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Toward efficient learning of structured

representations in computer vision

Phuc H. Le Khac

Abstract

The ability to learn a hierarchical and compact representation from data stands
as a fundamental principle behind the rapid growth of Deep Learning, particularly
evident in Computer Vision. Despite the significant progress on the perception tasks
such as recognition and detection, these models still fall short in terms of reasoning
and planning capabilities, and cannot generalise systematically despite being trained
with extensive amount of data and compute resources.

How to effectively scale up a representation learning system in terms of com-
putation and data, and extend the capabilities of the visual representations toward
high-level tasks is the central research topic of this thesis.

First we focus on contrastive representation learning, a general approach for
learning representation by comparison. We survey and analyse more than 100 re-
cent works and provide a framework to categorise and understand research in this
direction, not only in the context of self-supervised visual learning but also for other
domains and applications.

We then turn towards the problem of object-centric representation learning, a
promising approach to learn structured representations in a complex visual scene
for planning and reasoning tasks. We first explore using discrete representation for
object-centric learning, motivated by the common goal of decomposing the contin-
uous visual signal into individual discrete components.

Understanding the importance and challenges of scaling in learning represen-
tations from data, we propose an efficient architecture for decoding object-centric
representations, a ubiquitous but memory-intense component present in most object-
centric learning methods.

Finally, to address the challenge of learning these object-centric representations
in complex and realistic data, we capitalise on the advancements in pre-trained mod-
els for visual representations, enabling the learning of higher-level representations.
Inspired by human cognitive development, we further study the effects of depth in-
formation and geometry contained in these representations, exploring their influence
on the process of unsupervised object discovery.
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Chapter 1

Introduction

Artificial Intelligence (AI) broadly refers to the study of replicating the intelligent

behaviours of humans and animals outside of biological systems. While the term AI

was first coined in the 1950s to focus the study on digital computers, the idea of

building an intelligent mechanical system dates back thousands of years and has been

explored throughout history in art, novels and science fictions. The most recent form

of AI that has entered the general public discourse is Generative AI, characterised

by systems such as Large Language Models (LLM) and image generation system

that can “talk” and “draw” with an unprecedented level of realism.

The driving component behind these recent successes is a technique called Deep

Learning (DL), a sub-field of Machine Learning that emphasises training large Ar-

tificial Neural Networks (ANN) on large scale data and using an enormous amount

of compute resources to do so. Deep neural networks are unique in their ability

to learn a series of transformations on input data and to represent that data in an

algebraic form such that these representations can be used for various downstream

tasks. This is particularly helpful for solving tasks that deal with perceptual input

data such as images, videos, audio and text.

As a subfield of Artificial Intelligence, Computer vision (CV) focuses on the

study of enabling computers to understand and interpret visual data from the world

around us. Deep Learning in general and Representation Learning in particular have

played an integral role in the advancement and development of the field of Computer

Vision. Thanks to the representational learning power of deep neural networks,

programmers for visual tasks can avoid hardcoding brittle rules or heuristics to

handle high-dimensional input data such as images and videos. Instead, they can

leverage the learned representations in a lower-dimension vector space to perform

those perception tasks.

Representation Learning is a sub-field of Deep Learning focusing on the topic

of learning these representations. It involves the study of methods and techniques

to make the learned representations become more general, powerful and efficient
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such that they need less data to achieve higher accuracy on more downstream tasks.

Representation Learning in Computer Vision is the principal topic of this thesis.

1.1 Hypotheses and Research Questions

In relation to the topic of representation learning in the visual domains, we consider

the following two well-known hypotheses:

Scaling Hypothesis: As deep neural networks are scaled up in size and trained

on more diverse data, they generalise better, become more sample-efficient for down-

stream tasks, and they exhibit emergent capabilities that they were not explicitly

trained to do. This is often discussed in the context of the “Bitter Lesson” [264]

which states that “The two methods that seem to scale arbitrarily in this way [with

compute and data] are search and learning.”

Structured Representation Hypothesis: Real world data is assumed to come

from a data generating process. Capturing the underlying structure of this generative

process within the representation space can enhance learning efficiency and facilitate

generalisation in a systematic manner.

To advance our understanding and make progress in the field of Visual Represen-

tation Learning considering these two hypotheses, this thesis aims to address the

following research questions:

Research Question 1: What architecture and training objective can help scaling

up deep neural networks to learn a broadly useful representation of the visual world?

The empirical trend so far has been in support of the Scaling Hypothesis stated

above, by showing that larger neural networks, trained on more diverse data with in-

creased computational resources, yield representations that are more capable across

various downstream tasks. However, these representations are often confined to their

training distribution, lacking broad generalisation capabilities. Developing methods

and systems for learning more general representations that serve as a foundational

“commonsense” knowledge could be a pivotal advancement in both computer vision

and broader AI.

Research Question 2: What are the general principles and helpful inductive

biases in learning to enable such representation without task-specific labelled data?

The reliance on human-labelled data has been central to visual representation

learning. As we move towards more massive neural networks, acquiring and curating
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this expensive labelled data becomes increasingly challenging. Investigating the

principles and inductive biases for learning without explicit human supervision is

crucial in the transition towards self-supervised learning systems, a natural step

forward in the direction of the Scaling Hypothesis.

Research Question 3: How can object-centric representation learning approaches,

particularly slot-based methods, be designed to capture increasingly complex and

abstract visual concepts in a structured manner?

Beyond the content encoded in the representation, exploring the structure of the

representation itself remains relatively underexplored. Extending current methods

to learn representation spaces that not only capture information but also encapsulate

the underlying structure of the data can open up new possibilities for deep neural

networks in diverse problem domains.

Research Question 4: What techniques can improve the computational effi-

ciency of object-centric representation learning methods to enable scaling up these

structured representation learning approaches?

To capture the structure of the visual world, by imposing more structure in the

representation space could naively compromise efficiency. As learning systems scale

up and become more computationally intensive, optimising the efficiency of this

computation becomes paramount. Identifying and designing methods that can scale

up object-centric learning methods could be an important step towards harmonising

the contentions between the Scaling Hypothesis and the Structured Representation

Hypothesis.

1.2 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2: Background This chapter provides foundational knowledge on the

field and the topic of the thesis. It begins with an overview of Computer Vision and

its relationship to the broader field of AI. Following that, it covers the evolution,

advantages, and limitations of Artificial Neural Networks, fundamental components

underlying the success of Machine Learning and Deep Learning. Additionally, spe-

cific architectural components relevant to the later part of the thesis are discussed.

The chapter then shifts focus to Representation Learning, a key factor in the suc-

cess of deep learning. Lastly, the grand picture of a generally useful and capable

AI system is presented as motivation for learning better representations, along with

challenges hindering its realisation from the current state.
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Chapter 3: Contrastive Representation Learning: A Framework and Re-

view This chapter presents a framework and review for Contrastive Representation

Learning, addressing Research Question 1 regarding building more powerful repre-

sentation learning systems. Additionally, a comprehensive review of various meth-

ods and general principles in learning visual representations is provided, addressing

Research Question 2 that examines understanding the principles in designing self-

supervised learning systems.

For the remainder of the thesis, we turn our attention to the challenge of Object-

centric representation, a topic that addresses learning structured representations,

which is the focus of Research Questions 3 and 4.

Chapter 4: Overview of Object-centric Representation Learning This

chapter offers a concise overview of Object-centric Representation Learning, includ-

ing its motivation, goals, and developmental history and related work, bringing us

to the current state of the art. The general framework for object-centric learning,

foundational for subsequent experiments, is introduced.

From Chapter 5 to Chapter 7 we presents a series of experiments exploring how

to improve different aspects of object-centric learning methods.

Chapter 5: Learning Discrete Object-centric Representations In this chap-

ter, we present work on learning discrete object-centric representations. This novel

approach replaces a continuous representation with a discrete representation, utilis-

ing the vector quantisation approach.

Chapter 6: Improving Efficiency in Object-centric Learning This chapter

focuses on enhancing the efficiency of reconstruction-based object-centric learning

methods. We introduce a simple attention mechanism in the object decoder com-

ponents, leading to improved efficiency, reduced memory requirements, and lower

compute demands.

Chapter 7: Unsupervised Object Discovery with Geometric Representa-

tion Investigating the problem of unsupervised object discovery through its learn-

ing signal, this chapter leverages pre-trained models with a specific focus on 3D

geometry for object-centric representation.

Chapter 8: Conclusions We wrap up the topic of Contrastive Representation

Learning presented in Chapter 3 and Object-centric representation learning pre-

sented from Chapter 4 to Chapter 7 reviewing recent progress and we appraise the

topic of object-centric representation learning. This concluding chapter provides a
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summary of our contributions, recaps the diverse topics in representation learning,

summarise our answers to our 4 research questions and speculates on the future

direction of the field.
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Chapter 2

Background

In this chapter, a brief overview of the history and development of Machine Learning

(ML) and Computer Vision (CV) in the broader context of Artificial Intelligence (AI)

is provided. We particularly focus on the topic of Representation Learning from the

visual domain. For a more detailed exposition on these topics and more, readers are

advised to consult Goodfellow, Bengio, and Courville [86], Murphy [196], Murphy

[195].

2.1 Computer Vision

The field of artificial intelligence (AI) aims to create intelligent machines that can

mimic human cognitive abilities, including perception, recognition, reasoning, and

decision-making. While the idea of mechanical robots and artificial intelligence can

be traced back to as far as ancient Greek mythology [182], modern AI has its roots

in the development of computers and computer science in the mid-twentieth century.

The first usage of the term “Artificial Inteligence” was in an ambitious proposal

for a summer school by McCarthy et al. [183] in 1958 to research on “how to make

machines use language, form abstractions and concepts, solve the kinds of problems

now reserved for humans, and improve themselves”. Since then, AI has grown to

encompass a wide range of subfields and applications. Very broadly categorised,

research in AI mostly focuses on reasoning and planning, which are based on logic

approaches such as expert systems, or perceiving and understanding, which are

based on learning approaches such as neural networks [232].

Computer vision (CV) is a subfield of Artificial Intelligence that focuses on the

study of enabling computers to understand and interpret visual data from the world

around us. Endowing computers with capabilities similar to those of the human

visual system is an outstanding goal that is almost as old as the modern computer

itself with references to work in the area going back more than 50 years such as

Papert [209]. However, it was quickly realised that CV is a very challenging field of
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research, as computer systems needed to be taught to interpret visual data in much

the same way that humans do unconsciously, which is a complex and multifaceted

process.

Early approaches to computer vision in the 1990s and 2000s revolved around

extracting low-level visual features such as edges, corners, and textures from images

and then using these features to identify and classify objects. These classical com-

puter vision techniques, which include methods such as edge detection, histogram

of oriented gradients and optical flow, are still used today, especially in real-time

applications where processing speed is of the essence.

In the past decade, there has been a resurgence of interest in deep learning

(DL) methods, which have revolutionised the field of computer vision (see [237,

235]). Deep learning algorithms, which are based on artificial neural networks, are

particularly well-suited to tasks such as image classification, object detection, and

segmentation, which have traditionally been challenging for classical computer vision

methods based on the handcrafted features used previously [157]. Together with the

increases in computing power and the availability of data, researchers have been able

to train highly accurate computer vision systems based on deep neural network that

can perform tasks once out of reach by previous methods.

While machine learning underlines the progresses of computer vision, computer

vision has also played a crucial role in the development of many machine learning

techniques which have subsequently been applied in other areas. For example, many

of the fundamental building blocks such as Convolutional Neural Network [79, 161]

and Residual Connection [108] were first developed in the context of computer vi-

sion for use in object segmentation, detection, and classification tasks, before being

applied to other fields such as natural language processing and speech recognition.

Many of the biggest improvement in NLP tasks like language translation, sentiment

analysis, text summarisation, speech recognition, image and video captioning have

all been enabled by deep learning techniques trickled down from CV researches [140].

More generally, thanks to Deep Learning’s capabilities of handling both continuous

and discrete signals, the research directions for many subfields of AI have been on

a steady convergent trajectory.

Computer vision has a wide range of application areas, from medical imaging to

autonomous vehicles, social media, and robotics. In medical imaging, for example,

computer vision techniques are used to help doctors diagnose diseases [56], read

X-Ray images [279], screen Computed Tomography scans [8], identify tumours [62],

and monitor patient health [147] . In autonomous vehicles, computer vision systems

are used to detect and track other vehicles, pedestrians, and obstacles on the road,

and to make real-time decisions about how to navigate safely [129]. In social media,

computer vision algorithms can be used to automatically tag and organise photos

7



and videos which have been uploaded and shared on social media platforms [3], or

used in animated emojis and cosmetic filters [257]. In robotics, they can help robots

navigate complex environments [59] and manipulate objects with greater precision

and accuracy [5].

Even with the tremendous progresses achieved, nowadays computer vision is still

a very active research topic that holds the promise to enable even more complex and

capable vision-based applications. One notable recent example is the release of the

Segment Anything Model (SAM) [152] by Meta AI Research in April 2023. SAM

combines advances in large scale training with a lightweight, prompt-able decoder

architecture, enabling “model-in-the-loop” data engines that scale up to more than

1 billion masks in 11 million images. Thanks to its open-source code, models and

data, in the span of a few weeks during Spring of 2023 there have been numerous

subsequent modifications and extensions such as in-painting, tracking and video

segmentation1.

2.2 Artificial Neural Networks

The Artificial Neural Network is at the very heart of the Machine Learning and

Deep Learning revolution of the past decade. As a field, Machine Learning and

Deep Learning have a huge influence and impact on the discipline of computer

science, such that sometimes it is referred to as “Software 2.0” to mark a major

paradigm shift in the way computer programs will be written [143].

2.2.1 Machine Learning

Machine Learning, as the name suggests, revolves around the idea of machines and

computers acquiring knowledge and improving their performance in some prediction

or classification task based on experience and data. Broadly speaking, Machine

Learning is the study of designing an algorithm, or statistical model, f , that can

adapt and adjust its output based on a data pairing of input and output X, y:

ŷ = fθ(x). The crucial difference with a classical algorithm is its ability to make

predictions without having to be explicitly programmed. This make it particularly

promising for problems where the input domain is high-dimensional and is very

hard or impossible to explicitly enumerate all the rules. This fundamental concept

underpins the entire field of ML and distinguishes it from traditional, rule-based

programming.

At the core of machine learning is the utilisation of data as the primary source

of knowledge. ML algorithms are fed large datasets containing relevant information,

1https://github.com/Hedlen/awesome-segment-anything
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such as images, text, and audio, represented as numerical values. By analysing and

processing this data, ML algorithms discover patterns, correlations, and underlying

structures, and can make categorisations or predictions on similar, new and unseen

data points.

The behaviour of such a “machine” is governed by its parameters, denoted θ.

Machine learning models undergo a training phase where they learn from training

examples. During this phase, the program “learns” by iteratively adjusting its in-

ternal parameters to minimise the differences between its predictions and the true

outcomes in the training data.

Once trained, the model’s ultimate goal is to generalise its knowledge to make

accurate predictions, or inferences, on unseen, unlabelled data. Generalisation is

a hallmark of learning, as it indicates the model’s ability to apply its acquired

knowledge to new situations, as opposed to just memorising its training samples.

Learning is an optimisation process and this process is often guided by an objec-

tive function, like minimising prediction errors or maximising rewards in reinforce-

ment learning. The optimisation objective for learning is often referred to as the

“loss function”, or “reward function”. The gradient of the objective with respect

to the models’ parameters are computed and this is used by various optimisation

algorithms to minimise the loss, or to maximise the reward.

The concept of machine learning can be traced back to the 1940s when the idea

of algorithms and models that could learn from data was introduced. One of the key

developments in the field of machine learning was the creation of Artificial Neural

Network (ANN), which was inspired by the structure of connections of biological

neurons in the brain. The first artificial neural network, known as the McCulloch-

Pitts neuron, was introduced by Warren McCulloch and Walter Pitts in 1943 [184].

This marked a significant milestone in the development of artificial intelligence and

laid the foundation for subsequent neural network research. The McCulloch-Pitts

neuron took binary inputs and applied a set of logical rules to produce binary out-

puts. It could perform basic logical operations like AND, OR, and NOT. While the

McCulloch-Pitts neuron was a crucial theoretical development, it had limitations.

It was not a learning algorithm since it could not adapt or learn from data, and its

functionality was confined to specific pre-defined logic functions. Despite its sim-

plicity, this early work enabled the development of more complex artificial neural

networks.

The connection to the biological world has played a significant role in shaping the

evolution of neural networks and their applications. The next significant step in the

history of artificial neural networks was the invention of the Perceptron, developed by

Frank Rosenblatt in 1957 [229], that could learn to recognise simple patterns in data.

The perceptron was designed to be a binary linear classifier, capable of distinguishing
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between two classes of data. It incorporated weighted inputs, a summing function,

and a threshold activation function. One of the key innovations of the perceptron

was its learning algorithm. It could automatically adjust the weights assigned to

each input based on the success or failure of classification. This made it the first

machine learning model capable of learning from data.

Soon it became apparent that the perceptron also had many limitations. It

could only solve linearly separable problems and it was incapable of handling more

complex, non-linearly separable data. Due to its limited capabilities, after its initial

introduction, the perceptron in particular and neural networks in general received a

lot of doubt and criticism about their potential usage [189].

Nonetheless, the development of the perceptron was a crucial step in the history

of artificial neural networks. It demonstrated the potential of learning algorithms

and laid the groundwork for the resurgence of interest in neural networks in later

decades, especially with the advent of deep learning and more sophisticated neural

architectures.

2.2.2 Deep Learning

Deep learning [235, 237] represents a transformative extension of traditional ma-

chine learning techniques, offering more powerful tools for data analysis, pattern

recognition, and decision-making. It focuses on designing and training large, hierar-

chical neural networks composed of multiple layers, where the output of one layer is

the input to another. This extension builds on the foundation of machine learning

while introducing key innovations that enable the development of highly complex

models capable of solving a wide range of tasks. Similar to how machine learning

that took inspiration from the neuron, Deep Learning is also loosely inspired by the

structure and function of the human brain, where information is processed through

interconnected layers of neurons.

While a shallow neural network is usually just considered as one of many tools in

machine learning, deep learning is synonymous with artificial neural networks and

consists of multiple layers of interconnected artificial neurons. Each layer processes

information and passes it to subsequent layers, creating a stack of transformations.

This architecture allows deep networks to model increasingly complex and abstract

representations of the input data [122].

One of the core principles of deep learning is its ability to automatically learn

hierarchical feature representations from raw data. Traditional machine learning

often relies on handcrafted features, requiring domain expertise and substantial

effort to engineer relevant input features for a given problem. In contrast, deep

learning models, such as deep neural networks, can automatically learn and extract
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features at multiple levels of abstraction. This hierarchical representation enables

deep learning models to capture intricate patterns and relationships in data without

the need for explicit feature engineering.

As suggested by its name, the depth of a deep neural network is a key factor in

their power. It allows these networks to capture complex patterns, dependencies,

and hierarchies in data. As information passes through successive layers, the network

can learn to represent high-level features that are composed of lower-level features

[306].

Training deep neural networks is made possible by several critical factors, includ-

ing innovations in optimisation algorithms, the power of parallel computing, and the

abundant availability of large labelled datasets. These elements work in synergy to-

gether to enable deep learning models to efficiently tackle the immense complexity

of some kinds of real-world data. These critical factors are discussed below:

Availability of Large Datasets: A crucial factor contributing to the success

of deep learning is the availability of extensive and labelled datasets. In the past,

collecting and annotating such datasets was a significant bottleneck to progress.

However, recent years have seen an explosion in the collection and sharing of data,

facilitated by the growth of the internet and advances in data storage and processing.

Datasets like ImageNet [58], COCO [164], and various medical image collections

contain millions of labelled examples, providing the necessary diversity and volume

for training sophisticated deep models. These datasets enable models to discern

complex patterns and narrow the divide when it comes to generalising to new, unseen

data.

Parallel Computing: The training of deep neural networks requires substantial

computational power, and this demand is met through parallel computing resources.

Graphical Processing Unit (GPU) were initially developed to meet the demanding

problem of rendering many different video pixels in real time, mostly in gaming ap-

plications. Once this parallel processing power was applied to Deep Learning[48], it

enabled for the first time the ability to learn from large amounts of data. The cul-

mination of GPU parallel processing and larger datasets resulted in the famous “Im-

ageNet” moment in computer vision [157]. Realising the importance of specialised,

parallel hardware, many different accelerators such as the Tensor Processing Units

(TPU) together with many improvement on traditional GPUs have since been de-

veloped. These are key components that have played a pivotal role in driving the

progress of Deep Learning in recent years. These specialised hardware accelerators

can handle the matrix and vector operations inherent in neural network training

with remarkable speed and efficiency. The parallel processing capabilities of GPUs
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and TPUs enable the simultaneous computation of numerous model updates, dra-

matically reducing the time required to train deep neural networks.

Optimisation Techniques: Techniques like backpropagation [166] [231] for com-

puting the gradient of parameters through many layers, stochastic gradient descent

(SGD) and more advanced optimisers enable the efficient adjustment of even billions

of model parameters.

In unison, optimisation algorithms, parallel computing, and large datasets enable

deep learning models to handle an array of complex tasks, from image classification

and natural language understanding to reinforcement learning in game playing and

robotics. These advances have ushered in a new era of AI and machine learning

applications, with deep learning models being employed in various fields, including

healthcare, autonomous vehicles, and finance. As the field continues to evolve,

researchers explore innovative ways to optimise the training processes, make efficient

use of computational resources, and work with ever-growing datasets, paving the way

for even more remarkable achievements in the future with the use of deep learning.

Research efforts have also focused on developing techniques for network archi-

tecture search and optimisation, leading to the emergence of automated methods

for designing neural network architectures. These advances, coupled with the rise

of transfer learning and pre-trained models, have made it easier to apply neural

networks to various tasks, even with limited labelled data.

While neural networks and deep learning have seen significant advances and

widespread adoption in recent years, they also face several limitations and setbacks

that hinder progress and further adoption in the real world.

Computational Power: Training extensive neural networks with numerous lay-

ers and billions of parameters demands substantial computational resources, often

beyond reach due to their prohibitive costs. Furthermore, deploying state-of-the-art

models for inference after training present additional challenges, particularly when

operating within constrained computing budgets [60]. The ethos of open develop-

ment and open-source initiatives remains integral to the machine learning domain.

Nonetheless, deep learning research is becoming less and less open, partly due to

the growing expenses associated with training and utilising large foundational mod-

els, potentially impeding its open development and advancement. An example is

the growing literature involving the study of the closed-source GPT4 model [206],

sometimes just to answer the question of whether the model has been updated by

its parent company over time [198].
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Reliance on Labelled Training Data : As the size and compute requirements

of neural networks increases, its reliance on large amounts of labelled training data

used to learn to make accurate predictions also increases. Data collection and anno-

tation processes are time-consuming, expensive, and often prone to errors. Limited

training data results in overfitting, where the network memorises the training ex-

amples instead of generalising from them, leading to poor performance on unseen

data [153]. Addressing the challenges related to data collection and annotation, as

well as finding strategies to mitigate the effects of overfitting, represents an ongoing

endeavour within the deep learning community [152]. These efforts are essential

for maintaining the effectiveness and reliability of increasingly complex neural net-

works, as well as for advancing the field’s capability to work with diverse, real-world

datasets.

Interpretability and Explainability: Neural networks are often considered black-

box models, meaning that it is challenging to understand the reasoning behind their

predictions or decisions. While the working principle of individual neurons are

simple and easy to interpret, the emergent capabilities of large networks with mul-

tiple neurons distributed over multiple layers are considerably more challenging to

measure and understand [29]. This lack of interpretability and explainability is a

significant setback in domains where transparency and accountability are crucial,

such as healthcare and finance.

Lack of Understanding of Network Architectures: Designing the architec-

ture of neural networks was more of an art than a science during the early stages.

There was only a limited understanding of the optimal number of layers, the number

of neurons in each layer, and the connectivity patterns between the neurons [131].

The specific architecture of modern deep learning models usually takes inspira-

tion from many different fields such as neural science, signal processing, statistical

learning and even quantum mechanics. But ultimately, modern deep learning archi-

tectures are driven by empirical results.

2.3 Architectures

There exist many different architecture components in deep learning. Neural science

is a rich source of motivations for many early designs such as the Perceptron [229]

or the DropOut mechanism to combat overfitting [254]. Nowadays, deep learning

architectures are generally divided and grouped into layers, where each specific layer

has its own characteristics. Layers are then connected sequentially or in parallel to

form a deep computation graph, which are broadly referred to as models.
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Below, we briefly review some general deep learning layers and principles that

are relevant to image processing and representation learning.

2.3.1 Feed-forward Layer and Multi-Layer Perceptron

Feed-forward layers and Multi-Layer Perceptrons (MLPs) represent fundamental

building blocks in the domain of artificial neural networks. These structures are the

backbone of deep learning, empowering neural networks to learn intricate patterns

and make accurate predictions across a wide array of input data and tasks.

Feed-forward Layer A feed-forward layer, also known as a dense layer or fully

connected layer, is the simplest and most common building block in neural networks.

All nodes in the previous layers are densely connected to every node in the next layer,

hence its name. It forms the core of many neural architectures, including MLPs.

The primary function of a feed-forward layer is to transform its input data through

a linear operation, followed by a non-linear activation function.

The architecture of a feed-forward layer can be described as follows:

• Input Neurons (Nodes): Each node in the input layer represents a feature

or component of the data. The number of input nodes corresponds to the

dimensionality of the data.

• Weights and Bias: Associated with each input node is a weight, which quan-

tifies the importance of that input in the layer’s computations. Additionally,

there is a bias term that allows the layer to learn an offset.

• Affine Transformation: The layer performs a linear combination of the input

values and weights, summing the products of inputs and weights along with

the bias term. Mathematically, this is represented as: zj =
∑N

i=1(xi ·wij)+ bj,

where zj is the j-th output of the affine transformation, xi are the input values,

wij are the corresponding weights, N is the number of input nodes, and bj is

the bias. This step is repeated many times for different values of weights and

biases to form the set of outputs nodes and is often perform in parallel as a

single matrix-vector multiplication.

• Activation Function: The output of the affine transformation (z) is then passed

through a non-linear activation function, such as the sigmoid, Rectified Linear

Unit (ReLU), or hyperbolic tangent (tanh). This activation function intro-

duces non-linearity into the model, allowing it to capture complex relationships

within the data.
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• Output: The result of the activation function serves as the output of the feed-

forward layer, which can be passed to subsequent layers or used as the final

output of the neural network.

Multi-Layer Perceptron An MLP, or multi-layer perceptron, extends the con-

cept of feed-forward layers to create a network with multiple layers, enabling it to

learn hierarchical and more complex representations of data. An MLP typically

consists of an input layer, one or more hidden layers, and an output layer. Each

hidden layer contains one or more feed-forward layers, and the activation functions

within these layers can vary.

The architecture of an MLP is characterised by the following:

• Input Layer: The input layer receives the raw data and passes it to the sub-

sequent hidden layers. Each node in the input layer corresponds to a feature

of the input data.

• Hidden Layers: These intermediate layers, placed between the input and out-

put layers, are composed of feed-forward layers with non-linear activation func-

tions. The number of hidden layers and nodes in each layer can be adjusted

to suit the complexity of the task.

• Output Layer: The final layer of the MLP produces the network’s predictions.

The architecture of this layer depends on the nature of the task, such as

regression, classification, or other specific objectives.

• Forward Propagation: During forward propagation, data flows through the

network and each layer applies the affine transformation and activation func-

tion to progressively transform more abstract and informative representations.

• Backward pass: To train the MLP, backpropagation and optimisation tech-

niques like gradient descent are employed. Backpropagation computes the

gradients of the loss function with respect to the model’s parameters, from

the output layers back to the input layer, allowing the network to adjust its

weights and biases to minimise the loss.

The fully-connected layer and MLP are the bedrocks of an artificial neural network

due to their simplicity, universality and expressiveness. However, it also makes it

less efficient in learning from more structured data like images and videos.
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2.3.2 Convolutional Layer and Convolutional Neural Net-

work

Convolutional layers and Convolutional Neural Networks (CNNs) [161] [202] are a

family of architectures that are particularly effective in analysing visual data. They

are widely used in computer vision tasks, and serve as the backbone for many differ-

ent models such as in image classification, object detection, and image segmentation.

Convolutional Layers: A convolutional layer is a fundamental building block

in a CNN, designed to perform a specialised operation called a convolution. The

convolutional layer is designed to capture local patterns and spatial hierarchies in

the data. Convolutional layers are crucial for recognising patterns, edges, textures,

and more in image data.

Their architecture can be described as follows:

• Convolution Operation: The convolution operation involves sliding a small

filter (also known as a kernel) over the input data, typically an image. At each

position, the filter computes the element-wise product between its weights and

the corresponding section of the input data. These products are then summed

to produce a single value at that position in the output, called a feature map.

It can be described as: (f ∗ g)(x, y) =
∑

i

∑
j f(i, j) ∗ g(x − i, y − j), where

x, y are coordinates of the input and output while i, j are the coordinates for

the filter.

• Shared Weights: One of the key features of convolutional layers is weight

sharing. The same filter is applied at multiple positions across the input

data. This property dramatically reduces the number of parameters in the

model compared to fully connected layers, making convolutional layers highly

efficient and capable of capturing local patterns.

• Stride: Stride determines how much the filter shifts (or slides) across the input

data after each operation. A larger stride reduces the size of the output feature

map and decreases the computational cost.

• Padding: Padding is the addition of zeros around the input data before ap-

plying the convolution. It helps maintain the spatial dimensions of the fea-

ture maps produced by the convolutional layers. Padding can be ‘valid’ (no

padding) or ’ ‘same’ (padding is computed to keep the output size the same

as the input).

• Activation Function: After the convolution operation, an activation function,

such as ReLU (Rectified Linear Unit), is applied element-wise to introduce
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non-linearity into the model.

Convolutional Neural Networks (CNN): A Convolutional Neural Network is

a deep learning model composed of multiple layers, including convolutional layers,

pooling layers, and fully connected layers. It is named after its most important layer,

the convolutional layer. In a convolutional neural network (CNN), a convolutional

layer is responsible for extracting features from input data (or previous layers) using

convolution operations.

The architecture of a CNN can be described as follows:

• Input Layer: The input layer receives the raw data, typically an image, and

passes it through a series of convolutional layers to extract hierarchical fea-

tures.

• Convolutional Layers: Convolutional layers, as described earlier, are responsi-

ble for detecting local patterns and features in the input data for each respec-

tive layer.

• Pooling Layers: After each set of convolutional layers, pooling layers are often

introduced to reduce the spatial dimensions of the feature maps. Pooling

layers aggregate information from small regions of the feature maps, reducing

the computational burden and promoting translation invariance.

• Fully Connected Layers: Toward the end of the CNN architecture, one or more

fully connected layers are employed. These layers take the high-level features

extracted by the previous layers and use them to make the final predictions.

• Output Layer: The output layer of the CNN is responsible for producing the

network’s predictions. The architecture of this layer depends on the task, with

classification tasks often using softmax activation for probability distributions

over classes.

• Training: CNNs are trained through backpropagation and gradient descent to

optimise the model’s weights and biases. Large labelled datasets are typically

required for training CNNs to achieve high accuracy.

Convolutional Neural Networks are foundational in computer vision, image pro-

cessing, and pattern recognition, offering a structured and efficient way to model

complex relationships in image data. In summary, they can be considered as a

locally-connected with weight-sharing version of the fully-connected layer. This re-

duces the number of parameters and overfitting challenges of the MLP, but it still

shares the principle of a feed-forward architecture.
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2.3.3 Attentional Layer and Transformer Architecture

Attention layers and the Transformer architecture have revolutionised natural lan-

guage processing and deep learning in general by enabling models to focus on specific

parts of input sequences, effectively capturing long-range dependencies and improv-

ing the handling of sequential data. Here, we explore the architecture of attention

layers and how they are integrated into the Transformer model.

Attention Layers: The attention mechanism in deep learning [14], as its name

implies, is inspired by the idea of attention in the human brain. An attention layer is

a fundamental component in many modern neural network architectures. It allows

the model to assign different levels of importance to different elements in an input

sequence, focusing on relevant information and ignoring irrelevant ones. Crucially,

the weighting of input, or attention score, are computed dynamically based on the

input or some additional source of data.

The architecture of an attention layer can be described as follows:

• Input Sequence: An attention layer receives an input sequence, typically a

sequence of vectors or embeddings. Let’s denote the input sequence as X =

{x1, x2, . . . , xn} , where n represents the number of elements in the sequence.

• Query, Key, and Value Matrices: To compute attention scores, the input se-

quence X is transformed into three matrices: the query matrix (Q), the key

matrix (K), and the value matrix (V). These matrices are learned during train-

ing. Mathematically, we can represent this as: Q = X ·WQ, K = X ·WK ,

V = X ·WV . Here, WQ, WK and WV are learnable weight matrices.

• Attention Scores: The attention scores are calculated using the dot product

between the query and key matrices, measuring the similarity between each

query and each key. The scores are scaled for better stability and normalised

using the softmax function to ensure they sum to 1: Attention(Q,K) =

softmax(Q·KT
√
dk

) where dk is the dimension of the key vectors.

• The attention scores are used to compute a weighted sum of the value vectors,

resulting in the output of the attention layer: Output = Attention(Q,K) ·
V. The output represents a refined representation of the input sequence,

emphasising relevant elements based on the attention scores.

In the context of deep learning, the attention mechanism is often used in sequence

modelling tasks, such as language translation or sentiment analysis. It allows the

model to attend to different parts of the input sequence at different time steps,

giving more weight to relevant words or phrases.
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The attention mechanism represents a big step forward for Deep Learning as its

dynamic computation of the attention scores break out from the traditional norm

of simple fully connected or convolutional layers.

Transformer The Transformer architecture, introduced in the paper “Attention

is All You Need” by Vaswani et al. [272], leverages attention layers to process se-

quential data efficiently. It has gained prominence in various natural language pro-

cessing tasks, including machine translation, text generation, and more. Solutions

to sequence learning tasks were previously dominated by Recurrent Neural Networks

[120] at the time.

The architecture of the Transformer model can be summarised as follows:

• Input Embeddings: An input sequence is embedded into a set of vectors

X = [x1, x2, ..., xn], where n is the sequence length. These embeddings can

be learned during training or obtained from pre-trained models.

• Positional Encodings: Since the Transformer does not have built-in sequen-

tial information, positional encodings are added to the input embeddings to

provide information about the order of elements in the sequence.

• Stack of Encoder Layers: The Transformer comprises a stack of identical en-

coder layers. Each encoder layer includes a multi-head self-attention mecha-

nism followed by an MLP, which allows the model to focus on different parts

of the input sequence simultaneously. The output of each encoder layer is fed

into the subsequent layer.

• Multi-Head Self-Attention: In each encoder layer, the input embeddings are

transformed into query (Q), key (K), and value (V) matrices, as described

earlier in the attention layer section. Multi-head attention consists of multiple

parallel self-attention mechanisms, allowing the model to capture different

relationships within the input.

• Feed-Forward Neural Networks: After multi-head self-attention, a feed-forward

neural network processes the output, adding non-linearity to the model.

• Layer Normalisation and Residual Connections: Layer normalisation and resid-

ual connections are applied to each sub-layer, aiding in the stability and train-

ing of the model.

• Stack of Decoder Layers: For tasks like machine translation, the model includes

a stack of decoder layers after the encoder layers. The decoder layers consist of

masked self-attention, which prevents each position from attending to future

positions, and cross-attention, which attends to the output of the encoder.
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• Output Layer: The final layer of the Transformer model produces the model’s

predictions for the given task.

The Transformer architecture’s innovative use of attention layers has led to re-

markable advances in the field of natural language processing, enabling models to

handle sequential data more effectively and efficiently.

Vision Transformer The transformer has become a general multipurpose power-

ful architecture. In computer vision The Vision Transformer, or ViT, is an adapta-

tion of the Transformer architecture for computer vision tasks, bringing the success

of attention mechanisms from natural language processing to the world of image

analysis. Introduced by Dosovitskiy et al. in the paper “An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale” [67], the ViT challenges tradi-

tional convolutional neural networks (CNNs) by demonstrating that pure attention-

based models can excel in image classification and other vision-related tasks. The

crucial difference when compared to a vanilla Transformer architecture can be de-

scribed as follow:

• Patch Embeddings: Unlike traditional CNNs that work with pixel-level data,

the ViT divides an image into non-overlapping patches and linearly projects

each patch into an embedding vector. These patch embeddings are treated

as the input sequence for the Transformer, thus enabling the model to handle

structured image data.

• Classification Head: After the sequence of transformer encoder layers, a clas-

sification head is added to the ViT to make predictions for the given vision

task, such as image classification. The classification head typically includes a

pooling layer to aggregate information from different patches before producing

the final output.

One of the distinguishing features of the ViT is its ability to leverage attention

mechanisms to capture both local and global contextual information within images

and throughout the networks. By using attention, it can learn to focus on specific

patches and features that are relevant for making accurate predictions, making it

highly effective for a wide range of computer vision tasks.

The Vision Transformer has made a significant impact on the field of com-

puter vision, offering an alternative to CNNs by demonstrating its potential for

image recognition, object detection, and segmentation tasks. Its architecture has

inspired various subsequent variations and research, emphasising the power of at-

tention mechanisms in the realm of visual information processing.
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Consolidation of Transformer Architecutre The consolidation of the Trans-

former architecture across various domains represents a remarkable paradigm shift

in machine learning. Originally designed for natural language processing tasks, the

Transformer has proven to be highly adaptable, demonstrating its versatility in

handling diverse data modalities and applications. Its fundamental building blocks,

including self-attention mechanisms and multi-head attention, have been repurposed

and reconfigured to excel in domains beyond text processing. These range from com-

puter vision, where the Vision Transformer (ViT) has achieved impressive results in

image analysis, to audio processing with models like the Audio Spectrogram Trans-

former [85], and even reinforcement learning in the form of the Decision Transformer

[39] and others. The Transformer’s impact has transcended domain and modality

boundaries. Its modular and scalable architecture, coupled with its ability to capture

complex relationships within data, has catalysed a unifying trend in AI research.

The “Flash Transformer” [53] for instance, has pioneered novel ways to enhance the

speed and efficiency of Transformer models and becomes instantly applicable to a

wide range of domains, thanks to the ubiquity of the Transformer architecture.

This consolidation signifies a cross-pollination of ideas and techniques, fostering

innovation and opening up new frontiers in machine learning and artificial intelli-

gence, with the Transformer architecture at its core.

2.4 Representation Learning

Deep Learning has becomes an essential building block of any system that learns

from high-dimensional, unstructured data such as images, videos, text or audio. In

the early day of Machine Learning, much research effort was spent on designing data

transformation and pre-processing pipelines, and learning was only used to make a

shallow decision based on these hand-crafted features. One of the key ingredients in

the success of deep learning is its ability to automatically learn and extract through

deep layers, some useful features from the data.

The increase in available computation and datasets has enabled the paradigm

shift from using hand-designed feature extractors to learned feature extractors. As

a result, the focus in research also shifted from feature-engineering to architecture-

engineering. Research into deep learning architectures has exploded in recent years

and has matured into a few core principles and building blocks e.g convolution layers

[161] for spatial data, recurrent layers [120] for sequential data, and attention layers

[14] for set data. By stacking these building blocks into deep networks that can be

optimised end-to-end, these models can learn a hierarchical, distributed, compact

yet expressive representation of its input data.

The representation mappings learned by deep neural networks offer several ben-
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efits. By virtue of compression, the representations tend to ignore unimportant

variations in the data and can generalise to unseen inputs. Additionally, these rep-

resentations can be learned and optimised directly for a downstream task of interest,

while possessing remarkable transferability to other tasks with similar input domains

[302]. Finally, it is also possible to learn a powerful and general representation space

for a given input domain, that is applicable to a wide range of tasks, in some cases

with better performance than when optimising for a downstream task directly [41].

This approach is the primary motivation behind deep representation learning, which

continues to be a focus of research and development in deep learning and machine

learning in general.

2.4.1 What is Representation Learning ?

Representation learning refers to the process of learning a parametric mapping from

the raw input data domain to a feature vector or tensor, with the aim of capturing

and extracting more abstract and useful concepts that can be used for a range of

downstream tasks. The performance of a machine learning system can be measured

using several metrics including efficiency in the training process, accuracy of its

output and overall effectiveness, and this is directly determined by the choice and

quality of the data representation, or features, in the data used to train it. While it

is obvious that some criteria for usefulness depend on the task, it is also universally

assumed that there are sets of features that are representative of a dataset and that

are generally useful as input for many kinds of downstream classifier or predictor.

Focusing explicitly on learning representation in some cases can be beneficial, for

example, when a labelled dataset for a task is small and we want to leverage a larger

unlabelled dataset to improve the performance of a learning system.

Often the input domain is high-dimensional and even multi-modal (images, video,

sound, text) and the encoded feature is represented in a manifold of a much lower di-

mensionality. While all dimensionality reduction methods convert high-dimensional

inputs to a lower-dimensional representation, not all methods learn a mapping that

meaningfully generalises on new data samples, and that is what representation learn-

ing does.

2.4.2 What Makes a Good Representation ?

As a goal, the task of explicitly learning a good representation for data in comparison

to implicitly learning a good representation to optimise performance for a task, can

be tricky. Firstly, it is not entirely clear what makes a good representation. Based

on the analysis by Bengio, Courville, and Vincent [21], a good representation is

locally smooth in its manifold, is temporally and spatially coherent in a sequence
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of observations, has multiple, hierarchically-organised explanatory factors which are

shared across tasks, has simple dependencies among factors and is sparsely activated

for a specific input.

The field of deep representation learning has developed a number of core princi-

pals in learning good representations:

• Distributed: Representations that are expressive and can represent an ex-

ponential amount of configurations for their size. This is in contrast to other

types of representations such as one-hot encoding, as learned by many clus-

tering algorithms;

• Abstraction and Invariant: Good representations can capture more ab-

stract concepts that are invariant to small and local changes in input data;

• Disentangled: While a good representation should capture as many factors

and discard as little data as possible, each factor should be as disentangled as

possible. Aside from promoting feature reuse in learning systems, it can also

be beneficial for other purposes such as explainability;

• Composable and transferable: To maximise its usefulness, representations

should be able to compose in order to form novel concepts and to transfer its

learned knowledge to many different tasks. This property will enable chaining

different neural networks together, or combining and performing arithmetic on

the representation space.

These principles describe an ideal representation that can express a large num-

ber of input configurations for their size, capture more abstract concepts that are

invariant to small and local changes in data, compose features for different purposes,

and transfer knowledge to many different tasks.

2.4.3 How to Learn Representations

Learning good representations of data is a complex task with many different methods

and algorithms available. One way to categorise the available approaches is by

considering two key axes of learning: generative versus discriminative modelling, and

supervised versus unsupervised learning. By examining each of these dimensions,

we can gain a better understanding of the various techniques available and their

respective strengths and weaknesses.

Generative and discriminative modelling

In the machine learning literature, approaches to learning representations of data

are often divided into two main categories: generative or discriminative modelling.
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While both approaches assume that a good representation will capture the under-

lying factors that explain the inputs, they differ in the process of learning to model

the data.

From the perspective of statistical learning, the representation is also called the

unobserved latent variable, and the process of inferring the latent representation

from data is called inference.

Generative approaches learn representations by modelling the data distribution

p(x), for example: all the pixels in an image. They are based on the assumption

that a good model p(x) that can generate realistic data samples, must also in turn

capture the underlying structure related to the explanatory variables y. Evaluating

the conditional distribution p(y|x) for some discriminative tasks on variable y can

then be obtained by the application of Bayes’ rule.

Discriminative approaches to learning representations on the other hand learn

representations by directly modelling the conditional distribution p(y|x) with a

parametrised model that takes as input the data sample x and outputs the la-

bel variable y. Discriminative modelling consists of an inference step that infers the

values of the latent variables p(v|x), and then directly makes downstream decisions

from those inferred variables p(y|v).

Discriminative models have some advantages when compared to generative mod-

els. Modelling the distribution for the set of data is computationally expensive and

is not necessary in order to extract representations. If the goal is only to learn a

mapping to a lower dimension representation, the generation process in a generative

model can be considered wasteful. In addition, the task of learning a good decoder

can be entangled with the task of learning a good feature encoder. The objective

functions in generative models are also harder to design and more expensive to

evaluate since they usually operate in the high-dimensional input space.

While there is no clear winner between generative and discriminative modelling,

both have their advantages and can complement each other. Generative models

are minimalist in terms of their training objective since they only need to generate

or reconstruct the input data. Therefore, research in generative modelling is more

focused on the inductive biases and architectures that facilitate learning a useful

representation. On the other hand, discriminative models require careful design de-

cisions for their objective training, which can sometimes be more important than

the model architecture. Combining the strengths of both approaches is an impor-

tant research direction, as it could potentially lead to more effective representation

learning.
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Supervised and Unsupervised Learning

In deep learning, supervised learning methods have traditionally been the most

successful, where a representation is learned by mapping from input data to a cor-

responding human-generated label. Earlier paradigms involving pre-training layer-

wise unsupervised models provided little or no benefit in the more modern end-to-

end supervised setting. As the performance of deep learning can scale upwards with

the amount of data and the model size [141], the need for labelled data has been

identified as an impeding factor in scaling deep networks. However, the need for

labelled data can be a limiting factor in scaling deep networks, as labelling data can

be time-consuming, expensive, and potentially biased through the labelling process.

Until recently, most discriminative approaches to learning representations have

been a type of supervised learning. Unsupervised representation learning methods,

such as generative models, have previously been explored but are computationally

expensive and that limited their ability to model dependencies between input dimen-

sions. Some newer works under the term “self-supervised” learning aim to learn use-

ful representations without labels using discriminative modelling approaches. These

methods have shown great success when used for transfer learning, surpassing su-

pervised pre-trained models in multiple downstream tasks, in both computer vision

and natural language processing applications. Since a self-supervised discriminative

model does not have human-generated labels corresponding to the inputs like its

supervised counterparts, the success of self-supervised methods comes from the el-

egant design of the pretext tasks to generate a pseudo-label from part of the input

data itself.

2.4.4 How to Evaluate Learned Representations

Evaluating the quality of a learned representation is not as straightforward as in

supervised learning where we can directly optimise for a specific goal. Due to the

flexible nature of learned representations, evaluating a good representation requires

assessing its training objectives and metrics, as well as evaluating its usefulness,

transferability, and generality across a range of downstream tasks.

In the self-supervised setting where representation is learned through a proxy

task, the optimisation objective of the proxy task can serve as a proxy performance

measure for the learned representation. For instance, for contrastive learning meth-

ods where the model is trained to bring similar representations closer and push dis-

similar ones apart, the effectiveness of the learned representation can be gauged by

how well it performs on this contrastive task, often measured by the alignment and

uniformity of the feature distribution. Another example is the use of cross-entropy

in the next-token prediction objective as the foundation of the scaling law, which are
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used to predict the performance of LLMs as they are scaled up in size, training data,

and compute resources. Representations learned by established models can serve as

valuable benchmarks for evaluating other models, providing a means to assess the

quality and similarity of learned features. One method for this is Centered Kernel

Alignment (CKA), which measures the similarity between the representations of

two models. By comparing a new model’s representations to those of a well-known

model, such as a pre-trained neural network, researchers can quantify how closely

the new model’s internal features align with established ones, offering insights into

the model’s generalisation and transferability. Similarly, in the evaluation of gener-

ative models, the Inception Score (IS) leverages the Inception model, a widely-used

image classifier, to assess the quality of generated images. The IS calculates how

well the generated images match the distribution of real-world images as recognised

by the Inception model, thus providing a measure of both the fidelity and diversity

of the generated samples. These approaches demonstrate how leveraging represen-

tations from established models can provide a robust and interpretable framework

for evaluating new models, especially when direct evaluation may be challenging or

when specific benchmarks are needed.

Sometimes, a good representation is valuable for studying the underlying char-

acteristics of the data, even without the need for a particular task. For example,

in unsupervised learning, a representation that clusters similar representations to-

gether can reveal the intrinsic structure of the dataset, aiding in exploratory data

analysis. In a scientific research context for example, representations learned from

biological data can reveal patterns or clusters that correspond to different biologi-

cal processes or disease states, providing insights that are valuable beyond specific

predictive tasks.

Ultimately, a good representation of data is determined by its performance on

downstream tasks. For example, in the case of image classification, a robust repre-

sentation will only need to capture the essential features of objects, such as shapes,

textures, and colours, allowing the model to distinguish between different classes ef-

fectively. Similarly for detection, the representation must be rich enough to localise

objects within an image, requiring certain spatial and contextual understanding. In

segmentation, a good representation must not only identify objects but also delin-

eate their boundaries at the pixel level. A good visual representation that captures

the essential properties of the data and can be shared across these tasks. However,

representations for these tasks can sometimes conflict, especially when the model’s

capacity is insufficient, resulting in a trade-off between performance in one task and

generalisation across multiple tasks. One widely used approach to quickly evalu-

ate representation on a wide range of downstream tasks is linear probing, where a

simple linear classifier is trained on top of the frozen representations to assess how
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well they capture the relevant features for downstream tasks. The performance of

those linear classifier serves as an indicator of the representation’s quality, where

high accuracy suggests that the features learned by the model are well-organised

and informative. Another method lightweight method is k-means clustering, which

assesses the structure of the learned representations by clustering the feature space

and evaluating the purity of the clusters with respect to known labels. While this

does not impose a linear separability on the embedding space, if the representations

are well-structured, features belonging to the same class should cluster together.

Finally, a more heavy-handed approach is fine-tuning the model on a specific task

and comparing the number of steps or epochs required to reach a particular perfor-

mance level provides another means of evaluation. A representation that allows the

model to quickly converge to high performance with minimal fine-tuning indicates

that the initial self-supervised training has effectively captured the essential fea-

tures of the data. By comparing these methods, researchers can determine how well

the self-supervised model prepares the feature space for various tasks, with faster

convergence in fine-tuning often highlighting a more versatile and robust represen-

tation. These evaluation techniques collectively offer a comprehensive assessment of

the learned representations, guiding further refinement and optimisation.

2.5 Representation Learning in Computer vision

In this section, we will go in detail into the role and application of representation

learning, specifically in the domain of computer vision.

2.5.1 The Diversity and Fragmentation of Computer Vision

Research

Computer vision is a vast field of research and applications that involves a multitude

of tasks that take visual signals as input. These tasks range from image classifica-

tion, detection, and segmentation to depth estimation, surface normal estimation,

colourisation, in-painting, super-resolution and many more. As a result of this di-

versity, historically the research in computer vision is highly fragmented in terms of

its methods, interfaces, as well as pre- and post-processing steps.

While most computer vision tasks use the RGB pixels as input to mimic the hu-

man visual system, the output requirements for each tasks can vary widely. Broadly,

the output format can be categorised into two categories: sparse and dense predic-

tion. For instance, tasks like image classification or object detection only need to

output a small number of bits of information to denote the presence and the loca-

tion of objects included in the inputs. On the other hand, tasks like segmentation or
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depth estimation require a dense prediction for every input pixel, while tasks such as

in-painting, out-painting or super-resolution demand the outputs to be even larger

than the inputs itself.

Furthermore, the pre- and post-processing steps in computer vision also vary

widely. Pre-processing steps may include data augmentation and normalisation,

while post-processing steps may involve smoothing or filtering heuristics such as

non-maximal suppression [226] or conditional random fields [38]. The choice of pre-

and post-processing steps can greatly affect the performance of the model on a

particular task.

While the diversity of tasks provides ample opportunities for research and in-

novation, it also makes it difficult to develop general-purpose models that perform

well across multiple tasks. In the section below we discusses some major research

directions towards this goal.

2.5.2 Programming With Expert Models

Combining different models for various computer vision tasks is a straightforward

approach to building a more complex visual agent. For instance, to classify human

gaits, we can use a human keypoint detection model that takes an RGB input image

and outputs a list of keypoints for each human in an image. We can then feed these

keypoints to a gait classification model to generate the final gait prediction. This

approach offers the advantage of allowing each task to be developed and researched

independently, in parallel with the others.

While the independent of tasks allows them to be developed in parallel, this

is also a disadvantage of this approach, because each model needs to be trained

independently for each task. This is especially wasteful when tasks share the same

inputs and are very similar in outputs. Take the task of depth estimation and object

segmentation for example. Both tasks take an input image and predict either a depth

value, or an object category for each input pixel. It is reasonable to assume that

the information processing steps needed to predict depth are also useful to predict

the object it belongs too, and vice versa. So training two independent networks to

process the same information is inefficient, and does not allow the learning signal

from one task to benefit the other and vice versa.

This approach to training separate expert models and chaining them together

to perform complicated tasks is similar to the concept of Application Programming

Interface (API) in system programming. Care must be taken to explicitly define

the input and output interface of each model, but when properly organised, it is

possible to compose and perform an exponential amount of tasks from a small set

of expert models.
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Recently, there have been proposals to leverage the natural language process-

ing capabilities of large language models to program these computer vision model

APIs [243]. By using a large language model acting as the controller to parse nat-

ural language descriptions, it can understand the input and output requirements of

each expert model, and devise the appropriate sequence of inferences to obtain the

desired result. This approach has the potential to greatly simplify the process of

building complex computer vision agents by allowing developers to specify tasks in

natural language instead of having to code them explicitly.

2.5.3 Perceiving With Visual Representation

The concept of a shared visual representation for a wide range of tasks has been a

driving force behind recent progress in computer vision. The idea is inspired by the

human’s ability to perform multiple tasks from a common visual pathway without

much specialisation.

One of the earliest attempts to leverage hidden representations for vision tasks

was transfer learning [302]. Instead of training a deep network from scratch, re-

searchers transferred the base of a network that had been trained on a similar task

to extract the visual representation and then only trained task-specific components

for the target task. Finetuning is a similar approach where the pretrained network

is learned together with a new task. This requires more memory and computing

power, but generally achieves better performance than transfer learning, especially

when the target and source input distributions are different.

In the early days, the most popular backbones were image classification models

trained on the ImageNet dataset [58]. Due to the size of ImageNet, the models

trained on this supervised task were usually among the largest and most powerful

models. Improvement in ImageNet pretraining consistently improved performance

on a wide range of downstream tasks.

In recent years, self-supervised learning has taken over from supervised ImageNet

pretraining, thanks to its lack of dependence on human labels [110]. This approach

scales to even larger models trained on even bigger datasets, sometime comprising

billions of images [92]. Due to their size and generic pretraining objectives, these

backbones are sometime referred to as “foundation models” [23], to indicate their

function and goal of supporting other models on downstream tasks.

Complementary to the effort of unifying the visual representation backbone is

the research in unifying the pre- and post-processing and heuristics of various vision

tasks. These approaches follow the direction of natural language processing, treating

inputs and outputs as sequences of tokens and leveraging autoregressive models for

next-token prediction to model the dependencies among them [154, 42]. Combined
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with a foundation model for visual representation, this approach offers the potential

for even greater flexibility and efficiency in multi-task learning.

2.5.4 Reasoning with Semantic Representation

The recent progress in computer vision research has been heavily reliant on large,

pretrained foundation models that provide powerful visual representations. These

models scale smoothly and reliably with more compute power and diverse data

on the pretraining objective, and can sometimes lead to “emergent behaviours”[284]

when evaluated on some metrics for downstream tasks. However, the cost of training

these models is immense, taking weeks or even months on some of the world’s most

powerful supercomputers and requiring datasets larger than any human could see

in their lifetime. This begs the question: is scaling all you need ? Even if it is,

how much more is needed to achieve the ultimate goal of creating a general purpose

autonomous agent that can perceive, navigate, and interact effectively in the real

world ?

While perception tasks, which involve generating labels or masks, can be handled

by pretrained visual representation backbones, there are other types of tasks that

require more than just perception. These include tasks like understanding and

reasoning about the objects in an image, as well as reasoning about counterfactual

scenarios. How can we approach building such systems that can reason and interact

with the world like human do ?

The concept of “System 1” and “System 2” thinking, as introduced by Daniel

Kahneman in his book “Thinking, Fast and Slow” [139], offers a useful framework

for understanding the different types of cognitive processing that occur in the human

brain. System 1 thinking is fast, automatic, and often subconscious, while System

2 thinking is slow, deliberate, and conscious. Drawing on this analogy of human

psychology, the current limitations of visual representation are similar to the limita-

tions of System 1. The development of higher-level representations and the ability

to perform System 2 processing in deep learning models is a promising direction for

advancing the field towards more advanced cognitive capabilities.

One approach to achieving more advanced capability is to develop higher-level

representations that can capture abstract concepts such as objects automatically.

These object-centric representation can be thought of as analogous to the working

memory in humans, which can hold only a few distinct concepts at a time [50].

In the context of programming, this can be likened to the way simple compu-

tations are assigned to variables, which can then be manipulated to compute more

complex operations. By forming these higher-level representations, models can bind

concepts to variables and perform reasoning on them.
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The benefits of such higher-level systems are numerous. Instead of learning to

represent a complicated scene in a single vector representation, which would require

an enormous amount of data to cover the exponential number of configurations,

such a system can learn to discover and represent simpler “object” constituents.

The model can later learn to compose them to represent a combinatorial amount of

scenes, making it more efficient to learn in terms of compute and data. In essence,

such a system can provide the model with the ability to break down complex scenes

into smaller, more manageable parts, making it easier to learn and reason about the

visual world.

Moreover, being able to discover and learn such representations provides a way to

bridges the gap to symbolic reasoning, which involves using symbols as vectors and

reasoning as arithmetic. This ability enables end-to-end optimisation of perceiving

and reasoning, which is a critical aspect of building an autonomous agent that

can navigate and interact with the real world effectively. By learning to reason

symbolically, the model can make more complex inferences and predictions, and it

can do so in a more efficient and effective manner. This capability is crucial for

building agents that can understand and reason about the world in a way that is

comparable to human cognition.

This is an exciting research direction with many open questions and challenges

ahead.

2.6 Towards a Generally Intelligent Agent

In this chapter, we have presented a brief overview the rich landscape and foun-

dational concepts in the domains of computer vision and machine learning, with a

particular emphasis on deep neural networks. These are all integral components of

the broader field of Artificial Intelligence. We have delved into the historical evolu-

tion of computer vision, tracing how it has matured to enable machines to perceive

and comprehend the visual world. Furthermore, we have tried to unravel the ef-

fectiveness and ubiquity of artificial neural networks within the context of machine

learning and deep learning, highlighting its pivotal role in emulating human-like

capabilities in some cognition tasks, and the various architectural paradigms that

have emerged as a result, from Multi-layer Perceptrons, Convolutional Neural Net-

works to Transformer models. These advances have transcended mere theoretical

constructs, manifesting as a myriad of practical and impactful applications across

diverse domains and exerting a profound influence on the technology industry as a

whole.

In Section 2.4, we have spotlighted the critical theme of representation learning,

a cornerstone principle underpinning the remarkable performance gains achieved by
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deep learning across a spectrum of tasks. After all, the true measure of intelligent

behaviour lies in its ability to operate effectively within a given environment, and

perceiving and representing that environment constitutes a foundational step to-

wards achieving this objective. Representation learning serves as the principle for

machines to encode and comprehend information, mirroring a fundamental aspect

of human cognition. We’ve explored how these representations form the basis for

acquiring knowledge, enabling models to learn more general representations that can

adapt to a wide range of tasks and domains. The pursuit of different approaches

to representation learning, essential for comprehending and enhancing this pivotal

concept, lies at the heart of all the research questions posed in this thesis, as outlined

in Section 1.1.

This section serves as the cornerstone for the remaining chapters of this thesis,

upon which the subsequent methodologies for self-supervised learning, contrastive

representation learning (Chapter 3), and object-centric representation (Chapter 4)

are built.

Zooming in on the realm of computer vision, we have delved into an emerg-

ing paradigm for developing more capable vision systems and the possible role of

representation learning, as detailed in Section 2.5. Departing from the practice

of constructing individual representation spaces for specific tasks, the approach of

pre-training a general visual representation on vast volumes of data, alluded to in

Section 2.5.3, is the focus of study in Chapter 3.

Furthermore, the impetus to encourage models to acquire highly compact and

abstract representations represents a promising trend in addressing the challenge of

high-level visual reasoning, as introduced in Section 2.5.4.

In the grander scheme of things, the ultimate objective of both computer vision

and machine learning is to advance towards a more generally intelligent agent. Ir-

respective of the internal representations learned, what holds most significance is

an agent’s capacity to make accurate predictions and decisions based on incoming

signals. While the dominant modus operandi in the era of deep learning has been

more layers, more computational resources, and larger datasets, an examination of

the problem through the lens of the principles underpinning representation learning

may yield invaluable insights and hasten progress towards this overarching goal.
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Chapter 3

Contrastive Representation

Learning: A Framework and

Review

In this chapter, we address research question 1 regarding how to learn a gen-

eral visual representation. We provide a comprehensive review and analysis on

the topic of Contrastive Representation Learning (CRL), a self-supervised discrim-

inative method that can learn visual representations that outperform supervised

pre-training on a wide range of downstream tasks.

Through the lens of contrastive learning, we address research question 2 by

categorising the many different learning principles and inductive biases that enable

learning useful visual representations. While this chapter focuses on contrastive

learning, the principles and framework provided are generally applicable and can be

applied to a broader spectrum of topics in visual representation learning.

In the following sections, we first introduce the concept of CRL via a concrete

example of Instance Discrimination in Section 3.1.1. We then introduce the general

framework of CRL and the taxonomies of its components in Section 3.2. Using this

framework, we then provide the pertinent historical evolution of the development of

contrastive learning and its application in a wide range of domains and modalities.

We then conclude the chapter with a discussion on future research directions, as

well as pointers for practitioners looking to apply CRL.

3.1 What is Contrastive Representation Learn-

ing ?

We now present an intuitive introduction to contrastive learning with a concrete

example of the Instance Discrimination task in learning self-supervised visual rep-

33



resentations.

Intuitively, contrastive representation learning can be considered as learning by

comparing. Unlike a discriminative model that learns a mapping to some (pseudo-

)labels and a generative model that reconstructs input samples, in contrastive learn-

ing a representation is learned by comparing among the input samples. Instead of

learning a signal from individual data samples one at a time, contrastive learning

learns by comparing among different samples. The comparison can be performed

between positive pairs of “similar” inputs and negative pairs of “dissimilar” inputs.

Unlike supervised methods where a human annotation y is needed for every input

sample x, contrastive learning approaches only need to define the rules, or distribu-

tion, of similarity in order to sample a positive input x+ ∼ p+(·|x), and a rule or

data distribution for a negative input x− ∼ p−(·|x), with respect to an input sample

x. The goal of contrastive learning is very simple: the representation of “similar”

samples should be mapped close together, while that of “dissimilar” samples should

be further away in the embedding space. Thus by contrasting between samples of

positive and samples of negative pairs, representations of positive pairs will be pulled

together while representations of negative pairs are pushed far apart.

In the self-supervised setting, instead of deriving a pseudo-label from the pre-

text task, contrastive learning methods learn a discriminative model on multiple

input pairs, according to some notion of similarity. Similar to other self-supervised

pretext tasks, this definition of similarity can be defined from the data itself, and

thus can overcome a limitation encountered in supervised learning settings where

only a finite number of label pairs are available from the data. While some self-

supervised methods need to modify the model architecture during learning (such as

in [310]), contrastive methods are much simpler where no modification to the model

architecture is needed between training and fine-tuning to other tasks.

If additional labels are provided, these can also be integrated into the definition

of similarity and dissimilarity of the contrastive framework as well. By defining the

similarity and dissimilarity distribution on the dataset level instead of individual

data samples, contrastive methods alleviate the need for a labelled dataset while

providing a mechanism to specify the desired invariant / covariant properties of the

learned mapping. Thus contrastive learning methods provide a simple yet powerful

approach to learning representations in a discriminative manner in both supervised

or self-supervised setups.

Figure 3.1 illustrates the family of contrastive methods along generative-discrimin-

ative and supervised-unsupervised axes.
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Figure 3.1: Contrastive learning in the Generative-Discriminative and Supervised-
Unsupervised spectrum. Contrastive methods belong to the group of discriminative
models that predict a pseudo-label of similarity or dissimilarity given a pair of
inputs.

3.1.1 Example: Instance Discrimination

Along the lines of an exemplar-based classification task [68], which treats each image

as its own class, Instance Discrimination [289] is a popular self-supervised method

to learn a visual representation and has succeeded in learning useful representations

that achieve state-of-the-art results in transfer learning for some downstream com-

puter vision tasks [110], [190]. Based on the simple formulation proposed in SimCLR

[41], in this section we will describe the Instance Discrimination task as a simple

form of contrastive learning, as illustrated in Figure 3.2.

The image-based instance discrimination pretext task learns a representation by

maximising agreement of the encoded features (embeddings) between two differently

augmented views of the same images, while simultaneously minimising the agree-

ment between views generated from different images. To avoid the model maximising

agreement through low-level visual cues, views from the same images are generated

through a series of strong image augmentation methods.

• Let T be the set of image transformation operations where t, t′ ∼ T are

two different transformation operators independently sampled from T . These
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Figure 3.2: Contrastive learning in the Instance Discrimination pretext task for
self-supervised visual representation learning. A positive pair is created from two
randomly augmented views of the same image, while negative pairs are created
from views of two different images. All views are encoded by a the same encoder
and projection heads before the representations are evaluated by the contrastive loss
function.
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transformations could be random cropping and resizing, blur, colour distortion

or perspective distortion, etc. A (xq,xk) pair of query and key views is positive

when these two views are created by applying different transformations on the

same image x: x = t(x) and x′ = t′(x), and is negative otherwise.

• A feature encoder e(·) then extracts the feature vectors from all the augmented

data samples v = e(x). There is no restriction on the choice of the encoder,

so usually a simple CNN such as ResNet [108] or ViT [67] is used for image

data due to their favourable performance characteristics. The representation

v ∈ Rd in this case is the output of the average pooling layer of Resnet.

• Each representation v is then fed into a projection head h(·) comprised of a

small multi-layer perceptron (MLP) to obtain a metric embedding z = h(v),

where z ∈ Rd′ with d′ < d is in a lower dimensional space than the represen-

tation v. This projection head can be as simple as a one-layer MLP using a

non-linear activation function. All the vectors are then normalised to be unit

vectors.

• A batch of these metric embedding pairs {(zi, z′i)}, with (zi, z
′
i) represents the

metric embeddings from two augmented versions (x,x′) of the same image,

are then fed into the contrastive loss function which encourages the distance

in the metric embedding of the same pair to be small, and the distances of

embeddings from different pairs to be large. The non-parametric classification

loss [289] and its variants, such as InfoNCE [204] and NT-Xent [41] is a popular

choice for the contrastive loss function, which for the i-th pair has the general

form:

Li = −log
exp(z⊤i · z′i/τ)∑K
j=0 exp(zi · z′j)/τ)

(3.1)

where z⊤ · z′ is the dot product between two vectors and τ is a temperature

hyper-parameter that controls the sensitivity of the product. The sum in the

denominator is computed over one positive and K negative pairs in the same

minibatch. Intuitively, this can be understood as a non-parametric version of

(K + 1)-way softmax classification [289] of zi to the corresponding z′i.

In order to minimise the InfoNCE loss function in Eq. (3.1), the dot product in

the numerator measuring the similarity of representation from the same pair is max-

imised, while the similarity of all negative pairs in the denominator, is minimised.

When the contrastive training phase is done, the projection head is discarded

and the encoder is used as the feature extractor for transfer learning. By combining

the predictor or classifier with the representation output of the encoder, they can

be fine-tuned on a new task on a target dataset.
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Contrastive methods in the instance discrimination task set out to learn a repre-

sentation that can separate between different instances, while ignoring the meaning-

less variances introduced by image data augmentation. Because contrastive learning

directly maximises similarity between representations of positive similar pairs and

minimises that of negative pairs, how those pairs are generated directly determines

the invariant properties in the learned representation. The most important compo-

nent for the success of contrastive pre-training on ImageNet [58] is data augmen-

tation methods. As analysed in SimCLR [41], many contrastive methods perform

very poorly without proper augmentations (i.e random crop and colour distortion)

even for the same set of architectures and losses.

The dataset, data transformations and instance-wise similarity definition com-

bined together in the contrastive learning framework provide a scalable and ac-

cessible approach to specifying invariant and covariant properties in the learned

representation.

3.2 A Taxonomy for Contrastive Learning

Before we present our taxonomy for contrastive learning methods, we first formally

describe the contrastive representation learning (CRL) framework in Section 3.2.1.

In particular, the CRL is a general framework that can be used to succinctly describe

a variety of contrastive learning methods ranging from self-supervised to supervised

and covering images, videos, audio, text and more. We use this framework to in-

troduce a comprehensive taxonomy for the components of contrastive methods in

Sections 3.2.2, 3.2.3, 3.2.4 and 3.2.5.

3.2.1 The Contrastive Representation Learning Framework

The general CRL framework, illustrated in Figure 3.3 builds on top of SimCLR of

Chen et al. [41], which describes a simple contrastive self-supervised framework to

learn visual representations in the context of an Instance Discrimination task (see

Section 3.1.1). As distinct from SimCLR, we generalise this framework beyond the

image Instance Discrimination task to cover learning representations in a variety

of data domains (images, video, audio and text), learning setups (supervised, self-

supervised or knowledge distillation) and ways to define the concept of similarity.

Specific choices of the similarity distribution, encoders and heads as well as con-

trastive loss functions allows the CRL framework to encompass arbitrary contrastive

learning methods. More importantly, it enables a clear understanding of most of the

contemporary work and sheds light on the limitations and the promising directions

ahead.
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Figure 3.3: Overview of the Contrastive Representation Learning framework. Its
components are: a similarity and dissimilarity distribution to sample positive and
negative keys for a query, one or more encoders and transform heads for each data
modality and a contrastive loss function evaluate a batch of positive and negative
pairs.
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In the following and throughout the rest of this thesis, we adopt the metaphor of

query and key from He et al. [110], inspired by the problem of similarity matching

as a form of dictionary look-up similar to terminology used to describe the attention

layer.

We will use the symbols q and k to represent the query and key for either

the input sample x, the representation v or the metric embedding z depending

on context. When we need to be specific, the corresponding symbols x,v, z with

superscript ·q, ·k for query and key will be used.

Definition 3.2.1 (Query, Key). Query and key refer to a particular view of an input

sample x ∈ X . Together they form a positive or negative pair (q,k) depending on

whether the query and key are considered similar or not.

In the Instance Discrimination task, query and key views are a randomly trans-

formed version of an image t(x) in the data set X .

Definition 3.2.2 (Similarity distribution). A similarity distribution p+(q,k+) is a

joint distribution over a pair of input samples that formalises the notion of similarity

(and dissimilarity) in the contrastive learning task. Distinct from other machine

learning methods where the data distribution is defined over a single input sample

p(x), the similarity required by contrastive methods takes input from the joint

distributions of pairs of samples p(q,k).

A key is considered positive k+ for a query q if it is sampled from this similarity

distribution and is considered negative k− if it is sampled from the dissimilarity

distribution p−(q, k−). In some tasks, the dissimilar data distribution may not be

explicitly defined but implicitly given as the distribution of any pair that is not

sampled from the similarity distribution.

Similar to other representation learning problems, the focus of contrastive learn-

ing is in learning from a high-dimensional input space X , which depends on the

domain and can be a tensor representing audios, images, videos or texts.

Combining the data distribution p(x), the definition of similarity p+(q,k) and

dissimilarity p−(q,k−), different properties of the learned representation can be

specified, as illustrated in Figure 3.4.

In practice, queries and keys are not necessarily sampled jointly but the query

can be sampled first from the data distribution q ∼ p(x) where the corresponding

positive and negative keys are then sampled from the conditional distributions k+ ∼
p+(·|q) and k− ∼ p−(·|q).

In the Instance Discrimination task, the similarity distribution is defined over

any pair that are transformed from the same input samples q,k ∼ p+(·, ·) if q = t(x)

and k = t′(x) for 2 different random transformations t and t′ ∈ T .
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Figure 3.4: An intuitive diagram represents the learning signal captured by the con-
trastive loss through the query, positive and negative keys. Contrastive methods
allow the desired invariances to be specified through the similarity and dissimilarity
distributions. Each circle represents the information signal contained in each view.
The signal that is not mutual between query and positive keys are invariant fea-
tures, since their representations are made as similar as possible. The signal that is
not mutual between the negative key and the query or positive keys are covariant
features, since these representations must be able to distinguish between those to
minimise similarity to the negative key.
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Definition 3.2.3 (Model). We refer to the combination of all modules with pa-

rameters in a contrastive learning method as the model f(x; θ) : X → R|Z| and its

parameters collectively as θ.

The model can be decomposed further into a base encoder and a transform head.

Definition 3.2.4 (Encoder). The features encoder e(x; θe) : X → V with param-

eters θe learns a mapping from the input views x ∈ X to a representation vector

v ∈ Rd. This network (when trained via contrastive learning) can be used to gener-

ate features (or inputs) to leverage the learned representations in other tasks (e.g.

as input when learning another model for an image classification task), or to have

layers stacked on top (e.g. fully connected, softmax) where the network can be

fine-tuned to the new task.

Definition 3.2.5 (Transform head). Transform heads h(v; θh) : V → Z parame-

terised by θh, are modules that transform the feature embedding v ∈ V into a metric

embedding z ∈ Rd′ .

Depending on the specific application, the transform heads can be used for differ-

ent purposes, such as to aggregate information from multiple representation vectors

or to project it down to a lower-dimensional space the contrastive loss.

Definition 3.2.6 (Contrastive loss). A contrastive loss function operates on a set

of metric embedding pairs {(z, z+), (z, z−)} of the query, positive and negative keys.

It measures the similarity (or distance) between the embeddings and enforces con-

straints such that the similarity of positive pairs are high and the similarity of

negative pairs are low. To attain small distances between the embeddings of posi-

tive pairs in the metric space, representations will become invariant to irrelevant

differences in the input space of positive pairs, while simultaneously learning the

covariant representation between negative pairs to explain for the large distance in

the metric space.

3.2.2 A Taxonomy of Similarity

Contrastive Learning revolves around learning a mapping from different views of

the same scene, or context into the same region of a representation space, which

is formalised through a similarity distribution. The key to an effective contrastive

learning task is to design the similarity distribution such that positive pairs are

very different in the input space yet semantically related, and a dissimilarity dis-

tribution such that negative pairs are similar in the input space but semantically

different. Despite the recent popularity of self-supervised contrastive learning, con-

trastive learning in general is agnostic to the supervised / unsupervised paradigm.
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Figure 3.5: Illustration of learning similarity between multiple modalities. Each
modality has an encoder and the representations extracted by different encoders are
contrasted with each other to learn a joint embedding space.

Depending on whether any human labels y are used in defining those joint distri-

bution, e.g. k ∼ p(·|q, y), the method then becomes a supervised or self-supervised

contrastive learning task.

Depending on the end goals there can be many notions of similarity and dissim-

ilarity, which is a strong point of contrastive methods, but it also makes it difficult

to provide a taxonomy that captures all these variations. However, there are some

general principles that are usually the underlying assumptions behind how similarity

and dissimilarity is constructed, which we now examine.

Multisensory signals

One direct approach to have multiple views of the same context is to record the

information with multiple sensors. These sensors can be of the same modality (e.g.

two cameras recording the same scene from different angles), or of different modal-

ities (e.g. audio and image from a video), as illustrated in Figure 3.5. Using the

natural correspondence between different sensors, the model can learn to be invari-

ant to the low-level details in each sensor input and focus on representing the shared

context between them.
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Figure 3.6: Illustration of some common image augmentation methods. Different
views from a random set of augmentations of the same images are usually considered
positive pairs.

Contrastive methods have been used to learn cross-modal representations of vi-

sual and textual data in [261], [126]. In the Time-Contrastive Network [242], a

visual representation is learned by pulling the representation of two simultaneous

views from different cameras of the same scene, while pushing apart frames taken

from far away in time but from the same video. This leads to a representation space

that is invariant to viewpoints while being sensitive to changes in time.

Data transformation

If synchronous data from multiple sensors is not available (e.g. a single-modality

dataset like ImageNet), the most simple yet effective approach to generating different

views of the same scene is to use a hand-crafted transformation function operating

on the input data domain. Designing and implementing such semantic-preserving

transformations requires prior knowledge, but this knowledge is defined once for

the entire dataset or data collection pipeline, and can be dynamically applied to

individual samples at run time.

For visual data, image augmentation methods such as lighting or colour dis-

tortion, cropping and padding, adding noise and blur, rotation and perspective
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transformations, etc. are efficient methods to transform pixels while preserving the

semantic meaning of an image’s content. An example of these data transforma-

tions techniques on image can be seen in Figure 3.6. Destroying low-level visual

cues by image augmentation forces the contrastive method to learn a representa-

tion invariant to those changes in the inputs. These techniques have been widely

used in supervised learning to learn invariant features and to increase the robust-

ness of the resulting models. The recent wave of instance discrimination contrastive

methods have demonstrated that the same representation can be learned from these

augmentation techniques without the need for a class label [289, 300, 190, 110, 41].

For natural language text data, Fang et al. [77] transform a sentence using a

back-translation method to create a slightly different sentence that has the same

semantic meaning as the original one to form a positive pair. Back-translation uses

two machine translation models to translate a sentence into a target language and

back to the source language. The randomness from the two translation models will

yield a sentence in the source language that is slightly different from the original

sentence.

For program code data, ContraCode [128] uses various source-to-source transfor-

mation methods from the compiler literature such as variable renaming, identifier

mangling, reformatting, beautification, compression, dead-code insertion / elimi-

nation, etc. to construct semantically similar code snippets that share the same

functionality. Learning to map these textually different but functionally equivalent

programs to the same feature vector allows the model to learn a function represen-

tation space that is predictive of equivalent programs.

For audio data, some augmentation methods such as warping, frequency and

temporal masking in the Mel spectrogram format could be used to create different

version of the same audio data, as in [197].

Context-instance relationships

Another approach to extracting similar views of the same scene is by exploiting the

context-instance relationship from a sample representation. Generally, we want to

learn a representation that captures the entire context, i.e the global information

about a scene. That context can usually be decomposed further into parts, each

containing a subset of the scene’s information that is local to each subset.

Explicitly constraining the representation of the parts (local features) to be simi-

lar to the representation of the whole (global features), while being different from the

representation of other views is a clever approach to defining similarity. Contrasting

between the representation of local features versus global features can encourage

the model to learn important features that present in the local views, while ignoring

noise features which occur only in those local inputs. Representation from local
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Figure 3.7: Illustration of extracting query and keys using the context-instance
relationship. In a), the context is a global summary vector of the entire image,
while the instances are the local features in the set of intermediate feature maps.
In b), the past context is aggregated with a RNN contextualisation head and the
instance are representations of future time steps.
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Figure 3.8: Illustration of sampling query and keys using the sequential coherence
property of video data. The positive keys are defined as frames inside a small window
surrounding the query frame. The negative keys are frames from the same video
but are far away in time to the query.

features is thus encouraged to capture meaningful information relevant to the whole

context, while global features are encouraged to capture as much detail from the

local instances as possible.

Figure 3.7a describes the approach taken in Deep InfoMax (DIM) [118], where

an image is encoded into a global feature vector and also into a feature map corre-

sponding to spatial patches of pixels in the original image. The global feature and

local features in the feature map of the same images then form positive pairs, while

global features with local features from other images are considered negative pairs.

Global features can also be constructed from videos in the temporal dimension,

as in Figure 3.7b. In Contrastive Predictive Coding (CPC) [204], context features

are constructed as a summary of past input segments, and then contrasted with

local features from a future time step. Contrastive learning to predict the correct

future from the past context in this way can be thought of as an instantiation of the

predictive coding theory.

Sequential coherence and consistency

In addition to the context-instance feature relationship, exploiting the spatial or tem-

poral coherence and consistency in a sequence of observations is another approach

to defining similarity in contrastive learning. This method works for a data domain

that can be decomposed into a sequence of smaller units, such as an image into a

sequence of pixels, or a video into a sequence of frames, etc. The representation of

continuous views in a sequence is considered as a positive pair while discontinuous

and far away pairs in the same sequence or different sequences are considered nega-

tive pairs. This approach uses the slowness assumptions in representation learning,

which states that important features are the ones that change slowly over a sequence
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of observations. Therefore, by learning invariant, slowly changing features in a se-

quence, a model will learn to extract the most important features in the data, as

illustrated in Figure 3.8.

Rather than using simultaneous videos with multiple viewpoints as in Time-

Contrastive Networks (TCN) [242], [70] uses a multi-frame TCN that exploits the

temporal coherence property of video and applies contrastive learning on a sequence

of frames, where frames inside a time-window are positive to each other, and pairs

from with a frame outside the window are considered negative.

In addition to the hand-crafted transformations described in Section 3.2.2, the

temporal coherence of video frames can also provide a natural source of data trans-

formations. In a video, an object can undergo a series of transformations such as

object deformation, occlusion, changes in viewpoint and lighting. These methods

have been used in [277, 216] to learn representations of objects from videos without

any additional labels.

Natural clustering

Clustering is the process of finding high-level semantics for groups of instances fea-

tures according to some distance measure in the embedding space. Natural clus-

tering refers to the assumption that different objects are naturally associated with

different categorical variables, where each category occupies a separate manifold in

a representation space. The distance between different clusters loosely represents

the similarity between categories. This assumption is consistent with how humans

naturally categorise and name different groups of objects, and is an important as-

sumption in unsupervised learning, manifesting itself in various clustering algorithms

such as K-Nearest neighbours. Semantic class labels in classification problems are

also an instance of this assumption where the number of clusters and the names for

these clusters are given by human annotators. Each cluster represents a high-level

semantic concept and together the set of clusters provide overall structure to the

data manifold.

Contrastive learning induces a metric in the embedding space where positive

pairs have smaller distances between them and negative pairs have large distances,

based on a semantic definition of similarity. In contrast to clustering methods which

enforce the cluster assumption in a top-down fashion, contrastive methods enforce lo-

cal smoothness between positive pairs thus organising the embedding manifold from

the bottom up. Since contrastive learning and clustering methods essentially encode

the same assumption but from different directions, the combination of contrastive

methods from bottom-up and clustering approaches from top-down are a promising

approach which complement each other’s advantages. Figure 3.9 demonstrates this

idea of combining contrastive learning with clustering methods.
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Figure 3.9: Illustration of contrastive methods on clusters. In addition to an indi-
vidual sample’s vector, there can also be cluster prototypes with different levels of
granularity. Contrastive loss can operate on both the sample and cluster level.

49



Many different methods have tried to use contrastive methods to learn invariant

properties while supplementing higher-level semantic information to the contrastive

framework using clustering methods, such as Prototypical Contrastive Learning

(PCL) [163], or Swapping Assignment Between Views (SwaV) [34]. In [145], the

class labels for a supervised learning task are provided as cluster information to

improve on the traditional self-supervised instance discrimination task.

3.2.3 A Taxonomy of Encoders

In contrastive representation learning, a learned mapping from inputs to the em-

bedding space needs to satisfy two purposes: mapping to a general and powerful

representation of the input data, and an efficient and effective embedding that al-

lows measurement of the distances between samples. We divide the model in our

contrastive representation learning framework into two components based on recog-

nising the purpose and functionality of each component i.e. the base encoder and

transformation head. The purpose of the encoder is to learn a good mapping from

inputs to a general representation space, while the transform heads, depending on

the specific choice of similarity, will transform one or multiple representations to a

metric embedding for computing a similarity metric. In practice there may be no

distinction between the base encoder and the head from a technical point of view

as they are just layers of a deep network, stacked on top of each other and jointly

optimised through back-propagation with gradient descent but they are functionally

distinct, hence the separation.

In this sub-section we focus on a taxonomy of the base encoders. While con-

trastive learning is general and not restricted to any particular form of encoder,

some specific types of encoder and the interactions among them will enable different

behaviours for the downstream transform heads and contrastive loss. For each data

modality, an appropriate encoder architecture is chosen, so the taxonomy for the

encoder will be based on how they are updated with respect to the gradient from

the contrastive loss during training.

End-to-end encoders

End-to-end encoders represent the most simple method both conceptually and tech-

nically, where the encoders for the queries and keys are updated directly using

gradients back-propagated with respect to the contrastive loss function. Since all

encoders are updated end-to-end, this can impose a significant requirement on mem-

ory. Therefore if the query and keys are of the same data modality, their respective

encoders are usually shared with each other so only one copy of the encoder needs to

be stored in memory. This way, both the representation for the queries and keys can
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be efficiently batch-computed in one single forward pass. However, encoding both

the queries and keys end-to-end still requires storing the hidden activations and

representation on a Graphical Processing Unit’s Video Memory (GPU’s VRAM),

which will limit the batch size for calculating the contrastive loss.

Online-offline encoders

The online-offline encoder approach alleviates the memory requirement of end-to-

end encoders for storing all the queries and keys in a GPU’s memory by using an

additional offline encoder, which is not updated online by gradient descend directly

but updated offline from the online network. In this way, the feature vectors and the

hidden activations computed by the offline encoder are not stored on the VRAM.

Therefore with this approach, contrastive methods can scale up the number of pos-

itive and negative pair comparisons in a batch, independent of the GPU’s memory

limit.

There are generally two ways to update the offline network, either by using a past

checkpoint or via a momentum-based weighted average mechanism from the online

encoder.

Wu et al. [289] decoupled the batch size from the number of negative pairs by

storing a detached copy of representations of the entire dataset into a separate

memory bank. The representations stored in this memory bank are later randomly

sampled to serve as the keys, while the queries are encoded by the online network

from two different transformations of the same images. The representations com-

puted from the online encoder for the queries are then stored in the memory bank

to be used as the keys for the next epoch. This approach effectively uses an online

encoder’s checkpoint from the previous epoch as the offline encoder for negative keys

in the current epoch, with a memory mechanism to avoid redundant computation.

Momentum Contrast (MoCo) [110] further reduces the need to store an offline

representation of the entire dataset in the memory bank through the use of a dynamic

memory queue. The offline momentum encoder is a copy of the online encoder, with

parameters being an exponentially-weighted average of that of the online encoder.

At every iteration, the latest batch of feature vectors from the momentum encoder

are pushed to the memory queue while the oldest batch of features are discarded

from the queue. The momentum queue therefore retains a more consistent set of

negative keys to the queries and keys encoded online, compared to the memory

bank’s feature vectors which are only updated once per epoch.
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Pre-trained encoders

Another case of not having to keep an encoder in the GPU’s memory is when

an encoder is already pre-trained and does not need to be updated at all. This

usually happens in cross-modal learning or in a knowledge distillation setting, where

contrastive methods are used to learn a mapping to the same representation space

of another encoder. This approach decouples the task of learning representation

for each modality and can simplify the learning task of each encoder while still

leveraging the information shared from different data modalities.

In [261], Sun et. al. used a pre-trained Bidirectional Encoder Representations

from Transformers (BERT) [61] to process discrete automatic speech recognition

tokens, while training a separate video BERT model to process continuous video

features.

In a knowledge distillation setting, a large pre-trained “teacher” network with

frozen weights is used to encode the keys, while a smaller “student” network tries

to match the query representation to positive keys from the teacher network. This

is a special case where even though the query and key are of the same modality,

they are encoded using different encoders. Contrastive Representation Distillation

(CDR) [269] uses a large, pre-trained teacher network as the encoder for both the

positive and negative keys, while the queries are encoded by a small network learned

to match the representation of the teacher network.

3.2.4 A Taxonomy of Transform Heads

The distinction between the base encoder and the transform heads is to separate the

ultimate goals of learning a good representation from that of learning an embedding

that is efficient and effective for computing and maximising the similarity metric.

Entangling the main task of learning a representation and the pretext task of learn-

ing a similarity metric can leads to unwanted results, such as by only focusing on

maximising the similarity between positive samples, the representation is forced to

discard potentially useful information. The introduction of an explicit transform

head above encoders is a recent development in contrastive representation learning.

Prior to the introduction of the transform heads, many methods trained a standard

encoder and then performed a comparison of which layers are best suited to use as

representation for transfer learning to some downstream tasks. The result was that

for most tasks, one of the hidden layers gave the best performance when using a

representation for transfer learning or fine-tuning with a downstream classifier.

With the separation from the base encoder and transform heads, it is now also

possible to train the same representation from the base encoder with multiple trans-

form heads for different contrastive objectives.
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Depending on the specific choice of data similarity (see Section 3.2.2) and its

purpose, we categorise transform heads into three types namely projection, contex-

tualisation and quantisation heads which we now describe in turn.

Projection heads

While the representations (the output of encoders) are of a lower dimensionality

to the input dimensions, it can still take a relatively large computational effort to

measure the similarity distance between representations. The simplest type of trans-

formation serves as a bridge between different vector spaces. These projections can

be a simple linear transformation or a non-linear MLP. With the projection head,

the dimensionality for the representation v can be larger than the dimensionality of

the metric embedding z, so that more information can be retained in the represen-

tation while also allowing for efficient computation of the similarity metric in the

space of Z.
The early contrastive methods that report transfer learning results from the best

hidden layers are effectively using the base of the network as a feature encoder and

the top of the network as the non-linear projection head. In more recent work, [300]

explicitly uses a linear and [41] uses a non-linear 2-layer MLP as the projection head

after the base encoder.

Instead of projecting the representation of the query and key encoders to a

common metric space, a transformation head can also be used to bridge directly

from one metric space to another. In [100], in addition to a projection head from

representation space to metric space, an additional “prediction” network projects

the metric embedding of an online network to the the metric embedding of an offline

encoder.

A common challenge in many representation learning methods is the problem

of “dimensionality collapse”, where the learned representation only spans a smaller

subspace than its given capacity. Based on the theoretical work by Jing et al. [135],

it has been shown that the projection head also plays an important role in preventing

dimensionality collapses in common constrastive learning methods.

Contextualisation heads

In some settings, the projection heads can be more elaborate than just simply pro-

jecting the representation down to a lower dimension. For the task that defines

similarity based on the context-instance relationship (Section 3.2.2), a special kind

of transform head is needed to aggregate multiple feature vectors into a contextu-

alised embedding.

In Contrastive Predictive Coding (CPC) [204] where similarity is defined from
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the past-present relationship, a GRU [46] head is applied over previous time steps to

aggregate the past information into a contextualised embedding. This is equivalent

to an ordered autoregressive head that forces the head to learn generalisable features

that are informative when predicting the correct future separate from the incorrect

future.

In Deep InfoMax (DIM) [118], where global features are compared with local

information in the feature maps, convolution layers with pooling are used to aggre-

gate the feature maps into one single global vector. Similar to DIM, in InfoGraph

[262] where contrastive learning is applied on a graph network, a transform func-

tion summarises all the patch representations into a single fixed length graph-level

representation.

For models based on the Vision Transformer architecture, there is no explicit

head for the context information. Instead, extra tokens are added to the input

patches and the global information is jointly learned and stored throughout the

network layers. This context token is usually denoted CLS short for “class” since it

originally was designed to support classification tasks.

As distinct from the projection head where the representation is only projected

down, the contextualised metric embedding z serves a different function and holds

different kinds of information. Depending on the downstream task where the con-

textual information is helpful or not, the contextualised embedding z can actually

be used instead of, or in conjunction with, the representation embedding v.

Quantisation heads

While a contextualisation head aggregates multiple representations together, a quan-

tisation head is the opposite in that it reduces the complexity of the representation

space by mapping multiple representations into the same representation.

For example, wav2vec 2.0 [13] uses a Gumbel-softmax [130] quantisation head

to map the continuous audio signal into a discrete set of latent vectors (i.e “code

book”).

In methods that combine contrastive learning with clustering approaches such

as SwAV [34], a Sinkhorn-Knopp algorithm [52] is used as a quantisation head in

order to map a representation of individual samples into a soft cluster assignment

vector.

3.2.5 A Taxonomy of Contrastive Loss Functions

Contrastive loss is one of the key differences between contrastive methods and other

representation learning approaches. The most prominent difference is that in the

contrastive loss formulation, the target can be dynamically defined in terms of the
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metric embedding instead of having fixed targets. While most discriminative mod-

els measure loss with respect to a prediction label for example using class labels,

and generative models measure loss in the input space (e.g. reconstruction loss),

contrastive losses measure the distance, or similarity, between embeddings in the

latent space.

All forms of contrastive losses can be generally decomposed into two components:

a scoring function that measures the compatibility between two vectors and the

actual form of the loss that enforces minimisation and maximisation given a set of

query and key vectors.

Minimising the distance between samples is the ultimate goal of any contrastive

loss function. However naively minimising the distances between positive pairs can

lead to a catastrophic collapse, e.g. the distances between any pairs can be reduced

to zero by making the model f(x; θ) constant with respect to any input x. To pre-

vent this collapse from happening, the contrastive loss function can explicitly use

negative pairs that are forced to have a large distance in the embedding space, or we

can implicitly employ other assumptions and architecture constraints. For example,

in some recent work such as BYOL [100] or [74], negative pairs are not employed

explicitly, and here the authors do not refer to their method as a “contrastive learn-

ing” approach. However, we consider all methods that contrast between a query

and positive keys to learn similarity as contrastive learning methods, regardless of

whether explicit negative pairs or architectural constraints are used to prevent the

representation from collapsing.

Given the goal of optimising the distance or similarity score, contrastive loss

functions can generally be classified based on their motivation and the specific form

of how they are formulated. Below we will discuss the different types of scoring

functions and then look at the three major forms of contrastive loss functions.

Scoring functions

The scoring function measures compatibility between two vectors either in terms

of similarity or distance. Depending on the specific loss function, for positive pairs

either the similarity score is maximised or the distance metric is minimised.

For contrastive losses that operate on the distance notion, usually a simple Man-

hattan or Euclidean distance (also known as L1 and L2-norm distance) D(q,k) =

∥q− k∥2 is used. Distance-based scoring function are often used in energy-based

hinge loss functions (Section 3.2.5).

The softmax-based loss requires computing the normalisation term in the de-

nominator, which requires global communication between all the samples. This is

especially costly when trying to scale contrastive methods to larger batch sizes.

SigLIP [307] proposed to simplify the contrastive loss with a sigmoid loss in place
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of softmax, effectively turning the problem into a binary classification, similar to

earlier Noise-contrastive estimation methods. Combining this with an efficient im-

plementation in a large scale distributed training setup, they were able to train an

image-language contrastive model with batch size of up to 1 million samples.

On the other hand, scoring functions can measure similarity via a simple dot

product S(q,k) = q⊤k between two vectors. The range of similarity scores in

this case is unbounded and dependent on both the orientation and magnitudes of

the vectors in the sub-space. Since similarity can be made arbitrarily large by

increasing the magnitude, one possible solution is to include a normalisation term

for the vector’s magnitude ∥z∥2 in the final loss function, as is done in [289]. Another

method to get rid of dependency on magnitude is to use the cosine similarity, which

is computed as the dot product between two unit vectors S(q,k) = q⊤k
∥q∥∥k∥ . The

cosine similarity is bounded between -1 and 1 for anti-parallel and parallel vectors

respectively, and equal to 0 for orthogonal vectors. This is most commonly used

as a scoring function in modern contrastive loss functions such as the NT-Xent loss

in SimCLR [41]. In this way, the representations can still has arbitrary angles and

length, while the contrastive only concerns with the angles between the metrics

embeddings. Another popular option to measure similarity is the bi-linear model

S(q,k) = q⊤Ak, in which the matrix A is learned and can be considered as a

linear projection from the sub-space of q to sub-space of k, before the dot product

operation is performed. The original InfoNCE loss [204] uses this bi-linear model as

the scoring function.

In the extreme case, the scoring can also be a learned module and be optimised

together with the other modules during training, similar to the discriminator network

of a GAN [87]. Different from a GAN’s discriminator that evaluates one sample at a

time, the learned scoring function concatenates multiple metric vectors together as

input and measures the correspondence between them. Though it might be thought

that a learnable module is better than a hand-crafted scoring function, using a neural

network as a scoring function come with disadvantages. The learned discriminator

takes up computational resources that are potentially more helpful for the feature

encoder. Therefore, a powerful discriminator can make up for poor representation

extracted from an encoder by focusing on learning a good discriminator for bad a

representation vector instead of learning a useful representation in itself. The learned

scoring functions are also often based on the classification objective, whether the

two inputs are compatible or not [6]. It does not provide an explicit measurement

of distance and similarity in the latent space, which many downstream applications

rely on. Therefore in this thesis, we mostly focus on methods that uses a contrastive

loss with relatively simple scoring functions.
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Energy-based margin losses

Energy-based Model (EBM)[160] are a general class of models that associate an

energy (distance score) with each configuration of the variables to be modelled (pairs

of query and keys vectors). Training an EBM involves associating a low energy

(small distance) to desired configurations of the variable (positive pairs) and high

energy to undesired configurations of variables (negative pairs). Unlike a properly

normalised probabilistic model, making the energy for one particular configuration

low does not necessarily make energy for other configurations higher. That is why

most energy-based models must employ explicit negative comparisons in computing

the total loss.

Motivated from EBM, Chopra, Hadsell, and LeCun [47] first introduced and then

reformulated in [105] the original “contrastive loss” that uses Euclidean distance

D(q,k) = ∥q− k∥2 as the scoring function in the embedding space. To avoid

confusion with the general class of all contrastive loss functions, we will refer to this

as the “pair loss”. The pair loss operates on a pair of query and key, where distance

between positive pairs is minimised while the distance between negative pairs should

be larger than a given margin, and formally takes the form:

Lpair =

D(q,k)2, if k ∼ p+(·|q)

max(0,m−D(q,k)2), if k ∼ p−(·|q)
(3.2)

where the margin m > 0 acts as a radius around the query, for which only negative

keys k− within this radius are pushed away from q and contribute to the total loss

value.

While the pair loss only requires the distance of negative pairs to be larger than

a fixed margin, the triplet loss [285, 49, 37] enforces the relative distance between

positive and negative pairs given in a triplet of (query, positive key, negative key):

L(q,k+,k−) = max(0, D(q,k+)2 −D(q,k−)2 +m) (3.3)

While conceptually simple and widely adopted in multiple metric learning ap-

plications [276, 121, 239], the pair and triplet losses usually suffer from slow con-

vergence because of the limited interactions between samples. In pair loss, only one

comparison to either a positive or negative key is computed for a given query, while

triplet loss simultaneously compares the relative distance from a query to one posi-

tive and negative key. Mining techniques to find “hard” negative samples to avoid

easy pairs that provide no substantial learning signal are essential components of

these learning systems. To increase the number of interactions for a query, methods

such as Lifted Embedding loss [252] and a generalised version of it [113] improved
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on the margin formulation of triplet loss to take into consideration multiple positive

and negative keys for a query within a batch.

Probabilistic NCE-based losses

A form of contrastive loss can also be motivated from the probabilistic softmax

classification problem. Consider the traditional supervised parametric softmax clas-

sification objective, the probability that a query is correctly recognised as belonging

to the i-th class among n classes is

p(i|q) = exp(q⊤wi)∑n
j=1 exp(q

⊤wj)
(3.4)

where wj is a vector specific to the class i in the data set. This vector w in the

parametric formulation of softmax serves as a class prototype and does not allow

explicit comparison between representations.

Motivated by this, a non-parametric version for the softmax function that cor-

rectly identifies the positive for a given query from a set K and contains all negative

keys with one positive key can be defined as follows:

p(k+|q) = exp(q⊤k+)∑
k∈K exp(q⊤k)

=
exp(q⊤k+)

Z(q)
(3.5)

with Z(q) as the normalising constant, or partition function for a given query.

The learning objective is then to maximise the joint probability or equivalently

to minimise the negative log-likelihood over the training set:

L(q,K) = −logp(k+|q) (3.6)

The normalisation constant Z(q) in the denominator of the non-parametric soft-

max in (3.5) is expensive to evaluate because it needs to sum over all the negative

keys in the dataset for a given query. Noise Contrastive Estimation (NCE) [103,

104] is an estimation method for an unnormalised probabilistic model that avoids

the need to evaluate the partition function through a proxy binary classification

task, where the binary task is to discriminate between data samples (positive keys)

and the noise sample (negative keys).

Following the original NCE formulation and assuming a uniform noise distribu-

tion of negative samples p−(·|q) = 1/n and that we sample noise negative keys m

times more frequently than the positive key, the posterior probability of the pair
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(q,k) sampled from the positive distribution p+(·, ·) (denoted by D = 1) is:

p(D = 1|q,k) = p(k+|q)
p(k+|q) +m · p(k−|q)

(3.7)

With p(D = 1|q,k) = 1
1+exp(S(q,k))

parametrised by a sigmoid function with the

similarity scoring function S(q,k), the approximated NCE binary training objective

then becomes:

LNCE−binary(q,K) = −Ep+ [logp(D = 1|q,k)]

− Ep− [log(1− p(D = 1|q,k)] (3.8)

This NCE objective has been used widely in learning language models [192] and

word embeddings [191]. A slightly different variation of binary NCE is Negative

Sampling (NEG) [186] which focuses on learning good word embeddings.

Instead of having a binary task that decides whether each key is positive or

negative, suppose we want to correctly identify and rank the positive key with

highest similarity to the query in a set K = {k+,k−
1 , ...,k

−
n } with one positive key

and n negative keys. Jozefowicz et al. [137] extended the local view of binary NCE

to a global or ranking view, such that the conditional distribution of key at index i

is the positive key is given by:

p(i|q,K) = p+(ki|q)Πj¬ip
−(kj|q)∑N

n=1 p
+(kn|q)Πj¬np−(kj|q)

(3.9)

If we let p(i|q,K) = exp(S(q,ki)∑N
j exp(S(q,kj))

be parameterised by a softmax function, the

approximated global ranking NCE training objective then becomes:

LNCE−global(q,K) = EP (i|q,K)

[
−log exp(S(q, k+))∑

k∈K expS(q, k)

]
(3.10)

The reader is referred to [176, 260] for more detailed treatment of different variations

of NCE-based objectives.

Sharing the same motivation with the Lifted Embedding loss from the metric

learning objective instead of by the NCE objective, Sohn [251] independently pro-

posed the Multi-class n-pair loss that has the same formulation as the NCE-global

objective in Eq. (3.10) and uses samples in the same mini-batch as the negative

samples to save memory during computation. By formulating it as a multi-class

classification problem, this loss automatically incorporates multiple negative keys

for comparison, and is thus very effective.

In more recent work, a slightly different form of this loss called the Normalised

Temperature Cross Entropy (NT-Xent) [41] loss with a temperature parameter τ to
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control sensitivity of the cosine similarity scoring function is used

LNT−Xent(q,K) = −log
exp( q⊤k+

∥q∥∥k+∥τ )∑
k∈K exp( q⊤k

∥q∥∥k∥τ )
(3.11)

The temperature τ has the same effect of controlling the attraction-repulsion radius

around the query, similar to the margin m in the margin-based contrastive loss in

Section 3.2.5.

Mutual information-based losses

Mutual Information (MI) has a long history in representation learning for various

methods that aim to maximise the MI a representation z and its inputs x. In the

same spirit, contrastive learning methods motivated from MI aim to learn a mapping

that maximise the mutual information between representations of different views of

the same scene, which is upper bounded by the MI between the representation and

the input of a scene.

Oord, Li, and Vinyals [204] first proved that minimising the InfoNCE loss based

on NCE is equivalent to maximising a lower bound on the MI. Inspired from NCE,

InfoNCE comes to the same formulation of the classification-based N-pair loss in

Eq. (3.10), and shows that minimising this loss also maximises a lower bound on

the mutual information between the input and the representation. Having the same

form as the multi-class n-pair loss [251] and NT-Xent [41] but using a bi-linear

layer as a scoring function instead of a dot product, this form of contrastive loss is

currently the most popular due to its effectiveness and simplicity in implementation,

as well as a theoretical guarantee based on MI.

Proposed independently of InfoNCE, DIM [118] also formulated the contrastive

learning problem as MI maximisation and evaluated different MI estimators, such as

the Donsker-Varadhan [66], the Jensen-Shannon estimator [201] and the InfoNCE

[204].

Some recent work [217] performed a review of different MI estimators and derived

a new continuum of multi-sample lower bounds that describes the bias-variance and

efficiency-accuracy tradeoffs, as well as showing the generalisation bound of MI in

the context of contrastive learning.

However, even though mutual information is a principled motivation for con-

trastive losses based on the information bottleneck principle, simply maximising the

mutual information in positive pairs does not guarantee a successful application of

the contrastive loss concept. Tschannen et al. [271] argue and provide empirical

evidences that the success of contrastive losses can not be attributed to mutual

information alone.
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3.3 Development of Contrastive Learning

Now we will briefly examine the major developments in contrastive methods over

time, that span over multiple sub-fields and domains.

The core idea of learning by comparing between separate but related data points,

without any supervised signal, dates back to 1992 to work by Becker and Hinton

[19] and by Bromley et al. [26] in 1993. While Becker and Hinton [19] formulate

the problem as learning invariant representations by maximising mutual information

among different views of the same scene, Bromley et al. [26] introduces the “Siamese

Network” composed of two identical weight-sharing networks in a metric learning

setup. These are the first examples of the general principle of learning by directly

comparing between different training samples.

In 2005, Chopra, Hadsell, and LeCun [47] [105] created the foundation for the

contrastive learning framework with the original contrastive pair loss for discrimina-

tive models to learn an invariant mapping for recognition and verification problems.

Instead of having to define non-linear similarity relationships using some simple

metric in the input space, the contrastive pair loss demonstrates the ability to learn

a representation space in which a simple distance metric in the embedding space

approximates a notion of similarity in the input space.

Inspired by a form of triplet loss used in [285], Collobert and Weston [49] trained

an unsupervised language model, and Chechik et al. [37] learned an image similarity

model using a ranking triplet loss. Later, the triplet loss was applied in the context

of a deep neural network and has been shown to be capable of learning fine-grained

image similarity [276], or a useful representation [121].

To address the limitations of slow convergence and instability of the pair and

triplet contrastive losses, Song et al. [252] and Sohn [251] proposed loss functions

that improve the number of comparisons for a query in an iteration. While using

hard negative and positive samples has been a common component in successfully

applying contrastive methods, Manmatha et al. [179] and Hermans, Beyer, and

Leibe [113] argue for the case that quality of data pairs used in training are also of

paramount importance for pair and triplet losses in the metric learning setting.

While there have been approaches to using probabilistic approaches to learning

metric embeddings [267], most successful applications up to now all use the energy-

based pair or triplet loss due to the computational requirements to compute the

normalisation constant in probabilistic loss. In 2010, Gutmann and Hyvärinen [103]

introduced Noise Contrastive Estimation (NCE), a simple conceptual strategy for

estimating an unnormalised statistical model by contrasting between the data and

noise distributions.

In natural language processing that processes discrete input text tokens, this
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form of NCE-based contrastive loss has been used to train powerful language models

[192] or to learn useful word embeddings [191, 186] from a large unlabelled corpus

of text.

Also motivated from the mutual information maximisation perspective similar to

[19], in 2018 CPC [204] and DIM [118] made the connection between minimising a

contrastive loss with maximising a lower bound of the mutual information between

different views.

The instance discrimination task that drove the progress of contrastive methods

in the past few years is introduced in [289]. Simplifying the framework for instance

discrimination and focusing on learning representations with only augmentation

methods, Ye et al. [300] and Misra and Maaten [190] showed that pre-training with

contrastive loss can outperform supervised-only training for a computer vision task.

To achieve the best results with contrastive loss, training with large batch sizes on a

large GPU cluster is required. Methods such as Momentum Contrast (MoCo) [110]

were introduced to reduce the requirement for large batch sizes. Using an online and

momentum-updated offline network, MoCo proposed to view contrastive learning as

a form of dictionary lookup and raised questions around how best to retain consis-

tency between offline and online networks to perform similarity matching between

the queries and keys.

Using extra network heads on top of the learned representation has been used

previously, but it was mostly out of necessity, for example to aggregate context

information from multiple time steps such as in CPC [204]. SimCLR [41] proposed

an explicit projection head to separate between the tasks of learning a representation

and optimising for the contrastive objective. This distinction raises the question of

what are the optimal design choices for the base encoder and representations for

recent work such as SimCLRv2 [43]. This separation enabled other work to use

multiple heads and contrastive objectives when optimising for the same underlying

representation [74, 292].

Local aggregation [314] spearheaded the direction of combining clustering meth-

ods with instance discrimination contrastive learning, while in [277, 100, 74] the

authors raised the question of whether negative samples are necessary at all where

they propose a different contrastive loss function to avoid the collapse of the repre-

sentation with additional implicit constraints.

Table 3.1 provides a brief summary of some prominent papers over the develop-

ment of contrastive learning.
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3.4 Applications

We now look at various data domains and problem topics to which contrastive learn-

ing representations have been applied. This is done through the lens of the gener-

alised Contrastive Representation Learning framework introduced in Section 3.2.

3.4.1 Language

Following the idea proposed in [203] to learn a language model discriminatively,

Collobert and Weston [49] learned a language model to perform a two-class classi-

fication task to determine whether and how the middle word of a context window

is related to its context or not. They used positive examples as instances of such

word triples taken from Wikipedia and created negative examples by replacing the

middle word in a triplet by a random word and trained the model with a triplet loss.

Later, Mnih and Teh [192] adapted NCE [103] and proposed a more efficient

algorithm to learn a language model using a probabilistic contrastive loss, where the

context query includes all the previous words, the positive key is the next word in

a sequence and the negative keys are sampled from a unigram distribution of words

in the corpus.

With the introduction of the Skip-gram and CBOW algorithms [186] to learn

word representations which depend heavily on the tree structure of the hierarchical

softmax, Mnih and Kavukcuoglu [191] used NCE to avoid having to compute the

normalisation term of the softmax. Also inspired by NCE, Mikolov et al. [187] pro-

posed a slightly different method called Negative Sampling (NEG) that focuses solely

on learning good word representations with the trade-off of losing the probabilistic

properties from NCE.

Recently, the Bidirectional Encoder Representation from Transformer (BERT)

[61] model learns bidirectional word representations using the Transformer archi-

tecture’s decoder [272] and demonstrated great performance for transfer learning

in multiple downstream tasks. XLNet [299] modified BERT’s masked language

model objective to include an autoregressive objective. While these language model

objectives are usually referred to as a form of denoising autoencoder that try to

reconstruct the original input, in the case of learning word embeddings which is just

a lookup layer from index to vector, there is no difference between reconstructing

and contrasting between feature vectors and thus this work does fall under the remit

of being a form of contrastive learning.

Under the mutual information maximisation framework, Kong et al. [155] showed

that BERT or XLnet also maximise global-local mutual information, whereas the

next sentence prediction pre-training task can be seen as constructing similarity pairs

using the sequential coherence property. With this insight, Kong et al. [155] also
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proposed BERT-NCE, a variant of BERT that uses an NCE-based loss instead of

the full softmax over the entire vocabulary, making it more aligned with contrastive

learning methods. Inspired by DIM [118], they also introduce InfoWord that aims

to maximise the mutual information between local and global representations of a

sentence. The queries for the global representation are the sentence with a contigu-

ous masked chunk which is an n-gram, the positive keys are the local representation

of the original n-gram while negative keys are randomly sampled n-grams. The final

model used InfoNCE loss to minimise the mutual information lower-bound for both

the masked language model and the global-local representation objective.

In learning representations for units larger than words, Quick-Thought [171]

extends the Skip-gram model for word embedding to learn representations for en-

tire sentences. A GRU [46] encodes word-by-word a query sentence and a nearby

sentence as the positive keys, while the negative keys are encoded from sentences

outside the context window. The final hidden state of the GRU is treated as the

sentence embedding.

CPC is a general contrastive learning method that can be applied to many dif-

ferent data modalities. For text data, CPC encodes the context query using past

sentences with the positive keys as the future sentence. A 1-D convolution network

is used as the encoder to encode the entire sentence, while a GRU acts as a context

head and aggregates information from past sentences to predict the representation

of future sentences.

SentenceBERT [225] extended word representations from BERT to explicitly

learn a sentence embedding using the triplet loss. Two sentences from the same

paragraph are considered positive pairs and are negative otherwise. After obtaining

individual word representations from BERT, either the special token CLS or a pool-

ing operation is used over the entire sentence to obtain the sentence representation.

Inspired from the success of data transformation-based contrastive methods in

computer vision, Fang et al. [77] extended this idea and introduces CERT to learn

sentence-level representations. To create positive pairs of sentences, CERT creates

two different sentences which are similar in meaning by back-translating, using a

machine translation model to translate a sentence into a target language and using

another translation model to convert it back to the source language. CERT uses

BERT as its encoder and uses InfoNCE as the contrastive loss function.

As yet another alternative approach, Chi et al. [45] used contrastive methods to

learn cross-lingual sentence representations using a parallel corpus. In InfoXML, the

objective includes a combination of maximising monolingual and cross-lingual token-

sequence (global-local) information, and cross-lingual sentence-sentence (multiview)

information. The CLS token from the base BERT encoder is used as the sentence

representation with a linear projection head. A momentum encoder is used to encode
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the query while the online encoder is updated using the InfoNCE loss.

Not limited to natural language but still a form of language, [128] learns a

functional-equivalent of program code representation by generating similar code

snippets using different augmentation techniques from the compiler literature. The

transformer’s representation of each token is averaged to obtained the representation

for the entire program and InfoNCE is used as the contrastive loss.

A summary of the methods that learn language representations using Contrastive

learning is shown in Table 3.2.

3.4.2 Vision

Motivated by the challenges of recognition, verification and fine-grained classification

problems, Chopra, Hadsell, and LeCun [47] introduced the contrastive pair loss

function in the context of metric learning. Such applications need to deal with data

with high intra-class variance (e.g same face but different lighting condition and

angles) and low inter-class variance (e.g different faces but taken by the same camera

setup). The explicit formulation of a contrastive learning objective to minimise the

distance between inputs of the same class whilst maximising the distance between

inputs of different classes is a direct attempt to solve this problem. On the other

hand, Hadsell, Chopra, and LeCun [105] demonstrated that the contrastive loss will

learn an invariant mapping for many irrelevant input features in order to be able to

map different inputs to the same neighbourhood in the embedding space.

Building on the intuition of invariant mapping and its application in metric

learning, Chechik et al. [37] learned a large scale image similarity model for retrieval

using the triplet loss.

Moving beyond metric learning applications, Hoffer and Ailon [121] used a similar

triplet architecture but focused on learning image representations simply from using

the class labels to denote similar pairs. Wang and Gupta [278] extended this idea

beyond supervised learning by learning visual representations from video with the

help of an unsupervised tracking method. The corresponding patches provided by

the tracker are used as the positive pairs while the hard negative pairs are mined

from elsewhere in the dataset.

Among the first to exploit sequential coherence for defining triplets, Sermanet et

al. [242] introduced the Time-Contrastive Network (TCN), a self-supervised method

to learn a view-agnostic but time-sensitive representation from unlabelled videos.

Two simultaneous views from different cameras, or two consecutive frames from the

same view are defined to be similar, while two frames far apart in time but from the

same camera view are defined to be dissimilar.

Recently contrastive learning has received a lot of attention due to its success-
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ful application to self-supervised visual representation learning, especially in the

Instance Discrimination task introduced by Wu et al. [289]. Following the idea of

treating each instance as its own exemplar class [68], a memory bank mechanism

was introduced to store the computed representations for use in future iterations, so

that the number of negative samples is decoupled from the batch size. The queries

are computed online and contrasted with the keys from the memory bank where the

global NCE objective is used to learn to discriminate between features of the same

instance or not. Looking at contrastive learning as a dictionary lookup problem,

He et al. [110] introduce Momentum Contrast that maintains the offline encoder

as an exponentially weighted average of the online encoder where it stores the key

representations in a queue, weighting more recent key representations as being more

important.

Since the difference between the query and the positive keys in instance dis-

crimination is how they are randomly augmented, multiple works such as Invariant

and Spreading Instance Feature [300], PIRL [190], SimCLR [41] have focused on

engineering strong and varied augmentations to yield better representation from the

ImageNet [58] dataset without class labels. These methods have attracted special

interest because for the first time they outperform supervised ImageNet classifica-

tion pre-training on multiple downstream vision tasks. SimCLRv2 [43] performed a

comprehensive study of contrastive self-supervised learning in semi-supervised set-

tings where few labels are present, and demonstrated state-of-the-art results by

contrastive pre-training in various downstream vision tasks.

In a different direction, Oord, Li, and Vinyals [204] proposed Contrastive Pre-

dictive Coding (CPC) to learn invariances between context-instance relationships

instead. The predictive coding principle in CPC defines context as the past, and

that a good representation of the past will possess a strong predictive capability

for instances in the future. The predictive power of a representation is modelled

as a contrastive objective that maximises the mutual information between the past

context and the future instance through the InfoNCE mutual information lower

bound. While the CPC method is general and equally well applicable to multi-

ple data modalities, CPCv2 [111] improved on CPC with some architectural design

changes specifically for learning from images and evaluating this on label-efficient

fine tuning tasks. Expanding CPC into learning representations from natural videos,

Dense Predictive Coding (DPC) [106] contrasts between local patches of the feature

maps extracted from the past context with the local patches of the features maps

extracted from future instances. DPC employs three kinds of negative samples: the

easy negatives come from patches encoded from different videos, the spatial nega-

tives come from the same video but at different spatial locations of the feature maps,

and the hard negatives come from the same spatial location but from different time
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indexes.

Also learning invariances from context-instance relationship, DIM [118] defined

context to be a little more general than CPC. A single vector for each image is

used as the global representation, while the feature vectors at each spatial location

from the feature map at previous layers are considered local features. DIM enforces

the contrastive objective using multiple different mutual information lower-bounds

but also found that InfoNCE is the most effective, especially with a large number

of negative samples. Combining the context-instance strategy with the temporal

coherence property of a video, Anand et al. [4] proposed SpatioTemporal DeepIn-

foMax (ST-DIM) (ST-DIM) that learns to maximise mutual information between

global features of the current frame and local features from the next frames. Finally,

Augmented Multiscale DIM [11] combined both the global-local objective from DIM

[118] and image data augmentation from the instance discrimination task to learn

visual representations.

By exploiting temporal consistency as a natural source of image transformation,

Video Noise Contrastive Estimation (VINCE) [88] modified the instance discrimi-

nation task where instead of contrasting between two augmented views of the same

image, VINCE defined positive pairs as two frames from the same video. An addi-

tional benefit of this approach is that different objects that are likely to show up in

the same video (e.g dog and cat) are also encouraged to be closer than more random

pairs (e.g cat and whale). By combining the image data transformation, temporal

coherence between frames and global-local correspondence between features, Video

DeepInfoMax (ST-DIM) (VDIM) [117] learned effective spatio-temporal representa-

tions for downstream tasks on videos.

Exploiting visual similarity to form natural clusters in the representation space

has been used previously to learn unsupervised representations [32]. This objective

has been reformulated in the form of a contrastive learning method in [314], where a

set of close neighbours is aggregated together from a set of background neighbours.

Given a query image, the background neighbours are an unbiased sample of nearby

points measured with cosine distance in the embedding space. An unsupervised

clustering algorithm is applied on the set of background neighbours, where the sam-

ples in the cluster that includes the query are the close neighbours, which act as the

set of positive samples for that query. The embedding is learned iteratively using

an NCE loss to classify between close neighbours and background neighbours. In

addition to just preserving the local smoothness around each instance in the same

cluster, Prototypical Contrastive Learning (PCL) [163] also encoded the higher se-

mantic structure of the data into the embedding through the cluster’s centroid.

Assuming that each data point is associated with a latent class variable, PCL aims

to learn both the class’s prototype and optimises for points belonging to a cluster
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to stay close together through the Expectation Maximisation (EM) framework. In

the E-step, k-clusters are obtained by performing k -means on the features from the

momentum encoder and the distance from each point to its cluster’s prototype is

minimised using the InfoNCE loss in the M-step.

Most clustering-based methods up to now are offline in the sense that they require

multiple passes over the data to compute features and perform clustering, but Swap-

ping Assignments between multiple Views of the same image (SwAV) [34] proposed

an online clustering method to learn unsupervised visual representations. Combined

with data transformation approaches in instance learning, two different augmented

views of the same images are encoded into features and the clustering assignment

for each of the views is computed from a set of trainable “code” vectors. Similarity

is enforced through a “swapped” prediction problem where the feature vectors from

one of the views is matched with the cluster’s code from the other views. No nega-

tive pairs are explicitly used in this method but the representation is prevented from

collapsing through the batch-wise online code computations. InterCLR [293] also

performed mini-batch clustering with a set of learned cluster centroids but instead

of using a swapped prediction with no explicit negative samples, they modelled the

instance-cluster relationship by assigning a pseudo-label for each instance. Samples

that shared pseudo-labels are positive pairs while samples that have different labels

are negative pairs. All of these clustering-based contrastive methods in a sense en-

hance the similarity and dissimilarity in the instance discrimination task through

using pseudo-labels derived from clustering techniques.

Most of the methods above focus on the self-supervised paradigm and thus refrain

from using human-annotated labels. Supervised Contrastive Learning [145] directly

used class labels to define similarity, where samples from the same class are positive

and samples from different classes are negative samples. This method was shown to

be more robust to corruption than using the usual cross-entropy loss with the labels

alone.

Most of the work above utilised the NCE objective in one form or another,

which will usually benefit with more negative samples. Therefore self-supervised

contrastive representation learning methods usually require large batch sizes and

longer training times than other supervised or self-supervised methods. The training

dynamic of contrastive methods can be dissected into two keys properties [277],

alignment (closeness) of features from positive pairs and uniformity (spreading)

of the induced representation on a hypersphere. The uniformity explains the role

of negative pairs in keeping the representation from collapsing and opens up the

research direction of using other methods without negative samples to prevent the

representation from collapsing. In SwAV, similarity is formulated as a swapped

prediction problem between positive pairs while the minibatch clustering methods
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implicitly prevent collapse of the representation space by encouraging samples in a

batch to be distributed evenly to different clusters. In Bootstrap Your Own Latent

(BYOL) [100], the similarity constraint between different views are also enforced

through a prediction problem, but from an online network to an offline momentum-

updated network. The key insight is that by trying to match the prediction from an

online network to a randomly initialised network, the obtained representations are

already better than those of the random offline network. By continually improving

the offline network through the momentum update, the quality of the representation

is bootstrapped from just the random initialised network.

In concurrent work, Ermolov et al. [74] proposed a Whitening MSE loss, where

again the similarity between augmented instances is enforced through the minimisa-

tion of MSE distance in the embedding space, while the whitening operation common

in many image pre-processing pipelines is applied on the representation in batch.

The whitened vectors of all samples in a batch, including positive pairs, become

distributed and the MSE objective will pull features of positive pairs closer together

i.e. the distance between positive pairs is small while the representation space does

not collapse into a single cluster.

Focusing on the data scaling aspect, VITO [212] proposes a contrastive method

for distilling knowledge from natural transformation from videos. This yields a

significantly more robust representation to transformations and adversarial samples.

A summary of the methods that learn visual representations using Contrastive

learning is shown in Table 3.3.

3.4.3 Audio

For audio processing, CPC [204] used a strided convolutional network as the base

encoder to map from raw audio signal to the representation v where a GRU RNN

head aggregates the information from all previous timesteps to form a contextualised

representation z. This contextualised embedding z is then used as the query where

it is contrasted with a set of representations v with respect to the true future v+

from the noise v−.

Built on top of CPC, wav2vec [238] uses another convolutional network to aggre-

gate context information instead of using a recurrent network for the context head.

Moving beyond evaluating on frame-wise phoneme classification in CPC, Schneider

Schneider et al. [238] evaluated the learned representation of wav2vec and applied

the contrastive pre-trained representation to improve a supervised Automatic Speech

Recognition (ASR) system. VQ-wav2vec (Vector-quantised wav2vec) [12] modifies

the wav2vec architecture by using an additional quantisation head before the con-

text head. The quantisation head is implemented through a Gumbel-softmax [130]
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to convert the continuous speech signal v into a set of discrete codes c. The con-

text head is built on top of these discrete codes to form the query context vector

z. Similar to CPC and wav2vec, the context vector is then compared with another

quantised representation c to find the representation of the correct future. The

discretised speech representation can then be used directly as a representation for

other models that expect discrete input such as BERT [61].

All of these methods above encode context representation using only past-to-

present information. Inspired from the success of the bidirectional encoding in the

transformer model [272], Wav2vec 2.0 [13] replaces the unidirectional context head

from vq-wav2vec [12] with a bidirectional masked Transformer.

In a different direction, Nandan and Vepa [197] learned speech representation

from audio in mel spectrogram image format. Combined with mel spectrogram data

transformation techniques (i.e time and frequency masking [210]), they use a pipeline

similar to many image instance discrimination methods to a learned representation

that is language agnostic and is shown to transfer well to an emotion classification

task, regardless of the spoken language.

A summary of the methods that learn an audio representation using Contrastive

learning can be seen in Table 3.4.

3.4.4 Graphs

For relational and graph-structured data, contrastive learning has been successfully

applied to learn both node, edge and graph-level representations.

The earliest approaches to learning representation from relational data that

comes in the form of triplets (subject, relation, object) is Linear Relational En-

coding (LRE) [208]. In this early work, the representation encoder is just a simple

embedding layer for the subjects and objects, while the relations are represented as

a matrix. The transform head in this case is a simple matrix-vector multiplication

between the relation and subject, so that the resulting vector is closest to that of

the object.

Later, Bordes et al. [24] introduced TransE, which learns a vector embedding for

both the nodes and edges, and uses an additive transform head to represent relations

as a translation in the embedding space. TransE uses an energy-based triplet loss

to learn the embeddings and similar to LRE, the negative training pairs are created

by corrupting the object node with random nodes from the data.

More recently, the Contrastively-trained StructuredWorld Model (C-SWM) [149]

uses a Graph Neural Network to model each state embedding as a set of objects

and their relations. The base encoders consist of a CNN object extractor and an

MLP object encoder, that turn an image into an abstract state representation.
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The graph Neural network heads then transform the state’s representations and its

corresponding actions (represented as one-hot vectors) into the state representation

in the next time step. Similar to TransE, the state transitions between time steps

is modeled as a translation in the embedding space and the entire world model is

trained end-to-end with an energy-based hinge loss.

Focusing on learning useful node representations from general graphs, node2vec

[101] aims to learn a node representation that is similar between neighbour nodes.

The key contribution of node2vec is a family of biased random walk methods, allow-

ing for a flexible notion of network neighbourhood (i.e positive keys). The model is

trained similar to the Skip-gram model in word2vec, using negative sampling.

Veličković et al. [274] follows DIM [118] to propose Deep Graph Infomax (DGI) to

learn node embedding by maximising mutual information between representations

of local and global patches of a graph. The encoder is a Graph Convolutional

network [151, 82] that summarises a patch of the graph centered around some nodes.

A contextualisation head in the form of a readout function summarises the patch

representations into a graph-level global representation so that all patches encode

the most useful features present in the global features. The negative samples are

patches from random graphs in a multi-graph setting or a corrupt function is used

in a single-graph setting.

Also inspired by the mutual information maximisation between global and local

structure of DIM, but with some design choices different from DGI [274], InfoGraph

[262] focuses on learning graph-level representations. InfoGraph uses GIN [297] as

the base encoder and uses sum over mean for the readout function, both of which

are more suitable to learning representations at graph-level.

Combining both the multi-view and global-local mutual information maximisa-

tion objective, Hassani and Ahmadi [107] aims to learn both graph-level and patch-

level representations for graphs. A graph diffusion is used to generate a different

structural view of the graph, and then a sub-graph is sampled from both of the

views. A dedicated GNN is used as the base encoder for each view, while the trans-

form heads are shared between the two views. An MLP is used as projection head

for the node representation, while a pooling layer followed by an MLP is used as

the contextualisation head for the graph representation. A mutual information con-

trastive loss is then used to maximise the similarity between a local representation

of one view to a global representation of another view.

Aiming to learn a structural representation of a graph without node attributes

and labels, Graph Contrastive Coding (GCC) [220] simulates the augmentation-

based instance discrimination task in computer vision. GCC treats each sub-graph

as an instance and tries to learn a representation that captures similarity between

sub-graphs by discriminating between these instances. A positive key is created by
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applying a graph sampling transformation on that sub-graph. GIN [297] is used as

the base encoder with a momentum encoder [110] for the keys and InfoNCE is used

as the contrastive loss.

A summary of the methods that learn graph representations using Contrastive

learning is shown in Table 3.5.

3.4.5 Multi-modal

The constraints enforced by the contrastive loss distance metric are not limited to

embeddings from the same media modality. Contrastive learning has also been used

to to learn cross-modal embeddings from two or more modalities that enhances

the representation learned from a single data modality, especially for data that has

limited labels.

In the most obvious way, the “views” from Contrastive Multiview Coding (CMC)

[268] is straightforward to extend to multiple modalities. In this thesis, they exper-

imented with views from L and ab channels from RGB colour images, or from one

RGB frame and an optical flow feature at the same time.

The Audio-Visual Correspondence task is one example where it is desirable to

have a joint representation space between representations extracted from the visual

and audio modalities. The Audio-Visual Embedding Network (AVE-Net) [7] is an

example where contrastive learning is applied to this problem. Two separate convo-

lutional encoders for the vision and audio data streams are used. The audio which

is 1 second in duration and is centered around the selected frame, is considered a

positive pair, while negative pairs are extracted from different videos. This is dif-

ferent from the verification setting from previous work [6], where an MLP fusion

network takes the concatenation of the two representations and outputs the final

decision on whether the signals correspond. Instead, AVE-Net explicitly projects

representations from each sub-network to a common embedding space through the

use of a non-linear MLP head and measures correspondence through a contrastive

loss using Euclidean distance in the embedding space. Since similarity between rep-

resentations is explicitly enforced instead of implicitly learned in the fusion network

as in [6], the embeddings learned by AVE-Net [7] are well-aligned and more suitable

for cross-modal retrieval tasks.

Similarly, Cross-modal Audio Visual Instance Discrimination (Cross-AVID)[194]

jointly learn the general representation from video using corresponding image frames

and audio segments. In addition to contrasting between audio and visual represen-

tations of the same instance, they introduced a Cross-modal Agreement (CMA), a

mining method that extends the set of positive pairs beyond just from a single in-

stance. CMA measured the agreement of two videos based on both their visual and
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acoustic characteristics and if two videos have high agreement in both modalities,

they are considered positive pairs.

Performing within-modal contrastive learning beyond the instance-level using the

extended definition of positive pairs from CMA helps to improve the performance of

Cross-AVID, and reduces the chances of the representation collapse phenomenon ob-

served in cross-modal learning settings. Very similarly, Patrick et al. [213] performed

visual audio cross-modal contrastive learning with a more principled approach to

sampling and augmentation in an attempt to qualitatively measure the invariance

and covariance, which they refer to as “distinctiveness”, captured by the learned

embedding.

Instead of contrasting cross-modal representations of different instances, Afouras

et al. [1] used de-synchronisation to select negative samples by mis-aligning (shifting)

the video and audio features. The global features from the audio signal for a frame

is compared with the local features from the feature map of the vision network,

resulting in an audio-visual attention map. A max-pooling layer acts as the context

head to summarise the agreement between the audio and visual signals.

Jiao et al. [134] applied the misalignment objective to learn joint embeddings

for ultrasound audio and the corresponding doctor’s narrative speech. Applying

contrastive learning in this setting is particularly helpful because this type of paired

data is a lot easier to collect in a medical setting. Positive and negative pairs are

defined based on spectrum of misalignment in time. Positive and ”hard-positive”

pairs are video frames and their corresponding or slightly misaligned audio clips.

Negative and “hard-negative” are pairs of frames and audio clips that are even

further misaligned from each other in time.

Instead of learning the correspondence directly between the visual and audio

signals, in [261] video representations are learned by contrasting with representations

from text captions extracted from an Automated Speech Recognition (ASR) system.

The ASR sequences are encoded using a pre-trained BERT [61] model while a pre-

trained S3D [294] model is used to extract visual features which are then fed into a

shallow Transformer [272] network to construct a video-level visual embedding. The

scoring function comprises another shallow transformer module that acts on the

concatenated representations from the two modalities, followed by an MLP network

that estimates the mutual information (MI) between the two inputs. The MI scores

between them are again estimated through a softmax classification setting.

Not limited to jointly learning an embedding space, contrastive methods can

also be used to learn a mapping between two separately-trained models of different

modalities. Ilharco et al. [126] learned a probe to find the similarities between words

and object images from a paired image captioning dataset. Even though the BERT

[61] text encoder and the Faster RCNN [226] object detection model are trained
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separately and not updated by the contrastive loss, the LSTM cells [120] and a

linear project head can still map between words and object representations.

In the same spirit of learning representations from loosely aligned data, COALA

[78] learns a shared embedding between audio and its tags, which are more read-

ily available than a corresponding audio-transcript. In a different setting, Khurana,

Laurent, and Glass [146] demonstrated a proof-of-concept approach to learn a trans-

lation network between English speech and its text translations in other languages.

Their CSTNet used a triplet loss with a semi-hard negative mining method to learn

both a cross-modal and cross-lingual representations.

Most notably is the success of Contrastive Language Image Pre-training (CLIP)

[222], an approach to learn general a representation space from large-scale paired

data of image and text captions. Instead of the generative objective of predicting

the exact next word in the text caption, it employs a contrastive objective to match

the meaning of the entire caption, resulting in a 4x efficiency boost in few-shot and

zero-shot transfer tasks. The resulting fusion of the text and image representation

space has enabled a plethora of downstream tasks such as image generation models

from text prompts [227] [223].

Multi-modal learning, especially between text and images, is a fast growing topic.

Contrastive methods continue to be the driving force behind many such methods [2]

[296], due to their simplicity and scalability, and importantly, their expressive and

versatile properties.

A summary of the methods that learn multi- or cross-modal representation using

Contrastive learning is shown in Table 3.6.

3.4.6 Others

We conclude this section on applications of contrastive learning by looking at some

others works that apply contrastive learning on other field such as reinforcement

learning or that are different from the usual pre-train then transfer of contrastive

representation learning framework in other modalities.

Not limited to learning representations, contrastive learning can also be applied

to distill knowledge from a large pre-trained teacher network to a smaller student

network, as demonstrated in Contrastive Representation Distillation (CRD) [269].

In addition to learning representations of observations in the environment, CPC—Action

[102] is a variant of CPC that explored whether contrastive learning methods can

also encode belief states (i.e its uncertainty) in its representation condition on the

future action.

To improve the representation for reinforcement learning (RL) tasks, CURL [158]

applied the instance discrimination task with a momentum encoder from MoCo [110]
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to train model-free RL agents directly from the pixel observations. Due to the fact

that many RL algorithms operate on a sequence of frames, the augmentations to

create positive pairs are applied consistently across a consecutive frame stack as

opposed to a single frame.

In an attempt to decouple representation and reinforcement learning, Stooke et

al. [259] proposed the Augmented Temporal Contrast (ACT) for pre-training rep-

resentations that are transferable to multiple RL tasks. Using the temporal consis-

tency properties and a momentum encoder, augmented observations are contrasted

with future observations in the same trajectory using the InfoNCE loss.

In a different vision application, Park et al. [211] proposed multi-layered patch-

wise contrastive methods to enhance the performance of an unpaired image-to-image

translation model. With the intuition that for a given patch of a style-transformed

image, the corresponding patch at the same layer and spatial location should be more

strongly associated with that patch than at any other patches at different spatial

locations, InfoNCE contrastive loss is used to maximise the mutual information

between patches at the same spatial location of both input and output images.

In other lines of work that try to learn representations in a greedy layer-wise man-

ner instead of through an end-to-end approach using gradient descent, it has been

shown that mutual information maximisation through the contrastive InfoNCE loss

is particularly suitable for greedy optimisation. In this direction, Greedy InfoMax

(GIM) [172] extends the approach of CPC [204] while Local Contrastive (LoCo) [295]

improved the performance by extending SimCLR [41] with a modified overlapping

architecture between local layers.

3.5 Discussion and Outlook

In this section we analyse and raise some questions about the current limitations

and possible future directions for contrastive representation learning.

What kind of representations are learned by contrastive methods? Re-

cent successes in transfer learning by instance discrimination contrastive pre-training

[190, 110, 41] have raised the question of “what representation is learned from con-

trastive methods and why is it better than supervised pre-training” [312, 270]?

However from the view of the Contrastive Representation Learning framework, the

invariant and covariant features learned from the instance discrimination task are

entirely decided by the augmentations techniques that create the positive pairs. To

understand the effect of augmentations on the representation, one must take into

account the bias of the dataset that it was applied to as well. As analysed in [219],

models trained with an instance discrimination objective rely heavily on the oc-
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clusion invariance property, which was induced by applying aggressive cropping on

centred, single-object images from ImageNet [58]. Naively applying this “overfit-

ted” set of augmentations on a different dataset with a more diverse composition

of scenes can lead to unexpected behaviour in the representation. To successfully

apply contrastive learning to other data sets and problems, one must be aware of

the bias represented in the data together with the principle behind how positive and

negative samples are produced (Section 3.2.2).

Contrastive loss needs more or no negative samples? Based on the the-

oretical guarantee of NCE and empirical evidence, the performance of contrastive

learning methods benefit from comparison with multiple negative samples, which

requires training on large GPU clusters and longer training times. One approach to

alleviate this problem is to employ memory tricks such as the momentum encoder

technique (Section 3.2.3) that can allow the incorporation of even more negative

samples and is not limited to the batch size limited by hardware memory. Based on

the assumption that negative samples are present just to prevent the representation

from collapsing into one single cluster, another direction is to eliminate the need for

negative samples altogether and impose additional constraints on the embedding

space to prevent it from collapsing [100, 74].

Some methods follow the principle of redundancy-reduction, where the pro-

posed novel loss functions not only impose constraints on the latent vectors between

samples, but also between dimensions of the same latent vector as well [305, 16].

Many approaches inspired by the similarity between contrastive learning and self-

distillation frameworks, such as [33] [207] [313], have explored approaches that still

require data pairs but avoid explicit comparison between negative samples. Chen

and He [44] explores different architectural designs to highlight the crucial compo-

nents that enable a siamese network to learn without collapse of the representation.

Preliminary results indicate that, as long as there is an asymmetry in the network

architecture, even something as simple as a stop-gradient operation, it is possible to

learn useful representations without requiring comparison with negative samples.

Beside quantities, qualities of negative samples are often neglected as sampled

uniformly from the data distribution. More careful selection of negative samples

has been shown to improve the convergence rate and performance of the learned

embeddings on downstream tasks. This is consistent with hard negative and positive

mining techniques, which has been a standard component in many metric learning

applications.

This raises the question of a quality vs. quantity trade-off in employing negative

samples for contrastive loss. Would it be possible to design a contrastive loss that

employs both architectural constraints, perhaps for early stages of learning, and
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uses hard negative samples to learn a more fine-grained representation in the latter

stage?

What and how do different architectural designs affect the performance

of contrastive methods? The separation between the transform heads and base

encoder serves as a conceptual distinction to focus on transfer learning on down-

stream tasks, but in practice the distinction is not so clear cut. While the base

encoders are mostly borrowed directly from supervised learning, with some modifi-

cations such as wider layers to capture more features, the best choices for projection

and transform heads is unclear. In some cases the transform head is necessary (e.g

to perform feature aggregation as shown in Section 3.2.2). Other possible choices

are to not use any head, or to use a linear layer and non-linear multi-layers projec-

tion heads. In SimCLRv2 [43], empirical experiments show that the output of the

second layer of a 3-layer MLP projection head is a better representation for transfer

learning than the output of the base ResNet [108] encoder. In BYOL [100], in addi-

tion to the projection head from a high-dimensional representation embedding to a

lower-dimensional metric embedding, a MLP “prediction network” projects metric

embeddings of the online to that of the offline networks. This additional bridge

between two embedding spaces is a crucial component for the success of the entire

model.

These design choices are usually the result of empirical experiments specific to

the architecture. The observations suggest a potential discrepancy in architectural

design for supervised learning and representation pre-training, as well as potential

for research in principles to design an efficient architecture for contrastive methods

and representation learning in general.

Another under-explored topic is the specific form of the representation, which

is currently treated as a simple vector for each input. With the ease of specify-

ing invariant and covariant properties allowed by the contrastive framework, LooC

[292] is an example where contrastive learning is used to concurrently learn multiple

embedding sub-spaces, each of which is invariant to all but one transformation as

specified by the distribution of positive pairs. Learning disentangled and composi-

tional representations using contrastive learning is a promising research direction.

An asymmetric scoring function? Even though the learned similarity score

has previously been used for retrieval and ranking applications, currently computing

similarity or distance in contrastive learning is mostly used as a proxy task to learn

representation. Can the learned similarity score be used in novel applications that

were not previously possible?

An interesting possible extension for the scoring function is an asymmetric
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one. The current literature on contrastive methods assume a simple symmetric

distance/similarity relationship, but not all kinds of similarity are the same (for

example the similarity between “dog-cat” should be different from “dog-animal”).

Could a contrastive loss with non-transitive similarity relationships be developed?

Future of the contrastive loss function? As discussed in Section 3.2.5, the

form of the contrastive loss is generally motivated from an energy-based margin loss,

NCE-based classification or mutual information maximisation. The most popular

form of contrastive loss belongs to the family of InfoNCE (and its variants such

as NT-Xent), due to its efficiency and simplicity, with a well-grounded motivation

from information theory. Can we design better contrastive loss functions that are

more efficient in computation and memory, for example one that is more suitable to

incorporate multiple positive keys for one query?

From which perspective can such a loss be developed? Even though contrastive

losses motivated from mutual information have a strong body of theoretical support,

as pointed out in [271], maximising mutual information alone can not explain for all

the successes of contrastive learning methods.

One recent attempt to gain deeper insights into the inner working of these con-

trastive learning methods was by Balestriero and LeCun [15]. They showed that

many of the proposed contrastive self-supervised methods, with or without nega-

tive samples, correspond to different spectral methods within the area of spectral

manifold learning.

Looking at the contrastive loss from all the different perspectives may motivate

the development of a new generation of contrastive losses.

Beyond learning representation with contrastive methods While this pa-

per focuses on the majority of work that applied contrastive learning to learn rep-

resentation, either supervised or self-supervised, the question of whether learning

representation first is actually necessary, is still not settled. Even though there is

ample evidence that representation learning on a general data stream benefits the

performance of models when fine tuned on low-resource tasks, one can argue that if

we know the task we want to be good at there are better ways to directly optimise for

that task without explicitly dealing with the representation as a leaky abstraction

[27]. Because contrastive learning only needs a definition of positive and negative

distribution for pairs of samples, one can potentially define those just once for the

entire data set or data stream, and optimise directly for a relevant task using the

contrastive loss. Therefore contrastive methods can potentially extend task-based

learning beyond the need for a static labelled dataset, as is the case for current

supervised learning methods.
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Through exploring contrastive learning approaches in this chapter, we have ex-

amined how pre-training of self-supervised methods can lead to broadly useful rep-

resentations. Being able to learn such general and widely applicable representations

for a wide variety of tasks, robust to different transformations, which are not lim-

ited by the need for hand-labelled data, are the foundation and inspiration for

other representation learning approaches. Thus, we have directly addressed Re-

search Question 1 on the architecture and training objective with the Contrastive

Learning Framework. Similarly, we satisfactorily answered Research Question 2 on

the principles and inductive biases for representation learning with our taxonomies

of its components.

In the following sections, we will shift our focus to another representation learning

problem, the challenge of learning higher-level semantics and abstractions, known

as object-centric representation learning.
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Chapter 4

Object-centric Representation

Learning

Carving nature at its joints

Plato

In Chapter 3 we presented a deep dive into the topic of contrastive representation

learning and covered many different approaches to building a robust and scalable

representation. While the progress over the past few years has been remarkable,

most of those progressions have been in the aspect of perception, like recognition,

detection and segmentation.

Continuing our discourse from Section 2.5, in this chapter, we shift our focus

towards the third research question in this thesis:“How to learn a hierarchical repre-

sentation that captures increasingly complex and abstract concepts of the world?”

Our approach will be through the lens of object-centric representation learning.

This approach focuses on breaking down complex scenes into a structured set of

interpretable and reusable elements, a crucial step in many aspects of artificial in-

telligence such as robotics manipulation and visual reasoning.

In this chapter, we first dive into the motivation and general goal of object-centric

learning via the history and development of deep learning and AI in Section 4.1

and 4.2. We then define the problem setting with a concrete example for a proxy

task in learning object-centric representation, as well as commonly used evaluation

metrics in Section 4.3. Then we provide a comprehensive review of the state-of-the-

art methods that have been developed in the field of object-centric representation

learning over the recent years. This includes an overview of the various datasets used

for advancing the topic in and state-of-the-art slot representation for object-centric

learning methods and techniques in Section 4.4. Then we conclude with the most

important challenge of scaling up these methods to work on real-world datasets in

87



Section 4.5.

Building on this foundation, chapters 5, 6, and 7 will present a series of exper-

iments that address specific aspects of this complex problem. Each chapter will

address a unique challenge in the journey to achieving effective object-centric repre-

sentation learning, providing a more in-depth understanding of this area of research.

4.1 Motivation

Consider the ultimate aspiration for the field of Machine Learning, and Artificial In-

telligence more generally: to develop an intelligent agent that is capable of observing,

reasoning and planning its interaction with the real world. This is an encompassing

challenge and can be naturally decomposed into two distinct problems: perception

and reasoning.

Perception serves as the foundational step in developing any intelligent systems.

It refers to an agent’s capacity to comprehend its intricate environment across vari-

ous spatial scales and depths, encompassing multiple independent objects and their

interactions. In essence, perception is the ability of an agent to interpret the world

through its sensory inputs. Given that these inputs are typically noisy, the sys-

tem must possess the capability to filter and process the information to construct

a meaningful internal representation. Reasoning, in the context of artificial intelli-

gence, refers to an agent’s ability to make inferences and draw conclusions based on

the available information. Consider the example of an autonomous vehicle: percep-

tion involves detecting other vehicles, pedestrians, cyclists, road signs and signals,

while reasoning encompasses making decisions related to steering and acceleration

to reach the desired destination quickly and safely.

The conceptual division between perception and reasoning also aligns with the

cognitive models of System 1 and System 2 thinking in human cognitive processes,

as expounded by Kahneman [139]. System 1 corresponds to fast, automatic, and

subconscious cognitive processes. This mode of thinking is characterised by its

speed and efficiency, making it suitable for tasks related to perception or quick

decision-making. Therefore, System 1 thinking is susceptible to biases and cognitive

shortcuts, including overlooking details, confirmation bias, and a tendency to ignore

contrary evidence. System 2, on the other hand, operates at a slower pace and

requires more effort. It is associated with logical processes and engages when the task

at hand is more complex, necessitating deliberate and conscious effort for resolution.

System 2 allows individuals to invest more time and energy in problem-solving,

enabling a more thorough and analytical approach.

Historically, the development of AI has been dominated by two paradigms: sym-

bolic AI such as expert systems motivated by the aspect of reasoning, and connec-
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tionist approaches such as neural networks concerned with the challenge of percep-

tion. In the following sections, we will briefly review the approaches addressing the

challenges associated with each paradigm and explore methodologies for bridging

the gap between them. This analysis aims to provide insights into the evolution

of AI methodologies and provide context around contributions that have motivated

the development of object-centric representation learning methods.

4.1.1 From Perception to Reasoning

Symbolic Methods for Reasoning Symbolic AI, or classical AI, dominated the

field from the 1960s to the 1990s, placing logic and reasoning at the core of intelli-

gence. Systems based on symbolic reasoning rely on rules, logic, and explicit rep-

resentations of knowledge. This approach involves injecting human knowledge into

computer systems through human-readable symbols concerning objects and their

relations, utilising logic to create rule-based systems for manipulating such sym-

bols [199]. In Natural Language Processing (NLP), symbolic AI systems leverage

rules, lexicons, and grammar trees as knowledge symbols for language understand-

ing. Examples of symbolic AI applications include expert systems, knowledge-based

systems, the semantic web, and automated theorem provers.

Symbolic AI offers interpretability and trustworthiness by providing logical con-

clusions using explicit rules and facts. Moreover, by design, it systematically gen-

eralises and infers new knowledge through logical inferences on its existing knowl-

edge base. However, its reliance on handcrafted, explicit knowledge and rules poses

serious limitations. In certain domains, the cost of collecting and building such

knowledge-based symbols can be prohibitive, constraining development and usage.

In other domains, constructing such symbols may be challenging or impossible.

While effective in well-defined domains with explicit rules and relationships, sym-

bolic AI struggles with handling uncertainty and learning from extensive datasets.

Connectionist Methods for Perception In contrast to the top-down dictation

of knowledge and logic in symbolic AI, connectionist methods adopt a bottom-up

approach in building intelligent systems, employing statistical and learning-based

methods such as Deep Learning. Neural networks, particularly deep learning models,

excel at learning patterns and representations from data, proving highly effective in

tasks such as image recognition, natural language processing, and speech recognition.

However, they may lack transparency and interpretability.

For a more detailed overview of Machine Learning and Deep Learning, refer to

Chapter 2 earlier.

Despite the substantial success of Deep Learning in the past decade, its impact
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remains confined mainly to perception tasks, including classification, detection, and

segmentation though recently we have seen the emergence of strong interest in gener-

ative forms of AI. Even in the domain of language modelling where LLMs’ successes

entered the public splotlight, it is still prone to hallucination and fails to generalise

to basic relations not present in the training data.

The application of deep neural networks to tasks requiring higher-level cognition,

such as visual and textual reasoning, is still limited and demands web-scale datasets

and supercomputing-scale compute resources. Additionally, interpreting the inner

workings of a trained neural network is challenging. The final output of a deep

network is obtained through successive layers of non-linear transformations, making

neural networks often regarded as “black boxes” to human observers, owing to both

the scale and nature of computation involved.

As highlighted earlier in Section 2.5.4, the integration of learning and reasoning

capabilities remains a central challenge in the broader field of Artificial Intelligence

research.

Hybrid Neural-symbolic methods An insightful observation at this point is

that the strengths and limitations of symbolic AI and deep learning complement

each other. While symbolic AI relies on handcrafted knowledge, deep learning excels

at learning useful representations of inputs. Despite the data-hungry nature of deep

learning and its limited generalisation beyond training distributions, symbolic AI

offers a systematic template for generalisation through logical rules and inference

based on objects and their relations.

The synergy between symbolic reasoning and neural networks, aiming to leverage

the strengths of each approach, is the primary focus of the subfield Neural-Symbolic

AI, also known as the ‘hybrid’ architecture [80].

Various approaches exist for building such hybrid systems [55]. Researchers have

explored incorporating symbolic reasoning components into neural network archi-

tectures. For example, Neuro-Symbolic systems introduce symbolic structures like

graphs or logic rules to guide neural network learning. Another approach involves

embedding symbolic knowledge into neural network models, either by training neural

networks with structured symbolic inputs or using embeddings to represent symbolic

entities.

The common challenge for all methods in this line of research arises in the inter-

action between neural network and symbolic components. Optimising deep neural

networks typically relies on an end-to-end differentiable architecture, which classical

symbolic components inherently lack. Additionally, the distributed representations

of neural networks may be sensitive to small disturbances in input and may not

provide a stable symbol-like knowledge characteristics of classical AI approaches.
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Achieving seamless interaction between symbolic and neural components remains

a challenge. Integrating different representations and reasoning paradigms requires

addressing issues of interoperability and communication between modules.

Structured Representation and Modular Neural Networks Another line

of research acknowledges the importance of symbol-like manipulation and reasoning

in classical approaches but aims to tackle it within the connectionist framework.

The core motivation for this approach is the recognition that learning is the only

approach that scales up with data and compute resources. The ability to generalise

systematically and to perform reasoning in a symbol-like manner is a by-product

of more efficient learning. The philosophy of this approach is often referred to as:

neurons all the way down and learning all the way up, highlighting the lack of any

handcrafted explicit symbolic structures.

In the field of deep learning, this line of thought is still in its infancy and is often

advocated under different names. LeCun [159] advocates for a modular system

based on deep neural networks in which latent vectors represent knowledge symbols

and performing arithmetic on them corresponds to reasoning. Similarly, Bengio [20]

advocates for incorporating more “consciousness priors” into traditional deep neural

network architectures to tackle high-level reasoning and planning tasks. Battaglia

et al. [18] explores the use of relation inductive biases in the form of graph networks

to facilitate learning about relations, entities and the rules for composing them. A

more recent survey by Pfeiffer et al. [214] reviews several threads of research in a

more modular deep learning architecture. Veličković and Blundell [273] follows a

slightly different direction and proposes to replicate classical computer algorithms

with the machinery of neural networks as a form of reasoning.

A fundamental challenge in progressing this line of research lies in the ability to

learn structured representations that mimic symbols in classical AI, without relying

on handcrafted knowledge. In the following section, we will pinpoint a characteristic

of the representation learned by the current generation of neural networks that

hinders their capacity to acquire such structured representations.

4.1.2 Entanglement of Semantics in Representations

Currently, the focus of learning visual representations primarily revolves around

large scale datasets like ImageNet [58]. While these datasets are diverse when ag-

gregated, they often carry a strong yet subtle assumption: a single dominant object

in each image.

Taking the example of AlexNet [157], a pioneering deep learning model that

initiated the current wave of Deep Learning research not only by demonstrating
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Figure 4.1: Figure produced by Krizhevsky, Sutskever, and Hinton [157] showing
some test images from ILSVRC-2010 dataset [58], including their true labels and
probabilities for the top 5 classes predicted by AlexNet.

a remarkable leap in classification performance at the time, but arguably by also

providing valuable insights through its failure cases. In Figure 4.1 taken from the

original paper showcasing failure cases ([157]), shows that even when the model’s

predictions were incorrect, the errors often made sense to humans. These errors

mirrored common human mistakes, such as uncertainty between “mushroom” and

“agaric”, or confusion between a “Madagascar cat” and a “squirrel monkey”. These

are examples of mistakes due to fine-grained visually and semantically related con-

cepts. In the first example, the model predicted “convertible” car which includes

the human label as “grille”, which is a misprediction from an ambiguous part-whole

relationship.

Let our focus turn to the third example in Figure 4.1, where the model predicted

the “Dalmatian” dog breed, followed by “grape, elderberry,” and so on. Looking

closely, we find that, unlike most images that prominently feature a distinct dom-

inant object in the foreground, this is an example where there are more than one

prominent objects in a scene. In these ambiguous scenarios, multiple interpretations

could be considered correct. This ambiguity leads to the entanglement of informa-

tion in the representation space, and the consequence of this entanglement becomes

evident in misclassifications, as observed in the prediction of the “Dalmatian” breed

in conjunction with references to fruits like “grape” and “elderberry.” The model’s

representation encodes features from both the dog and the surrounding cherry, re-

sulting in a blending of semantics in its representation.

In addition to misclassifications, this entangling of semantics in the representa-

tion space is also a prevalent source of error in deep neural networks, introducing spu-

rious correlations in predictions [81, 193]. One promising approach is object-centric

representation learning, which seeks to learn representations that align with the
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causal mechanisms governing our physical world. It do so via learning to produce a

set of stable representation that factors the complex visual scene into their high-level

objects. Such representations are thought to be more robust to out-of-distribution

data and support more complex tasks like reasoning and control. In addition to

errors on perception tasks by directly making predictions from such entangled rep-

resentations, it could also pose numerous challenges when these scene-centric vector

representations are employed as building blocks for other neural network modules

for planing and reasoning. Unravelling this complexity is a key motivator to ad-

vance object-centric representation learning, aiming to discover the independent

constituents, and hence disentangling and refining the information encoded in the

representations to enhance the accuracy and robustness of artificial intelligence sys-

tems.

4.2 What is Object-centric Representation Learn-

ing ?

Object-centric representation learning stands out as one of the most promising ap-

proaches within deep learning for acquiring structured representations, especially of

visual data. Rooted in the connectionist paradigm, it is firmly grounded in data and

learning methods while striving to achieve a structured representation that exhibits

symbol-like qualities, making it more amenable to manipulation and suitable for

downstream applications.

4.2.1 Goals

Object-centric representation learning, as implied by its name, endeavours to learn

representations of individual objects within a scene rather than acquiring a represen-

tation of the entire image or scene [73, 170]. The motivation behind this approach

is drawn from the intuitive notion of objects in human cognition, aiming to capture

and leverage the way humans naturally perceive and interact with their surroundings

[253]. To do so, it must be able to perceive and factor complex and unstructured

visual inputs into their constituent objects, representing them independently.

Such representations have the potential to radically transform and simultane-

ously address many current challenges in learning dense scene-level visual represen-

tations such as:

• Sample efficiency: Object-centric representation learning stands out as a po-

tential catalyst for enhancing sample efficiency across a spectrum of down-

stream tasks. By focusing on capturing essential features related to individual
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objects within a scene, the learning system can distil pertinent information

more effectively, reducing the need for extensive datasets to achieve optimal

performance.

• Structural understanding and abstraction: Having stable building blocks is

a prerequisite for forming structural understanding and building layers of

abstractions. By dissecting scenes into discernible objects and their inter-

relationships, the learning system gains the ability to abstract essential struc-

tural elements, enabling a more sophisticated comprehension of intricate visual

contexts.

• Systematic generalisation: As a consequence of having interchangeable and in-

dependent representations, and potentially a better structural understanding

and abstraction, the learning system becomes adept at systematic general-

isation, extrapolating knowledge to novel scenarios with increased accuracy.

Aligning a neural network’s internal representation to a higher level of abstrac-

tion more similar to that of human could also reduce mistakes from spurious

correlations, shortcut learning and surface-level statistics.

• Reasoning: As the learning system becomes attuned to the hierarchical and

relational aspects of objects, it lays the foundation for more advanced coun-

terfactual or causal reasoning capabilities. This, in turn, facilitates a deeper

understanding of complex scenarios, empowering the model to make informed

decisions and predictions in diverse and more complicated situations.

4.2.2 The Binding Problem

The entanglement of semantics in neural network distributed representation spaces,

as discussed earlier, is a characteristic intrinsic to these systems. Greff, van Steenkiste,

and Schmidhuber [96] defines the root cause of this behaviour as the binding problem:

“The inability of existing neural networks to dynamically and flexibly bind informa-

tion that is distributed throughout the network. The binding problem affects their

ability to form meaningful entities from unstructured sensory inputs (segregation), to

maintain this separation of information at a representational level (representation),

and to use these entities to construct new inferences, predictions, and behaviours

(composition).”

The binding problem has its roots in neuroscience, and is used to explain infor-

mation processing in the brain, including sensory and cross-sensory binding (e.g.,

colour, shape, texture, voice), binding across time with motion, and binding with

actions or semantic knowledge and memory.
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In current neural networks, the information routing process is largely determined

by predefined architectures and fixed parameters post-training. There is limited

dynamic capability to segregate and group information, mostly occurring at the

level of image patches or word tokens. Addressing the binding problem in the

connectionist approach involves discovering the right inductive biases that enable

the emergence of symbol-like representations through learning.

Greff, van Steenkiste, and Schmidhuber [96] further dissects the binding problem

into three subproblems:

The Segregation Problem: Involves turning unstructured and complex input

data into meaningful entities, i.e., objects. The concept of an object is inherently

vague and context-dependent, requiring continuous and dynamic factorisation of the

input stream. The segregation problem is somewhat analogous to classical computer

vision tasks, such as object detection and segmentation. However, the goal is not

merely obtaining predictions for location or semantic classes but addressing the

challenge of dynamically segregating input data.

The Representation Problem: Focuses on binding, maintaining and repre-

senting the segregated information into independent entities, so called “object-

representation”. These object representations should behave like symbols in clas-

sical AI, serving as building blocks for downstream neural processing modules.

They should be self-contained, separating relevant information, yet capable of being

grouped and assembled into more complex structures.

The Composition Problem: Addresses how these representations can interact,

exchange information, and be composed into useful, novel representations that can

generalise systematically for inference, prediction, reasoning, and planning. The

output of the composition step could potentially inform the segregation step in a

top-down fashion.

These three challenges from segregation, representation, and composition within

the binding problems present numerous research opportunities and problems. The

topic of object-centric representation learning currently primarily focuses the seg-

regation and representation problem, with the goal of discovering and representing

objects in a visual scene, discussed in more detail in the next section.

4.3 Learning and Evaluation

Object-centric Representation Learning (Object-centric Representation Learning

(OCRL)) methods operate within the domain of multi-object images or video datasets,

95



contrasting with commonly used ‘object-centric’ datasets like ImageNet, which pri-

marily contain a single dominant object in the foreground. The definition of an

object is not explicitly constrained and depends on the specific dataset. It could

encompass simple geometric 2D or 3D shapes for straightforward datasets or extend

to everyday household items, vehicles, or human entities in more complex datasets.

In the context of visually complex scenes, whether in images or videos, comprised

of multiple individual objects, the objective is to automatically discover these inde-

pendent components. The goal is to parse and bind the information of each object

into independent representations. Each object representation should adhere to a

common format, be interchangeable, and together, they should collectively describe

the original input data.

4.3.1 Task: Unsupervised Object Discovery

In pursuit of advancing Object-centric Representation Learning (OCRL), our focus

centres on the unsupervised Object Discovery task. As previously highlighted, the

notion of an object is ambiguous, and the set of all possible objects is infinite.

For meaningful progress toward practical and useful object-centric learning, these

approaches must not rely on human supervision, but rather be unsupervised, self-

supervised, or semi-supervised through additional contextual signals.

The pretext task used throughout this thesis and commonly found in the litera-

ture is instance segmentation. Instance segmentation is a computer vision task that

involves identifying and separating individual objects within an image. It includes

detecting boundaries and predicting the exact pixel-wise mask of each individual ob-

ject instance in an image, assigning a unique label to each object. This task stands

as a special form of image segmentation that deals with detecting instances of ob-

jects and demarcating their boundaries. It provides more detailed and sophisticated

output than conventional object detection algorithms. Unlike semantic segmenta-

tion, instance segmentation also differentiates between different objects belonging

to the same categories.

Contrary to normal instance segmentation models, in object-centric learning,

the ultimate goal is not to learn to predict the location of object instances from an

entire scene representation. Ideally, object-centric learning methods would bind all

the relevant information of an object into its corresponding representation. Each

independent representation would then be used to extract the information it contains

for each object, in this case in the format of segmentation masks.

By utilising traditional instance segmentation as our pretext task and constrain-

ing ourselves to the unsupervised setting in addition to generate segmentation masks

from the individual representations, this approach can be used to make progress to-
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ward our objective of object-centric learning.

4.3.2 Metrics

Independently from the task of training of supervised segmentation, in the unsuper-

vised settings we need different metrics for both learning and optmisation to more

accurately reflect the performance of techniques.

Reconstruction Error: MSE Since most Object-centric learning methods, as

will be discussed in 4.4, are based on an autoencoding framework, models are opti-

mised with a reconstruction metric between the ground truth and final predictions

from all object representations. A common reconstruction metric is Mean Squared

Error (MSE), defined on the ground truth x and the prediction x̂ as:

MSE(x, x̂) = ||x− x̂||22 =
1

D

D∑
i=1

(xi − x̂i)
2

where D is the dimensionality of all predicted locations, i.e all pixel locations and

colour channels for an RGB image. It can also be seen as minimising the log-

likelihood of the data distribution and a Gaussian distribution of each input points.

This is a direct and straightforward metric to measure and optimise for during

the training process. Our premise is that given appropriate architectural bias, a

model with lower reconstruction error should directly translate to a model that can

perform better at discovering objects.

Adjusted Rand Index (ARI): To directly evaluate the segregation capability

of object-centric methods, we need to measure its ability to segment an image or

video input using its slot representation. In the unsupervised object discovery set-

ting, since an object can potentially bind to any instance slots, there is no clear

correspondence between the ordering of objects in the slots and the ground truths,

thus making it unsuitable for more traditional segmentation metrics like mIoU. Ad-

justed Rand Index (ARI) [124] is a clustering similarity metric that is invariant to

permutation in the ordering of clusters. This has made ARI a standard metric used

to evaluate unsupervised object-centric segmentation in prior works [28, 138, 150].

We now describe in detail how to compute ARI. We have a set S = s1, s2, . . . , sn

of n elements and two different ways to partitioning this set X = X1, . . . , Xr and

Y = Y1, . . . , Ys with r and s subsets respectively. Given a pair of elements si and

sj, assign a label 1 if they belong to the same cluster in the first clustering Y

or 0 otherwise. Now consider the binary classification task to predict whether a

pair of elements belong to the same cluster in the partitioning X. In this binary
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classification task:

• True Positive (TP) is the number of pairs of elements that belong to the same

subset in X, and belong to the same subset in Y .

• True Negative (TN) is the number of pairs of elements that do not belong to

the same subset in X and do not belong to the same subset in Y .

• False Positive (FP) is the number of pairs of elements that belong to the same

subset in X but do not belong to the same subset in Y .

• False Negative (FN) is the number of pairs of elements that do not belong to

the same subset in X but belong to the same subset in Y .

The Rand Index (RI) can be thought of as the accuracy for this classification

task:

RI(X, Y ) =
TP + TN

TP + TN + FP + FN
=

TP + TN(
n
2

)
where the denominator equals the number of pairs from n elements.

The Rand Index ranges from 0 to 1, with 0 meaning complete disagreement for

any pairs of elements between two clusterings while 1 means the two clusterings are

identical, up to a permutation of the partitions. This is not ideal since it does not

take into account clustering by chance.

The Adjusted Rand Index (ARI) adjusts to have a value of 0 for the expected

number of agreements with a random baseline. Let xi = |Xi|, yj = |Yj| be the

number of elements in their corresponding subsets and ni,j = |Xi ⋊⋉ Yj| is the

number of elements that are in both subsets Xi and Yj, then the expected RI by

random chance is:
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∑
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The Adjusted Rand Index is then computed as:
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To evaluate the accuracy of the segmentation task, we consider the set of all

pixels in a frame and the segmentation indices as the clustering assignment. To

take into account consistent of object identity over time, we simply consider the set

of all pixels from all frames simultaneously. The video ARI metric will then measure

both object segmentation and tracking over time. Since object-centric methods tend

to over-segment objects into the background category, following prior work [28] only

the ground truth foreground classes are used for evaluation. This metric is then

referred to as ARI-FG.
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4.4 Slots Representation

In this section, we will provide an overview of “slot representations”, the most

popular format for learning object-centric representations. Then we categorise the

methods based on the different way each slot is associated with objects in the visual

scene following Greff, van Steenkiste, and Schmidhuber [96], and provide a brief

overview of the methods in each category in their chronological order of development.

In traditional visual representation learning, a scene is typically represented by

a single vector summarising its global information. To extend this scene-level rep-

resentation to an object-centric representation, the most straightforward method is

to equip each object with its own representational vectors. In the object-centric lit-

erature, these are often referred to as “slots” to denote their ability to dynamically

bind and represent different information depending on the input data without being

hardcoded.

Object-centric representation learning methods learn to segregate and bind each

slot to the information of one object, and collectively, all slots will represent the

entire visual scene. As each slot being represented has its own vector, each object

representation is independent by nature. A change in one object would only affect

one representation in a slot, whereas modifying or deleting a slot would correspond to

a local change in the visual scene for that object. By the nature of parameter sharing,

all slots are embedded in the same vector space, where each object representation

will have a common format.

Together, slot representations provide a way to holistically encode a visual scene

via its independent objects with a common format while retaining the powerful

properties of distributed representations of deep neural networks.

By far, slot representations have been the most popular and successful approach

in the field of object-centric representation learning. In this section, we will cover

the development of object-centric representation learning methods over the past few

years. We will do so by looking at the different inductive biases used in segregating

objects’ information into slots, including: categorical slots, sequential slots, spatial

slots and instance slots.

4.4.1 Category Slots

One of the earliest approaches to routing information of different objects to differ-

ent slots is by transforming the representation based on the object category [115].

These methods leverage semantic information to segregate and represent distinct

categories of objects. Work in the area of Capsule Networks [116, 233] is the most

representative line of work for this approach. Inspired by the goal of capturing part-

whole relationships [114], each capsule in the network is learned to capture a specific
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kind of object or a part of it.

However, this approach comes with certain limitations. By assigning a fixed

representational capacity to different object categories, it becomes computationally

expensive and wasteful, especially when not all object categories are present in the

input. Additionally, by separating slots by their semantic category, it restricts the

ability to separate and represent multiple objects of the same category simultane-

ously.

4.4.2 Sequential Slots

Methods in this category typically impose an order on the slot representations and

the routing of information. This mimics how humans and animals use eye gaze to

direct their attention to different aspects of a visual scene. Object representations

are sequentially predicted one after another, often using recurrent mechanisms such

as Recurrent Neural Networks.

A foundational method in this category is Attend, Infer, Repeat (AIR) by Es-

lami et al. [75]. This approach proposes the use of a Recurrent Neural Network to

iteratively attend to and perform inference for one object at a time. What sets this

approach apart from others is its capability to learn the use of a variable number of

slots, depending on the input.

Sequential Attend, Infer, Repeat (SQAIR) [156] extends the recurrent aspect of

AIR from objects in still images to objects in video. It introduces a new propagation

phase responsible for updating and forgetting object slots from the previous timestep

based on new observations, carried out in a recurrent manner.

However, due to their recurrent nature, performing inference to obtain represen-

tations for all slots can be computationally expensive. This is particularly costly

during training, where the autoencoding step for inference cannot be parallelised

over objects (for AIR) or over time steps (for SQAIR).

Another approach, MONet (Mult-object Network) [28], also follows a sequential

approach but only applies it to the information routing step. MONet implements

an attention network that recurrently outputs a soft object mask at each step from

the input image and scope mask of what pixels have not been fully accounted for so

far. Subsequent steps take the remaining unexplained scope to predict another ob-

ject mask. Starting from a full scope of unexplained pixels, this process is repeated

for the first K − 1 slots, with the last slot K taking the remaining unexplained

scope from the previous steps. By sequentially obtaining attention masks, MONet

can parallelise the inference step by masking the input image with the masks and

encoding and decoding them in parallel. This helps somewhat alleviate the disad-

vantage of sequential processing of object slots at the cost of higher compute and
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memory requirements in the autoencoding step.

GENESIS [73] extends MONet by introducing an autoregressive model between

slots to enable the application of novel scene generation.

4.4.3 Spatial Slots

Spatial slots refer to methods that bind object information into slots based on their

location in the frame. This concept is akin to feature maps in Convolutional Neural

Networks (CNNs) or patch tokens in more recent Vision Transformer architectures,

which are popular for object detection and segmentation tasks [31]. Some earlier

works [236, 255] that use these feature maps are also relevant for reasoning tasks,

with a focus on learning about the relations among feature vectors in a feature map

in a spirit similar to object-centric learning.

More relevant are methods that learned spatial feature maps with more explicit

object structures. SPAIR [51] extended the AIR framework with spatially invariant

object-like features such as “what,” “where,” and “depth.” SPACE [165] further

augments spatial features with features indicating the presence of objects at each

spatial location. SCALOR [133] directly uses CNN’s feature maps to generate object

proposal maps before recurrently updating the object slots based on the SQAIR

framework.

SIMONe [138] is a notable work in this category that extends learning both object

and frame representations from videos. A multi-object input video is first encoded

into spatiotemporal features, and the 3D feature map is jointly processed with a

Transformer. The final object slots are obtained by summing all the representations

at each spatial location over time, while the frame representation is obtained by

summing all the spatial representations at each timestep. This approach exhibits

remarkable compositional properties, enabling the generation of videos composed of

objects from one video with the camera trajectory of another by using object and

frame latents encoded from different videos.

Routing information based on spatial location enables efficient parallel process-

ing and provides a strong inductive bias that aids object discovery. However, it

comes with certain disadvantages. Since objects are tied to their locations in the

image, the number of slots is tied to the grid resolution. This approach is also

sensitive to the size of objects, where a large object can be represented by multiple

slots simultaneously, while small objects may compete to be represented by a single

slot, leading to the entanglement problem described earlier but in a different scale.

Similar to category slots, spatial slots can be wasteful when there are few objects

in a scene, and the network dedicates significant capacity to representing simple

background slots.
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4.4.4 Instance Slots

The most general form of slot representations is to bind object information for each

instance in a scene. Unlike category slots, multiple instances of the same category

can be represented in different slots. Unlike spatial slots, there is no direct corre-

spondence between object location and its slot representation and unlike sequential

slots, each instance is treated as independent and can be efficiently processed in

parallel.

Earlier approaches [99, 94] treat the problem of detecting instances as a form

of perceptual grouping and clustering. Neural Expectation-Maximization (N-EM)

[95] implements a differentiable clustering method that simultaneously learns to

group and represent individual clusters. IODINE is an iterative method over VAE

[148] like MONet [28], but instead of iteratively sequencing over slots, IODINE binds

objects to slots in parallel but iteratively refines these over time. Improved upon the

prior version, GENESISv2 [72] uses a differentiable clustering process on the pixel

embedding to infer and learn object representations without the need to specify the

number of slots as a hyperparameter.

Slot Attention [170] is a notable approach that embraces the success of atten-

tion mechanisms in deep learning to perform object grouping in parallel with the

expressive attention mechanism. Slot Attention is a type of attention mechanism

that encourages slots to compete to explain each input position. In Slot Attention,

the slots acts as the query and the visual features map are the keys and query. Un-

like normal attention, Slot Attention applies softmax normalisation over the query

dimension, letting the slots compete with each other to explain each position in

the feature map. This creates a form of parametric clustering algorithm with the

centroids being the slot representations. Due to its performance and efficiency,

Slot Attention has quickly become one of the most popular methods in the field of

object-centric representation learning. A core difference of slot attention and nor-

mal attention is the axis over which the softmax operation was applied. Due to

its performance and efficiency, Slot Attention has quickly become the most popular

method in the field of object-centric representation learning.

4.5 Scaling to Visually Complex and Real-world

Data

The subfield of object-centric representation learning is still relatively young and

is experiencing rapid development. Earlier methods explored various approaches

for segregating and representing object information to varying degrees of success.

These early experiments are trained and evaluated on simple synthetic datasets and
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Figure 4.2: Representative datasets for multi-object datasets used for study object-
centric representation learning over time, increasing in visual complexity. From left
to right: Multi-dSprites, Object Rooms, CLEVR, MOVi-E datasets.

mainly aims to validate the central hypothesis on the feasibility of object-centric

representation. The challenges faced by current object-centric learning approaches

underscore the need for innovative solutions to achieve scalability and handle more

complex scenes.

4.5.1 Datasets

Over time, increasingly more complex synthetic datasets were designed to test vari-

ous aspects of object-centric systems, furthering progress in this space. The benefit

of synthetic datasets lies in having multiple paired ground truth annotations, such

as depth, flow, and surface normal, which are expensive to collect for real-world

datasets.

Earlier works, such as [99, 94], used very simple 2D datasets like shapes [224],

where images contained a few randomly placed geometric shapes, sometimes with

overlap. Another variant, Multi-MNIST, was generated using digits from the MNIST

dataset [162] as more complex objects. These datasets aimed to reduce visual com-

plexity to a minimum to evaluate methods on their ability to bind shapes under

varying translations, rotations, and overlap conditions.

Later methods increased the visual complexity by adapting the dSprites [181]

dataset, which comprises 1 to 4 randomly chosen sprites placed onto a single image

with a uniform randomly coloured background. Object Rooms and its video variant

[28] maintain the same complexity but render scenes in a 3D environment.

The CLEVR dataset [136] features realistically rendered multi-object scenes with

simple 3D objects on plain coloured backgrounds, providing a major advancement

for object-centric learning methods to work with visually complex input. However,

despite its realistic appearance, CLEVR objects only contain uniform colours with

a clean background. To address this limitation and further challenge object-centric

methods, CLEVRTex [142] augments CLEVR with more varied texture colours,

introducing challenging foreground and background separation.

In the temporal domain, CATER [83] builds on CLEVR to generate videos with
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moving objects and large camera movements, extending the challenges to object

tracking under occlusions and over longer durations.

More recently, the MOVi dataset [97] was introduced, and comprises multi-object

video datasets with increasing complexity across its 5 variants. MOVi-A follows the

CLEVR setup, rendering basic geometric shapes on a plain background. MOVi-

B incrementally increases difficulty with more complex objects, holes, and diverse

backgrounds. MOVi-C represents a significant quality leap, utilising scanned 3D

everyday objects (e.g., mugs, shoes) on photographed background images. MOVi-D

raises the level of difficulty further by increasing the number of objects per scene

(10 to 20 static objects and 1 to 3 moving objects). Finally, the MOVi-E variant

introduces moving camera motion on top of MOVi-D, producing the most challeng-

ing dataset of all. This variant contains many small, real-world scanned objects —–

both static and moving —– that interact with each other, all while being captured

via a moving camera. The addition of moving camera motion adds another layer

of complexity to the dataset, making it a valuable resource for evaluating object-

centric learning methods in real-world scenarios with dynamic scenes and changing

perspectives. Each variant consists of 10,000 videos with 24 frames each, rendered

at 256x256 resolution. The MOVi dataset provides a comprehensive evaluation plat-

form for various aspects of object-centric learning methods, covering both spatial

and temporal challenges.

In Figure 4.2, we display a few representative samples of the datasets used in

the field of object-centric representation learning overtime, highlighting the increas

in visual complexity of the input domain.

4.5.2 Slot Attention for Video

The most recent methods aiming at scaling up object-centric methods are all built on

top of Slot Attention, as discussed earlier. Among those approaches, Slot Attention

for Video (SAVi) [150] provides a comprehensive framework for building object-

centric learning methods, in particular on videos.

In SAVi, slot representations can be initialised from the object’s bounding boxes

of the first frame. This provides a weak supervised signal for the object discovery

task, and it is especially helpful for visually challenging datasets like MOVi-C. This

step can also enable interactive applications, allowing humans in the loop to resolve

questions about relevant objects. From the weakly supervised initialisation, the

object representations are recurrently updated over video frames, with the slots

being naturally carried over from the previous frame as the initialisation for the

next frame.

In each frame, the slot representations are updated via two steps: correction
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and prediction. The correction step implements the Slot Attention mechanism to

update the slots via the feature maps from the visual encoder of the current frame.

Optionally, this correction step can be repeated many times to further refine the

information routing of objects to slots. After the slots are “corrected” by the visual

information of the current timestep, the prediction step further allows object slots

to interact and exchange information between each other via a shallow Transformer

network. The aim of this step is to enable the slots to model their interactions in

the current frame before proceeding to the next.

At each step, slots are independently decoded to the target signals before being

combined together. The reconstruction error between the combined prediction and

the target provides the training signal for the entire network. SAVi further uses

extra paired data such as optical flow to help guide the object discovery process

based on object motion.

In contrast to SAVi, SAVi++ [71] applies scaling techniques in the architecture

design, drawing inspiration from the broader deep learning literature. The method

combines these techniques with additional geometric signals such as depth to scale

up an object-centric learning method to a real self-driving dataset [263] for the first

time. This indicates a significant step toward applying object-centric learning in

real-world complex scenarios such as autonomous driving.

In summary, the SAVi framework provides a versatile and useful foundation

for end-to-end learning in object-centric methods. The following chapters will ex-

plore specific sets of experiments targeting different components in this pipeline.

Chapter 5 will address the challenge of representation dynamics with a focus on

a novel discrete object-centric representation. Chapter 6 will concentrate on the

object decoder components, exploring methods to enhance efficiency while retain-

ing the desired properties of slots. Finally, in Chapter 7, the aim is to scale up

object-centric methods by incorporating a pre-trained vision model as an additional

signal, without relying on supervised data such as optical flow or depth information.

These experiments are designed to provide insights and advancements in the field

of object-centric representation learning in general.

4.6 Experimental Setup

In the following chapters (5, 6, 7), we will discuss in detail into various experi-

mental setups centered around the topic of Object-centric Representation Learning,

as introduced earlier. This section outlines the rationale and methodology behind

our choices in datasets, baseline methods, and evaluation metrics, providing the

foundation for the experiments discussed in subsequent chapters.
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Datasets The subfield of Object-centric Learning has rapidly evolved, particularly

in terms of the complexity of data it can handle. For this research, we selected the

synthetic MOVi datasets as our primary data source. There are several reasons for

this choice:

First, the MOVi datasets offer multiple variants that progressively scale in visual

complexity, making them an ideal testbed for developing and evaluating models

across different levels of difficulty. This progression allows us to systematically

assess the performance and generalizability of our methods.

Second, the datasets are video-based, which is crucial for our research that lever-

ages temporal continuity—a key aspect in object discovery. The temporal dimension

provides rich information that can enhance the learning of object representations

over time.

Third, being synthetically generated, MOVi datasets come with rich multimodal

annotations that are typically expensive and labor-intensive to collect in real-world

datasets. These annotations include detailed object attributes and segmentation

masks, enabling comprehensive evaluation across multiple aspects of object-centric

learning. This richness is particularly valuable for a nascent field like Object-centric

Learning, where diverse data modalities can drive innovation and discovery.

Moreover, the consistency in dataset format simplifies the implementation pro-

cess, reducing the overhead associated with supporting multiple datasets with vary-

ing structures.

Baseline Methods Given the rapid development in this young field, it is challeng-

ing to keep up with and reproduce all relevant works, each with different motivations

and approaches. To address this, we selected the SAVi family of methods as our

primary baseline. This choice was guided by several factors:

First, SAVi methods represent the state-of-the-art in object-centric learning at

the time of this research, providing a strong foundation against which to benchmark

our methods.

Second, SAVi offers a modular framework where different components—such as

slot attention mechanisms, decoder networks, and temporal processing units—play

distinct roles. This modularity is particularly advantageous for our experiments, as

it allows us to investigate each component separately, facilitating a deeper under-

standing of their contributions to the overall model performance.

Third, SAVi is specifically designed for video data, aligning perfectly with our

focus on leveraging temporal information for object discovery. This video-centric

design ensures that our research is grounded in a framework well-suited to the chal-

lenges of dynamic scenes.
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Task and Evaluation The promise of object-centric learning lies in its poten-

tial utility for downstream applications, much like other representation learning

methods. However, the most pressing challenge in the field today is the task of un-

supervised object discovery. While many object-centric methods have shown success

on small-scale, simple scenes, they often struggle with more complex environments,

failing to discover and segregate objects accurately.

Motivated by this challenge, our experiments are focused on the task of unsuper-

vised object discovery, with evaluation based on the Adjusted Rand Index (ARI), as

discussed earlier. ARI is a robust metric for assessing segmentation quality, making

it suitable for evaluating object discovery performance in unsupervised settings.

In practice, the field often reports ARI after removing the background class from

consideration, a practice born out of the current limitations where methods tend to

mistakenly group background elements, such as shadows, into object segmentation

masks. By excluding the background class, the ARI metric—referred to as ARI-

FG (Foreground-Only ARI)—provides a clearer, more focused assessment of object

segmentation quality, guiding the development of more accurate models. In this

thesis, we adhere to this standard practice and report both ARI and ARI-FG metrics

to ensure comprehensive and meaningful evaluation of our methods.
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Chapter 5

Learning Discrete Object-centric

Representations

Building on the challenge of object-centric representation learning introduced in

Chapter 4, this Chapter addresses Research Question 3 from Chapter 1 which stated

“How can object-centric representation learning approaches, particularly slot-based

methods, be designed to capture increasingly complex and abstract visual concepts

in a structured manner?”. We do so by advancing methods for efficient learning of

hierarchical representations via the machinery of discrete representations.

In the context of object-centric representation learning, our goal is to train a

neural network capable of discovering and representing complex scenes with mul-

tiple independent objects. Each object is associated with a distinct slot, and this

collection of slot representations forms a comprehensive representation of the entire

scene. Importantly, this representation would allow for efficient manipulation and

interaction with objects in downstream tasks. Since the number of objects is dif-

ferent for each scene, current architectures usually define in advanced what is the

maximum number of available of slots as a hyper-parameter based on the dataset.

Object-centric learning inherently relies on the assumption that visual scenes exhibit

a certain degree of independence, manifested via so-called “objects””. These objects

can vary in terms of colour, appearance, location, distance, movement, and interac-

tions with other objects. Thus, the desired representation is inherently discrete in

nature.

In the broader field of representation learning and deep learning, continuous rep-

resentations of video over time have traditionally dominated, even in cases where

the underlying domain is inherently discrete such as still images or text, for exam-

ple. However, recent developments in learning discrete representations have shown

promise in various aspects, including learning discrete representation for image un-

derstanding and generation. These approaches typically quantise representation as

the level of individual image patches or audio clips, resulting in a learned codebook
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of compressed discrete signals.

We aim to explore the possibility of learning discrete representations of individual

objects, rather than focusing solely on discrete representations of image patches, as

is the focus of most current works. This is motivated by the similarity to the inherent

discreteness of physical objects.

Our experiments in this Chapter will demonstrate for the first time the feasibility

and applicability of learning a discrete latent space of object representation.

In the first section of this Chapter, we will provide a brief overview of Vector

Quantised-Variational AutoEncoder (VQ-VAE), the foundational method for learn-

ing discrete representations, on which our method is built upon.

5.1 Learning Discrete Representations with Vec-

tor Quantisation

Originally developed in the context of compression for communications, vector quan-

tisation is a method for mapping between a sequence of continuous vectors into a

sequence of discrete digits [93]. The introduction of VQ-VAE by Oord, Vinyals, and

Kavukcuoglu [205] sparked a renewed interest in learning neural discrete represen-

tations within the context of modern deep learning, employing vector quantisation

as a key component.

VQ-VAE is built upon the Variational AutoEncoder (VAE) framework. It can be

conceptualised as similar to a VAE but with a quantisation layer as the non-linear

operation in its bottleneck layer. In this section, we will offer a comprehensive

exploration of VQ-VAE, gradually building upon the fundamental concepts of an

AutoEncoder.

This will provide a foundation for a detailed understanding of VQ-VAE and its

significance in the realm of discrete representation learning.

5.1.1 AutoEncoder

An autoencoder is a neural network architecture designed for dimensionality reduc-

tion and feature learning. It consists of two main parts: an encoder and a decoder.

Encoder: The encoder takes an input data point x and maps it to a lower-

dimensional representation called a “latent space”, where a vector in this space

is referred to as an “embedding” z = Encoder(x). This step is essentially a com-

pression process that captures the most important features of the input data.
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Latent space: To encourage the learning of meaningful representations of the

data in the latent space, and not just to copy the input, autoencoders are often

designed with a bottleneck architecture that reduces dimensionality, which restricts

the information that can be communicated from the encoder to the decoder through

its latent embedding.

Decoder: The decoder takes the encoded latent embedding and attempts to re-

construct the original input data. The goal is to produce an output that is as close as

possible to the input. The loss function is therefore a measure of the reconstruction

error between the input and output of the network itself, hence the term “auto” in

its name.

Learning: Like most types of neural networks, an autoencoder can be trained end-

to-end. The gradient of the reconstruction loss of the output can be fully propagated

backward through the latent bottleneck.

5.1.2 Variational AutoEncoder

Traditional autoencoders are effective at dimensionality reduction and feature learn-

ing. However, they have a limitation when it comes to generating new data. These

models generate deterministic encodings, making them less suitable for tasks like

image generation, where we want to sample diverse outputs. Variational AutoEn-

coder (VAE)s [148] address this limitation by introducing a probabilistic approach

to the encoding process.

The key idea behind VAEs is to represent data in a probabilistic manner. In-

stead of a deterministic encoding, VAEs produce a probability distribution over the

latent space for each input data point. This distribution is often assumed to be a

multivariate Gaussian.

Encoder: The encoder network of VAE parameterises a posterior distribution

q(z|x) of the latent variable given the input. The posterior distribution of the latent

space is usually assumed to be a diagonal Gaussian parameterised by a mean vector

µ and a log-variance vector log(σ2).

Latent Distribution: In addition to the bottleneck design in an autoencoder,

VAE’s latent representation also incorporate a prior distribution over the latent

space. The prior distribution is also assumed to be normally distributed with diag-

onal covariance, i.e z ∼ N(0, 1). During training, the distribution of the encoder’s

output is encouraged to be similar to the prior distribution, typically through a

distributional similarity metric like the Kullback-Leibler divergence.

110



Reparameterisation Trick: Since the VAE’s decoder randomly samples a latent

from the encoder’s posterior distribution during training, the gradient can not flow

back through this random sampling process. To address the issue of gradients not

flowing through the random sampling process in the VAE’s latent space, the re-

parameterisation trick is applied.

Instead of directly sampling from the posterior distribution provided by the

encoder, the trick involves first sampling from a unit Gaussian distribution. The

final latent representation is then obtained by scaling and shifting these sampled

values using the mean and variance derived from the encoder’s output: z = µ+σ ·ϵ,
with ϵ ∼ N (0, I). This technique separates the random sampling operation from

the gradient flow, allowing end-to-end training of both encoder and decoder.

Decoder: The decoder p(x|z) takes the sampled encoding z and generates back

to the original input space. Similar to a traditional autoencoder, the reconstruction

produced by the decoder is optimised to be as close as possible to the input data

through reconstruction error.

Learning VAEs employ a variational inference framework to maximise the likeli-

hood of the observed data given the model. The objective function consists of two

key terms: a reconstruction loss that optimises output fidelity and a regularisation

term that encourages the latent space to be similar to the prior distribution.

5.1.3 Vector Quantised – Variational AutoEncoder

VQ-VAE is an extension of the VAE approach, designed to capture complex data dis-

tributions while providing discrete and structured latent representations. Instead of

modelling the latent vector with a continuous distribution like a diagonal Gaussian,

the posterior and prior distributions are now categorical. Samples drawn from this

distribution will be used as an index for a separate embedding table, or codebook.

These indexed latents are then used as input for decoder.

Encoder: The encoder takes input data and produces a continuous latent vector,

ze = Encoder(x), similar to a traditional autoencoder.

Vector Quantisation: The continuous embeddings from the encoder are quan-

tised by finding the nearest neighbour in a predefined codebook of discrete latent

vectors e ∈ RK×D. The codebook is a set of K vectors, each of dimension D, and is

trained in tandem with the encoder and decoder. This process results in a discrete

index for each continuous embedding, effectively mapping it to a discrete latent
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representation. The posterior distribution is then defined as follow:

q(z = k|x) =

1 if k = argminj∥Encoder(x)− ej∥2
0 otherwise

(5.1)

Decoder: After quantisation, a code vector is selected from the codebook as

zq(x) = ek, where k = argminj∥ze(x) − ej∥2. The decoder takes in this latent

vector and decodes it back to the original input similar to the traditional autoen-

coder.

Straight-Through Estimator: Just like the random sampling step in VAEs, the

quantisation step in the latent space of VQ-VAE is non-differentiable. To enable the

propagation of the learning signal back to the encoder, a technique known as the

Straight-Through Gradient Estimator [22] is employed. This method bypasses the

quantisation step during the backward pass and directly copies the gradient of the

quantised code to the pre-quantised output of the encoder.

Alternatively, other methods such as the Gumbel-Softmax [130] or Concrete

distribution [177] can be used to gradually approach the discrete categorical distri-

bution, providing more options for handling the quantisation step during training.

Learning: In VQ-VAE, there are three components to optimised, the encoder,

decoder and the codebook. The encoder and decoder can be optimised with the

reconstruction loss, using the gradient obtained via the estimator explained above.

However, it is important to note that, with the Straight-Through estimator, gra-

dients do not flow through the codebook vectors. To address this, an L2 loss is

employed to pull the codebook vector, denoted as ei, towards the output of the en-

coder, ze(x). Additionally, VQ-VAE introduces a “commitment” term that enforces

a strong connection from an encoder output to its corresponding quantised vector

in the codebook.

The complete training objective is composed of the reconstruction term (i.e sam-

ple log-likelihood), the vector quantisation loss for the codebook and the commit-

ment loss:

L = log p(x|zq(x)) + ∥sg[ze(x)]− e∥22 + β∥ze(x)− sg[e]∥22 (5.2)

where “sg” stands for the “stop gradient” operation that prevent gradient flow

through the term that the sg operation is applied on.

In Table 5.1 we provide a brief summary to highlight how the modelling differs

between AutoEncoder (AE), VAE and VQ-VAE.
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Table 5.1: Comparison of components between Autoencoder (AE), Variational Au-
toencoder (VAE) and Vector Quantised - Variational Autoencoder (VQ-VAE).

Component AE VAE VQ-VAE

Encoder Maps input to
continuous em-
beddings

Maps input to
mean and vari-
ance for Gaussian
distribution in
latent space

Maps input to
continuous em-
beddings

Latent Space Continuous, un-
structured

Continuous, often
Gaussian dis-
tributed

Discrete, struc-
tured by codebook

Decoder Maps encoding to
output

Sample latent and
decode

Map discrete in-
dices to codebook
vector and decode

Losses Reconstruction
Loss

Reconstruction
Loss + Latent
regularization

Reconstruction
Loss + Vector
Quantization Loss
+ Commitment
Loss

Optimisation Backpropagation
end to end

Reparameterisation
trick

Straight-Through
Gradient Estima-
tor

5.2 Related Work on Learning Discrete Repre-

sentations

Having presented a high level overview to give an understanding of the mechanics of

VQ-VAE, this section now delves into an examination of related works that leverage

this concept. Broadly, the body of literature that explicitly deals with learning or

utilising a discrete representation can be categorised into two main groups.

The first group described in subsection 5.2.1 employs quantisation as a mecha-

nism to compress input signals, which previously took the form of image patches

or audio clips. This approach focuses on the efficient compression of data. The

second group described in subsection 5.2.2 is motivated by the use of discrete rep-

resentations as a means of communication between different neural modules, with

a focus on enabling interaction and information exchange within a neural network

architecture. Our work in this chapter bridges between the groups, aiming to learn

discrete representations of “objects”, instead of image patches, that are intended to

be more suitable for processing by downstream modules.
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5.2.1 Discrete Signal Compression

The concept of VQ-VAE, originally introduced by Oord, Vinyals, and Kavukcuoglu

[205] provides a comprehensive framework for learning discrete latent representations

in the context of modern deep learning. Initially applied to the task of generating

visual representations for images, this approach has found widespread adoption as

a foundational component for downstream tasks and has extended its applicability

to other domains, including audio representation.

To mitigate the challenges of learning representations for complex visual signals,

VQ-VAE adopts a two-step process. It starts by dividing an input image into non-

overlapping patches. Each of these patches is then independently encoded, quan-

tised, and decoded using the vector quantisation framework outlined in Section 5.1.

Consequently, each image becomes represented by a grid of indices, where each in-

dex corresponds to a code vector within the learned codebook. This approach, due

to its patch-based nature, tends to yield individual codes that capture simple visual

concepts.

Vector-quantised models are known for their instability during training, where

issues such as codebook collapse or under-utilisation, and sensitivity to hyperpa-

rameters such as codebook size, can be present. Roy et al. [230] has undertaken

research to address these challenges, exploring various aspects to improve VQ-VAE

training. This includes the utilisation of soft expectation maximisation (EM) and

the fine-tuning of the codebook size to better align with target tasks.

Takida et al. [265] mitigated codebook collapse by incorporating a technique that

involves adding Gaussian noise during training, which is annealed over time, to the

encoder output. This approach has proven effective in enhancing the stability of

VQ-VAE training.

Additional efforts to enhance the training dynamics of VQ-VAE have been in-

troduced by Huh et al. [125]. Their contributions include a novel codebook re-

parameterisation, the application of alternating optimisation strategies, and im-

provements to the commitment loss function.

To enhance the visual fidelity of generated images, Esser, Rombach, and Ommer

[76] introduced VQ-GAN, which incorporates a Generative Adversarial Network

(GAN) loss applied to the generated visual patches. This addition improves the

quality of the generated images by introducing adversarial training. Furthermore, Yu

et al. [304] took this approach a step further by scaling up VQ-GAN and integrating

it with a Vision Transformer backbone. In addition to scaling, they introduced

various techniques to improve codebook utilisation and learning. These techniques

include projecting codes to a lower-dimensional space and normalising them before

the quantisation lookup step.
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In the audio domain, Baevski, Schneider, and Auli [12] applied the vector quanti-

sation technique to learn audio speech representations. This approach demonstrates

the versatility of vector quantisation in capturing meaningful representations in the

audio domain. Similarly, Dhariwal et al. [63] employed vector quantisation for the

generation of music. To enhance the training dynamics, they introduced a multi-

scale variant of VQ and a “random restarts” technique to mitigate codebook collapse

during training. This involves replacing low-usage codebook entries with the encoder

outputs, ensuring a more stable and effective training process in music generation.

Most Relevant to our work in this thesis is SLATE [247], an approach that also

aims to harness discrete visual representations of image patches for learning object-

centric representations. This approach utilises a pre-trained discrete encoder and

decoder, employing them as the target for prediction tasks.

However, it is important to note that, like all of the methods discussed in this

sub-section, the focus remains on utilising vector quantisation to learn discrete rep-

resentations from patches of the input signal, whether those are image patches or

audio clips. In contrast, the approach presented in this chapter explores the possi-

bility of learning discrete representations at a higher level of abstraction, specifically

at the object-level.

5.2.2 Discrete Latent Communication

A line of research that shares a similar motivation with our approach, which fo-

cuses on learning discrete object-centric representations, is the exploration of using

discrete latents as a means of communication between different modules within a

neural network.

As introduced in Chapter 4, several researchers advocate for neural networks to

comprise multiple modules, each with distinct architectures and characteristics. This

perspective is particularly relevant for models with algorithmic execution [273] or

reasoning capabilities [17, 18, 89, 90]. In a manner similar to the encoder and decoder

components in an autoencoder, future neural networks may encompass modules such

as perception, abstraction, planning, and goal setting [159].

Efficient communication among these components ideally requires them to share

a common language, manifested as a shared representation space. Explicitly con-

straining the communication language to utilise a common codebook can serve as a

valuable inductive bias.

Liu et al. [168] posited that the use of discrete symbols serves to limit the band-

width of communication. This limitation results in reduced complexity for rep-

resentations that need to be learned and synchronised across modules, making the

learning process more manageable. Furthermore, the use of an explicit codebook en-
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ables the reuse of previously learned symbols. Reusing these components in various

combinations promotes systematic generalisation in new situations and facilitates

the exchange or update of one component for another when confronted with new

out-of-distribution (OOD) settings.

In their experiments, Liu et al. [168] applied quantisation to various components

of a Graph Neural Network [151], a Transformer architecture [272], and a Recurrent

Neural Network [91]. They observed improvements in generalisation when using

discrete representations. Furthermore, Liu et al. [167] extended this work by intro-

ducing an adaptive quantisation bottleneck conditioned on the input. This extension

achieved better performance in tasks related to visual reasoning and reinforcement

learning.

From a neuroscience perspective, various areas in the brain, including the hip-

pocampus [287], have shown an adaptation to discrete variables, such as concepts,

actions, or objects. This observation suggests that there might be an evolutionary

advantage to utilising discrete encoding. Such an encoding approach may partially

explain the remarkable generalisation capacity observed in the brain, which often

surpasses that of current neural networks.

As the goal of learning object-centric representations is to provide a set of com-

pact, independent representations for further downstream modules, our work of

learning discrete object-centric representations can be considered as a direct exten-

sion of this line of work.

5.3 Methods

Following the review of the contributions of other researchers to the development and

state of the art in AutoEncoders, Variational AutoEncoders and Vector Quantised

Variational AutoEncoders, in this section, we introduce Vector Quantised - Slot

Attention on Video (VQ-SAVi), our own approach for acquiring discrete object-

centric video representations. Our method is grounded in the VQ-VAE (Vector

Quantised Variational Autoencoder) framework, as detailed earlier in this Chapter,

in Section 5.1.

Distinguishing itself from approaches focused on attaining discrete representa-

tions at the image patch-level, VQ-SAVi builds upon the recent (2021) object-centric

methodology proposed by Conditional Object-centric Learning on Video (SAVI)

(Slot Attention for Video) [150]. This choice is made to showcase the efficacy of

learning discrete representations within an object-centric paradigm. A more compre-

hensive understanding of SAVi and its positioning within the broader object-centric

methods landscape was presented in the previous chapter, in Section 4.4. We now

describe the 6 steps for this method, covering the visual encoding, slot initialisation,
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corrector, predictor, quantiser and finally the decoding stages.

In Figure 5.1, we illustrate the overall architecture for our object-centric learning

pipeline, based on the SAVi [150] baseline (the top figure) and our two Vector Quan-

tised variants in the middle and bottom. For the first frame, we extract the ground

truth bounding boxes information of each object in the scene to initialise the object

slots representations. The visual encoder then process the raw RGB input frame

into a spatial feature map. The corrector module implements the Slot Attention

mechanism, with the intialised slots as the queries, and the visual features map is

independently projected into the keys and values. A slot-wise gated recurrent unit

further updates the slot representations. The predictor then further transformed

the object representations by facilitate the exchange of information between slots.

Finally, the slot decoder predict the target optical flow signal from the individual

slots. Along the way, we can quantise the slots after the Corrector (middle) or after

the Predictor (bottom). More details of each individual components is presented

below:

Visual Encoder: To initiate the processing of visual input and obtain a feature

map for it, each video frame xt at timestep t ∈ 1, . . . , T undergoes encoding through

a compact CNN network. This network incorporates non-linear ReLU activation

functions between layers, generating a feature map ht = Encoder(xt) ∈ Rh×w×d as

the output.

In order to preserve 2D positional information for subsequent modules, we intro-

duce linear positional embeddings to each vector in the feature map. Subsequently,

each feature vector undergoes transformation through a compact Multi-Layer Per-

ceptron (MLP). The resulting set of visual features is expressed as:

ht = MLPe(Encoder(xt) + PosEmb(h,w))

For all experiments detailed below, we follow prior works and employ a CNN with 5

convolutional layers. The convolutional layers utilise a kernel size of 5× 5, a stride

of 1, and feature dimensions set to d = 32. The final MLP comprises a single hidden

layer with a size of 64 and an output dimension of D = 128.

Slot Initialisation: To completely decouple the visual features from the slot rep-

resentations of objects, a distinct set of parameters is initialised for the slot repre-

sentations. Let St = [s1t , . . . , s
K
t ] ∈ RK×D denote the set of K slots, where each slot

(skt ∈ RD) can represent a distinct object in the scene.

For all our experiments, we employ conditional initialisation based on the bound-

ing boxes from the first frame. For every object appearing in the initial frame of

117



Timestep 1
Box1 [X1 Y1 X2 Y2]

Box2 [X3 Y3 X4 Y4]

Box3 [X5 Y5 X6 Y6]

Box4 [X7 Y7 X8 Y8]

Bounding boxes

Visual Encoder Slot Decoder

Corrector

G
R
U

Q

K

Slot Initialisation

MLP
V

Predictor

Transform
er

Image Optical flow

Timestep 1
Box1 [X1 Y1 X2 Y2]

Box2 [X1 Y1 X2 Y2]

Box3 [X1 Y1 X2 Y2]

Box4 [X1 Y1 X2 Y2]

Bounding boxes

Visual Encoder Slot Decoder

Corrector

G
R
U

Q

K

QuantiserSlot Initialisation

MLP

Codebook

V

Predictor

Transform
er

Image Optical flow
Box1 [X1 Y1 X2 Y2]

Box2 [X3 Y3 X4 Y4]

Box3 [X5 Y5 X6 Y6]

Box4 [X7 Y7 X8 Y8]

Bounding boxes

Timestep 1
Box1 [X1 Y1 X2 Y2]

Box2 [X1 Y1 X2 Y2]

Box3 [X1 Y1 X2 Y2]

Box4 [X1 Y1 X2 Y2]

Bounding boxes

Visual Encoder Slot Decoder

Corrector

G
R
U

Q

K

QuantiserSlot Initialisation

MLP

Codebook

V

Predictor

Transform
er

Image Optical flow
Box1 [X1 Y1 X2 Y2]

Box2 [X3 Y3 X4 Y4]

Box3 [X5 Y5 X6 Y6]

Box4 [X7 Y7 X8 Y8]

Bounding boxes

Figure 5.1: Architecture of the baseline SAVi (top) and our two variants VQ-SAVi
with quantisation applied on the corrector (middle) or on the predictor (bottom)
output. 118



the video, we train a simple MLP to project the bounding box coordinates of each

object to a vector of dimensionality D = 128. To condition the first slot to represent

the background, a dummy value of 0 is always prepended as the first bounding box.

In the event of fewer objects than the designated number of slots K, a dummy value

of −1 is added to the remaining slots. The initial conditional slot representations

are then formulated as S0 = MLPi(bboxes0) ∈ RK×D.

Corrector: Given the initial slot representations St−1, the corrector module aims

to “correct” the previous slots with information provided by the encoded visual fea-

tures ht in the current timestep. We implement the corrector using a Slot Attention

module taken from [170], where the previous slots serve as queries and the visual

features as keys and values. The attended outputs are further updated via a Gated

Recurrent Unit: ŝkt = GRU(SlotAttention(St−1,ht)).

To enhance the expressiveness of the module, each slot is then normalised using

Layer Normalisation [10] and transformed with an MLP in a residual branch: ŝkt =

ŝkt +MLPc(LN(ŝ
k
t )).

Predictor: While the corrector organises and updates visual information for each

object slot, the predictor facilitates the interaction and exchange of information

between object representations.

Following SAVi, we implement the predictor as a simple, 1-layer Transformer

[272] with the original scaled dot-product multi-head self-attention layer (MHSA).

Similar to previous modules, we further transform the output with an MLP, incor-

porating normalisation and a skip connection before each operation.

The predictor predicts the slot representations for the next timestep as:

St+1 = LN(MLPp(S̃t) + S̃t)

where

S̃t = LN(MHSA(Ŝt) + Ŝt)

In our experiments, we use 4 heads for the self-attention layer, with a dimen-

sionality of 128 for the queries, keys and values projection and an MLP with a

256-dimension hidden layer.

Quantiser: The quantiser serves as a crucial component in the process, converting

continuous object features into an index corresponding to a set of discrete codebook

features. This step is integral to our overarching objective of learning a discrete

object-centric representation. In alignment with the Vector Quantisation - Vari-

ational AutoEncoder (VQ-VAE) framework, the quantiser operates by associating
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each continuous feature vector with the nearest prototype vector in a predefined

codebook. This process inherently induces a form of data compression, as each fea-

ture is now represented by its corresponding discrete index in the codebook. Let

C = [e1, . . . , eK ] denote the codebook, where ek ∈ RD represents the k-th embed-

ding vector. The quantiser function q for a given continuous slot representation s is

defined as:

q(s) = argmin
k
∥s− ek∥2

In practical terms, this results in replacing each continuous feature s with its

corresponding discrete index z, such that s ≈ ez. This discrete index z becomes a

fundamental element in the subsequent stages of our model, aiding in the learning

of object-centric representations.

The codebook C embeddings and the associated mapping to indices z are jointly

optimised during the training process, allowing the quantiser to maintain and adapt

to the characteristics of the input data.

To improve the expressiveness of the discrete representation, we borrowed the

multi-head approach from the transformer for the quantisation step. Each object

representation skt ∈ R128 is split into 8 heads skt ∈ R8×16. We build a codebook of

256 embeddings of 16 dimensions each C ∈ R256×16 and perform the quantisation

in parallel for each head. We also set the hyperparameter for the commitment loss

weight as 0.25 of the reconstruction loss.

Decoder: To encourage the learning of object-centric representations, in the re-

construction step we employ a slot-wise Spatial Broadcast Decoder [283]. The de-

coder functions independently for each slot, decoding both the 2D target signal and

an alpha mask, the latter serving to quantify the contribution of a slot representa-

tions at each decoded location.

For each slot k, the decoder output is denoted as ytk, representing the decoded

target signal, and m̂t
k, the alpha mask. The final reconstruction at timestep t,

denoted as yt, is a combination of the decoded targets of each slot, weighted by the

normalized alpha masks of the respective slots:

yt =
K∑
k=1

mt
ky

t
k, mt = softmaxK(m̂

t
k), m̂t

k, y
t
k = Decoder(st

k̂
).

Here, mt
k represents the normalised alpha mask for slot k at timestep t, obtained

through the softmax function. The alpha mask m̂t
k and the decoded target ytk are

generated by the decoding function Decoder applied to the slot representations st
k̂
,

where k̂ is the discrete index obtained from the quantiser.
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In our experiments, to reduce the computation and memory requirements, each

slot is first broadcast to a smaller grid of size 8 × 8 before being up-scaled to the

target size through a series of 5 transposed convolutional layers with a kernel size

of 5× 5 and stride 2.

This slot-wise decoding mechanism allows for the reconstruction of the final

target while emphasising the distinct contributions of individual object-centric rep-

resentations.

Discrete slot representations: To obtain discrete object representations, we

introduce two distinct variants—Variant A involves quantising the slots immedi-

ately after acquisition by the Corrector, while Variant B quantises them post the

Predictor’s output. The rationale behind these variants stems from the hypothesis

that discretising object-centric representations at different stages may yield different

effects on our learned representations.

In Variant A, the Corrector module parses visual information from the image

encoder and updates the object slots from the preceding timestep. This approach

potentially introduces a bias towards grouping based on visual information, as the

slots are influenced by the immediate visual context.

Conversely, Variant B employs quantisation after the Predictor module’s out-

put. The Predictor module facilitates the exchange of information between slots,

allowing for the learning of their interactions. Quantising the Predictor output may

encourage the model to focus more on these interactions, potentially leading to a

refined understanding of object relationships and dependencies.

The architectural depiction of the continuous baseline, along with the two dis-

crete variants, is illustrated in Figure 5.1.

5.4 Results

In this section, we present a comparative analysis of the results obtained from learn-

ing discrete object-centric representations. We evaluate the performance on two

variant datasets, namely B and C, of the MOVi multi-object datasets which are

outlined below. For both datasets, we opt to use optical flow as the decoding tar-

get instead of RGB pixel values, a choice motivated by the challenging nature of

the datasets and the potential for optical flow to capture dynamic object interac-

tions more effectively. For a more detailed overview of the datasets, please refer to

Chapter 4.

Optimising Codebook: Vector Quantised models are notoriously unstable, sen-

sitive to hyperparameter selection and random initialisation. We observe the same

121



challenges in applied vector quantisation for object-centric methods. A common

root cause for this issue is the collapse or low-usage of the codebook entries, in

which the discretisation process maps all input embeddings to only a small subset

of codebook indices. The Perplexity metric of a discrete distribution (PP (q)) is

commonly used in the vector quantisation literature [205] as a proxy for the number

of codebook entries used and is computed using the following formula:

PP (q) = exp(H(q)) = exp

− |C|∑
c=0

qc · log(qc)


Here, q is vector which contains of the proportion of usage of the entries in

the codebook. Perplexity comes from information theory, which is essentially the

exponential of the entropy H(q) of the distribution q. By its definition, perplexity

ranges from 1 to the number of entries in the codebook |C|. The resulting perplexity

value provides a measure of how well the codebook represents the input data with

higher perplexity values indicating a more diverse and effective use of codebook

entries.

End to end learning of the model and the codebook using the original Vector

Quantisation formulation is challenging. This is due to interaction between simul-

taneously updating the encoder outputs to match the codebook entries, while also

updating the codebook entries themselves. All of our initial experiments in this

chapter resulted in a collapse of the discrete representation in the codebook, as in-

dicated by perplexity value of 1 i.e. the network failed to perform the autoencoding

task.

To encourage better utilisation of the codebook and prevent collapse at the early

stages of learning, we then tried initialising the codebook values using the K-means

clustering method. After the network is randomly initialised, we passed the entire

training set through the untrained network and recorded all the encoder latent

vectors i.e. the input for the quantiser. We then perform K-means clustering on the

latent vectors of all inputs, with K = |C| as the number of codebook entries and

then initialise the codebook using the K clustered centroids. Despite this effort,

end to end learning using the K-means initialisation approach did not help and also

resulted in codebook collapse.

Through multiple refinements guided by the above initial experimentation, and

the literature [168, 180, 205], the following steps emerged as those providing the

best possibilities in terms of performance.

We obtain a working recipe using the following combination of techniques:

• L2-normalisation of the codebook and input encodings [180]. This in effect

converts the Euclidean distance when quantising to cosine distance.
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Figure 5.2: Detailed diagram of our quantiser module, consists of: a) L2-normalised
codebook’s vectors and slots encoding prior to quantise, b) Multi-head quantisation
along the channel dimension and c) Update the codebook via Exponential Moving
Average mechanism of past encodings.

• Multi-head Vector Quantisation [167]. Inspired by the multi-head architecture

in the attention layer of the Transformer model, we split our latent vector into

smaller chunks and perform quantisation on those chunks in parallel “heads”.

We use 8 heads for all of the following experiments.

• Exponential Moving Average Codebook [205]. This alternative formulation

of VQ removes the quantisation loss and updates the codebook entries via

an exponential moving average of the past encoding quantised to each code-

book vectors. We found the exponential weight γ = 0.9 works well for all

experiments.

The MOVi-B dataset: Figure 5.3 illustrates the progression of the unsupervised

object-discovery metric ARI-FG in both the training and validation sets during

training steps. On the training set, we observe that both Vector Quantised variants

reach a comparable level to the continuous SAVi baseline. This shows that despite

a strong inductive bias of discreteness imposed by Vector Quantisation, we are still

able to learn to discover objects similar to the state of the art. However, a small

performance gap exists on the validation set where the continuous SAVi version

performs consistently better as indicated by the learning progression. It suggests

that while the discrete representation captures discovered objects effectively, there

may be challenges in fully representing the complexities of object-centric structures.
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Figure 5.3: The ARI-FG metric (along the vertical axis) evaluated on the training
(top) and the validation sets (bottom) over the training steps (along horizontal axis)
of the baseline SAVi method and our Vector Quantised variants (VQ-SAVi Predictor
and Corrector) on the MOVi-B dataset.

Comparing the quantisation of object slots after the corrector vs. after the

predictor module, there is indication that quantising after the predictor enables the

model to learn faster and achieve slightly higher performance than quantising after

the corrector. This might partially be explained by the effective use of the codebook

as indicated by the perplexity metric values.

In Table 5.2, the perplexity values for the experiments on the MOVi-B dataset

confirm that quantising after the predictor achieves a higher average codebook usage

compared to quantising the slot representations after the corrector. This means that
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Table 5.2: Comparisons between SAVi and our VQ-SAVi variants on the MOVi-B
dataset.

Method ARI-FG training ARI-FG validation Perplexity

SAVi 0.874 0.706 -
VQ-SAVi corrector 0.860 0.652 57
VQ-SAVi predictor 0.868 0.664 71

quantising the corrector on average uses 57 codebook entries out of 256 while quan-

tising the the predictor output uses 71 entries over the entire dataset. This suggests

that the quantisation process after the predictor module results in a more diverse

and effective use of codebook entries. These results highlight the competitiveness of

our Vector Quantised variant with the baseline SAVi method and the importance of

the choice of the quantisation placement process in the model architecture.

The MOVi-C dataset: MOVi-C is a substantially more challenging dataset in

terms of visual complexity while retaining similar motion dynamics compared to

MOVi-B. Instead of geometric shapes with uniform colour for both the objects and

background, MOVi-C is rendered from 3D-scans of real-world objects with complex

textures. All objects randomly move into the scene with the background also using

real images. On this dataset, we encounter limitations in our current vector quan-

tised approaches, as can be seen by the relatively lower performance compared to

SAVi.

Figure 5.4 shows the progression of the ARI-FG metric over the course of training

for our baseline and the two quantised variants. The gap in the ARI-FG metric

values on the training and validation sets starts to widen when compared to the

continuous baseline, with the difference value of 0.05 and 0.1 respectively.

Table 5.3: Comparisons between SAVi and our VQ-SAVi variants on the MOVi-C
dataset.

Method ARI-FG train ARI-FG val Perplexity

SAVi 0.8190 0.6179 -
VQ-SAVi corrector 0.7662 0.5202 90
VQ-SAVi predictor 0.7687 0.4962 75

Examining the values for the perplexity metric for MOVi-C in Table 5.3, we

observe an increase in the average usage of the codebook, as expected when using

a more challenging dataset. Contrary to the results on MOVi-B subset, here we
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Figure 5.4: The ARI-FG metric (vertical axis) evaluated on the training (top) and
the validation sets (bottom) across train steps for the baseline SAVi method and
our Vector Quantised variants on the MOVi-C dataset.

saw the variant whereby we quantise the slot representations after the corrector

yields a higher perplexity value than the predictor variant. One possible explanation

for the difference could be in the nature of the information retained in the slots

after the corrector and predictor. The corrector’s main goal is to capture visual

information about an object while the predictor will model their interactions by

predicting their state in the next timestep. While the MOVi-C dataset is composed

of more challenging visual scenes and objects, resulting in higher codebook usage of

the corrector from 57 to 90, the objects’ movements and interactions from MOVi-B

to MOVi-C are roughly similar, as indicated by the similar perplexity of the predictor
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variant of 71 and 75 respectively. However, for both datasets, given the codebook

size of 256, the average usage under 100 indicates a relatively low codebook usage.

5.5 Discussion

In this chapter, we investigated a novel direction of learning discrete representa-

tions within the realm of object-centric video representation. Extending previous

works that employed Vector Quantisation for representation learning, our focus is

on acquiring a higher-level and more abstract representations at the object level.

We showcased the feasibility of our approach by integrating it into a state-of-the-art

object-centric representation learning method designed for video datasets. We focus

on the unsupervised object-discovery task and measure the performance with the

unsupervised segmentation metric ARI-FG following the standard literature.

In this initial exploration, we established the competitiveness of our novel ap-

proach on a simpler dataset MOVi-B, while also acknowledging the current limita-

tions when scaling to a more challenging dataset, MOVi-C. While the baseline and

our quantised variants are overfitted as exhibited via the gap in between training

and validation metric values, our discrete object-centric representation increases this

generalisation gap. As seen with the challenge in optimising the quantiser, collapse

or under-utilisation of codebook could potentially be the root cause of this problem.

This prevents the model to take advantage of its full capability and hampers its

ability to generalise to unseen samples. A better quantisation technique for repre-

sentation learning [185] could potentially help alleviating the low codebook usage

problem.

While we demonstrate that it is possible to learn discrete object representation on

par with continuous counterparts in terms of object discovery and learning efficiency,

a potential benefit of discrete representations could be its evaluation in downstream

tasks or in out-of-distribution generalisation capabilities. Exploring the advantages

of this discrete object representation in out-of-distribution generalisation constitutes

an interesting avenue for future work.

Learning discrete object-centric representation also grants us access to a novel

object codebook. Exploring the structure or incorporating this codebook elsewhere

could lead to novel applications in object interaction and manipulation in the domain

of robotics.

Another possible direction for future work could involve the combination of visual

quantiser and object quantiser, potentially offering enhanced capabilities and richer

representations.

In this chapter, we attempted to address our Research Question 3 by focusing on

a novel discrete representation format for object-centric learning. While we demon-
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strate the viability of learning discrete object-centric representations in this chapter,

our novel representation format, unfortunately, does not appear to significantly con-

tribute to advancing the overarching goal of scaling the object-centric representation

learning method to large-scale real-world datasets. Beyond the common challenge

of optimising discrete representations, it becomes evident that the performance bot-

tleneck hindering the scalability of the current state-of-the-art pipeline for unsuper-

vised object learning and discovery likely resides in other components. Currently,

our object-centric method still relies on visual features from a relatively small CNN

backbone, where target reconstruction relies on extra optical flow signal, and ob-

ject decoding only interact at the pixel level. Much like how discrete representation

helps to advance visual representation learning at scale, our approach to learning dis-

crete object-centric representations could be revisited when object-centric learning

methods have advanced to a better scale.

In the following Chapter 6 and in Chapter 7, we shift our focus to other com-

ponents, namely the object-centric decoder and the roles played by the data and

features used for object-centric learning. By delving into these aspects, we aim

to pinpoint and address the specific challenges that hinder scalability, offering in-

sights and potential solutions that can pave the way for the effective application of

object-centric representation learning methods on larger, more complex, real-world

datasets.
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Chapter 6

Attentional Slot Decoder

As discussed in Chapter 4, an important goal of object-centric learning is to automat-

ically obtain a set of object representations for visual content that are independent,

compatible and complete. As a universal function approximation, a neural network

as simple as a MLP can learn to approximate any function, given enough hid-

den units and input-output pairs of the function being approximated [122]. These

input-output pairs directly supervise the training process towards approximating

the correct function. For unsupervised pre-training where the training data pairs

of the pretext tasks are not what we ultimately want, this implies that inductive

biases are crucial for steering the model to learn useful representations. Unsuper-

vised discovery of constituent objects in a scene, and learning their representations,

therefore must requires some form of inductive biases. This inductive bias can be

manifested in any of its architectural components such as the visual encoder, the

object representations bottleneck or the latent decoder.

In this chapter we focus on the design of the decoder module in object-centric

representation learning methods, with the goal of addressing Research Question 4

in improving the efficiency of Slot-based Object-centric learning method. Besides a

number of methods that use contrastive learning [149, 174], the majority of object-

centric learning models use the framework of generative and autoencoding as the

pre-training tasks, which requires representations to be decoded back into the input

space. The design of the object decoder thus has an integral and major role in many

past and future object-centric learning methods.

In the current literature, all decoders for object-centric learning methods can

be categorised into two groups, slot-based independent decoding or set-based joint

decoding. Each decoding approach has its own set of advantages and disadvantages,

where some promote independence and compatibility of slots but are less power-

ful and require more compute time and memory during training, while others are

more powerful but lack the inductive bias that is helpful for learning object-centric

representations.
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The main contribution of this chapter is the proposal of a very simple and

straightforward decoder for object-centric learning. Our approach, termed “Slot

Attention decoder” uses an attention mechanism to allow rich interaction between

slots in the latent space, while the more expensive visual decoder only needs one it-

eration to reconstruct back the high-dimensional input. The experiments show that

this simple approach is faster and requires less memory and compute time to learn

than other slot-based decoding approaches in term of reconstruction error, while still

achieving similar performance on the unsupervised object discovery metric ARI-FG.

6.1 Related work

In this section, we briefly review the existing approaches on designing a decoder for

object-centric methods. Before that, we discuss the goal and desired characteristics

of such a decoder.

6.1.1 Desiderata: Ideal Characteristics of a Slot Decoder

In standard architectures for computer vision problems, the representation of an

image or video is usually a latent vector that summarises the information from the

entire scene or clip. These latent scene representations are often pooled from a spa-

tial grid of intermediate representations that are downscaled from the input’s initial

spatial dimensions. In other architectures like the Vision Transformer [67] fam-

ily, the scene representation can also be designated beforehand as a special token

and is learned jointly through the attention mechanism with other spatial tokens.

In addition to the scene representation, the decoder can also leverage other inter-

mediate representations with spatial dimensions to help reconstruct high-frequency

information in the input, i.e the U-Net architecture [228].

Object-centric representation learning, on the other hand, will typically yield

a set of latent representations without any explicit spatial dimensions, each cor-

responding to an object in the scene. We would like this set to be a complete,

independent and interchangeable set of object-representations. That is to say the

set of all object-representations together are able to describe the whole input scene,

while each latent vector describes an independent object using a similar format that

can be used interchangeably in downstream models. These independence and in-

terchangeability properties are thus usually integrated into the pre-training autoen-

coding task throughout all the different modules of the entire architecture, from

encoding to decoding.

Here, we discuss the most pertinent properties of an object representation de-

coder, and their implications on the latent representation and on the entire system.
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Completeness: A good object representation decoder must be first and foremost

a good scene decoder for the autoencoding pre-training task. From the set of latent

vectors, the decoder should be able to reconstruct the input scene including all the

objects and their backgrounds.

Powerful: Even though reconstructing an input is not what we ultimately desire

from an object-centric representation, one cannot learn a good set of representations

while performing poorly on the autoencoding pretext task which is explained earlier

in Chapter 4. A powerful decoder could potentially help to scale object-centric

learning methods to more diverse, complex and real datasets.

Efficient: Except for the recent class of iterative denoising diffusion models [119],

most generative approaches are designed to generate an output scene with a single

pass from a latent vector. Naively applying these methods to individual object

representations would require a decoder step for each vector in our set. This can

make training and evaluating the model very expensive in term of compute time

and memory requirements, especially when the number of latent vectors is large, i.e

it is built from a complex dataset with many small objects.

Permutation invariance: During training, an object in a scene can potentially

be factored into any of slots in the set. Since we want to maintain a degree of com-

patibility between object latents to be able to use them for some downstream tasks,

a decoder should ideally be permutation invariant. That is for any permutation of

the latent vectors in the set, the decoder should still be able to reconstruct the same

scene.

The above four criteria of an object-centric decoder can sometimes be in conflict

with each other. For example, an independent slot-based decoder like the Spatial

Broadcast Decoder [283] inherently promotes compatibility among slots but this

can be computationally expensive to achieve while being more restrictive and not as

powerful as other methods. On the other hand, a set-based decoder like the Trans-

former Decoder [272] can be more efficient to train, allowing for richer interactions

between latent vectors, but does not enforce object-independence among slots.

We now review the two main approaches in designing a decoder for object-centric

learning methods, based on the criteria discussed above.

6.1.2 Slot-wise Decoder

The first approach to designing a decoder, “slot-wise decoder”, is sometimes referred

to in the literature as a “mixture of component decoder”[28, 138]. The distinctive

characteristic for this name stems from the fact that the final reconstruction output
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of the decoder is a weighted mixture of multiple reconstructions, where each recon-

struction is decoded from using a single slot in the set of object representations.

Following that, the final scene can be composed from all the mixture components

depending on the slots’ weight. Consequently, for one training sample, the decoder

needs to process more forward and backward passes proportional to the number of

slots. While the decoding of slots of a sample can be done in parallel, the decoder

still needs to process more forward and backward passes in total. This increases the

amount of compute time and memory required with a multiple of the number of

slots, which is a hyperparameter set before training usually in the range from 5 to

30 depending on the dataset. One can tradeoff between the number of latent vectors

and the dimensions of each latent vector in order to maintain a similar capacity in

the latent space. For example, instead of taking a single CLS-token from a Vision

Transformer of dimension 768, one can have a set of 8 object representations, each

having a dimension of 96.

The original motivation for this approach, and also part of its strong advantage,

is the baked-in independence assumption between object-representations learned

directly during training. Since the same decoder module is used for all slot vectors,

they are all encouraged to be compatible directly from the pre-training stage.

Most methods in this category use a form of Spatial Broadcast Decoder [283],

where a slot representations is broadcast to all spatial locations, then concatenated

with positional information.

6.1.3 Set-based Decoder

While the ultimate goal of object-centric learning is not to be able to faithfully

reconstruct the input, the ability to do the autoencoding pretext task still affects

the representation learning challenge. Better autoencoding skill would also allow

the methods to scale to more complex and challenging real-world datasets.

As described in the previous section, the slot-wise decoder largely generally treats

each slot representation independently, except for predicting the important weight-

ing scores for slots. Interaction and comparisons between the slots thus happens

rarely, and only at the end in the reconstructed visual space and this can be limit-

ing for learning.

Conversely, the set-based decoder approach takes the entire set of latent repre-

sentations as input for its decoding process. In this way, the decoder can have a

global view of the entire scene drawing information from all object-representations

and allowing their latent representations to richly interact and compete directly in

the latent space.

This set-based approach is similar to other deep learning methods and thus can
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borrow directly from others that have been shown to perform well at scale.

In DINOSAUR, Seitzer et al. [240] the approach uses a plain Transformer de-

coder [272] to autoregressively decode each visual patch, conditioning on the set

of object-representations from the encoder. This approaches uses a scalable ar-

chitecture that has shown impressive results in many domains like the Generative

Pre-trained Transformer (GPT) [221].

6.2 Method: Attentional Slot Decoder

In this section, we introduce the Attentional Slot Decoder, a method that uses a

cross-attention mechanism in the latent space to allow for rich interaction between

objects, while only requiring one decoder forward pass to reconstruct the final out-

put. Our approach was inspired by the complementary advantages of the set-based

and slot-based decoding methods, which we will now briefly discuss as the motivation

for our design choices.

6.2.1 Attentional Slot Decoder

In this subsection, we present the Attentional Slot Decoder which has a very simple

design that fulfils all the considerations above about using standard, scalable and

resilient components.

Conceptually, our method utilise a cross attention layer from each decoding

position to the set of object latents obtained from the encoder. We then form a grid

of embeddings as a weighted average of the slots using the cross-attention score.

This grid of embeddings now serves as the input for the scene decoder module to

obtain the final scene reconstruction. Since the attention layers are permutation

invariant, our decoders are also permutation invariant with respect to the object

representation. In addition, since each vector in the latent set is treated as an

independent representation, their compatibility are encouraged. Finally, iteratively

forming the decoder’s embeddings through the cross-attention mechanism allows

for rich interactions and transformations between objects in the scenes, while the

expensive step of decoding to the input space only needs to be executed once.

Figure 6.1 illustrates the conceptual similarities and differences between our pro-

posed method and other approaches. Our method effectively combines the advan-

tages and avoids the limitations of both slot-based and set-based object-decoding

methods, as will be demonstrated throughout the following subsections.

We now summarise our method in Algorithm 1 and give a detailed description

below.

Let us denote the set of K slot representations as S = [s1, s2, ..., sK ] ∈ Rk×d that
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Figure 6.1: Overview of three different approaches to designing the decoder module
for object-centric representation learning methods. A) Slot-based decoding. B)
Set-based decoding method. C) The proposed Attentional slot decoding method.

we obtained from the output of the slot encoder. Each vector si ∈ S would ideally

capture the information of an object in a multi-object scene and the goal of the de-

coder would be reconstruct the original scene from the set of object representations.

We also denote g ∈ Rd as the optional global scene representation. This global

representation of the scene can be obtained by pooling from the grid of visual repre-

sentations V ∈ Rh×w×d or extracting from the special class-token of the Transformer

architecture.

Decoder’s queries: First we initialise a 2D spatial grid (3D spatial-temporal if

working with video) with Fourier positional embeddings [266]. At this stage, the

decoder queries consist only of positional information of the pixels (or patches) that

it corresponds to. This is the same for all input samples.

To optionally inject scene-specific information, we could broadcast the global

scene embedding g and add to every spatial dimension of Q as:

Qx,y = PositionalEmbedding(x, y) + g; (6.1)

for x ∈ (0, h), y ∈ (0, w),Q ∈ Rh×w×d. The spatial dimension of h and w can be as

big as the original input or can be a down-scaled version to reduce the computational

complexity, depending on the visual decoding module.
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Algorithm 1 Slot Decoder Algorithm

Input:
S = [s1, s2, ..., sK ] ∈ Rk×d {Object Slots}
g ∈ Rd {Global scene}
Initialise Decoder’s Queries
Q← P← PositionalEmbedding(h,w) ∈ Rh×w×d {Positional queries}
Q← Q+ g {Positional and scene-specific queries}
Compute decoder embedding
for each of T iteration do
K← LNk(MLPk(S)) ∈ Rk×d {Key matrix}
V← LNv(MLPv(S)) ∈ Rk×d {Value matrix}
A← softmax(QKT ) ∈ Rhw×k {Attention scores}
O← AVT ∈ Rhw×d {Output matrix}

end for
Visual Decoding
O← O+P {Add positional information}
Y ← MLPo(O) ∈ Rh×w×c {Output}

Attention’s keys and values: These are obtained from the set of object latents

by using a linear layer followed by Layer Normalisation (LN) [10])

K = LN(SWK), (6.2)

V = LN(SWV ). (6.3)

WK ,WV ∈ Rd×d in Eq. 6.2 are the corresponding weight matrices for the linear

layers.

Cross Attention operation: We now perform a standard cross attention opera-

tion with the set of queries, keys and values obtained from equations (6.1) and (6.2).

The softmax normalisation operation is performed over the key dimensions of the

attention matrix A ∈ Rhw×k. The final output of the cross attention module is the

weighted average of V based on the attention scores A O ∈ Rhw×d.

A = softmax

(
QKT

√
dk

)
(6.4)

O = AVT . (6.5)

These cross attention operations can be repeated over many iterations where the

output O serves as the query.
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6.2.2 Visual Decoder

With a spatial or a spatial-temporal grid of embeddings, we can pass these through

a visual decoder module to obtain the final reconstruction in the output space.

We follow standard practice and use a 1 × 1 convolutional network, effectively a

pixel-wise MLP, to decode these embeddings into RGB values O ∈ Rhw×3.

Y = MLPO(O) (6.6)

Crucially, we add a residual connection from the positional embedding to the output

of this attention mechanism. We find it necessary to inject positional information

back into the decoder’s embeddings in order for the model to be able to reconstruct

and place objects in the correct location in the scenes.

The key insight to our approach is that we do not measure the contributions of

object embeddings in the pixel space by decoding an alpha mask. We could directly

let the object embeddings interact and compete to explain the decoder’s query before

it is decoded. The key-normalised attention scores now serve as the alpha masks,

which states which object each pixel belongs to.

Due to disentangling the positional information and semantic information into

the query and the key, the cross attention block is permutation invariant with respect

to object embeddings. Each vector in the set is treated as an independent token and

their compatibilities are encouraged due to the dot product similarity operation in

computing the attention.

After constructing the decoder’s query from object representations, our method

is agnostic to the design of the visual decoder to the input space. We can use more

powerful visual decoders for complex scenes and datasets, or use simpler, pixel-wise

decoders for scenes with smaller objects.

6.3 Results

In this section we describe the experimental details and results in evaluating our

proposed decoder method.

We demonstrate the effectiveness of our propose Attentional Slot Decoder on the

Multi-Object Video (MOVi) dataset [97]. This is a synthetic multi-object dataset

that was created specifically for the study and development of unsupervised multi-

object video understanding. Being simulated and rendered programmatically, it

provides not only high-quality and realistic videos but also provides rich and dense

annotations for segmentation masks, depth, optical flow, surface normals and object

coordinates. The annotations, while are not needed for the purpose of training

unsupervised representation learning methods, are crucial for evaluation and are very
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expensive to collect in the real life. We chose these two subsets, MOVi-A and MOVi-

C to demonstrate that our decoder can work in both a simple environment similar

to prior works, and also scale up to more challenging environments, representing an

improvement for scaling object-centric methods to real-world datasets.

We follow the training and evaluation protocol of prior state-of-the-art works

that use SAVI [150] for the most part, and focus on comparing our Attentional Slot

Decoder with their counterparts. For a more detailed review of SAVi, please refer

to Section 4 of this thesis.

Metric We use the Adjusted Rand Index (ARI) as the main metric for assess-

ing the efficacy of video decomposition, object segmentation, and tracking. The

ARI serves as a measure of clustering similarity, gauging the congruence between

predicted segmentation masks and ground-truth masks in a manner that remains

unaffected by permutations. This property of the evaluation metric makes it par-

ticularly suitable for evaluating unsupervised techniques. Similar to prior works

[98, 170, 138], we compute the ARI for foreground objects, a version referred to

as ARI-FG. In the context of video data, a singular cluster in the ARI calculation

corresponds to the segmentation of an individual object over the entire video dura-

tion. This necessitates temporal coherence, with the absence of alterations in object

identity, for achieving favourable outcomes on this metric.

6.3.1 RGB Reconstruction On MOVi-A

The Movi-A dataset, modeled after the popular multi-object CLEVR [136], is the

simplest subset of MOVi and contains from 3 to 10 random geometric objects on a

simple gray background. Despite it visual simplicity, it already posed major chal-

lenges for many earlier object-centric models [149, 98].

During the training phase, we divide each video into consecutive sub-sequences

containing 6 frames each, where the initial frame receives the conditioning signal.

We condition the signal with the bounding box information of each object in the first

frame. On the MOVi-A dataset, we use 11 slots for the object latent representations.

We train on videos with a resolution of 128x128 for 50,000 steps on a single GPU

with 24GB memory, utilising a batch size of 16. The model is optimised using

the Adam optimizer [148] with an initial learning rate set at 0.0002. This dataset

contains a total of 10,000 videos, with 2,500 videos reserved for validation and the

remaining 97,500 are used for training.

Qualitative Assessment: In Figure 6.2 we visualise some samples from the

MOVi-A dataset to show our proposed decoder is capable of decoding to RGB pixel
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Figure 6.2: Some qualitative result of our Attentional Decoder on the Movi-A
dataset. In each row of images we visualise the input video, the RGB reconstruction
target of the input (Rec.), the ground truth object masks (Mask) and the predicted
object masks from our object representations (Pred.). On the left we show exam-
ples with many objects in various shape and colours. On the right, we show simpler
examples. Notably, our model fails to capture all the objects (shown with the green
segmentation mask in the top right corner).

values. The samples on the left are for a scene with many small objects, with com-

plicated interactions, yet our method can still reconstruct the original video and is

able to segment most of the objects without supervision based on the object-centric

representation. The second sample on the right visualises a representative failure

case, where one small object completely fails to be reconstructed or segmented.

In general, we observed that the object segment masks tend to be inflated in

size compared to the original object masks. The inflated regions upon inspection,

usually expand out to cover the shadows of the objects. This inclusion of shadows

in the object masks are consistent over many timesteps in the video.

Quantitative Comparison: In Figure 6.3, we compare the efficiency gain by our

method compared to the baseline Spatial Broadcast Decoder [283] used by SAVi.

This shows that during training, our proposed decoder learns faster than the baseline

and in the end achieves slightly better performance on the ARI-FG metric. Details

are listed in Table 6.1.

In addition to the positional embeddings used as the initial queries for the cross

attention module, we found that it is also important to provide the visual decoder

with positional information as well. Without that, the performance on the ARI-FG
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Figure 6.3: The ARI-FG metric evaluated on the train and validation sets during
training of the base line SAVi decoder and our Attentional Slot Decoder on MOVi-A
dataset. This shows that our proposed method is able to learn to segment objects
in an unsupervised manner faster and with more stability than the baseline.

Table 6.1: Comparison between the baseline SAVi and our proposed method. While
we achieve similar performance on ARI-FG on the training set, we achieve slightly
better performance on the validation set while requiring 4 times less memory to
train. Ablation results of our method without the positional embedding added
before visual decoding and without the global scene embedding are also provided.

Method ARI-FG train ARI-FG val Memory (GB)

SAVi 0.9115 0.8389 24
Our Method 0.9225 0.8488 6
Without - Pos. Emb. 0.7814 0.5933 6
Without - Global scene. 0.7891 0.6279 6

metric drops by 0.13 in absolute score on the validation set, as indicated on line 3

of Table 6.1.

Similarly, without adding the global scene representation to the initial queries,
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we saw a performance drop in the object discovery metric. From here on, we use

our method with added positional information and global scene representation as

the default.

6.3.2 Optical Flow Reconstruction On MOVi-C

The MOVi-C dataset is a substantial step up in visual complexity compared to the

MOVi-A dataset. It replaces simple geometric objects in MOVi-A with complex,

everyday objects scanned in the real world. The backgrounds and lighting are ran-

domly selected from a set of HDR images, which makes this variant substantially

more challenging than MOVi-A to learn.

Object-centric methods tends to rely on low-level visual cues to segment objects

[142]. Due to the increase in visual complexity, this dataset poses a major challenge

for many object-centric learning methods when using RGB reconstruction as the

training target. Following the baseline, and also to show the versatility of our

method on different domains, we use the optical flow reconstruction task to evaluate

the performance of our method. Apart from that we use the same setup as in the

experiment with MOVi-A.

Qualitative assessment: In Figure 6.4, we visualise some samples from the

MOVi-C dataset. The first sample on the left demonstrates the model’s capabil-

ity to accurately reconstruct optical flow signals with many independently moving

objects. The sample on the left shows a failure case where the model fails to accu-

rately reconstruct less regular objects.

Due to using the optical flow as training signal, the model also tends to group

visually-separated objects with the same movement in the same object representa-

tion (top left corner).

Quantitative comparison: Similar to the MOVi-A dataset, we compare the

training efficacy of our method to the baseline in Figure 6.5 and in Table 6.2.

Table 6.2: Comparison between the baseline SAVi and our proposed method. While
we achieve similar performance on ARI-FG on the training set, we achieve slightly
better performance on the validation set while requiring 4 times less memory to
train.

Method ARI-FG train ARI-FG val GPU Memory (GB)

SAVi 0.8155 0.6053 24
Ours 0.8425 0.6557 6
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Figure 6.4: Some qualitative results of our Attentional Decoder on the MOVi-C
dataset. In each row we visualise the input video, the optical flow, the RGB recon-
struction target of the input (Rec.), the ground truth object masks (Mask) and the
predicted object masks (Pred.) from our object representations. On the left, we
show an example with many objects of various shapes and colours. On the right, we
show a simpler example showing our model failing to capture all the objects (with
green segmentation mask on the top right corner).

Once again, even on a more challenging dataset and with a different reconstruc-

tion modality, our simple method yields a 5% increase in the ARI-FG score while

requiring significantly less memory and compute time compared to the SAVi base-

line.

6.4 Discussion

In this chapter we have proposed a simple Attentional Slot Decoder for object-

centric representation learning methods in the framework of autoencoding. Our

simple approach combines the strength of both slot-based and set-based decoding,

and thus made progress toward the question of improving the efficiency, as stated in

our Research Question 4. The core idea of our method is the utilisation of a cross

attention module between the positional decoder query with the object representa-

tions. This rich interaction in the latent space allows for the exchange of semantic

object information.

The decoupling between measuring object interaction and decoding at each po-

sition allows the expansive visual decoding component to be run only once for each

sample. This results in a tremendous amount of saving in memory and compute

time needed to train such object-centric learning models. This saving will scale up
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Figure 6.5: The ARI-FG metric evaluated on the training and validation sets during
training of the base line SAVi decoder and our Attentional Slot Decoder on the
MOVi-C dataset. This shows that our proposed methods are able to learn to segment
objects without supervision faster than the baseline.

further in more complicated datasets with even more objects.

All else being equal, our proposed decoder learns faster than the baseline, achieves

comparable performance while requiring substantially less memory and compute

time.

Concurrent to our work, a similar idea has been proposed in [234] in a different

setting of multi-image novel view synthesis. This further validates the motivation

and applicability of our approach.

In this work, we mostly focus on the decoupling between forming a decoder query

via latent object interaction. For the visual decoding, we broadly follow prior work

and use a pixel-wise decoder. Future work could further investigate the benefit of this

approach and expand it to use even more expressive and powerful visual decoding

for more challenging scenes and datasets. Another interesting direction would be to

combine this with other decoding approaches such as Masked AutoEncoding [109]

for further benefit.
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Chapter 7

Object Discovery with Geometric

Representation

In recent years, the fields of learning visual representation and Deep Learning have

seen remarkable progress. These advancements have often been driven by scalable

architectures like the Vision Transformer (ViT) [67], efficient hardware utilisation

[109], and the availability of large and diverse datasets [249], or a combination of

these elements [207].

Object-centric representation learning has progressed significantly in recent years

as well, evolving from proof-of-concept methods in 2D block-world scenarios [28, 98,

149] to handling more intricately rendered 3D environments [170]. However, it still

faces challenges when applied to more realistic and complex datasets, as highlighted

by Kipf et al. [150]. In particular with the pre-training task of image autoencoding,

object-centric models tend to rely heavily on RGB colour values for both the re-

construction and object-discovery tasks, limiting their scalability to more complex

visual scenes. Exactly how to apply these lessons from large-scale visual representa-

tion learning, or leverage their capabilities, to scale up object-centric representation

learning methods is an open and exciting challenge.

In Chapter 6 and Chapter 5, we focused on different inductive biases for design-

ing network architectures to facilitate the learning of object-centric representations.

Concerning both Research Question 3 on advancing the object-centric method on

more complex scenes, as well as Research Question 4 on improving its efficiency, in

this chapter, we shift our focus to an equally crucial aspect of any learning method:

the data and learning signals it relies on. Motivated by the advances in pre-training

visual representations, we have decoupled the challenge of learning object repre-

sentations from that of learning visual representations, capitalising on the parallel

progress of each.

In particular, our attention is directed towards a specific category of visual rep-

resentation that incorporates a richer set of geometric information. This approach is
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aimed at enhancing both object discovery and learning hierarchical representations,

and further addresses Research Questions 3 and 4.

The primary contribution of this chapter lies in our exploration and demonstra-

tion of effective object-centric learning techniques, along with an investigation into

the role of depth information in learning object-centric representations. Develop-

ing a means to acquire object-centric representations without the need for explicit

and costly annotations more closely aligns with the way humans naturally learn,

representing a significant step toward robust representation learning.

7.1 Related Work

In this section, we briefly review progress in two different areas, namely large scale

visual representation pre-training and object discovery beyond RGB reconstruction.

This will provide the context for our attempt to combine the advantages of both

approaches.

7.1.1 Pre-trained Visual Representations

There has been a trend in the field of large-scale pre-training in recent years, where

different types of data, including text, images, video, and audio, can now be used

with a standardised and scalable architecture called the Transformer [272]. The

Transformer architecture, in its various forms — original encoder-decoder, encoder-

only (e.g., Bidirectional Encoder Representations from Transformers (BERT)) [61],

and decoder-only (e.g., GPT [221]) —employs a self-attention mechanism to process

a set of tokens, where each token represents a piece of input information. These sets

of tokens are processed via the self-attention mechanism [14], which queries the most

relevant information to each token.

In the case of visual representation learning, a Vision Transformer model initially

yields tokens based on non-overlapping patches of the images. Along with additional

positional information, these tokens are then iteratively refined by interacting with

other patches across the entire image, forming what can be seen as feature maps

that retain spatial (and temporal) information similar to a Convolutional Neural

Network (CNN).

The output of this network is subsequently pooled to create a final global repre-

sentation of the scene. In some instances, a special token called ‘CLS’ is concatenated

with the initial set of patch tokens and is jointly optimised via the self-attention

mechanism throughout the network’s layers. Please refer to 2.3 for a more detailed

discussion of architecture.

By scaling the pre-training of these models with more parameters, on more data,
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and with more computational resources, the learned representations have proven to

be widely useful and achieve competitive or state-of-the-art performance across a

wide range of downstream tasks.

Scaling supervised model Recently, Dehghani et al. [57] have introduced a

method for scaling Vision Transformer (ViT) models up to a staggering 22 billion

parameters on a weakly-supervised classification task. When trained on a dataset

of over 4 billion images, the results of this scaled model highlight the advantages of

such scaling, including a more favourable performance-fairness trade-off and better

alignment with the human visual system in terms of shape and texture biases.

Self-supervised discriminative method Beyond supervised or weakly-supervised

pre-training, there are also noteworthy developments in the area of self-supervised

pre-training tasks. One such method is Self-distillation with no label (DINO) [33],

which employs a discriminative self-supervised pre-training approach through a self-

distillation mechanism. DINO can be viewed as a form of contrastive learning but

without explicit negative pairs. Notably, it has demonstrated intriguing emergent

properties, including object-segmentation masks, which arise from purely discrimi-

native pre-training when paired with “global-to-local” correspondence, as discussed

earlier in Section 3.2.2. More recently, DINOv2 [207] extends the original DINO

implementation with better losses and regularisation methods from Image BERT

Pre-Training with Online Tokenizer (iBOT) [313] and Swapping Assignments be-

tween multiple Views of the same image (SwAV) [34] on more curated datasets.

Autoencoding method Another interesting direction is the Masked-AutoEncoder

(MAE) [109] that uses generative and reconstruction tasks during pre-training. A re-

cent paper entitled “Masked Autoencoders Are Scalable Vision Learners” presents a

novel MAE approach that leverages transformers and autoencoders for self-supervised

pre-training and outperforms fully-supervised approaches on some tasks. MAE-

based methods [109, 84, 249, 241] work by randomly masking a substantial portion

of the image patches which can be up to 90% of the image before being processed by a

large Vision Transformer encoder. Thanks to the independence and non-overlapping

nature of patches in Vision Transformer (ViT), and the positional information in

the form of extra embeddings, the Transformer encoder can process only the non-

masked input patches, which in turn enables scaling to larger models on the same

hardware and compute budget. To learn effective representations, the representa-

tion of the unmasked patches is then concatenated with special mask tokens. A

smaller and lightweight Transformer then jointly attends to all the tokens, visible

and masked, to decode the original patches at the masked positions. This clever
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asymmetric design in encoder and decoder enables high hardware utilisation while

also not wasting much capacity on the decoder component, which is not the goal of

representation learning.

7.1.2 Object Discovery with Geometric Priors

Scaling object-centric methods for large-scale, real-world, and complex datasets has

proven to be a formidable challenge. As discussed in Chapter 4, most existing

approaches are rooted in the autoencoding of visual inputs. While this approach

works effectively on visually simple datasets with a limited range of colour variations,

it struggles when applied to more realistic datasets that demand a deeper semantic

understanding.

In contrast to visual representation learning, where reconstructing visual input,

or predicting masked input can encourage the learning of useful representations, such

a strategy may fall short for object-centric learning. This is because object-centric

learning aims not only to learn but also to segregate information into different object

slots, while autoencoding methods tends to learn global representation of the scene

due to its bottleneck structure in the latent representation [30].

By training to reconstruct RGB input values, these systems can inadvertently

learn to group input signals with similar colours and texture to the same objects.

While this approach is sufficient for simple synthetic scenes, it has been shown to fail

on real-world datasets, or even synthetic datasets with more challenging textures.

Incorporating alternative training signals beyond the mere reconstruction of

RGB values, such as optical flow and depth information, holds significant poten-

tial for enhancing the scalability and performance of object-centric learning.

Recent work, specifically SAVI by Kipf et al. [150], has introduced an innovative

approach using optical flow as a training signal. This approach excels on more

complex datasets, capitalising on the consistent movement of pixels belonging to

the same object to group input signals. While it outperforms traditional methods

that rely solely on reconstructing RGB pixels, it is somewhat sensitive to changes

in viewpoint due to its reliance on low-level optical flow features.

Building upon the foundation laid by SAVi, SAVi++ [71] takes this strategy

a step further by employing sparse depth information as the training signal. This

not only enhances performance beyond that of optical flow but also exhibits greater

robustness to changes in viewpoint. The persistence of depth differences between ob-

jects remains intact even when the viewpoint shifts. Notably, SAVi++ has achieved

scalability in object-centric methods when applied to the real-world Wayve self-

driving dataset [263].

It is important to note that both of these approaches require additional paired
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signals, such as RGB input images and optical flow or depth information. While this

requirement can be somewhat mitigated by using the outputs of some pre-trained

optical flow and depth prediction modules, it still results in object-centric learning

systems that depend on extra supervisory signals, either directly or indirectly.

An exciting avenue for future research lies in exploring how to combine the

strengths of these approaches to achieve more robust and scalable object-centric

representations.

7.2 Methods

In this section, we present our approach to unsupervised object discovery and object-

centric representation learning. We call this CrObject: Cross-view completion pre-

training for Object-centric learning. It is based on a pre-trained visual represen-

tation, as illustrated in Figure 7.1. The method follows the general autoencoding

pipeline, but instead of predicting raw visual input as RGB values, we leverage a

pre-trained vision model as the backbone to learn object-centric representations on

top of it. To address more challenging settings and datasets, we modify the recon-

struction target to focus on features extracted from the frozen visual backbone.

a) End to end learning of visual patches and object-centric representations

Image

Visual Encoder Slot Encoder Slot Decoder

Image

Reconstruction Loss

b)    Learning object-centric representations with frozen pre-trained visual encoder

Image

Visual Encoder
(frozen) Slot Encoder Slot Decoder

Reconstruction Loss

��

Figure 7.1: Overview of our proposed method CrObject. Input images or video are
encoded into visual tokens by a pre-trained CroCo model. A Slot Attention module
then parses them into a set of object’s slots. From this, the Attentional Slot Decoder
reconstructs the original feature maps of CroCo.

Importantly, the selection of the backbone is guided by the motivation to incor-

porate geometric signals that assist in object discovery. Overall, our pipeline is char-
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acterised by its simplicity, efficiency, and its contribution to scaling object-centric

learning towards more challenging and realistic settings while remaining entirely

end-to-end and self-supervised.

We first describe the architecture of our pipeline that enables learning object-

centric representations decoupled from visual representations. Then we will describe

the criteria for choosing the pre-trained model that helps with object-centric learn-

ing.

7.2.1 Architecture for Decoupling Visual and Object Rep-

resentation Learning

Visual encoder: The input images or videos X ∈ Rh×w×3 are first encoded via

a visual backbone. To tackle more challenging scenes, the visual encoder must

be sufficiently expressive to capture and represent the differences in texture and

lightning for different objects. To this end, we use a standard Vision Transformer

as the backbone due to its state-of-the-art performance and the availability. These

visual embeddings V = ViT(X) ∈ Rh′×w′×d are downscaled by a factor of patch size

p from the chosen ViT model, usually equal to 16 h′ = h/p, w′ = w/p.

Object encoder: Following previous works and similar to Chapters 6 and 5, we

use a Slot Attention module to further obtain a set of object representations from

the visual representations: O = SlotAttention(V ) ∈ Rk×d

Object decoder: An object decoder is needed to convert the set of object features

to a feature map. For this, we utilise the Attentional Slot Decoder introduced in

Chapter 6: Y = AttentionalSlotDecoder(x) ∈ Rh×w×d. Here, instead of predicting

the input pixels X, we instead predict the feature maps obtained from the visual

encoder V.

Visual decoder: If the pre-trained visual backbone has a corresponding decoder,

we can reconstruct the original input from the predicted representations X̂ =

Decoder(Y). During training, however, this module is omitted to save memory

and compute resources since it is not needed to compute the loss.

Training objective: We can now compute the reconstruction loss on the feature

space from our pre-trained visual encoder. Here we use a simple Mean Squared

Error on the feature space: L = ∥Y −V∥22.
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7.2.2 Geometric Prior from Self-Supervised Features

A crucial difference in our approach is the use of a pre-trained vision model to

build object representations on top of, and also to serve as the target of object

reconstruction. Given the proliferation of pre-trained vision models in recent years,

the question arises: which pre-trained model should be employed for object-centric

learning, and what motivates this choice?

Emergence of “object” in biological intelligence Across the spectrum of

biological intelligence, from adult humans to infants and animals, there exists a

seemingly inherent capacity to comprehend and interact with objects in their en-

vironment. Extensive research in cognitive development of children has shed light

on the early acquisition of object permanence, a crucial cognitive milestone that

becomes evident in children as young as five months of age [215].

One fundamental component underpinning the cognitive process of object per-

ception is the stereoscopic input from human eyes. This binocular vision system is a

strong cognitive bias by providing a strong signal to comprehend and represent our

world in three dimensions. Associating every point with a spatial depth distance is

the most powerful and obvious explanatory factor that explains this integration from

the visual input of the left and the right eye. Furthermore, it effectively accounts

for the parallax effect triggered by changes in viewpoint, whether through head or

bodily movement in space.

Once the existence of objects is firmly established in the cognitive repertoire,

this naturally implies the awareness that objects do not spontaneously come into

existence, vanish or morph in appearance and property; instead, they transition

through space and time with fluidity.

After encountering many different objects, humans exhibit an ability to classify

and categorise them seemingly automatically. These classifications are largely con-

tingent on the objects’ appearance and behaviour, enabling broad categorisations.

Over time, more complex concepts about a scene with multi-objects and their

interactions can be acquired: i.e. one object can cover or mask another object, or

they can collide and alter trajectory. All other higher semantic meanings of objects

from intuitive laws of physics to causal relationships, are all therefore built on top

of the lower-level notion of objects.

Biological intelligence effortlessly builds a hierarchical representation of the world,

with the foundation building blocks of depth and 3D geometric information. Inspired

by this hierarchy of representation acquired by human intelligence, how can we emu-

late this for the task of object-centric representation learning? How does the current

paradigm of pre-training vision models fit into this order?
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Emergence of objects from semantics The initial breakthrough in self-supervised

learning, surpassing supervised learning in vision tasks, can be attributed to con-

trastive learning methods (see Chapter 3). These models harness the similarities

between pairs of input images to constrain their representations to be alike in the

latent space. To counteract the issue of the network mapping all inputs to a single

latent vector, various techniques have been developed, including the introduction of

projection heads, momentum encoders, stop gradient operations, whitening proce-

dures, and others.

Among these discriminative approaches, Caron et al. [33] shows that a rough

saliency map of objects in a scene can emerge from purely self-supervised learning

in the form of attention scores of the vision transformer model, as described in

Figure 7.2. The pre-training objective of local-to-global correspondence is attributed

to this emergence of object semantics.

On the other hand, autoencoding methods learn representations by reconstruct-

ing the input data without imposing explicit constraints on the latent represen-

tation other than to bottleneck the layer’s dimensionality. Notably, the Masked

Autoencoder (MAE) has demonstrated robust performance and efficiency, achiev-

ing impressive results in downstream tasks. By constraining the model to learn to

reconstruct masked patches from non-masked patches, the model is encouraged to

learn a global representation for any given visible patches [30]. This leads to a rep-

resentation space that is very powerful for fine-tuning on many downstream tasks

that rely on semantic information.

Attempting to combine the best of these two approaches, Masked Siamese Net-

works (MSN) [9] introduces the concept of mask-denoising without requiring pixel

or token-level reconstruction. It operates by presenting two different views of an im-

age, wherein MSN randomly masks patches in one view while keeping the other view

intact. The objective is to train a neural network encoder, typically implemented

with a Vision Transformer (ViT), to generate similar embeddings for both views. It

implicitly performs the denoising operation at the representation level by ensuring

that the representation of the masked input closely matches that of the unmasked

input. This approach encourages the network to learn meaningful representations

while avoiding the complexity of pixel-level reconstruction.

Overall, these approaches typically encourage a representation space with strong

semantic information. When fine-tuned, these yield good results on downstream

tasks such as classification and segmentation.

In the sub-topic of object-centric representation learning, most closely related to

our work is DINOSAUR [240] which attempts to discover and learn object-centric

representations with the semantic representation obtained from the likes of DINO

[33] or MAE [109].
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Emergence of objects from geometry Recently, CroCo [286] extended the

MAE framework from the single image domain to the multi-view domain. Instead

of decoding the masked patches from the unmasked patches of the same images,

CroCo predicts the entire image of the scene when provided with the information

encoded from another viewpoint of the same scene. In this way similar to con-

trastive methods, it utlises the similarity between images of the same scene from

different viewpoints to organise its latent space. This cross-view completion mecha-

nism endows the network with the ability to process stereo input, and similar to the

development of human cognition, this leads to a representation space with strong

geometric information.

This cross-completion task encourages the model to not only learn important

semantic information in the scene but also to model the 3D geometric information

in its representation.

In this chapter, we argue that to better mimic the hierarchy of representations in

the human and animal brain, and simultaneously take advantage of large pre-trained

visual models, we should focus on building object-centric representations on top of

the visual model with strong geometric signals, first.

Our analysis and experimental results in the next section will provide evidence

supporting this direction.

7.3 Results

In this section we first perform an analysis on the correlation between emergence of

objects in network attention maps. Insights discovered here then lead us to present

our experiment in enhancing object-centric discovery with geometric-aware visual

representations.

7.3.1 Attention Maps Mostly Indicate Semantic Represen-

tations

In Figure 7.2, we visualise the attention maps from the last layer of the encoder,

generated using various pre-trained visual models across different frames of a multi-

object video sourced from the MOVi-C dataset [97]. Our analysis of four distinct

pre-trained models reveals discernible behaviours, which we can classify into two

distinct groups. The first group comprises DINO and MSN, both of which exhibit

a pronounced focus on the objects within the scene. Given our scene’s composition

with numerous small objects, the attention maps of DINO and MSN collectively

concentrate on what could be described as the foreground.

Conversely, the second group, encompassing MAE and CroCo, do not display any
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Figure 7.2: Attention map of different pre-trained self-supervised vision models on
a video from the Movi-C dataset. While DINO and MSN show localised attention
towards foreground objects, MAE and CroCo exhibit a diffused, global attention
map.

conspicuous grouping behavior. Their attention scores disperse across the feature

maps, extending even to areas corresponding to background elements in the original

input images. Notably, despite this apparent “bug” in their attention maps, these

models demonstrate strong performance after fine-tuning, remaining competitive

with models from the first group.

One possible explanation for this divergence in attention style lies in their pre-

training paradigms. While MSN and DINO employ self-supervised discriminative

methods, MAE and CroCo rely on unsupervised generative models. The first group

can trace their lineage back to earlier contrastive methods, albeit without the use

of negative pairs, while the second group adopts an autoencoding framework, incor-

porating input-masking techniques.

Since the seminal work of DINO by Caron et al. [33], which demonstrated the

emergence of objects in the attention maps of self-supervised training models, numer-

ous subsequent works have capitalised on this insight to incorporate “objectness”

into their own models, leveraging the representations inspired by DINO. Notable

examples include the work in Kerr et al. [144] and Siméoni et al. [244].

This observation might lead one to assume that for object discovery and learn-
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ing, methods like DINO or MSN should be preferable. Unintuitively however, our

experiments, as shown in the next section, demonstrate that this is not the case. It

becomes evident that lower-level information, not fully represented in the attention

map, can significantly influence results on the task of unsupervised object discovery

and learning.

7.3.2 Geometric Representation Improves Object Discovery

Task: In line with Chapters 6 and 5, we continue our emphasis on the objective

of unsupervised object discovery, which was introduced in Chapter 4. In summary,

our objective remains to acquire a collection of object representations from a given

scene, where each slot in this collection corresponds to a high-level object within

the scene. At present, a significant challenge lies in the automatic discovery of these

independent objects within a scene with minimal supervision, a feat accomplished

effortlessly by humans and animals.

Evaluation: At every decoded location, we assess the influence of each object slot

on the output using its corresponding attention score. To establish the ground truth

for prediction segmentation, we employ the argmax operator across slots.

Given the permutation invariance of slot representations, where each slot can

potentially associate with any object in the scene, we employ the ARI-FG metric.

This metric quantifies the similarity between the predicted segmentation mask and

the ground truth mask, while disregarding the foreground class and the order of the

remaining objects.

Baseline: We compare our approach with three other baselines that are highly

relevant to our work. Firstly, we assess the original Slot Attention method, which

introduced the widely-used Slot Attention module. Next, we evaluate DINOSAUR,

a closely related method to ours, as it also utilises a pre-trained vision model for

target prediction. Finally, we consider SAVi++, a method that scales up the SAVi

architecture and incorporates explicit paired depth information as the target. For a

more comprehensive overview of these baselines, please refer to Chapter 4.

Method: Our primary method aligns with the description provided in Section 7.2.1.

We employ the pre-trained CroCo model [286] as both the backbone for the Slot

Encoder module and the prediction target for the Slot Decoder module.

For consistency across all methods, we adhere as closely as possible to the training

and evaluation protocol outlined in SAVi [150]. This includes training on video

sequences, with the bounding boxes of objects in the first frame serving as the

conditioning signal for initialising the slot representations.
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Qualitative analysis In Figure 7.3 and Figure 7.4, we present the segmentation

results obtained through our method on two samples extracted from the MOVi-E

dataset. For each sample, the first row displays different frames from the video clip,

with the ground truth segmentation tightly fitted on top. In the second and third

rows, we showcase our predicted segmentation, either from the encoder or decoder

attention map, superimposed on the frames for visual comparison.

In Figure 7.3, we have chosen two samples with a relatively stable camera, featur-

ing several static objects and one or two moving objects. Our method demonstrates

its ability to accurately segment most of the larger objects, such as the teddy bear,

box, and shoe. However, the smaller objects along the left edge tend to be grouped

together within the same object slot.

It is worth noting that since we carry over the object slots from the previous frame

as the initialisation for the next frame, errors can accumulate over time, leading to

a qualitative decline in segmentation (left to right). In the first sample, a portion

of the background becomes erroneously segmented as an object as time progresses.

Similarly, in the second sample, the bottom shoe is incorrectly segmented into two

objects in later frames.

In Figure 7.4, we have chosen clips that present more challenging scenarios,

featuring numerous smaller objects in motion and interacting simultaneously, all

compounded by camera motion (often better observed in video format).

A notable trend in these cases is that smaller objects tend to be represented by

the same object slot, as evidenced by the bottom border of the first sample. On the

other hand, larger objects can sometimes be split between two different slots, as can

be seen with the white pill bottle with the red label in the second sample.

In summary, these challenges highlight significant opportunities for improvement,

both in terms of visual resolution and the temporal consistency of object slots.

Quantitative analysis In Table 7.1 we compare quantitatively, our result on the

object discovery task against the baselines.

As hypothesised earlier, we observe a gradual improvement in performance as

more training signals are included in the prediction target. Across both the MOVi-C

and MOVi-E datasets, we surpass the performance of both SAVi and DINOSAUR,

the two methods most closely related to our proposed approach.

DINOSAUR [240] relies on the semantic representations of DINO [33] as the

prediction target, in contrast to our approach, which utilises the geometric repre-

sentations of CroCo [286]. While both methods fundamentally use a pre-trained

model to initiate the object discovery and learning process, it is worth highlighting

that our method achieves a significant improvement of 10%. In contrast, Seitzer et

al. [240] reported no noticeable difference when substituting different pre-trained
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Figure 7.3: Two examples of unsupervised segmentation of objects with our method
on the MOVi-E dataset. The horizontal axis represents different timeframes in a
clip while the vertical axis shows our prediction. The first row shows input images
with ground truth masks overlaid, the second row is overlaid by the segmentation
from our slot attention encoder and the third row overlaid by our prediction from
the attentional slot decoder.

Table 7.1: Comparison between the performance of our method and the baseline
on the MOVi-C and MOVi-E datasets using the ARI-FG metric with values from
0 to 1 (higher is better). We also list the prediction target of each methods as an
explanation for the performance differences.

Method MOVi-C MOVi-E Prediction Target

SAVi 0.438 0.450 RGB pixels
DINOSAUR 0.686 0.651 Semantic features
Ours 0.788 0.766 Geometric features
SAVi++ 0.8425 0.823 Depth values
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Figure 7.4: Two examples of unsupervised segmentation of objects with our method
on the MOVi-E dataset. The horizontal axis represent different timeframes in a clip
while the in the vertical axis shows our prediction. The first row shows input images
with ground truth masks overlaid, the second row is overlaid by the segmentation
from our slot attention encoder and the third row overlaid by our prediction from
the attentional slot decoder.

models like MAE or MSN in place of DINO.

We attribute this improvement to the distinctive characteristics of geometric

and semantic representations, as elaborated earlier. This is further supported by

our comparison with SAVi++ [71], which explicitly utilises depth values as a training

target.

Our method marks a significant step towards the goal of unsupervised discovery

without the need for additional supervision signals, such as depth or optical flow.

This is accomplished through the strategic selection of a self-supervised vision back-

bone, thus successfully addressing both Research Questions 3 and 4 on improving

the efficiency and capability of object-centric learning methods.
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7.4 Discussion

In this chapter, our focus shifted from architecture biases, as discussed in the pre-

vious chapter, to the learning signals used for object-centric representation. By

harnessing a pre-trained vision model enriched with geometric information in its

latent space, we established a comprehensive pipeline for unsupervised object seg-

mentation, bridging the gap towards methods that use additional supervision from

depth or optical flow.

Our motivation stems from insights into human cognition and an analysis of

contemporary self-supervised pre-training techniques. We emphasise a promising

avenue for representation that exhibits a deeper understanding of the 3D structure

of the world. A potential area for future exploration lies in the development of

more robust pre-training methods that encapsulate both semantic and geometric

information within the visual scene, as exemplified by DINOv2 [207].

Conversely, when efficiently leveraging a pre-trained visual model, we bypass the

challenge of end-to-end learning of hierarchical representations. Without a static,

pre-trained vision model, it is currently infeasible to concurrently train object and

visual representations using the same architecture and data. Drawing parallels to a

prior era when end-to-end training of deep models became both effective and effi-

cient, we find layer-wise pre-training falling out of favour within the research com-

munity. A similar shift may apply to object-centric and visual learning, whereby

developing a methodology for their joint end-to-end training would yield a signifi-

cantly more capable and potent system.
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Chapter 8

Conclusions

In this thesis, we provided several contributions on the topic of representation learn-

ing within the domain of computer vision, with the aim of contributing to the ad-

vancement and development of methods and systems that can learn to perceive

and reason better. We addressed Research Question 1, on learning generally

useful visual representation of the world by covering two complementary directions

to advance the field of representation learning, as succinctly captured in the Scal-

ing hypothesis and the Structured Representation hypothesis, introduced in

Section 1.

The Scaling hypothesis emphasises the importance of scale in computation

power and data, especially for learning and searching methods. In the case of deep

neural networks, this translates to both in the number of parameters of a neural

networks and the data on which they were trained. In Chapter 3, we provided an

extensive review of a general framework for Contrastive Representation Learning as

a promising direction for learning generally useful representations on a wide variety

of tasks, unconstrained by the limitations of human-labelled datasets. This method

directly enables scaling up neural networks to utilise unprecedented amounts of

compute and data.

The Structured Representation hypothesis emphasises capturing the under-

lying structure of the data generation process, as a fundamental step to propel deep

neural networks from the domain of perception to reasoning tasks. Object-centric

Representation Learning is a promising approach in that regard, aiming to simulta-

neously discover and represent objects in a complex scene in an independent manner.

We introduced and carried out various experiments surrounding this approach for

learning structured representations from Chapter 4 to Chapter 7.

We now restate and highlight our contributions in this thesis as well as provide

an opinion on the current state of research and future directions.
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8.1 Contrastive Representation Learning: A Frame-

work and Review

In the realm of representation learning, numerous self-supervised methods have

emerged, yet their downstream performances often fall short when compared to

supervised learning settings. However, within this landscape, a subset of meth-

ods, collectively known as Contrastive Learning, have demonstrated the ability to

outperform traditional supervised learning methods.

Although there has been a recent surge of interest in the topic, contrastive learn-

ing and contrastively learning representations is not a new idea, with work dating

back nearly 30 years to the early 1990s. This is partly because much of the machine

learning field is now taken up by problems of data architecture and systems engi-

neering and scalability. This usually involves building systems which are bigger and

operating under the maxim that bigger is better. Contrastive learning is more like

data engineering and it allows the properties of data to emerge naturally based on

data similarity rather than trying to fit data processing into some large and complex

system architecture.

To systematically study the fast growing topic of contrastive learning, we con-

ducted a thorough review, analysing over 100 methods across various data modal-

ities. Our contribution is a well-defined framework that categorises these methods

based on key components: the data similarity distribution, the encoder, the trans-

form head, and the contrastive loss. This framework serves as a valuable tool,

facilitating a deeper understanding of the fundamental principles, historical devel-

opment, and rationale behind contrastive learning, while also providing a means of

comprehending the contributions of new methods.

Because contrastive learning has been used in multiple applications and input do-

mains including image, video, text, audio and others, we have had to draw together

input from NLP, computer vision, audio processing and more in order to present

a comprehensive survey of the field, with inputs also drawn from across these dis-

parate application areas. Our exploration covered the entire contrastive learning

framework, spanning diverse data domains, and culminated in the development of

a taxonomy of approaches for each individual component. While our focus has

been on contrastive learning, these taxonomies extend beyond this, offering general

principles applicable to the implementation of inductive biases in all self-supervised

learning systems.

While the chapter will provide a useful resource for those who have little back-

ground in the topic of contrastive learning and who want to learn more, it will

also be of value to those already familiar with the topic since contributions to the

development of the area are drawn from such a range of sources.
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Contrastive learning and contrastive representations of data represent an inter-

esting and different approach to modeling data which is suited to some kinds of

datasets, and for applications where labelled training data may not be available or

in sufficient amounts to support typical deep learning approaches.

Whilst successful contrastive representation learning typically involves using rel-

atively more computational resources (and thus power), the models produced by

this process often enable rich general-purpose representations that show greater

performance on a variety of downstream tasks than their end-to-end counterparts.

Ultimately, this may result in less computational resources being consumed when

using pre-trained contrastive representation models for as basis for new tasks.

Contrastive learning is not a panacea for all kinds of problems in data modeling

and data classification, prediction and clustering, but for a reasonable subset of

application types, on certain types of datasets it is a suitable approach to improve

performance on downstream tasks. Nor is it an approach with all of its problems

and issues solved, and in chapter 3 we highlighted areas for future research, some of

which are fundamental issues.

One of the promising aspects of contrastive learning is its synergy with other ap-

proaches, such as incremental or lifelong learning, which are essential in the pursuit

of creating generally useful AI agents capable of operating in real-world environ-

ments. Contrastive learning can serve as a robust pre-trained foundation for incre-

mental learning methods, enabling models to adapt to new tasks without forgetting

previously learned information [169]. Additionally, it can be directly applied to the

incremental discovery of objects, facilitating the continual learning process as new

objects or patterns emerge in the data [298]. By integrating contrastive learning

with incremental learning strategies, we move closer to developing AI systems that

are both flexible and resilient, capable of ongoing adaptation and improvement in

dynamic settings.

For practitioners who want to apply contrastive methods for pre-training repre-

sentations on different datasets, we suggest to be mindful about:

• Any inherent characteristics and biases in the data set, e.g. do the images

contain only one or multiple objects, are the objects in the center, etc.

• The desired properties of the representation for downstream tasks, e.g. occlusion-

invariance, colour-invariance, temporal-covariance, etc.

• The ways positive and negative pairs are constructed, such that they provide

good learning signals and convey the desired properties.

Using the CRL framework, this chapter addressed Research Question 2 by

investigating the general principles and inductive biases for learning such represen-

tations.
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8.2 Review and Appraisal of Object-centric Rep-

resentations

In this section,we take the perspectives outlined in the previous chapters on the

future direction of object-centric representational learning, and review these in the

context of the overall contributions of the thesis.

In Chapter 4, we introduced the topic of Object-centric representation learning,

its motivation, goals, and development over recent years. Among these methods,

learning object representations via the slot attention mechanism, as outlined in

SAVi, is the most efficient and achieves state-of-the-art results. We explored and

proposed various methods at different stages of the pipeline for OCRL, from ar-

chitectural biases in the representation format (discrete) to practical challenges in

efficiently learning object-centric models (slot decoder), and leveraging geometric

signals from pre-trained models. Together with advances in the broader field of

deep learning, we have witnessed improvements in methods and challenges, starting

from simple datasets and progressing to more challenging ones.

Object-centric Representation Learning: We then turned to the challenges

of learning structured representation as stated in Research Question 3. We first

presented in Chapter 4 an overview of the problem setting, the motivation as well as

the foundational work on the topic of Object-centric Representation Learning. We

also presented the learning framework for learning slot-based object-centric repre-

sentations of videos, which served as the backbone for our subsequent experiments.

Discrete Object-centric Representation: In Chapter 5, we proposed a novel

method to learn a discrete object-centric representation space, based on the frame-

work of Vector Quantisation. This was motivated by the inherent discrete nature

of objects that we are trying to capture and the inductive bias of the quantisation

technique.

We showcased the feasibility of our approach by integrating and comparing it

with a state-of-the-art object-centric representation learning method designed for

video datasets. Despite the more restrictive nature of the latent space, our method

performs on par with the continuous-representation baseline on the object-discovery

task.

Attentional Slot Decoder: In Chapter 6, we proposed a simple Attentional

Slot Decoder for object-centric representation learning methods in the framework

of autoencoding. Current methods based on reconstruction-based object-centric

learning, which comprises the majority of work, all require decoding each object’s
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slot representations independently, and merging their outputs at the pixel level.

This is computationally expensive and does not allow for rich interaction of objects

at the representation level.

Our simple approach combines the strengths of both slot-based decoding and

the more general set-based decoding. The core idea of our method is the utilisation

of a cross attention module between the positional decoder query and the object

representations. This rich interaction in the latent space allows for the exchange of

semantic object information.

All else being equal, our proposed decoder learns faster than the baseline, and

achieves comparable performance while requiring substantially less memory and

compute time.

This chapter directly addressed the efficiency aspect of learning structured rep-

resentation as posed in Research Question 4.

Object Discovery with Geometric Representation: In this chapter, our fo-

cus shifted from architecture designs in learning object-centric representation, as

discussed in the previous chapters, to the learning signals used for object-centric

representation. By harnessing a pre-trained vision model enriched with geometric

information in its latent space, we established a comprehensive pipeline for unsuper-

vised object segmentation, bridging the gap between methods that use additional

supervision from depth or optical flow. Together, our approach is modular and

remains completely free of the need for human supervision.

Now, the field is at a point where it has generally capable object-centric models,

but their application on realistic datasets is still limited. Scaling these methods

to work with more complex, realistic, and diverse datasets is the most important

challenge for the field at this time.

8.2.1 Review of Recent Progress

In this section, we explore some different aspects of object centric representation

learning, from alternative representation formats and problem settings, and discuss

the future research direction.

Representation format: In the same vein as our exploration of Discrete Object-

centric Representations in Chapter 5, investigating alternative formats for repre-

senting objects remains an active research problem.

Block Slot Attention [248] aims to enhance the disentanglement aspect of object

slots by decomposing each slot into several blocks from a common concept memory

bottleneck.
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Contrary to popular slot representations approaches that are discrete in nature,

complex-valued autoencoders [173] propose learning continuous and distributed rep-

resentations. Generalising from a set of real-valued vectors, representations for all

objects are encoded in complex-valued vectors, where the magnitude indicates the

presence of features, and the relative phase is used to group features into objects.

This idea is further extended to more dimensions by Rotating Features [175] that

shows strong performance on the object discovery task with real images.

Learning efficiency Tackling the object decoder component, as explored in our

presentation of the Attentional Slot Decoder in Chapter 6, Slot Diffusion [290]

incorporates the powerful Latent Diffusion Model [227] for image generation into

object-centric learning. They demonstrate strong performance results on both ob-

ject discovery and generation, leveraging the powerful visual modelling capability of

the pretrained diffusion model.

Object discovery in 3D: In Chapter 7, we emphasised the importance of 3D ge-

ometry in enabling object discovery and learning in more complex settings. Besides

image and video-based methods, explicitly learning object-centric representations in

a 3D setting is another interesting direction of work.

Leveraging recent advances in neural 3D scene representation with Neural Ra-

diance Field (NERF) [188], several recent works [303, 258, 200] propose learning to

decompose 3D scene representations with object-centric representations.

In addition to image and video-based learning, OSRT [234] learns an object-

factored 3D scene representation from multiple views of a static scene. DORSal

[127] adapts a video diffusion model with the object slots from OSRT to achieve

scalable object-level scene rendering.

Reconstruction-free training: In addition to generative approaches based on

reconstruction or novel view synthesis objectives, end-to-end contrastive training of

object representations is a promising alternative [149]. Löwe et al. [174] extends the

per-slot objective to a global set-based contrastive loss.

ODIN [112] is another reconstruction-free approach that learns to simultane-

ously discover and represent objects via a contrastive loss based on multi-crop and

image augmentation. Conversely, Wang, Shou, and Zhang [282] imposes a cyclical

consistency between object-centric representations and visual features to learn and

discover objects without a contrastive or reconstruction objective.

Understanding and optimisation: In addition to advancing the state of the art,

many works aim to understand the learning and optimisation dynamics of object-
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centric learning. Chang, Levine, and Griffiths [36] proposes to examine the problem

of learning hierarchical representations of objects on top of visual features from the

viewpoint of nested optimisation. This perspective leads to various approaches that

aid in learning and optimising the iterative refinement of object-centric representa-

tions [132, 35].

Prabhudesai et al. [218] proposes to adapt object representation per scene at

test time via a self-supervised objective. EGO [311] provides a simple framework

for object-centric learning through energy-based models. On the other hand, Brady

et al. [25] studies the theoretical conditions in which compositional learning of object

representations is possible.

8.2.2 Benefits and Applications of Object-centric Represen-

tations

The field of object-centric representation learning has so far been focusing mostly

on advancing the state of the art in methods for unsupervised segmentation and

representations of objects. However, these are just the means to an end. The ulti-

mate goal is to learn a representation space at a level of abstraction that facilitates

more efficiency in learning, more robustness to noise, and one which can generalise

in a more systematic manner such that it is useful and can transfer to a range of

downstream tasks.

There have been some studies [65, 256] on the generalisation and robustness prop-

erties of object representations in Out-of-Distribution settings. Slot representations

that can segment objects more accurately also perform better for downstream tasks.

These representations are also more robust to certain settings of distribution shifts

in the underlying data and enable downstream reinforcement learning agents to

achieve their goals when compared to an agent that uses a conventional scene-level

representation.

Zhang, Gupta, and Zisserman [309] studies the transferability of object-centric

representations and shows that it is more beneficial in various settings from novel

objects, few-shot learning, linear probing as well as standard classification settings.

Aloe [64] proposes a method that applies “attention over learned object embed-

ding” with self-supervision for downstream visual question answering tasks. They

show that this matches or exceeds the performance of previous state-of-the-art hy-

brid or fully neural networks with less training on a variety of benchmarks covering

object-permanence [83], explanatory, predictive and counterfactual reasoning [301]

as well as causal inference [308].

Mambelli et al. [178] demonstrates reinforcement learning methods for object-

manipulation that use object-centric representations that can generalise to zero-shot
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settings when the number of objects in a scene change.

The SLotFormer method [291] improves performance on planing and visual

question-answering tasks when using an object-centric dynamic model over time.k

More recently, object-centric representations from [234] successfully improve control

and planning even in large-scale foundation models for robot PaLM-E [69].

These studies have validated the synergy between the segregational, represen-

tational and compositional aspects of object-centric representations, whilst demon-

strating their benefit on various downstream applications. This complements and

provides evidence for the usefulness of our work in previous chapters to advance the

state-of-the-art in learning object-centric representations.

8.2.3 Challenges and Future Research Directions

Despite the significant progress made in recent years, as outlined in Section 8.2.1, the

field of object-centric learning has a wide range of open questions and challenges on

its path to becoming more successful and widely applicable in the broader realm of

computer vision and deep learning. In this section, we explore some of the potential

avenues for future research, as well as taking a step back to revisit some of the

underlying assumptions in the field.

Exploring Alternative Directions While slot-based representation has been

the prevalent choice for learning object representations, primarily due to its natu-

ral extension from visual representations, it is essential to consider whether there

might be more suitable methods for simultaneously discovering and learning ob-

jects. What are the alternative formats beyond slot-based representations for object-

centric learning? In addition to the complex-valued [173] and rotating features [175]

as mentioned earlier, Tensor Product Representation [250] and temporal codes based

on spiking neurons [246] have been proposed but remain underexplored in the cur-

rent literature of object-centric learning. Exploring these alternatives could offer

novel insights into the field.

Bridging the Gap with Specialised Models As we have discussed, recent ad-

vancements in object-centric learning have enabled the application of these methods

in real-world, visually complex scenes with minimal supervision. However, there still

exists a performance gap when compared to neural networks specifically trained for

explicit object detection tasks. Closing this gap and moving beyond pure detection

to simultaneously discovering and representing objects is a crucial research direc-

tion, where developments from the field of unsupervised object localisation [280,

245, 281] could provide valuable lessons for object-centric learning approaches. In-
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vestigating how these techniques can enhance the capabilities and be incorporated

into object-centric models is an important avenue for future research.

The Role and Effect of Human Labels While unsupervised object discovery

through self-supervision has been a fundamental aspect of object-centric learning,

there is potential in directly incorporating models trained for human-supervised

object detection. The field of computer vision has long grappled with the de-

bate between data-driven learning and inductive bias in architectures. Should self-

supervised architectures only rely on aspects such as visual similarity, temporal

correlation, spatial and temporal locality, or shared functionality for object discov-

ery?

Supervised methods for object detection and segmentation, like Segment Any-

thing Model (SAM) [152], have demonstrated the benefits of a large-scale, data-

driven approach to these perception tasks. The question arises: can we integrate

human labels into the object-centric learning loop, and if so, how do we strike a bal-

ance between a data-driven approach and learning the inductive biases that define

an object? If such supervised models are developed, how will the incorporation of

human labels at scale impact the performance and characteristics of object-centric

learning methods? This exploration into the role and influence of human-labelled

data in object-centric learning is a significant avenue for future research.

Controllable and Steerable Representations While supervised labels and un-

supervised inductive biases contribute to segregation and representation in object-

centric learning, this addresses only part of the puzzle. The utility of composing

object-centric representations to tackle more challenging tasks ultimately depends

on the current context and the nature of the task itself.

Approaches like SAVi [150] have taken the initial step of allowing slot initialisa-

tion to be conditioned on additional information such as object bounding boxes or

masks. Extending this approach to enable more fine-grained control of object segre-

gation and composition, such as incorporating natural language, is another crucial

direction. While these methods currently operate by conditioning from the bottom

up, incorporating top-down feedback, as in the case of Reasoning Modulated Rep-

resentation [275], provides an equally important direction. These approaches could

allow leveraging interaction data from robots to enable embodied object-centric rep-

resentations, combined with large language models for both discovery and reasoning

capabilities.

Reconciling End-to-End Learning and Modular Structure Another funda-

mental aspect of object-centric learning is the emphasis on end-to-end learning of
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hierarchical representations. An end-to-end system could facilitate both bottom-up

and top-down feedback across all stages, from segregation and representation to

composition. However, recent advances have relied on powerful pre-trained mod-

els to scale up object-centric methods, as demonstrated in [240] and our work in

Chapter 7, thus effectively bypassing the challenge of end-to-end learning. How

to reconcile and combine the benefits of modular and pre-trained systems versus

end-to-end learning remains another open area for exploration?

Specific Architectures for Object-centric Learning? In examining the broader

landscape surrounding object-centric representation learning, it is crucial to recall

its foundational principle rooted in the hierarchical representation thesis [40]. This

framework is motivated by a focus on a level of abstraction similar to what humans

effortlessly perceive as “objects”, with the ultimate goal of developing a more gen-

erally capable intelligent system, agent, or model that can perceive, reason, and

plan.

Recent progress in large-scale pre-training, especially with large language models

and foundational multimodal models combining images and text, has demonstrated

elementary reasoning capabilities, albeit with some brittleness [123]. Notably, these

capabilities emerged without the need for specialised architecture or domain-specific

components, but relied on large-scale data and model sizes. Another example is re-

cent work showing that object-like representations can emerge simply by scaling up

and adding extra “register” tokens during the training of standard Vision Trans-

formers [54]. Building on lessons learned from Slot Attention, [288] also demon-

strated that object-centric representations can emerge with minimal adaptation to

the widely popular standard transformer architecture used in other deep learning

domains.

While developing more specialised architectures for object-centric representa-

tion learning, with additional architectural biases, has shown promising results in

small-scale and limited settings, it must be approached carefully to avoid hindering

the scalability of the entire deep learning pipeline. This raises the the question of

whether developing specialised architectures for object-centric learning is worthwhile

in the long term. The answer remains uncertain, and the methods developed for

object-centric learning might not ultimately be universally adopted. However, an

undeniable aspect is that the study and development of methods that learn more

abstract, hierarchical representations contribute significantly to advancing the entire

field of representation learning and deep learning in general.
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8.3 Constraints and Limitations

Throughout this research, several constraints and limitations characteristic of deep

learning at the present time have been encountered. These challenges have influenced

the direction, scope, and outcomes of this work. To contextualize the contributions

of this thesis within the broader landscape, the following major constraints are

outlined:

Computational Resources Deep learning research demands substantial com-

putational power, often requiring advanced hardware such as GPUs or TPUs. In

particular, scaling self-supervised methods like contrastive learning typically involves

training models using hundreds of GPUs over extended periods. However, the com-

pute resources available during this research, generally limited to a single GPU,

posed significant challenges. This constraint impacted the speed of experimenta-

tion, the feasibility of exploring more complex models, and the overall research di-

rection. The necessity to optimize within these limitations often dictated the scale

and ambition of the methodologies explored.

Data Scarcity and Quality As models increase in complexity and scale, the

availability of high-quality, annotated datasets becomes increasingly critical. This

research faced challenges in accessing such datasets due to several factors, includ-

ing privacy concerns, proprietary restrictions, and the considerable cost and time

required for data collection and annotation. The scarcity of large, diverse datasets

limited the ability to train and validate models comprehensively, often necessitating

the use of smaller, potentially biased datasets that may affect the generalizability

of the results. This is also a main factor in the usage of synthetic data in our

experiments.

Collaboration and Organizational Constraints Deep learning is a rapidly

evolving field, with significant interest and investment from industry. Large-scale

projects often involve extensive collaboration, with dozens of authors and numerous

research engineers in the background contributing to the development and fine-

tuning of models. In contrast, academic settings, particularly at the PhD level

in our case, offer more limited opportunities for collaboration and organizational

support. The lack of access to large, multidisciplinary teams and the absence of

dedicated research engineers made it challenging to replicate the level of innovation

and complexity seen in industry-driven research.

Challenges of a Rapidly Evolving Field The fast-paced nature of deep learn-

ing research imposes considerable pressure to stay abreast of the latest advance-
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ments. The rapid evolution of state-of-the-art methods, coupled with the high

standards required for publication, presents a significant challenge. Keeping up

with relevant work is demanding, as is ensuring that research contributions remain

timely and impactful. Additionally, reproducing existing research can be difficult

due to differences in hardware, software versions, and random model initialization.

Such variability can lead to inconsistent results, complicating efforts to validate and

extend upon prior work.

These constraints have been integral in shaping the trajectory of this research,

influencing both the methodological choices and the overall impact of the work. Rec-

ognizing and addressing these limitations provides a foundation for future research

to advance beyond these challenges.

8.4 Final outlook

Throughout this thesis, we extensively explored the current state and potential

future directions in both Contrastive Representation Learning and Object-centric

Representation Learning.

One prime example of the relevance of our work to the field can be seen in

the rise of multimodal models. The rapid evolution of multimodal models, which

integrate diverse data types such as images, text, and audio, represents a significant

advancement. These models leverage the strengths of each modality, resulting in

more comprehensive and context-aware systems. Contrastive learning method is the

foundation method for building a common representation space, bridging between

different input modalities such as text and vision. The approach has been shown

to work at web-scale data and is widely used for all the nascent Vision Language

Models. In addition, our work on treating the representations of other pre-trained

models as another data modality aligns with the rising trend of distilling massive

general multimodal models from smaller specilised models.

Our approach to the topic of Representation Learning encompasses both content

and structure, via the contrastive learning and object-centric learning frameworks,

respectively. Historically, these two sub-fields have progressed somewhat indepen-

dently. Only recently have the trajectories of scaling and structured representation

begun to converge.

The synthesis of these two directions — scaling and structured representation

— marks a critical juncture. The design of methods capable of learning structured

representations at scale emerges as one of the paramount research directions for

advancing the field. To do so, we would need to address the friction between the

structure and the expressivity of the representation, resolving the challenge of mod-

ular neural networks versus end-to-end learning, and last but not least, the balance
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between data-driven and inductive biases in representation learning systems.
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[172] Sindy Löwe, Peter O’Connor, and Bastiaan S. Veeling. “Putting An End to

End-to-End: Gradient-Isolated Learning of Representations”. In: Advances

in Neural Information Processing Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 3033–

187

https://arxiv.org/abs/2005.04966
https://openreview.net/forum?id=rkl03ySYDH
https://openreview.net/forum?id=rkl03ySYDH
https://doi.org/10.1609/aaai.v37i7.26061
https://arxiv.org/abs/2006.15055
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W


3045. url: https : / / proceedings . neurips . cc / paper / 2019 / hash /

851300ee84c2b80ed40f51ed26d866fc-Abstract.html.
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