do

not only consider some connected blobs as a single one, but also group unconnected

close blobs into a single circle/blob which can be inaccurate. This motives us to

proceed on the investigation of an approach to blob detection with higher capabil-

ities, namely the Mask R-CNN which is one of the state-of-the-art deep learning

techniques on object detection.

5.7 Testing Using Mask R-CNN

In this investigation, we will investigate the performance of Masked R-CNN on

sample images that contain microstructure defects collected from additive manufac-

turing.
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5.7.1 Source Images

For the initial study, a series of images that contain microstructure defects collected

from a group of 3D printed parts manufactures using Al-7Si-0.3Mg alloy have been

supplied to us. The situation in this study is similar to our previous research: the

samples contained in the images are limited in number and the certain objects in the

microstructures that we are searching for in each sample are also scarce. Considering

this situation, we decided to leverage the advantage of Mask RCNN, transfer learning

and fine-tuning rather than training from scratch in order to overcome the issue of

potentially insufficient training data.

The original source of the data are 15 images captured by camera from 3D printed

Al-7Si-0.3Mg samples. The shape of these samples, the objects being manufactured,

are cubes with a dimension of 5mm × 5mm by 5mm. To investigate the microstruc-

tures in the samples, etching treatment has been applied to selected surfaces of the

samples where the samples were etched with Keller’s reagent (HF, HCl, HNO3 and

water) by an immersion method and holding for 25-30 seconds. After etching the

samples were cleaned with water and dried with a hot air hair dryer.

Figure 5.14 shows an example of the surfaces of the layers in sample 1 from the

image set. Under 5× magnification, the left image shows a section of the surface

of the layer before etching and the right image shows the appearances of the mi-

crostructures in a section area of the layer surface after etching. It should be noted

that the sections shown in the left and right images in Figure 5.14 do not corre-

spond to each other due to the limits of the original image set. However, the images

do illustrate the effect of the etching treatment in order to significantly expose the

microstructures that were previously covered under the surface, and the image on

the left is used to illustrate this concept. The interesting objects for the purpose of

our research are only present in the images of the surface layer after etching.
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Figure 5.14: Appearances of the surface of various sections of the layer from sample
1, before etching (left) and after etching (right) under a 5× magnification.

5.7.2 The Microstructure Objects

In general, there are two types of microstructures contained in the images namely

melt-pools and void spaces. Figure 5.15 shows an example of these relevant objects.

In this research, the object that we focus on is the melt-pool as a target for apply-

ing the deep learning method for object detection. There are two reasons for this

decision:

1. From the aspect of geometry, in this set of images the shapes of the melt-pools

are in a general pattern that potentially can be learned by a deep learning

model while the shape of the void spaces can be quite variable and may not

follow general patterns.

2. When considering availability, the number of samples of the melt-pools that

can be segmented to created training dataset for deep learning based object

detection are far larger in number than the number from the shapes of the

void spaces. Thus, in comparison to the void spaces, it is more feasible to

chose melt-pools as the object to be detected in this work.

5.7.3 Creation of Training Data

To create a dataset for the training of a deep learning model, we divide a single image

that contents the shapes of melt-pools into smaller sub-images such that each sub-
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Figure 5.15: Examples of melt-pools (green marks) and void spaces (red marks).

image involves several samples of melt-pools for a total of around 40 sub-images. For

the annotation work, an online tool called makesense.ai [134] for annotation has been

used to annotate the melt-pool as objects in the sub-images using a polygon. An

example of such an annotation is shown in Figure 5.16. The annotation information

is saved in COCO JSon format to match the input requirement of the specific Mask

R-CNN model that will be described in the next section.

Figure 5.16: Examples of annotations on the melt-pools as objects to be detected.

119



5.7.4 Using the Mask R-CNN Based Model

The Mask R-CNN based model is mainly based on the Mask R-CNN for Object

Detection and Segmentation that was developed by Matterport in [135]. The imple-

mentation of this Mask R-CNN on is in Python 3 as well as the Keras deep learning

packages with TensorFlow used as the back-end. This model can detect instances of

interesting objects and generate bounding boxes and segmentation masks for each

instance in the input image. It is based on the Feature Pyramid Network (FPN)

[136] and uses a ResNet101 [137] backbone. As further explanation, FPN combines

low-resolution, semantically strong features with high-resolution, semantically weak

features via a top-down pathway and lateral connections. This feature pyramid has

rich semantics at all levels and is built quickly from a single input image at scale

and without sacrificing representational power, speed, or memory. The model is also

pre-trained using the image data from COCO so it can be directly used for further

tuning.

5.7.5 Results from Initial Testing

After training the model, we tested it on the subsection image from a sample image,

as shown in the top position in Figure 5.17. For observation, out of the total results

detected by the trained model, 9 segmented objects which correspond to melt-pools

have been selected and are shown together in Figure 5.17

Looking back on this approach, the annotation work on the training samples

consumes much time and the quality of the drawing of the polygon to indicate the

shape of the object can also impact the performance of the training and the resulting

model. In fact, as shown in the segmented results in Figure 5.17, some edges do not

exactly match the actual shape of the melt-pool and in some case the melt-pool is

not significant on the image so it was considered as background rather than as an

object. This means that not all melt-pools can be effectively segmented from the

image.

We aim to improve on this preliminary result by acquiring more image samples
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Figure 5.17: Examples of detected melt-pools from the sample image.

with standard quality and to collaborate with experienced engineers and researchers

for better annotation work on the images. On the other hand, if possible in the future

work, a further investigation into the Mask R-CNN model could also be helpful in

the utilisation of such kinds of framework as Mask R-CNN which has various versions

and results in terms of its performance on other tasks.
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5.8 Conclusions

In this chapter, several studies into object detection related techniques have been

presented. We then used some of these techniques as initial investigation to test on

image data generated from monitoring of the additive manufacturing process.

The work was somewhat limited by the availability and supply of data and the

time taken for annotation and thus this testing on object detection may be brief but

we still consider the study and investigation is a good extension into the scope of

computer vision-based inspection of data produced from additive manufacturing.

The approaches that have been studied and tested in this chapter show the

potential for this form of computer vision to be feasible as assistance for analysis and

detection of the detailed structures present in the images generated from monitoring

of additive manufacturing. This would include such as automatically counting the

number of melt-pools on a window of a layer, the detection and calculation of the

approximate sizes of the melt-pools and determining the distribution of the melt-

pools or other microstructures. We will leave this as on-going work and a part of

the future research.

5.9 Chapter Summary

In this chapter, a deep learning model based on Convolutional Neural Networks

(CNNs) has been designed and tested to automatically identify abnormal images in

seven types of defect patterns from different image datasets. These datasets include

emission images from the AM process of parts made using titanium alloy Ti6A14V

along with other patterned images from the DAGM dataset [24]. In the proposed

approach that has been illustrated in this chapter, we leverage information about

emissions collected through in-situ monitoring and represented as images, one image

for each layer deposited onto the object or part being manufactured. These images

represent a dataset we have curated and used to train the CNN based deep learning

model. The experiments have demonstrated that the model pre-trained and fine-
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tuned can obtain good performance even with relatively low computational power

measured in terms of the number of epochs needed before convergence, and with

only a very limited amount of training data.

The model proposed and tested in this chapter can be used as an effective feature

extractor and classifier with limited labelled data for training. We believe that the

ability to generate more labelled data using the outcome of this deep learning model

is necessary, as it not only enables faster convergence (with a limited number of

epochs), but it also represents a valuable resource to be used by other researchers.

For this reason, there are further investigations into the combination of the model

with active learning techniques to develop a framework that can produce good qual-

ity labelled data to be used when applying machine learning to AM processes. Thee

will be described in the chapters to follow.
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Chapter 6

Combining Transfer Learning and

Active Learning Feedback in AM

Defect Detection

Due to rapid developments in the Additive Manufacturing (AM) industry and the

development of monitoring technology used during the AM process, there has been

an increase in the size of the data generated, collected and stored during the man-

ufacturing process. As a result, it is common that raw data collected by an AM

monitoring system is not labeled and the large amount of unlabeled data usually

exceeds the capability of manually analysing and labeling it. This creates an im-

pediment to exploiting this data fully. For example it is challenging to train high

performance supervised deep learning models for applications like defect detection

with insufficient properly labelled data samples, as is the case here.

As illustrated earlier in Chapter 4, transfer learning is a technique that first

performs training on a dataset in one domain called the source domain and then

modifies the weights in the model it has learned using data from that source do-

main and applies the trained model to a target domain that is different from the

source. This is done to allow rapid progress in re-training a model into the target

domain and to support improved performance of computer vision related tasks such
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as classification on text [138] and images [139], video recognition [140], hand gesture

recognition [141] and human action recognition [142].

On the other hand, active learning [26] is a machine learning technique in which

a reduced amount of labelled data is used to train a model but there is interactive

labelling of new data points in order to improve the performance of a model trained

on data which includes these new labelled data points. As further explanation, active

learning is a methodology that prioritises learning the most informative data which

potentially has the highest impact on the supervised training of the machine learning

model in order to accelerate and improve accuracy of the training process. Both

transfer learning and active learning can be considered as design methodologies, and

the combination of transfer learning and active learning together allows leveraging

small amounts of labelled data to improve the performance of the training process

of deep learning models.

This chapter is included in the thesis to describe the proposed method where we

apply active learning techniques to a deep learning model developed using transfer

learning. This is accompanied by fine-tuning techniques to further investigate the

performance of the training process of the model, which also recognises the learner in

this active learning process. All this is done in order to further improve the efficiency

of data usage in the overall training process and we aim to obtain classification results

with higher accuracy and with lower loss for the downstream application, namely

the classification of deformities and defects in the addititive manufacturing process.

In addition, this chapter further illustrates the approach of the actively train-

ing process of the deep learning model, specifically focusing on the Active Sample

selection and Annotation blocks shown in Figure 4.3 in Chapter 4.

6.1 Implementation

This section is a follow-on that continues from the study introduced in section 2.2.1

of Chapter 2. The approaches and experiments described in this section are based

on the application of active learning built on top of the transfer learning and a fine-
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tuning model that was developed in Chapter 4. To develop the deep learning model

based active-learner and to construct the active query training iteration pipeline, a

set of developing packages for Machine/Deep Learning are selected after investiga-

tion for their capability and compatibility. Indeed, though it is a fundamental step,

the implementation of the overall active learning architecture is an essential proce-

dure for any of the tests, experiments, evaluations and validations that we present

later.

6.1.1 Necessary Software Packages for the Implementation

In comparison with the design process of the overall architecture that has been

illustrated in Chapter 3, completing the programminging works for the necessary

features required detailed investigation and study into the machine learning pack-

ages in Python. There are several Python packages available for the particular

construction of the specific parts of the whole processing pipeline we propose to

investigate. As a matter of experimental reproducibility, we consider it is necessary

to provide a list and an illustration of all the necessary packages used in our study

and development of the active learning architecture which we do in this section.

Keras for the Implementation of a Deep Learning Model

Though this Python package has been used earlier in Chapter 4 to carry out all

the experimental processes of implementation, transfer learning and fine-tuning, the

description of the use of Keras at that earlier point in the thesis was brief, just one

single sentence. Thus it is necessary to list this package here in order to give a clear

indication of the significance of its use in the thesis.

As an already developed feature in previous illustrations, the learner part of this

work, which is based on the CNN deep model, is implemented using the Keras [143]

deep learning packages. Keras is a high-level deep learning API of TensorFlow 2

[144] which is an end-to-end open-source machine learning platform with four key

abilities:
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1. Efficiently executing low-level tensor operations on CPU, GPU, or TPU.

2. Computing the gradient of arbitrary differentiable expressions.

3. Scaling computation to many devices, such as clusters of hundreds of GPUs.

4. Exporting programs to external runtimes such as servers, browsers, mobile

and embedded devices.

Based on the advantages of TensorFlow 2, Keras further provides a highly productive

interface, essential abstractions and building blocks for developing solutions with

high iteration velocity and allows users to take full advantage of the scalability and

cross-platform capabilities of TensorFlow.

Software Packages Used for Active Learning

In this section we present work where further study was carried out to select the

appropriate software package in order to develop suitable solutions to adapt the

work that was developed using Keras, to our active learning pipeline. Initially there

were 4 Active Learning Frameworks that had been considered as possible choices

for the tasks, these frameworks being modAL [145], ALiPy [146], libact [147] and

AlpacaTag [148]. It worth mentioning that PyTorch Active Learning is also an

excellent Library for common Active Learning methods. However, as our work is

based on the Keras deep learning model, PyTorch was not taken into consideration.

Unfortunately, though some of the 4 packages have good functions and features, such

as ALiPy and AlpacaTag, they do not have sufficient compatibility to collaborate

with our previous work due to dependency and version issues.

The lack of relevant documentation and worked and illustrative examples for

learning was also a major concern in using these packages as part of the imple-

mentation of our work. For the remaining two Active Learning Python packages

modAL and libact, they have a similar interface and are both based on scikit-learn

[149], which is one of the most popular libraries for general machine learning in

Python. However, in comparison, the documentation for modAL has better detail
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and worked examples which provides more support in learning and practice for cod-

ing work. More importantly, modAL can seamlessly integrate Keras models into the

active learning workflow by adapting the Keras deep learning model using wrappers

API. This feature further makes modAL the most suitable choice from the overall

listed active learning frameworks to fulfill our implementation requirements of an

Active Learning mechanism in our research.

6.1.2 The Active Learning Mechanism

As a brief summary of the concept behind our implementation, the main model of

the active learner is based on the outcome of the classifier mentioned in Chapter

4, which has been implemented using Keras with the TensorFlow deep learning

platform in Python as the back-end. To build the whole Active Learning mechanism,

another Python package for Active Learning methods named modAL was used in

combination with Keras. As further illustration, We started this work from the

standard Keras encoded VGG-16 convolutional neural network model, through the

scikit-learn wrappers API to adapt this Keras model into an Active Learning pipeline

that was constructed using modAL which is also based on the scikit-learn framework.

In this way, we were not only able to achieve the goal of an implementation for the

designed Active Learning architecture, but also were able to leverage the power of

the scikit-learn library for further tasks like model evaluation and optimisation. The

concept underlying our implementation is shown in Figure 6.1.

The Algorithm for the AL mechanism

This section presents the logic and steps of the Active Learning process in the

implemented architecture and summarises them into the form of an algorithm. The

designed overall process is based on a pool-based sampling scenario where we apply

an active learner onto the emission dataset. In this scenario we assume a small set

of labeled data L and a large set of unlabeled data U . Normally, it is also assumed

that |L| << |U |, but as our current dataset is relatively small, the initial labeled
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Figure 6.1: Concept underlying the implementation of the Active Learning archi-
tecture

data L should be even smaller than U , though it may not be too much smaller than

U in some situations for experimental purpose. L is considered to be the initial

training set for the learner while U is specified as the pool and assumed to be an

unlabeled dataset.

In the following steps, after the initial training using L, the active learner starts

to draw samples from the pool U in order to query the unlabeled dataset for the

most informative training samples according to the assigned query strategy setting.

Then the queried samples are sent for labeling to the oracle. In real world tasks, the

oracle should answer the query and assign labels to the samples, but for the experi-

ments the label of the samples in the pool U are already known as the ground truth.

The implemented learning mechanism will simulate a human annotator and auto-

matically label the queried samples for the learner, then the newly labeled samples

will be removed from the pool and added to the training dataset. As a consequence,

the training dataset will be enlarged in this manner to provide improved informa-

tiveness in the training of the active learner. Thus, the performance the learner

model will also be continuously adjusted by applying fine-tuning using the updated

training dataset in each query iteration until the stopping criteria are satisfied.

For a more detailed illustration, a pseudo-code representation of this Active

Learning mechanism is given as Algorithm 4. In the procedure, there are variables

that can be tested to investigate their related impacts on the performance of the
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overall learning process of the Active Learning model, and these include the initial

data for training Xinit, the number of Queries Qi and the number of queried samples

N in each Query.

Algorithm 4 Active learning with deep learning model

1: procedure AL for emission images ()
2: Given (Xtrain, ytrian) = (Xl,yl)
3: Assemble initial data for training (Xinit, yinit); (Xinit, yinit) ∈ (Xtrain, ytrian)
4: Create the pool by removing the initial data from the training dataset Xpool

← Xtrain - Xinit

5: Current dataset used to train the initial classifier Xteach = Xinit

6: Train initial classifier Cinit using Xteach

7: for all queries Qi do
8: Query N samples to assemble Xquery from Xpool

9: Enlarge the dataset for training Xteach ← Xteach + Xquery

10: Teach the classifier using newly obtained Xteach

11: Remove queried instances from pool Xpool ← Xpool - Xquery

12: end for
13: end procedure

6.2 Experiments

This section involves the description of the experiments carried out on applying

the implemented Active Learning mechanism on the emissions dataset we collected.

The aim of the experiments is to investigate the impact of different variables on the

performance of the training during the process of actively querying, labeling and

learning through the iterations. The tested variables in the experiments are the

initial data for training Xinit, the number of queries Qi and the number of queried

samples N in each Query. The aim of the experiments are focused on research into

effectively utilising the available data samples with a limited querying budget and

trying to enhance the performance of the training under such an experimental setup.
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6.2.1 Arrangement of the Dataset, Parameters and Settings

Arrangement of the Dataset for Experiments

For this Active Learning section, the data used is focused on the emissions image

dataset. The dataset for the experiments is based on the same dataset of Class 7

patterns (refer to Section 5.1 earlier) that have been used for the earlier experiments

when applying transfer learning and fine-tuning techniques on the deep learning

model developed in Chapter 4. Originally, the sample images which represent the

melt-pool conditions of the printed layers in a group of dogbone shaped testing

parts of Titanium alloy (Ti6Al4V) during the AM process, were manually inspected

in order to select 150 images as defect samples and another 150 images as normal

samples. This was done to form a balanced dataset.

In the setup of this experimental section, 240 samples which is 80% out of the

total 300 labelled samples are used for testing and the remaining 20% are reserved

for further use in later sections. The querying budget for the number of samples

that will be requested for labeling will vary according to the different criteria in each

experiment where testing scenarios will include different initial conditions, training

lengths, number of queried samples and the total number of queries to have been

executed. All this is done to investigate the impacts of these factors on the perfor-

mance of the training of the model.

Parameters and Settings

This section presents the values of the general parameters used in the overall archi-

tecture for the Active Learning based training and labeling process. The Python

packages for the implementation have already been listed earlier in Section 6.1.1.

In addition, the experiments are executed using Google colab [150] for online GPU

support. Table 6.1 contains a listing of the hyperparameters and query strategies

used for the training of the active learner.

Stopping criterion: The main purpose of these experiments is to test the

performance based on the number of total samples queried. The stopping criterion
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Table 6.1: Hyperparameters used for training the deep learning model.

Name Type / Value Description

Optimiser
Stochastic Gradient

Descent (SGD)

Optimisers are used to change the
attributes of the neural network
to reduce the losses.

Loss function Binary cross entropy
The loss function computes the
quantity that a model should seek
to minimise during training.

Learning rate 0.001
The step size at each iteration
while moving toward a minimum of
a loss function during the training.

Query strategy Uncertainty sampling
The strategy used to select the most
informative samples to be queried
from the pool.

Evaluation metric Accuracy, Loss
The metric is a function to judge the
performance of the model.

emphasised in the query budget is that when reaching a certain number of queried

samples from the pool, iterating of the Active Learning will cease.

Training length: For the training length in each query iteration, to efficiently

use computational power, the training length is set at 25 epochs for the reason that

according to Figure 5.8 the performance of the classification model shows the most

significant improvement before the training of epoch 25. For that same reason, the

training length of each query iteration of the Active Learning process is also set to

25 epochs.

6.2.2 Experiment A: Learning with Different Numbers of

Samples and Queries

To start the first experiment, as the initial learner, the CNN-based classifier with

the transferred weights from ImageNet as mentioned in the previous section, was

trained using 100 prepared samples for initial fine-tuning. 100 samples were then

removed from the pool as they had already been used in the training and fine-tuning

dataset.
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This test aims to investigate the impact of the number of queried samples in

each query when the same number of total training samples is available. The query

strategy used in this test is the Least Confidence query strategy. The test was

performed with 2 different combinations. In test 1, 5 samples in each query for

20 queries and in test 2, 20 samples in each query for 5 queries. In this way a

total of 100 samples are involved in the query/learning process. The result of the

classification accuracy during the Active Learning process of the 2 different setups

are shown in Figure 6.2.

Figure 6.2: Accuracy of testing on the emission image dataset, using a model with
pooling and fine tuning.

For comparison, in the left chart of Figure 6.2 the lines of the queries Q4 Q8 Q12

Q16 Q20, which are 5 queries out of the total of 20 queries, are selectively shown

in order to match the condition of the same total number of samples used in the

corresponding 5 queries in the right chart, which are labeled as Q1 to Q5. The loss

during the Active Learning process of the 2 different setups is shown with a similar

selection in Figure 6.3.

The results show that the first test is generally higher in accuracy when reaching
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Figure 6.3: Loss of testing on the emission image dataset, using a model with pooling
and fine tuning.

the relatively steady state in each query iteration. When a total of 100 more samples

are used in the both tests, the first test shows around 97% and with less fluctuation

in the overall training accuracy while the value in the second test fluctuates at

around 95%.

For the accuracy at the first epoch in each query iteration, test 1 also shows

higher values that start at over 75% and reach about 92%. In comparison, test

2 starts as low as 55% for Q1 and reaches about 87%. It is predictable that the

accuracy value of Q4 in test 1 is considerably higher that Q1 in test 2 for the reason

that the classifier in test 1 is more experienced as it has received training in the

previous queries while in test 2 the training will have just begun. However, when

further examining with more training epochs, when the accuracy no longer improves

with more epochs in the current query iteration, where the learner reaches the limit

of the learning progress with the same total amount of training samples for example

20 additional samples both in test1 and test 2, test 1 still shows a higher level of

accuracy in general.
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From the view of the loss in the Active Learning process, test1 with fewer samples

in each query for more queries than the corresponding setup of test 2 results in

earlier convergence at a lower value of loss, which means higher confidence in each

classification. This also agrees with the fact that there are less fluctuations in the

accuracy at later stages of test1. This behavior is similar to human learning activity:

one can compete a learning task with a shorter time when the learning content is

less and gain a better understanding after certain rounds of reviewing, until final

understanding. There will be further illustration of this in the discussion section.

6.2.3 Experiment B: Impact of Initial Training with Differ-

ent Numbers of Samples

In this experiment, we investigate the impact on the overall performance of the

learner when changing the number of samples used for the initial training and the

number of samples used in the Active Learning. Three sets of tests are reported

where the number of samples for the initial training were set as 20, 60 and 100

respectively. Thus, these 3 experimental setups are referred to as ini20, ini60 and

ini100 in the following content of this section. We keepi the condition the same

as in the last experiment that 5 samples were asked in each query until a total of

200 samples were processed for all three tests. The results for each test at different

total numbers of samples used in the queries, which are 120, 140, 160, 180 and 200

corresponding to line colors blue, yellow, green, red and purple with relevant query

number labelled, in Figure 6.4.

Overall, the results in Figure 6.4 show that a greater number of active-selected

samples at an early stage of the training can further improve the the final accuracy in

the training with relatively lower fluctuation in classifications results. The boxplot

of the very last query in the learning process for each of the three tests are shown

in Figure 6.5, where outliers are reducing in number as well as the distances from

the outliers to the caps of the corresponding box are also reducing while the active

selected samples is increasing.
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Figure 6.4: Classification accuracy of corresponding numbers of samples queried in
the learning process with different initial sample sizes.

The mean values for accuracy and the values of standard deviation for each of

the three tests are shown in Table 6.2. The values were calculated after removing

the outliers.

Table 6.2: Average accuracy and standard deviations in the very last query iterations
for each of the three tests.

Number of initial samples
100 60 20

Average
accuracy

98.25% 98.73% 99.38%

Standard
deviation

0.0055 0.0045 0.0026

According to Table 6.2, when a greater proportion of training samples are active-

selected in the tests using 20 initial samples (thus, 80 further samples are actively

learned for the first 100 training samples), compared to the test with 100 initial

random samples, although the improvement in average accuracy may not be sig-

nificant at around 1% which is from 98.25% to 99.38%, the standard deviation is

136



Figure 6.5: Boxplots of the very last query in the learning process with different
initial samples for each of the three tests.

smaller showing that overall classification accuracy is more stable if Active Learning

is applied earlier.

If we further observe the performance of the training accuracy of the very last

query of the three experimental setup in detail, the plotted chart in Figure 6.6 shows

that the greatest difference in the values of the training accuracy during the last

query happens at the first epoch, where the classification accuracy is relatively lower

than the mean value of the training accuracy from the 2nd epoch to the 25th but

this difference decreases as the total number of active learned samples are increased

in each of the experimental setups.

According to this particular result, two points can be considered for discussion:

1. When the total available training dataset is small, over-fitting can happen.

In the situation of over-fitting, the model tries to fit every data point in the

training set. Because the learning material available may not be sufficient

for the model to fully understand the general features of the being classified

object, it tends to “memorise” rather than “understand”. Thus, the model
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Figure 6.6: Performance of training accuracy of three experimental setups with
increasing epochs in the last query iteration.

can be inaccurate for new data samples and vulnerable to noises or outliers.

This point can be an explanation for the performance of training accuracy as it

drops in the first few epochs when the new query iteration starts. However, as

the total size of the training dataset increased by active queries and labeling,

the total number of labeled samples in the training dataset is approaching the

level to be sufficient for the model to understand the data. This is also the

reason for the difference between the values of the training accuracy at the

first epoch and the average value after fine-tuning getting smaller as the query

iterations proceeding. Fortunately, in Section 5.3.3 we have demonstrated

that the size of our emission images dataset is large enough to avoid the over-

fitting problem and complete the training of the CNN-based model in order

to achieve a relatively high classification accuracy, both in the training and

validation process even before involving the Active Learning techniques. When

over-fitting happens during the training, the validation accuracy will drop and
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the validation loss will increase as the training continues, but this is not the

case in Section 5.3.3. So even though there can be some level of over-fitting

occurring during the active labeling and dataset enlarging process, the final

results of the training should not be significantly affected by over-fitting.

2. Based on the performance found in the experiments and in addition to the

current stopping criterion, which is the querying budget, when applying this

Active Learning framework to the labelling task, the stopping criterion can be

further extended to consider the factors of the accuracy level at the first epoch

in the query iteration. For example, when accuracy reaches a certain stable

value, the active queries will be stopped, then the model will start to classify

the rest of the unlabeled samples and assign labels from the classification

results. There will be further illustration on the labeling and evaluation work

in Chapter 7, which is the next chapter. Further discussion on the overall

performance of the experiments is in the next section.

For the aspect of training loss, the performance is also similar to what has been

shown for the training accuracy that an increased proportion of active selection and

querying on the data samples yields lower loss. In Figure 6.7 the results for the values

of the training loss in each test (ini100, ini60 and ini20) at different total numbers of

samples used in the queries, which are 120, 140, 160, 180 and 200 corresponding to

the lines colored blue, yellow, green, red and purple with the relevant query number

labelled as well as Figure 6.8 which compares the change in value of the loss as the

training epoch increases for the 3 different testing setups.

6.2.4 Further Discussion of the Experiments

In real world applications using the Active Learning process for AM emission im-

ages, queries need to be confirmed by a human annotator. The workload for the

human annotator is thus highly depend on the volume of the total number of sam-

ples queried. In experiment A, where we used learning with different numbers of
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Figure 6.7: Training loss of corresponding number of samples queried in the learning
process with different initial sample sizes.

samples and queries as described in Section 6.2.2 by maintaining the same number

for the total actively queried samples, the workload for the oracle remains the same.

The results from experiment A with different test setups showed that the method

using fewer samples in each query but with more queries, performed better in the

classification tasks. In fact, according to Figure 6.2, test 1 out-performed test 2 in

experiment A by reaching about 95% in accuracy using an additional 60 queried

samples compared to the 100 queried samples used in test 2. This means that the

human annotators are able to obtain the similar performance for classification with

40 less samples identified and thus the approach can reduce the human workload in

the whole Active Learning process.

Discussion on training performance concerning accuracy output

There may be concerns with the results shown in Figure 6.2 namely that for the

performance degradation observed between active learning iterations, it is important
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Figure 6.8: The performance of training loss of the three experimental setups with
the increasing epochs in the last query iteration

to clarify that this experiment focuses on the training process. The recorded classi-

fication accuracy represents the performance on the current training data (training

accuracy), rather than the validation dataset. As the training data are updated

with each active selection (or query) iteration, the composition of the training data

changes dynamically. Consequently, at the beginning of each iteration, there is a

portion of new data unseen by the classifier. At this stage, the classifier only retains

the weights from the last iteration and is not updated by even a single epoch. This

condition, which we name it as “stage 0”, is when the first round of classification

occurs using the non-updated classifier on the updated training data. These initial

results are recorded as the first point on the plotted line for each presented query

in Figure 6.2 resulting in the decreased accuracy between active learning iterations

under the “stage 0” condition. It is noteworthy that after the first round of training,

the training classification accuracy quickly rises in the second epoch of each query

iteration, where the classifier has been trained for one epoch and learned from the
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updated training data.

Furthermore, in the early stages of the experiment, the classifier is trained using

an insufficient number of training samples. Therefore, it is not surprising that the

classification results in early queries exhibit relatively low accuracy on unseen data

newly selected from the pool at “stage 0”. As training progresses, the drop at the

beginning of each query iteration becomes less significant. This is because the clas-

sifier has been progressively trained and becomes more experienced with the overall

dataset. Consequently, it can perform classification with higher accuracy even under

the “stage 0” condition.

Regarding the training duration of each query iteration, we consider it appropri-

ate because the relevant loss values shown in Figure 6.3 reach convergence after the

training of each query iteration. Longer training may lead to overfitting, so we will

not consider increasing the training duration in each query iteration.

Discussion on the training performance in relation to the sampling size

in each query

For further discussion on the relationship between the sampling size in each query

and the associated overall training performance, it is commonly believed that a larger

sampling size in each query will result in better training results. This is because with

a larger sample size, there is a higher chance of capturing diverse instances from the

dataset. This diversity can aid in building a more representative training set, cov-

ering a wider range of scenarios and variations present in the data. However, it is

essential to note that the effectiveness of larger sample sizes in active learning can

vary depending on the specific characteristics of the dataset, the complexity of the

task, and the behavior of the learning algorithm. Conversely, smaller, more focused

queries may prove more effective, particularly when targeting specific areas of uncer-

tainty or high model confidence. Therefore, experimenting with different batch sizes

and sampling strategies is crucial to determine suitable approach for a particular

task and dataset. This necessity drove the investigations conducted in Section 6.2.2
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and we consider that it is normal to obtain observations that are surprising and

counter-intuitive in such investigations

Furthermore, it is commonly considered that labeling noise or errors may occur

when annotating individual samples. By selecting a larger batch of samples at once,

any labeling noise in individual samples may be diluted or balanced out by the

overall consensus of the batch, potentially leading to more accurate annotations.

However, this was not considered in our experiments as all labels used were cor-

rectly labeled and served as ground truth, thus avoiding noise interference in the

main focus of the tests.

Further investigation into the relationship between the query sampling method

and training performance could be an interesting topic and may be considered as a

direction for future work.

6.2.5 Discussion on Experiment B

For further investigation, the result of experiment B where we looked at training

with different numbers of samples shows that applying Active Learning at the early

stage of the training will improve the learning of the deep model and will result in

higher final accuracy and confidence of the classification tasks. One clarification to

make is that in this experiment, we used a seed because we only wanted to keep

the number of initially selected samples as the variable and maintain consistency

for other factors and conditions. However, this was only for the investigation stage

where the variability of the initially selected number exists. In further applications

of the active training method, we will actively select all the samples, thus no initial

sample will be needed, and consequently, the seed is no longer necessary in that

situation. In future development, when this training approaches a high enough level

of performance (for example, over 95% in classification accuracy), the classification

and training processes can be fully automated. In that case, the Active Learning

mechanism can be used to label new data without the help of a human oracle and

can use the newly obtained data to reinforce the training dataset.
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6.3 Chapter Summary

In this chapter we designed and tested a deep learning model based on Convolutional

Neural Networks, transfer learning and Active Learning techniques to automatically

identify abnormal emission patterns in an image dataset we created from the AM

process of titanium alloy Ti6A14V. In our approach, we leverage the Active Learning

technique to further improve the performance of the training of the classification

model while trying not to increase the potential human workload required in the

process by limiting the total number of samples queried.

The experiments in this chapter have demonstrated that the model with transfer

learning and Active Learning can obtain good performances in the training process

even with relatively low computational power and a limited number of labelled data

samples. This approach can be further developed to aid in automatic labelling of

emission image data. We believe the ability to generate more labelled data using the

outcome of our model is necessary, as it not only enables faster convergence (with a

limited number of epochs), but it also represents a valuable resource to be used by

other researchers.

The next chapter will discuss in more detail the labelling framework and related

works for evaluation.
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Chapter 7

Closing the Loop: Evaluation of

the Overall Architecture

In the previous chapter, by using the combination of transfer learning and fine-tuning

with active learning, we developed a framework that involves a human-in-the-loop

approach to continuously improve the training process of a deep learning model for

accurate classification. However, while all the experiments focus on the training

process and the results are mainly shown in terms of training accuracy and training

loss, the validation is also an important step for such an active learning framework.

This chapter aims to demonstrate the validation work of the developed framework. It

begins with evaluation on performance using several common metrics and discusses

results, then follows on with tests performed using different datasets including the

DAGM patterns for further evaluation. After validation and evaluation using the

available datasets, we will also discuss on the stopping criteria that is related to the

active learning approach and discuss our view on what should be the point where

the classifier can execute auto-labeling as a result of a classification outcome.

In addition, this chapter further illustrates the approach used to close the loop

of the labeling mechanism, specifically focusing on the auto-labelling block shown

earlier in Figure 4.3 in Chapter 4. Furthermore, this chapter proposes an approach

to address the third research question (RQ3), which involves completing the feed-

145



back loop with human-in-the-loop (HITL) features. After evaluating the classifier,

the labeling mechanism continuously improves and enlarges the training dataset by

adding more accurately labeled samples. Theoretically, the enlarged dataset offers

several advantages. Firstly, with a larger and more diverse dataset, machine learning

models can better capture the complex relationships between process parameters,

material properties, and resulting part quality in additive manufacturing. This leads

to improved generalisation performance, where the model can accurately predict part

quality for new and unseen combinations of parameters. Secondly, as the training

dataset grows, the model becomes more adept at identifying subtle patterns and

anomalies indicative of defects in manufactured parts. This increased sensitivity

improves the model’s ability to detect defects early in the manufacturing process,

reducing waste and improving overall quality control. Thirdly, additive manufactur-

ing processes exhibit inherent variability due to factors such as material variations,

machine settings, and environmental conditions. By training on a continually en-

larged dataset that encompasses this variability, machine learning models can learn

to adapt and account for these variations, resulting in more robust predictions and

fewer false positives or negatives. Overall, continually enlarging the training dataset

in machine learning applications for additive manufacturing enables more accurate

predictions, improved defect detection, better adaptation to variability leading to

improved performance and generalisation to unseen data. Consequently, these im-

provements can enhance performance metrics such as classification accuracy in ad-

ditive manufacturing defect detection. While a practical case study applying the

proposed approach will be presented in Chapter 8, Chapter 7 focuses on presenting

the related method.

7.1 Evaluation Based on Metrics from Validations

In this section we present work where a set of validation tests were carried out

for the evaluation of our framework. The tests involve balanced and unbalanced

datasets of emission images and all the 6 datasets from the DAGM patterns in the
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three subsections. The metrics used in the tests include the Receiver Operating

Characteristic (ROC) curves and the corresponding Area Under the Curve (AUC),

the confusion matrix and the calculated precision, recall, f1-score as well as accuracy.

These metrics are commonly used to evaluate the performances of classifiers in

machine learning.

7.1.1 Metrics for Tests Using a Balanced Emissions Dataset

This subsection investigates and evaluates the performance of the developed archi-

tecture based on a CNN backbone with transfer learning and fine-tuning and with

active sample selection approaches. In the first test, we used a balanced emission

dataset and execute a set of validations at the end of each query iteration during

the active learning process. The metrics collected through the series of validation

in the queries are:

1. The Receiver Operating Characteristic (ROC) curves and the corresponding

Area Under the Curve (AUC) of ROC;

2. The overall accuracy of classification from the validation in each active query

iteration;

3. The confusion matrix that indicates the number of true positives (TP), true

negatives (TN), false positives (FP) and false negatives (FN) as well as the

classification figures for precision, recall, f1-score, which will also be recorded

as part of this test in a table.

The experiments in this section are an extension from previous experiments in

Chapter 6, where the total sampling budget is 200 for the active queries and the

training. Out of these, 10% of the samples (therefore, 20 samples) are used for

initial tuning to give a basic weight modification for transfer learning after starting

from pre-trained weights from ImageNet data. The remaining training samples

are separated into 36 queries with 5 actively selected samples by the learner and

where the system asks the annotator for the label of the selected samples. After

that the learner will be re-trained (fine-tuned) with the newly updated labeled data
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points generated in the current iteration and the weights of the deep representation

for the classifier is consequently updated. The validation dataset is then used for

testing this updated classifier and relevant metrics are collected to evaluate the

performance. The validation dataset consists of 30 positive (defect) and 30 negative

(normal) samples to create a balanced dataset for the reason that if the dataset is

highly unbalanced the meaning of the accuracy score will be significantly reduced.

The samples in the validation dataset have never been seen by the learner.

ROC and AUC

To evaluate the performance of the architecture and the training approach, Fig-

ure 7.1 shows the ROC curves by plotting the true positives rate (TPR) against

false positives rate (FPR) and the corresponding AUC is depicted in the chart.

Note that the ROC remains unchanged after Query 13 as the model has reached a

point where even with minor fluctuations in the validation accuracy, the change in

TPR and FPR is not significant to cause the shape to change in the ROC curve

from query 13 to query 36 which is the final query in the active learning cycle. Thus,

6 plots are selectively shown out of the ROC curves from the first 13 queries, only

when the ROC curves have observable changes or improvements.

It is noticeable that although the AUC is already very high in value on the first

few query-training cycles, the accuracy score for the classification is relatively low

at the beginning as the training is not yet sufficient. This is also due to the fact

that in this classification task, we are transforming a continuous model output into

a binary prediction. The accuracy score is calculated using the number of correctly

classified samples divided by the total number of classified samples. The result of

a classification task not only depends on the distribution of the probability of each

prediction, but it also depends on the classification threshold, according to which

the decisions are make for the judgement of a class. On the other hand, ROC is

based on the probability of prediction and can be calculated without the specific

classification threshold. Thus, the performance of the ROC curve and the accuracy
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Figure 7.1: Changes in ROC and AUC in the first 13 queries.

score do no contradict one other. In fact, they both improve through the training

process. However, the AUC with a value of 1 on later stages of the training, such as

the AUC after query 12 in this test, does not mean the model is “perfect”. It only

stands for the ability of the current classifier to discriminate between the positive

and negative classes in the current validation dataset. The ROC curves and related

AUC in the charts indicate that the classifier is well capable for the task after about

13 queries.
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Accuracy Scores

Accuracy is another important metric to evaluate the performance of the framework.

To observe the overall trend of change in the accuracy score of the classification

tasks through the validation process in each query iteration, all the relevant accu-

racy scores are recorded at the end of the validation test and plotted against the

corresponding number of queries. We refer the reader to Figure 7.2.

From the overall performance of the accuracy score we find that the classification

accuracy of the model increased rapidly during the first few queries. At around the

13th query the model is able to correctly identify all the samples in the validation

dataset with a relatively stable performance after that point in the training process.

This is also the point around which the value of the AUC reaches 1.000 in the

overall validation. Due to the fact that this balanced validation dataset is small

and the total number of samples is only 60, resulting in the fact that even a single

classification can change the percentage of the accuracy score by approximately

1.7%. There will be a further test using a bigger validation dataset in Section 7.1.2.

Confusion Matrix and Classification Report

For further detail, the confusion matrix with the relevant numbers for TP, TN, FP,

FN as well as the precision, recall and F1 score are shown in Table 7.1. The overall

test is 36 queries to go through the 200 labeling budget, but here we only listed

the first 20 queries due to the fact that convergence happened at around Q12, after

which the performances does not show significant fluctuation and improvements. At

around Q20, the classification is correct on all the samples.

In the metrics from the classification report, precision is a good measure to

determine when the cost of false positive is high which could be the case, for example,

for email spam detection. However, in defect detection for additive manufacturing,

a false positive means a defect is detected when there is no defect, so it may cause

the engineers to check on the situation but does not demand further action if it

turns out as a false positive.
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Figure 7.2: Accuracy scores of classification tasks through the validation process for
each query.

In turn, Recall is calculated as the ratio of true positive to the total actual pos-

itive, which is the sum of true positives and false negatives. Thus, it is a suitable

model metric when there is a high cost associated with false negative, such as unde-

tected defects during the manufacturing process which may result in failure in the

whole build of the part. For labeling tasks, we would prefer all labels from different

classes to be correct. In this situation, F1 score can be a good metric to be con-

sidered as the calculation of F1 seeks a balance between Precision and Recall and

it also works well when the number of negative samples are large compared to the

number of positive samples.

Accuracy can be misleading when the dataset is highly unbalanced and the clas-

sifier tends to guess on the majority class. In our research, as the current training

and validation data are both balanced, and the overall accuracy for both classifica-

tion and validation are relatively high, using accuracy as an evaluation metric may

not result in significant error, but in further research, we may focus on a more suit-
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able metric especially when the dataset is highly unbalanced. In the next section,

the validation will be based on an unbalanced dataset.

Table 7.1: Confusion matrix and classification report for Q1 to Q20.

TN FN classification report
Query Label FP TP precision recall f1-score support

Q1
negative 30 0 0.50 1.00 0.67 30
positive 30 0 0.00 0.00 0.00 30

Q2
negative 21 9 1.00 0.70 0.82 30
positive 0 30 0.77 1.00 0.87 30

Q3
negative 30 0 0.61 1.00 0.76 30
positive 19 11 1.00 0.37 0.54 30

Q4
negative 28 2 0.97 0.93 0.95 30
positive 1 29 0.94 0.97 0.95 30

Q5
negative 28 2 0.97 0.93 0.95 30
positive 1 29 0.94 0.97 0.95 30

Q6
negative 27 3 0.96 0.90 0.93 30
positive 1 29 0.91 0.97 0.94 30

Q7
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q8
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q9
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q10
negative 28 2 1.00 0.93 0.97 30
positive 0 30 0.94 1.00 0.97 30

Q11
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q12
negative 29 1 1.00 0.97 0.98 30
positive 0 30 0.97 1.00 0.98 30

Q13
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q14
negative 30 0 1.00 1.00 1.00 30
positive 0 30 1.00 1.00 1.00 30

Q15
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q16
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q17
negative 29 1 1.00 0.97 0.98 30
positive 0 30 0.97 1.00 0.98 30

Q18
negative 30 0 0.97 1.00 0.98 30
positive 1 29 1.00 0.97 0.98 30

Q19
negative 30 0 1.00 1.00 1.00 30
positive 0 30 1.00 1.00 1.00 30

Q20
negative 30 0 1.00 1.00 1.00 30
positive 0 30 1.00 1.00 1.00 30
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7.1.2 Metrics from tests using a larger but unbalanced emis-

sion dataset

In this part of the experiment, 240 more negative samples are added to the validation

dataset with the original 60 samples and the new validation dataset consists of

30 positive samples and 270 negative samples. The total size of the dataset has

increased to 300 with 10% positive and 90% negative samples. Another test was

carried out using this dataset for validation and evaluation.

As this is a highly unbalanced dataset even when the classifier merely guesses

on the majority class, which is the class of negative samples, the accuracy score can

still be as high as 90% but far less meaningful. As the ROC curves and associated

AUC in this test also show negligible changes, we will mainly focus on the confusion

matrix and related classification report, which is shown in Table 7.2.

In the table, the performances on precision and recall improved quickly during

Q1 to Q6. In fact, the performances on the enlarged validation dataset are very

similar to the balanced dataset in the last section, since around the 12th query the

classifications are almost correct for all the samples.

After further inspection, we found out that samples that are labelled as defects

from the positive validation dataset are relatively difficult to classify as the pattern

in the image is at the boundary between normal and defected. This is very similar

to a negative training sample (but labeled as normal) in the dataset. As illustrated

in Figure 7.3 the image on the left is the positive sample from the validation dataset

and the one on the right is the negative sample from the training dataset which only

shows a little less emission compared to the positive sample. This is an example

that even a human annotator would have to think carefully before the decision of

labelling the sample. From the aspect of testing and experiments, this situation can

be good to increase the complexity of the dataset.

In order to corroborate our analysis, more tests were also done using the DAGM

datasets, which contain more complex patterns for the classifier to understand during

training. Results of this analysis are presented in the next subsection.
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Figure 7.3: Comparing a positive sample from the validation (left) and a negative
sample from the training dataset (right)

7.1.3 Validation and evaluation using the DAGM dataset

Considering the complexity of the patterns for the classifier, the DAGM datasets

(refer to Figure 5.1 in Section 5.1) are used for further testing of the framework

in order to investigate the capability of the classifier. This section illustrates the

performance of the framework on the 6 patterns present in DAGM.

154



Table 7.2: Confusion matrices and classification figures for Q1 to Q20 using the
enlarged unbalanced dataset.

TN FN classification report
Query Label FP TP precision recall f1-score support

Q1
negative 262 8 1.00 0.97 0.98 270
positive 0 30 0.79 1.00 0.88 30

Q2
negative 270 0 0.91 1.00 0.95 270
positive 26 4 1.00 0.13 0.24 30

Q3
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q4
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q5
negative 269 1 1.00 1.00 1.00 270
positive 1 29 0.97 0.97 0.97 30

Q6
negative 270 0 0.99 1.00 0.99 270
positive 4 26 1.00 0.87 0.93 30

Q7
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q8
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q9
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q10
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q11
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q12
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q13
negative 269 1 1.00 1.00 1.00 270
positive 0 30 0.97 1.00 0.98 30

Q14
negative 270 0 1.00 1.00 1.00 270
positive 0 30 1.00 1.00 1.00 30

Q15
negative 270 0 1.00 1.00 1.00 270
positive 0 30 1.00 1.00 1.00 30

Q16
negative 270 0 1.00 1.00 1.00 270
positive 0 30 1.00 1.00 1.00 30

Q17
negative 270 0 1.00 1.00 1.00 270
positive 0 30 1.00 1.00 1.00 30

Q18
negative 270 0 1.00 1.00 1.00 270
positive 1 29 1.00 0.97 0.98 30

Q13
negative 269 1 1.00 1.00 1.00 270
positive 0 30 0.97 1.00 0.98 30

Q20
negative 270 0 1.00 1.00 1.00 270
positive 0 30 1.00 1.00 1.00 30
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Pattern 1

As shown in Figure 7.4, Pattern 1 from the DAGM dataset starts with an AUC

value of 0.619 and an accuracy around 60%. When reaching early convergence, the

AUC value increased to 0.938 with an accuracy around 98% by query number 28.

At the end of the final query 36, the AUC value is 0.986 and the accuracy is still

around 98%.

Figure 7.4: ROC curve and accuracy score of classification through the validation
using DAGM pattern 1.
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Pattern 2

As shown in Figure 7.4, Pattern 2 from the DAGM dataset starts with an AUC

value of 0.636 and an accuracy around 60%. When reaching the early convergence,

the AUC value increased to 1.000 with an accuracy around 98% by query number

16. At the end of the final query 36, the AUC value is 1.000 and the accuracy is

still around 98%.

Figure 7.5: ROC curve and accuracy score of classification through the validation
using DAGM pattern 2.
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Pattern 3

As shown in Figure 7.6, Pattern 3 from the DAGM dataset starts with an AUC

value of 0.576 and an accuracy around 60%. when reaching the early convergence,

the AUC value increased to 0.996 with an accuracy around 96% by query number

24. At the end of the final query 36, the AUC value is 0.996 and the accuracy is

over 96%.

Figure 7.6: ROC curve and accuracy score of the classification through the validation
using DAGM pattern 3.
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Pattern 4

As shown in Figure 7.7, Pattern 4 from the DAGM dataset starts with an AUC

value of 0.780 and an accuracy around 60%. when reaching the early convergence,

the AUC value increased to 0.988 with an accuracy around 98% by query number

24. At the end of the final query 36, the AUC value is 0.991 and the accuracy is

still around 98%.

Figure 7.7: ROC curve and accuracy score of the classification through the validation
using DAGM pattern 4.
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Pattern 5

As shown in Figure 7.8, Pattern 5 from the DAGM dataset starts with an AUC

value of 0.531 and an accuracy around 60%. when reaching the early convergence,

the AUC value increased to 0.999 with an accuracy around 97% by query number

12. At the end of the final query 36, the AUC value is 1.000 and the accuracy is

still around 97%.

Figure 7.8: ROC curve and accuracy score of the classification through the validation
using DAGM pattern 5.
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Pattern 6

As shown in Figure 7.9, Pattern 6 from the DAGM dataset start with an AUC value

of 0.914 and an accuracy around 60%. when reaching the early convergence, the

AUC value increased to 1.000 with an accuracy around 98% by query number 12.

At the end of the final query 36, the AUC value is 1.000 and the accuracy is still

around 98%.

Figure 7.9: ROC curve and accuracy score of the classification through the validation
using DAGM pattern 6.

Summary of tests on DAGM at early convergence

Table 7.3 shows the detailed classification report at the early convergence queries

for each pattern in the DAGM dataset with training length (epochs) for the query

iteration. From the results, Pattern 1 is the most difficult pattern to be learned

by the model as it requires the most number of epochs in each query iteration and
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the most number of queries to reach the convergence at a relatively good level of

performance. Pattern 6 is the easiest pattern out of the total 6 DAGM patterns

as it only requires 12 queries to reach high performance in early convergence. In

fact, from the examples of pattern 1 samples, we find that pattern 1 in Figure 7.4 is

difficult to be identified even by the human eye as the object in the image is small

and blurred with a very noisy background.

On the other hand, pattern 6 with similar appearance to the emission images

(but in grayscale) can be learned by the classifier relatively easily. Overall, regardless

of the complexity of the patterns, all the 6 patterns from the DAGM dataset can be

classified by our approach with an accuracy over 96% which proves the capability

of the framework is relatively good and the early convergence also proved that our

approach can potentially save labelling time and computational resources.

Table 7.3: Detailed classification report at the early convergence query for each
pattern in DAGM with training length (epochs) for the query iteration.

TN FN Classification Report

Pattern Label FP TP Precision Recall F1-score Support At Query
Epochs
per Query

1
negative 28 2 1.00 0.93 0.97 30

Q28 400
positive 0 30 0.94 1.00 0.97 30

2
negative 29 1 1.00 0.97 0.98 30

Q16 150
positive 0 30 0.97 1.00 0.98 30

3
negative 29 1 0.97 0.97 0.97 30

Q24 350
positive 1 29 0.97 0.97 0.97 30

4
negative 30 0 0.97 1.00 0.98 30

Q24 100
positive 1 29 1.00 0.97 0.98 30

5
negative 30 0 0.97 1.00 0.98 30

Q12 200
positive 1 29 1.00 0.97 0.98 30

6
negative 30 0 1.00 1.00 1.00 30

Q12 75
positive 0 30 1.00 1.00 1.00 30

7.2 Discussion on Stopping Criteria

So far, the performance of this framework has been evaluated using patterns from

emission images and further tested using the 6 patterns from the DAGM dataset

to validate the capability of the model in detecting more complex patterns. We

have seen improvements in our performance metrics during the validation of the
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framework over subsequent interactions of training and active learning. Considering

the higher level of overall accuracy the framework can achieve, we consider this as

an indication of the potential for use in automatic data labelling.

To justify the training length which is the number of epochs for the active learning

of the classifier in each iteration, there are two conditions that should be meet in

order to ensure the proper training of the classifier and avoid negative effects which

would potentially be detrimental for the performances in the next iteration and

ultimately in the overall training process, which are listed in what follows.

1. The training length should be sufficient to reach the relative convergence of

the performance in the current iteration. This can be justified according to

several performance metrics. In practice, the first prioritised information for

this is the training loss as it directly assesses how the classification model fits

the current training data. The number of training epochs should be greater

that the epoch where the early convergence occurs to optimise the current

training data samples. An insufficient training length would result in more

queries required to reach a certain performance. In that situation, the human

annotator has to label the samples in the additional queries. And even so the

classifier may still not be able to reach convergence when the sampling budget

is exhausted.

2. The second condition for the training length is to avoid overfitting. Depending

on the complexity of the model, overfitting may not always happen but it is still

an important factor that should not be ignored. A simple but effective solution

to prevent overfitting is the early stopping approach, which uses both the

training loss and the validation loss to monitor the training process. Keeping

this in mind, the number of epochs in each query iteration should be limited

to not allow overfitting to happen.

It turns out that, depending on the complexity of the samples, the suitable

training length can differ: patterns with higher complexity will usually require a

larger number of epochs in the training process before the classifier achieves an
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relatively good performance which verifies the above two conditions. As further

investigation on the stopping criteria is more relevant to future work, additional dis-

cussion will be presented in the future work section of this chapter, which is section

7.4

7.3 Labeling Using Semi-Supervised Learning with

Human-in-the-Loop

Up to this point, we have presented an approach that employs a CNN based classifier

in combination with transfer learning and active learning strategies. The developed

classifier has served as a robust foundation, setting the stage for further advance-

ments in the labeling mechanism which involves leveraging semi-supervised learning

techniques with the integration of human-in-the-loop features. This approach aims

to augment and refine the labeling process, capitalising on the strengths of both

automated learning and human supervision to further enhance the accuracy of the

labelling work, the performance of the model and the applicability of the proposed

approach in the domain of additive manufacturing defect detection. In addition, this

section focuses specifically on the auto-labelling block illustrated in Figure 4.3. In

this block, the trained classifier generates labels for the samples through automatic

prediction, and these labels are then selectively supervised with the human-in-the-

loop (HITL) feature.

7.3.1 Proposed Approach to Address the Class Imbalance

Issue

In the original work of [25], Random Undersampling (RUS) and Random Over-

sampling (ROS) were used to create the balanced dataset for training, validation

and testing purposes. These methods, while a commonly used technique, are not

the most up-to-date or advanced method for addressing class imbalance in machine

learning.
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While SMOTE is a more up-to-date approach, it may not be the best choice

for oversampling image data, especially in the context of additive manufacturing.

Originally designed for oversampling tabular data, SMOTE may not fully capture

the complex patterns and structures present in image data, particularly when the

images are high-dimensional and contain intricate patterns, textures, and structures.

This limitation is especially pertinent in images from additive manufacturing pro-

cesses, where such complexity is common. Basic linear interpolation between data

points may not fully capture the complex relationships in image data. In particular

situations, image pixels have spatial correlations, and the local neighbourhood of a

pixel is critical for interpreting its value. As SMOTE does not consider these spatial

relationships, it has a risk of generating unrealistic synthetic images and this can be

problematic if the quality of synthetic images is crucial, as it is here. Furthermore,

the implementation of our CNN based model for image classification tasks in this

case study has built-in mechanisms for conducting data augmentation during the

data acquisition and model training process. Leveraging these built-in mechanisms

can be a more effective way to oversample the image data of the minority class to

handle the data imbalance problem.

For the above reasons, we will not consider synthetic data created by SMOTE.

In addition to SMOTE, there are many generative algorithms available, such as

Generative Adversarial Networks and Stable Diffusion. However, these approaches

require a lot of images to train on. In this use case this cannot be done with any

reliability as the number of images are very small and the problem will point back

to the “small data challenge” that we are already addressing in our research.

For an alternative method of oversampling, we present our approach that com-

bines uncertainty sampling with image data augmentation to effectively address class

imbalance. This method places a strong emphasis on selecting the most informative

samples, by identifying instances where the model exhibits uncertainty in its pre-

dictions. These informative samples are then systematically re-sampled using image

data augmentation techniques, including transformations such as rotation, scaling,
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flipping, and cropping according to the relevant data structures. The objective is

to generate a diverse set of new samples while preserving spatial correlations and

image quality. This approach stands out as more preferable compared to synthetic

image data generation, especially in the context of additive manufacturing, where

data reliability and fidelity are extremely important.

1. Given an actively selected batch of samples Lbatch with a number of samples

nbatch by the trained classifier Ci using uncertainty sampling, so Lbatch repre-

sents a batch of the most informative samples from the pool of samples Npool.

It is worth noting that Npool can also represent any collection of samples that

need to be processed, such as a collection of pseudo-labels generated by Ci.

However, for clarity, it is simply described as a pool of samples.

2. The size of nbatch is decided by the sampling budget of the human annota-

tor, for example, 10% of the total samples from Npool or any specific number

decided by the annotator.

3. Assuming labeling by the human annotator is correct and treated as ground

truth, the samples from nbatch samples are labeled by the human annotator.

This results in two collections: Lminor for labeled samples of the minority class,

with a sample size of nminor, and Lmajor for labeled samples of the majority

class, with a sample size of nmajor. For additional clarity, Lminor represents

the collection of samples belonging to the minority class, and nminor denotes

the actual number of samples in this collection. Similar explanations can be

applied to Lmajor and nmajor.

4. In the case of balancing the number of samples between the minority and ma-

jority classes, we prioritise oversampling the minority samples because there

are usually limited or insufficient examples of minority cases, such as defects

in additive manufacturing.

5. To prevent excessive duplication of samples and preserve dataset integrity,

oversampling will only occur once per sample. Therefore, the number of mi-
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nority samples after oversampling nover will be under the condition that nover

≤ nminor

6. As illustrated earlier in this section, image augmentation techniques such as

flipping, rotating, and resizing will be employed for oversampling the selected

samples.

7. If 2×nminor > nmajor which means not all the minority samples need to be

oversampled to achieve the balance. in this case, only nover = nmajor-nminor

samples need to be oversampled and the collection of samples that need to

be oversampled are selected by classifier Ci using uncertainty sampling from

the minority samples.If use Lover to stand for the collocation of the resulting

samples by oversampling, the resulting balanced collection of the minority is

Lbalminor =Lminor + Lover and for the balanced majority, Lbalmajor = Lmajor

8. If 2×nminor = nmajor which means the batch will be balanced after applying

oversampling to all the samples from the minority. If use Lover to stand for the

collocation of the resulting samples by oversampling, the resulting balanced

collection of the minority is Lbalminor =Lminor + Lover and for the balanced

majority, Lbalmajor = Lmajor

9. If 2×nminor < nmajor which means the number of minority samples will still

be less than the number of majority samples even after applying oversam-

pling to all the samples from the minority. In this case, after oversampling

all the minority, Lbalminor is still generated similar to the previous conditions

that collection of the minority after re-sampling is still Lbalminor =Lminor +

Lover where Lover is generated by oversampling all the samples in Lminor. After

this, undersampling will be applied on Lmajor to balance the number of sam-

ples between Lbalmajor and Lbalminor. During the process, uncertainty sampling

strategy is applied to Lmajor to select the requied nunder samples from Lmajor,

where nunder = 2×nminor. If use Lunder to stand for the collocation of the re-

sulting samples by undersampling the majority sampls, the resulting balanced
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collection of the majority is Lbalmajor = Lunder.

10. After the oversampling or undersampling process, the balanced training batch

Lbalmajor + Lbalminor are added to the original training dataset Ti. Then, the

updated training dataset can be used for the updating the deep learning model

of the classifier Ci or training new models.

The overall process of re-sampling can be summarised as Algorithm 5. This algo-

rithm will also be used in the labeling method that will be intrduced in the next

section.

Algorithm 5 re-sampling with active selection and augmentation

1: procedure re-sampling to balance the label of annotated image
samples()

2: Given a batch of samples Lbatch = Trained Classifier Ci actively selected from
a pool of samples Npool

3: Assuming labeling by the human annotator is correct and treated as ground
truth, after labeling by annotator Lbatch contains 2 collections: Lminor + Lmajor
= Lbatch

4: re-sampling Lminor and Lmajor to create a balanced data group with condi-
tions:

5: if 2×nminor < nmajor then
6: nover ← nmajor − nminor
7: Lover ← Ci actively selected nover samples from Lminor
8: Lbalminor ← Lminor + Augmented(Lover)
9: Lbalmajor = Lmajor . No option required on Lmajor

10: else if 2×nminor = nmajor then
11: Lover ← Lminor . all Lminor will be oversampled
12: Lbalminor ← Lminor + Augmented(Lover)
13: Lbalmajor = Lmajor . still no option required on Lmajor
14: else if 2×nminor < nmajor then
15: Lover ← Lminor . all Lminor will be oversampled
16: Lbalminor ← Lminor + Augmented(Lover)
17: nunder = 2× nminor
18: Lunder ← Ci actively selected nunder samples from Lmajor .

undersampling on Lmajor
19: Lbalmajor = Lunder
20: end if
21: Lupdate ← Lbalmajor + Lbalminor . Lupdate is the collocation of samples after

re-sampling that can be used to update the original training dataset
22: end procedure
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7.3.2 Pseudo-labelling with the Human-in-the-Loop Feature

Early in Section 2.2.6, Pseudo-labelling have been mentioned in the work of [70].

However, It is important to note the difference between the technique explored in

our study and the one proposed by [70] in which labeled and unlabeled data are used

simultaneously during the training schedule and the pseudo-labels are recalculated

after every weight update. Alternatively, in our study adopts the concept that use

the trained classifier to generate pseudo-labels but rather than directly update the

model using the pseudo-labels, we involved human supervision to supervise a selec-

tion from the pseudo-labels according to the desired labelling budget specified by

the annotators. During this process, the re-sampling algorithm 5 will also be applied

to maintain the balance of the annotated samples that then will be used to enlarge

the training dataset.

As previously highlighted in Section 2.2.6, three drawbacks associated with

pseudo-labelling have been identified, namely, a reliance on the initial model quality,

challenges related to class imbalance, and limited guidance. In our study, we have

already addressed the first drawback of pseudo-labelling where we trained the model

using Transfer Learning, fine-tuning, and active learning based on the uncertainty

sampling strategy. This approach has provided us with an initial classifier model of

reliable quality, effectively addressing the first drawback of pseudo-labelling listed in

Section 2.2.6. The next stage of our approach involves incorporating pseudo labels

into the model’s further fine-tuning. This stage is also where we develop re-sam-

pling strategies (refer to section 7.3.1) to solve the class imbalance problem while

introducing human-in-the-loop features into the process to update the model and

address the issue of limited guidance.

In this subsection, we will illustrate the human-in-the-Loop (HITL) features,

which will be incorporated into the Pseudo-Labelling process to address the third

drawback outlined earlier. Specifically, The purpose of this HITL feature can be

described in two key points:

1. we start the training by active selection (uncertainty sampling) for the initial
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training and perform multiple rounds of such kind of training iteration until

the classification accuracy converges at a desired level for example, around

97%.

2. The HITL feature provides responses to active queries concerning uncertain

samples, enhancing the reliability of labels assigned during the Pseudo-La-

belling process;

3. It functions as a corrective mechanism for potential labeling errors, reducing

the risk of noise amplification issues within the dataset.

By integrating human expertise and oversight into the labelling process, HITL en-

sures the accuracy and quality of labeled data, which is important for a machine

learning based applications in AM for the defect classification and labelling task and

it can further refine the performance and robustness of the model. the process can

be summarised as algorithm 6. The procedure in Algorithm 6 can be repeated as

iterations if more human supervision is required to improve the performance.

Algorithm 6 Process of Pseudo-labelling with HITL

1: procedure Pseudo-labelling with HITL
2: Given a trained classifier Ci using Ti . Ti is the orignal traning dataset
3: Lpseudo ← Ci to prediction on Npool

4: Lbatch ← Ci actively selected from Lpseudo . using uncertainty sampling
5: LHITL ← Human annotator assign label to Lbatch . Assuming annotation

by the human annotator is correct and treated as ground truth
6: Lupdate ← apply algorithm 5 on LHITL . re-sampling using algorithm 5 to

create a balanced batch of data
7: Ti ← Ti + Lupdate . update Ti by adding Lupdate to Ti
8: The updated Ti then can be used to update Ci or used to train new models.
9: end procedure

7.4 Next Steps

There can be a trade-off between classification accuracy and human workload during

the active query based training stage. This means we can consider an early stop in

the training to save the budget of samples to be labeled by annotator at the early
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convergence stage of the training process with a cost of slightly lower accuracy in

the auto-labeling stage. However, this may also potentially result in a higher risk of

a self reinforcement that determines deterioration of the quality of labelling results

if we want to use the samples for the auto-labeling to further apply fine-tuning on

the classifier. Continuing from the discussion in section 7.2, the stopping criteria is

used to decide the point where the active training process stops and the automatic

labeling can begin. As the training process of the classifier is query-based, the stop-

ping point for active learning and training should happen after a certain number of

query iterations.

In the current setup, we decided to set the stopping criteria according to the

performance metrics from the validation such as F1-score, recall, precision and ac-

curacy score. The selection of metrics should be flexible according to the structure

of the available data. The stopping criteria should be reached when the performance

metrics no longer improve significantly above a certain threshold which means the

training process is getting close to optimising the value of training in the samples,

and even further training using more samples from the pool of data will not signifi-

cantly update the classifier.

As there can be more data generated from new manufacturing processes, the

pool of samples can be updated. Thus, there can be samples to be labeled carrying

new features that require further training and update of the model for sufficiently

accurate classification. This is when the training needs to be reactivated. In this

case, the validation dataset should also be updated with the new samples to match

the updated classifier. As the labeling process during training is based on active

queries, augmenting the validation dataset should also be done in an active learning

style. Similarly to the learning and training process, in order to add new samples

in the validation dataset, we can let the classifier apply active sample selection us-

ing the same query strategy that have been used during training, but this time the

selected samples will only be annotated for the correct label and moved to the vali-

dation dataset to be further used for the evaluation of the classifier and justify the
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new stopping criteria of the active query and training for the updated classifier. We

leave this deeper analysis and experimentation on the impact of different stopping

criteria as a direction of investigation for future work. In addition, we considered the

challenges and opportunities arising when involving more data samples from manu-

facturing in the aspect of updating the validation set by further leveraging the active

learning strategy. This can also be considered in future work and development.

7.5 Chapter Summary

In this chapter we have validated and evaluated the performance of the framework

using the emission images dataset from AM as well as the patterns from the DAGM

dataset to inspect the performance of the labeling work done by the classification

model when processing the datasets with different structures and various level of

complexity. During this process, relevant performance metrics have been computed

and analysed. We have also commented on on the metric used and the ability to

generalise to different patterns and additive manufacturing tasks.

Up to this point, we have finalised the proposed adaptive human-in-the-loop

framework by utilising the advantages of the combination of deep learning with

Active Learning to produce relatively good quality labelled data within a limited

labelling budget for training and fast convergence. We have also discussed the

stopping criteria for each query iteration and the active training process to decide

the starting point for efficient automatic labeling. In the next chapter we will con-

duct an additional case study on defect detection using a different dataset, identified

earlier from [25].
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Chapter 8

A Case Study on Defect Detection

in an Additive Manufacturing

Dataset

8.1 Introduction

This case study is based on the findings of the systematic review conducted on open

datasets within the domain of additive manufacturing for machine learning appli-

cations which is described in Chapter 3. Subsequently, this chapter will provide a

detailed illustration of the deep learning model developed in the thesis for classifi-

cation, along with the relevant methodology of training and labeling as well as the

execution of associated experiments. All of this is done utilising the dataset sourced

from the scholarly work documented in the article by Westphal et al. [25] within

the Additive Manufacturing journal published by Elsevier, the only realistic AM

dataset usable for such experiments, as described in the conclusions in Chapter 3.

That dataset was developed from a collection of discrete images captured by a cam-

era above the powder bed area during the additive manufacturing process. More

specifically, the image dataset focuses on the print area of the manufactured parts,

which were originally extracted from a recorded video dataset.
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In the case study in this chapter, we will perform an investigation into the

performance characteristics of a pre-trained VGG16 convolutional neural network

model when applied to an evaluation on a dataset associated with the area of additive

manufacturing. This study stands as a valuable contribution to the field of additive

manufacturing by proposing the incorporation of active learning methodologies with

the intent of enhancing the model’s efficacy in handling the specific dataset nuances,

which are particularly pronounced within the manufacturing domain, owing to the

presence of inherent noise and data sparsity.

The experimental methodology adopted in this case study demonstrates an ap-

proach that requires a substantially reduced volume of training data in comparison

to the overall dataset size. Moreover, this approach provides a tangible illustration

of the impact of active learning techniques. Consequently, this study introduces the

concept of a HITL mechanism that effectively reduces the requisite dataset dimen-

sions necessary for classifier training while concurrently facilitating the generation

of additional labeled data instances.

To further clarify the method used in this case study, the illustration of steps and

the corresponding approaches presented in the previous chapters are listed below:

1. The first step, where the model implementation (section 8.3.1) and tuning

(section 8.3.2) are illustrated. The experiment began with a deep learning

model identical in architecture to that illustrated in Chapter 5. The detailed

architecture of the model is referenced in Figure 5.3. Transfer learning using

ImageNet data was applied to the model. The only difference is that the input

dataset this time is from the dataset specific to this case study.

2. The second step involved applying the training approach outlined in Chapter

6, specifically the training approach with active sample selection. This step

aimed to investigate the training performance on the dataset specific to this

case study. Further details on the application of the approach in this study

can be found in Section 8.3.4 and Section 8.3.5.
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3. The third step involves conducting experiments that incorporate semi-super-

vised learning with human-in-the-loop features for labeling and enlarging the

training dataset. During this process, resampling methods are used to address

class imbalance issues and balance the newly generated labels before adding

them to the training dataset. The approach used is outlined in section 7.3 of

Chapter 7.

8.2 Preliminary work

Selective Laser Sintering (SLS) [131] is a subtype of PBF techniques in Additive

Manufacturing in which a substrate comprised of powder, including materials such

as polymer, resin, or metal, undergoes controlled transformation through the appli-

cation of a high-power directional laser. This process will conduct partial sintering

or even complete melting, leading to the formation of a consolidated layer from

the powdered material. As introduced earlier in the thesis in Section 2.1.4, in 2021

Westphal et al. [25] presented work that employs convolutional neural networks as a

machine learning approach for defect detection and visualisation within the context

of Selective Laser Sintering.

Within that work, the authors reported that their best results in defect classi-

fication were obtained through a CNN model based on VGG16 architecture. Im-

portantly, the dataset used for their classification experiments is publicly accessible.

It is worth noting that this dataset originates from a polymer-based additive man-

ufacturing machine not a metal powder bed system. However, this is still a good

choice for experimentation from a data analytics perspective, as process prediction

and control are required in both the polymer and metal additive manufacturing

domains.
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8.2.1 The dataset

The open access dataset published in the work by Westphal and Seitz is originally

from an initial compilation of 9,426 raw images captured within the powder bed

environment. These images involve a variety of content, which are irregularities,

sintered elements, sintered elements with irregularities, and blanks. Some repre-

sentative examples of these image categories are shown in Figure 8.1. In a further

process, extraneous images, which are those affected by recording anomalies and un-

favorable light reflections are eliminated in order to refine the dataset and resulted

in 8,514 initially processed images. Moreover, in the original paper, the authors

illustrated another phase of further image processing, aiming to generate 4,000 im-

ages with simplified labels from the pool of the 8,514 initially processed images.

This process was conducted by utilising only the pertinent information contained

within the images and supplying the CNN models with pixels of interest. The image

processing procedure can be summarised into three distinct steps:

1. Firstly, black stripes present along the image edges were removed due to the

fact that these areas contain no pertinent information for the intended classi-

fication task. This step was conducted with the purpose of avoiding unneces-

sary computational overhead and to reduce the consumption of computational

resources to optimise the overall efficiency of the training and classification

tasks.

2. Secondly, a resizing operation was performed to ensure that the smaller edges

of each image measured precisely as 180 pixels in length. This standardisation

of image size was aimed to create uniformity across the samples and to main-

tain the consistency in the dimensions of the images for further analysis and

processing tasks.

3. Thirdly, another operation was conducted to extract a centered square area

of 180 by 180 pixels in the images, as shown in Figure 8.2. This step was

aimed to isolate a focused region of interest within each image, enhancing the
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Figure 8.1: Sample images for 1.irregularities, 2.sintered elements, 3.both sintered
elements and irregularities, 4.blanks.
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relevance of the extracted data for subsequent tasks.

Figure 8.2: Sample of processed area within an image

The dataset of 4,000 processed images was then manually categorized, dividing

them into two distinct classes for defect classification related tasks. The dataset

exhibits a well-defined separation into three balanced subsets for training (2,000

images), testing (1,000 images) and validation (1,000 images) purposes. Figure 8.2

shows examples of the processed images involved in this dataset.

Having this openly available image dataset as a foundation, we implemented

our approach that also utilises a VGG16-based CNN deep learning model that had

been developed using our own design that closely aligns the architectural frame-

work detailed in Chapter 5 of this Thesis. Our primary research objective was to

investigate the possibilities offered by transfer learning, active learning, and their

synergy, further augmented by the combination of human-in-the-loop features and

semi-supervised learning methodologies. These explorations were conducted within
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the domain of defect classification and sample labeling that are specific to the ap-

plications in Additive Manufacturing.

8.3 Method

In the original research paper by Westphal et al. [25], a series of three experi-

ments were conducted to demonstrate the efficacy of transfer learning and fine-tuning

methodologies within the context of the Additive Manufacturing (AM) domain. As

discussed in Section 2.1.4, the highest classification performance was achieved using

a VGG16-based CNN model, which served as the baseline for our own subsequent

investigations. Consequently, we did not adopt any of the more recent models such

as ResNet for our study.

It is important to note that during our examination of the original paper, we

identified an error in the results presented for the second experiment, as detailed in

Table 2.2. More specifically, the numbers within the confusion matrix obtained from

their VGG16-based model, which also constituted their best-performing results, did

not align with the number of samples in the validation dataset. To address this

issue, we communicated with the original authors of the paper in order to bring the

error to their attention. Later in their response, they provided us with a revised set

of results, which are presented in Table 8.1, along with relevant instructions detailed

in the caption of the table.

8.3.1 Implementing the CNN model on the Dataset

To conduct our experiments, we also employed a VGG16-based classifier based on

our previous work that has been illustrated in Chapter 5 which proved to be accurate

in the task of defect classification on images generated from emission monitoring

during the additive manufacturing process. All of the 6 DAGM datasets with values

are over 95% in the accuracy of all the classification task. The implementation of

our classification model relies on transfer learning in which 13 convolutional layers

179



from a pre-trained VGG16 model are used for feature extraction and the weights in

these layers had been trained using ImageNet data. After the convolutional layers,

2 dense layers with ReLU activation function are added followed by 1 dense layer as

the output layer using Sigmoid as the activation function since the targeted dataset

is divided into 2 classes for binary classification.

After the constriction of the architecture of the model, fine-tuning is applied using

the targeted dataset which as mentioned earlier, was created from SLS powder bed

images to train the model and significantly improve the performance of the model in

the classification task. Based on this classifier, we apply active learning during the

training process to further reduce the number of samples required for the training

of the model during the tuning process, similar to the active learning approach that

illustrated in Chapter 6 which is based on the uncertainty sampling method.

8.3.2 Tuning of hyperpapmeters

The process of hyperparameter tuning involves the adjustment of key parameters

that significantly impact the performance of a classification model. In our exper-

imentation, we explored various combinations of optimisers, learning rates, batch

sizes, and training epochs to optimise our model’s performance. Specifically:

1. Optimisers: We assessed the effectiveness of three different optimisers which

are Adam, SGD, and RMSprop when used in conjunction with learning rates

in a range from 10−2 to 10−5;

2. Batch Sizes: We conducted training with different batch sizes, specifically 4,

32, and 64, to assess their impact on model performance;

3. Training Epochs: We varied the number of training epochs across three values

of 30, 60, and 120 to understand the trade-offs in training duration vs. model

accuracy;

4. Cost Function: Binary cross-entropy served as the cost function in all of our

experiments.
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Moreover, to combat overfitting, we introduced weight regularisers to the two

dense layers employing the ReLU activation function, as previously mentioned. We

applied weight decay regularisation, also referred to as L2 regularisation, which

calculates the sum of squared weights. The hyperparameter tuning for weight decay

regularisation spanned a range from 10−1 to 10−4 and was tested multiple times

until overfitting issues no longer surfaced during training and validation. This tuning

process aimed to keep a balance between model complexity and generalisation ability,

ensuring the model’s robustness.

8.3.3 Comparison with the orignal paper

Before our investigation into applying active learning, we performed a preliminary

evaluation of our classification model’s performance on this data. This evaluation

focused solely on the aspects of transfer learning and fine-tuning. In this initial

testing phase, we employed the entire training dataset to fine-tune the classifica-

tion model. Subsequently, we compared the output with the baseline performance.

This preliminary assessment allowed us to establish a baseline reference point for

the capabilities of our classification model, predicated solely on the use of transfer

learning and fine-tuning techniques. It served as a valuable starting point for our

subsequent investigations into the integration of active learning and other advanced

methodologies to further enhance the performance of the model.

Following an extensive tuning process encompassing various hyperparameter

combinations mentioned earlier, we identified the best-performing configurations

for the three different optimisers, which are presented in Table 8.1. This table also

includes the classification results on the validation dataset, providing a basis for

comparison with the baseline results obtained from the original work by [25].

The initial tests served as a crucial assessment of the adaptability of our ap-

proach to the specific dataset in question. The results demonstrate that all three

optimisers can achieve validation accuracy levels approaching 98%, indicating that

our classification model is exceptionally well-suited to this dataset.
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Table 8.1: Best performing hyperparameters for each optimiser, performance results
on the validation set. Results marked ‘*’ are updates provided directly to us by the
authors of [25] in response to us pointing out errors in their original paper. An
author correction to the copy of record is now underway.

Experiment:
Optimiser, learning rate

Batch Epochs
Confusion

matrix
Accuracy Precision Recall F1-Score AUC

Baseline 64 30
496 4*

0.977* 0.992* 0.963* 0.977* 0.993
19 481

SGD, lr=0.01 4 60
483 17

0.979 0.967 0.992 0.979 0.998
4 496

Adam, lr =0.00001 4 120
490 10

0.988 0.980 0.996 0.988 0.998
2 498

RMSprop lr =0.00001 4 60
485 15

0.982 0.971 0.994 0.982 0.997
3 497

Furthermore, the results indicate that a smaller batch size, such as 4, yields

superior performance. This observation can be attributed to smaller batch sizes ne-

cessitating more frequent weight updates during training. Consequently, the model

can adapt its parameters more swiftly and can effectively respond to shifts in the

data distribution. This heightened adaptability enhances the model’s ability to ac-

climate to new datasets, further affirming the robustness of our approach.

8.3.4 Application of Active Learning in the training labelling

With the setting up of the classifier that effectively uses domain transfer principles

across the additive manufacturing image datasets, our research makes progress to

extend beyond conventional training methodologies. We carry on an exploration of

active learning techniques to further investigate the training and classification per-

formance as them evolves over the query iterations of the active learning approach.

The active learning approach introduced a query strategy to the training of the

classification model, enabling it to iteratively improve its performance by strategi-

cally selecting and labeling the most informative data samples to be used during the

process. This iterative approach allowed us to make efficient use of the labeled data

resources and to optimise the performance of the model through an active data se-

lection process. The experiment was conducted through a series of steps, performing
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a structured and iterative approach. This process involves the following key stages:

1. Active Sample Selection: In the first step, we initiated active sample selection.

This involved identifying and selecting specific samples from the pool of unla-

beled data that were deemed to be the most informative or uncertain for the

current stage of model training;

2. Query for Label: Next, we requested labels for the chosen samples. This

entailed seeking human input or supervision to annotate the selected samples

with their respective class labels;

3. Train with Queried Sample: The model was updated using the queried sam-

ples, which now had their labels. This step enabled the model to learn on the

new information and adapt accordingly;

4. Validate for Current Query Iteration: Following the model update, we eval-

uated its performance on the validation dataset to assess how well it was

progressing with the newly acquired labeled samples.

This iterative cycle continued until a human supervisor decided to conclude

the training phase. This decision point was typically reached when the validation

accuracy achieved a predefined target level, indicating that the model had reached a

satisfactory level of performance. In this test, we simply iterate through the pool of

training samples in order to fully investigate the trace of the overall learning curve

of the classifier.

It is worth noting that for this specific experiment, we adopted a pool-based

sampling scenario complemented by the uncertainty sampling query strategy. As

documented in [26], this strategy holds an important position as one of the most

frequently utilised approaches for initiating generalised sampling within the context

of active learning based sample selection. In this case study, it is also particularly

applicable on this SLS power bed AM dataset.

The active learning implementation was implemented using Python 3, within

the Google Colab environment, providing a robust and accessible platform for our
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experiments. In the initial stages of the experiment, we initialised the previously

mentioned classifier model, with the optimiser of choice being Stochastic Gradient

Descent. Our selection of SGD was primarily driven by its ability to deliver stable

performance during validation tests, while simultaneously minimizing overfitting

concerns. This stability persisted even when the training process was extended well

beyond the point of convergence.

It is important to note that although optimisers like Adam and RMSprop demon-

strate faster convergence, they often perform larger fluctuations in validation results

and minor overfitting issues if the training process continues for an extended dura-

tion after reaching convergence. In contrast, while SGD may yield a slightly lower

initial result compared to the other optimisers, it displayed untapped potential for

further improvement when coupled with active learning techniques. This made it

the optimiser of choice for our further experimental investigations.

Throughout the course of this experiment, we trained the classifier using 2,000

initial training samples. The active learning process involved a total of 40 queries,

with each query actively selecting 50 samples based on the uncertainty sampling

query strategy. This approach enabled us to make strategic choices in selecting

informative data points for labeling, thereby optimising the performance of the

model iteratively.

Following the selection and querying of these samples, a human annotator as-

signed labels to them. Subsequently, these newly labeled samples were incorporated

into the training dataset to fine-tune the classifier and enhance its performance.

After each query iteration, we evaluated the performance of the classifier using clas-

sification accuracy on the validation dataset. we present the results obtained on the

test dataset in the next section.
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8.3.5 Results from Active Learning applied to training and

labelling

With the introduction of active learning, the evolution of validation accuracy in each

query iteration is visually represented in Figure 8.3. The results shown in this figure

emphasised the significant impact of active learning on the performance of model.

Figure 8.3: Classification accuracy on the validation dataset at the end of each query
iteration

The outcomes demonstrate that with the incorporation of active learning, the

model achieves convergence after the 13th query, attaining a validation accuracy of

approximately 98%. More precisely, the calculated mean validation accuracy from

the 13th to the 40th queries stands at 0.981, with a standard deviation of 0.0246

and a peak accuracy of 0.990. Notably, this accuracy level slightly surpasses the

result obtained by the SGD optimizer based model without active learning technique

applied as presented in Table 8.1, and exhibits a 1% improvement over the baseline.

Furthermore, the performance of the classification model remains relatively stable

after convergence.

More importantly, the results highlight that the model only requires the first 650

most informative samples to achieve its peak performance, which is merely 32.5% of

the total 2,000 labeled training data images. This underscores the efficiency gains

achieved through active learning as it enables the model to maximise its performance

using a substantially reduced subset of the labeled dataset.

This trained model was then used to classify the labels on the validation dataset
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mentioned in Section 8.2 in order to evaluate the performance using the relevant

metrics the and the results are shown in Table 8.2.

Table 8.2: Predicted results on the validation dataset with Precision, Recall and
F1-Score

Confusion
matrix

Accuracy Precision Recall F1-Score ROC-AUC

487 13

3 497
0.988 0.994 0.974 0.984 0.998

8.4 Experiments on Pseudo-Labelling with Ac-

tive Sample Selection and Human-in-the-loop

on an Imbalanced Dataset

In this section, we explain the experimental process encompassing pseudo-labelling

augmented by active sample selection and HITL features, specifically focusing on

an imbalanced dataset. The sequence commences with the generation of pseudo

labels utilising the initial classifier. Subsequently, active sample selection and human

correction steps are employed to curtail the count of incorrectly assigned pseudo

labels. Following this correction phase, the rectified samples are re-sampled to create

a balanced batch, which is then used to further fine-tune the classifier. Throughout

this process, we document the relevant outcomes and results. For further clarifica-

tion, up to this point we have evaluated the initial model quality in the previous

sections. The trained classifier has demonstrated the capability to achieve over 98%

classification accuracy on the validation dataset (refer to Table 8.2). The current

stage corresponds to line 2 in Algorithm 6 from Section 7.3.2. In this step, the

trained classifier Ci is given. Further steps will be executed in the next few subsec-

tions following Algorithm 6.
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8.4.1 Initial test with HITL on the validation dataset

The initial investigation into the performance of HITL serves as a demonstration of

the concept and also serves as an example to showcase the impact of HITL on the

validation dataset within this specific case study involving SLS power bed images

from additive manufacturing.

In this brief test, our approach involves the following steps: initially generating

pseudo-labels for the validation dataset using a trained classifier model, then actively

querying for the 50 most uncertain samples for human supervision and correction.

The steps mentioned corresponds to line 3, line 4 and line 5 in Algorithm 6. Following

the human correction of the pseudo labels, we evaluated the overall labeling accuracy

to assess the effectiveness of HITL in enhancing the quality of the overall labeling

task.

It is important to highlight that due to the stochastic nature of training per-

formance, we conducted multiple runs of the experiments. While all procedures for

each replication of the tests remained consistent, we have intentionally chosen a sub-

set of representative tests with relevant results to present in Table 8.3, including the

highest, lowest, and median outcomes regarding the number of incorrectly labelled

samples as well as the percentage that are covered by the active selection out of the

total incorrect pseudo labels. The active query selected incorrect labels will be cor-

rected under the supervision of a human and the new rate of correct labels after the

correction, which referred as “corrected accuracy” in the table, can be calculated.

Table 8.3: Performance of active selection and human correction for the initial
Pseudo-Labeling

Experiment
Confusion

matrix
Accuracy Precision Recall F1-Score ROC-AUC N queried N covered (%)

Corrected
accuracy

486 14
Highest

5 495
0.981 0.963 0.98 0.972 0.996 50 15(78.9%) 0.996

487 13
Lowest

6 494
0.981 0.979 0.979 0.979 0.997 50 8(40%) 0.989

486 14
Median

8 492
0.978 0.988 0.988 0.988 0.997 50 14(63.6%) 0.992

As these selected examples are provided solely for the purpose of offering a brief
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evaluation of active selection with human correction on the pseudo labels, the update

of the classifier is not involved in this test. After this test we chose the classifier

from the median result as the initial classifier for the subsequent experimental steps.

More comprehensive experiments and detailed results will be presented in subsequent

sections

8.4.2 Experiments on the imbalanced dataset

This experiment is conducted to evaluate the performance of our approach on an

imbalanced dataset. The imbalanced dataset used in this experiment is derived from

the testing dataset, which initially consisted of a balanced set of 500 defect samples

and 499 normal samples (out of the 500 normal samples, one image is corrupted). For

the imbalanced dataset, we randomly selected 101 defect samples from the original

testing dataset and combined them with the 499 normal samples, resulting in a new

dataset with an imbalanced distribution totaling 600 samples.

The primary steps of this experiment are outlined below, and the corresponding

outcomes will be presented for each step:

1. Generate pseudo-label using the trained classifier. This corresponds to line 3 in

Algorithm 6, but the dataset tested on is the testing dataset illustrated above

rather than the validation data, this differs from Section 8.4.1 ;

2. Active selection according to uncertainty and human correction on the incor-

rect labeled samples in the selected pseudo-labels. This corresponds to line 4

and 5 in Algorithm 6.

3. Create a new training batch by re-sampling to address the class imbalance

issues then update the classifier using the training batch. This corresponds

to line 6, 7 and 8 in Algorithm 6

4. Evaluate the performance of the updated classifier on the rest of the pseudo

labelled data and the original validation dataset.
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8.4.3 Generate pseudo-label using the trained classifier

Referring to step 1 in section 8.4.2, after the initial classification on all the testing

data to obtain pseudo labels, the ROC curves and relevant classification report are

shown in Figure 8.4 and Table 8.4

Figure 8.4: ROC curves for classification on the testing dataset for generating the
pseudo labels

Table 8.4: Evaluation results of pseudo labelling on the imbalanced dataset

Confusion
matrix

Accuracy Precision Recall F1-Score ROC-AUC

99 2

9 490
0.982 0.917 0.980 0.947 0.997

As shown in the Table 8.4, in the initial classification task to obtain the pseudo

labels, from the confusion matrix, there are only 2 samples from the minority class

and 9 samples from the majority class, which are the defect and normal class re-
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spectively, that are incorrectly labelled yielding 11 mistakes out of the total of 600

pseudo labels. We can consider the results are already high in the performance

of this classification task. However, even with such results we will execute further

experimental steps to investigate if our HITL approach can further improve the

performance of the labelling tasks.

8.4.4 Active selection and human correction on incorrect

labels

Referring to step 1 in section 8.4.2 and for further investigation, we conduct active

sample selection based on the uncertainty sampling method and queried for 50 sam-

ples that are calculated as the most informative for human correction. The results

are shown in Figure 8.5 We queried the 50 most uncertain samples and obtained

Figure 8.5: Percentage of incorrectly labelled samples that are covered by the number
of samples that are active queried

the number of incorrect labels in this 50 samples. It turns out that only 4 out of

11 incorrectly labelled samples are covered by the active query, which yields 36.4%

coverage which may seem low. However, if inspect the detail of the 7 incorrectly

labelled samples that are not covered by the query, which are shown in Figure 8.6,

we find that while all 7 samples are from the normal class, each of them contains
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features that are relatively close to defect samples and this explains why the clas-

sification results are not in agreement with the ground truth but still with high

confidence. Some of the images are highly likely to be the defect class even by the

justification of a human, so this case is more related to the creation and distribu-

tion of the dataset. The 4 corrected labels by the uncertainty sampling and human

Figure 8.6: The 7 incorrectly labelled samples that not covered by the active query

supervision include 2 samples from the true defect class and 2 from the true normal

class. Thus, after human correction, all the defect samples are correctly labelled in

this pseudo labelling dataset and the updated confusion matrix and related metrics

are shown in Table 8.5
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Table 8.5: The updated metrics of the pseudo labelling after human correction

Confusion
matrix

Accuracy Precision Recall F1-Score ROC-AUC

101 0

7 490
0.988 0.935 1.000 0.967 0.997

8.4.5 Create a new training batch by re-sampling

Following step 3 in section 8.4.2, to address the class imbalance issue within the

selected 50 samples, we conducted a examination of the class distribution of the

samples which revealed that 10 samples belong to the minority class (defect), while

the remaining 40 samples were from the majority class (normal). According to Al-

gorithm 5, in this situation, nminot = 10 and nmajor = 40, the distribution falls into

the envelope where 2× nminor < nmajor and the re-sampling process will follow line

15 to 19 in Algorithm 5. All the minority samples will be oversampled by augmen-

tation and 2× nminor, which is 20 in this situation, actively selected samples from

the majority class will be used together to form the balanced batch.

As illustrated, to achieve a balance between the minority and majority classes,

we applied oversampling by augmenting the 10 minority class samples. Specifically,

horizontal flipping was applied for augmentation, as it aligns more naturally with

the orientation of the images. Following this oversampling process, the original 10

minority class samples were augmented to a total of 20 samples, effectively increasing

the size of the minority class in the dataset. It is worth noting that while oversam-

pling could potentially be repeated to generate more samples, the original testing

dataset had already undergone an oversampling process during its initial creation.

To avoid excessive duplication of samples and maintain dataset integrity, we decided

to apply oversampling only once per sample. Furthermore, we implemented under-

sampling by selecting and retaining only the first 20 most informative samples from

the majority class using an uncertainty sampling strategy.

The re-sampling approach that was applied ensures a balanced representation

of both classes within the queried samples, effectively addressing the class imbal-
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ance issue. As a result, a new balanced training batch is formed by merging the

oversampled minority class samples with the undersampled majority class samples.

This balanced training batch comprises a total of 40 samples, with 20 samples from

each class. This balanced training batch is then used to update the classifier model,

enhancing its ability to handle class imbalance effectively. In cases where the num-

ber of samples from the minority class is significantly lower than the majority class,

additional queries can be initiated to collect more minority samples until there are

sufficient samples to create a training batch.

8.4.6 Re-testing on the rest of the pseudo labelled data and

the original validation dataset

To evaluate the the performance of the updated classifier, which is step 4 in Section

8.4.2, with the newly formed training batch and the assumption that all human-

labeled samples accurately align with the ground truth, we proceed to fine-tune

the classifier using this training batch for 30 epochs. This fine-tuning process is

conducted in a manner similar to the active learning-based training applied during

the initial training of the classifier.

Following this fine-tuning step, the updated classifier is then evaluated using

2 datasets. One is the original validation dataset, the other is the remaining 550

pseudo samples which are derived from the total of 600 testing samples with the

exclusion of the 50 samples that were previously selected through active queries.

Following the classifier update using the training batch, the outcomes for the

remaining pseudo labels remain consistent with their initial classifications. This ob-

servation aligns with our expectations, given that the seven erroneous labels exhibit

high confidence. Moreover, the new training batch primarily emphasises samples

that induce substantial uncertainty in the classifier. It is noteworthy that the seven

incorrectly labeled samples, as elaborated in Figure 8.6 within Section 8.4.4, are

characterised by features strongly indicative of classification into the opposite class.

Conversely, the updated the performance of the classifier on the validation dataset
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Table 8.6: Results of classification on the rest of the pseudo labelled data and the
original validation dataset

Dataset Classifier
Confusion

matrix
Accuracy Precision

Recall
(TPR)

F1-Score
ROC
-AUC

91 0
Initial

7 452
0.989 0.929 1.000 0.963 0.999

91 0
Remained

pseudo labels
Updated

7 452
0.989 0.929 1.000 0.963 0.999

486 14
Initial

8 492
0.978 0.984 0.972 0.978 0.993

493 7
Validation

dataset
Updated

4 496
0.989 0.992 0.986 0.989 0.998

demonstrates significant enhancement. It reduces the misclassification of defect sam-

ples from 14 to 7 and normal samples from 8 to 4, consequently increasing the overall

accuracy from 0.978 to 0.989. While the absolute improvements may appear small,

it is important to recognise that the aim of our approach is to enhance classifier per-

formance through HITL, even when commencing from an already high level baseline

accuracy.

8.4.7 Discussion

In contrast to the work presented by [25], our approach, as outlined in this chapter,

offers the following notable contributions in the aspect of defect classification on the

image dataset from AM:

1. By leveraging transfer learning and fine-tuning the classification model in our

approach shows superior accuracy and outperforms it in various related eval-

uation metrics;

2. Furthermore, by introducing active learning based sampling strategies into the

training process, our approach excels in data efficiency, particularly address-

ing the “small data challenge” by optimising the utilisation of limited data

resources;
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3. Additionally, we proposed an alternative approach for a re-sampling technique

to solve data imbalance issues effectively;

4. Finally, we have devised a labeling mechanism employing semi-supervised

learning techniques and a human-in-the-loop component. This mechanism not

only facilitates the correction of mis-labeling but also contributes to the con-

tinual improvement of the classifier. This aspect is also particularly significant

in the context of the “small data challenge.”

While our model enhances classification accuracy, it is worth noting that the

absolute improvements we obtained, when compared to the baseline, may appear

relatively small due to the fact that the initial accuracies of the baseline are already

quite high. Nevertheless, our primary objective was to demonstrate how the human-

in-the-Loop features can further enhance the performance of the labelling work, even

when starting from a high baseline level, which is what we have achieved in this

chapter of the thesis.

8.5 Next Steps

In this case study, a series of experiments have been conducted to evaluate the ap-

proaches proposed in the previous chapters. This future work section can be used

to summarise several possible further investigations that can be continued from the

current research outcome:

Exploring different sampling strategies during the active learning-based training

process could be a promising direction for future work. While uncertainty sampling

has been commonly used, investigating alternative strategies beyond the current un-

certainty sampling approach could provide valuable insights. For example, strategies

such as diversity sampling or representative sampling could be explored to enhance

the efficiency and effectiveness of the active learning process. Additionally, if more

suitable datasets become available, further experimentation with various sampling

strategies could offer new perspectives on how to select informative samples for
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model training.

The current stopping criteria for training the classifier in this case study are

based on the classification performance on the validation dataset. Exploring the im-

pact of different stopping criteria is a direction for future investigation. Additionally,

we have considered the challenges and opportunities that arise when incorporating

more data samples from manufacturing, particularly in updating the validation set

through further leveraging the active learning strategy. This aspect can also be con-

sidered as another direction for future work and development.

In this chapter, we have completed a full cycle of training and labeling work.

Since all the positive samples were correctly classified within the remaining test-

ing samples, we have exhausted the defect samples in this testing collection. In the

future, if a suitable dataset with a larger sampling size of defect samples becomes

available, further experiments can be conducted to investigate performance through

multiple working cycles.

8.6 Chapter Summary

The case study presented in this Chapter has introduced our approach, which in-

volves transfer learning, active learning, and Pseudo-Labelling in conjunction with

human-in-the-loop features. The practical implementation of these methodologies

on the dataset has been explained in detail, and the associated experiments have

been carefully conducted. The procedural details of these experiments along with

the relevant results have been presented and documented. Furthermore, we have

declared the contributions of our work in comparison to the research presented by

[25].

In the domain of additive manufacturing, materials and manufacturing devices

come at a high cost and the printing process itself can be time-consuming. The gen-

eration of defect samples, whether through artificial methods or capturing naturally

occurring defects, leads to a significant financial cost. Moreover, the identification

of randomly generated natural defects among a large pool of normal samples is also
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a challenging task. Consequently, the concept of data efficiency becomes extremely

important, as it often encounters the “small data challenge” due to the shortage of

properly labelled samples, particularly in the case of defect samples. The approach

presented in this chapter represents a valuable contribution aimed at overcoming

these challenges and addressing the associated issues within the AM domain.
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Chapter 9

Conclusions and Future Work

9.1 Overview

This chapter serves as the conclusion of the thesis, providing an examination of each

area investigated throughout the research. Additionally, this conclusions chapter

offers a restatement and gathering together as well as some further elaboration on

individual conclusions previously discussed in earlier chapters. This enables more

overview discussion and analysis of the outcomes derived from the research.[151]

In previous chapters, the central hypothesis of the thesis was subdivided into

smaller sections that were tackled individually. In this study, our research began

with a deep dive into the challenges posed by the limited availability of the current

databases in the field of defect detection during the process of Additive Manufac-

turing, which we would describe as the small data challenge in AM. To investigate

the gap, we delved into the existing open databases and high quality journal articles

from the high impact journal Additive Manufacturing to conduct a systematic re-

view to highlight the disparities between current AM defect detection datasets and

the well-established open-source datasets commonly used in other applications of

machine learning and deep learning. It became evident that a significant gap ex-

ists between the current AM datasets and standard open-source datasets for other

machine learning applications.

After the confirmation of these gaps, we summarised 3 hypotheses and 3 related
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research questions (RQ), based on which, we developed approaches that leverage the

techniques of transfer learning and fine-tuning to enable the training of a classifica-

tion model with a limited supply of labelled data. This answers the first research

question. We then proceeded to involve active learning into the training of the

model in order to explore the minimum number of labelled image samples required

to achieve convergence during the training process, with a keen focus on optimising

data efficiency in order to address the second research question. These approaches

along with the SLS Additive Manufacturing defect detection dataset from a system-

atic review of the literature, enabled a new case study to be completed to further

evaluate the approaches we developed and to further improve the labelling mecha-

nism. This was done by leveraging acombination of pseudo-labelling, active sampling

and human-in-the-loop features in order to facilitate the correction of mis-labelling

and to enhance the performance of the labelling work, even when starting from a

high baseline level. Up to this point, our whole working cycle addressed the “small

data challenge” in AM and was completed and the last research question was an-

swered.

9.2 Contributions from Corresponding Research

Steps

In this section, our objective is to elucidate the contributions we’ve made throughout

the various stages of our research in response to each of the key research questions.

9.2.1 Contribution of the Dataset to the Field of AM

In Chapter 3, we conducted a comprehensive systematic review on the availability of

AM datasets. This review proved an important point early in our research showing

the lack of readily available open image datasets in the additive manufacturing defect

detection domain for machine learning applications, specifically for microstructures

in the melt-pools. Our findings emphasised the lack of suitable datasets in AM for
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computer vision based ML applications, apart from the one we created for our own

evaluations as part of this thesis.

The gap in readily available AM datasets for ML defect detection applications

justified the creation of our own dataset, which is the emission image dataset ob-

tained from the in-situ monitoring of melt-pools using additively manufactured ti-

tanium alloys. This dataset provided essential support during the initial stages of

our research. Recognising its value to the broader research community, we took the

initiative to publish this dataset as an open-access resource. This contribution of the

dataset to the field of additive manufacturing not only supported our own research

but also extended its benefits to fellow researchers, facilitating advancements in the

domain and at the time of writing it has been downloaded more than 1400 times

9.2.2 Addressing RQ1 and Related Contribution in Defect

Classification in AM

RQ1: How can we develop a machine learning model to accurately, with over 95%

classification accuracy for example, and efficiently classify the problematic and chal-

lenging representation of melt-pool monitoring data even with a limited amount

of labeled training data? The proposed approach to the answer involves leveraging

transfer learning and fine-tuning methods to develop a classifier capable of address-

ing this challenge. This methodology is elaborated upon in Chapter 5.

Transfer learning, while a common technique in machine learning, has seen lim-

ited exploration within the domain of additive manufacturing. The first research

question is “how to create a high accuracy classifier even with very little initial

training data”. Our approach addressed the challenge of creating accurate classi-

fiers with limited initial training data, specifically targeting the AM domain. We

developed an innovative approach that leverages transfer learning and we evaluated

its performance on various datasets, including emission images from AM and com-

plex patterns from the DAGM datasets. The results showcased the effectiveness of

our approach, particularly on the emission image dataset, where it achieved high
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accuracy. In a later phase of our research, we conducted a comparative analysis

between our model and the approach we developed, with the state-of-the-art work

presented by [25], which served as a baseline. Our approach consistently outper-

formed the baseline best results, even after a subsequent update to the published

paper by the authors.

Our CNN based classification model, which incorporates transfer learning using

the ImageNet dataset and fine-tuning with target image datasets, has demonstrated

its effectiveness in classifying image data from additive manufacturing. The model

excels in various classification tasks, achieving high levels of accuracy in the classifi-

cation tasks between defects and normal patterns. We anticipate that this approach

can be extended to address new industrial patterns arising in the context of AM,

providing valuable insights and solutions for future challenges in this domain.

While Transfer Learning is a widely employed technique in various machine learn-

ing applications, its application within the domain of additive manufacturing related

deep learning applications has been relatively scarce. Hence, our research delves into

evaluating the efficacy of Transfer Learning in the AM domain, focusing specifically

on image datasets derived from AM processes, with the aim of reducing the required

number of labeled samples for training the model.

9.2.3 Addressing RQ2 and Related Contribution in AM Tasks

RQ2: Starting with a limited amount of labelled data available, how can we cre-

ate sufficiently large labeled datasets for training deep learning algorithms without

spending a large amount of human resources on the labelling task? The proposed

approach to the answer involves applying active learning into the training of the

classifier and active sample selection for human annotates to create new labelled

data prioritising the most informative samples. The relevant approaches have been

illustrated through Chapter 6. The research undertaken in this thesis has addressed

the second research question posed in Section 1.3, which pertains to active learning

strategies in the context of our approach. Throughout the subsequent chapters,
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we delved into various active learning scenarios and query strategies, with a spe-

cific focus on the uncertainty sampling query strategy. Following a comprehensive

assessment of available packages and tools for implementing active learning based

algorithms in Chapter 6, we proceeded to develop a practical active learning mech-

anism based on the acquired knowledge.

This active learning mechanism was devised to complement the fine-tuning pro-

cess, as outlined in the previous step of our approach. It operates through a con-

tinuous cycle of queries initiated by the classifier and responses provided by the

annotator, actively contributing to the ongoing enhancement of the overall perfor-

mance of the model. By prioritising the most informative samples, this method

empowers annotators to focus their efforts on labelling samples that significantly

contribute to the training process. Simultaneously, the classifier benefits from a

stream of more effective training data, resulting in reduced labelling workload and

expedited training convergence.

Experiments have been conducted to assess the efficacy of active sample selec-

tion strategies in enhancing training outcomes. The results highlight that a higher

proportion of actively selected training samples can substantially improve final ac-

curacy compared to randomly selecting training samples. The effectiveness of this

approach is further demonstrated in the case study presented in Chapter 8, where

it significantly reduces the number of samples required to achieve training conver-

gence by approximately 60%. This reduction is achieved while maintaining a high

level of accuracy that competes with the performance obtained when using the entire

training dataset. This represents a substantial contribution in addressing the persis-

tent “small data challenge” in additive manufacturing. The use of Active Learning

methodologies in labeling tasks is a widespread practice. However, within the do-

main of AM, such techniques have not been adequately exploited, particularly in the

context of image data. Thus, the novelty of this research lies in its application of AL

methodologies to AM datasets, where the acquisition of accurate labels is hindered

by factors such as time constraints, cost implications, and the inherent limitations
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of manual annotation processes.

9.2.4 Addressing RQ3 and Related Contribution in Defect

classification Practices in AM Data

RQ3: How can we build and evaluate a framework combining transfer learning and

fine tuning with active learning for continuously improving the quality of training

data and the resulting accuracy of AM defect detection from monitoring images?

To answer RQ3, The investigation began by evaluating classifier performance and

training approaches using the original datasets (Sections 7.1 and 7.2 in Chapter

7). Subsequently, the study introduced semi-supervised learning with human-in-

the-loop for labeling (Section 7.3), alongside a proposed re-sampling approach to

address class imbalance issues. These labeling and re-sampling strategies completed

the framework refereed in Figure 4.3, and closed the working cycle. After this, to

evaluate the developed approaches, a new case study was conducted and presented

in Chapter 8. To further evaluate our approach on AM specified data, we conducted

a case study on the SLS powder bed image dataset from [25]. Throughout this case

study, we developed our labelling mechanism fully. In comparison to the baseline

paper, our approach makes several significant contributions to the field of additive

manufacturing pattern classification as follows:

Enhanced Accuracy: By utilising transfer learning and fine-tuning, our classifi-

cation model demonstrates superior accuracy compared to existing methods,

as evidenced by various evaluation metrics.

Improved Data Efficiency: We introduce active learning-based sampling strate-

gies into the training process, significantly enhancing data efficiency. This

addresses the “small data challenge” by optimising the use of limited data

resources.

Novel Resampling Technique: We propose an innovative approach to resam-

pling that effectively tackles the data imbalance issues, ensuring a balanced
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representation of classes.

HITL Labelling Mechanism: Our labelling mechanism combines semi-supervised

learning techniques with human-in-the-loop features. This not only corrects

mislabeling but also contributes to ongoing classifier improvement. This as-

pect is particularly valuable in addressing the “small data challenge” in AM.

In summary, building upon the foundational work of [25], our work has introduced

Active Learning and human-in-the-loop features to enhance the original Transfer

Learning-based approach. This augmentation has resulted in an improvement in the

overall validation accuracy to approximately 98%. Additionally, we have employed

resampling methods to construct new training datasets, thereby facilitating further

model training.

9.3 Final Thoughts

The research conducted and presented in this thesis has contributed to pave the

way for a broader application of transfer learning and fine-tuning to defect detec-

tion in AM, with human-in-the-loop as a focal point. To this aim, our framework’s

capability to generate additional labelled data and our innovative labelling approach

are essential contributions. These components not only expedite convergence dur-

ing the training process while reducing the demand for a large number of training

data samples, but also provide a valuable resource for fellow researchers. In fact,

we have encountered numerous other researchers facing challenges in initiating their

research due to the scarcity of appropriate datasets, and we have witnessed a con-

tinuously increasing interest in the dataset we have generated and made available

to the research community in October 2022 We aspire that our approaches can con-

tribute to addressing such issues and could support researchers in similar situations

by facilitating the generation of high-quality data with minor effort. Finally, we

anticipate that our research outcomes can serve as a foundational framework for

future researchers within the field of Additive Manufacturing.
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