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Abstract

Asma Slaimi

A Meta-Learning Approach for Hydrological Time Series

Model Selection

Time series forecasting is crucial in various fields, with significant socio-economic
implications, as accurate predictions can aid in better resource management, disaster
preparedness, and economic planning. However, selecting an appropriate forecasting
model remains a labor-intensive task demanding expertise. This research introduces
a novel meta-learning approach to automate and enhance the model selection pro-
cess.

We curate extensive time series datasets specific to Ireland, spanning diverse
temporal patterns and environmental attributes, including climate data, water level
measurements, and landscape characteristics.

The initial part of the research focuses on developing a systematic architecture
using Extract, Transform, and Load (ETL) technology to integrate heterogeneous
data from various sources while ensuring data quality and consistency.

Then, this research concentrates on accurately predicting river water levels. Var-
ious Machine Learning (ML) models are employed, relying on previously observed
river water level data. The research evaluates the predictive performance of these
ML models across all hydrometric stations in Ireland and demonstrates the impor-
tance of careful model selection based on geographic and hydrological features. The
results demonstrated that a universal ‘one-model-fits-all’ approach is not suitable
for hydrological time series data.

Subsequently, this research explores the core contribution of applying meta-
learning to context-aware model selection for river water-level prediction. The study
demonstrates that meta-learning enhances the accuracy and reliability of hydrologic
time series forecasting, addressing the complexities of this task and providing valu-
able insights into applying ML in this domain. The efficacy of our meta-learning
approach is evaluated across various real-world time series datasets, consistently
demonstrating its superiority over traditional model selection techniques. Impor-
tantly, our approach streamlines and expedites time series forecasting, making it
more accessible to researchers.

In conclusion, this thesis significantly contributes to ML-based environmental
time-series data prediction using a model-selection meta-learner approach and en-
hanced data integration techniques. The results show that our research aligns with
the growing trend of automated machine learning and has the potential to revolu-
tionise time series forecasting in diverse applications.
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Chapter 1

Introduction

In a world grappling with unprecedented environmental changes, understanding,

predicting, and mitigating their impacts has become increasingly urgent. Climate

change, pollution, habitat loss, and other environmental factors pose significant

challenges that reverberate through natural ecosystems, societies, and economies.

In this interdisciplinary research, we merge principles from environmental sci-

ence, data integration methodologies, and machine learning techniques to address

the pressing challenges posed by climate change and environmental dynamics. The

necessity for precise predictions is paramount in both climate and environmental

science, which span a broad spectrum of data—from ecosystems and land use to air

and water quality, and biodiversity. However, grappling with the complexities of

climate and environmental data, often nonlinear and influenced by various factors

like geography and temporal dynamics, presents a formidable challenge.

This research seeks to bridge the gap between data-driven machine learning and

the nuanced demands of climate and environmental science, particularly in predict-

ing environmental features such as river water levels. We propose an innovative ap-

proach that integrates advanced meta-learning techniques with environmental data,

empowering machine learning models to tackle the intricacies of climate-related and

environmental phenomena.

The seamless integration of diverse environmental datasets is crucial for gaining

a holistic understanding of the environment—a prerequisite for accurate predictions

15
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in this complex domain. This integration lays the foundation for leveraging the

potential of meta-learning models, significantly improving the accuracy of time series

predictions in climate and environmental forecasting.

This research centers around a meta-learning approach applied to model selection

for time series prediction tasks, with a specific focus on climate and environmental

time series data. Meta-learning, a methodology that involves learning how to learn,

enables the construction of adaptable models capable of generalizing across various

prediction tasks by leveraging knowledge from multiple datasets or tasks [198].

To effectively address this challenge, we emphasize the critical role of environmen-

tal data integration [97]. It unravels intricate connections between environmental

factors, facilitating a deeper understanding of their ripple effects throughout ecosys-

tems. By synthesizing data from multiple sources, we can gain a comprehensive view

of environmental processes, unlocking insights to inform more effective conservation

strategies and sustainable management practices.

In summary, this thesis is propelled by the urgent need to enhance climate science

and environmental science predictions, focusing on water level prediction through

the seamless integration of environmental data into the modelling process. We aim to

provide more reliable and actionable predictions, ultimately bolstering the capacity

to comprehend, adapt to, and address the multifaceted challenges of climate change

and environmental dynamics.

This chapter serves as an introductory compass for this thesis, furnishing essen-

tial context for the research focus, delineating primary research inquiries, and high-

lighting anticipated contributions. The ensuing sections are structured as follows:

Section 1.1 provides an overview of environmental data integration, emphasising

its significance in addressing complex environmental issues; Section 1.2 explores the

complexities of predicting environmental time series data, with a focus on hydrology;

Section 1.3 outlines research objectives, particularly the application of meta-learning

techniques to enhance prediction precision; and Section 1.4 presents the thesis struc-

ture, offering readers a roadmap to the upcoming chapters and their contents.
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1.1 Integration of Catchment Datasets: Environ-

mental Data Integration

A catchment is a region where the natural landscape collects water. It is the area

of land from which water flows into a river, lake, reservoir or other body of water.

Water management platforms and environmental models at the catchment scale have

developed into essential tools for monitoring, managing, and evaluating catchment

variables, such as climate and water [168].

The availability of hydrological datasets obtained from remotely sensed data has

increased dramatically in the last decade, and a growing amount of research evalu-

ating remotely sensed data for hydrological applications has emerged. Topographic

data, precipitation, soil moisture, water flow, and variations in terrestrial water stor-

age can now be measured or predicted at various spatial and temporal scales ([82,

188]). However, these data need to be centralised in one location to benefit from it

the most.

Environmental data integration is crucial for understanding and addressing com-

plex environmental issues and scenarios such as climate change, biodiversity loss,

and natural resource management. With the increasing availability of diverse envi-

ronmental data from sources such as satellite imagery, sensor networks, and citizen

science initiatives, there are unprecedented opportunities to advance our understand-

ing of environmental processes and interactions [129]. However, integrating these

datasets poses significant challenges due to their heterogeneity in spatiotemporal

resolution, data format, and attribute representation [185]. Accurate integration of

environmental data is essential for informed decision-making, accurate analysis, and

the development of sustainable policies [218].

Efficient data integration and management are crucial in environmental studies

as they enable researchers to analyse and interpret diverse datasets from different

sources [187]. Geographic Information Systems (GIS), a technology that captures,

stores, analyzes, manages, and presents spatial or geographic data, are tradition-
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ally utilized in this regard. However, traditional GIS have limitations in handling

the complexities of spatiotemporal data integration. They may struggle with com-

plex temporal data, integrating non-geospatial data sources, and discrepancies in

attribute values and data structures [225]. Additionally, computational power and

storage capacity limitations can hinder the integration of large and complex datasets

[208].

Spatiotemporal data integration is critical in environmental monitoring, where

tracking changes in environmental conditions over time accurately requires data from

multiple sources. Previous studies have demonstrated the potential of spatiotempo-

ral data integration in monitoring water quality, land cover and land use changes,

and air quality [215] [83] [126]. However, it is essential to recognise that the cur-

rent methodologies in the literature for integrating environmental data frequently

involve custom-tailored data engineering initiatives [3] [141]. These initiatives are

meticulously crafted for particular datasets and goals, resulting in a disparate array

of solutions [204]. The absence of an all-encompassing and standardised approach

gives rise to inefficiencies, redundant work, and a lack of scalability [8].

By integrating heterogeneous environmental data sources and employing ad-

vanced machine learning techniques, the research seeks to improve the accuracy, reli-

ability, and efficiency of hydrological time series forecasting, ultimately contributing

to better resource management, disaster preparedness, and socio-economic planning.

1.2 Time Series Prediction

1.2.1 Time Series Definition

A time series can be defined as a sequential collection of data points that represent

measurements of an object, phenomenon, or signal. Hence, a time series T is an

ordered sequence of n real-valued variables T = (t1, . . . , tn), where ti ∈ R. [59]

These measurements are recorded at different time points, which may or may

not be at regular intervals in time. At a high level, a time series dataset can be
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categorised as either equidistant or unequidistant.

An equidistant time series can be defined as a sequential collection of data

points that represent measurements of an object, phenomenon, or signal, which

are recorded at regular intervals in time [25]. An equidistant time series is a set

of stochastic variables denoted as x1, x2, . . . , xt, . . . , xT , indexed by an integer value

t. It is a specific instance of a time series T , which is an ordered sequence of n

real-valued variables T = (t1, . . . , tn), where ti ∈ R.

The term equidistant refers to data points or observations that exhibit a uniform

spacing or even distribution in relation to time intervals [27]. In simple terms,

the time intervals between consecutive data points exhibit a constant and consistent

pattern. The use of uniform spacing in the analysis and modelling of time series data

facilitates the process of comparing and predicting values at specific time points. The

consistency afforded by such datasets simplifies subsequent data cleaning, feature

engineering and analysis stages.

An instance of an equidistant time series can be observed when daily temperature

measurements are collected at a fixed time each day, with each data point repre-

senting the temperature recorded at the end of the day. In this scenario, the time

intervals between measurements remain consistent, occurring at regular intervals of

one day.

Another example is the the hydrological monitoring network managed by the

Office of Public Works (OPW), responsible for water management and flood pro-

tection in Ireland. This network includes strategically positioned sensor-equipped

stations along rivers. These sensors record water levels at consistent intervals, such

as every 15 minutes. Table 1.1 provides an example of the water level data recorded

for the Aclint Hydrometric station for the year 2022.
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Table 1.1: Water-level time-series data for 2022 (Aclinet hydrometric station in
Ireland)

Date Value

2022-01-01 00:00:00 23.162

2022-01-01 00:15:00 23.163

... ...

2022-12-31 23:30:00 23.324

2022-12-31 23:45:00 23.325

The resulting dataset forms a time series, as illustrated in Figure 1.1, allowing for

precise monitoring of changes in river water levels over time. This data is crucial for

understanding river behaviour, forecasting potential floods, and conducting detailed

hydrological analyses.

Figure 1.1: Plot of the water-level time-series data for 2022 (Aclinet hydrometric
station in Ireland)

In contrast to equidistant time series data, ”unequidistant” or ”irregularly spaced”

time series data refer to datasets where the observations are not uniformly dis-

tributed in terms of time intervals. However, it is essential to note that the time

intervals between consecutive data points can exhibit variability, and it is possi-

ble for there to be irregular time points with gaps or missing data. Working with

unequidistant time series data can pose greater complexity due to the presence of

irregular time intervals, which can complicate various aspects such as time-based
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calculations, trend analysis, and forecasting. The analysis and modeling of such

data may necessitate the utilization of specialized methodologies to address the ir-

regular time grid and instances of missing data points. To manage non-equidistant

time series data and missing points, we employed data aggregation to summarize

and consolidate data over specified intervals. Additionally, we used interpolation to

align data from different datasets to the same time intervals and fusion techniques

to combine water level and weather condition data at the same time and location.

These methods improved the consistency and usability of the dataset.

Instances of non-equidistant time series can be observed in water flow data pro-

vided by the OPW as displayed in Table 1.2. The OPW does not engage in contin-

uous recording of river flow but, instead, relies on estimations derived from ratings

(stage-discharge relationships) and recorded water levels. This estimation approach

may lead to an inadequate time series dataset due to the absence of continuous and

direct flow measurements.

Table 1.2: Water-flow time-series data for 2022 (Aclinet hydrometric station in
Ireland)

Date Value

1996-01-01 00:00:00 9.506

1996-01-01 04:15:00 9.788

... ...

1996-12-31 11:34:00 3.507

1996-12-31 20:10:00 3.000

In this thesis, we mainly focus on hydrology time series data sets; however, it’s

vital to acknowledge that the process of aggregating multiple datasets introduces

an additional layer of complexity. The resulting time series may deviate from its

equidistant nature, particularly when dealing with temporal irregularities in the

original data. This potential transformation from equidistant to non-equidistant

data necessitates careful consideration, as it can significantly influence the out-

comes of subsequent analyses and the interpretations derived from them. Therefore,
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the choice of aggregation methods and the resulting data structure hold notable

implications for this research.

1.2.2 Time Series Prediction

Time series prediction is a critical area of study with diverse applications in fields

such as finance, climate science, and environmental monitoring. In this thesis, we

embark on an in-depth exploration of methodologies and challenges associated with

time series prediction, with a particular emphasis on environmental time series data,

specifically in the domain of hydrology.

Time series prediction involves examining and modelling sequential data points

arranged in a temporal order [28]. The aforementioned data points have the potential

to serve as observations that are systematically recorded at consistent intervals, such

as daily temperature readings, hourly fluctuations in stock prices, or monthly sales

figures. Time series prediction mainly aims to make projections about forthcoming

values, trends, or patterns by utilising past observations [36]. The importance of

accurate time series prediction cannot be overstated in various fields, such as finance

[133], economics [70], weather forecasting [212], and environmental science [77].

A key methodology in environmental science is the study of changing factors over

time, either through repeated observations or autonomous sensor networks provid-

ing consistent data streams. As such, environmental science and time series analysis

are intrinsically linked. Examples of applications of time series analysis within envi-

ronmental science include: predicting ecological events using sensor measurements

and identifying pollutant-related patterns in air quality monitoring. The field of

time series prediction encompasses a range of methodologies, spanning from tradi-

tional statistical models to contemporary machine learning algorithms [89]. These

methodologies frequently encompass identifying patterns, seasonality, and trends

within the dataset and subsequently utilising this information to generate predic-

tions. Furthermore, selecting suitable prediction models and interpreting results are

significantly influenced by domain-specific knowledge and expertise [63].
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1.2.3 Time Series Prediction Challenges

Predicting future values in time series data involves several challenges, particularly

when dealing with temporal irregularities and complex seasonality or trends. These

challenges can significantly complicate the modelling process and impact the ac-

curacy of predictions. Time series prediction is a complex and multifaceted task,

presenting several formidable challenges that demand careful consideration. These

challenges extend across various domains and are fundamental considerations in

numerous applications [140, 173]. These challenges are fundamental to time se-

ries prediction across various domains and underline the importance of addressing

them for accurate and reliable predictive modelling. This thesis aims to investigate

different methodologies and challenges related to time series prediction, with a spe-

cific focus on environmental time series data, particularly in the field of hydrology.

In many environmental applications, time series data manifest complex patterns

characterized by seasonality and trends. Environmental data, including river water

levels, serves as a poignant example of this complexity due to the influence of var-

ious factors such as weather patterns, seasonal changes, and other environmental

variables.

Temporal Irregularities

Time series data frequently exhibit temporal irregularities. Temporal irregularities

occur when data points in a time series are not spaced at consistent time intervals.

This can result from various factors such as missing data, variable sampling rates,

or external disruptions. Irregularly spaced time series data introduces complications

in applying standard analytical methods that assume uniform intervals. To handle

temporal irregularities, advanced techniques such as imputation methods, resam-

pling strategies, and time series-specific models like state-space models or Gaussian

processes are often employed.

Consider, for instance, a river flow time series dataset. Although measurements

are scheduled to be recorded hourly, real-world disruptions can occur. Factors such

as equipment maintenance, adverse weather conditions, or unforeseen issues may
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result in missing data points during specific hours. Precisely handling these irregu-

larities becomes indispensable for achieving robust predictions. Even a single gap or

anomaly can exert a substantial impact on predictive model performance [62] [98]

[128] [156].

In this research, we adopt a proactive approach by systematically checking for

temporal irregularities and thoroughly examining the data for missing values, out-

liers, and inconsistencies in time intervals. By implementing rigorous data validation

procedures, we aim to ensure the integrity and quality of our dataset, thereby bol-

stering the reliability and accuracy of our predictive models.

Complex Seasonality and Trends

Time series data often exhibit seasonality and trends that can vary in complexity.

The complex seasonal and trend patterns observed in time series data, such as river

water levels, pose challenges for machine learning because traditional modelling ap-

proaches may struggle to capture and account for these intricate patterns, potentially

leading to inaccurate predictions [195]. Seasonal variations can introduce nonlinear,

time-dependent relationships that standard machine learning algorithms might not

adequately address without specialised techniques like seasonal decomposition or

recurrent neural networks. Additionally, the presence of multiple influencing fac-

tors, such as weather patterns and environmental variables, further complicates the

modelling process and requires sophisticated feature engineering and model selection

to ensure dependable predictions. In many applications, time series data manifest

complex patterns characterised by seasonality and trends. Environmental data, in-

cluding river water levels, serves as a poignant example of this complexity due to the

influence of various factors such as weather patterns, seasonal changes, temperature,

The depth of the river, soil and other environmental variables [2].

For instance, the depth of the river and the amount of silt and soil deposits are

crucial factors that significantly influence river water levels and patterns. These

variables contribute to the overall complexity of the time series data and further

complicate the modelling process. In river systems, the depth of the river directly
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affects the volume and flow rate of water, which in turn impacts water levels over

time. Moreover, silt and soil deposits can alter the riverbed’s topography, affecting

the flow of water and potentially leading to changes in water levels.

Another example to mention is that during the spring months, river levels surge

significantly due to snowmelt or increased rainfall, while in the dry summer months,

levels recede. hence, the river water level dataset can exhibits distinct seasonal

patterns.Accurately modelling and effectively incorporating these intricate seasonal

and trend patterns into predictive models is paramount for attaining dependable

predictions.

In summary, while time series prediction is a powerful tool for forecasting fu-

ture values based on historical data, it requires careful consideration of temporal

irregularities and complex seasonal/trend patterns. Advanced modelling techniques

and robust data processing methods are essential for handling these challenges and

achieving accurate predictions.

Multisource Heterogeneous Time-Series Fusion

Data collected for various applications often emanate from multiple sources, result-

ing in heterogeneity and diverse data structures [124]. Different types of sensors,

devices, or data collection methods may lead to variations in sampling periods, fre-

quencies, and information content. Temporal data from multiple datasets rarely

occur with the same frequencies or granularity, leading to a bespoke integration

methodology. Efficientl merging such multisource heterogeneous data is critical to

achieving accurate predictions.

Low-Quality Time-Series Processing

The assurance of high-quality data is not always guaranteed, as environmental con-

ditions, equipment failures, sensor malfunctions, and data transmission errors can

introduce various issues [111]. These challenges may encompass missing data, un-

filterable noise, or the presence of inaccurate and incomplete values. Effectively

processing noisy and missing data is vital to enhance data quality for subsequent

analysis and prediction.
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Complex Time-Series Representation

In many applications, time series data become increasingly complex, characterised by

high throughput, multidimensionality, nonlinearity, and non-Gaussian distributions

[109]. Extracting meaningful insights from such complex data poses a formidable

challenge. Traditional statistical and signal processing methods may struggle to

capture the temporal and spatial correlations present in raw sensor data. The de-

velopment of high-performance representation learning methods is essential to ad-

dress these challenges [167]. While complexities in time series data are common,

they are particularly challenging in river water level prediction. In this research,

we emphasize the need for advanced representation learning methods to effectively

handle these complexities, ultimately improving the accuracy of our predictions for

better water resource management.

Time-Series Distribution Shift Alignment

Time-Series Distribution Shift Alignment” refers to the management and adjust-

ment of variations or shifts in the distribution of time series data over time. For

example, fluctuations in operating conditions, changes in data availability, or shifts

in environmental factors can all lead to deviations from the assumption of data

being independent and identically distributed. By addressing these shifts through

appropriate methodologies, such as data normalization or adaptation techniques,

we aim to ensure the robustness of predictive models in handling evolving data

distributions. This concept is central to our investigation of time series prediction

methodologies, particularly in the context of environmental time series data analy-

sis, such as in hydrology. Operating conditions in various processes can exhibit high

variability, challenging the assumption of data being independent and identically

distributed [93]. Datasets availability may also vary, and security concerns, along

with the cost of accessing data, can pose challenges. Furthermore, differences in op-

erating environments and equipment conditions may lead to expensive, unlabeled,

and imbalanced data. Managing distribution shifts in time series data is crucial to

ensure the robustness of prediction models.
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1.3 Proposed Solution: Metadata learning

In the preceding section, we discussed the challenges associated with model selection

for time series data. We emphasised that time series data come in various forms

and structures, and selecting a single, universal model to represent all types of time

series data is often impractical. Each set of features within a time series dataset

may necessitate a different type of machine learning model to effectively capture its

underlying patterns and behaviors. As a result, the traditional approach of finding

a one-size-fits-all model is not suitable for the complex and diverse world of time

series data analysis. This limitation prompts the need for alternative approaches

that can adapt to the unique characteristics of each dataset and select the most

appropriate model accordingly. One promising avenue for addressing this challenge

is meta-learning

1.3.1 Meta-Learning Definition

Meta-learning, often referred to as ”learning to learn,” is a subfield of machine

learning and artificial intelligence that focuses on developing models or algorithms

capable of learning and adapting quickly to new tasks or domains. A key issue

in machine learning is in determining the optimal model for a given problem and

dataset. In traditional data science a researcher will train and evaluate a number

of models and hyperparameter configurations on a given dataset to evaluate which

model provides the optimal performance. As datasets evolve or new datasets are

presented to the system this process repeats to identify a “new” optimal model.

This process is expensive in both time and resources utilised, as such, meta-learning

has evolved as a subfield within machine learning to overcome these issues [200],

[197], [175], [18], [171].

Unlike traditional machine learning, where models are trained for specific tasks,

meta-learning aims to create models that can generalise their learning experiences

across a wide range of tasks. In essence, meta-learners learn how to learn. Meta-

learning can also be applied to the domain of model selection [99]. In this context,

27



A Meta-Learning Approach for Hydrological Time Series Model Selection

meta-learning focuses on developing techniques and algorithms that help automate

and optimise the process of selecting the most suitable machine learning or statistical

model for a given task or dataset.

In this context, meta-learning involves the following steps:

• Meta-Feature Extraction: The first step in meta-learning for model selec-

tion is the extraction of meta-features from the dataset. These meta-features

characterise the dataset’s properties, such as its size, dimensionality, skewness,

and other statistical attributes. Meta-features serve as descriptors that help

in understanding the dataset’s characteristics.

• Meta-Dataset Creation: Meta-features from various datasets are collected

to create a meta-dataset. Each instance in the meta-dataset corresponds to a

specific dataset, and the associated label indicates the best-performing model

or algorithm for that dataset. These labels are obtained through experimen-

tation or benchmarking.

• Meta-Learner Training: The meta-dataset is used to train a meta-learner.

The meta-learner’s objective is to learn patterns or rules that relate the dataset’s

meta-features to the optimal model or algorithm choice. This training phase

aims to capture the relationships between dataset characteristics and model

performance.

• Meta-Model Selection: Once the meta-learner is trained, it can be em-

ployed to automatically select the most suitable model or algorithm for a new,

unseen dataset. When presented with a new dataset, the meta-learner uses

the extracted meta-features to predict which model is likely to perform best.

This automates the model selection process.

• Hyperparameter Tuning: In addition to model selection, meta-learning

can also be extended to optimise hyperparameters for the selected model. The

meta-learner can predict both the model choice and the hyperparameters that

are likely to yield the best results for a given dataset.
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Benefits of Meta-Learning for Model Selection

The benefits of meta-learning for model selection offer valuable insights into

the efficacy and efficiency of employing such techniques in predictive modeling.[163]

Meta-learning reduces the need for manual experimentation and trial-and-error in

selecting the appropriate model for a specific dataset. It automates the process and

can save considerable time and computational resources. Meta-learning models can

generalize from the patterns they have learned across various datasets. This means

that they can make informed decisions for new datasets, even if those datasets differ

significantly from those used during training. As the number of available machine

learning models and algorithms continues to grow, meta-learning provides a scalable

approach to model selection. It can adapt to a wide range of choices without the

need for manual intervention. Meta-learning can help mitigate the risk of selecting

suboptimal models, which can be especially important in critical applications where

model performance is crucial.

In summary, meta-learning for model selection leverages machine learning tech-

niques to automate the process of choosing the right model or algorithm for a given

dataset. It enhances efficiency, generalisation, scalability, and robustness in the

model selection process, making it a valuable tool in machine learning and data

science.

Applications of Meta-Learning for Model Selection

Meta-learning for model selection has been applied in various domains and ap-

plications to automate and optimise the process of choosing the most appropriate

machine learning or statistical model [112]. Here are some examples of how meta-

learning has been applied elsewhere:

1. Computer Vision: In computer vision tasks, such as object recognition and

image classification, meta-learning has been used to automatically select the

most suitable convolutional neural network (CNN) architecture and hyperpa-

rameters for a given image dataset. This approach improves the efficiency and

accuracy of image classification systems [139].
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2. Natural Language Processing (NLP): In NLP applications, such as text

classification and sentiment analysis, meta-learning helps in selecting the op-

timal text classification model, such as recurrent neural networks (RNNs) or

transformer models like BERT. It also assists in fine-tuning hyperparameters

to improve text classification accuracy [220].

3. Recommendation Systems: In recommendation systems, meta-learning is

used to determine the most effective recommendation algorithm for a spe-

cific user or item dataset. It optimises the selection of collaborative filtering,

content-based filtering, or hybrid recommendation models [49].

4. Anomaly Detection: In anomaly detection tasks, where the goal is to iden-

tify unusual patterns or outliers in data, meta-learning helps in selecting the

most suitable anomaly detection algorithm and setting appropriate thresholds

based on characteristics of the data [53].

5. Healthcare: Meta-learning is applied in healthcare for disease diagnosis and

patient risk prediction [221]. It assists in selecting the best machine learn-

ing model for medical image analysis, clinical data interpretation, or patient

outcome prediction based on different medical datasets.

6. Finance: In financial applications, meta-learning aids in selecting predictive

models for stock price forecasting, credit risk assessment, and fraud detection

[5]. It identifies the most effective algorithms for handling financial data with

varying characteristics.

7. Robotics and Autonomous Systems: Meta-learning has been used in

robotics and autonomous systems to select control policies or motion planning

algorithms based on the robot’s environment and task requirements. It helps

robots adapt to different scenarios effectively [55].

8. Energy Management: In energy management applications, such as energy

consumption prediction or load forecasting, meta-learning aids in selecting
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regression models or time series forecasting algorithms to optimise energy re-

source allocation and consumption predictions [123].

9. Environmental Monitoring: Meta-learning can optimise the selection of

models for environmental monitoring tasks, such as river water level predic-

tion or weather forecasting. It considers the geographical location, historical

data, and specific environmental factors to choose the most suitable forecasting

model [58].

10. Time Series Forecasting: Meta-learning can be applied to time series fore-

casting, where it selects the best forecasting model (e.g., ARIMA, LSTM, or

Prophet) based on the characteristics of the time series data. It also helps

in setting appropriate hyperparameters for these models to achieve accurate

predictions [121].

In each of these domains, meta-learning techniques automate and enhance the

model selection process, making it possible to adapt to different datasets and tasks

efficiently. This approach saves time and resources while improving the performance

and accuracy of machine learning applications.

In the field of hydrology, with a specific focus on water level prediction, the

challenge of model selection is prominent. River water level data are highly diverse,

influenced by seasonal fluctuations, geographical factors, and meteorological condi-

tions. These complexities result in intricate, nonlinear patterns, making it difficult

to create a single, reliable predictive model for various river systems. Traditional

modelling approaches, designed for specific datasets, often struggle to generalise ef-

fectively. They may fall short in providing accurate predictions due to the diverse

nature of river water level data. The conventional practice of evaluating numerous

models, each customised for a particular dataset or river system, is resource-intensive

and impractical given the wide-ranging variations in the data. Here, meta-learning

offers a promising solution. It introduces adaptability and efficiency to the model

selection process. By employing meta-learning techniques, we can automate and
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optimise model selection. Meta-learners, adept at quick adaptation to new data,

enhance their predictive performance by leveraging insights gained from diverse

training datasets.

In summary, in the field of hydrology, especially in water level prediction, meta-

learning stands out as an effective strategy for addressing the challenge of model

selection. Its ability to enhance adaptability and selection aligns seamlessly with

the nuances of water level prediction, promising more accurate and reliable results

in this critical domain.

1.4 Thesis Contribution and Research Questions

This study embarks on a comprehensive exploration within the domain of enhanc-

ing time series prediction in environmental research, characterised by a multifaceted

interplay of methodologies, data integration, and model selection. With a specific

emphasis on the adoption of meta-learning methods, this research pursues a tri-

partite objective: Firstly, to dissect the intricacies associated with environmental

data integration, a foundational component for informed decision-making; secondly,

to examine the intricate challenges intrinsic to time series prediction, with a dis-

tinct focus on the hydrology domain; and lastly, to investigate applicability of the

meta-learning techniques in model selection for time series predictions.

Question 1: How can we develop a robust and unique approach to

integrating heterogeneous environmental datasets, considering variations

in spatiotemporal resolution, data format, and attribute representation?

Robust environmental data integration is a critical component in improving the

accuracy and reliability of time series predictions, especially when dealing with het-

erogeneous ecological datasets, including those in the field of hydrology. To address

this, we propose a robust system adept at spatiotemporal integration, seamlessly

merging multidimensional data from diverse sources to offer a comprehensive view

that spans time and space. This multidisciplinary approach, which joins the sophis-

tication of IT and the practicality of hydrology, is crucial for maintaining research
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integrity, guiding informed decisions, and assuring quality.

Question 2: What are the main challenges of developing accurate pre-

dictions for environmental time series data, particularly within the hy-

drology domain?

Whether traditional statistical models or modern machine learning algorithms,

the choice of prediction models significantly impacts the accuracy of time series

predictions. To address this challenge, this research explores machine learning al-

gorithms for water level prediction in multiple locations within seven river basin

districts in Ireland. Utilising historical water level data, we strive to establish reli-

able predictive models. Detailed methodologies and the results of the comparative

analyses will be presented in subsequent chapters. The main research focus areas are

developing and optimising deep learning methods, to improve river water level pre-

diction accuracy. Through the innovative development of model architectures and

data integration strategies tailored to the distinctive challenges inherent in river wa-

ter level forecasting, this research endeavors to make substantive contributions to

the continual evolution of predictive methodologies within this domain.

Question 3: Can meta-learning techniques be effectively applied to

address the model selection problem for environmental time series data?

Environmental data differs from other sensor data due to its diverse variables,

spatial and temporal variability, complex interactions, susceptibility to external fac-

tors, challenges in data quality and availability, and high stakes for stakeholders.

These factors make predicting outcomes from environmental data particularly chal-

lenging and crucial for decision-making.

The application of meta-learning techniques can potentially improve the reliabil-

ity of time series predictions, especially in the context of environmental data, with

a particular focus on hydrology. We explore the potential of meta-learning as a

valuable tool for addressing the complex challenges intertwined with the selection

of an optimal prediction model. We conduct an in-depth analysis of the limitations

and intricacies inherent in the process of identifying the most appropriate model for
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time series data. In response to these challenges, we introduce meta-learning as a

compelling and advantageous solution. Through this exploration, we aim to shed

light on the significant contributions that meta-learning can make in enhancing the

model selection process.

In summary, by addressing these research questions and hypotheses and combin-

ing insights from environmental data integration, time series prediction, and meta-

learning techniques, we aim to provide valuable insights into the utility and viability

of meta-learning as a tool for enhancing the predictive capabilities of models in the

complex and critical domain of river water level forecasting.

1.5 Thesis Outline

Chapter 2 offers a comprehensive exploration of previously discussed research related

to data integration, machine learning for time series prediction and meta-learning.

Our review covers environmental data integration, machine-learning techniques for

hydrology predictions and meta-learning for time series model selection.

Chapter 3 provides the spatiotemporal methodologies for environmental data

integration. We begin by introducing the chapter and then delve into the method-

ology and architecture required for this type of data integration. This includes data

sourcing, extraction, transformation, mapping, and integration, focusing on spatial

and temporal aspects. We also evaluate environmental case studies, showcasing real-

world applications of the Spatio-Temporal Environmental Data Integration (STDI)

approach. The chapter concludes with a summary of the findings.

Chapter 4 of this thesis is dedicated to evaluating machine learning approaches

for river water level predictions. We introduce the chapter and then discuss the

study area and the data used for the experiments. The Proposed methodology

involves data collection, preprocessing, model development, and model evaluation.

In Chapter 5 we focus on meta-learning approaches for time series model se-

lection. We start by addressing the challenges associated with model selection in

hydrology, covering traditional approaches and highlighting the limitations in han-
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dling physical processes and uncertainties. We then delve into time series prediction,

discussing time series features and model selection methods.

The thesis concludes with a summary in Chapter 6 that revisits the key points

and contributions made by the research journey. We provided an overview of the

entire thesis and its findings. Additionally, we discuss the implications of this work

and how it advances the field of environmental data integration and hydrology pre-

dictions. Finally, we outline potential areas for future research.
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Chapter 2

Literature Review

The primary problem addressed in this research is the prediction of hydrological time

series data, specifically river water levels, to improve flood prediction, water resource

management, and environmental monitoring. Accurate predictions are crucial for

mitigating the impacts of floods, managing water resources efficiently, and ensuring

environmental sustainability.

To develop a meta-learner capable of addressing this problem, we draw upon

state-of-the-art research from multiple domains. This requires extensive knowledge

of data engineering and data integration to construct a suitable dataset from hetero-

geneous sources. Subsequently, advanced machine learning techniques are employed

to identify candidate models and develop a baseline dataset, which serves as the

foundation for training a meta-learning system. Finally, the meta-learner is trained

and evaluated to determine its efficiency and effectiveness in predicting hydrological

time series data.

To conduct the literature review, we employed a systematic approach, ensuring

comprehensive coverage of relevant studies and methodologies. We identified key

databases and sources, including Google Scholar, IEEE Xplore, ScienceDirect, and

SpringerLink, using specific keywords and phrases such as ”environmental data in-

tegration,” ”machine learning for hydrology,” ”time series prediction,” and ”meta-

learning for model selection.” We screened articles based on their abstracts and

titles, prioritizing recent publications (from the last 10 years) and including older
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seminal works where necessary. Detailed reviews focused on methodologies, data

sources, model evaluation techniques, and key findings, critically analyzing each

study’s contributions, limitations, and applicability to our research.

The integration of multiple time series in this research is crucial for enhanc-

ing the prediction of hydrological data, specifically river water levels. The primary

goal is to improve flood prediction, water resource management, and environmental

monitoring. While predicting river water levels is inherently a time series problem,

relying solely on historical river water levels may not capture the full complexity of

the factors influencing these levels. Therefore, we integrate various time series from

different sources to create a more robust and comprehensive predictive model. In

addition to using previous river water levels, we incorporate other relevant variables

such as temperature, humidity, precipitation, and real-time air and water quality

measurements. These variables come from diverse data sources, including remote

sensing platforms, weather stations, ground-based sensors, and citizen science ini-

tiatives. By combining these multiple time series, we can account for the various

environmental factors that affect river water levels, thereby improving the accuracy

and reliability of our predictions. This integrated approach allows us to address the

complex and dynamic nature of hydrological systems more effectively than using a

single time series alone.

Additionally, this chapter provides a comprehensive literature review structured

to ensure a thorough understanding of the problem, the current state of research, and

the innovative methodologies employed in this study to advance the field of hydrolog-

ical predictions. Section 2.1: examines environmental data integration approaches,

with a focus on spatiotemporal integration, to address the challenges of merging

diverse environmental datasets. Section 2.2: delves into the application of machine

learning techniques for hydrology predictions, highlighting various models and their

performance in predicting river water levels. Furthermore, Section 2.3: discusses the

application of meta-learning for model selection, exploring how meta-learning can

enhance the accuracy and reliability of time series predictions by automating the
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model selection process. This structured approach ensures a thorough understand-

ing of the problem, the current state of research, and the innovative methodologies

employed in this study to advance the field of hydrological predictions.

2.1 Environmental Data Integration

Environmental management relies heavily on data collection, analysis, and integra-

tion. In this digital age, data-driven approaches, particularly in Machine Learning

and Information Technology, are pivotal in addressing critical environmental con-

cerns, assessing outcomes, and predicting future trends across various scientific do-

mains [110] [209]. Environmental datasets are critical in understanding and address-

ing complex environmental phenomena and issues like climate change, floods, and

natural resource management. The increasing availability of diverse environmen-

tal data from various sources, including sensor networks, field sampling and citizen

science initiatives, offers unprecedented opportunities for advancing understanding

of environmental processes and interactions [129]. However, these datasets often

exhibit significant heterogeneity in terms of spatiotemporal resolution, data format,

and attribute representation, posing significant challenges for effective data integra-

tion [185]. Effective integration of environmental data is crucial for accurate anal-

ysis, informed decision-making, and the development of sustainable policies [218].

While existing approaches for integrating environmental data, such as data harmon-

isation and fusion techniques, have made strides in addressing data heterogeneity

[147], coping with the inherent complexity of environmental data remains challeng-

ing, especially when dealing with data represented by points or polygons [29]. This

limitation impedes the development of comprehensive environmental models and

analyses, highlighting the pressing need for innovative integration methods to navi-

gate these complexities effectively [75]. Hence, the primary motivation for creating

an environmental data integration system is to address the critical need to efficiently

manage and analyse environmental data.
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2.1.1 Data Sources

As we undertake a more thorough examination of the complexities involved in en-

vironmental data integration, it becomes evident that accessing reliable and diverse

sources of information is paramount. To achieve a comprehensive understanding

of complex environmental phenomena, we must turn this research attention to the

critical data sources available from remote sensing platforms, as exemplified by the

Earth Observing System by NASA and the Copernicus program by the European

Space Agency, which provide indispensable datasets for monitoring land cover, veg-

etation health, and atmospheric conditions [127] [60].

Furthermore, weather stations are crucial in climate research as they provide es-

sential data pertaining to temperature, humidity, precipitation, and other relevant

variables [57]. Ground-based sensors are crucial in providing real-time air and water

quality measurements, which are indispensable for conducting environmental assess-

ments [199]. Geographic Information Systems (GIS) play a crucial role in spatial

analysis and modelling by integrating geospatial data [72]. Government agencies,

such as the Environmental Protection Agency (EPA), curate extensive datasets on

air and water quality [199]. Including scientific research conducted by academic

institutions enhances the data landscape. Citizen science initiatives offer significant

contributions by collecting data from many individuals on diverse environmental

parameters [47]. Continuous and high-resolution data can be obtained through re-

mote sensors and Internet of Things (IoT) devices [22]. Numerical models generate

simulated data for validation and forecasting [138]. Using historical records and

archives contributes to comprehending enduring patterns over an extended period

[157]. Social media and web sources can capture real-time public perceptions re-

garding environmental issues [177]. Environmental and biological surveys play a

significant role in providing valuable data about species, population dynamics, and

biodiversity [76].

Incorporating these various data sources is crucial in tackling urgent environ-

mental issues comprehensively [75].
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2.1.2 Data Types, Formats and Quality

Within the task of environmental data integration, the presence of various data types

and formats offers both advantageous prospects and obstacles, thereby expanding

upon the foundation of previously examined data sources. Researchers are faced with

diverse data types in their research tasks. These include numerical measurements,

such as temperature and pollutant concentrations; categorical data, such as land use

classes and species presence; temporal data, such as time-series measurements and

climate records; and geospatial data, such as GPS coordinates and remote sensing

imagery. These data are collected from multiple sources, such as satellites, weather

stations, and ground-based sensors.

The previously mentioned data types are commonly stored in many formats,

including spreadsheets, databases, geospatial files (e.g., shapefiles), and text docu-

ments, which accurately represent the heterogeneous sources of the data. Moreover,

it is common for environmental data to possess multidimensional features, requir-

ing specialised data structures such as netCDF (Network Common Data Form) to

manage intricate multidimensional datasets. The heterogeneity of data types and

formats poses significant obstacles to achieving interoperability, demonstrating the

importance of data harmonisation and standardisation in facilitating successful inte-

gration endeavours [213]. The utilisation of emerging standards, such as the Climate

and Forecast (CF) metadata conventions for netCDF files [57] and open data proto-

cols, such as those established by the Open Geospatial Consortium (OGC), play a

crucial role in enabling the exchange and integration of data within the environmen-

tal research community. Furthermore, the utilisation of data modelling methodolo-

gies, such as the Observations and Measurements (O&M) model developed by the

Open Geospatial Consortium (OGC), facilitates the organisation of environmental

data to enable smooth integration and analysis [48].

Ensuring data quality is essential in environmental data integration. Attribute

inconsistencies and data quality issues can lead to skewed or misleading conclusions.

Solutions such as schema matching, data transformation, and data quality assess-
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ments have been proposed to maintain data consistency and reliability. However,

these methods may require deep domain knowledge and scalability improvements for

larger datasets. Addressing temporal and spatial variations in integrated datasets

presents an ongoing research challenge [147] [52] [16].

2.1.3 Data Warehouse Concepts and Architecture

Nowadays, as mentioned in [17] research, datasets can be significant in some con-

texts. Therefore, they necessitate new technology solutions allowing storage, update,

and efficient exploitation. Data Warehouses (DW) were developed in the 1980s to

allow users to undertake Business Intelligence (BI) as an alternative to storing and

organizing data in traditional databases.

2.1.3.1 Data Warehouses

When dealing with heterogeneous datasets, it is crucial to present a unified view of

the data to ensure consistency and facilitate comprehensive analysis. This is where

Data Warehouses (DWs) come into play, offering an effective solution to integrate

diverse data sources and provide a coherent data environment.

Many DW definitions are available in the literature; according to [13], it is a

collection of approaches and technologies that, when combined, give a systematic

and pragmatic approach to solving the end-user problem of obtaining information

that is dispersed across multiple systems inside an organisation. In [91], a Data

Warehouse (DW) is defined as a data collection that is subject-oriented, integrated,

evolving over time, non-volatile, and primarily utilised to facilitate decision-making

processes. According to [106], a DW is a data source for an organisation formed by

combining all appropriate data marts.

This study gives a generic view of DW phases and states that DW design should

incorporate different approaches and solutions, such as data cubes. This study also

defines six phases to build a DW (the DW Lifecycle): Data sources, staging area,

integration patterns, DW, dimension construction, and data analysis tools.
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The traditional operational database concept and the DW concept are differ-

ent. Therefore, a brief comparison is needed to understand the DW concept and its

applications better. Operational databases store the data required to run the organ-

isation’s daily activities. Users utilise them to register and execute predefined tasks.

Therefore, their data may change when new organisational requirements emerge.

This database does not require a vast storage capacity because there is no data

redundancy, and no historical data is stored.

In contrast, a DW already holds the analytical data needed by management

to make decisions. It is designed for vast amounts of data because it must sup-

port extensive analytical processes and long-term data storage. These capabilities

are necessary to enable complex queries, generate comprehensive reports, and pro-

vide insights that drive strategic decision-making. As a result, the DW requires

significant processing power and storage capacity to manage and analyze detailed

and summarized data efficiently. This includes components such as ETL (Extract,

Transform, Load) processes, metadata, data marts, and OLAP tools, all of which

work together to facilitate efficient data management and analysis. Data in a DW

are detailed and summarized, providing analytical views from operational datasets.

Additionally, DWs are multidimensional structures that integrate and consoli-

date information using different schemas and models [4]. Multidimensional schema

was explicitly created for modelling data warehousing systems. The three primary

types of DW schemas are the Star Schema, Snowflake Schema, and Galaxy Schema.

The schemas are intended to meet the particular requirements of extensive databases

used for analytical purposes or Online Analytical Processing (OLAP). OLAP is a

subset of BI, and it is a technique used in computing that enables rapid response to

multidimensional analytical (MDA) queries. OLAP is a data processing and control

technique based on dimensional views. Multidimensional arrays are used as struc-

tures to store pre-calculated values in a given dimensional structure that takes a

long time to build but reads quickly. The Snowflake model, for example, is utilised

in Online Analytical Processing (OLAP) in a BI application [37] [106].
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Multidimensional structures, such as data cubes, store information in the DW.

Initially, the data cube was intended to use OLAP tools, making it easier to access

multidimensional data and facilitate the interpretation of data [69]. It is particularly

advantageous when expressing data with dimensions as specific measures of business

requirements. Each cube dimension reflects a different database attribute, such

as daily, monthly, or yearly precipitation. As a result, a data cube can aid in

establishing trends and analyzing performance. This pre-computation allows users

to pose previously unseen aggregate queries on a data warehouse efficiently. Since

the data cube stores pre-calculated aggregate data, it significantly speeds up query

response times for complex analytical queries. For example, management can quickly

retrieve information on sales performance across different regions and time periods

without having to perform complex calculations on the raw data. This enables faster

decision-making and more effective analysis of large datasets.

Data cubes are primarily classified into two types [45]. The first is a multidimen-

sional data cube. Most OLAP products are built on a multidimensional data cube

structure. These multidimensional OLAP products (MOLAP) typically perform

better than other approaches because they can be indexed directly into the data

cube’s design to gather large subsets of data. The second is Relational OLAP (RO-

LAP), which uses the relational database model. Compared to a multidimensional

array, the ROLAP data cube is used as a collection of relational tables (roughly

twice as many as the number of dimensions). Each of these tables is called a cuboid,

representing a particular view. In addition, OLAP also has other types, such as

HOLAP (Hierarchical-OLAP) [132]. The variations are related to the way data is

stored for OLAP. It is true that the processing remains online analytical processing,

yet the storage methodology is different.

Usually, A DW architecture comprises three main layers [174]. First, the data

acquisition layer includes data sources (both internal and external). Data sources

frequently utilise various systems and applications and a mix of network and rela-

tional data models to store the information they collect. Then, the data storage
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layer extracts the data from the various source systems. The information is then

supplied to the staging area, where it is processed. Last, the data delivery layer

prepares data that can be accessed via dynamic queries while maintaining a high

efficiency level.

Data and information are always available in the DW, allowing strategic plans to

be tested, evaluated, assessed, and monitored confidently. A DW is part of an overall

data environment that serves as a single integrated data source for information

processing that is subject-oriented, integrated, time-variant, and non-volatile [91]:

• Subject-oriented means that information in a DW is categorised around spe-

cific subjects, which differs from transactional systems that organise data ac-

cording to business processes. The DW stores crucial information following its

future use-case scenarios. The vital point is that defining what information is

critical when building DWs is essential.

• Integration is a crucial feature of DWs. Integration defines a unique represen-

tation of data from many sources stored in the DW.

• Time variant means that DWs store historical data and include date-time as

an important variant. Historical data is required to discern patterns and long-

term relationships in a specified time frame [91]. Like the data, metadata

has temporal characteristics. Hence, future changes will not alter the current

meta-data status.

• Non-volatile means that data within the DW is not updated directly by the

users; this ensures that all users work on the same data version. Therefore,

users can only query data after the loading phases.

Data quality is a critical aspect of DWs, as it directly impacts the reliability

and usability of the information stored. References to frameworks like OGC (Open

Geospatial Consortium) [101] and INSPIRE (Infrastructure for Spatial Information

in the European Community) [14] highlight the importance of standardization and

data quality in geospatial datasets. A key consideration in maintaining data quality
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within a DW is deciding whether to address issues such as null values and outliers

at the data integration stage or defer these adjustments until the analytics phase.

This decision impacts both the design and the operational efficiency of the DW.

2.1.3.2 Data Integration Architectures: ETL and ELT

Data integration involves transferring data from source systems to a Data Warehouse

(DW) using various architectural patterns. One critical distinction among these pat-

terns lies in the timing of data transformations within the data-processing pipeline.

Additionally, the technologies, algorithms, and optimisation methods employed in

the process depend on the chosen pattern [92].

ETL (Extract-Transform-Load) [201] is the conventional data integration pat-

tern involving transforming data before loading it into a DW. This method follows a

structured three-step procedure: extraction, transformation, and loading. Initially,

ETL collects vast amounts of raw data from diverse sources, transforms it into a

unified predefined schema, and then loads it into the data warehouse. Typically,

ETL serves as the primary method for importing data from one source to another.

In a typical ETL process, data is gathered from various sources, staged, and subse-

quently loaded into the warehouse. Transformations occur before the data is loaded

into a predefined schema. This results in a data repository highly optimised for

analytical queries; however, the bespoke integration transformation steps coupled

with a predefined schema mean that subsequent changes to the source dataset or

the addition of new data sources require significant investment to change.

In contrast, the ELT (Extract-Load-Transform) [136] pattern involves loading

data into a data lake first and then performing transformations. ELT offers a notable

advantage regarding rapid data ingestion, making it suitable for use with NoSQL

databases and data lakes when immediate data collection is necessary, regardless of

raw data format or value. In a typical ELT process, data integration technologies

push multiple data sources into the data lake, which is then transformed into a

cube or data mart. Unlike ETL, ELT allows real-time data loading from source
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systems, and it does not require coding changes in response to alterations in the

source column or data structure.

The choice between ETL and ELT depends on various factors, including data

volume, system compatibility, and the desired speed of data ingestion. ETL focuses

on transformation before loading, while ELT prioritises rapid data ingestion and

post-load transformations. Understanding the distinctions between ETL and ELT

is important for effective data management, as they influence how quickly data

can be processed and made available for analysis. ETL is often preferred when

complex data transformations are required before storage, ensuring data quality and

consistency. In contrast, ELT is suitable for environments where quick data loading

is essential, with the processing power of the destination system being leveraged for

transformation tasks. ELT is also advantageous when requirements are unclear and

subject to change, making it an ideal mechanism for data science applications.

2.1.4 Environmental Data Integration Challenges

Environmental data integration is essential for gaining insights into complex environ-

mental and climatic phenomena. However, this process has its challenges. Outlined

below are some common limitations associated with environmental data integra-

tion, as well as considerations related to ETL (Extract, Transform, Load) and ELT

(Extract, Load, Transform) data integration processes:

1. Data Variety: Environmental data comes in various forms, including remote

sensing imagery, climate models, field measurements, and textual reports. In-

tegrating these diverse data types can be a complex task.

2. Data Quality: Ensuring the accuracy and reliability of environmental data is

crucial for informed decision-making. Errors or inconsistencies in data can

lead to flawed analyses.

3. Real-Time Data Needs: Environmental monitoring often requires real-time

data integration to respond promptly to changing conditions, such as natural
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disasters or pollution events.

4. Data Volume: Environmental data, especially high-resolution imagery and

continuous sensor data, can result in massive data volumes. Managing, pro-

cessing, and storing such data can be resource-intensive.

5. Data Source Diversity: Environmental data originates from numerous sources,

including government agencies, research institutions, satellites, and local sen-

sors. Integrating data from these diverse sources can be a significant challenge.

6. Spatial and Temporal Considerations: Environmental data frequently involves

complex spatial and temporal dimensions. Integrating data with varying res-

olutions and timeframes requires specialised techniques.

7. Data Governance: Environmental data integration must adhere to data gover-

nance practices, including security and compliance with environmental regu-

lations, which can be intricate due to the diverse sources and sensitive nature

of the data.

8. Metadata Management: Maintaining metadata for environmental data is es-

sential for understanding data lineage, context, and quality. Proper metadata

management is critical for meaningful interpretation.

9. Interoperability: Achieving interoperability between various environmental

data systems and standards is essential for seamless data integration and stake-

holder collaboration.

10. Complex Transformations: Environmental data often requires complex spatial

and statistical transformations to derive meaningful insights, adding complex-

ity to integration processes.

11. Sustainability: Environmental data integration solutions should consider envi-

ronmental sustainability, as large-scale data processing can have an ecological

footprint.
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Addressing these challenges in environmental data integration requires a holistic

approach that combines advanced technologies, domain expertise, data governance

practices, and ongoing monitoring. The ability to harness and integrate environ-

mental data effectively is pivotal for making informed decisions related to climate

change, natural resource management, and environmental conservation.

In response to data integration limitations, researchers have explored alternative

strategies for data integration in environmental studies. These alternatives include

data harmonisation, data fusion, and interoperability solutions. These approaches

aim to align, transform, and amalgamate datasets, reducing the risk of information

loss in the integration process [147].

Spatiotemporal data integration (STDI) is an emerging research domain that

addresses the challenges of integrating data with temporal and spatial variations,

particularly in the context of environmental data. STDI holds the promise of im-

proving the understanding of environmental systems and enhancing the ability to

predict human-induced environmental impacts. The integration of data from diverse

sources is particularly critical in environmental monitoring to track temporal shifts

in environmental conditions.

Several studies have utilised spatiotemporal data integration (STDI) for diverse

applications. Some of these include monitoring water quality in lakes [215], track-

ing land cover and usage changes [83], and air quality monitoring [126]. These

studies underscore STDI’s potential for accurately detecting environmental changes

and demand efficient data integration and management to facilitate the analysis

and interpretation of diverse datasets from various sources [187]. Geographic Infor-

mation Systems (GIS) have traditionally served as a primary tool for integrating

such datasets [186]. However, these conventional methods have inherent limitations

that pose significant challenges to the integration process. GIS-based integration

techniques, while valuable, often require adjustments when dealing with complex

temporal data or data from non-geospatial sources. Additionally, they may need

help with seamless integration due to inconsistencies in attribute values and vary-
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ing data structures [225]. Moreover, the computational and storage constraints of

GIS systems can become bottlenecks when handling extensive and intricate datasets

[208].

While STDI offers promising solutions for integrating environmental data with

temporal and spatial variations, it is essential to acknowledge that challenges persist

in achieving comprehensive and reliable data integration. Attribute inconsistencies

and data quality issues remain significant hurdles that can lead to skewed or mislead-

ing conclusions in environmental studies, particularly within the context of STDI

[52]. Various solutions have been proposed to address these challenges, including

schema matching, data transformation, and data quality assessments[16]. However,

implementing these solutions effectively within the realm of STDI can be particu-

larly complex due to the unique characteristics of environmental data. Additionally,

scaling these methods for handling more extensive and diverse datasets remains an

ongoing research focus within the field of environmental data integration.

In the context of environmental research, the integration of diverse data sources

and the challenges it presents lay the foundation for more advanced predictive mod-

elling techniques. As the previous section explored the complexities of environmental

data integration, the following section move into the realm of predictive modelling,

explicitly focusing on machine learning algorithms and their applications in hydrol-

ogy predictions. This section illustrates how overcoming data integration challenges

can lead to more informed and accurate predictions, ultimately contributing to a

better understanding of complex environmental systems.

Advancements in spatiotemporal data integration for environmental research

have enabled a more comprehensive understanding of complex environmental pro-

cesses and interactions. These advancements are crucial for addressing critical en-

vironmental concerns, such as climate change, floods, and natural resource manage-

ment. Diverse data sources, including remote sensing platforms, weather stations,

ground-based sensors, GIS, government agencies, citizen science initiatives, IoT de-

vices, numerical models, historical records, social media, and biological surveys,
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have provided an extensive data landscape for researchers to work with. Further-

more, the development and adoption of data standards, such as netCDF and OGC

protocols and data modelling methodologies like Observations and Measurements

(O&M), have improved data harmonisation and standardisation.

However, several limitations persist in spatiotemporal data integration for en-

vironmental research. These limitations include data quality issues, data volume

and scalability challenges, heterogeneity of data sources, the modelling of complex

spatial and temporal relationships, interoperability difficulties, data privacy and

security concerns, and the need for substantial computational resources. These

challenges can impede the efficient integration and analysis of environmental data,

especially when dealing with large and complex datasets. Nevertheless, researchers

and practitioners in this field continue to innovate and develop solutions to address

these limitations, as spatiotemporal data integration remains pivotal for informed

decision-making and sustainable environmental policies.

2.2 Contemporary Approaches in Hydrological Pre-

dictive Modeling: Traditional and Machine

Learning Techniques

In this section, we will thoroughly investigate hydrological predictive modeling, fo-

cusing on both traditional and machine-learning algorithms for hydrology predic-

tions. This analysis will address prediction challenges and the complexities involved

in model selection. Hydrology, the scientific study of water movement and distri-

bution on Earth’s surface, plays a crucial role in water resource management and

natural disaster mitigation, such as flood prevention. Selecting the appropriate mod-

els is essential to achieving these objectives. However, the field of hydrology lacks a

universally applicable modeling framework due to the complex and dynamic nature

of hydrological systems. Consequently, no single solution can be universally applied

[80], [21], [21].
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This section will explore the challenges of model selection in hydrology and

emphasize the importance of adopting diverse methodological approaches.

2.2.1 Traditional Hydrological Predictive Models

Hydrology predictions involve forecasting various aspects of the water cycle, includ-

ing river discharge, rainfall, and water quality. Accurate predictions in hydrology

are essential for various applications, such as flood forecasting, drought monitoring,

and water resource management [125] [33] [181].

Time series data in hydrology often exhibit complex patterns and dependencies,

making traditional statistical methods less effective. Machine learning algorithms,

such as artificial neural networks (ANNs), support vector machines (SVMs), and

decision trees, have shown promise in capturing these intricate relationships [134]

[43] [50]. ANNs, in particular, have been extensively used in hydrology due to their

ability to model non-linear relationships and handle high-dimensional data [34] [108].

SVMs have also gained popularity for handling non-linear data and providing robust

predictions [15] [67] [134]. While less complex, decision trees can still offer valuable

insights into hydrological processes [108] [44].

Feature selection and engineering play a crucial role in improving the perfor-

mance of machine learning models in hydrology predictions. Selecting relevant hy-

drological attributes and transforming data to highlight meaningful patterns are

essential steps in model development [219] [11]. Additionally, ensemble learning

techniques, such as random forests and gradient boosting, have enhanced prediction

accuracy by combining the outputs of multiple base models [54] [191] [183].

Various research efforts have been dedicated to developing water level prediction

systems across different types of river basins. Factors such as the contextual needs of

the forecast, availability and relevance of historical data, required level of accuracy,

and time constraints play a crucial role in selecting an appropriate forecasting model

[115] [151].

Traditional hydrodynamic methods have been extensively utilised, focusing on
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differential equations to describe the physical processes involved in water movement

accurately [104] [154]. Physical models, primarily of the distributed type, aim to

capture the intricacies of the hydrological cycle. However, their application on a

larger scale often proves to be computationally expensive and time-consuming [146].

Table 2.1 captures the summary of some traditional hydrological predictive mod-

els, including their descriptions, advantages, disadvantages, and references.
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Table 2.1: Summary of Traditional Hydrological Predictive Models

Model Description Advantages Disadvantages References

Artificial Neural

Networks (ANNs)

Machine learning algo-

rithms that model non-

linear relationships and

handle high-dimensional

data

Ability to model non-linear

relationships, effective with

high-dimensional data

Requires large datasets, risk

of overfitting

Chang (2012),

Kisi (2008)

Support Vector

Machines (SVMs)

Algorithms that handle

non-linear data and provide

robust predictions

Robust with non-linear

data, good generalization

ability

Computationally intensive,

requires careful parameter

tuning

Basheer (2000),

Govindaraju

(2000), Maier

(2003)

Decision Trees Simple algorithms that can

offer valuable insights into

hydrological processes

Simple to interpret, fast

computation

Prone to overfitting, less ef-

fective with complex data

Kisi (2008),

Chui (2007)
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Table 2.1 continued from previous page

Model Description Advantages Disadvantages References

Ensemble Learning

(e.g., Random

Forests, Gradient

Boosting)

Combines outputs of multi-

ple base models to enhance

prediction accuracy

Improved accuracy, reduces

overfitting

Computationally expensive,

complex to implement

Duan (2012),

Sun (2015),

Solomatine

(2008)

Traditional Hydro-

dynamic Methods

Focus on differential equa-

tions to describe physical

processes in water move-

ment

Accurate physical process

modeling

Computationally expensive,

time-consuming for large-

scale applications

Kaya (2019),

Paiva (2011)

Physical Models

(Distributed Type)

Aim to capture the intrica-

cies of the hydrological cycle

Detailed process representa-

tion

High computational cost,

time-consuming

Nagatani (2012)

Feature Selection

and Engineering

Involves selecting relevant

attributes and transforming

data to highlight meaning-

ful patterns

Enhances model perfor-

mance, highlights impor-

tant patterns

Requires expert knowledge,

time-consuming

Yaseen (2018),

Azarnivand

(2020)
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Table 2.1 continued from previous page

Model Description Advantages Disadvantages References

Water Level Pre-

diction Systems

Systems developed for pre-

dicting water levels across

different river basins

Contextual and specific to

river basins

Varies with context, depen-

dent on historical data

Kure (2009),

Nourani (2015)
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2.2.2 Challenges in Hydrological Model Predictions

The variability of hydrological data is well-known and is influenced by factors such

as precipitation patterns, geographical characteristics, and climate conditions [203]

[196]. These seminal studies underscore the multifaceted nature of hydrological

variability and its profound sensitivity to a plethora of determinants, ranging from

climatic variations and precipitation patterns to anthropogenic activities, such as

irrigation practices and groundwater management. Recognising and comprehending

these multifarious complexities assumes paramount importance in the development

of precise and adaptable hydrological models equipped to address the multifarious

challenges posed by this intrinsic variability.

Drawing from the work of [203], an essential concern emerges pertaining to the

sustainability of global water resources. This research highlights that one-third of

the world’s lowland regions, equipped for irrigation purposes, presently reside in lo-

cales heavily reliant on runoff contributions originating from mountainous regions.

Simultaneously, these regions exhibit unsustainable utilisation of local blue water

resources. Projections indicate that this precarious scenario is poised to escalate,

with anticipated figures surpassing the 50% threshold in forthcoming decades. These

revelations emphatically underscore the exigency of effective water resource man-

agement, particularly in mountainous terrains, and advocate vehemently for the

preservation of such regions as an integral facet of the broader tapestry of sustain-

able development. Within the context of hydrological data variability, this research

illuminates the pivotal role played by mountainous regions in the realm of water re-

source management and sustainable development, thereby accentuating the intricate

dynamics encompassing global hydrology.

Furthermore, [196] work augments the comprehension of hydrological variability.

This research introduces a large-scale hydrological modelling approach with specific

attention to evaluating the impact of irrigation practices on hydrological processes,

encompassing facets such as evapotranspiration and groundwater recharge across

both irrigated and non-irrigated regions. A salient lesson derived from this study
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lies in the imperative necessity of accounting for localised water management prac-

tices, including groundwater pumping, as instrumental contributors to the varie-

gated tapestry of hydrological data variability.

2.2.2.1 Time Series Features

[166] observed that the performance of prediction methods varies depending on the

characteristics of the data, which has spurred further investigation into these vari-

ations. Building on this idea, [85], [118], and [10] proposed that understanding the

characteristics of a time series can provide valuable insights for selecting appropriate

prediction methods. Instead of directly working with individual time series obser-

vations, we advocate for the analysis of time series through the lens of features that

define an ”instance space.”

Time series features represent quantifiable attributes of time series data. For

instance, we can compute the strength of seasonality and trend using metrics intro-

duced by [208]. These features encompass measures such as autocorrelation, spectral

entropy, as well as indicators of self-similarity and nonlinearity. The work by [61]

has identified various techniques for extracting features from time series data.

2.2.2.2 Time Series Predictions

Time series prediction is a crucial method for predicting future values based on

historical data, widely applicable across various domains, including finance and in-

dustry [24] [144]. However, there is no one-size-fits-all approach; the choice of a

prediction model relies on the specific characteristics of the time series and the

constraints of the application. This selection process often presents significant chal-

lenges.

Traditionally, model selection has involved a laborious process of testing all

candidate models exhaustively with available data, which is impractical for large

datasets containing numerous potential models [144]. In response to this chal-

lenge, researchers have explored alternative methods, including knowledge-based
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approaches and empirical techniques. In particular, a comparison of analytical

and algorithmic approaches for multistep-ahead prediction has shown that different

methods can offer varying levels of accuracy depending on the dataset and predic-

tion horizon [12]. Knowledge-based approaches, such as expert systems [46], rely

on human expertise to develop rule-based systems that assign weights to candidate

models based on predefined rules. While effective, these systems are limited by the

availability and cost of human experts [9]. Empirical methods involve conducting

competitions among models using various datasets and analysing the results. For

instance, the M3-Competition employed this approach, but it relies on human ex-

perts for analysis, leading to imprecise insights [135]. However, these competitions

have not clearly defined when to choose a more complex model over a simpler one.

The ETS (Exponential smoothing state space model) algorithm developed by [88]

and the automatic ARIMA (Autoregressive integrated moving average) algorithm

proposed by [87] are two widely utilised automated algorithms. Both algorithms

are implemented in the forecast package in R, as documented by the [164, 86]. A

predetermined set of models is chosen in this particular framework, and multiple

models from that set are estimated for each time series. The model exhibiting the

lowest Akaike Information Criterion corrected (AICc) value is selected and employed

for the purpose of making forecasts. The methodology employed in this approach

is dependent on the expertise of the forecaster in initially determining the most

suitable category of models to utilise. Comparing AICc values between different

model categories is typically not feasible due to variations in the computation of the

likelihood and the treatment of initial conditions.

The proposed potential alternative method, which circumvents the need to pre-

select a specific class of models, involves utilising a straightforward “hold-out” test

set. However, this approach often suffers from a lack of sufficient data, thereby

limiting the ability to draw reliable conclusions. In order to address this limitation,

one can employ time series cross-validation as suggested by [165] and [86]. This ap-

proach allows for the application of models from various classes, ultimately selecting
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the model with the lowest cross-validated mean squared error (MSE). Nevertheless,

this leads to a significant increase in the computational time required, at least on

the order of N×M , where N represents the total number of series that need to be

forecasted and M represents the number of the models.

Evidently, there is a necessity for a rapid and adaptable algorithm to mechanise

the procedure of model selection precisely to predict future outcomes. This process is

commonly referred to as forecast-model selection. Table 2.2 summarizing time series

predictions, it encapsulates the various approaches, their descriptions, advantages,

disadvantages, and relevant references for further reading.
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Table 2.2: Summary of Time Series Predictions

Approach Description Advantages Disadvantages References

Traditional Model

Selection

Involves testing all candi-

date models exhaustively

with available data, imprac-

tical for large datasets

Potentially thorough model

evaluation

Impractical for large

datasets

Montgomery

(1990)

Knowledge-Based

Approaches

Utilizes human expertise to

develop rule-based systems

assigning weights to candi-

date models

Effective with expert knowl-

edge

Limited by availability and

cost of human experts

Collopy (1992),

ARINZE (1994)

Empirical Methods Conducts competitions

among models using vari-

ous datasets and analyzing

results

Provides insights from real-

world competitions

Imprecise insights and re-

liance on human analysis

Makridakis

(2000)
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Table 2.2 continued from previous page

Approach Description Advantages Disadvantages References

Automated Algo-

rithms

ETS and automatic

ARIMA algorithms im-

plemented in the forecast

package in R

Automated and widely used Dependent on forecaster’s

expertise for model category

selection, AICc comparison

issues

Hyndman (2002,

2008, 2021), R

(2022)

Proposed Alterna-

tive Method

Utilizes a hold-out test

set or time series cross-

validation to select the

best model based on cross-

validated MSE

Does not require preselect-

ing a specific class of models

High computational time

requirement, limited by

data availability

Racine (2000),

Hyndman

(2021)61
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2.2.3 Machine Learning Hydrological Predictive Models

To address the unique challenges posed by climate science data, researchers have

turned to more advanced Data-driven algorithms, particularly those based on ma-

chine learning algorithms.

Artificial neural networks (ANNs) and Support Vector Machines (SVMs), for

instance, have shown great promise in the domain of climate forecasting. ANNs have

proven valuable in predicting a wide range of climate variables, including but not

limited to temperature trends, rainfall patterns, and even more complex phenomena

like climate system behaviour. Similarly, SVMs have been applied effectively in

climate science to model and forecast climate-related processes, such as long-term

temperature changes or regional climate variations [180] [56].

Recent years have also witnessed the rise of deep learning models, including Re-

current Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks,

which have gained attention for their ability to model complex time-series data.

While these models have found substantial success in fields like natural language

processing and image recognition, their application in climate science, including wa-

ter level prediction, still needs to be explored. Their potential to capture intricate

climate patterns is yet to be fully harnessed in climate science research.[79] [149]

These models offer improved accuracy by capturing complex non-linear rela-

tionships in the data, adaptability to changing conditions, efficient handling of large

datasets, and automatic feature engineering, enabling the integration of diverse data

sources [56] [181]. Furthermore, they can provide real-time updates by leveraging

advances in sensor technologies, ensuring timely responses to changing river con-

ditions. Machine learning models are robust to non-stationarity in river systems,

quantifying uncertainty effectively and capturing localised variations, which is cru-

cial for understanding specific river regions [56] [180] [223] [151]. Their seamless

integration with remote sensing technologies enhances the accuracy of predictions.

At the same time, continuous learning ensures model performance improvement

over time, making them indispensable tools for modern river system management,
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particularly in the context of climate change and urban development [183] [151].

The selection of modelling methods in climate science should consider the spe-

cific challenges and datasets unique to this field. ANNs, SVMs, and deep learning

models like RNNs and LSTMs have demonstrated their capabilities in forecasting

various climate variables, including temperature, precipitation, and meteorological

phenomena. These models provide valuable tools for understanding climate pat-

terns at different spatial and temporal scales, ranging from urban microclimates

to regional climate trends, with the potential to significantly advance research in

climate science and environmental studies.

Hence, the application of these machine learning algorithms is not confined to

climate science and environmental research alone. They hold significant utility in

hydrology predictions, where accurate forecasts of water-related variables such as

river flow, precipitation, and groundwater levels are crucial for effective water re-

source management, flood control, and environmental preservation. Moreover, their

versatility extends to diverse fields beyond environmental sciences, including health-

care, finance, and urban planning, where predictive analytics play a vital role in

decision-making processes [130] [151] [183].

The hydrology domain faces the need for a universally applicable modeling frame-

work to better predict and understand hydrological processes and address various

water-related challenges. This need arises from the complexity and variability of

hydrologic systems, which require models that can integrate multiple physical pro-

cesses across different spatial and temporal scales.

However, it is imperative to underscore that the hydrology domain confronts a

need for a universally applicable modelling framework. Recent advancements have

been made in developing such frameworks. For example, the GLOFRIM (Global

Flood Risk with Integrated Model) framework is designed to couple hydrologic and

hydrodynamic models, allowing for improved simulation of flood wave propagation

and inundation extents. This framework integrates coarse-resolution global hydro-

logic models with fine-resolution hydrodynamic models, enhancing the accuracy of
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Figure 2.1: hydrological Models

flood modeling by addressing different physical processes at appropriate scales [80]

[20]. Another significant development is the Python Modeling Tool (pyMT), which

provides a flexible ”plug-and-play” approach to coupling models. This tool allows

for the creation of fit-for-purpose models by integrating different hydrologic and

hydrodynamic processes, tailored to specific applications [21].

These advancements highlight the ongoing efforts to create more comprehensive

and adaptable modeling frameworks in hydrology, addressing the need for tools that

can manage the complexities of water systems and provide reliable predictions for

water resource management and risk mitigation.

2.2.4 Hydrological Model Selection

Hydrological models, whether they adhere to traditional methodologies or employ

machine learning techniques, 2.1 often grapple with the formidable challenge of

faithfully representing the intricate physical processes inherent to watersheds, as

noted in studies by [103] [137].

The process of selecting a suitable model within the hydrology domain entails a

critical consideration: the inherent uncertainties accompanying model predictions.
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Hydrological models are plagued by inherent uncertainties arising from the inher-

ent variability in data, the structural intricacies of the models themselves, and the

determination of model parameters, as underscored by [142]. To comprehensively

address and communicate these uncertainties, it becomes not just important but

imperative to employ methodological tools such as Bayesian modelling, ensemble

modelling, and sensitivity analysis.

These methodologies are essential in hydrology as they allow for the quantifi-

cation of uncertainties, improving the reliability of hydrological predictions. By

enhancing model validation and calibration, they refine the accuracy of model simu-

lations, supporting better-informed decision-making in water resource management

and disaster preparedness. Effective communication of uncertainty through these

tools fosters transparency and trust among stakeholders, facilitating adaptive strate-

gies for managing hydrological systems in the face of changing conditions.

Traditional hydrologists have employed conventional model selection approaches,

wherein a singular model is customised to suit a particular dataset or river system

[96]. Although this approach may produce satisfactory outcomes within the pa-

rameters of a specific dataset, its effectiveness is often limited when extrapolated

to diverse river systems or novel data [95]. The inflexibility of traditional mod-

els constrains their capacity to adapt to changing hydrological conditions, thereby

impeding their efficacy in tackling broader hydrological challenges.

Traditional model selection methods, such as Multiple Linear Regression (MLR),

have a long history of application in climate science. However, their performance

can be limited, mainly when dealing with datasets that are inherently challenging

due to their scarcity and diversity. In the context of climate science, MLR has often

been used to explore the relationships between climate variables. For example, it has

been employed to understand how changes in meteorological factors like tempera-

ture, humidity, and atmospheric pressure relate to phenomena such as precipitation

patterns or extreme weather events. Nevertheless, MLR’s simplicity and linearity

can hinder its effectiveness when dealing with the intricacies of climate data. [105].
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The inherent inflexibility of traditional hydrological models poses a significant

challenge. These models are often characterised by rigid structures and fixed param-

eterisations, making them ill-suited to adapt to the dynamic and ever-changing na-

ture of hydrological conditions. As a consequence, their effectiveness is constrained

when confronted with broader hydrological challenges that transcend the boundaries

of a specific dataset or geographical region. Consider, for instance, the implications

of climate change on hydrological processes. Climate change introduces new pat-

terns of temperature and precipitation, leading to shifts in the hydrological regime.

Traditional models, which were calibrated based on historical data, may struggle to

accurately capture and predict these emerging patterns. Their inability to adapt to

changing conditions hampers their efficacy in addressing the evolving hydrological

challenges posed by climate change. Moreover, the limitations of traditional models

become particularly evident when dealing with diverse river systems. Each river

system is inherently unique, influenced by a combination of geographical, geologi-

cal, climatic, and anthropogenic factors. Attempting to shoehorn a single model, no

matter how sophisticated, into such heterogeneous environments can lead to signifi-

cant inaccuracies and unreliable predictions. In essence, the conventional approach

of customising a single model to specific datasets or river systems, while suitable

for certain scenarios, falls short when confronted with the complexities and uncer-

tainties inherent in hydrology. To navigate the intricate landscape of hydrological

modelling effectively, it is imperative to embrace more adaptable, data-driven and

flexible modelling approaches that can accommodate the diversity of hydrological

systems and respond to changing conditions. This shift toward adaptability and ver-

satility is essential to meet the growing challenges posed by a dynamic and uncertain

hydrological future.
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2.3 Solution ‘meta-learning’ for time-series pre-

diction model selection

Meta-learning has emerged as a powerful approach for automating the time series

model selection process. Instead of manually choosing a specific model or algorithm

for a given time series dataset, meta-learning leverages higher-level learning algo-

rithms to make data-driven model selection decisions [26] [122]. In this section,

we conduct a comprehensive literature review, particularly emphasising model se-

lection in hydrology using meta-learning techniques. We explore the complexities

surrounding the selection of models in hydrology and how meta-learning provides a

transformative strategy for addressing these obstacles.

Meta-learning has acquired prominence in machine learning, particularly in time

series prediction, as it offers automation for model selection. In this section, we will

explore meta-learning techniques, explicitly focusing on model selection and how

these techniques can be applied to adapt models to new datasets.

The advantage of meta-learning in time series model selection is its adaptability

and ability to handle a wide range of time series datasets without manual interven-

tion. It leverages historical performance data and dataset characteristics to make

informed decisions about which forecasting model is likely to work best for a given

dataset [122].

Recent studies have explored the application of meta-learning techniques in this

domain, emphasising its potential to enhance the precision and effectiveness of model

selection. A foundational study by [179] proposed using meta-learning to automate

forecast model selection based on time series data features. This research laid the

groundwork for subsequent investigations in the field. [162] made significant con-

tributions by examining various meta-learning algorithms for selecting prediction

models. Their work expanded the knowledge base in this area. In 2010, [120] con-

ducted a study that delved deeper into the application of meta-learning in time series

prediction. They explored the impact of different meta-features and algorithms on

67



A Meta-Learning Approach for Hydrological Time Series Model Selection

model selection, contributing valuable insights. They observed that certain meta-

features, such as statistical characteristics of time series data or characteristics of

the underlying time series models, could significantly influence the choice of the best

predictive model. For example, their research showed that the presence of strong

seasonality in a time series, as indicated by certain meta-features, could lead to

the selection of specific algorithms that are well-suited for handling seasonal pat-

terns. This finding provided valuable insights for practitioners, highlighting that

the choice of a predictive model should consider not only the available data but

also the inherent characteristics of the time series being analyzed. This holistic ap-

proach ensures that predictive models are tailored to effectively capture and utilize

the unique temporal patterns, such as seasonality or trends, present in the data.

[114] built upon previous research by exploring the practical integration of meta-

learning methodologies into prediction systems, highlighting its potential to enhance

accuracy and efficiency across diverse fields. These studies collectively illustrate the

growing importance of meta-learning in time series prediction, where researchers

leverage time series data features and meta-learning algorithms to optimise forecast

accuracy. The field continues to evolve, likely leading to further advancements in

automated prediction systems. In 1992, [46] developed 99 rules based on 18-time

series features for economic and demographic prediction. [10] extended this work

to reduce human involvement. [178] study categorised time series based on features

like observations, turning point ratio, step change ratio, skewness, kurtosis, and au-

tocorrelations. [161] introduced the term ”meta-learning” and evaluated it with two

case studies, using features like length, autocorrelation coefficients, skewness, and

kurtosis, employing decision trees to acquire knowledge. [100] utilised the NOE-

MON system (NOEMON measures model performance for a collection of datasets)

methodology to establish a hierarchy among time series predicting algorithms. [120]

investigated the effectiveness of meta-learning methods, considering ARIMA, expo-

nential smoothing, neural network models, various statistical measures, and machine

learning algorithms. [205] proposed a meta-learning framework with a novel metric
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called simple percentage better (SPB). They used nine features and eight prediction

models, employing decision trees and SOM clustering. [211] reduced dimensionality

with PCA using features introduced by [205] in their meta-learning framework. [113]

developed a neural network-based meta-learning framework using 78 time series data

from the NN3 competition. They utilised error prediction and average symmetric

mean absolute percentage error for model selection, considering various prediction

techniques.

2.4 Summary

In summary, the model selection procedure in the context of time series analysis is

crucial for ensuring precise and dependable predictions. This literature review has

adopted a comprehensive methodology to investigate the current advancements in

this field, delineating it into three principal segments.

Section 2.1 detailed advancements in integrating environmental data, empha-

sizing spatiotemporal integration in particular. This aspect of time series analysis

highlights the significance of integrating heterogeneous data sources and compre-

hending the intricate interaction of environmental variables when modeling time

series data, with a particular focus on DW/ELT processes as essential components.

In Section 2.2, the application of machine learning methods in hydrology pre-

dictions was explored. This section emphasised the significance of utilising sophis-

ticated algorithms to model and forecast hydrological phenomena with precision.

Trends in approaches include the use of artificial neural networks (ANNs), support

vector machines (SVMs), and deep learning models like Recurrent Neural Networks

(RNNs) and Long Short-Term Memory (LSTM) networks. Outstanding challenges

in the domain include handling the variability of hydrological data, capturing com-

plex non-linear relationships, and ensuring model adaptability to changing condi-

tions. The integration of diverse data sources and continuous learning were iden-

tified as critical for improving prediction accuracy and reliability in water resource

management and environmental sustainability.
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Section 2.3 examined the emerging field of meta-learning in the context of time

series model selection. This section highlighted the potential of meta-learning to

automate the selection and optimisation of time series models using advanced learn-

ing algorithms. Key takeaways include the adaptability of meta-learning to various

datasets, the ability to leverage historical performance data and dataset characteris-

tics, and the reduction of manual intervention in model selection. Challenges include

the need for effective feature extraction, handling the diversity of time series data,

and ensuring the scalability of meta-learning frameworks.

Overall, this literature review underscores the complexity of time series analysis,

where machine learning, data integration, and meta-learning converge to enhance the

capacity to predict and model time-dependent phenomena. As progress continues in

these domains, there is a promising prospect of achieving higher precision, resilience,

and automation in time series model selection. This advancement holds significant

potential for improving decision-making processes across various disciplines, partic-

ularly in hydrology, environmental monitoring, and resource management.
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Chapter 3

Spatiotemporal Environmental

Data Integration

3.1 Introduction

Environmental management is intrinsically tied to data collection, analysis, and in-

tegration. In the digital age, data-driven approaches, especially in Machine Learning

and Information Technology, have proven pivotal in addressing pertinent concerns,

evaluating outcomes, and forecasting future trends across various scientific disci-

plines. However, the complexities of the data landscape, characterized by issues such

as data unavailability, incompatibility of formats, and the challenge of integrating

disparate systems, often make the task daunting. Hydrological models emerge as

a beacon in this intricate domain. They serve a dual purpose: aiding researchers

in simulating the effects of landscape structures and climatic changes on the water

while generating intermediate results that require careful processing and conversion

into actionable insights. These models represent, comprehend, and hypothesize the

operations of environmental systems, making their integration into IT frameworks

indispensable.

As spatiotemporal data analysis continues to revolutionize source location clas-

sification, climate impact forecasting, and water quality assessments, the storage,
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visualization, and integration hurdles remain prominent. The rapid advancements

in Geographical Information Systems (GIS), driven by the evolution of information

and communication technologies, have ushered in an era of data abundance. How-

ever, this wealth of data often remains underutilised, as it is frequently confined

within isolated platforms or rendered incompatible across disparate systems. In

hydrology, the situation is further exacerbated by the scarcity of specific measure-

ments capturing spatial and temporal variations. Datasets are often heterogeneous,

appearing in many different formats (.shp, .json, .csv, etc..) at varying levels of

granularity with respect to both location and time and may (or may not) contain

overlapping spatiotemporal windows. These issues compound the traditional issues

associated with data integration and provide additional complexities driven by the

times and location components offered by such data. Responding to these chal-

lenges, this chapter proposes a robust system adept at spatiotemporal integration.

Seamlessly merging multidimensional data from diverse sources aims to offer a com-

prehensive view that spans both time and space. This multidisciplinary approach,

which marries the sophistication of IT and the practicality of hydrology, is crucial

for maintaining research integrity, guiding informed decisions, and assuring quality.

As we delve deeper into this chapter, we will dissect the components of this promis-

ing data integration system, spotlighting its potential to revolutionize sustainable

water resource management for the digital era.

3.2 Methodology and Architecture

Integrating heterogeneous data collection from multiple sources demands a robust

and versatile methodological architecture capable of efficiently managing various

data types and formats while maintaining data quality and consistency. The com-

plexity of today’s data landscapes, marked by myriad sources and formats, necessi-

tates a comprehensive approach to integration that transcends traditional methods.

Many ML models developed and used in the literature utilised multiple input

features [30]. However, due to the lack of a robust environment for analysis and an
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inability to offload the work to more extensive, scalable computing environments,

datasets are often limited in scope geographically (there is not much national mod-

elling). Researchers often spend a significant portion of their time on data collection

and maintenance, with efforts extending over several weeks to months. This exten-

sive time investment is due to the need for independent collection, wrangling, and

management of datasets from various providers. [84] discuss how data acquisition

technologies can streamline maintenance management systems, offering real-time

retrieval of information and improving field operations. [148] highlight the chal-

lenges and methodologies for analyzing maintenance work orders, underscoring the

importance of transforming data into a more analyzable format.

This research discusses the challenges of sourcing environmental data in Ireland.

Although it does focus on specific types of data, such as river nutrients and wa-

ter flow, it highlights a broader issue that could apply to various environmental

datasets. Therefore, while the examples are specific, the problem addressed could

be relevant to a wider range of environmental data collection and analysis efforts.

After the initial data-sourcing phase, it became evident that many datasets were

not available for all areas in Ireland. For some locations, environmental data, such

as river nutrients, were almost nonexistent. This could be due to either the data

not being measured in those areas or not being publicly accessible. However, nu-

trient datasets are crucial for creating AI models to predict water quality. In other

instances, like water flow data, availability depends on specific conditions, such as

the deployment of a hydrometric station during the queried time period. Addition-

ally, obtaining data can be complicated by each provider’s unique access methods

and protocols. While some datasets can be downloaded from websites, others are

accessed via the Data Access API (Application Programming Interface) provided

by the data supplier.

Although using a Data Access API is arguably the best method for obtaining

data, it can be quite sophisticated for researchers without an IT background. As

a result, many researchers prefer to manually download data from data provider
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websites, despite the tedious nature of this task. For example, the Office of Public

Works (OPW)(see Appendix A) provides water flow data for up to five weeks on one

website, while historical data must be accessed through a different site (see Appendix

A). Similarly, Met Éireann’s (see Appendix A) website requires users to select each

station, time period, and time resolution separately for each download operation.

Consequently, the data collection process was a challenging and time-consuming

aspect of this project. This highlights the need for a unified and easily accessible

platform for researchers to access and analyze environmental data efficiently.

Figure 3.1: Spatiotemporal data integration system architecture

The key components of the proposed integration system for merging heteroge-

neous environmental data architecture are:

• Data Sources: These are the various heterogeneous sources from which data

is collected.

• Data Extraction: This component extracts the data from different sources.

• Data Transformation & Mapping: Data mapping is an essential part of the

ETL process that establishes relationships between data elements from differ-

ent sources.

• Data Integration: This component consolidates and integrates data from mul-

tiple sources into a unified view.
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• Data Loading: This component loads the transformed data into the target

system.

3.2.1 Data Sourcing

This phase includes identifying the various heterogeneous sources from which data

is collected. Data sources include databases, warehouses, APIs, web services, flat

files, spreadsheets, or other data storage systems. Identifying and understanding

these sources is crucial for a successful ETL process. In the context of Environ-

mental spatiotemporal Data Integration (STDI) in Ireland, various datasets can be

collected from multiple sources, such as the Office of Public Works (OPW), the En-

vironmental Protection Agency (EPA), Met Éireann and others. Table 3.1 includes

some examples of the data these organizations provide. When integrating these

datasets, it is crucial to consider the spatiotemporal resolution, data formats, and

any potential discrepancies or gaps in the data.

3.2.2 Data Extraction

The data extraction component is responsible for extracting the data from the differ-

ent sources identified in Ireland’s Environmental Spatiotemporal Data Integration

(STDI). The extraction process involves connecting to the data sources, selecting

the required data, and retrieving it in a format that can be processed further. Data

extraction involves handling different data formats, structures, and access protocols.

Extracting data from these sources may involve connecting to APIs, web services

or downloading files in various formats, such as CSV, GeoJSON, NetCDF, or raster

data. The extraction process should be designed to handle the specific data ac-

cess protocols and formats of the environmental data sources. Given the variety of

sources and data types, using appropriate extraction methods and tools for each

source is crucial. Table 3.1 details some of the access and extraction methods from

the sources mentioned in the previous section.

During the data extraction phase, it is essential to consider factors such as data
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Table 3.1: Data Sources, Types and Access Methods

Provider Data Type Access
Office of
Public Works
(OPW)

River flow and water
level data

Access data file downloads (e.g., Excel
formats)

Office of
Public Works
(OPW)

Flood risk mapping
and management
plans

Access data through web services, or
file downloads (e.g., GIS formats)

Environmental
Protection
Agency
(EPA)

Water quality data
(e.g., lakes, rivers,
groundwater, coastal)

Use web services to retrieve data or
download data files (e.g., CSV, JSON,
XML, or GIS formats)

Environmental
Protection
Agency
(EPA)

Air quality data (e.g.,
pollutants, emissions,
air quality)

Use web services to retrieve data or
download data files (e.g., CSV, JSON,
XML, or GIS formats)

Environmental
Protection
Agency
(EPA)

Waste and resource
management data

Use APIs or web services to retrieve
data or download data files (e.g., CSV,
JSON, XML, or GIS formats)

Environmental
Protection
Agency
(EPA)

Biodiversity and habi-
tat data

Use APIs or web services to retrieve
data or download data files (e.g., CSV,
JSON, XML, or GIS formats)

Met Éireann Meteorological data
(e.g., temperature,
precipitation)

Connect to APIs or web services for
real-time and historical data or extract
data in formats such as CSV, JSON or
XML

Met Éireann Climate data (e.g.,
historical records,
climate models)

download data files (Zip files)

Met Éireann Weather forecasts and
warnings (e.g., storms,
flooding)

Connect to APIs or web services for
real-time and historical data or extract
data in formats such as CSV, JSON or
XML

National
Earth Science
Knowledge
Centre

Geological data (e.g.,
bedrock, soils, mineral
resources)

Access data through APIs, web ser-
vices, or file downloads (e.g., CSV, Ex-
cel, or GIS formats)

National
Parks and
Wildlife Ser-
vice

Data on protected ar-
eas, species distribu-
tion, conservation

Access data through web services or file
downloads (e.g., CSV, Excel, or GIS
formats)

Central
Statistics
Office (CSO)

Socio-economic and
demographic data

Use web services to retrieve data or
download data files (e.g., CSV, Excel,
or GIS formats)
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access permissions, API rate limits, data refresh rates, and data versioning. Hence

it was necessary in some cases to create bespoke application code to extract these

datasets.

3.2.3 Data Transformation and Mapping

Data transformation is the process of converting the extracted data into a format

that can be easily integrated, analysed, and utilised. During this phase, various data

manipulation techniques are applied to clean, normalise, aggregate, and enrich the

data. Given the heterogeneous nature of the data sources, ensuring that the data is

consistent, accurate, and compatible before integration is crucial.

3.2.3.1 Data Transformation

The data transformation process involves four key steps: data cleaning, validation,

normalization and standardization.

1. Data cleaning and validation:

• Identify and handle missing values, errors, and outliers.

• Validate data accuracy and integrity by comparing it with reference

datasets or data quality rules.

2. Data normalization and standardization:

• Convert data to a common measurement unit, scale, or coordinate system.

• Standardize data formats, such as date and time formats, and categorical

values.

Throughout the data transformation process, it was essential to maintain data

quality, ensure data consistency, and track data lineage. This was achieved by

analysing the data for inconsistencies, errors, or missing values, checking the trans-

formed data to ensure it meets formatting requirements and tracking changes to the
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data throughout the transformation process. To support these steps, a comprehen-

sive specification for data extraction and integration was developed. This specifi-

cation outlined the procedures for sourcing data from various providers, detailing

the methods for accessing and retrieving data, whether through manual downloads

or using Data Access APIs. It also included guidelines for integrating data from

different sources, ensuring that the transformed data adhered to a unified schema

compatible with subsequent analytical processes.

3.2.3.2 Data Mapping

Data mapping is the process of defining relationships between fields or attributes in

different datasets, often originating from different sources, to enable data integra-

tion, transformation, and analysis. Data mapping is a crucial component of data

integration as it informs researchers how data should be integrated and acts as the

start of defining a common data model. It involves identifying corresponding fields,

determining data types, and defining transformations or conversions needed to har-

monize the data. A simple data mapping can be represented using a table or a

diagram that links the source and target fields.

Table 3.2 presents an example of data mapping between two datasets related to

the river water level in Ireland, one from the Office of Public Works (OPW) and the

other from the Environmental Protection Agency (EPA). The table details a sample

of the mapping rules derived to integrate the dataset provided by the OPW and the

EPA. The Station ID and Gauge ID fields are mapped, representing the same infor-

mation. The Station Name and Gauge Name fields are also mapped, indicating that

they represent the same information. The Timestamp UTC and Date Time UTC

fields are linked, indicating that they represent the same information, and the Wa-

ter Level and Level fields, as well as the Water Flow and Flow fields, are mapped

accordingly.
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Table 3.2: Example of data mapping rules for mapping OPW and EPA data

Dataset A

(OPW water-level data)
Transformation/Conversion

Dataset B

(EPA water-level data)

Station ID Station ID = Gauge ID Gauge ID

Station Name Station Name = Gauge Name Gauge Name

Timestamp UTC Date Time UTC Date Time UTC

Water Level Level Level

Water Flow Flow Flow

In this example presented in Table 3.2 , the data mapping rules are applied

to map attributes from two datasets, ”Dataset A” (OPW water-level data) and

”Dataset B” (EPA water-level data). The mapping involves the following rules:

• Station ID: This attribute in ”Dataset A” is mapped to ”Gauge ID” in

”Dataset B.”

• Station Name: This attribute in ”Dataset A” is mapped to ”Gauge Name”

in ”Dataset B.”

• Timestamp UTC: This attribute in ”Dataset A” is directly used as ”Date Time

UTC” in ”Dataset B.”

• Water Level: This attribute in ”Dataset A” is directly used as ”Level” in

”Dataset B.”

• Water Flow: This attribute in ”Dataset A” is directly used as ”Flow” in

”Dataset B.”

These mapping rules ensure that corresponding attributes between the two datasets

are properly aligned, and the data can be integrated effectively. The rules also spec-

ify cases where direct attribute usage without any transformation is appropriate,

simplifying the integration process. A full set of the data mapping rules are pro-

vided in Appendix D. These rules identify common points of integration between
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sources and act as a guide when developing a data integration plan and common

data model (schema). By adhering to these mapping rules, we ensured that cor-

responding attributes between datasets were properly aligned, facilitating effective

data integration without the need for a formal ontology.

3.2.4 Data Integration

In traditional ETL integration rules usually define common sets of attributes and

identifiers (e.g. CustomerID) these rules, while taking time to discover are easily

handled by modern ETL systems. Spatiotemporal data provides its own unique set

of challenges for integration, time points may be irregular, present in overlapping

windows or contain differing granularities, providing bespoke application logic to

accomplish integration. Similarly location components pose additional challenges,

locations may represent a point or a polygon, points present at differing levels of

granularity and polygons may have overlapping areas of intersection, similarly to the

issues presented by temporal data, spatial data requires bespoke logic to facilitate

integration. Spatiotemporal data integration combines and harmonises data from

multiple sources with spatiotemporal attributes to enable analysis, visualisation, and

decision-making in a spatiotemporal context. This type of integration is particularly

relevant for environmental data, where spatiotemporal factors play a significant role

in understanding and managing natural resources and ecosystems. This component

consolidates and integrates data from multiple sources into a unified view, making

it easier to analyse and gain insights. It consists of two primary steps: spatial

and temporal data integration. Spatial data integration involves merging data from

multiple sources with a common geographic location or region. On the other hand,

temporal data integration involves combining data from various sources related to

the same time period or time series.
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3.2.4.1 Spatial Data Integration

Spatial data integration is crucial for combining diverse environmental datasets into

a unified framework, enabling comprehensive analysis and decision-making. This

research focuses on developing an algorithm that integrates preprocessed environ-

mental datasets, represented as points and polygons, by considering their spatial

and attribute relationships. The integration process aims to minimize information

loss and ensure optimal data alignment, which is vital for accurate environmental

analysis [131] [51] [35] [210] [189].

3.2.4.1.1 Distance Calculation Using the Haversine Formula To inte-

grate spatial data, calculating the distance between points and polygons is essential.

This research employs the Haversine formula, a well-known method ,the Haversine

Formula 3.1, for computing the shortest distance over the Earth’s surface, which is

defined as :

hav

(
d

r

)
= hav(φ2 − φ1) + cos(φ1) cos(φ2) hav(λ2 − λ1) (3.1)

Where:

• d is the distance between two points,

• r is the Earth’s radius,

• ϕ1 and ϕ2 are the latitudes of the two points,

• ∆ϕ is the difference in latitudes,

• ∆λ is the difference in longitudes.

This standardized distance measurement ensures consistency and reliability in

selecting appropriate data for integration, facilitating accurate environmental anal-

ysis.

81



A Meta-Learning Approach for Hydrological Time Series Model Selection

Figure 3.2: Flowchart of Distance Calculation Algorithms in a Spatial Data Inte-
gration

3.2.4.1.2 Vector Data Structures To store and represent spatial data, vector

data structures are used. Vectors consist of vertices, which are discrete geometric

points (e.g., x, y values) that define the shape of spatial entities. The organized

vertices determine the vector type:

• Points: Single x, y coordinates define each point. These are used for sampling

locations and discrete geographic features.

• Lines: Multiple connected points form lines, representing linear features like

roads or streams.

• Polygons: Three or more connected vertices create closed shapes, represent-

ing areas such as lakes, catchments, and administrative boundaries.

3.2.4.1.3 Algorithms This research introduces three algorithm 3.2 designed to

calculate the closest set of points, polygons, or neighboring polygons to a given

location or polygon. These algorithms are crucial for integrating spatial data from

various sources, ensuring accurate and efficient data alignment. Each algorithm

calculates the distance between the location or polygon of interest and the other

locations or polygons in the dataset to identify the closest set.
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These algorithms have applications in various fields, such as finding the nearest

station or boundary, spatial analysis, and planning. They can be implemented using

various methods, such as the minimum distance between a point and a line segment

or the minimum distance between two vertices.

Point to Point Algorithm

This section presents an algorithm in Algorithm 1 for finding the closest set of

points to a given location in a dataset. The algorithm takes as input a location

and a set of points and returns the closest set of points to the given location. To

accomplish this, the algorithm computes the distance between the location and each

point in the set using the Haversine function, which measures the shortest surface-

level distance between two points on a sphere. The minimum distance and closest set

of points are then updated accordingly. If multiple points have the same minimum

distance, the algorithm adds all of them to the closest set of points. This algorithm

can be used in various applications, such as finding the nearest station or any other

location of interest.

The input of this algorithm is a location and a set of points, and the output

is the closest set of points to the given location. To use the algorithm, initialize

an empty set and set the minimum distance to infinity. For each point in the set

of points, compute the distance between the given location and the point using

the Haversine function. If the computed distance is less than the current minimum

distance, update the minimum distance to the computed distance and set the closest

point to that point. If the computed distance equals the current minimum distance,

add the point to the closest point set. Finally, return the closest point set as the

output of the algorithm.

Consider a is a location in dataset A and b is location in dataset B, then this

method returns the closest location set Bmin to location a, within all locations in

dataset B.

Bmin = argmin
∀b∈B

(hav(a, b)) (3.2)
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Algorithm 1 Point to point

1: Input: location and points
2: Return: Closest point set Pmin

3:

4: Pmin ← ∅
5: minDist←∞
6: for p in points do
7: dist← hav(location, p)
8: if dist < minDist then
9: minDist← dist

10: Pmin ← {p}
11: else if dist = minDist then
12: Pmin ← Pmin ∪ {p}
13: end if
14: end for

Point to Poly Algorithm

The Point to Poly algorithm defined in Algorithm 2 is used to find the closest

polygon set to a given location. The polygon set is defined by a set of line segments

that make up the polygon’s borders. The algorithm takes a location and a set of

polygons as input and calculates the distance between the location and each polygon

using the distPointToPoly function. If the point is inside the polygon, it returns a

distance of 0. Otherwise, it iterates over the polygon’s edges to find the closest edge

to the point. If the intersection is on the line segment, the distance between the

point and the edge is calculated as the length of the perpendicular line from the

point to the line segment. Otherwise, it is the minimum distance to the vertices

of the line segment. The algorithm updates the minimum distance and closest

polygons accordingly and returns the set of closest polygons to the given location.

This algorithm can be used in applications such as finding the nearest boundary or

region of interest or in spatial analysis and planning. The distPointToPoly function

can be implemented using various methods, such as the minimum distance between a

point and a line segment or the minimum distance between a point and the polygon’s

vertices.

Consider a is a location in dataset A, and polygon pol is dataset POL, where a

polygon is defined by the line segments that make up a polygon’s borders, then this

method returns the closest polygon set POLmin to location a.
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POLmin = argmin
∀pol∈POL

(distPointToPoly(p, pol)) (3.3)

Here, distPointToPoly function calculates the distance from a point to a polygon.

If the point is inside the polygon, it returns 0 as the distance. Otherwise, it iterates

over the polygon’s edges (i.e., line segments) to find the closest polygon edge to the

point. The distance between the point and the edge is calculated as the length of

the perpendicular line from the point to the line segment if the intersection is on

the line segment. Otherwise, it is the minimum distance to the vertices of the line

segment.

Algorithm 2 Point to Poly

1: Input: location and polygons

2: Return: Closest polygon set POLmin

3:

4: POLmin ← ∅

5: minDist←∞

6: for pol in polygons do

7: dist← distPointToPoly(location, pol)

8: if dist < minDist then

9: minDist← dist

10: POLmin ← {pol}

11: else if dist = minDist then

12: POLmin ← POLmin ∪ {pol}

13: end if

14: end for

Poly to Poly Algorithm

This section describes an algorithm in Algorithm 3 for finding the closest polygon

set Dmin to a given polygon c within a set of polygons D. The algorithm takes

advantage of the distPolyToPoly function, which calculates the distance between
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two polygons. If the two polygons intersect or if one is inside the other, the function

returns 0 as the distance. Otherwise, the algorithm iterates over the edges of the

polygons to find the closest edge of the other polygon and returns the distance to

that edge. The algorithm takes as input a polygon and a set of polygons and returns

the closest set of polygons to the given polygon. It uses the distPolyToPoly function

to compute the distance between the given polygon and each polygon in the set and

updates the minimum distance and closest set of polygons accordingly. If multiple

polygons have the same minimum distance, the algorithm adds all of them to the

closest set of polygons. This algorithm can be used in various applications, such as

finding the nearest neighbouring polygon or in spatial analysis and planning. The

distPolyToPoly function can be implemented using various methods, such as finding

the minimum distance between two line segments or between two vertices.

Consider c is a polygon in dataset C and d is polygon in dataset D, then this

method returns the closest polygon set Dmin to polygon c, within all polygons in

dataset D.

Dmin = argmin
∀d∈D

(distPolyToPoly(c, d)) (3.4)

Here, distPolyToPoly function calculates the distance between two polygons. If

the first polygon is inside or intersects with the other polygon, it returns 0 as the

distance. Otherwise, it iterates over the polygon’s edges (i.e., line segments) to find

the closest edge of the other polygon. It returns the distance to that edge, where

the distance between two line segments is the closest distance between the vertices

of the two line segments.
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Algorithm 3 Polygon to polygon

1: Input: polyC and polygons

2: Return: Closest polygon set POLmin

3:

4: POLmin ← ∅

5: minDist←∞

6: for pol in polygons do

7: dist← distPolyToPoly(polyC, pol)

8: if dist < minDist then

9: minDist← dist

10: POLmin ← {pol}

11: else if dist = minDist then

12: POLmin ← POLmin ∪ {pol}

13: end if

14: end for

3.2.4.2 Temporal Data Integration

Temporal data integration involves combining data that have temporal attributes,

such as timestamps or intervals. Temporal data can be represented using various

formats, such as time series, event, or interval data. Temporal data integration

involves aligning data from different sources based on their temporal attributes and

ensuring that they use consistent time zones, calendars, and date formats.

An example of how temporal data integration can be performed based on the

data sources provided in the previous section for Environmental SpatioTemporal

Data Integration (STDI) in Ireland:

Suppose we aim to integrate temporal data from the Office of Public Works

(OPW) and Met Eireann related to Ireland’s water level and weather conditions

(see Table 3.3).

To perform temporal data integration, we would first need to align the two
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Table 3.3: Water and weather data tables

Dataset A (OPW) Dataset B (Met Eireann)
Station ID (integer) Station ID (integer)
Station Name (char) Station Name (char)
Timestamp UTC(timestamp) Timestamp UTC(timestamp)
Water Level (float) Temperature (float)

Precipitation (float)
Wind Speed (float)
Humidity (float)

datasets based on their Timestamp UTC field. We would then need to determine

the appropriate time interval for the analysis, which could be daily, weekly, monthly,

or any other relevant interval. Once the time interval is determined, we can perform

the integration using various techniques, such as:

• Aggregation: Aggregate the data from both datasets based on the chosen time

interval (e.g., daily) by computing summary statistics (e.g., mean, sum, max,

min) for each variable within the interval. This would result in a new dataset

summarising each time interval’s water level and weather conditions.

• Interpolation: Interpolate the data from one dataset to align with the time

intervals of the other dataset (e.g., interpolate water level data from the OPW

dataset to align with the daily intervals of the Met Eireann dataset). This

would allow us to create a new dataset that combines the interpolated data

with the original data from the other dataset.

• Fusion: Fuse the data from both datasets to create a new dataset that combines

the water level and weather condition data at the exact same time and location.

This would require aligning the spatial attributes of the datasets, such as the

station IDs and names, and the temporal attributes.

By performing temporal data integration, we can create a new dataset that com-

bines the water level and weather condition data from multiple sources, enabling us

to analyze and visualize the data in a spatiotemporal context. After performing tem-

poral data integration, the resulting dataset will depend on the specific integration

technique used.
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3.2.5 Data Loading

Data loading is the last phase of the ETL process, where the transformed data is

loaded into the target system or storage for further analysis, visualization, or report-

ing. The loading process must ensure that the data is stored efficiently, securely,

and in a format that is compatible with the intended applications or systems. In

the context of Environmental spatiotemporal Data Integration (STDI) in Ireland,

the target system includes a data warehouse and a GIS platform. Each chosen data

set was analysed to identify the relevant information. Therefore, the DW design is

dependent on the harvested data. Appendix C provides a complete overview of the

entire data table schema. Each box describes a table, and each line represents a

connection between tables. In addition to loading the transformed data, metadata

and data cataloging are crucial components of the data loading process. Metadata

provides descriptive information about the data, such as its source, format, and

transformation history, ensuring that users can understand and utilize the data ef-

fectively. A data catalog is maintained to document all datasets, including details

about their structure, relationships, and access protocols. This catalog facilitates

efficient data management, retrieval, and integration, ensuring that the data ware-

house and GIS platform are well-organized and user-friendly.

3.3 Environmental Case Studies Demonstrating

Data Integration and Query Capabilities

Building on the detailed methodologies and architecture discussed, this section

presents various environmental case studies to demonstrate the practical applica-

tion and effectiveness of the spatial and temporal data integration techniques. To

validate the proposed integration function’s effectiveness and efficiency, three exper-

iments were conducted using real-world environmental datasets with varying spa-

tiotemporal resolutions and different attribute representations. In each experiment,

the integration function was applied to the selected datasets, and the results were
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evaluated using quantitative and qualitative measures. These measures included the

degree of information loss, the reduction in data inconsistencies, and the overall im-

provement in data quality. Additionally, the performance of the proposed function

was compared with traditional integration methods, highlighting the advantages and

limitations of each approach.

3.3.1 River Water Levels and Weather Data Integration

We applied a merging algorithm that combined point-based rainfall data with point-

based water level data based on their spatial proximity. Specifically, we utilized the

”Point to Point” algorithm to achieve this integration. This algorithm was selected

for its ability to match and link the data based on their precise geographic locations.

This enabled us to conduct a spatial analysis of the correlation between rainfall and

water levels. The two datasets we aimed to use in this study have distinct properties.

The river water level data is a continuous, time-series dataset that records the water

levels of various rivers and streams in Ireland.

Meanwhile, the rainfall data is also a time-series dataset, recording the amount

of rainfall in a given location over a specific time period, along with other features

such as temperature and wind. Integrating these two datasets was essential to the

analysis, as it allowed us to investigate the relationship between water levels and

precipitation events comprehensively. By linking the data based on their geographic

locations, we could identify areas where rainfall significantly impacted water lev-

els and vice versa. While the datasets are correlated, each provides unique and

complementary information crucial for a thorough analysis. Rainfall data indicates

precipitation patterns, but without water level data, it does not show how these pat-

terns affect water bodies. Conversely, water level data without rainfall information

cannot reveal the potential causes of changes in water levels. By integrating both

datasets, we can better understand the dynamics between rainfall and water levels,

identify causative relationships, and make more informed predictions and decisions

regarding water resource management.
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The “Point to Point” algorithm was specifically chosen for its ability to merge

the datasets based on their precise locations. This allowed us to conduct a detailed

spatial analysis of the relationship between rainfall and water levels, which would

have been difficult to achieve using other methods. The insights gained from this

analysis have the potential to inform flood management and water resource planning

efforts. They may help mitigate the impact of extreme weather events on water levels

in Ireland.

3.4 presents a sample output of the ”Point to Point” algorithm, which compares

water level monitoring stations to the closest available weather station. This table is

crucial as it demonstrates the practical application of our integration methodology,

linking hydrological data with meteorological data based on spatial proximity.

Table 3.4: Sample output of the “Point to Point” algorithm comparing water level
monitoring stations to the closest available weather station

Water N Water ID Weather N Weather ID Dist

Broadmeadow 8008 DUBLIN AIRPORT 532 5.276 (Km)

Ballincolly 19056 CORK MONTENOTTE 5404 2.123 (Km)

Riverstown 23001 LIMERICK CITY 6205 4.789 (Km)

Kilcurry 34002 GALWAY SALTHILL 7112 3.450 (Km)

Dundalk Bay 45003 BELFAST CITY 8123 6.512 (Km)

Where:

• Water N: the water station name.

• Water ID: Identifier for the water station.

• Weather N: the nearest weather station name.

• Weather ID: Identifier for the nearest weather station.

• Dist: the distance between the two stations represented in x (Km)

Now that we have identified the closest weather station to a given water station,

3.5 illustrates an example of the integrated data set; each row represents a combined
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record of water data and climate data for a ’Broadmeadow’ water station and its

corresponding closest weather station ’DUBLIN AIRPORT’. The integrated dataset

includes the following:

Table 3.5: Example of integrated water level and climate data for Broadmeadow
and Dublin Airport

Tstamp WL P T vappr H msl wdsp wddir vis

1/1/2023 0:00 9.241 0.3 6.7 9.2 94 995.1 6 220 9000

12/31/2022 23:00 9.244 0 6 8.9 95 994.4 4 220 7000

Where:

• Tstamp: Temporal attribute representing the date and time of the measure-

ments (hourly in this case).

• WL (m): Water level measurement in meters.

• T(°C): Temperature measurement in Celsius.

• P (mm): Precipitation measurement in millimetres.

• H (%): Humidity measurement in percentage.

• msl(hPa): Mean Sea Level Pressure

• wdsp(m/s): Wind speed measurement in meters per second.

• wddir (°): Wind direction measurement in degrees.

• vis(m): Visibility

3.3.2 Weather Station Proximity to Geological Features

In this scenario, we aimed to integrate weather station data with geological feature

data to investigate the influence of geological features on local weather patterns and

microclimates. To achieve this, we must utilise a merging algorithm that combines

weather station data with geological data based on their spatial proximity. The
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algorithm should be able to match and link the data based on their precise geographic

locations and their proximity to the geological features of interest. This enabled us to

conduct a spatial analysis of the correlation between weather patterns and geological

features.

The two datasets we aimed to use in this study have distinct properties. The

weather station data is a continuous, time-series dataset that records various mete-

orological variables such as temperature, humidity, wind speed, and precipitation.

Meanwhile, the geological data is a spatial dataset that captures the physical char-

acteristics of the terrain, such as elevation, slope, and land cover. The integration

of these two datasets was essential to the analysis, as it allowed us to investigate the

impact of geological features on weather patterns in a comprehensive manner. By

linking the data based on their geographic locations, we can identify areas where

certain geological features significantly influence weather patterns and how weather

stations located near these features are affected. This information is crucial for

various applications such as climate modelling, weather forecasting, and natural

disaster preparedness. we used the Point to Poly algorithm, which assigned each

weather station to the nearest geological feature polygon based on their proxim-

ity. The weather station data used in this study was collected from a total of 2084

weather stations. The data encompassed various meteorological parameters, such

as temperature, precipitation, wind speed, humidity, and additional measurements

contingent upon the specific monitoring station and the region of interest. Mean-

while, the geological feature data from the Geological Survey of Ireland included

information on topography, geology, and other relevant terrain features surrounding

each weather station. In this instance, the Point to Poly algorithm was necessary

to associate each weather station with the nearest geological feature. This was im-

portant because it provides the ability to analyze the influence of geological features

on local weather patterns. Using this algorithm, we can better understand how

different geological features could impact temperature and precipitation patterns in

their surrounding areas, which was crucial for climate research and forecasting.
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Table 3.6 provides an example of the integrated dataset that includes weather

station data alongside geological features such as bedrock type, national soil classifi-

cation, and Corine land cover. The purpose of including this table is to illustrate the

type of integrated data used in our meta-learning approach. This integration allows

us to comprehensively analyze the relationships between different environmental

factors and improve the accuracy of our predictive models.

Table 3.6: Example of integrated weather stations and geological features

Tstamp Bedrock soil corine P T vappr H msl wdsp wddir vis

1/1/2023 1:00 Limestone urban 124 0 6.2 8.2 86 995.1 8 230 20000

1/1/2023 2:00 Limestone urban 124 0.2 6.1 8.3 87 994.8 8.2 235 19900

1/1/2023 3:00 Limestone urban 124 0 6.0 8.4 88 994.5 8.5 240 19800

1/1/2023 4:00 Limestone urban 124 0 5.9 8.5 85 994.2 8.8 245 19700

1/1/2023 5:00 Limestone urban 124 0.3 5.8 8.6 84 993.9 9 250 19600

1/1/2023 6:00 Limestone urban 124 0 5.7 8.7 83 993.7 9.2 255 19500

For instance, our exploration into how mountain ranges influence precipitation

patterns or whether urban areas experience higher temperatures compared to their

rural neighbors. The integrated dataset has empowered us to conduct a spatial anal-

ysis of the intricate interplay between weather phenomena and geological character-

istics, providing invaluable insights into the intricate relationship between climate

and our surroundings.

Likewise, let’s consider soil moisture datasets. They play a pivotal role in curbing

nutrient losses and greenhouse gas emissions in the agricultural and forestry sectors.

The moisture content in the soil plays a vital role in shaping water levels. When

soil moisture is abundant, it aids in retaining more water in the soil, potentially

causing groundwater levels to rise and elevating water levels in nearby water bodies

like rivers, lakes, and aquifers. Conversely, when soil moisture is scant, it curtails

water runoff into these water bodies, possibly causing a reduction in their water

levels. As such, soil moisture levels wield a direct influence on water level [224].

This analysis could be helpful in various applications, from climate modelling and

forecasting to urban planning and natural resource management. By understand-
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ing how geological features impact local weather patterns, we can better predict

and adapt to climate change’s impacts and make informed land use and resource

management decisions.

3.3.3 Integration of Water Sensor Data with Geological Fea-

tures for Assessing Water Quality Patterns

A key component for meta-learning is annotating the datasets with domain-specific

knowledge such as geological characteristics. As such, further spatiotemporal inte-

gration was required to integrate data obtained from water level sensors with the

geological features surrounding the sensor’s placement and features of the wider

river basin. In merging these datasets, we aimed to learn more about the regional

patterns and relationships between geological characteristics and water quality as-

sessments. The water sensor data included readings from various stations placed

strategically throughout the river basin. These stations continuously measured tur-

bidity, pH, and other water quality indicators. In contrast, the geological feature

data was acquired from the Geological Survey, Ireland and included details on the

kind of bedrock, the soil, and the land cover.

Using the Point to Poly algorithm and considering the water sensor and the

geological features’ spatial proximity, we linked each water sensor station to the

closest geological feature polygon.
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Table 3.7: Example detailing integration of water level sensor data and geological
features

Water N Water ID Lat Lon Unit ... Area Formation

Aclint 06026 53.92 -6.64 GLYDE ...
Deep marine

turbidite sequence

Palaeozoic,

Silurian

Brewery

Park
06015 53.99 -6.42

RAMPARTS

MAIGUE
...

Deep marine

turbidite sequence

Palaeozoic,

Silurian

Riverstown 06033 54.01 -6.54 BOYNE ...
Continental

sedimentary deposits

Mesozoic,

Triassic

Dundalk

Bay
06047 53.95 -6.37 CASTLETOWN ...

Shallow marine

limestone formation

Cenozoic,

Triassic

Kilcurry 06052 54.03 -6.48 FANE ...
Deltaic

sandstone deposits

Palaeozoic,

Devonian

The example presented in Table 3.7 showcases the integration of individual water

level sensor data with wider geological features highlighting a part of the bedrock

and water sensor data integration. It effectively demonstrates how the integration

has been carried out, with information on the station number, location (latitude

and longitude), geological unit, area, and formation.

3.3.4 Geology and Topology and Climate

In this section, we aim to investigate the influence of geological and topological fea-

tures on climate patterns in Ireland. To achieve this, we have constructed a map by

aggregating data from various sources. This comprehensive dataset enables us to

explore and gain a visual understanding of the geological and topological features

in Ireland and their relationship with climate variables.

Objectives and Methodology

Our primary objective is to understand how geological features, such as bedrock

composition and topography, interact with climatic factors like temperature, pre-

cipitation, and wind patterns. This understanding is crucial for improving climate

models and predicting local climate variations.

To accomplish this, we utilized several data layers including:
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• Mineral Deposits and Occurrences

• Public Drillholes

• Bedrock Dykes

• NRFA Stations (accessible to the public)

• Water Regions Surface

• Water Quality

• Groundwater Quality

• National Soils Database

• Hydrometric Stations

• Weather Stations

These layers were integrated to create a detailed map that pinpoints the locations

of different monitoring stations across Ireland. By analyzing the spatial distribution

of these features, we can examine how geological and topological characteristics

influence local climate conditions.

Significance and Applications

The integration of these data layers allows us to conduct a comprehensive spatial

analysis, providing insights into:

• How bedrock composition affects soil moisture and, consequently, local weather

patterns.

• The impact of topographical features such as mountains and valleys on wind

and precipitation distribution.

• The relationship between groundwater quality and surface water dynamics.
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For instance, Figure 3.2 displays the bedrock information and the location of

different hydrometric stations within the Neghan RDB. This visualization helps

in identifying patterns and correlations that are not immediately obvious through

numerical data alone.

Figure 3.3: Geological Bedrock Data and Distribution of Hydrometric Stations on
the Neaghan RDB

By understanding these interactions, we can enhance climate models, improve

weather forecasting accuracy, and inform land use and resource management deci-

sions. This research is particularly relevant for climate adaptation strategies, helping

policymakers and scientists to develop more effective measures to mitigate and adapt

to climate change impacts.
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3.4 Summary

This chapter presents a methodological architecture leveraging ETL technology to

integrate heterogeneous environmental data from multiple sources. The approach

addresses the challenges of data sourcing, extraction, transformation, loading, map-

ping, spatiotemporal integration, and data quality validation, providing a solution

for Environmental Spatiotemporal Data Integration (STDI). The case studies of

STDI in Ireland demonstrate the applicability and effectiveness of the proposed

architecture in handling and integrating diverse data types, formats, and sources.

The distance-based algorithms for spatial data integration and the temporal data

integration techniques used in this approach ensure seamless data merging, opti-

mal alignment, and minimal information loss. The algorithms implemented have

been tailored to address specific spatiotemporal integration challenges within en-

vironmental data contexts. Their design aims to balance efficiency and accuracy,

facilitating the integration of diverse datasets crucial for comprehensive environ-

mental analysis. The successful integration of real-world datasets, as illustrated in

the case studies, provides practical evidence of the architecture’s capabilities. This

methodological architecture can be adapted and applied to various fields where inte-

grating heterogeneous data from multiple sources is essential for practical analysis,

visualization, and decision-making. The customizable rules and parameters within

the algorithms allow users to tailor the integration process to their specific needs,

making it a versatile solution for diverse integration scenarios.

Future work in this area may focus on exploring the application of machine learn-

ing and artificial intelligence techniques to enhance the automation and accuracy

of the data integration process. Additionally, the development of more advanced

algorithms and tools to handle complex data types and relationships, as well as the

integration of real-time streaming data, can further improve the capabilities of the

proposed architecture.

In conclusion, the proposed methodological architecture provides a practical and

efficient solution for integrating heterogeneous environmental data from multiple
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sources, enabling comprehensive analysis, visualization, and decision-making in spa-

tiotemporal contexts. The case studies have demonstrated its effectiveness, proving

its value in real-world applications and offering a foundation for further enhance-

ments.
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Chapter 4

Evaluating Machine Learning

Models for River Water Level

Predictions

The preceding chapter introduced a system designed to efficiently integrate spa-

tiotemporal data into a unified dataset. Leveraging this dataset as our foundational

resource, this chapter focuses on a critical endeavour: evaluating and selecting the

optimal machine learning model for predicting river water levels. Through rigorous

analysis, we seek to elucidate the strengths and limitations of each model, thereby

constructing a dataset of experimental results that will underpin the development

of the meta-learner.

4.1 Introduction

Building upon the previous chapter’s emphasis on spatiotemporal data integration,

this chapter explores the practical applications of the integrated dataset in address-

ing real-world challenges. One such application is the forecasting of river water

levels, which demands a combination of precision and adaptability. Accurate river

water-level predictions are crucial for managing water resources, mitigating the risks

associated with floods and droughts, and enhancing decision-making processes. Tra-
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ditional methodologies often employ hydrodynamics and differential equations to

model the complex physical processes involved in runoff, river flow, and confluence

[104] [154]. Despite their ability to accurately model natural phenomena, these tra-

ditional approaches can be resource-intensive, requiring substantial computational

power, detailed data, and specialized expertise. Therefore, there is a need for im-

provement, particularly in providing real-time forecasts that are both timely and

actionable for decision-makers.

The field of hydrology has significantly benefited from advancements in machine

learning (ML). These novel approaches have garnered considerable attention, driven

by the increased availability of data and the pressing need to address the impacts of

climate change and human activities on the environment [117] [216]. Machine learn-

ing models, such as artificial neural networks (ANNs), are now considered promising

tools that have the potential to address the limitations of traditional models. These

models have significantly expanded the toolkit available for hydrological forecasting,

offering a range of options that provide high accuracy and adaptability.

4.2 Study Area and Data

The study area encompasses the river basin districts (RBDs) in Ireland, which are

divided into seven districts:

• Shannon (S)

• South Eastern (SE)

• Western (W)

• Eastern (E)

• South Western (SW)

• North Western (NW)

• Neagh Bann (NB)
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These districts, as shown in Figure 4.1 (source: OPW RBD), are responsible for

monitoring the water-level status of rivers in Ireland, including the shared water

courses with Northern Ireland.

Figure 4.1: River Basin District from Office of Public Works [152]

The water-level time series (datasets) were collected from the Office of Pub-

lic Works (OPW). OPW’s hydrometric surface water network currently has 386

stations.Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7 and

Figure 4.8 below display the hydrometric station distribution within each RBD:

Figure 4.2: North Western (NW) Figure 4.3: Neagh Bann (NB)
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Figure 4.4: Eastern (E) Figure 4.5: South Eastern (SE)

Figure 4.6: Western (W) Figure 4.7: South Western (SW)

Figure 4.8: Shannon (S)
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4.3 Exploratory Analysis

When starting any analysis related to time series (and most data in general), one of

the first steps is visualising the data. This aims to inspect the data in order to gain

insights and extract meaningful information from it, for example:

• Does the data exhibit any patterns?

• Are there any atypical observations (outliers) found in the data set?

• Is there evidence of non-stationarity in the properties of the series of observa-

tions over time?

• Are there any correlations or associations observed between the variables? If

multiple variables are presented, it is essential to consider each variable and

its implications carefully.

• Are there identifiable clusters of flow patterns?

For this initial assessment of our approach, we will use the Aclint station as our

illustrative example. The Aclint station is located within the GLYDE catchment

area. It is identified by station number 6026 and belongs to the Neagh Bann (NB)

RBD. The station is situated near the LAGAN river, specifically in the GLYDE

section of the river. Its geographic coordinates are approximately 53.92 degrees

latitude and -6.64 degrees longitude. The station serves as an illustrative example

in our analysis or study.

4.3.1 Trend Analysis of Water-Level Data

Trend analysis is crucial for understanding the behavior and patterns within hourly

water-level data recorded at a hydrometric station. It helps uncover underlying

trends, seasonal variations, and short-term fluctuations, providing valuable insights

for purposes such as flood prediction, water resource management, and environmen-

tal monitoring.
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In this section, we explore the selection of appropriate window sizes for calcu-

lating moving averages. Different window sizes capture short-term, mid-term, and

long-term trends, offering a comprehensive view of water-level patterns at Aclint

Station.

4.3.1.1 Selection of Window Sizes

Choosing an appropriate window size for calculating a moving average depends on

the data’s characteristics and the analysis objectives:

• Trend Detection: Larger window sizes, such as a 24-hour window, capture

long-term trends and smooth out noise, aiding in the identification of daily

trends.

• Short-Term Trends: Smaller window sizes, like a 12-hour window, reveal

short-term patterns and diurnal fluctuations.

• Data Granularity: High-volatility data may require larger window sizes to

effectively detect meaningful trends.

• Experimentation: Testing various window sizes helps determine the most

insightful for the specific analysis.

4.3.1.2 Applying Different Window Sizes

We applied various window sizes to the water-level data to capture different trend

durations:

• 12-hour window: Captures short-term diurnal patterns (Figure 4.9).

• 24-hour window: Highlights daily trends (Figure 4.10).

• 7-day window: Reveals weekly cycles (Figure 4.11).

• 30-day window: Shows monthly variations (Figure 4.12).

• 90-day window: Identifies quarterly patterns (Figure 4.13).
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• 365-day window: Displays annual trends (Figure 4.14).

Figure 4.9: Short-term trend (12 hours) for water-level data (Aclint Station)

Figure 4.10: Daily trend (24 hours) for water-level data (Aclint Station)

Figure 4.11: Weekly trend (7 days) for water-level data (Aclint Station)
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Figure 4.12: Monthly trend (30 days) for water-level data (Aclint Station)

Figure 4.13: Quarterly trend (90 days) for water-level data (Aclint Station)

Figure 4.14: Annual trend (365 days) for water-level data (Aclint Station)

108



A Meta-Learning Approach for Hydrological Time Series Model Selection

In conclusion, the initial selection of a 24-hour window (equivalent to one full day)

for the computation of the rolling mean is advantageous for discerning daily trends,

which often hold significance in analyzing such temporal datasets. Trend analysis

using moving averages provides a foundation for model selection and further time

series analysis, helping to identify the most suitable models for predicting water

levels.

Figure 4.15 illustrates the comprehensive application of different window sizes

for capturing trends in water-level data at Aclint Station.

Figure 4.15: Trends for water-level data (Aclint Station)

4.3.2 Autocorrelation and Partial Autocorrelation Analysis

This section explores the autocorrelation and partial autocorrelation patterns within

our time series data. Autocorrelation, also known as serial correlation, is the measure

of the correlation between observations of a time series separated by various lags.

Essentially, it quantifies the relationship between a variable’s current value and its

past values, providing insights into the degree of dependency within the data.

These analyses provide valuable insights into the temporal dependencies and

potential seasonality present in the dataset, which are crucial for selecting an ap-

propriate time series model for forecasting or further analysis. Autocorrelation func-
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Figure 4.16: Autocorrelation for water-level data (Aclint Station)

tions (ACF) and partial autocorrelation functions (PACF) help identify the extent

and nature of these dependencies, enabling the identification of significant lags that

contribute to the series’ behavior.

The ACF measures the correlation between the series and its lagged values,

capturing both direct and indirect effects. In contrast, the PACF isolates the direct

effect of a particular lag by removing the influence of intermediate lags. Together,

these tools allow for a comprehensive understanding of the internal structure of the

time series, guiding the model selection process to enhance forecasting accuracy.

The trend, autocorrelation, and partial autocorrelation analyses performed ear-

lier help to reveal the structural characteristics of the water-level time series data,

which will guide the modeling approach in subsequent sections.

ACF (AutoCorrelation Function): The ACF value at lag 1 being suggests

a strong positive autocorrelation at lag 1 as shown in Figure 4.16. The ACF starts

dropping slightly around lag 20 and reaches almost 0.90 around lag 50. This suggests

a positive autocorrelation that persists for a relatively long period (lags 20 to 50).

There might be a seasonal or cyclic pattern with a periodicity of approximately

50-time units.
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The drop in ACF values as we move further from lag 1 is expected. If we notice

a spike at lag one and a gradual decrease, it indicates a first-order autoregressive

(AR(1)) component in the data. This typically means:

1. AR(1) Process: The time series data may follow an autoregressive process of

order 1. In other words, the current value depends linearly on the previous

value with a lag of 1. This is a typical pattern in many time series data.

2. No Clear Seasonality: The gradual decrease in ACF values without any recur-

ring peaks at specific lags suggests that there might not be a seasonality in

the data, at least not one that dominates the autocorrelation structure.clear

To further investigate the extent of the lags and identify the order of an autore-

gressive model, we now look at the partial autocorrelation function (PACF).

PACF (Partial AutoCorrelation Function): The initial two lags at 1 in the

PACF indicate a strong correlation with the first two lags as shown in Figure 4.17.

The gradual ascent in the PACF from -0.25, stabilizing at 0 at around lag 20,

suggests a possible moving average (MA) component in the time series model. The

initial negative values followed by stabilization at 0 indicate that there might be

some seasonality or cyclic behaviour captured by the MA component.

Based on the ACF and PACF plots (Figure 4.16 and Figure 4.17), the data might

follow an AR(1) process.

4.3.3 Stationarity Tests: ADF and KPS

In this section, we perform two fundamental stationarity tests, the Augmented

Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test,

to evaluate the stationarity properties of our time series data.

Augmented Dickey-Fuller (ADF) Test: The ADF test is used to test for the

presence of a unit root in a time series sample. The null hypothesis of the ADF test

is that the time series has a unit root (i.e., it is non-stationary). The test statistic

is computed as follows:
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Figure 4.17: Partial autocorrelation for water-level data (Aclint Station)

∆Yt = α + βt+ γYt−1 +
k∑

i=1

δi∆Yt−i + ϵt (4.1)

where:

• ∆Yt is the first difference of the series.

• α is a constant.

• βt is the coefficient on a time trend.

• γYt−1 is the lagged value of the series.

• δi∆Yt−i represents lagged differences of the series.

• ϵt is the error term.

A negative test statistic indicates stronger evidence against the null hypothesis,

suggesting that the series is stationary.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: The KPSS test tests

the null hypothesis that a time series is stationary around a deterministic trend

(trend-stationary). The test statistic is calculated as:
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KPSS =
1

T 2

T∑
t=1

S2
t /σ

2 (4.2)

where:

• T is the number of observations.

• St is the partial sum of residuals.

• σ2 is the variance of the residuals.

A smaller test statistic suggests stronger evidence against the null hypothesis of

stationarity.

Table 4.1: Stationarity test results (Aclint Station)

Test ADF KPSS

Test Statistic -6.4315 0.4782

p-value 1.6932e-08 0.0466

Critical Values

1% -3.4305 0.7390

2.5% - 0.5740

5% -2.8616 0.4630

10% -2.5668 0.3470

Table 4.1 presents the results of the ADF and KPSS tests conducted to assess

the stationarity properties of the time series data collected from Aclint Station.

Augmented Dickey-Fuller (ADF) Test Results:

• Test Statistic: The ADF test statistic is -6.4315, which is quite negative,

indicating strong evidence against the null hypothesis of non-stationarity.

• p-value: The p-value is 1.6932e-08, which is extremely small, suggesting we

can reject the null hypothesis.

• Critical Values: The test statistic is more negative than all critical values

at the 1%, 5%, and 10% levels, further supporting the rejection of the null

hypothesis.
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The ADF test indicates evidence for stationarity, with a highly negative test

statistic and an extremely small p-value.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test Results:

• Test Statistic: The KPSS test statistic is 0.4782.

• p-value: The p-value is 0.0466, which is less than the typical significance level

of 0.05, indicating we can reject the null hypothesis of stationarity.

• Critical Values: The test statistic is less than the critical values at the 10%

and 5% levels but greater than those at the 2.5% and 1% levels.

Based on the KPSS test results, the evidence suggests that the Aclint hydro-

metric station time series data may not be strictly stationary but might be trend-

stationary. Trend-stationarity means that the data has a constant mean but may

have a changing variance over time.

In summary, both tests provide evidence regarding stationarity, with the ADF

test suggesting stationarity and the KPSS test indicating potential trend-stationarity.

4.4 Methodology

4.4.1 Methodology Overview

Our study aims to build accurate predictive models based on historical data for river

water-level forecasting. To achieve our research goals, this section provides a detailed

explanation of the methodology used to create and assess accurate predictive models

for forecasting river water levels using machine learning algorithms. The subsequent

subsections outline our approach in depth.

The flowchart of the proposed method is illustrated in Figure 4.18.

The flowchart details the sequential steps involved in the process, starting from

defining the model’s purpose and context, followed by inputting raw data. This

data undergoes feature engineering, which includes normalization, handling outliers,

managing missing data, and extracting relevant features. A machine learning model
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is then constructed using the engineered features. Subsequently, the top k features

are selected to optimize the model, and the best-performing model is chosen based

on a set of performance metrics. The final step involves validating, testing, and

verifying the model on unseen data to ensure its reliability and generalizability.

Throughout the process, reassessment and iteration are conducted as necessary to

refine the model and improve its performance.

Figure 4.18: Flowchart of the proposed method in this study.

4.4.2 Data Preprocessing

Environmental data, including water level, temperature, wind, and rainfall, is col-

lected as time series data. The data undergoes preprocessing to ensure its integrity

and suitability for machine learning testing.

4.4.3 Machine Learning Models

In this research, a diverse set of machine learning models is employed to predict water

levels at multiple locations. The objective is to build models that can forecast water

levels based on historical data, leveraging the relationships between past water-

level observations and future data. Each model offers unique capabilities, making it

suitable for specific prediction scenarios.
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1. Baseline Model: The baseline model serves as a fundamental reference point

for comparing the performance of more complex models. Its primary function

is to provide a simple yet meaningful prediction. In this case, the baseline

model predicts ”no change” in the water level by merely returning the current

water-level as its prediction. This decision is based on the understanding that

water levels typically change gradually over time, making the current level a

reasonable approximation for the near future. However, it’s important to note

that as we project further into the future, the accuracy of this baseline model

is likely to diminish. Additionally, the figure displaying the model’s results

may show a noticeable shift to the right by one hour when compared to the

actual labels. This shift is due to factors such as data processing or inherent

characteristics of the baseline model.

2. Linear Model: The Linear Model builds upon the baseline approach by in-

corporating a linear transformation between the input data and the predicted

output[176]. In this model, predictions are generated independently based

on consecutive time steps. The primary objective of the linear model is to

identify and capture straightforward linear relationships within the data. It

is essentially a single-layer neural network with a single neuron, using a lin-

ear activation function and a learning rate of 0.001. The model undergoes a

specified number of training cycles, or epochs, set at 20 in this case.

Input Neuron Output

Figure 4.19: Structure of the Linear Model (Single Perceptron).

3. Dense Model: A dense model, also known as a ”fully connected” model, is a

type of neural network where all neurons in one layer are connected to every

neuron in the next layer. This means that each neuron in a dense layer receives

input from all neurons in the previous layer. The Dense Model in this study

consists of a single fully connected layer with ReLU activation functions and a
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learning rate of 0.001. Dense models are versatile and well-suited for various

applications, including river water-level predictions, where intricate patterns

may exist in the data[190].

Input

Input

Neuron

Neuron

Output

Figure 4.20: Structure of the Dense Model (Single Fully Connected Layer).

4. MultiDense Model: The MultiDense Model, similar to the dense model,

introduces additional dense layers positioned between the input and output

layers. This architectural depth enhances the model’s capability to discern

intricate patterns and relationships inherent in time series data. The Multi-

Dense Model used in this study comprises three fully connected layers, each

with ReLU activation functions and a learning rate of 0.001. This augmented

depth results in a more intricate model architecture, affording the potential

to capture nonlinear dependencies that a simple linear model might overlook

[159].

Input

Input

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Output

Figure 4.21: Structure of the MultiDense Model (Multiple Fully Connected Layers).

5. CNN Model: Convolutional Neural Networks (CNNs) are renowned for their

exceptional feature extraction capabilities. In this context, a CNN model is
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specifically designed for water-level prediction. To ensure a consistent training

and plotting process, the output sequence length is adjusted to match the

labels. CNNs excel at identifying spatial and temporal patterns within data,

making them a valuable tool for time series forecasting, especially when there

are underlying patterns and features that can be extracted.

6. RNN Model: Recurrent Neural Networks (RNNs) are a specialized class of

neural networks tailored for modeling sequential data. They are highly suit-

able for time series forecasting tasks because they can capture the sequential

dependencies and temporal patterns present in the data. RNNs work by main-

taining an internal state that evolves as new information is processed, allowing

them to exhibit behavior akin to the human brain when processing sequential

data [155].

7. LSTM Model: Long Short-Term Memory (LSTM) models are a specific type

of RNN that addresses the vanishing gradient problem, which is a common

issue in training deep neural networks. LSTMs are equipped with memory cells

that can store and retrieve information over longer sequences, making them

particularly effective for modeling long-range dependencies in time series data.

Fine-tuning the LSTM model involves selecting appropriate hyperparameters

such as the training window size, the number of batches, and the number of

training epochs [42].

8. GRU Model: Gated Recurrent Unit (GRU) models are a more advanced

variant of standard RNNs and are designed to mitigate the vanishing gradient

problem while retaining some of the efficiency of RNNs. GRUs are especially

adept at capturing long-term dependencies in time series data, which makes

them a valuable choice for tasks like water-level prediction. Their ”gated”

architecture allows them to control the flow of information through the net-

work, enabling them to capture relevant information over extended sequences

without losing context [64, 155].
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9. LSTM with Attention: LSTM with attention combines the capabilities

of LSTM (Long Short-Term Memory) and attention mechanisms. This fusion

allows the model to focus on specific parts of the input sequence, enabling it to

capture fine-grained dependencies within water-level data. This model proves

advantageous when certain time steps or patterns in water-level data demand

more attention for accurate predictions. It excels at handling situations where

localized details are critical for forecasting [150].

10. Autoencoder: Autoencoders are adept at learning compressed representa-

tions of input data. In the context of water-level predictions, they can capture

the most pertinent features within the data and provide a concise represen-

tation suitable for forecasting. Autoencoders find utility when there’s a need

to reduce dimensionality or extract meaningful features from water-level data.

They are particularly valuable for preprocessing data for subsequent prediction

models [1]. Autoencoders are not used directly for prediction in this study. In-

stead, they are employed for feature extraction and dimensionality reduction.

By compressing the input data into a lower-dimensional representation and

then reconstructing it, autoencoders can capture essential patterns and struc-

tures in the data. These extracted features are then fed into other predictive

models, such as dense models or CNNs, to enhance their performance. This

approach leverages the strengths of autoencoders in uncovering complex data

patterns, which are subsequently used to improve the accuracy and robustness

of our water-level prediction models.

11. Transformer: Transformers represent formidable models for capturing global

dependencies and long-term patterns in water-level data. They employ self-

attention mechanisms to process sequences, making them adept at capturing

intricate relationships. Transformers excel when dealing with water-level data

that exhibits global dependencies and non-local interactions. They are well-

suited for applications where a holistic understanding of the data is crucial

[214].
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12. Variational Autoencoders (VAEs): Variational Autoencoders (VAEs) pos-

sess the capability to model the underlying distribution of data. In the context

of water-level predictions, they can capture the uncertainty and variability

within the data, offering insights into a range of possible outcomes. VAEs find

their strength in situations requiring probabilistic modeling and the genera-

tion of diverse samples. They are valuable for understanding the probabilistic

nature of water-level data and assessing potential scenarios.

Each of these models offers unique capabilities, making them suitable for specific

prediction scenarios, providing valuable insights into water-level forecasting.

Table 4.2: Summary of Machine Learning Models

Model Type Layers
Activation

Function

Learning

Rate

Baseline - - - -

Linear Model Single Layer Perceptron 1 Linear 0.001

Dense Model Fully Connected NN 1 ReLU 0.001

MultiDense

Model

Fully Connected NN 3 ReLU 0.001

CNN Model Convolutional NN Multiple ReLU 0.001

RNN Model Recurrent NN Multiple Tanh 0.001

LSTM Model LSTM NN Multiple Tanh 0.001

GRU Model GRU NN Multiple Tanh 0.001

LSTM with At-

tention

LSTM + Attention Multiple Tanh 0.001

Autoencoder Encoder-Decoder Multiple ReLU 0.001

Transformer Self-Attention Multiple ReLU 0.001

Variational Au-

toencoder

Probabilistic Encoder-

Decoder

Multiple ReLU 0.001
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4.4.4 Model Training and Validation

The process of training a machine learning model aims to develop a predictive model

that effectively captures patterns within the dataset. However, it is essential to

acknowledge the possibility of the model encountering a phenomenon known as

overfitting. Overfitting occurs when the model, instead of grasping the underlying

structural elements of the data, tends to memorize specific idiosyncrasies present

solely in the training dataset. The implication of this issue becomes particularly

significant when the model is applied to entirely new, previously unseen data. In

order to mitigate the potential consequences of overfitting and to assess the gener-

alization capabilities of a model, various validation techniques are employed. These

techniques involve evaluating the model’s performance on distinct data subsets,

thereby providing a more comprehensive understanding of its predictive capabilities

and highlighting any potential limitations or biases.

The models were developed using 70% of the water level (WL) data. The rest of

the data were used for model validation and testing (20% and 10%, respectively).

The data was not randomly shuffled before splitting for two reasons. First, to

ensure that splitting the data into windows of consecutive samples is still possible.

Moreover, to ensure that the validation and test results were evaluated after the

model was trained.
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Figure 4.22: Schematic overview of the Model Training process.

Training Process:

1. Data Splitting: The dataset is divided into three parts: training (70%),

validation (20%), and testing (10%).

2. Model Training: The model is trained on the training dataset. During this

phase, the model learns to recognize patterns within the data.

3. Validation: The model’s performance is evaluated on the validation dataset.

This step helps in tuning the model’s hyperparameters and assessing its ability

to generalize to unseen data.
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4. Testing: Finally, the model’s performance is tested on the testing dataset to

evaluate its predictive accuracy and generalization capabilities on completely

unseen data.

By employing this structured approach, we ensure that the model is not only

trained effectively but also evaluated rigorously to prevent overfitting and ensure

robust performance on new data.

4.4.4.1 Normalization

The next step before training a neural network is to scale the data. Normalization

is a typical way of scaling: subtracting the mean and dividing it by the standard

deviation of the feature. The equation for normalizing a feature is as follows:

X ′ =
X − X̄

σ
(4.3)

where X is the original feature vector, X̄ and σ are the mean and standard deviation

of that feature vector, respectively.

Advantages of Normalization for Water Level Time Series:

1. Improved Model Convergence: Normalization helps in speeding up the training

process by ensuring that the features have similar scales. This makes the

gradient descent optimization more stable and efficient, reducing the time

needed for the model to converge.

2. Prevention of Numerical Instability: Normalization prevents numerical insta-

bility during training, especially in neural networks where large values can

cause the model weights to grow excessively and lead to overflow errors.

3. Enhanced Model Performance: By scaling the data, normalization helps in

achieving better model performance. It allows the model to learn the weights

more effectively, leading to improved accuracy and generalization on unseen

data.
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While normalization can sometimes lead to the loss of absolute scale information,

this is not a significant issue for predictive modeling. The relationships and patterns

in the data, which are crucial for making predictions, are preserved. The main goal of

normalization is to facilitate the learning process of the model by standardizing the

input features, thereby improving its predictive capabilities without losing essential

information.

In summary, normalization is a fundamental preprocessing step in training neural

networks for time series prediction. It ensures that the model training is efficient and

robust, leading to better overall performance. However, it is important to choose

the normalization method carefully, considering the specific characteristics of the

dataset. The normalization technique that centers data around zero and scales it

to have a standard deviation of one, known as mean-std normalization, is widely

used for its simplicity and effectiveness, especially with datasets featuring normally

distributed features. This method is crucial in machine learning, particularly for

neural networks, as it promotes faster convergence during training.

Rationale for Employing Normalization in Water Level Predictions:

• Scale Consistency: Water level data, like many other types of measurements,

can vary widely in scale. Normalization ensures that all features are on a

uniform scale, preventing features with larger numeric ranges from unduly

influencing the learning process.

• Enhanced Convergence: Normalization standardizes the data, typically cen-

tering it around zero with a standard deviation of one. This standardization

facilitates the training of machine learning models, particularly neural net-

works, by expediting the convergence process. It mitigates issues such as

vanishing or exploding gradients, which often affect unscaled data.

• Feature Balance: Normalization ensures that each feature contributes equally

to the model’s learning process by removing the influence of scale differences.

This balance is essential for algorithms that assume a standard distribution of

data.
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• Robustness to Outliers: While normalization is sensitive to outliers, it gener-

ally improves the handling of these values compared to other scaling methods.

Additionally, specialized normalization techniques like robust scaling are de-

signed explicitly to manage extreme values.

• Interpretability: Normalized data tends to be more interpretable because the

coefficients or weights of a model become more comparable and understandable

when features share a common scale. This aids in understanding the impact

of each feature on the model’s predictions.

• Algorithm Compatibility: Many machine learning algorithms, including neu-

ral networks, assume data is normally distributed and centered around zero

with a standard deviation of one. Normalization adheres to this foundational

assumption, enabling the optimal utilization of these algorithms.

• Reduced Computational Load: In some cases, normalization can reduce the

computational complexity of machine learning models, leading to faster train-

ing times and lower memory utilization.

However, it is equally important to acknowledge that alternative normalization

methods are available, each tailored to address distinct requirements. For instance,

the Z-score normalization method, which mirrors mean-std normalization, involves

subtracting the mean and dividing by the standard deviation. In scenarios where

datasets exhibit the presence of outliers, it becomes imperative to explore other

scaling techniques. Robust scaling and Min-Max scaling, for instance, are specifically

engineered to cope with data containing extreme values while maintaining effective

normalization [71].

4.4.4.2 Data Windowing

In this research, our models generate predictions using a window of consecutive data

samples. These windows are characterized by several key attributes, including the

width of the input and label windows, the time offset between them, and the specific
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Figure 4.23: Aclint Station CNN Model Predictions (1-hour ahead)

selection of features utilized within these windows. Consequently, the training,

evaluation, and test datasets undergo transformation into windowed datasets to

facilitate this modeling approach. Depending on the experiment and the type of

model employed, various data window configurations were created.

For example, when working with a water level dataset with hourly measurements,

the configuration denoted as {input width=24, label width=1, shift=1} defines

the data window setup used for training the models. Here, each input window

comprises data from the past 24 time steps (e.g., the past 24 hours), the model

predicts one time step into the future (e.g., the water level for the next hour), and

the label window starts immediately after the input window with no gaps. This

configuration is particularly relevant for scenarios necessitating hourly predictions

grounded in the most recent 24-hour data. Figure 4.23 illustrates 1-hour ahead water

level predictions generated by the Convolutional Neural Network (CNN) model,

reflecting the model’s performance in making hourly forecasts based on the most

recent 24 hours of data.

On the other hand, the second window configuration, represented as {input width

=24, label width=24, shift=1}, encompasses different characteristics. In this

setup, the model uses the preceding 24 hours of data to predict the water levels

for the next 24 hours. This configuration is apt for making daily predictions, as
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depicted in Figure 4.24, which presents 48-hour ahead forecasts using the LSTM

model.

Figure 4.24: Aclint station LSTM Model Predictions (48 hours ahead)

However, while the idea of predicting beyond one hour is introduced, it was not

thoroughly analyzed in the results. Increasing the prediction horizon often impacts

the accuracy of the results due to the accumulation of errors in multi-step ahead

predictions. This phenomenon is well-documented in the literature, where errors

compound over each prediction step, leading to a significant decline in accuracy for

longer prediction horizons. For instance, research by [19] highlights that multi-step

predictions can suffer from what is known as ”error accumulation,” where small

errors in each prediction step propagate and magnify, resulting in larger errors as

the prediction horizon extends .

Moreover, [65] discuss the challenges in training models for multi-step predic-

tions due to this compounding effect, which often requires sophisticated techniques

such as sequence-to-sequence models or the incorporation of temporal dependen-

cies to mitigate . These challenges are particularly relevant in the context of water

level forecasting, where accurate long-term predictions are crucial for effective water

resource management and flood prevention.

Studies by [192] and [68] have further demonstrated that traditional models

struggle with multi-step forecasting because they do not adequately capture the
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long-term dependencies required for accurate predictions. This issue is particularly

pronounced in recurrent neural networks (RNNs), which, despite their ability to han-

dle sequential data, often exhibit vanishing gradient problems that exacerbate error

propagation over longer sequences. The vanishing gradient problem, as described

by [81], refers to the difficulty in training deep neural networks due to the gradi-

ents becoming exceedingly small, effectively preventing the network from learning

long-term dependencies .

Addressing these challenges typically involves model enhancements or hybrid

approaches, integrating techniques like attention mechanisms or ensemble methods.

For example, [41] introduced the use of attention mechanisms in neural networks,

which allow the model to focus on different parts of the input sequence when making

predictions. This approach has been shown to significantly improve the performance

of multi-step predictions by reducing the impact of error accumulation. Similarly,

[68] demonstrated that utilizing Long Short-Term Memory (LSTM) networks, which

are designed to better capture long-term dependencies, can also mitigate some of

the issues associated with traditional RNNs .

Despite these advancements, the issue of error accumulation in multi-step pre-

dictions remains a significant challenge. [193] explored the bias-variance tradeoff

in multi-step forecasting and concluded that as the forecast horizon increases, the

model’s bias and variance also increase, leading to less accurate predictions . This

finding underscores the importance of carefully selecting and designing models for

long-term forecasting tasks.

To address these concerns and provide a more focused analysis, we decided to

limit our experiments in this chapter to 1-hour ahead predictions. This decision

ensures a more reliable evaluation of model performance, which is detailed in Section

4.6. By focusing on short-term predictions, we can provide a clearer assessment of

the model’s capabilities without the confounding effects of error accumulation.
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4.4.4.3 Hyperparameter configuration

The number of units and epochs in the ML models is essential in learning. Thus,

multiple experiments were conducted to find the optimal number of units and epochs

to train the model. To find the optimal number of units, we compared the model

performance where the unit number was equal to 16, 32, 64, 128, and 256. The

comparison results showed that:

• The best results in training were recorded when the number of units was 64,

followed by the case where the units were 32.

• When the number of units was 128 and 256, the training loss value was almost

the same. There was no significant difference in training loss values for the 32,

128, and 256 cases.

• When the unit number was set to 16, the models delivered the worst recorded

performance.

• The validation loss value also obtained the best performance when the number

of units was 64, followed by 32, 128, 256, and 16 units.

It was confirmed that the learning time was proportional to the number of units.

When the number of units was 64, it was confirmed that both learning and validation

showed the best performance, and when the number of units was 16, it was confirmed

that the worst performance was shown. Thus, according to the experimental results,

the number of units was finally determined to be 64. In order to discover the optimal

epoch number, the models were trained up to 50 epochs, and the training loss values

and validation loss values were compared against several epochs. The result shows

that 20 epochs delivered the highest performance; hence, the epoch’s max number

was set to 20.

To conclude, Adam [107] was used as an optimisation function, the number of

units used to train the models was 64, and the number of epochs (training iterations)

was 20. Mean Squared Error (MSE), was used as the loss function for model training,
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and Mean Absolute Error (MAE) was used as the indicator for the validation and

test to compare the observed and predicted values. The relative performance of

different models developed in this study was evaluated for both the validation and

test periods.

While Bayesian Optimization was not employed in this study, it represents a

promising approach for hyperparameter tuning. Bayesian Optimization is a sequen-

tial model-based optimization technique that constructs a probabilistic model to

map hyperparameters to the objective function. This method could help in effi-

ciently navigating the hyperparameter space to identify optimal values by balancing

exploration and exploitation, potentially leading to further improvements in model

accuracy and training efficiency.

4.4.5 Models Performance Evaluation

The data is divided into training, testing, and validation subsets, where the selection

of subsets can significantly affect the model performance [23]. The unseen dataset

(validation) becomes a crucial element at this stage. It allows us to compare our

model against data that has never been used for preparation. This test will let us

see how the model can respond to the knowledge it has not seen before. It is meant

to show how the model could work in the real world.

To evaluate the execution of our model, we quantified errors using Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE)

[90]. These metrics provide a comprehensive view of the model’s accuracy and reli-

ability in predicting water levels. In addition, these metrics measure the differences

between the predicted values and the actual values, enabling an evaluation of pre-

diction quality.

The Mean Squared Error (MSE):

The MSE computes the average squared difference between the predicted values,

Y ′, by a model or estimator and the actual values, Y , as expressed below.
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MSE =
1

n

n∑
i=1

(Yi − Y ′
i )

2 (4.4)

The Root Mean Squared Error (RMSE):

The root-mean-square error (RMSE) (also known as root-mean-square deviation

(RMSD)) is a commonly used calculation of the variations between predicted (Y ′)

and actual values (Y ) by a model or estimator, i.e., it is the square root of MSE, as

shown below.

RMSE =
√
MSE =

√
1

n
Σn

i=1

(Yi − Y ′
i

σi

)2

(4.5)

The Mean Absolute Error (MAE):

The mean-absolute-error (MAE) can be defined as the average of the entire

absolute errors, as shown below.

MAE =
1

n

n∑
i=1

|Yi − Y ′
i | (4.6)

Each of these metrics captures different aspects of prediction error. MSE calcu-

lates the average squared difference between predictions and actual values, giving

more weight to larger errors. This metric is sensitive to outliers and penalizes them

more than the other two metrics. RMSE is the square root of MSE and provides a

measure of the standard deviation of the errors. It is in the same units as the target

variable, making it easier to interpret. RMSE is also sensitive to outliers but is

often used when the magnitude of errors is significant. MAE computes the average

of the absolute differences between predictions and actual values, treating all errors

equally and being less sensitive to outliers.

These metrics are widely accepted and used across different regression problems.

Having a common set of evaluation metrics (like MSE, RMSE, and MAE) makes it

easier to assess and compare the performance of different models [32]. The choice

of these metrics can also depend on the problem and the trade-off between bias and

variance. MSE and RMSE tend to emphasize larger errors more, which might be
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suitable when small errors are more tolerable. MAE treats all errors equally and

can be preferred when a more balanced view of error is needed. These metrics are

particularly useful in the validation phase with a separate dataset (validation set)

that the model has not seen during training. This enables the evaluation of the

model’s performance when confronted with novel, unobserved data.

While MSE, RMSE, and MAE provide robust metrics for evaluating model per-

formance, additional evaluation metrics and analyses can offer additional insights

and improve model assessment: R-Squared (R2) is a statistical measure that rep-

resents the proportion of the variance for a dependent variable that’s explained by

an independent variable or variables in a regression model. It provides an indication

of how well the predicted values approximate the actual data points. Incorporating

R2 could offer more insight into the model’s explanatory power [184].

R2 = 1−
∑n

i=1(Yi − Y ′
i )

2∑n
i=1(Yi − Ȳ )2

Analyzing the distribution of errors (residuals) is crucial for understanding model

performance. Ideally, residuals should be normally distributed with a mean of zero,

indicating unbiased and consistent predictions across different data points. Plot-

ting residuals can help identify patterns, trends, or outliers that the model might

not have captured, providing deeper insights into model performance and areas for

improvement [116].

In the context of hydrology, these metrics help to assess the quality of the predic-

tions and ensure that the model is performing well, particularly when predicting a

critical variable like water levels, which can have significant real-world implications

[145].

4.5 Computational Resources and Tools

This study utilized a combination of Python and R programming languages to im-

plement and evaluate the machine learning models. Specifically, the following tools
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and frameworks were employed:

• Programming Languages: Python and R were used for data processing,

model implementation, and evaluation. Python was primarily utilized for

developing machine learning models, while R was employed for initial data

exploration and visualization.

• Frameworks and Libraries: The implementation of machine learning mod-

els was carried out using the following frameworks and libraries:

– TensorFlow: Used for building and training deep learning models, in-

cluding Convolutional Neural Networks (CNNs), Recurrent Neural Net-

works (RNNs), Long Short-Term Memory (LSTM) networks, and Gated

Recurrent Unit (GRU) networks.

– Scikit-learn: Utilized for traditional machine learning models and pre-

processing tasks.

– Keras: A high-level neural networks API, written in Python and capable

of running on top of TensorFlow.

– Seaborn and Matplotlib: Used for data visualization and plotting.

• Development Environments: The code development and model training

were conducted primarily on Google Colab and Anaconda environments.

– Google Colab: An online platform that provides free access to GPUs,

used extensively for model training and experimentation.

– Anaconda: A local development environment that was used for data

preprocessing and initial exploratory data analysis in R.

– PyCharm: An integrated development environment (IDE) used for cod-

ing, debugging, and testing the machine learning models in Python.

Computational Resources: The computational experiments were performed

using the following resources:
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• Google Colab: Utilized for leveraging free GPU resources to speed up the

training of deep learning models. The specifications include:

– GPU: NVIDIA Tesla K80 or T4, depending on availability.

– CPU: 2.3 GHz Intel(R) Xeon(R) CPU.

– RAM: 100 GB.

• Local Machine (Anaconda Environment):

– Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz

– RAM: 16 GB.

– Storage: 512 GB SSD.

– Operating System: Windows 11.

These computational resources and tools provided the necessary infrastructure

to conduct extensive experiments, ensuring efficient processing and model training.

4.6 Experiments

In this study, we will undertake two separate experiments to evaluate the perfor-

mance of machine learning models in predicting hydrometric data. The first ex-

periment focuses on 70 hydrometric stations and eight different models, while the

second experiment extends the scope to 349 stations and introduces 12 models.

4.6.1 Experiment 1: Eight Machine Learning Models on 70

Hydrometric Stations

4.6.1.1 Experimental Setup

The first experiment was designed to provide an initial evaluation of the model

performance using a smaller, yet representative sample of the overall dataset. We

randomly selected 70 hydrometric stations, with 10 stations chosen from each of the
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seven River Basin Districts (RBDs) 4.25). This approach ensures that the sample is

representative of the diverse hydrological conditions across the RBDs, while keeping

the dataset manageable for an initial analysis. In this experiment, we tested eight

different machine learning models, which include:

• Baseline Model

• Linear Model

• Dense Model

• MultiDense Model

• CNN Model

• RNN Model

• LSTM Model

• GRU Model

The rationale for selecting this smaller subset of stations and models is to estab-

lish a foundational understanding of model performance across different hydrometric

conditions. By starting with a manageable dataset and a limited number of models,

we can identify initial trends and insights that can inform the design of larger-scale

experiments.

As mentioned above, we randomly selected ten stations from each river basin

district. Randomly selecting ten stations from each river basin district is a crucial

methodology in this research, serving multiple purposes. Firstly, it ensures repre-

sentative sampling, minimizing potential biases and providing an unbiased overview

of the entire river basin district. Secondly, it upholds statistical validity by allowing

for valid inferences about the entire population based on the characteristics of the

randomly selected sample. By ensuring that each station has an equal chance of be-

ing selected, the randomness of the selection process helps to ensure that the sample

accurately reflects the diversity and variability of the entire river basin district.
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Moreover, this approach is efficient in terms of time and resources, striking a

balance between data comprehensiveness and practicality. It also facilitates gener-

alizability, enabling insights from the selected stations to be applied more broadly to

understand hydrological characteristics and trends in the entire river basin district.

Finally, it reduces the risk of bias and outliers, contributing to more reliable and ro-

bust research outcomes. In essence, random station selection enhances data quality

and the applicability of research findings to the broader context, such as providing

insights into hydrological patterns and trends across all of Ireland.

Exemplary location coordinates and comprehensive information pertaining to a

single hydrometric station selected from each of the 7 River Basin Districts (RBDs)

are meticulously documented in Table 4.3. For a comprehensive listing encompassing

all chosen stations, please refer to Appendix B.
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Figure 4.25: Geographic distribution of 70 randomly selected stations, with 10 sta-
tions from each River Basin District (RBD).
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Table 4.3: Hydrometric stations details

Station name Number RBD River name Catchment Area Latitude Longitude

Aclint 6026 N LAGAN(GLYDE) GLYDE 144.00 km² 53.92476528 -6.640019444

Aghawoney 39009 NW LEANNAN LEANNAN 207.00 km² 55.04378556 -7.720692778

Abington 25003 S MULKEAR Shannon 397.00 km² 52.63186778 -8.421220833

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Aasleagh Bridge 32060 W ERRIFF ERRIFF 166.32 km² 53.61774917 -9.671156667

Anglesea Road 9369 E Dodder LIFFEY 106.22 km² 53.327878 -6.230943

Adelphi Quay 16160 SE JOHN’S RIVER SUIR 3508 km² 52.25966639 -7.102433056

Athea D/S 23051 SW GALEY FEALE 36.30 km² 52.461378 -9.286944
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The data collection period for this experiment spans from 2017 to 2022, with

measurements recorded at 15-minute intervals. Specifically, water-level datasets

were used as the primary input data for training and testing the water-level predic-

tion models. These datasets were also resampled at 1-hour intervals from January 1,

2017, to January 1, 2022 as we did in Experiment 1. In addition to water-level data,

the OPW provides information on flow estimation and water temperature. Flow

estimation involves deriving flow values based on ratings and observed water-levels

determined through a series of flow gaugings at the monitoring stations. Water tem-

perature is recorded as a by-product of the water-level measurement, but caution

should be exercised when interpreting or using this data, as it has not undergone

calibration or quality assurance procedures. Therefore, this research’s analysis and

prediction models will be based exclusively on the water-level datasets. To com-

prehensively evaluate the models across the 70 stations, we will conduct a total of

70×8 = 560 model runs. For each station, all eight models will be trained, validated,

and tested.

This experiment will provide valuable insights into how different machine-learning

models perform across various hydrometric stations within distinct RBDs.

4.6.1.2 Results

The purpose of this experiment was to determine the optimal model for predicting

river water levels predicting hour ahead using a time window of 48. 70 hydrometric

stations were selected across Ireland and each was trained on eight different models

with hyperparameter configurations, totalling 560 model runs. The following sec-

tion details the results of our analyses, first presenting the results from validation

and subsequently testing. Finally a discussion of the overall performance and main

tkeaways of one-hour ahead prediction of hydometric data. The table in Appendix E

shows all models’ prediction performance index values for the 70 hydrometric sta-

tions.
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Validation

Figure 4.26 illustrates the frequency of highest performing machine learning

model selections for water level prediction in various River Basin Districts (RBDs).

Figure 4.26: The distribution of top-performing models for each River Basin Dis-
tricts (RBDs) based on the MAE values

The Table 4.4, summarizes the frequency of top-performing model selections for

each RBD during validation. The top-performing model was selected based on its

Mean Absolute Error (MAE). MAE was chosen as the primary metric for model

selection due to its simplicity, interpretability, and robustness. MAE measures the

average magnitude of errors in a set of predictions, providing a straightforward in-

dication of model accuracy by averaging the absolute differences between predicted

and actual values. Unlike other metrics, such as Mean Squared Error (MSE) or Root

Mean Squared Error (RMSE), MAE is less sensitive to outliers, ensuring that the

evaluation is not disproportionately affected by extreme values. This makes MAE a

reliable measure for assessing model performance in hydrometric data, where varia-

tions and anomalies can occur naturally. By focusing on MAE, we aim to identify

models that consistently perform well across different datasets and conditions, en-
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Table 4.4: Frequency of the Highest Performing Model for Water Level Prediction
in Different River Basin Districts (RBDs) During Validation (baased on the MAE
values)

RBD CNN GRU LSTM MultiDense RNN
EASTERN RBD 1 3 5 1 0
NEAGH BANN RBD 0 5 3 1 1
NORTH WESTERN RBD 0 4 5 0 1
SOUTH EASTERN RBD 0 3 5 2 0
SOUTH WESTERN RBD 0 4 4 0 2
SHANNON RBD 0 2 6 1 1
WESTERN RBD 1 3 4 2 0

suring both accuracy and robustness in water-level predictions.

Eastern RBD: In the Eastern RBD, the most frequently selected model is the

LSTM model, chosen 5 times out of the total 10 station. The GRU model follows

with 3 selections. The Multi Dense model is preferred once. 0 instances of RNN

models being chosen as the highest performing model are observed in this RBD.

Neagh Bann RBD: For the Neagh Bann RBD, the GRU model is the most

frequently selected highest performing model, chosen 5 times out of 10 station. The

LSTM model follows with 3 selections. The MultiDense and RNN models each

secure one instance as the highest performing model, while the MultiDense model

is also preferred once. No CNN models are chosen in this RBD.

North Western RBD: Within the North Western RBD, the LSTM model is

the most prevalent choice, being selected 5 times out of 10 station. The GRU model

closely follows with 4 selections. The RNN model is chosen once. No instances of

the CNN or MultiDense models being chosen as the highest performing model are

noted in this RBD.

South Eastern RBD: In the South Eastern RBD, the LSTM model is the

dominant choice, selected 5 times out of 10 station. The GRU model follows with 3

selections. The MultiDense model is preferred twice. No CNN or RNN models are

chosen in this RBD.

South Western RBD:Within the South Western RBD, the GRU model stands

out as the most frequently chosen highest performing model, selected 4 times out of
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10 station. The LSTM model closely follows with 4 selections. The RNN model is

the only other model chosen as the highest performing model, securing 2 instances.

The MultiDense model is also preferred twice. No CNN models are chosen in this

RBD.

Shannon RBD: The Shannon RBD presents the LSTM model as the dominant

choice, being selected 6 times out of 10 station. The GRU is chosen 1 time. The

MultiDense and RNN models are each chosen once, and the CNN model is preferred

once.

Western RBD: Finally, the Western RBD showcases the LSTM models as the

most frequently selected highest performing models 4 times out of the 10 station.

Followed by the GRU model 3 times. The MultiDense model is preferred twice. The

CNN model is chosen once, and the RNN model is not favoured within this RBD.

These results provide insights into the choice of machine learning models for

specific geographic regions (RBDs) in the context of the given application. The

predominance of LSTM and GRU models in multiple RBDs suggests their efficacy

in capturing temporal patterns or dependencies within the datasets associated with

these regions. However, model selection may also depend on specific dataset char-

acteristics, and further analysis may be required to determine the reasons behind

these preferences.

The highest LSTM result shown in Figure 4.27 was recorded for the Banagher

hydrometric station, which belongs to the SHANNON RBD. It achieved an impres-

sive MAE equal to 0.0033, indicating the model’s ability to accurately track water

level trends, as shown in Figure 4.28.

Among the evaluated models, the worst MAE (Mean Absolute Error) for the

LSTM model was observed at the Anglesea Road station in the EASTERN RBD

region, with a value of 0.0536. This signifies that LSTM had difficulty accurately

predicting water levels at this specific station.

The GRU (Gated Recurrent Unit) model emerged as the second-highest per-

former, being selected as the optimal model for 24 out of the 70 experimental
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Figure 4.27: Performance in eight pre-
diction models: MAE values for the
Banagher hydrometric station

Figure 4.28: LSTM Model validation
performance: Banagher hydrometric
station

configurations. GRU is closely related to LSTM, as both are designed to handle

sequential data effectively. In this experiment, GRU demonstrated comparable per-

formance to LSTM. For instance, at stations like Brewery Park and Aclint, both

LSTM and GRU achieved an MAE of 0.0077, highlighting their similar predictive

capabilities. The GRU model displayed a range of MAE values, from its highest

performance at 0.0035 to its worst at 0.113. This variance indicates that while GRU

can excel in some scenarios, it may struggle in others, emphasizing the importance

of considering different models based on station-specific characteristics.

MultiDense, RNN, and CNN models consistently delivered the top-performance,

being selected 7, 5, and 2 times, respectively, across different station and regional

contexts. These models showcased their versatility and effectiveness in capturing

the complexities of water level prediction. Nevertheless, it is noteworthy that these

models are highly customizable. This implies that researchers have the flexibility to

introduce additional layers or fine-tune various parameters to enhance their perfor-

mance. Hence, it would be unjust to broadly categorize all CNNs as unsuitable. The

underperformance observed is specific to these particular configurations. Such mal-

leability allows for meticulous adjustment and optimization. In different scenarios,

CNNs can certainly deliver commendable results.

On the contrary, the Baseline, Linear, and Dense models consistently yielded the

lowest performance throughout the experiment. These models struggled to provide
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accurate predictions across a range of conditions and locations.

On the contrary, the Baseline, Linear, and Dense models consistently yielded the

lowest performance throughout the experiment. These models struggled to provide

accurate predictions across a range of conditions and locations. This performance

disparity highlights a fundamental insight: when simpler models like Baseline and

Linear fail to deliver accurate results, it underscores the complexity of the under-

lying data. Such findings strongly motivate the need for more complex modeling

approaches. In the face of intricate and multifaceted data patterns, employing ad-

vanced techniques becomes imperative.

This comprehensive analysis sheds light on the suitability of various machine

learning models for specific geographic regions and provides valuable guidance for

future model selection in similar applications.

Test

Figure 4.29 below illustrates the frequency of highest performing machine learn-

ing model selections for water level prediction in various River Basin Districts

(RBDs) during the test phase.

Figure 4.29: The distribution of highest performing models for each River Basin
Districts (RBDs)
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The Table 4.5 below provides a summary of the frequency of model selections

for each RBD during the testing phase:

Eastern RBD: In the Eastern RBD, the most frequently selected highest per-

forming model is the LSTM model, chosen 5 times out of the total 10 stations. The

GRU model follows with 3 selections. The RNN and CNN models are each preferred

once. No instances of the MultiDense models being chosen as the highest performing

model are observed in this RBD.

Neagh Bann RBD: For the Neagh Bann RBD, the GRU model is the most

frequently selected highest performing model, chosen 5 times out of 10 stations.

The LSTM model follows with 3 selections. The MultiDense and RNN models each

secure one instance as highest performing model. The CNN model was not chosen

in this RBD.

North Western RBD: Within the North Western RBD, the LSTM model is

the most prevalent choice, being selected 5 times out of 10 stations. The GRU model

closely follows with 4 selections. The RNN model is chosen once. No instances of

the CNN or MultiDense models being chosen as the highest performing model are

noted in this RBD.

South Eastern RBD: In the South Eastern RBD, the LSTM model is the

dominant choice, selected 5 times out of 10 stations. The GRU and CNN models

follows both with 2 selections. The MultiDense model is preferred once. No RNN

model is chosen in this RBD.

South Western RBD:Within the South Western RBD, the GRU model stands

out as the most frequently chosen highest performing model, selected 4 times out

of 10 stations. The LSTM model closely follows with 3 selections. The RNN model

secures 2 instances. The RNN model is preferred once. No MultiDense model is

chosen in this RBD.

Shannon RBD: The Shannon RBD presents the LSTM model as the dominant

choice, being selected 5 times out of 10 stations. The GRU model is chosen 3 times,

respectively. Both the CNN and the Multi Dense models are preferred once. No
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Table 4.5: Frequency of Highest Performing Machine Learning Model Selections for
Water Level Prediction in Different River Basin Districts (RBDs) During the Test
Stage

RBD CNN GRU LSTM MultiDense RNN
EASTERN RBD 1 3 5 0 1
NEAGH BANN RBD 0 5 3 1 1
NORTH WESTERN RBD 0 5 4 0 1
SOUTH EASTERN RBD 2 2 5 1 0
SOUTH WESTERN RBD 1 4 3 0 2
SHANNON RBD 0 3 5 1 1
WESTERN RBD 2 4 4 0 0

CNN model is chosen in this RBD.

Western RBD: Finally, the Western RBD showcases a mix of the GRU and

LSTM models as the most frequently selected highest performing models, each cho-

sen 4 times out of 10 stations. The MultiDense model is preferred twice. The CNN

model is chosen once, and the RNN model is not favored within this RBD.

The choice of the highest-performing model varies among locations within the

same RBD, indicating that the suitability of a model depends on the specific location

and its characteristics. Some locations consistently show lower MAE values (seeAp-

pendix E for MAE results), suggesting more accurate predictions, while others have

higher MAE values, indicating the need for model improvement. The choice of

machine learning model (GRU, LSTM, CNN, MultiDense, RNN) also varies across

RBDs, emphasizing the importance of model selection based on local data patterns.

To improve model accuracy in certain locations with high MAE, further model tun-

ing and data preprocessing may be necessary. In summary, the analysis highlights

the importance of considering location-specific factors and model performance when

deploying machine learning models for water level prediction in different River Basin

Districts. The choice of the most suitable model should be based on a combination

of model performance metrics and domain knowledge of the specific region.

Discussion

According to Table 4.6 for the test phase, we observe that LSTM dominates the

experiments and outperforms all competing models with 29 times lower MAE values
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for predicting the water level. Similarly, the GRU model gave the second-highest

performance, with 26 times better prediction than all the others. In addition, RNN

and CNN performed well six times each. Lastly, the MultiDense model was preferred

only three times out of the 70 experiments.

According to Table 4.6 when comparing the highest performance for each model

during the validation and test phases, we observe a significant difference in the

MAE values. For instance, the linear model’s lowest MAE is 0.0283, while the

LSTM achieves 0.0025. This substantial difference underscores variations in model

performance.

The MAE (Mean Absolute Error) values represent the average magnitude of the

errors between the predicted and actual values, without considering their direction.

A lower MAE indicates a model’s predictions are closer to the actual values, thus

providing more accurate and reliable forecasts. The figures suggest that the LSTM

model significantly outperforms the linear model in predicting water levels, with the

LSTM achieving an MAE of 0.0025 compared to the linear model’s 0.0283. This

implies that on average, the LSTM’s predictions are much closer to the actual water

levels, highlighting its superior performance in capturing the underlying patterns in

the data.

Table 4.6: Comparison of highest and lowest performing models for validation and
test phases

Validation
Model Baseline Linear Dense MultiDense CNN RNN GRU LSTM
min 0.0385 0.0207 0.0223 0.0067 0.0082 0.0033 0.0035 0.0033
max 1.1466 1.0170 0.9601 0.1395 0.1964 0.2260 0.2132 0.2062

Test
Model Baseline Linear Dense Multi Dense CNN RNN GRU LSTM
min 0.0256 0.0256 0.0283 0.0055 0.0067 0.0028 0.0026 0.0025
max 1.1624 1.0608 1.1149 0.2652 0.3113 0.2475 0.2760 0.2820

The performance of all models improved slightly in the test compared to the val-

idation. Figures 4.30, 4.31, 4.32, and 4.33 illustrate examples of the baseline model’s

highest and lowest performance during both validation and test phases. The base-

line model serves as a fundamental reference point for comparing the performance

147



A Meta-Learning Approach for Hydrological Time Series Model Selection

of more complex models. Its primary function is to provide a simple yet meaningful

prediction by assuming that the water level does not change from one time step to

the next. This approach is based on the understanding that water levels typically

exhibit gradual changes over short periods, making the current level a reasonable

predictor for the near future. This simplistic model helps to set a performance

benchmark that more sophisticated models aim to surpass.

Figure 4.30: Baseline model lowest
validation performance

Figure 4.31: Baseline model highest
validation performance

Figure 4.32: Baseline model lowest
test performance

Figure 4.33: Baseline model highest
test performance

As demonstrated in Figures 4.34 and 4.35, the distribution of each model’s per-

formance showcases distinct characteristics, albeit some similarities are discernible

among specific models. The LSTM model emerges as the frontrunner, closely fol-

lowed by the GRU model in terms of effectiveness.

Intriguingly, upon a meticulous examination of both the validation and test

results, a noticeable divergence in model performance becomes apparent. This un-

derscores the critical significance of methodical model selection, as choosing an in-

appropriate model can result in significantly inferior prediction outcomes. So, we
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Figure 4.34: Boxplot of performance in eight prediction models: Validation MAE
values

Figure 4.35: Boxplot of performance in eight prediction models: Test MAE values

can devise a formula to signify the error of choosing a wrong model in term of

percentage, as follows:

error%model =
MAEmodel −MAEhighest-performing-model

MAEmodel

=
∆MAE

MAEmodel

. (4.7)

Note that highest performing model will always have a lower MAE than the other

models. Thus, if the highest performing model is chosen error percentage would be

zero, i.e., error% = 0.

The case of the “Aclinet” hydrometric station provides a compelling illustration

of the need to gauge the performance disparities among various models in relation

to the highest-performing model, designated as GRU. Thus, Table 4.7 below dis-
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plays the calculated error percentages for each model with respect to the highest

performing model (i.e., GRU) for the Aclinet Station dataset.

Table 4.7: Model error percentages with respect to the highest performing model:
Validation and Test (Aclinet Station)

Validation

Model Baseline Linear Dense MultiDense CNN RNN GRU LSTM

MAE 0.0665 0.0667 0.0716 0.0136 0.0209 0.0103 0.0039 0.0039

∆MAE 0.0626 0.0628 0.0677 0.0170 0.0170 0.0064 0 0.0000

error% 94.14% 94.15% 94.55% 81.34% 81.34% 62.14% 0% 0.00%

Test

Model Baseline Linear Dense MultiDense CNN RNN GRU LSTM

MAE 0.0455 0.0463 0.048 0.0098 0.028 0.0085 0.0026 0.0077

∆MAE 0.0429 0.0437 0.0454 0.0072 0.0254 0.0059 0 0.0051

error% 94.29% 94.38% 94.58% 73.47% 90.71% 69.41% 0% 66.23%

These findings shed light on the degree to which each model deviates from the

highest performing model (in this case, GRU) in terms of MAE, expressed as a

percentage. Smaller MAE differences imply a closer alignment in accuracy with the

highest performing model, while larger disparities signify substantial performance

variations. Consequently, this comprehensive analysis serves as a valuable tool for

discerning the relative performance of different models and, thereby, facilitates well-

informed decisions regarding model selection tailored to specific tasks.

Nevertheless, a pivotal takeaway from these results emphasizes the absence of

a universally optimal model for water level prediction. This is due to the inher-

ent variability and complexity of hydrological data, which can vary significantly

across different geographical locations and temporal scales. Models may excel un-

der distinct circumstances or datasets, underscoring the paramount importance of

considering contextual factors and data specificity in the process of model selection.
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4.6.2 Experiment 2: 349 Hydrometric Stations on 12 Mod-

els

4.6.2.1 Experimental Setup

Building on the insights gained from the first experiment, the second experiment

expands the scope significantly. This experiment involves 349 hydrometric stations,

providing a more comprehensive evaluation of model performance across a broader

range of hydrological conditions. Additionally, we introduce four more models,

bringing the total to 12 models tested in this experiment:

• Baseline Model

• Linear Model

• Dense Model

• MultiDense Model

• CNN Model

• RNN Model

• LSTM Model

• GRU Model

• LSTM with Attention

• Autoencoder

• Transformer

• Variational Autoencoder (VAE)

The purpose of increasing the number of stations and models in the second

experiment is to validate the robustness and scalability of the models identified as

promising in the first experiment. By using a larger dataset, we can better assess
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the generalizability of the models and their performance across varied hydrological

settings.

Extending the study to a larger dataset and incorporating more models aims

to provide a comprehensive understanding of the performance of various machine

learning models in the context of hydrometric data prediction. This approach allows

us to explore the impact of model complexity on prediction accuracy, ensuring that

the selected models are not only effective but also adaptable to diverse hydrological

conditions.

For this experiment, the data collection period spans from 2017 to 2022, with

measurements recorded at 15-minute intervals. This five-year timeframe ensures a

comprehensive examination of machine learning model performance across diverse

temporal nuances, seasonal variations, weather conditions, and the intricate dy-

namics of hydrological systems. With 349 stations and 12 models, this experiment

involves a total of 349×12 = 4188 model runs. Each model will be trained, validated,

and tested for all 349 stations.

This augmentation allows us to scrutinize the performance of established models

in tandem with newer counterparts, elucidating whether contemporary techniques

exhibit superior predictive capabilities or complement the insights of their predeces-

sors. Moreover, we significantly elevate the number of hydrometric stations under

consideration, amplifying the diversity of data sources to explore how variations in

data origin influence the observed performance variations among different models.

The choice of the most appropriate model remains contingent upon the specific

characteristics of the water-level data, including the presence of temporal depen-

dencies, the intricacy of underlying patterns, manifestations of localized or global

interactions, and the prevalence of uncertainty. Our expanded approach underscores

the importance of experimenting with a variety of models, enabling the selection of

the most fitting model tailored to the precise prerequisites and performance objec-

tives governing water-level prediction in the context of Irish rivers.

To facilitate a comprehensive assessment of model performance, we have estab-
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lished a detailed set of evaluation metrics, including loss values, mean squared error

(MSE), and mean absolute error (MAE), calculated both during training on the

validation set and post-training on the test set. Additionally, we catalog essential

architectural details and parameters of each model, such as model complexity, learn-

ing rate, number of layers, number of dense layers, and the dimensionality of input

features.

In essence, this experiment represents a pivotal step forward in our research to

unravel the intricacies of hydrological prediction. Through this extensive investiga-

tion, we aim to provide valuable insights that empower decision-makers in selecting

the most suitable models for water-level forecasting, ultimately contributing to more

effective water resource management strategies on a national scale.

4.6.2.2 Results

The table in Appendix E shows all models’ prediction performance index values for

the 349 hydrometric stations. Table 4.8 below provides an illustrative snapshot of

the evaluation metrics derived from previous forecasting models applied to various

time series datasets:
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Table 4.8: Time-series dataset evaluation metrics

Station Model
Sample

Size

Execution

Time

Val

Loss

Val

MSE

Val

MAE

Test

Loss

Test

MSE

Test

MAE

Model

Complexity

Learning

Rate

Number of

Layers

Number of

Dense Layers

Number of

Features

Aclint GRU 43,305 190.7900 0.0000 0.0000 0.0027 0.0000 0.0000 0.0031 12,929 0.0010 2 1 1

Brewery

Park
GRU 29,704 94.2700 0.0005 0.0005 0.0075 0.0005 0.0005 0.0103 12,929 0.0010 2 1 1

Burley
LSTM

Attention
43,535 191.1800 0.0002 0.0002 0.0065 0.0004 0.0004 0.0089 16,961 0.0010 3 1 1

Cappoge

Bridge
Transformer 42,492 383.6000 0.0020 0.0020 0.0230 0.0043 0.0043 0.0249 141,825 0.0010 2 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ladyswell LSTM 34,695 104.2000 0.0003 0.0003 0.0066 0.0005 0.0005 0.0078 16,961 0.0010 2 1 1

Mansfieldstown GRU 43,539 177.1400 0.0001 0.0001 0.0071 0.0002 0.0002 0.0046 12,929 0.0010 2 1 1

Moyles Mill GRU 43,585 158.6100 0.0004 0.0004 0.0096 0.0006 0.0006 0.0131 12,929 0.0010 2 1 1

Port Oriel Transformer 42,027 393.0900 0.0020 0.0020 0.0224 0.0012 0.0012 0.0216 141,825 0.0010 2 1 1

Tallanstown LSTM 43,390 173.5900 0.0001 0.0001 0.0073 0.0006 0.0006 0.0099 16,961 0.0010 2 1 1

154



A Meta-Learning Approach for Hydrological Time Series Model Selection

The objective was to evaluate the performance of various models in predicting

water levels and to identify the best-performing models across different stations.

Figure 4.36 shows the highest-performing models for all 349 stations during the

validation stage. According to these results, the highest-performing model was

LSTM-Attention with 124 stations (35.53%), followed by GRU with 75 stations

(21.49%). The Baseline model, Transformer, and LSTM also performed well, cover-

ing 62, 43, and 38 stations respectively.

Figure 4.36: Highest performing prediction models during validation, based on MAE
values

The dominance of LSTM-Attention and GRU models during the validation phase

suggests that these models are particularly effective at capturing the temporal de-

pendencies in the hydrometric data. The Baseline model’s strong performance in-

dicates that, for some stations, simple predictions based on recent observations can

be highly effective.

Additionally, it’s important to highlight that during the test phase, the perfor-

mance metrics remained consistent, as shown in Figure 4.37. The highest-performing

model remained LSTM-Attention, covering 129 stations (36.96%), followed by GRU

at 71 stations (20.34%). The performance of other models, such as Baseline, Trans-

former, and LSTM, was consistent with their validation phase results.
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Figure 4.37: Highest performing prediction models during test, based on MAE values

The consistency in performance between the validation and test phases reinforces

the reliability of LSTM-Attention and GRU models. These models maintained their

effectiveness across different data splits, indicating their robustness and generaliz-

ability. The analysis reveals that no single model consistently outperforms others

across all stations. This variability underscores the importance of model selection

tailored to the specific characteristics of each station. For instance, the LSTM-

Attention model’s ability to handle long-term dependencies made it particularly

suitable for stations with complex temporal patterns.

The distribution of test MAE values across models (see Figure 4.38) further

confirms the superior performance of LSTM-Attention and GRU models.This dis-

tribution shows a narrower spread for these models, indicating more consistent per-

formance.
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Figure 4.38: Box Plot of Test MAE Values Across Models

Furthermore, the Baseline model’s performance highlights the simplicity and ef-

fectiveness of recent observation-based predictions for certain stations. This finding

suggests that, in some cases, more complex models may not necessarily offer signif-

icant improvements over simpler approaches. These findings have important impli-

cations for hydrological forecasting. The superior performance of LSTM-Attention

and GRU models suggests that advanced machine learning techniques can enhance

predictive accuracy in hydrology. However, the need for tailored model selection in-

dicates that a one-size-fits-all approach is not feasible. Future research should focus

on developing adaptive frameworks that can dynamically select and tune models

based on real-time data characteristics.

In terms of computational efficiency, while advanced models like Transformer and

LSTM-Attention offer high accuracy, they require significantly more computational

resources. For real-time applications, a balance between accuracy and computational

efficiency must be considered.**
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The results also highlight the importance of considering the specific properties

of each hydrometric station when choosing a model. Factors such as the station’s

location, climate, and historical data patterns should inform the model selection

process to achieve optimal forecasting accuracy.

Experiment 2 demonstrates the effectiveness of LSTM-Attention and GRU mod-

els in hydrological forecasting. The findings underscore the necessity for tailored

model selection and highlight the potential for advanced machine learning tech-

niques to improve water level predictions. These insights provide a foundation for

future research aimed at refining model selection processes and enhancing the accu-

racy of hydrological forecasts.

LSTM-Attention and GRU models consistently showed superior performance in

both validation and test phases, with low MAE values and reliable results across

different data splits. However, no single model was consistently the best across all

stations, indicating the need for station-specific model selection. Advanced models

like Transformer and LSTM-Attention, while accurate, are computationally inten-

sive. In contrast, simpler models like Baseline and Linear can be effective and more

efficient in some cases.

Future research should focus on developing adaptive frameworks for model selec-

tion and tuning based on real-time data, improving the balance between accuracy

and computational efficiency. These detailed analyses and additional insights are

essential for understanding the performance dynamics of various prediction models

and formulating strategies for effective hydrological forecasting.

4.7 Summary

In summary, this chapter investigated the prediction of water levels based on lon-

gitudinal observational data through two experimental configurations. In order to

understand the properties of the RBDs, Experiment 1 performed one-hour ahead

predictions on randomly selected 10 hydrometric stations from each of the seven

RBDs (i.e., 70 hydrometric stations in total) across eight models. The second ex-

158



A Meta-Learning Approach for Hydrological Time Series Model Selection

periment increased the scale of our research (using 349 stations and 12 models) to

further demonstrate the necessity of model selection in time series analyses based

on the properties of the dataset, as it was not possible to pick a single model for all

stations.

In the field of hydrology, where traditional physical modelling has long been

the norm, selecting the right forecasting technique or combining multiple methods

effectively has posed a persistent challenge. This decision often hinges on the avail-

ability of domain-specific expertise, which can be scarce due to various constraints.

However, our research seeks to bridge this gap by establishing a comprehensive ex-

perimental foundation for time series forecasting while simultaneously introducing

a diverse spectrum of forecasting methodologies.

A noteworthy feature of our approach is its potential applicability across a wide

range of hydrological forecasting scenarios, even in contexts where domain-specific

expertise is elusive. Moreover, as the machine learning field experiences a surge of

interest in meta-learning, our research trajectory is now aimed at harnessing meta-

learning methodologies. The paradigms of few-shot and zero-shot learning are par-

ticularly promising, as they seek to incorporate domain knowledge into the feature

and model selection processes. Importantly, while these methodologies have found

success in climate data forecasting, their application to water prediction remains rel-

atively unexplored. Our forthcoming endeavors are geared toward filling this gap,

specifically targeting the challenges inherent in spatial-temporal water prediction in

catchments characterized by sparse datasets.

From a practical standpoint, the proposed methodology has substantial poten-

tial for application by various entities, including water management bodies, urban

planning commissions, and environmental conservation agencies. The study demon-

strated the ability to make accurate water-level predictions through rigorous exper-

imentation and validation across multiple hydrometric stations. This methodology

is particularly useful in mitigating the impact of floods and ensuring the efficient

allocation of water resources, especially in regions with complex and varied hydrolog-
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ical dynamics. The experiments showed that the predictive models, when correctly

selected and tuned, can improve forecasting accuracy.

In essence, this chapter contributes to the advancement of hydrological forecast-

ing by introducing a data-driven approach. The study offers versatile and effective

tools for addressing the challenges of water-level prediction, as demonstrated by

the improved accuracy of the predictive models across different hydrometric sta-

tions. These findings are supported by extensive experimentation and validation,

highlighting the practical applications of the methodology.

However, the results also demonstrate the extensive time investment required

for proper model selection and the consequences of an incorrect selection. This

poses further issues for hydrology as datasets are continuous and new previously

“unseen” datasets may become available. In the face of such a volatile landscape, it

is impractical to undertake a full model selection process in a continuous manner.

The following chapter discusses meta-learning approaches to provide an automated

approach to model selection to overcome these issues.
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Chapter 5

Meta-Learning Approaches for

Time Series Model Selection

In the previous chapter we demonstrated that there is no ‘one-model-fits-all’ ap-

proach for hydrological time series data and that exhaustive model testing is im-

practical, our focus now shifts to implementing a meta-learning process to identify

the selected optimal model from a time series.

This chapter begins with an introduction in Section 5.1, where we explore the

limitations encountered when identifying the most suitable model for time series

data. We also introduce meta-learning as a valuable solution to these challenges.

In Section 5.2, we present our methodology, which aims to formalize the process

of selecting an appropriate time-series prediction model. In addition, we provide

an overview of the Meta-Dataset, where we discuss and explain the input data

for the meta-learner (Section 5.2.1). Additionally, we consider the potential of an

automated machine learning (AutoML) approach for model selection and hyper-

parameter optimization, which can streamline the process and improve efficiency.

AutoML involves automating various stages of the machine learning workflow, in-

cluding data preprocessing, feature selection, model selection, and hyperparameter

optimization, thereby making machine learning more accessible and efficient. The

implementation and Experimental Setup are presented in Section 5.5 The results
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for this chapter are presented in the following Section 5.6. Finally, we conclude this

chapter by summarising the findings in Section 5.7.

5.1 Introduction

Precise predictions are critical for making informed decisions and mitigating poten-

tial catastrophic impacts, particularly in the hydrology domain. Accurate forecasts

are necessary for effective flood management, water resource allocation, and environ-

mental conservation. In the context of hydrology, precise predictions enable timely

and effective responses to extreme weather events, which can significantly reduce the

risk of property damage and loss of life. However, achieving accurate forecasts in this

complex field is hampered by the inherent variability in river datasets. This variabil-

ity stems from a multitude of factors, including seasonal fluctuations, geographical

attributes, and meteorological conditions. These diverse influences manifest as non-

linear and dynamic patterns, making it challenging to develop a single, universally

applicable model capable of reliably predicting water levels across different river

systems. Traditional machine learning approaches often fall short in achieving this

due to their tendency to be dataset-specific, hindering effective generalization.

Addressing this issue typically involves creating and evaluating numerous models

tailored to specific datasets or river systems. However, this approach has its limita-

tions. It is computationally expensive and time-consuming to comprehensively test

multiple models on unfamiliar datasets. Furthermore, the sheer number of models

required to accommodate the variability in river water level data is impractical. As

such, a more adaptive and efficient solution is needed to overcome the challenges of

model selection.

This chapter centres on meta-learning, a subfield within machine learning that

offers a promising methodology for tackling the challenge of model selection in river

water level prediction. Meta-learning algorithms empower models to adapt and

generalize effectively across diverse datasets. Our focus lies in harnessing the power

of meta-learning to enhance model adaptability and selection.
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Challenges

The growing availability of time series prediction methods has intensified the

challenge of selecting an appropriate time series prediction model. Typically, the

decision process involved in selecting a method typically entails a comprehensive

evaluation of the time series, utilizing metrics as described in Chapter 4.

In hydrology, as discussed in Chapter 2 expert systems are an appropriate po-

tential solution for model selection. However, their effectiveness often depends on

the presence and expertise of hydrologists, which may not always be practical or

scalable. This raises a fundamental question within the hydrological community:

Can a more adaptable and efficient approach be developed for selecting the optimal

model in hydrological scenarios or time series data?

The challenge of developing models that can generalize well across diverse datasets

is a significant concern in the field of machine learning. This issue is particularly

pertinent when dealing with highly variable and non-linear data patterns, as seen

in domains such as hydrology. Several recent studies have highlighted various ap-

proaches to enhance the generalization capabilities of models.

• According to [202], while prior studies have explored diverse approaches for

applying meta-learning in time series prediction, the unique requirements of

hydrology call for further innovation. The field of meta-learning has shown

remarkable promise in various domains, but it still faces significant challenges

that require attention to progress further.

• [207] focus on domain generalization (DG). The authors emphasize the impor-

tance of domain-invariant representations and propose methods to disentangle

spurious correlations and enhance meaningful ones through both sample and

feature perspectives, achieving significant improvements in generalization per-

formance across multiple datasets .

• [226] investigate the factors that influence model generalization, particularly

in compositional generalization tasks. Their empirical analysis shows that
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increased dataset complexity and a balanced mixture of simple and hard ex-

amples can improve generalization performance. This study underscores the

importance of dataset diversity in training robust models .

• [40] explore leveraging the diversity of pretrained models from a model zoo

to improve out-of-distribution generalization. The authors argue that even

weaker models contain valuable knowledge that can enhance generalization

when integrated effectively, demonstrating state-of-the-art results across vari-

ous datasets .

• [217] propose a method to improve the generalization of deep metric learning

models by augmenting diverse out-of-distribution samples and regularizing

feature distributions. Their approach effectively enhances generalization to

both unseen categories and domains .

These studies collectively highlight the importance of model adaptability and

the integration of diverse data and knowledge sources to enhance generalization

capabilities.

To address the pressing need for adaptive model selection in the field of hy-

drology and to advance our understanding of this domain, this study endeavours to

conduct a comprehensive exploration of the relationship between time series features

and the selection of forecasting models in hydrology. Our specific focus is on the

prediction of water levels, and to accomplish our research objectives, we will employ

interpretability techniques within the realm of machine learning.

This study advocates for the application of meta-learning techniques to au-

tonomously acquire knowledge in the context of selecting suitable models for water

level prediction in hydrology. By leveraging machine learning methods for predict-

ing water levels in hydrology, we can harness the common practices of meta-learning

used in algorithm selection for classification problems. This approach streamlines

the model selection process, akin to identifying the most suitable learning algorithm

for precise water level predictions. Here, hydrology models serve as the foundational
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learners, and meta-features denote the attributes characterizing the time series of

water levels under analysis.

Our primary objective is to enhance water level prediction in hydrology using

a meta-learning approach for time series model selection. This involves identifying

key similarities among prediction models, understanding how hydrological features

relate to water level variations, and characterizing their interactions to improve

model selection.

Contribution

Our motivation for this study primarily arises from recognizing the inherent lim-

itations of employing a fixed, universally applicable methodology for model selection

in the field of hydrology. Hydrological systems are marked by intricate characteris-

tics and substantial variability, which preclude the existence of a singular superior

model. Instead, our aim is to explore how meta-learning can autonomously select

and adapt models based on the unique attributes of each river system, ultimately

enhancing the precision of predictions regarding river water levels. The identifica-

tion of an appropriate prediction method for a given dataset remains an ongoing

challenge in the domain of time series prediction problems. In general, researchers

are required to align the characteristics of time series data with the most suitable

models. The area of inquiry referred to as Meta-Learning involves the task of charac-

terizing a time series using various metrics, which are subsequently employed in the

process of selecting a suitable algorithm. A meta-learner is commonly constructed

through the utilization of a classifier such as Decision Tree, Random Forest (RF)

and Support Vector Machine (SVM) [153]

Our research aims to comprehensively assess the effectiveness of meta-learning in

enhancing the precision of river water level predictions. This assessment is grounded

in the autonomous selection and adaptation of models tailored to the unique at-

tributes of each river system. This realization forms the basis for implementing

meta-learning as a promising solution in this vital field.

Initially, relevant datasets are gathered and integrated through spatiotemporal
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integration of heterogeneous environmental data, ensuring their proper formatting

and cleanliness. These datasets are combined into a unified dataset for subsequent

analysis, as detailed in Chapter 3.Next, various candidate models, including linear

models and dense neural networks, are trained on a designated training dataset.

The performance of each model is assessed using a separate validation dataset. This

comprehensive training and evaluation process is elaborated upon in Chapter 4.

The meta-learner utilizes the performance results from the validation set to identify

and recommend the best-performing model.Furthermore, the process involves the

creation of meta-datasets, which consist of sets of input features provided to the

meta-learners. Leveraging these meta-datasets, the meta-learner makes informed

model selection decisions. Drawing upon the insights gained from the prior stages,

the meta-learner identifies the best-performing model for a given dataset. The details

of this model selection process are outlined in the evaluation section, Section 5.6, of

this chapter.The foundation of this assessment lies in the autonomous selection and

adaptation of models tailored to the unique attributes of each river system. This

realization forms the basis for implementing meta-learning as a promising solution

in this critical area. The research aims to enhance understanding and enable more

informed and dependable adaptive model selection for water level prediction in hy-

drology. The general meta-learning architecture for model selection investigates the

decision-making processes in complex hydrological systems, specifically focusing on

water level prediction.

5.2 Meta-Learning Methodology

The underlying concept of meta-learning involves identifying a suitable prediction

technique, given a collection of characteristic metrics obtained from a particular

dataset. The use of these metrics within a pre-existing model yields a recommen-

dation. Our approach is designed to effectively choose the appropriate model for

a given dataset based on the meta-features of that dataset. By enhancing our un-

derstanding and enabling more informed and dependable adaptive model selection
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for water level prediction in hydrology, our general meta-learning architecture for

model selection, presented in Figure 5.1, investigates the decision-making processes

in complex hydrological systems, specifically focusing on water level prediction.

Figure 5.1: Decision-making process diagram based on the meta-learning architec-
ture

This systematic process can be deconstructed into various components that form

an integral part of the general architecture presented in Figure 5.1.

• Meta-Datasets: A collection of time series features as described in section

Section 5.2.1.

• Candidate models: The ensemble of time series prediction models detailed in

Section 5.2.3

• Meta-learner: The models employed for the implementation of the meta-

learner, as outlined in Section 5.2.3

• Evaluation: The evaluation metrics explained in Section 5.6

5.2.1 Meta-Learner Input: Meta-Dataset

For our meta-learner, we have categorised our input features into three distinct

categories, each offering a unique perspective on the problem 5.2.
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Figure 5.2: EInput Features for the Train and test Phases

1. Time Series Input Features

2. Geology Features

3. ML Prediction Results Features

5.2.1.1 Time Series Input Features

This category encompasses a range of temporal data related to the water levels

time series. Time series features are crucial for capturing the historical patterns

and trends in water level data. The selection of some of these features for this

research was guided by their demonstrated utility in prior studies conducted by [102,

143]. The features mentioned below encompass a comprehensive range of statistical

and time series metrics, offering valuable insights into the dataset’s characteristics.

Starting with the central tendency, the mean and median provide a glimpse into

the dataset’s central values, while the variance and standard deviation quantify its

dispersion and spread. The range indicates the span between the highest and lowest

values. The skewness and kurtosis shed light on the data’s shape and asymmetry,

with the former measuring skew and the latter assessing tail heaviness. Seasonal

strength gauges the presence of recurring patterns.
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The input feature set also includes series-specific metrics, the exponential moving

averages (EMAs) at different smoothing levels offer dynamic insights into trends.

Rolling statistics with various window sizes, such as rolling mean, standard devi-

ation, skewness, and kurtosis, help capture evolving patterns over time. Autocor-

relation and partial autocorrelation functions at multiple lags (ACF and PACF)

reveal the presence of temporal dependencies. Cross-correlation values at differ-

ent lags highlight relationships with lagged variables.Additionally, unit root tests

(Phillips-Perron and KPSS) provide information about stationarity, a crucial con-

cept in time series analysis. Finally, the autocorrelation of residuals from a linear

model at lag 1 (LMResiduals ACF1) indicates any remaining temporal dependen-

cies in the data. These features collectively equip analysts with a robust toolkit for

understanding the underlying patterns and dynamics within the dataset, facilitating

informed decision-making and predictive modelling.

The choice of input meta-dataset is influenced by the need to capture various

dimensions of the problem being addressed. Time-series features provide insights

into historical patterns and trends, geological features offer contextual information

about the physical environment, and ML prediction results features allow for an

understanding of the performance of different models. This comprehensive approach

ensures that the meta-learner can make informed decisions based on a rich set of

data attributes.

5.2.1.2 Geology Features

The geology data category provides valuable contextual information about the geo-

graphical and geological characteristics of the area where water level measurements

are taken. This category includes:

• Geographical Coordinates: Latitude and longitude coordinates pinpointing the

measurement locations. Latitude and longitude are geographical coordinates

that can be autocorrelated with variables such as elevation and precipitation.

These spatial dependencies can influence local climate conditions and, subse-
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quently, the water levels. Incorporating these variables helps in capturing the

underlying geographical influences on the data.

• Geological Features: Information about the type of soil, bedrock, or geological

formations in the vicinity, which can influence water behaviour.

5.2.1.3 ML Prediction Results Features

In our pursuit of identifying the most appropriate forecasting model for a given time

series, It encompasses both hyperparameters and evaluation metrics.

Within this critical category, we introduce an innovative approach wherein we

harness the outcomes of prior forecasting models as additional input features for

training a meta-learner. These metrics are instrumental in empowering the meta-

learner to make informed decisions regarding model selection.

This additional data provides important information about various performance

metrics and characteristics of different machine learning models used for predicting

water levels at different stations. This data is essential for the meta-learner to learn

for multiple, for instance:

1. Model Performance Metrics (Validation Loss, Validation MSE, Vali-

dation MAE, Test Loss, Test MSE, Test MAE): These metrics quantify

the quality of predictions made by each model. A meta-learner can use this

information to assess how well a model generalizes to unseen data. Models

with lower validation and test metrics indicate better predictive performance,

which is valuable for model selection [73, 65]. For instance, [182] introduced

the MetaSieve method, which optimizes the trade-off between performance and

complexity, highlighting the importance of these metrics in model evaluation.

2. Sample Size: Understanding the sample size used for training and testing

models is crucial. It provides insights into the amount of data available for each

station, and a meta-learner can consider this when assessing model reliability.

Larger sample sizes generally lead to more robust models. For example, [7]
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demonstrated the effectiveness of the N-BEATS model for production forecast-

ing with limited historical data, emphasizing the challenges of small sample

sizes .

3. Execution Time: Execution time indicates how long it takes each model to

make predictions. This information is vital for resource allocation and opera-

tional considerations. A meta-learner can decide whether to prioritize models

with shorter execution times for real-time applications or choose more accurate

models with longer execution times when computational resources are avail-

able. Studies such as those by [182] highlight methods that balance execution

time and performance, reducing computational effort without significant loss

in forecasting quality .

4. Model Complexity (Number of Layers, Number of Dense Layers):

These parameters provide insights into the architectural complexity of the

models. A meta-learner can use this information to assess the trade-off be-

tween model complexity and predictive performance. Some applications may

favor simpler models to reduce overfitting. [194] introduced a feature-based

approach for forecast model performance prediction, emphasizing the impact

of model complexity on accuracy .

5. Learning Rate: The learning rate is a hyperparameter that affects the train-

ing process. A meta-learner can consider learning rates when comparing mod-

els, as different values may lead to varying training behaviors and convergence

speeds. For example, [172] analyzed different error metrics, including learn-

ing rates, and their impact on meta-learning performance, underscoring the

importance of choosing appropriate hyperparameters .

6. Number of Features: This parameter indicates the dimensionality of the

input features used by each model. It’s essential to assess whether models

with higher or lower feature dimensions perform better for a particular station,

as this can guide feature engineering decisions. [194] discussed how feature-
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based meta-learning approaches could predict model performance effectively,

considering the number of features used.

Table 5.1 below provides an illustrative snapshot of the evaluation metrics de-

rived from previous forecasting models applied to various time series datasets from

the Neagh Bann (NB) Aclinet Station:

Table 5.1: Aclint station ML prediction results

Feature Value

Station Aclint
Model GRU
Sample Size 43,305
Execution Time 190.79
Validation Loss 0.00003
Val MSE 0.00003
Val MAE 0.00267
Test Loss 0.00004
Test MSE 0.00004
Test MAE 0.00314
Model Complexity 12.929
Learning Rate 0.001
Number of Layers 2
Number of Dense Layers 1
Number of Features 1

Table E.2 in Appendix E details the prediction results the stations tested in

Neagh Bann RBD. These evaluation metrics constitute a comprehensive evaluation

of each forecasting model’s performance, serving as a valuable addition to our meta-

learning framework. They encompass diverse metrics, including sample size, exe-

cution time, validation loss, validation mean squared error (MSE), validation mean

absolute error (MAE), test loss, test MSE, test MAE, model complexity, learning

rate, number of layers, number of dense layers and number of features.

By analyzing this comprehensive dataset, a meta-learner can identify patterns,

trends, and trade-offs among different models and their associated characteristics.

This knowledge empowers the meta-learner to make informed decisions about model

selection, hyperparameter tuning, and resource allocation. The meta-learner lever-

ages these evaluation metrics as input features to make data-informed decisions
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regarding model selection. By learning from the outcomes of prior models applied

to diverse time series data, the meta-learner enhances its capacity to recommend the

most appropriate forecasting method for each unique dataset. Incorporating these

comprehensive evaluation metrics derived from prior model predictions, we bolster

the capabilities of our meta-learner, enabling it to make well-informed choices when

selecting the most fitting forecasting method for each unique time series dataset. To

achieve this, the following steps are followed:

1. Data Collection and Preprocessing: Gather a diverse set of time series

datasets and preprocess them to ensure consistency and quality. This includes

handling missing values, normalizing data, and extracting relevant features.

2. Model Training and Evaluation: Train multiple candidate models on these

datasets, evaluating their performance using metrics such as validation loss,

mean squared error (MSE), and mean absolute error (MAE). Record these

metrics along with model characteristics such as complexity, execution time,

and sample size.

3. Meta-Dataset Creation: Compile the evaluation metrics and model character-

istics into a meta-dataset. This meta-dataset serves as the input for training

the meta-learner.

4. Meta-Learner Training: Train the meta-learner using the meta-dataset.

The meta-learner learns to map the evaluation metrics and model character-

istics to the best-performing model for each dataset.

5. Model Selection and Recommendation: For a new dataset, input its

features into the trained meta-learner. The meta-learner will analyze these

features and recommend the most suitable forecasting model based on its

learned knowledge from previous datasets.

6. Continuous Learning and Improvement: Continuously update the meta-

learner with new data and model evaluations to improve its recommendation
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accuracy over time.

By following this structured approach, the meta-learner can effectively enhance

model selection, leading to more accurate and efficient forecasting for diverse time

series datasets.

5.2.2 Meta-Learner Output

In this subsection, we provide a detailed insight into the output produced by our

meta-learner, focusing on its application in the context of model selection for time

series prediction. The meta-learner, as previously described, plays a pivotal role in

the process of identifying the most suitable forecasting model for a given time series.

However, the pivotal question arises: what exactly is this output, and how does it

contribute to the broader goal of model selection?

To address this, it’s essential to understand that the output from the meta-

learner essentially represents a well-informed decision regarding the choice of the

forecasting model. This decision is guided by an intricate evaluation process that

scrutinizes various aspects of each potential model’s performance.

These evaluation metrics encompass a range of factors, including not only the

predictive accuracy of the models but also factors such as execution time, model

complexity, and other essential characteristics. The goal is to ensure that the chosen

model not only provides accurate predictions but also does so efficiently and without

unnecessary complexity.

The meta-dataset used in this process comprises a substantial amount of data,

with numerous rows and columns. However, it’s important to note that not all of this

data is used in the actual model selection. The reason is that some of these features

or metrics pertain to the evaluation of model predictions and are not available during

the testing phase.

In essence, the meta-learner synthesizes a wealth of information to make a well-

informed decision on the most suitable forecasting model for a specific time series. By

analyzing diverse performance metrics and model characteristics, the meta-learner
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Figure 5.3: EInput Features for the Train and test Phases

ensures the selected model provides accurate predictions efficiently, balancing com-

plexity and practicality. The output of the meta-learner thus represents the optimal

model choice for time series prediction, underscoring the significant enhancement in

the model selection process achieved through meta-learning (see 5.3)

The output function of the meta-learner can be mathematically expressed as fol-

lows: Given a new metadatasetDnew and a set of metadatasetsD = {D1, D2, . . . , Dn},

the function selects the best time series prediction model for Dnew based on the sim-

ilarity between the features of Dnew and the metadatasets in D.

1. Calculate Similarity: Compute the similarity S(Di, Dnew) between Dnew

and each metadataset Di in D.

2. Select Most Similar Metadataset: Identify the metadataset Dselected that

is most similar to Dnew:

Dselected = arg max
Di∈D

S(Di, Dnew)

3. Retrieve Associated Model: Retrieve the time series prediction model Mi
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associated with Dselected. This model is the selected output:

Mselected = Mi for the most similar Di

By following this process, the meta-learner adeptly identifies the best model for

new datasets, thereby optimizing predictive performance and enhancing the overall

model selection framework in time series forecasting.

Objective Function

The objective function of the meta-learner is designed to optimize the model se-

lection process. The goal is to minimize the prediction error while balancing the

complexity and computational efficiency of the selected model. This is achieved

through the following optimization problem:

θ∗ = argmin
θ

n∑
i=1

L(M(Di; θ), yi)

where L is the loss function, M(Di; θ) represents the model trained on dataset

Di with parameters θ, and yi is the actual outcome.

Training Phase

The training phase of the meta-learner involves updating its parameters to improve

its model selection capability. This phase can be defined as follows:

1. Sample a Metadataset Di from D:

• Randomly select one of the existing metadatasets Di from the collec-

tion D. Each metadataset consists of time series data and its associated

features, performance metrics, and model characteristics.

2. Evaluate Similarity:

• Compute the similarity S(Di, Dnew) between the sampled metadataset

Di and a new time series dataset Dnew. This similarity measure helps
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determine how closely Di matches the new dataset in terms of relevant

features.

3. Update Meta-Learner’s Parameters:

• Adjust the meta-learner’s parameters θ based on the performance of the

best model for the sampled metadataset Di. The goal is to minimize

the loss function L, which measures the prediction error of the model

M(Di; θ):

θ ← θ −∇θL(M(Di; θ), yi)

• Here, ∇θL represents the gradient of the loss function with respect to the

parameters θ. This gradient descent step helps the meta-learner improve

its predictions by reducing the error iteratively.

Testing Phase

The testing phase of the meta-learner involves applying the learned parameters to

new data to select the most appropriate model. This phase can be defined as follows:

1. Calculate Similarity for New Metadataset:

• For the new metadataset Dnew, compute the similarity S(Di, Dnew) with

all existing metadatasets Di in the collection D. This step helps identify

which existing dataset is most similar to the new one.

2. Choose the Most Similar Metadataset:

• Identify the metadataset Di that has the highest similarity score with

Dnew. The most similar metadataset Dselected is chosen as:

Dselected = arg max
Di∈D

S(Di, Dnew)

3. Select the Associated Model:
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• Retrieve the time series prediction model Mi associated with the selected

metadataset Dselected. This model Mselected is deemed the best choice for

the new dataset Dnew:

Mselected = Mi for the most similar Di

• By selecting the model associated with the most similar metadataset, the

meta-learner ensures that the chosen model is well-suited for the new

dataset based on past performance and characteristics.

The meta-learner learns to identify the best model for a new dataset based on

the similarity between the new time series dataset’s features and the metadatasets’

features. The specific similarity metric and model selection strategy will depend on

your problem and available data.

5.2.3 Meta-Learner Candidate Models

Why Use a Classifier Instead of a Regression Model?

In the context of meta-learning for time series model selection, the choice between

using a classifier or a regression model is critical. Here are the key reasons for

preferring a classifier:

1. Nature of the Output:

• Classification Task: Our objective is to categorize or select the most

suitable forecasting model from a predefined set based on the features of

the time series data. This makes the problem a classification task, where

the output is a discrete label indicating the chosen model.

• Discrete Model Selection: Given that the output involves selecting

from a finite set of models, it aligns more naturally with classification

rather than regression.

2. Performance Metrics:

178



A Meta-Learning Approach for Hydrological Time Series Model Selection

• Precision and Recall: Classifiers provide essential performance metrics

such as precision, recall, and F1-score. These metrics are crucial for

evaluating the effectiveness of the meta-learner in accurately selecting

the best model.

• Handling Imbalanced Data: Techniques such as oversampling, un-

dersampling, and Synthetic Minority Oversampling Technique (SMOTE)

are specifically designed for classifiers to handle imbalanced datasets, en-

hancing the meta-learner’s performance.

3. Interpretability:

• Model Interpretability: Classifiers, particularly tree-based methods

such as Decision Trees and Random Forests, offer interpretability through

feature importance metrics. This helps in understanding the rationale

behind the model selection, making the process transparent and explain-

able.

4. Optimization:

• Hyperparameter Tuning: Classifiers allow extensive hyperparameter

tuning, which can be leveraged to optimize the model selection process

effectively, ensuring the meta-learner performs at its best.

Using a classifier, therefore, provides a structured and efficient approach to solv-

ing the model selection problem, making it the preferred choice over regression

models for this specific task.

We employ a set of classifiers to assess their performance using various resam-

pling techniques. Evaluating these models across different strategies allows us to

identify which models and techniques perform best for specific time series datasets

and problems. Meta-learning aids in the selection of the most appropriate models

and preprocessing strategies, ultimately improving predictive performance for time

series analysis.
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1. Random Forest: Random Forest is an ensemble method that combines multiple

decision trees to make predictions. It’s known for its robustness and the ability

to handle a variety of data types. It’s often used as a baseline model for many

tasks [78].

2. Logistic Regression: Logistic Regression is a simple yet effective model for

binary classification. It’s interpretable and widely used for tasks where under-

standing feature importance is essential.

3. Naive Bayes: Naive Bayes is a probabilistic classifier based on Bayes’ theorem.

It’s particularly suited for text classification and other tasks where feature

independence assumptions are reasonable.

4. K-Nearest Neighbors: K-Nearest Neighbors is a non-parametric classification

method that classifies a data point based on the majority class among its

k-nearest neighbours. It’s effective for both classification and regression tasks.

5. Support Vector Machine (SVM): Support Vector Machine is a powerful clas-

sification algorithm known for finding optimal decision boundaries in high-

dimensional spaces. It’s particularly useful when dealing with complex datasets

[74].

6. Gradient Boosted Decision Trees (GDBT): GDBT is an ensemble method that

builds decision trees sequentially, with each tree correcting the errors of the

previous one. It’s known for high accuracy and is used in many machine

learning competitions.

7. MLP (Multilayer Perceptron):MLP is a type of neural network that consists of

multiple layers of interconnected neurons. It’s a versatile model used in a wide

range of applications, from image classification to natural language processing.

8. XGBoost: XGBoost is an optimized and efficient gradient-boosting algorithm

known for its speed and performance. It’s often used in machine learning

competitions and for regression and classification tasks [39].
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9. LightGBM: LightGBM is another gradient-boosting framework known for its

speed and efficiency. It’s suitable for large datasets and offers distributed

computing support.

10. CatBoost: CatBoost is a gradient-boosting library designed for categorical

feature support and high performance. It’s particularly useful when dealing

with structured data [160].

11. Isolation Forest: Isolation Forest is an anomaly detection method that isolates

anomalies in data using decision trees. It’s often used for identifying rare

events or anomalies.

12. OneClassSVM: One-Class SVM is a support vector machine variant used for

one-class classification or outlier detection. It’s helpful when you have limited

positive examples and want to identify anomalies.

13. Dummy Classifier: Dummy Classifier is used as a baseline for comparison. It

generates predictions using simple rules (e.g., random or most frequent class)

and helps assess the performance of other models.

14. LDA (Linear Discriminant Analysis): LDA is a dimensionality reduction and

classification method. It’s particularly useful for feature extraction and data

visualization.

5.3 Meta-Learner AutoML Automated Machine

Learning (AutoML)

Automated Machine Learning (AutoML) refers to the process of automating the

end-to-end process of applying machine learning to real-world problems [207] [170]

[66] [6] [119]. This includes automating tasks such as data preprocessing, feature

selection, model selection, and hyperparameter optimization. By leveraging Au-

toML techniques, we can streamline the machine learning workflow, making it more
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efficient and accessible.

• Data Preprocessing: AutoML tools can automatically handle missing val-

ues, encode categorical variables, and scale features, ensuring that the data is

ready for modeling.

• Feature Selection and Engineering: AutoML can identify the most rel-

evant features and create new features from existing data, improving model

performance.

• Model Selection: AutoML can evaluate multiple machine learning algo-

rithms and select the best-performing model for the given dataset.

• Hyperparameter Optimization: AutoML tools can tune hyperparameters

to achieve optimal model performance, often using techniques such as grid

search, random search, or Bayesian optimization.

• Model Evaluation: AutoML uses cross-validation and other techniques to

evaluate model performance, ensuring robust and generalizable results.

• Deployment: AutoML can automate the deployment process, allowing mod-

els to be easily integrated into production environments.

In this study, we explore the potential of AutoML to enhance the meta-learning

approach for time series model selection and prediction. While AutoML can auto-

mate various aspects of the machine learning workflow, our primary goal is to avoid

the traditional model selection problem through meta-learning. We hypothesize that

there are correlations between datasets based on wider hydrological features present

across datasets.

This assumption necessitates a meta-learner capable of capturing these corre-

lations, thereby improving model selection and prediction performance. Therefore,

although AutoML provides valuable tools for automation, our focus is on lever-

aging meta-learning to address the specific challenges of time series forecasting in

hydrological contexts.
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5.4 Evaluation Metrics

In this section, we present the key evaluation metrics used for assessing the per-

formance of the meta-learner. The equations below are used to calculate accuracy,

precision, recall, and F1-score, which are essential metrics for assessing the perfor-

mance of the meta-learner.

5.4.0.1 Accuracy Calculation

Accuracy is calculated by comparing the predicted model rankings against the actual

rankings of the models. It is defined as the number of correct predictions divided

by the total number of predictions. The formula is:

Accuracy =
True Positives + True Negatives

Total Predictions

5.4.0.2 Precision, Recall, and F1-Score

Precision is a measure of the accuracy of a binary classification model. It quantifies

the ability of the model to correctly identify positive instances out of all instances

it predicted as positive. In other words, precision answers the question: ”Of all the

instances the model classified as positive, how many were actually positive?” [158]:

Precision =
True Positives

True Positives + False Positives

Recall (Sensitivity or True Positive Rate) measures the model’s ability to cor-

rectly identify all relevant positive instances. It answers the question: ”Of all actual

positive instances, how many did the model identify as positive?” [158]

Recall =
True Positives

True Positives + False Negatives

F1-Score The F1-Score is the harmonic mean of Precision and Recall. It pro-

vides a balanced evaluation of a classification model’s performance. The F1-Score

combines both Precision and Recall into a single value, making it particularly use-
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ful when there is a need to balance the trade-off between false positives and false

negatives. Higher F1-Scores indicate better model performance, with values closer

to 1 being more desirable [158]:

F1-Score =
2 · Precision · Recall
Precision + Recall

5.4.0.3 Success and Failure

These metrics are commonly used in the evaluation of classification models, such

as those used in machine learning and data analysis. They help in assessing the

model’s ability to correctly classify instances into different categories.

We will be using the F1 score as it is a measure of a meta-learner model’s

accuracy that considers both precision and recall. It’s particularly useful when you

have imbalanced classes in your dataset [169].

While an F1 score may indicate overfitting, differentiating between a truly ac-

curate model and one that overfits can be achieved by comparing performance on

training and validation datasets, and by using cross-validation techniques to ensure

generalization.

• Success: Success is defined as the meta-learner correctly predicting the rank

of the best model for a given dataset. This means that the top-ranked model

predicted by the meta-learner matches the top-ranked model based on actual

performance metrics.

• Failure: Failure occurs when the meta-learner’s predicted top-ranked model

does not match the actual top-ranked model. This can be due to incorrect

evaluation metrics or misinterpretation of the features.

5.5 Experimental Setup

In order to identify the most appropriate forecasting model for a given time series,

We recognize that the process is far from arbitrary; rather, it relies on a founda-
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tion of meticulous evaluation metrics. Within this critical category, we introduce an

innovative approach wherein we harness the outcomes of prior forecasting models

as additional input features for training a meta-learner. These metrics are instru-

mental in empowering the meta-learner to make informed decisions regarding model

selection.

In this experiment, the dataset was divided into training and testing sets to

ensure robust evaluation of the model’s performance. The training set comprised

661 samples, while the testing set included 166 samples. This distribution resulted

in 80% of the data being allocated for training purposes, ensuring the model has

sufficient information to learn from, and 20% reserved for testing, allowing for a

reliable assessment of the model’s generalization capability. The division of the data

was carefully designed to strike a balance between training the model effectively and

evaluating its performance accurately.

5.5.1 Meta-Feature

In this section, we discuss the use of various meta-features in the model. These meta-

features include sample size, execution time, validation metrics (such as validation

loss, validation MSE, and validation MAE), test metrics (such as test loss, test MSE,

and test MAE), model complexity (including the number of layers, number of dense

layers, and learning rate), and statistical measures (such as mean, median, variance,

standard deviation, range, skewness, and kurtosis). Additionally, geographical and

geological attributes such as latitude, longitude, and other geological features are

used. These features are crucial in training the meta-learner to make informed

decisions regarding model selection. While training the meta-learner, all these com-

prehensive features are considered. However, during testing, the meta-learner relies

more on statistical and geographical features, ensuring it can generalize well to new

data and make accurate predictions even when some model-specific metrics are not

available.

Overall, the meta-dataset comprises a total of 154 rows and 58 columns. How-

185



A Meta-Learning Approach for Hydrological Time Series Model Selection

ever, we will use distinct features for training and testing purposes when constructing

our machine-learning models. This distinction arises because the evaluation metric

for model predictions will not be available during the testing phase. It is that the

training and testing samples are independent to avoid overfitting. If the same data

points are used in both sets, the model may perform well on the test set but fail

to generalize to new data. This independence ensures that the evaluation metrics

accurately reflect the model’s performance.

Why Use Separate Features for the Train/Test Set?

To ensure that our meta-learner model generalizes well to new data, we utilize

distinct sets of features during the training and testing phases. This approach

helps our model make accurate predictions or classifications based on the specific

attributes provided for each dataset.

1. Training Features:

• Includes a comprehensive set of attributes such as station information,

model details, sample size, execution time, validation metrics, test met-

rics, model complexity, and more.

• These features provide detailed insights into each model’s performance,

which helps in effectively training the meta-learner.

2. Testing Features:

• Focuses on statistical measures and geographical attributes such as mean,

median, variance, standard deviation, range, skewness, kurtosis, latitude,

and longitude.

• These features are more readily available and do not depend on the perfor-

mance of individual models, making them practical for use in the testing

phase.

• Ensures that the model can generalize well to new data and make accurate

predictions or classifications based on the specific attributes provided for

each dataset.
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applications.

For training, we include a comprehensive set of features such as model parame-

ters, sample size, execution time, and various validation metrics (loss, MSE, MAE).

In contrast, during testing, we focus on a subset of these features, primarily sta-

tistical attributes and specific domain-related characteristics. For neural networks,

the number of layers is a measure of complexity. For other models such as Random

Forests (RF), complexity can be measured using parameters such as the number of

trees, depth of trees, and the number of features considered for splitting at each

node. These parameters determine the capacity of the model to capture patterns in

the data.

For a complete list of the features used in both training and testing phases,

please refer to Appendix H. By using distinct sets of features for training and test-

ing, we aim to ensure that our learners can generalize well to new data and make

accurate predictions or classifications based on the specific attributes provided for

each dataset.

5.5.1.1 Imbalanced Data

The imbalance in the hydrological time series datasets used in this thesis arises

due to the inherent characteristics of the data collected from various hydrometric

stations. Imbalanced data is a common challenge in machine learning, particularly in

classification tasks, where certain classes (minority classes) have significantly fewer

instances compared to others (majority classes). In the context of this research, the

class imbalance issue is evident as presented in the 5.4, where the distribution of

the classes is skewed. This class imbalance issue can give rise to biased models that

exhibit a preference for the majority class, resulting in subpar performance when

predicting the minority class.

Handling class imbalance is crucial for improving the predictive performance of

machine learning models. When a dataset is imbalanced, models tend to be biased

towards the majority class, leading to poor performance in predicting the minority
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Figure 5.4: Class Distribution (Model)

class. This bias can result in misleading evaluation metrics, where high accuracy

might not necessarily translate to good predictive power for the minority class. To

address this, various resampling techniques such as oversampling, undersampling,

and the Synthetic Minority Oversampling Technique (SMOTE) are employed.

Methods to Mitigate Class Imbalance

1. Original Data No Resampling: Using the dataset as initially collected

without any modifications often leads to biased models favoring the majority

class, resulting in poor performance on the minority class [94].

2. Undersampling: This technique reduces the number of instances in the ma-

jority class by randomly removing some of them, aiming to balance the class

distribution. While it can effectively address class imbalance, it may lead to

a loss of important information from the majority class [222].

3. Oversampling: This method increases the number of instances in the minor-

ity class by duplicating existing instances or generating synthetic ones using

algorithms such as SMOTE. It helps balance the class distribution and improve

model performance by increasing the representation of the minority class [206].
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4. SMOTE (Synthetic Minority Over-sampling Technique): SMOTE cre-

ates synthetic instances by interpolating between existing minority class in-

stances and their nearest neighbors. This technique enhances the diversity of

the minority class and reduces the risk of overfitting [38].

The presence of imbalanced data in the datasets used for this thesis significantly

impacts the performance of the meta-learner. By addressing class imbalance through

the aforementioned techniques, the thesis aims to enhance the meta-learner’s capa-

bility to select the most appropriate models for time series forecasting, leading to

improved predictive performance and more reliable results

5.5.2 Meta-Learners

During the development Meta-Learners , we evaluated the performance of 14 dif-

ferent Classifiers: Random Forest, Logistic Regression, Naive Bayes, K-Nearest

Neighbors, Support Vector Machine, Gradient Boosted Decision Trees (GDBT),

Multilayer Perceptron (MLP), XGBoost, LightGBM, CatBoost, Isolation Forest,

OneClassSVM, Dummy Classifier, and Linear Discriminant Analysis (LDA). These

models were trained and tested on a specific dataset, and their performance was

measured using standard classification metrics, including Accuracy, Precision, Re-

call, and F1-score.

The next step in assessing the meta-learner is to evaluate its ability to rank

the top models for a given time series accurately. The choice of the most suitable

model should depend on the specific problem and the trade-offs between accuracy

and model complexity. In this evaluation, Random Forest and K-Nearest Neighbors

stand out as top contenders due to their high accuracy and well-balanced precision

and recall scores. However, it’s essential to consider factors such as computational

resources, interpretability, and the nature of the problem when selecting the final

model for deployment. Additionally, further analysis and experimentation, such as

hyperparameter tuning, cross-validation, and feature engineering, may be necessary

to fine-tune the models and potentially improve their performance. Ultimately, the
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selection of the best model should align with the project’s objectives and require-

ments, ensuring that it delivers the desired level of performance and meets specific

constraints.

Drawing from the specific outcomes discussed in the Chapter 4, our research

findings reveal that certain best models dominate while others exhibit comparatively

poorer performance. Consequently, the datasets utilized as input for the meta-

learner exhibit class imbalance concerns.

5.6 Evaluation of Meta-Learners for Optimal Time

Series Model Selection at Hydrometric Sta-

tions Across Ireland

This section provides a comprehensive evaluation of meta-learners aimed at selecting

optimal time series models for hydrometric stations across Ireland. By leveraging

data from 249 distinct geographical locations, we ensure a robust and diverse anal-

ysis, capturing the variability inherent in different regions.

The experiment utilized a variety of classifiers to select the most suitable time

series models from a set of potential models (such as GRU, LSTM, and Transformer).

Each classifier’s performance was evaluated based on its ability to generalize and

accurately predict the appropriate model for new data points.

A detailed analysis of performance metrics, summarized in Table 5.2, provides

deeper insights into the classifiers’ effectiveness in model selection.

Table 5.2

Model Accuracy Precision Recall F1-score

Original

Random Forest 1.0000 1.0000 1.0000 1.0000

Logistic Regression 0.2952 0.1527 0.2952 0.1996
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Table 5.2 continued from previous page

Model Accuracy Precision Recall F1-score

Naive Bayes 0.3675 0.5234 0.3675 0.2483

K-Nearest Neighbors 0.9819 0.9828 0.9819 0.9820

Support Vector Machine 0.3193 0.3096 0.3193 0.1618

Gradient Boosting 1.0000 1.0000 1.0000 1.0000

MLP 0.3795 0.4616 0.3795 0.3490

XGBoost 1.0000 1.0000 1.0000 1.0000

LightGBM 1.0000 1.0000 1.0000 1.0000

CatBoost 1.0000 1.0000 1.0000 1.0000

Isolation Forest 0.3072 0.1125 0.3072 0.1647

OneClassSVM 0.1566 0.1116 0.1566 0.1303

Dummy Classifier 0.3133 0.0981 0.3133 0.1494

LDA 0.7952 0.8155 0.7952 0.7990

Random Oversampling

Random Forest 1.0000 1.0000 1.0000 1.0000

Logistic Regression 0.1325 0.3722 0.1325 0.1217

Naive Bayes 0.3554 0.5116 0.3554 0.2360

K-Nearest Neighbors 0.9819 0.9836 0.9819 0.9822

Support Vector Machine 0.2470 0.4334 0.2470 0.1960

Gradient Boosting 1.0000 1.0000 1.0000 1.0000

MLP 0.3916 0.4347 0.3916 0.3428

XGBoost 1.0000 1.0000 1.0000 1.0000

LightGBM 1.0000 1.0000 1.0000 1.0000

CatBoost 1.0000 1.0000 1.0000 1.0000

Isolation Forest 0.3012 0.1160 0.3012 0.1675

OneClassSVM 0.1205 0.0964 0.1205 0.1071

Dummy Classifier 0.1386 0.0192 0.1386 0.0337
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Table 5.2 continued from previous page

Model Accuracy Precision Recall F1-score

LDA 0.6928 0.7387 0.6928 0.7024

Random Undersampling

Random Forest 0.8494 0.9311 0.8494 0.8736

Logistic Regression 0.2470 0.2719 0.2470 0.2373

Naive Bayes 0.3434 0.4107 0.3434 0.2512

K-Nearest Neighbors 0.4578 0.5248 0.4578 0.4583

Support Vector Machine 0.2410 0.4455 0.2410 0.1861

Gradient Boosting 0.8313 0.8544 0.8313 0.8363

MLP 0.2470 0.3092 0.2470 0.2119

XGBoost 0.8855 0.8998 0.8855 0.8859

LightGBM 0.8855 0.8983 0.8855 0.8854

CatBoost 0.8976 0.9267 0.8976 0.9065

Isolation Forest 0.2952 0.1154 0.2952 0.1659

OneClassSVM 0.1325 0.0999 0.1325 0.1139

Dummy Classifier 0.1386 0.0192 0.1386 0.0337

LDA 0.7108 0.7935 0.7108 0.7170

SMOTE

Random Forest 1.0000 1.0000 1.0000 1.0000

Logistic Regression 0.4096 0.4850 0.4096 0.3895

Naive Bayes 0.3554 0.5098 0.3554 0.2338

K-Nearest Neighbors 0.9819 0.9828 0.9819 0.9820

Support Vector Machine 0.2470 0.4334 0.2470 0.1960

Gradient Boosting 1.0000 1.0000 1.0000 1.0000

MLP 0.3193 0.4737 0.3193 0.3097

XGBoost 1.0000 1.0000 1.0000 1.0000

LightGBM 1.0000 1.0000 1.0000 1.0000
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Table 5.2 continued from previous page

Model Accuracy Precision Recall F1-score

CatBoost 1.0000 1.0000 1.0000 1.0000

Isolation Forest 0.2952 0.1129 0.2952 0.1633

OneClassSVM 0.1205 0.1062 0.1205 0.1129

Dummy Classifier 0.1386 0.0192 0.1386 0.0337

LDA 0.7048 0.7481 0.7048 0.7146

Classifier Analysis

Random Forest consistently achieved perfect scores across all metrics, demon-

strating its robustness and reliability in model selection. It achieved an accuracy,

precision, recall, and F1-score of 1.0000, indicating flawless performance in predict-

ing the optimal time series model.

Logistic Regression performed significantly lower, with an accuracy of 0.2952

and an F1-score of 0.1996. This indicates that while it may occasionally predict

correctly, its overall reliability is limited.

Naive Bayes showed moderate performance with an accuracy of 0.3675 and an

F1-score of 0.2483, suggesting some capability in model selection, but with consid-

erable room for improvement.

K-Nearest Neighbors (KNN) demonstrated high effectiveness with an accu-

racy of 0.9819 and an F1-score of 0.9820, closely trailing the top-performing classi-

fiers.

Support Vector Machine (SVM) achieved an accuracy of 0.3193 and an

F1-score of 0.1618, indicating moderate performance.

Gradient Boosting classifiers, including XGBoost, LightGBM, and Cat-

Boost, matched the perfect scores of Random Forest, each achieving an accuracy,

precision, recall, and F1-score of 1.0000.

Multi-Layer Perceptron (MLP) showed varied performance across different

sampling methods, with its highest performance under original sampling (accuracy
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of 0.3795 and F1-score of 0.3490) and the lowest under random undersampling (ac-

curacy of 0.2470 and F1-score of 0.2119).

Isolation Forest and OneClassSVM classifiers performed poorly, with low

accuracies (0.3072 and 0.1566, respectively) and corresponding F1-scores (0.1647

and 0.1303), highlighting their unsuitability for this task.

Dummy Classifier, used as a baseline, predictably performed the worst, with

an accuracy of 0.3133 and an F1-score of 0.1494, confirming that the predictive

power of other classifiers is not by chance.

Linear Discriminant Analysis (LDA) showed good performance, with an

accuracy of 0.7952 and an F1-score of 0.7990 under original sampling, and moderate

performance under different sampling methods.

Influence of Resampling Techniques

The study also explored the impact of various sampling methods on classifier

performance, summarised in Table 5.3.

Table 5.3: Impact of Resampling Techniques on Classifier Performance

Classifier Original
Random

Oversampling

Random

Undersampling
SMOTE

CatBoost 166 166 149 166

Dummy Classifier 52 23 23 23

Gradient Boosting 166 166 138 166

Isolation Forest 0 0 0 0

K-Nearest Neighbors 163 163 76 163

LDA 132 115 118 117

LightGBM 166 166 147 166

Logistic Regression 49 22 41 68

MLP 63 65 41 53

Naive Bayes 61 59 57 59

OneClassSVM 0 0 0 0
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Table 5.3 continued from previous page

Classifier Original
Random

Oversampling

Random

Undersampling
SMOTE

Random Forest 166 166 141 166

Support Vector Machine 53 41 40 41

XGBoost 166 166 147 166

The results indicate distinct patterns of performance for each resampling tech-

nique as shown in Figures 5.5 and 5.6.
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Figure 5.5: Accuracy of Classifiers by Resampling Technique
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Figure 5.6: F1-Score of Classifiers by Resampling Technique
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• Random oversampling shows mixed results across different classifiers. Classi-

fiers such as Random Forest, Gradient Boosting, XGBoost, LightGBM, and

CatBoost maintain high accuracy and F1-scores with this technique, indicat-

ing their robustness and ability to handle oversampled data effectively. These

ensemble methods leverage the additional data points to improve their decision

boundaries without overfitting significantly. However, simpler classifiers like

Logistic Regression and Support Vector Machine (SVM) exhibit lower perfor-

mance. This suggests that these models might be more prone to overfitting

with duplicated examples, as they do not have the inherent complexity to dis-

tinguish between genuine and replicated instances effectively. Naive Bayes also

shows moderate performance, but its probabilistic nature helps it manage the

oversampled data better than logistic regression and SVM. From Figure 5.5,

we observe that the accuracy of Logistic Regression drops significantly when

using Random Oversampling, possibly due to the model overfitting on the du-

plicated samples. Similarly, SVM shows a substantial decrease in performance,

indicating that it struggles with the redundancy introduced by oversampling.

• Random undersampling generally results in lower performance metrics across

most classifiers, as shown in Figures 5.5 and 5.6. The reduction in the ma-

jority class can lead to loss of valuable information, affecting the classifiers’

ability to generalize. This is particularly evident in ensemble methods where

the performance drops significantly compared to the original or oversampled

datasets. However, classifiers such as K-Nearest Neighbors (KNN) and Naive

Bayes are less affected by random undersampling. KNN benefits from a more

balanced class distribution as it relies on the neighborhood of data points, while

Naive Bayes, with its assumption of feature independence, can still perform

reasonably well with fewer samples from the majority class. The performance

of KNN, as seen in both accuracy and F1-score metrics, remains relatively

stable with Random Undersampling. This stability suggests that KNN can

effectively utilize the smaller, balanced dataset to maintain its classification
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ability. Naive Bayes also performs consistently, benefiting from its probabilis-

tic approach that is less reliant on the volume of data.

• SMOTE appears to provide a balanced approach, improving performance met-

rics for several classifiers. This technique generates synthetic examples for the

minority class, thus creating a more diverse and representative dataset. For

example, Logistic Regression and Multi-Layer Perceptron (MLP) show sig-

nificant improvements in both accuracy and F1-scores when using SMOTE.

This highlights the benefits of synthetic data generation in helping these clas-

sifiers generalize better. SMOTE also enhances the performance of ensemble

methods, though not as dramatically as random oversampling. The generated

synthetic instances provide a better spread of the minority class without sim-

ply duplicating existing examples. Figure 5.6 clearly shows that the F1-scores

of Logistic Regression and MLP improve notably with SMOTE. This improve-

ment suggests that SMOTE’s synthetic examples help these classifiers better

capture the underlying patterns of the minority class, leading to enhanced

performance.

The detailed analysis of the performance of each classifier under different resam-

pling techniques reveals several insights. Ensemble methods such as Random Forest,

Gradient Boosting, XGBoost, LightGBM, and CatBoost consistently show high per-

formance across different resampling techniques, particularly excelling with Random

Oversampling and SMOTE. These methods benefit from the additional diversity

provided by these techniques, improving both their accuracy and F1-scores. The

robustness of these ensemble methods is evident from their ability to maintain high

performance even with resampling, which adds complexity to the dataset. Simple

classifiers like Logistic Regression and SVM struggle with oversampling and under-

sampling but show noticeable improvements with SMOTE. This indicates that the

introduction of synthetic samples helps these classifiers to better capture the decision

boundaries without overfitting. The significant improvement in both accuracy and

F1-scores for these classifiers when using SMOTE highlights the effectiveness of syn-
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thetic data in mitigating the issues of class imbalance. KNN and Naive Bayes handle

undersampling better than others, suggesting their robustness to smaller datasets.

However, they also benefit from SMOTE, showing that synthetic data can enhance

their performance without introducing significant bias. The consistent performance

of KNN and Naive Bayes across different resampling techniques underscores their

flexibility and adaptability to various dataset distributions. In summary, the ex-

periment results demonstrates that the choice of resampling technique can have a

profound impact on the performance of different classifiers. Ensemble methods and

sophisticated techniques like SMOTE generally provide better results, highlighting

their importance in handling class-imbalanced datasets. The detailed analysis of

classifier performance under various resampling techniques offers valuable insights

for selecting appropriate methods to address class imbalance in time series data.

The overall accuracy of the predictions stands at 55.86%, indicating that just

over half of the time, the predicted labels align with the true labels ( see F). Utiliz-

ing the Random Forest classifier for prediction, a detailed analysis of the classifier’s

performance across different labels reveals distinct patterns of accuracy and misclas-

sification.

5.7 helps to visualize these patterns, where diagonal elements indicate correct

predictions and off-diagonal elements show misclassifications.

The diagonal elements, which represent correct predictions, show that the classi-

fier performs best on the GRU and Transformer labels, with high counts of accurate

predictions at 1546 and 1687 respectively. However, the off-diagonal elements reveal

significant misclassifications. For instance, the Baseline label is frequently misclassi-

fied as GRU and Transformer, with 142 and 126 occurrences respectively. Similarly,

the GRU label is often misclassified as Inlier (287 times) and Transformer (294

times). The LSTM label, though correctly predicted 181 times, is notably misclas-

sified as Inlier (35 times). The LSTM Attention label also shows a considerable

number of correct predictions (978), but is misclassified as GRU (239 times) and

Inlier (181 times). The RNN label has a relatively lower count of correct predictions
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Figure 5.7: Confusion Matrix of Classifier Predictions
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(72) and is frequently misclassified as Inlier (16 times). These patterns indicate

specific areas where the classifier excels and other areas where it has difficulties,

suggesting potential directions for improving its precision, such as focusing on re-

ducing misclassifications among similar labels and enhancing the distinction between

frequently confused classes.

5.7 Summary

In conclusion, this chapter has offered an evaluation of the meta-learner’s perfor-

mance in the context of model selection time series forecasting. We assessed the

effectiveness of 14 machine learning models and explored various resampling tech-

niques to address class imbalance within the dataset. While some models, such as

Random Forest and K-Nearest Neighbors, demonstrated strong performance and

may be considered as promising candidates for model selection in specific scenarios,

others, such as the Support Vector Machine, struggled consistently. Additionally, we

highlighted the critical role of choosing appropriate resampling strategies to enhance

model performance, with oversampling techniques often proving effective.

Furthermore, this research was part of a multidisciplinary project, and our indus-

trial partner, ARUP, provided valuable domain expertise. They found the findings

highly significant and applicable, emphasizing the practical relevance and potential

impact of our results in real-world applications.

These findings underscore the importance of carefully tailoring the choice of

machine learning models and class imbalance mitigation techniques to the specific

needs of time series forecasting projects. Further evaluation of diverse datasets

will be essential to ascertain the meta-learner’s robustness and its applicability to

different forecasting tasks.

1. Model Performance Variability: The evaluation of different classifiers for

time series prediction revealed a substantial variability in their performance.

Some models, such as Random Forest and K-Nearest Neighbors, consistently
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demonstrated high accuracy and balanced precision and recall, indicating their

suitability for the task. Others, such as Logistic Regression and Naive Bayes,

showed competitive performance depending on the specific resampling strat-

egy. Meanwhile, the Support Vector Machine consistently underperformed,

suggesting it may not be the best choice for this task.

2. Overfitting Concerns: The Random Forest model, while achieving near-

perfect scores, raised concerns about potential overfitting. Overfitting occurs

when a model becomes overly tuned to the training data, capturing noise and

idiosyncrasies that do not generalize well to unseen data. This highlights the

importance of model selection and the need for further analysis and experi-

mentation to fine-tune hyperparameters and prevent overfitting.

3. Class Imbalance Challenge: The real-world time series dataset exhibited

class imbalance, a common challenge in machine learning. Class imbalance can

lead to biased models that favor the majority class and perform poorly on the

minority class. Different resampling techniques, including oversampling and

undersampling, were explored to address this issue. The choice of resampling

technique significantly impacted model performance, with oversampling often

yielding better results.

4. Meta-Learner Benefits: The use of a meta-learner for model selection

proved valuable in this context. By leveraging a meta-learner, it was pos-

sible to combine the strengths of different base classifiers and mitigate their

weaknesses. This approach allowed for more robust model selection, especially

when dealing with highly variable performance across different classifiers.

5. Resampling Strategy Importance: The selection of the appropriate re-

sampling strategy played a crucial role in enhancing the performance of the

meta-learner. Oversampling techniques, such as Random Oversampling and

SMOTE, were particularly effective in improving model performance, address-

ing class imbalance, and preventing models from being biased toward the ma-
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jority class.

6. Recommendations for Model Selection: Based on the evaluation results,

Random Forest and K-Nearest Neighbors emerged as top contenders for the

time series prediction task. However, the choice of the best model should align

with the project’s objectives, constraints, and specific problem requirements.

Considerations such as computational resources, model interpretability, and

the nature of the problem should guide the final model selection.

In conclusion, using a meta-learner for model selection in time series prediction

offers a powerful approach to leverage the strengths of different classifiers and address

challenges such as class imbalance. However, carefully considering the base classifiers

and resampling strategies is crucial to achieve the best results. Further fine-tuning

and experimentation may be necessary to optimize model performance and ensure

that the selected model aligns with the desired objectives.
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Chapter 6

Conclusion

In this concluding chapter, Section 6.1 provides a comprehensive summary of the

work conducted throughout this study. In Section 6.2, potential prospects for future

research are discussed to expand upon the work presented in this thesis.

6.1 Thesis Overview

This thesis is dedicated to the systematic selection of predictive models using meta-

learning methodologies, specifically within the domain of time series data analysis.

The central focus of this research addresses the complex challenges associated with

selecting optimal models suited to various typologies of time series data. By employ-

ing meta-learning techniques, this study aims to improve the accuracy and efficiency

of predictive model selection, thereby making a significant contribution to the fields

of machine learning and data science.

In Chapter 1, we commenced with an introduction to environmental data inte-

gration. Given that time series data constitute a substantial subset of environmental

datasets, this was followed by a discussion on time series predictive algorithms, even-

tually leading to the exploration of the application of meta-learning for time series

predictive models. Subsequently, we engaged in an analysis of open research issues,

which played a pivotal role in crystallizing our overarching hypothesis and, conse-

quently, in the formulation of three specific research questions: The first research
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question focuses on the challenges and complexities of integrating heterogeneous

environmental datasets, considering variations in spatiotemporal resolution, data

format, and attribute representation. The second question addresses the primary

challenges in developing accurate predictions for environmental time series data,

specifically within the hydrology domain. The final question explores the feasibility

of constructing a meta-learner to aid time series researchers in selecting the most

suitable predictive model for the dataset they are analyzing.

Chapter 2 This chapter lays the foundation for meta-learning in model selection

by providing a comprehensive literature review covering several critical aspects of

our research. It starts with environmental data integration, discussing various data

sources, types, formats, and quality issues. Significant advancements have been

made in integrating diverse environmental data, but challenges remain in maintain-

ing data quality and consistency, especially with spatiotemporal resolution and data

format variations. Data warehousing concepts, architectures, and integration pat-

terns (ETL and ELT) are examined, highlighting the strengths and limitations of

current approaches. Data warehouses offer robust solutions for organizing and ana-

lyzing large volumes of data but often require substantial computational resources

and lack flexibility to adapt to changing data environments. The review then delves

into hydrological predictive models, focusing on traditional and machine learning-

based models. Traditional models are robust and reliable, while machine learning

models excel in handling complex, non-linear relationships in data. However, ma-

chine learning models often demand significant computational resources and spe-

cialized expertise, and traditional models may not effectively capture the dynamic

nature of hydrological systems. Time series analysis is also scrutinized, emphasizing

the characteristics of time series data, prediction techniques, and the complexities of

model selection. Automated algorithms like ETS and ARIMA have facilitated more

efficient model selection, but the task remains challenging due to the diverse charac-

teristics of time series data. Meta-learning is introduced as a promising approach for

automating the time series model selection process. Meta-learning leverages histor-
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ical performance data and dataset characteristics to make informed model selection

decisions, reducing the need for manual intervention and improving prediction ac-

curacy. Despite its potential, the field of meta-learning is still in its early stages,

with many open research questions and opportunities for further development. In

summary, this chapter synthesizes critical insights from the domains of environmen-

tal data integration, data warehousing, hydrological predictive modeling, time series

analysis, and meta-learning. It identifies strengths and weaknesses in contemporary

work, highlighting gaps that guide the formulation of the following research ques-

tions: What are the challenges of integrating heterogeneous environmental datasets,

considering variations in spatiotemporal resolution, data format, and attribute rep-

resentation? What are the primary challenges in developing accurate predictions

for environmental time series data, specifically within the hydrology domain? Is it

feasible to construct a meta-learner to aid time series researchers in selecting the

most suitable predictive model for the dataset they are analyzing?

In Chapter 3, we introduce a methodological architecture that leverages ETL

(Extract, Transform, Load) technology to address the integration of heterogeneous

environmental data from diverse sources. This Spatiotemporal Data Integration

(STDI) approach effectively handles challenges encompassing data sourcing, extrac-

tion, transformation, loading, mapping, spatiotemporal integration, and data qual-

ity validation, providing a holistic solution for Environmental Spatiotemporal Data

Integration. Our methodological architecture is adaptable and versatile, making it

suitable for various domains where integrating diverse data from multiple sources is

essential for practical analysis, visualization, and decision-making. Users can cus-

tomize algorithms’ rules and parameters to tailor the integration process to their

needs, offering flexibility for various integration scenarios. To illustrate this archi-

tecture’s practical application and effectiveness, we present a case study centred on

STDI in Ireland. We employ distance-based algorithms for spatial data integration

and implement temporal data integration techniques to seamlessly merge data, en-

suring optimal alignment and minimal information loss. The case study includes
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integrating river water levels and weather data, proximity analysis of weather sta-

tions to geological features, and merging water sensor data with geological features

for assessing water quality patterns. Additionally, we explore the interplay between

geology, topology, and climate.

Chapter 4 built upon Chapter 3’s emphasis on spatiotemporal data integration

and highlights the pressing need to apply this integrated dataset to real-world appli-

cations. Predicting river water levels is vital, demanding precision and adaptability.

Accurate predictions are significant in managing water resources, mitigating flood

and drought risks, and improving decision-making processes. Traditional method-

ologies, although accurate, often require substantial computational resources and

specialized expertise, leaving room for improvement. This chapter evaluates and

selects the optimal machine learning model for predicting river water levels. The

objective is to provide insights into the advantages and drawbacks of each model,

ultimately creating an experimental dataset that will serve as the basis for the meta-

learner.

Chapter 5 addresses the formidable challenge of model selection for time series

data encountered, marked by inherent complexity and the impracticality of exhaus-

tive testing. Within this context, a groundbreaking meta-learning process is intro-

duced, capable of identifying the optimal model for time series data. This chapter

elaborates on the methodology that underpins selecting a suitable time-series predic-

tion model, reinforced by the Meta-Dataset, which serves as the foundational input

for the meta-learner. Furthermore, the practical implementation of the methodology

is presented, and the research outcomes are shared. This chapter provides a com-

prehensive understanding of how the challenges associated with model selection for

time series data can be surmounted, along with an appreciation of the advantages

of applying meta-learning in this context.

In summary, the main contribution of the research is the meta-learning approach

for selecting the appropriate model for water level time series prediction using the

previously proposed Meta-Dataset. This approach integrates distinct categories of
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input features, including Time Series Input Features, Geology Features, and ML

Prediction Results Features, to provide a comprehensive understanding of the in-

tricate dynamics underlying water time series. The research empowers hydrologists

and researchers to make informed decisions regarding model selection, contributing

to more accurate and timely water level predictions with far-reaching implications

for water resource management, environmental conservation, and decision-making

processes.

6.2 Future Research

This thesis has established a strong foundation for advancing the field of time series

data analysis, specifically in selecting predictive models through innovative meta-

learning methodologies. The journey so far has illuminated several avenues for future

research and exploration.

Future work can encompass the following directions:

Enhanced Meta-Learning Framework: The Meta-Dataset and the meta-

learning process introduced in this research exhibit immense promise in facilitating

the selection of optimal models for time series data. Enhancing this framework

could involve exploring advanced techniques in few-shot and zero-shot learning to

augment further the meta-learner’s capacity to generalize across different datasets

and model categories.

Incorporating Additional Features: While the current research incorporates

Time Series Input Features, Geology Features, and ML Prediction Results Features,

broadening the scope of features used in the model selection process can offer more

comprehensive insights into the behaviour of water time series, For instance, the use

of the uses of satellite data to analyze the temporal and spatial variability of surface

waters around Ireland [31].

Real-Time Predictions: Extending the research to encompass real-time pre-

dictions involving data streaming and the capacity to update models on the fly could

prove valuable, particularly for applications that necessitate immediate decision-
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making, such as flood management.

Multimodal Data Integration: Incorporating multiple types of data sources,

including other sensor data, satellite imagery, and climate models, can provide a

more holistic understanding of environmental dynamics. Subsequent research may

explore the challenges and opportunities of integrating multimodal data into the

predictive modelling framework.

Environmental Impact Assessment: Expanding the applications of accurate

water level predictions, future research can delve into the environmental impact as-

sessment of water resource management decisions. This could encompass evaluating

the ecological consequences of water level changes and their effects on aquatic ecosys-

tems.

Hydrological Model Integration: Integrating machine learning-based pre-

dictive models with traditional hydrological models can create hybrid systems that

leverage the strengths of both approaches. Such collaborative modelling has the po-

tential to enhance the accuracy and reliability of predictions, particularly in regions

with complex hydrological dynamics.

Counterfactuals: A key underpinning of meta-learning is that of explainable

AI (XAI). Within this field there exists the topic of counterfactuals where a user

can post “what-if” questions to a model to gain actionable insights. The additional

of counterfactuals and more investment into the explainability of the meta-learner

could provide valuable insights into the characteristics of each dataset further broad-

ening the models predictive power.

Sustainable Resource Management Applications: The research can be

extended to support sustainable resource management in various domains, including

water resource management, forestry, and agriculture. Predictive models can play

a significant role in optimizing resource allocation, reducing waste, and promoting

environmentally responsible practices.

These future research directions hold the potential to further advance the field of

environmental and climate research. By harnessing the power of predictive modelling
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and meta-learning, researchers can address pressing challenges related to climate

change, ecosystem health, sustainable resource management, and regional variations

in hydrological dynamics.

211



Appendix A

Stakeholders

This appendix chapter provide and explain the main identified stake holders.

The Office of Public Works (OPW) The OPW is a service organisation.

Their services cover two main areas. First, Estate Portfolio Management including

Heritage Services. sSecond, Flood Risk Management (Corporate Services support

all areas), The OPW, as the leading agency for flood risk management in Ireland,

minimises the impacts of flooding through sustainable planning. The mission of the

OPW is to provide innovative, effective and sustainable shared services to the public

and their clients using their experience and expertise

Environmental Protection Agency (EPA) The Environmental Protection

Agency is responsible for regulating the quality of drinking water and enforcing the

Drinking Water Regulations for public water supplies.

Local Authority Waters Programme (LAWPRO) The Local Authority

Waters Programme (LAWPRO) is tasked with identifying the problems influencing

water quality in each of Ireland’s counties.

Transport Infrastructure Ireland (TII) The TII is a state agency in Ireland

dealing with road and public transport infrastructure. Its mission is to deliver

transport infrastructure and services, which contribute to the quality of life for the

people of Ireland and support the country’s economic growth. Road projects may

have impacts on the water environment. These include impacts on the quality of

water bodies and on the existing hydrology of the catchments through which roads
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pass. Among TII interest Road Drainage and the Water Environment Roads are

designed to drain freely to prevent the build-up of standing water on the carriageway

whilst avoiding exposure to or causing flooding.

Inland Fisheries Ireland (IFI) IFI is responsible for managing and protecting

Ireland’s inland fisheries and sea angling resources, for example, setting conservation

limits and issuing fishing licences. It is also involved in a broad range of fisheries

research and monitoring activities and sectors.

Irish Water (IW) It is a water utility company in Ireland. Irish Water was

established to deliver the Government’s reform programme for the water services

sector. ”The task assigned to Irish Water by the Government is to build a new na-

tional water utility to provide safe, affordable and environmentally compliant water

services to all customers.” Irish Water has been established to take on the follow-

ing challenges: Drinking Water Quality, Drinking Water, Wastewater Quality and

Wastewater Capacity.

Waterways Ireland (WI) It is responsible for managing, maintaining, devel-

oping, and restoring Inland navigable waterways primarily for recreational purposes.

Waterways Ireland’s work includes: Water Management (Water Quality, pollution

and water levels), Infrastructure ( navigation, canals . . . ), Marine Notices to public

and Boating ( Boat Registration, permits, Mooring ).
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Appendix B

OPW Hydrometric Stations

Opw provides 432 hydrometric stations as presented in the Figure B.1 below.

Figure B.1: OPW hydrometric stations

The table below provides the selected hydrometric station in Experiment 1: Eight

Machine Learning Models on 70 Hydrometric Stations in Chapter 4.

214



A Meta-Learning Approach for Hydrological Time Series Model Selection

Station

name

Station

number
RBD

River

name
Catchment Area Latitude Longitude

Aclint 6026 N LAGAN (GLYDE) GLYDE 144.00 km² 53.92476528 -6.640019444

Brewery

Park
6015 N RAMPARTS MAIGUE 14.76 km² 53.993583 -6.416611

Cappoge

Bridge
3058 N

BLACKWATER

[MONAGHAN]

BLACKWATER

[MONAGHAN]
65.00 km² 54.26680861 -7.021296944

Charleville 6013 N DEE — 307.00 km² 53.85584278 -6.413995833

Clarebane 6012 N FANE FANE 163.00 km² 54.09285639 -6.666055833

Glaslough 3055 N
MOUNTAIN

WATER

BLACKWATER

[MONAGHAN]
72.00 km² 54.32328083 -6.894343889

Ladyswell 6036 N Ramparts Castletown river 18.00 km² 53.99376162 -6.405584048

Mansfields

town
6021 N GLYDE GLYDE 321.00 km² 53.89660361 -6.444490556

Moyles Mill 6011 N FANE FANE 230.00 km² 54.01157444 -6.596077222

Port Oriel 6060 N IRISH SEA — 53.79899 -6.221712778

Aghawoney 39009 NW LEANNAN LEANNAN 207.00 km² 55.04378556 -7.720692778

Anlore 36015 NW FINN FINN 98.27 km² 54.177075 -7.177330833

Ashfield 36018 NW DROMORE ERNE 233.00 km² 54.07216528 -7.121145556

Ballybofey 1043 NW FINN [Donegal] FINN 319.00 km² 54.79976861 -7.790749444

Ballyloskey 40008 NW
BALLYWILLY

BROOK

Culdaff-Clomany

Donagh-Coastal
2.69 km² 55.247114 -7.262751

Bellahillan 36011 NW ERNE ERNE 318.00 km² 53.96262361 -7.457176111

Butlers Bridge 36010 NW ANNALEE ERNE 774.00 km² 54.04187944 -7.377087778

Foalies Bridge 36171 NW L. ERNE UPPER ERNE 1520.00 km² 54.1387075 -7.436896111

Gartan Bridge 39008 NW LEANNAN LEANNAN 77.39 km² 55.00025333 -7.894476111

Keenagh Deel

Bridge
34114 NW

DEEL

[Crossmolina]
MOY 65.00 km² 54.08130375 -9.514569457

Abington 25003 S MULKEAR Shannon 397.00 km² 52.63186778 -8.421220833

Athlacca 24005 S MORNINGSTAR MAIGUE 131.95 km² 52.45876611 -8.65116583

Annacotty 25001 S MULKEAR SHANNON 646.00 km² 52.66927583 -8.529146944

Ballinamore 26001 S SHIVEN SHANNON 230.00 km² 53.48978639 -8.366001667

Banagher 25017 S SHANNON SHANNON 7989.00 km² 53.19378667 -7.993646667

Ballinasloe

Town
26354 S SUCK Shannon 1428.26 km² 53.3295 -8.21493

Castleroberts 24008 S MAIGUE SHANNON 805.00 km² 52.54344083 -8.767416389

Clarecastle

Barrage
27065 S FERGUS ESTY SHANNON 625.58 km² 52.8172475 -8.962748889

Clarianna 25029 S NENAGH SHANNON 292.67 km² 52.89162278 -8.207709722

Gourdeen 25027 S OLLATRIM SHANNON 118.00 km² 52.86841167 -8.168575

Aasleagh

Bridge
32060 W ERRIFF ERRIFF 166.32 km² 53.61774917 -9.671156667
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Station

name

Station

number
RBD

River

name
Catchment Area Latitude Longitude

Ballina 34061 W MOY ESTY MOY 1923.00 km² 54.11718417 -9.146781

Ballylahan 34004 W MOY MOY 935.50 km² 53.93794028 -9.102895

Clarinbridge 29004 W CLARINBRIDGE
Galway Bay

South East
123.00 km² 53.22934167 -8.874782778

Dangan 30098 W CORRIB CORRIB 3091.00 km² 53.29616944 -9.0765925

Kilcolgan 29011 W DUNKELLIN Kilcogan 373.00 km² 53.21410944 -8.871328889

Pontoon 34081 W L. CULLIN MOY 819.40 km² 53.97766528 -9.208075833

Riverside

Close
23050 W BRICK FEALE 6.39 km² 52.344863 -9.688059

Terryland 30117 W
Terryland

Sandy River
CORRIB 5.99 km² 53.285939 -9.041714

Wolfe Tone

Bridge
30061 W CORRIB ESTY. CORRIB 3111.00 km² 53.26998 -9.05567

Anglesea

Road
9369 E Dodder LIFFEY 106.22 km² 53.327878 -6.230943

Bluebell 9110 E
Naas Canal

Supply Stream
LIFFEY 0.99 km² 53.20790295 -6.67846311

Cherry Wood 10048 E
LOUGHLINS

TOWN
— 20.04 km² 53.246972 -6.137667

Fyanstown 7006 E MOYNALTY BOYNE 188.00 km² 53.72582306 -6.802883056

Giles Quay 6062 E SEA — 0.00 km² 53.98444001 -6.23990263

Killyon 7002 E DEEL [Raharney] BOYNE 285.00 km² 53.48777083 -6.970770833

Leixlip 9001 E RYEWATER LIFFEY 215.00 km² 53.36866472 -6.490438611

Mornington 7062 E BOYNE ESTY — 0.00 km² 53.71942667 -6.254402778

Navan Weir 7009 E BOYNE BOYNE 1610.00 km² 53.64355944 -6.6720575

Trim 7005 E BOYNE BOYNE 1282.00 km² 53.55640528 -6.791843889

Adelphi Quay 16160 SE JOHN’S RIVER SUIR 3508.00 km² 52.25966639 -7.102433056

Brownsbarn 15006 SE NORE NORE 2388.00 km² 52.50076972 -7.091699722

Cahir Park 16009 SE SUIR SUIR 1602.00 km² 52.35767333 -7.922936944

Dundalk Port 6061 SE — — 422.00 km² 54.00769064 -6.38555706

Joyces Lane 16147 SE SUIR — 2140.59 km² 52.35155588 -7.70670506

Killardry 16007 SE AHERLOW SUIR 273.35 km² 52.41727611 -7.975713611

Levitstown 14019 SE BARROW BARROW 1660.00 km² 52.93537778 -6.949797222

McMahons

Bridge
15004 SE NORE NORE 491.00 km² 52.86702444 -7.379327222

Rathangan 14011 SE SLATE BARROW 163.00 km² 53.22061583 -6.992655278

Tullowbeg 12006 SE SLANEY SLANEY 251.00 km² 52.79606417 -6.738396944

Athea D/S 23051 SW GALEY FEALE 36.30 km² 52.461378 -9.286944

Athea U/S 23052 SW GALEY FEALE 36.30 km² 52.460679 -9.286718
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Station

name

Station

number
RBD

River

name
Catchment Area Latitude Longitude

Ballydahin 18119 SW
BLACKWATER

[MUNSTER]

BLACKWATER

[MUNSTER]
1190.19 km² 52.13139014 -8.65421144

Ballyduff 18002 SW
BLACKWATER

[MUNSTER]

BLACKWATER

[MUNSTER]
2338.00 km² 52.14434472 -8.051951667

Coolmuckey

Br
19112 SW Bride (Cork) LEE 70.21 km² 51.86084 -8.783723

Flesk Bridge 22006 SW FLESK(LAUNE) LAUNE 325.00 km² 52.04803417 -9.497946944

Glandalane 18053 SW
BLACKWATER

[MUNSTER]

BLACKWATER

[MUNSTER]
2275.00 km² 52.14981139 -8.220838333

Morris’s

Bridge
19104 SW Laney LEE 82.11 km² 51.92933 -8.93616

Riverville 22003 SW MAINE LAUNE 272.00 km² 52.19762111 -9.570731944

Waterworks

Weir
19102 SW LEE LEE 1185.00 km² 51.893989 -8.510053
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Appendix C

Data Warehouse Schema

Figure C.1: Whole DW schema
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Appendix D

Data Mapping Rules

Data Mapping Rules for Effective Data Integration

Data integration involves combining and harmonizing data from diverse sources. To achieve this, it’s

essential to establish clear data mapping rules. These rules ensure that data from different systems can

be effectively combined and used coherently. Here are some essential data mapping rules for effective data

integration:

1. Consistent Data Naming: Ensure that data elements (e.g., columns or fields) have consistent

and meaningful names across all data sources. This consistency simplifies the mapping process.

2. Unique Identifiers: Identify unique identifiers within each dataset that can be used to match

and join records across different sources. This might include primary keys or unique combinations

of attributes.

3. Data Type Consistency: Make sure that data types for corresponding attributes match. For

example, a numerical attribute in one source should be of the same data type (e.g., integer or float)

in another source.

4. Data Transformation Rules: Define clear rules for transforming data from one format to an-

other. This includes specifying how categorical values are mapped, units of measurement conver-

sions, and date format transformations.

5. Data Validation Rules: Establish validation rules to check the integrity of data. These rules can

identify data that doesn’t conform to expected patterns and may indicate errors or inconsistencies.

6. Hierarchical Data Mapping: If dealing with hierarchical or nested data structures, define how

parent-child relationships are mapped between systems. This is common in scenarios like XML or

JSON data.

7. Data Aggregation Rules: Specify how data should be aggregated or summarized when combining

records from multiple sources. Aggregation rules may include averaging, summing, or taking the

maximum or minimum values.
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8. Data Cleaning Rules: Define rules for handling missing data, outliers, or inconsistent data.

Decide whether to impute missing values, remove outliers, or flag potentially problematic records.

9. Data Privacy and Security Rules: Ensure that data mapping rules respect privacy and security

requirements, particularly when integrating sensitive or personally identifiable information (PII).

10. Data Versioning and Change Tracking: Establish mechanisms to track changes in data over

time. This can include versioning data sources and recording change timestamps.

11. Data Matching and Deduplication Rules: Define how records from different sources are

matched and deduplicated to avoid data redundancy. This is crucial when integrating data from

multiple sources with overlapping information.

12. Data Transformation Logs: Keep logs of data transformations and mappings. These logs can

be useful for auditing, debugging, and ensuring transparency.

13. Error Handling Rules: Specify how errors during data integration, such as data type mismatches

or failed transformations, should be handled. Define fallback mechanisms or alerting procedures.

14. Data Lineage Tracking: Implement data lineage tracking to trace the origin and history of data

elements, enabling users to understand how integrated data was derived.

15. Mapping Documentation: Thoroughly document data mapping rules, providing data consumers

with insights into how data has been integrated and transformed.

16. Scalability Rules: Consider how the data mapping process can scale as new data sources are

added or as data volume increases.

17. Testing and Validation Procedures: Establish procedures for testing and validating data map-

pings to ensure the integrated data meets quality and accuracy standards.

18. Regular Review and Maintenance: Schedule periodic reviews of data mapping rules to accom-

modate changing data sources and requirements.

19. User Feedback Mechanism: Create a mechanism for users to provide feedback on the integrated

data, helping to identify issues and improve the mapping process.

These rules help ensure that data integration is conducted efficiently and produces high-quality inte-

grated datasets that can be used for analysis and decision-making. The specifics of data mapping rules

may vary depending on the nature of the data and the integration requirements.
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Appendix E

Results

Table E.1: Experiment 1: ML prediction results for Neagh Bann RBD: Results using
MAE Validation and Test

Station name Baseline Linear Dense MultiDense CNN RNN GRU LSTM Best Model

Validation

Aclint 0.0665 0.0667 0.0716 0.0136 0.0209 0.0103 0.0039 0.0039 GRU

Brewery Park 0.0393 0.0463 0.0452 0.0235 0.0123 0.0141 0.0088 0.0064 LSTM

Cappoge Bridge 0.3659 0.3637 0.3475 0.0546 0.0555 0.0496 0.0378 0.0376 LSTM

Charleville 0.0942 0.094 0.0923 0.012 0.0554 0.0119 0.01 0.01 GRU

Clarebane 0.0436 0.2625 0.0453 0.1012 0.03 0.018 0.011 0.011 GRU

Glaslough 0.2907 0.3112 0.2837 0.0686 0.0629 0.0265 0.0337 0.0265 RNN

Ladyswell 0.0488 0.0581 0.0541 0.0125 0.0173 0.0133 0.0078 0.0078 GRU

Mansfieldstown 0.0798 0.0798 0.0826 0.014 0.0146 0.0107 0.0074 0.007 LSTM

Moyles Mill 0.054 0.054 0.0599 0.0164 0.0246 0.0154 0.013 0.013 GRU

Port Oriel 1.1293 0.8547 0.8539 0.0315 0.0345 0.0446 0.0448 0.0315 MultiDense

Aghawoney 0.1233 0.1224 0.1233 0.0125 0.0131 0.0088 0.0063 0.0063 GRU

Anlore 0.1907 0.1949 0.2038 0.0151 0.0184 0.0067 0.007 0.0061 LSTM

Ashfield 0.0515 0.0515 0.0517 0.03134 0.0209 0.0076 0.0058 0.0055 LSTM

Ballybofey 0.3734 0.385 0.3708 0.0529 0.0452 0.0421 0.0298 0.0298 GRU

Ballyloskey 0.1287 0.2775 0.1428 0.0345 0.0487 0.0465 0.0281 0.0281 GRU

Bellahillan 0.0415 0.0417 0.0393 0.0067 0.0091 0.0033 0.0111 0.0033 RNN

Butlers Bridge 0.1025 0.1023 0.1055 0.0143 0.0246 0.0118 0.0069 0.006 LSTM

Foalies Bridge 0.0716 0.0708 0.0698 0.0166 0.0298 0.0133 0.0102 0.0102 GRU

Gartan Bridge 0.1512 0.1534 0.1467 0.0155 0.0154 0.0136 0.0114 0.0111 LSTM

Keenagh Deel Bridge 0.3979 0.4308 0.434 0.0328 0.0426 0.0236 0.0217 0.0182 LSTM

Abington 0.2105 0.02074 0.02233 0.0226 0.0254 0.0171 0.0196 0.0158 LSTM

Continued on next page
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Table E.1 Results using MAE (continued from previous page)

Station name Baseline Linear Dense MultiDense CNN RNN GRU LSTM Model

Athlacca 0.1704 0.1702 0.1777 0.0185 0.0169 0.0137 0.0122 0.0115 LSTM

Annacotty 0.217 0.2247 0.226 0.0215 0.0247 0.015 0.0155 0.015 RNN

Ballinamore 0.2021 0.2031 0.2133 0.0438 0.0197 0.0153 0.0078 0.0051 LSTM

Banagher 0.0385 0.0383 0.0412 0.0123 0.0181 0.006 0.0041 0.0033 LSTM

Ballinasloe Town 0.0428 0.0438 0.0462 0.0079 0.0647 0.0093 0.0117 0.0073 LSTM

Castleroberts 0.1343 0.1347 0.1224 0.0206 0.0202 0.0112 0.011 0.0095 LSTM

Clarecastle Barrage 1.0161 0.7925 0.7918 0.0461 0.0554 0.0713 0.0669 0.0461 MultiDense

Clarianna 0.1537 0.1492 0.1608 0.0261 0.0392 0.017 0.0163 0.0163 GRU

Gourdeen 0.1423 0.139 0.1439 0.0403 0.0352 0.016 0.0147 0.0147 GRU

Aasleagh Bridge 0.3859 0.4034 0.4082 0.0637 0.0638 0.0511 0.0489 0.0479 LSTM

Ballina 0.4493 0.5083 0.5045 0.0611 0.0906 0.0898 0.0776 0.0611 MultiDense

Ballylahan 0.24 0.2424 0.2351 0.0115 0.0144 0.0096 0.0073 0.0064 LSTM

Clarinbridge 0.0899 0.0896 0.0888 0.0134 0.0233 0.0121 0.0113 0.0092 LSTM

Dangan 0.0475 0.0477 0.049 0.0205 0.0189 0.01 0.0088 0.0083 LSTM

Kilcolgan 0.1789 0.2022 0.2041 0.0481 0.0504 0.0594 0.0594 0.0481 MultiDense

Pontoon 0.0475 0.0472 0.0454 0.0133 0.0236 0.0115 0.0083 0.0083 GRU

Riverside Close 0.3643 0.5785 0.336 0.0955 0.1386 0.0583 0.0556 0.0556 GRU

Terryland 0.5826 0.6662 0.6594 0.1395 0.1742 0.1566 0.113 0.113 GRU

Wolfe Tone Bridge 0.7232 0.6677 0.635 0.0878 0.0811 0.1169 0.1125 0.0811 CNN

Anglesea Road 0.3673 0.341 0.3321 0.0791 0.1248 0.0637 0.0585 0.0536 LSTM

Bluebell 0.1502 0.1502 0.1526 0.0485 0.0663 0.0464 0.0441 0.0439 LSTM

Cherry Wood 0.1514 0.3185 0.1525 0.0429 0.0837 0.0437 0.0356 0.0356 GRU

Fyanstown 0.151 0.1509 0.1572 0.0153 0.0217 0.0112 0.0086 0.0086 GRU

Giles Quay 1.0408 1.0103 0.9583 0.1314 0.1902 0.1562 0.1512 0.1314 Multi Dense

Killyon 0.0735 0.0704 0.0732 0.0162 0.0157 0.0103 0.014 0.0064 LSTM

Leixlip 0.1379 0.1341 0.1268 0.0156 0.0171 0.0179 0.012 0.011 LSTM

Mornington 0.4241 0.4298 0.4015 0.0992 0.0906 0.1037 0.1004 0.0906 CNN

Navan Weir 0.0863 0.0869 0.0843 0.0164 0.0237 0.0166 0.012 0.0097 LSTM

Trim 0.0832 0.082 0.0807 0.0136 0.0209 0.0128 0.0035 0.0035 GRU

Adelphi Quay 1.1466 0.8738 0.8726 0.0426 0.0454 0.0552 0.0552 0.0426 MultiDense

Brownsbarn 0.1215 0.1252 0.137 0.0208 0.0163 0.0232 0.0092 0.0086 LSTM

Cahir Park 0.1031 0.1041 0.1024 0.0307 0.0137 0.0103 0.0097 0.0074 LSTM

Dundalk Port 1.0689 1.017 0.9601 0.1128 0.1156 0.1641 0.2132 0.1128 Multi Dense

Joyces Lane 0.1334 0.1325 0.1417 0.0168 0.0236 0.0195 0.0137 0.0137 GRU

Killardry 0.2254 0.2414 0.2412 0.0189 0.0189 0.0098 0.0094 0.0094 GRU

Levitstown 0.1222 0.1241 0.1231 0.0203 0.0133 0.0095 0.0094 0.0085 LSTM

McMahons Bridge 0.0997 0.1016 0.1029 0.0071 0.0082 0.011 0.0039 0.0039 GRU

Rathangan 0.1287 0.125 0.1268 0.0296 0.0108 0.0114 0.0104 0.0101 LSTM

Continued on next page
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Table E.1 Results using MAE (continued from previous page)

Station name Baseline Linear Dense MultiDense CNN RNN GRU LSTM Model

Tullowbeg 0.3431 0.3587 0.3197 0.0765 0.0468 0.0309 0.0321 0.0272 LSTM

Athea D/S 0.502 0.6446 0.4722 0.1011 0.1964 0.0508 0.0458 0.0458 GRU

Athea U/S 0.4552 0.4212 0.4306 co0.0629 0.0587 0.0486 0.0494 0.0486 RNN

Ballydahin 0.2313 0.2489 0.255 0.0502 0.0441 0.0212 0.0176 0.0166 LSTM

Ballyduff 0.1788 0.1882 0.1811 0.0192 0.011 0.0092 0.0079 0.007 LSTM

Coolmuckey Br 0.2211 0.2064 0.2003 0.0502 0.0947 0.0392 0.0252 0.0252 GRU

Flesk Bridge 0.3698 0.3856 0.3926 0.0487 0.0272 0.226 0.0188 0.0188 GRU

Glandalane 0.1768 0.1797 0.181 0.0482 0.0214 0.0159 0.0131 0.0131 GRU

Morris’s Bridge 0.1588 0.2261 0.1928 0.0218 0.033 0.0149 0.0293 0.0149 RNN

Riverville 0.2909 0.2908 0.2798 0.0345 0.0291 0.017 0.0148 0.0136 LSTM

Waterworks Weir 0.1427 0.217 0.2318 0.0487 0.0546 0.0404 0.0399 0.0368 LSTM

Test

Aclint 0.0455 0.0463 0.048 0.0098 0.028 0.0085 0.0026 0.0077 GRU

Brewery Park 0.0858 0.0886 0.0878 0.02 0.0116 0.0134 0.0085 0.0077 LSTM

Cappoge Bridge 0.362 0.3932 0.3899 0.0583 0.0593 0.055 0.0476 0.0462 LSTM

Charleville 0.0627 0.0673 0.0639 0.009 0.0431 0.0111 0.0082 0.0125 GRU

Clarebane 0.0282 0.1907 0.0298 0.0763 0.0191 0.013 0.0074 0.0134 GRU

Glaslough 0.2644 0.3107 0.2584 0.0763 0.063 0.026 0.0324 0.0401 RNN

Ladyswell 0.056 0.0646 0.0607 0.0108 0.0178 0.0122 0.0076 0.0141 GRU

Mansfieldstown 0.0623 0.0624 0.0674 0.0119 0.0118 0.0109 0.0073 0.0072 LSTM

Moyles Mill 0.035 0.0357 0.0389 0.0113 0.023 0.0116 0.0091 0.0117 GRU

Port Oriel 1.1144 0.8433 0.843 0.0341 0.0378 0.0439 0.0447 0.0453 Multi Dense

Aghawoney 0.0929 0.0924 0.0917 0.0122 0.0133 0.008 0.0052 0.0054 GRU

Anlore 0.1612 0.1707 0.1724 0.0165 0.0217 0.0076 0.0085 0.0072 LSTM

Ashfield 0.0401 0.0405 0.0411 0.0148 0.0233 0.0067 0.0066 0.0054 LSTM

Ballybofey 0.3602 0.3817 0.3638 0.0537 0.046 0.0431 0.0308 0.0343 GRU

Ballyloskey 0.3324 0.3182 0.3293 0.0803 0.0717 0.0665 0.0561 0.0582 GRU

Bellahillan 0.0357 0.0366 0.0347 0.0092 0.011 0.0028 0.0072 0.0041 RNN

Butlers Bridge 0.088 0.0882 0.0911 0.0201 0.021 0.0111 0.0068 0.0061 LSTM

Foalies Bridge 0.061 0.0609 0.0599 0.0125 0.0251 0.0113 0.0082 0.0085 GRU

Gartan Bridge 0.129 0.1324 0.1247 0.0164 0.0156 0.0128 0.0109 0.104 GRU

Keenagh Deel Bridge 0.366 0.3958 0.3957 0.0339 0.0436 0.024 0.023 0.0193 LSTM

Abington 0.1265 0.1387 0.148 0.0125 0.0175 0.0097 0.0136 0.0089 LSTM

Athlacca 0.083 0.0982 0.0923 0.01 0.0088 0.0084 0.0061 0.0064 GRU

Annacotty 0.1088 0.1298 0.1248 0.0175 0.0155 0.0097 0.0101 0.01 RNN

Ballinamore 0.1306 0.1399 0.1404 0.0324 0.0112 0.0152 0.0066 0.0041 LSTM

Banagher 0.0256 0.0256 0.0283 0.0068 0.0073 0.0038 0.003 0.0025 LSTM

Ballinasloe Town 0.0561 0.0566 0.0577 0.0097 0.0203 0.0089 0.0082 0.0087 GRU

Continued on next page
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Table E.1 Results using MAE (continued from previous page)

Station name Baseline Linear Dense MultiDense CNN RNN GRU LSTM Model

Castleroberts 0.0719 0.0819 0.0736 0.0205 0.0223 0.0073 0.0075 0.0061 LSTM

Clarecastle Barrage 1.1257 0.8776 0.8785 0.0484 0.0593 0.078 0.0737 0.0721 Multi Dense

Clarianna 0.0547 0.0733 0.0616 0.0159 0.0339 0.0127 0.0134 0.0117 LSTM

Gourdeen 0.0628 0.0799 0.0815 0.0175 0.0191 0.0126 0.0111 0.018 GRU

Aasleagh Bridge 0.3489 0.3728 0.3644 0.0691 0.0633 0.0523 0.0514 0.0505 LSTM

Ballina 0.5205 0.5127 0.5055 0.0585 0.0826 0.0962 0.0522 0.0898 GRU

Ballylahan 0.2101 0.2208 0.2088 0.0104 0.0129 0.0092 0.0065 0.0031 LSTM

Clarinbridge 0.0694 0.0698 0.20691 0.0108 0.0297 0.0127 0.0133 0.0094 LSTM

Dangan 0.0363 0.0366 0.0377 0.0127 0.0134 0.0081 0.007 0.0067 LSTM

Kilcolgan 0.1994 0.2215 0.2205 0.0618 0.0477 0.0715 0.0702 0.0667 CNN

Pontoon 0.0363 0.0364 0.0357 0.0093 0.0123 0.0091 0.0072 0.0073 GRU

Riverside Close 0.31 0.5008 0.2858 0.0853 0.1066 0.0468 0.0448 0.0488 GRU

Terryland 0.8598 0.8265 0.8264 0.171 0.1955 0.2095 0.1492 0.1652 GRU

Wolfe Tone Bridge 0.8965 0.8318 0.8108 0.0849 0.0778 0.1157 0.1109 0.1135 CNN

Anglesea Road 1.1624 1.0183 0.9891 0.2054 0.2905 0.1917 0.1389 0.1298 LSTM

Bluebell 0.1529 0.1548 0.1575 0.0498 0.0642 0.0504 0.0483 0.0477 LSTM

Cherry Wood 0.2495 0.3754 0.2178 0.0555 0.0958 0.05 0.0449 0.0576 GRU

Fyanstown 0.1105 0.1278 0.1151 0.0147 0.018 0.0094 0.0058 0.0089 GRU

Giles Quay 1.0846 1.0608 1.1149 0.2652 0.3113 0.2475 0.2519 0.282 RNN

Killyon 0.0474 0.0494 0.048 0.0082 0.0081 0.0104 0.008 0.0063 LSTM

Leixlip 0.3153 0.3113 0.3071 0.1006 0.0927 0.0813 0.0805 0.0792 LSTM

Mornington 0.2728 0.3047 0.2712 0.0789 0.0656 0.0763 0.0872 0.09 CNN

Navan Weir 0.0634 0.0738 0.0625 0.0321 0.0166 0.0215 0.0151 0.0094 LSTM

Trim 0.0473 0.0519 0.0491 0.0055 0.0213 0.0157 0.0034 0.0039 GRU

Adelphi Quay 1.1395 0.867 0.8665 0.0396 0.0418 0.0519 0.052 0.0518 Multi Dense

Brownsbarn 0.0584 0.0717 0.064 0.0117 0.0086 0.0179 0.0052 0.0049 LSTM

Cahir Park 0.0716 0.0808 0.0751 0.0144 0.0159 0.0092 0.0061 0.0054 LSTM

Dundalk Port 0.8418 0.9117 0.8412 0.1602 0.1404 0.1996 0.276 0.2598 CNN

Joyces Lane 0.0899 0.0996 0.1107 0.0098 0.0134 0.0153 0.0136 0.0091 LSTM

Killardry 0.1452 0.1856 0.1658 0.0125 0.0162 0.0074 0.007 0.0081 GRU

Levitstown 0.0454 0.0527 0.0459 0.0248 0.0118 0.0068 0.006 0.0048 LSTM

McMahons Bridge 0.0852 0.0894 0.0919 0.0062 0.0119 0.0096 0.0037 0.0039 GRU

Rathangan 0.0708 0.0701 0.0732 0.0146 0.0067 0.0074 0.0076 0.0076 CNN

Tullowbeg 0.2495 0.3173 0.2383 0.0546 0.035 0.0294 0.0288 0.0232 LSTM

Athea D/S 0.3243 0.4759 0.308 0.0799 0.1525 0.0364 0.0327 0.0378 GRU

Athea U/S 0.2998 0.2801 0.2861 0.0454 0.0411 0.0408 0.0431 0.0433 RNN

Ballydahin 0.1429 0.1776 0.1715 0.0535 0.0279 0.0157 0.0119 0.0095 LSTM

Ballyduff 0.0998 0.1253 0.1018 0.0186 0.0072 0.0074 0.0056 0.005 LSTM

Continued on next page
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Table E.1 Results using MAE (continued from previous page)

Station name Baseline Linear Dense MultiDense CNN RNN GRU LSTM Model

Coolmuckey Br 0.1096 0.1081 0.1147 0.0401 0.0632 0.027 0.019 0.0214 GRU

Flesk Bridge 0.2212 0.2635 0.2581 0.0409 0.0201 0.0161 0.0125 0.0128 GRU

Glandalane 0.1135 0.1275 0.1183 0.0237 0.0143 0.0125 0.008 0.0083 GRU

Morris’s Bridge 0.2191 0.2066 0.2376 0.0344 0.0412 0.0207 0.043 0.0212 RNN

Riverville 0.196 0.2146 0.1977 0.0276 0.0206 0.0148 0.0122 0.0109 LSTM

Waterworks Weir 0.3886 0.422 0.4425 0.0734 0.0608 0.0707 0.0665 0.0638 CNN
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Table E.2: Experiment 2: ML prediction results for Neagh Bann RBD: Results using MAE Validation and Test

Station Model
Sample

Size

Execution

Time

Validation

Loss

Validation

MSE

Validation

MAE
Test Loss

Test

MSE

Test

MAE

Model

Complexity

Learning

Rate

Number

of Layers

Number

of Dense

Layers

Number

of

Features

Skewness Kurtosis

Aclint Baseline 43305 20.75081277 5.67e-05 5.67e-05 0.003824759 8.56e-05 8.56e-05 0.005250855 0 0.001 0 0 1 0.99304277 0.099293655

Aclint Linear 43305 28.44120145 0.000481884 0.000481884 0.018081751 0.000819241 0.000819241 0.021876695 2 0.001 1 1 1 0.99304277 0.099293655

Aclint Dense 43305 36.33077049 7.25e-05 7.25e-05 0.005983175 0.000107227 0.000107227 0.007656832 97 0.001 2 2 1 0.99304277 0.099293655

Aclint Conv 43305 31.88564372 6.64e-05 6.64e-05 0.005119384 9.38e-05 9.38e-05 0.006224512 1153 0.001 3 2 1 0.99304277 0.099293655

Aclint RNN 43305 96.05474448 4.74e-05 4.74e-05 0.0038626 7.46e-05 7.46e-05 0.004712064 4289 0.001 2 1 1 0.99304277 0.099293655

Aclint GRU 43305 190.7939789 2.57e-05 2.57e-05 0.002670779 3.57e-05 3.57e-05 0.003135516 12929 0.001 2 1 1 0.99304277 0.099293655

Aclint LSTM 43305 157.2062078 4.3e-05 4.3e-05 0.003829513 5.69e-05 5.69e-05 0.004185662 16961 0.001 2 1 1 0.99304277 0.099293655

Aclint
LSTM

Attention
43305 175.6318953 0.000385352 0.000385352 0.014306233 0.000563326 0.000563326 0.017681567 16961 0.001 3 1 1 0.99304277 0.099293655

Aclint Autoencoder 43305 35.73760653 0.48196739 0.48196739 0.599996805 0.465708017 0.465707988 0.530306339 97 0.001 2 0 1 0.99304277 0.099293655

Aclint Transformer 43305 317.260154 0.001197908 0.001197908 0.027872432 0.002252203 0.002252203 0.034853574 141825 0.001 2 1 1 0.99304277 0.099293655

Aclint
Variational

Autoencoder
43305 44.05313993 0.481011987 0.481011987 0.594296515 0.464190543 0.464190334 0.518407285 1283 0.001 4 2 1 0.99304277 0.099293655

Burley Baseline 43535 32.6529994 0.000339604 0.000339604 0.005943309 0.001229142 0.001229142 0.012585501 0 0.001 0 0 1 1.253711554 1.085049752

Burley Linear 43535 36.40879488 0.002140671 0.002140671 0.038675021 0.00352739 0.00352739 0.041135874 2 0.001 1 1 1 1.253711554 1.085049752

Burley Dense 43535 41.76133347 0.000341983 0.000341983 0.006157488 0.001230229 0.00123023 0.01295893 97 0.001 2 2 1 1.253711554 1.085049752

Burley Conv 43535 22.93091559 0.000354437 0.000354437 0.005233133 0.001282477 0.001282477 0.010875169 1153 0.001 3 2 1 1.253711554 1.085049752

Burley RNN 43535 72.11123419 0.000191218 0.000191218 0.006976678 0.000558594 0.000558594 0.009383216 4289 0.001 2 1 1 1.253711554 1.085049752

Burley GRU 43535 157.6550214 0.000161397 0.000161397 0.009737604 0.000361502 0.000361502 0.011043481 12929 0.001 2 1 1 1.253711554 1.085049752

Burley LSTM 43535 156.1097853 0.000180618 0.000180618 0.009922829 0.000340997 0.000340997 0.010266489 16961 0.001 2 1 1 1.253711554 1.085049752

Burley
LSTM

Attention
43535 191.1764503 0.000159438 0.000159438 0.006478794 0.000412899 0.000412899 0.008916059 16961 0.001 3 1 1 1.253711554 1.085049752

Burley Autoencoder 43535 36.75624537 0.674104452 0.674104095 0.732620776 0.55982393 0.55982399 0.59515661 97 0.001 2 0 1 1.253711554 1.085049752

Burley Transformer 43535 232.7040086 0.001716456 0.001716456 0.039879858 0.001608527 0.001608527 0.036589049 141825 0.001 2 1 1 1.253711554 1.085049752

Burley
Variational

Autoencoder
43535 46.72229743 0.673325181 0.673325002 0.728271186 0.558377028 0.558377087 0.584118962 1283 0.001 4 2 1 1.253711554 1.085049752

Mansfieldstown Baseline 43539 33.16723752 0.000136089 0.000136089 0.007652212 0.000148214 0.000148215 0.004932125 0 0.001 0 0 1 0.877206669 -0.041430935

Mansfieldstown Linear 43539 24.58413339 0.000136248 0.000136248 0.007678926 0.000148598 0.000148598 0.004974347 2 0.001 1 1 1 0.877206669 -0.041430935

Mansfieldstown Dense 43539 41.54216337 0.000141712 0.000141712 0.007933453 0.000162461 0.000162461 0.00567618 97 0.001 2 2 1 0.877206669 -0.041430935

Mansfieldstown Conv 43539 36.1080296 0.000142833 0.000142833 0.007975983 0.000157311 0.000157311 0.005856662 1153 0.001 3 2 1 0.877206669 -0.041430935

Mansfieldstown RNN 43539 94.08911061 0.000144177 0.000144177 0.008033888 0.000155226 0.000155226 0.005825376 4289 0.001 2 1 1 0.877206669 -0.041430935

Mansfieldstown GRU 43539 177.1435242 0.000125692 0.000125692 0.007055377 0.00015178 0.00015178 0.004627496 12929 0.001 2 1 1 0.877206669 -0.041430935

Mansfieldstown LSTM 43539 168.032867 0.000150744 0.000150744 0.007770944 0.00018155 0.00018155 0.005118376 16961 0.001 2 1 1 0.877206669 -0.041430935

Mansfieldstown
LSTM

Attention
43539 153.8194001 0.000525022 0.000525022 0.015321888 0.000480399 0.000480399 0.011820149 16961 0.001 3 1 1 0.877206669 -0.041430935

Mansfieldstown Autoencoder 43539 47.01303506 0.622719467 0.622719467 0.71318239 0.611083269 0.611083329 0.661874294 97 0.001 2 0 1 0.877206669 -0.041430935

Mansfieldstown Transformer 43539 366.5220332 0.0006926 0.0006926 0.019152004 0.001601163 0.001601163 0.027950013 141825 0.001 2 1 1 0.877206669 -0.041430935

Mansfieldstown
Variational

Autoencoder
43539 47.57119393 0.622224331 0.622224629 0.710105181 0.611867547 0.611867726 0.66011709 1283 0.001 4 2 1 0.877206669 -0.041430935

Brewery Park Baseline 29704 23.71990824 0.000535329 0.000535329 0.007721613 0.000792539 0.000792539 0.011605559 0 0.001 0 0 1 0.886812599 -0.114431344

Brewery Park Linear 29704 24.64914775 0.000535649 0.000535649 0.007951909 0.000791911 0.000791911 0.011771226 2 0.001 1 1 1 0.886812599 -0.114431344

Brewery Park Dense 29704 25.67712665 0.00053815 0.00053815 0.008265068 0.000795977 0.000795977 0.012167377 97 0.001 2 2 1 0.886812599 -0.114431344

Brewery Park Conv 29704 24.17311978 0.000547121 0.000547121 0.00847131 0.000799785 0.000799785 0.013211026 1153 0.001 3 2 1 0.886812599 -0.114431344

Brewery Park RNN 29704 47.74200177 0.00059428 0.00059428 0.012042418 0.000898602 0.000898602 0.013968144 4289 0.001 2 1 1 0.886812599 -0.114431344

Brewery Park GRU 29704 94.27042389 0.000456839 0.000456839 0.007538928 0.000507226 0.000507226 0.010255939 12929 0.001 2 1 1 0.886812599 -0.114431344

Brewery Park LSTM 29704 101.8199942 0.00049508 0.00049508 0.007775528 0.000575712 0.000575712 0.010127707 16961 0.001 2 1 1 0.886812599 -0.114431344

Brewery Park
LSTM

Attention
29704 101.4415431 0.00089807 0.00089807 0.013616472 0.002140802 0.002140802 0.021583838 16961 0.001 3 1 1 0.886812599 -0.114431344

Brewery Park Autoencoder 29704 31.24470353 0.413227916 0.413227856 0.552525997 0.619298398 0.619298518 0.53672421 97 0.001 2 0 1 0.886812599 -0.114431344

Brewery Park Transformer 29704 292.7304616 0.001179589 0.001179589 0.027222352 0.002051272 0.002051272 0.037418462 141825 0.001 2 1 1 0.886812599 -0.114431344

Brewery Park
Variational

Autoencoder
29704 42.07607698 0.429136425 0.429136485 0.561150908 0.726171911 0.726171911 0.576985717 1283 0.001 4 2 1 0.886812599 -0.114431344

Ladyswell Baseline 34695 29.98807502 0.00029265 0.00029265 0.006305945 0.000544692 0.000544692 0.007939289 0 0.001 0 0 1 0.966726542 0.451453799

Ladyswell Linear 34695 25.81446815 0.000292706 0.000292706 0.006302151 0.000545984 0.000545984 0.007957851 2 0.001 1 1 1 0.966726542 0.451453799

Ladyswell Dense 34695 32.45640993 0.000298417 0.000298416 0.006913451 0.000551978 0.000551978 0.008366831 97 0.001 2 2 1 0.966726542 0.451453799

Ladyswell Conv 34695 32.63690281 0.00029899 0.00029899 0.006492844 0.000561829 0.000561829 0.00840381 1153 0.001 3 2 1 0.966726542 0.451453799

Ladyswell RNN 34695 53.75104165 0.000321055 0.000321055 0.008347066 0.000568015 0.000568014 0.009681939 4289 0.001 2 1 1 0.966726542 0.451453799

Ladyswell GRU 34695 102.8241737 0.000303173 0.000303173 0.006661152 0.000546445 0.000546445 0.008030664 12929 0.001 2 1 1 0.966726542 0.451453799
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Table E.2 ML prediction results for Neagh Bann RBD (continued from previous page)
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Ladyswell LSTM 34695 104.2000492 0.000281522 0.000281522 0.006641378 0.000501076 0.000501076 0.007810653 16961 0.001 2 1 1 0.966726542 0.451453799

Ladyswell
LSTM

Attention
34695 147.7337027 0.000552984 0.000552983 0.013262113 0.000930588 0.000930588 0.014456107 16961 0.001 3 1 1 0.966726542 0.451453799

Ladyswell Autoencoder 34695 30.99494863 0.519986391 0.519986451 0.625047743 0.302615255 0.302615196 0.410788208 97 0.001 2 0 1 0.966726542 0.451453799

Ladyswell Transformer 34695 367.0310214 0.002342865 0.002342865 0.042944413 0.001693647 0.001693648 0.03303365 141825 0.001 2 1 1 0.966726542 0.451453799

Ladyswell
Variational

Autoencoder
34695 43.8871727 0.518456101 0.518456042 0.615827203 0.300388008 0.300387979 0.394594371 1283 0.001 4 2 1 0.966726542 0.451453799

Port Oriel Baseline 42027 33.33167386 0.201844081 0.201844186 0.387722999 0.181482613 0.181482553 0.375898123 0 0.001 0 0 1 -0.070104305 -1.167331052

Port Oriel Linear 42027 35.46929479 0.190363511 0.19036369 0.380873203 0.170684338 0.170684382 0.36522916 2 0.001 1 1 1 -0.070104305 -1.167331052

Port Oriel Dense 42027 38.61936021 0.189692006 0.189691946 0.379525393 0.170259759 0.170259729 0.364849299 97 0.001 2 2 1 -0.070104305 -1.167331052

Port Oriel Conv 42027 37.71259856 0.189714506 0.189714506 0.379537553 0.170297429 0.170297489 0.36485374 1153 0.001 3 2 1 -0.070104305 -1.167331052

Port Oriel RNN 42027 89.22507644 0.013431472 0.01343147 0.048657797 0.010190305 0.010190304 0.047067694 4289 0.001 2 1 1 -0.070104305 -1.167331052

Port Oriel GRU 42027 137.9181316 0.013488624 0.013488625 0.04849913 0.010047764 0.010047762 0.046114303 12929 0.001 2 1 1 -0.070104305 -1.167331052

Port Oriel LSTM 42027 154.1841776 0.013564277 0.013564276 0.046969332 0.010026383 0.010026379 0.044245392 16961 0.001 2 1 1 -0.070104305 -1.167331052

Port Oriel
LSTM

Attention
42027 174.8574541 0.00599651 0.005996511 0.03594083 0.002206662 0.002206662 0.028886255 16961 0.001 3 1 1 -0.070104305 -1.167331052

Port Oriel Autoencoder 42027 42.16922808 0.485760391 0.48576051 0.568965852 0.428613514 0.428613693 0.546203375 97 0.001 2 0 1 -0.070104305 -1.167331052

Port Oriel Transformer 42027 393.0877821 0.002016096 0.002016096 0.022409286 0.001185233 0.001185233 0.021574201 141825 0.001 2 1 1 -0.070104305 -1.167331052

Port Oriel
Variational

Autoencoder
42027 35.57532001 0.484951019 0.484951198 0.569397509 0.427671909 0.427671969 0.545612931 1283 0.001 4 2 1 -0.070104305 -1.167331052

Carlingford Baseline 12742 6.265403271 0.257861495 0.257861495 0.452357888 0.247589141 0.247589082 0.446868539 0 0.001 0 0 1 -0.05573451 -1.150803599

Carlingford Linear 12742 16.75966287 0.241920188 0.241920173 0.436284244 0.232862562 0.232862577 0.430553764 2 0.001 1 1 1 -0.05573451 -1.150803599

Carlingford Dense 12742 12.63864565 0.241719171 0.241719112 0.436051458 0.232962817 0.232962832 0.430866867 97 0.001 2 2 1 -0.05573451 -1.150803599

Carlingford Conv 12742 11.38276935 0.241645753 0.241645753 0.43579638 0.232686237 0.232686222 0.430499345 1153 0.001 3 2 1 -0.05573451 -1.150803599

Carlingford RNN 12742 26.83644676 0.020642838 0.020642828 0.077205546 0.022034124 0.022034122 0.085745767 4289 0.001 2 1 1 -0.05573451 -1.150803599

Carlingford GRU 12742 53.71510983 0.014088963 0.014088962 0.060534488 0.014621997 0.014621997 0.065104559 12929 0.001 2 1 1 -0.05573451 -1.150803599

Carlingford LSTM 12742 46.92060184 0.01456914 0.014569135 0.062155254 0.015051666 0.015051663 0.067294054 16961 0.001 2 1 1 -0.05573451 -1.150803599

Carlingford
LSTM

Attention
12742 48.20368266 0.004463012 0.004463012 0.04419817 0.006611352 0.006611353 0.052634839 16961 0.001 3 1 1 -0.05573451 -1.150803599

Carlingford Autoencoder 12742 14.02024293 0.606231809 0.606231809 0.651987731 0.529120624 0.529120564 0.622214496 97 0.001 2 0 1 -0.05573451 -1.150803599

Carlingford Transformer 12742 152.1122644 0.004930564 0.004930565 0.056622274 0.004994173 0.004994174 0.057077918 141825 0.001 2 1 1 -0.05573451 -1.150803599

Carlingford
Variational

Autoencoder
12742 19.4215467 0.600597918 0.600597918 0.649502993 0.524113595 0.524113595 0.620079994 1283 0.001 4 2 1 -0.05573451 -1.150803599

Clarebane Baseline 43056 21.78466392 8.29e-05 8.29e-05 0.00309814 4.86e-05 4.86e-05 0.003305455 0 0.001 0 0 1 1.058022868 29.3213842

Clarebane Linear 43056 46.60821271 0.004963579 0.00496358 0.058773391 0.007473165 0.007473165 0.073304616 2 0.001 1 1 1 1.058022868 29.3213842

Clarebane Dense 43056 36.92939758 0.000543619 0.000543619 0.015274812 0.000538173 0.000538173 0.017133802 97 0.001 2 2 1 1.058022868 29.3213842

Clarebane Conv 43056 48.34004378 0.000176891 0.000176891 0.007869808 8.95e-05 8.95e-05 0.006911696 1153 0.001 3 2 1 1.058022868 29.3213842

Clarebane RNN 43056 70.20056558 0.001564424 0.001564423 0.031662706 0.001889774 0.001889774 0.033835221 4289 0.001 2 1 1 1.058022868 29.3213842

Clarebane GRU 43056 119.5320303 0.000510621 0.000510621 0.014254931 0.000698378 0.000698378 0.017772449 12929 0.001 2 1 1 1.058022868 29.3213842

Clarebane LSTM 43056 178.5083411 0.000459681 0.000459681 0.012635123 0.000496562 0.000496562 0.014837924 16961 0.001 2 1 1 1.058022868 29.3213842

Clarebane
LSTM

Attention
43056 84.1429646 0.00174249 0.00174249 0.032703143 0.001973307 0.001973307 0.035130404 16961 0.001 3 1 1 1.058022868 29.3213842

Clarebane Autoencoder 43056 42.4030757 0.135049894 0.135049954 0.298473954 0.149043292 0.149043247 0.320153356 97 0.001 2 0 1 1.058022868 29.3213842

Clarebane Transformer 43056 385.1858428 0.020875555 0.020875547 0.137075469 0.022443362 0.02244336 0.140797302 141825 0.001 2 1 1 1.058022868 29.3213842

Clarebane
Variational

Autoencoder
43056 44.64393306 0.133395299 0.13339527 0.287773937 0.147015661 0.147015646 0.309861302 1283 0.001 4 2 1 1.058022868 29.3213842

Glaslough Baseline 43587 29.57352066 0.008692763 0.00869276 0.028891882 0.025929488 0.025929485 0.043238092 0 0.001 0 0 1 3.188205448 14.53446235

Glaslough Linear 43587 38.58968091 0.011314793 0.011314787 0.046871245 0.028917683 0.028917689 0.061369814 2 0.001 1 1 1 3.188205448 14.53446235

Glaslough Dense 43587 34.47345662 0.008750587 0.008750588 0.028557425 0.025827929 0.025827926 0.043736015 97 0.001 2 2 1 3.188205448 14.53446235

Glaslough Conv 43587 35.17149425 0.009017178 0.009017176 0.029073583 0.026087768 0.026087767 0.044603679 1153 0.001 3 2 1 3.188205448 14.53446235

Glaslough RNN 43587 98.53522635 0.004800214 0.004800214 0.022851095 0.013076267 0.013076266 0.030725515 4289 0.001 2 1 1 3.188205448 14.53446235

Glaslough GRU 43587 157.6609581 0.003717867 0.003717867 0.017945386 0.011420581 0.011420583 0.025574176 12929 0.001 2 1 1 3.188205448 14.53446235

Glaslough LSTM 43587 172.9839382 0.003917307 0.003917309 0.02083662 0.011319174 0.011319175 0.027403736 16961 0.001 2 1 1 3.188205448 14.53446235

Glaslough
LSTM

Attention
43587 146.3242633 0.000981499 0.000981499 0.014354339 0.002746611 0.002746612 0.017998224 16961 0.001 3 1 1 3.188205448 14.53446235

Glaslough Autoencoder 43587 44.7206881 0.661308229 0.66130805 0.53752923 0.9584077 0.9584077 0.655721366 97 0.001 2 0 1 3.188205448 14.53446235

Glaslough Transformer 43587 398.1736891 0.003301739 0.003301739 0.042772569 0.005876924 0.005876923 0.051206287 141825 0.001 2 1 1 3.188205448 14.53446235

Glaslough
Variational

Autoencoder
43587 48.60704851 0.660084307 0.660084307 0.53114742 0.957161248 0.957161486 0.64930743 1283 0.001 4 2 1 3.188205448 14.53446235
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Charleville Baseline 43478 32.81112838 0.00030297 0.000302969 0.00809729 0.000540026 0.000540026 0.012119969 0 0.001 0 0 1 0.758117161 0.179997231

Charleville Linear 43478 31.39916253 0.000303027 0.000303027 0.008108167 0.000541581 0.000541581 0.012127589 2 0.001 1 1 1 0.758117161 0.179997231

Charleville Dense 43478 39.72204757 0.000304288 0.000304288 0.008245775 0.000543228 0.000543228 0.012181607 97 0.001 2 2 1 0.758117161 0.179997231

Charleville Conv 43478 25.91568017 0.000316855 0.000316855 0.008525968 0.000570876 0.000570876 0.012403313 1153 0.001 3 2 1 0.758117161 0.179997231

Charleville RNN 43478 85.59224939 0.000375349 0.000375349 0.010957185 0.00053976 0.000539759 0.014224254 4289 0.001 2 1 1 0.758117161 0.179997231

Charleville GRU 43478 190.2062664 0.000291492 0.000291492 0.009736422 0.000451415 0.000451416 0.013100673 12929 0.001 2 1 1 0.758117161 0.179997231

Charleville LSTM 43478 174.0981503 0.00027474 0.00027474 0.008531641 0.00041757 0.00041757 0.011542085 16961 0.001 2 1 1 0.758117161 0.179997231

Charleville
LSTM

Attention
43478 191.8985741 0.000200566 0.000200566 0.007262905 0.00036181 0.00036181 0.009890033 16961 0.001 3 1 1 0.758117161 0.179997231

Charleville Autoencoder 43478 53.46545243 0.700843394 0.700843155 0.68449831 0.661876738 0.661876619 0.634236991 97 0.001 2 0 1 0.758117161 0.179997231

Charleville Transformer 43478 312.2117908 0.002759612 0.002759613 0.045547303 0.003607731 0.003607731 0.051549044 141825 0.001 2 1 1 0.758117161 0.179997231

Charleville
Variational

Autoencoder
43478 44.59109354 0.699507833 0.699507773 0.675406575 0.6603508 0.660350621 0.623724639 1283 0.001 4 2 1 0.758117161 0.179997231

Dundalk Port Baseline 40993 20.38635063 0.226469979 0.226470008 0.33771652 0.261600286 0.261600286 0.371932656 0 0.001 0 0 1 0.564556838 -1.068826998

Dundalk Port Linear 40993 41.38325214 0.209302619 0.209302574 0.348151028 0.243017986 0.243017972 0.384632707 2 0.001 1 1 1 0.564556838 -1.068826998

Dundalk Port Dense 40993 35.8876524 0.208666965 0.208666906 0.35741809 0.242545798 0.242545739 0.396284878 97 0.001 2 2 1 0.564556838 -1.068826998

Dundalk Port Conv 40993 26.84384203 0.209893808 0.209893808 0.358898789 0.244568095 0.24456811 0.407453984 1153 0.001 3 2 1 0.564556838 -1.068826998

Dundalk Port RNN 40993 55.29249048 0.055218995 0.055219017 0.159706548 0.037323441 0.037323441 0.130263925 4289 0.001 2 1 1 0.564556838 -1.068826998

Dundalk Port GRU 40993 170.9850457 0.056748759 0.05674877 0.166618749 0.037464593 0.037464596 0.132148057 12929 0.001 2 1 1 0.564556838 -1.068826998

Dundalk Port LSTM 40993 73.00692177 0.058582112 0.058582101 0.172089815 0.04121197 0.041211966 0.142196879 16961 0.001 2 1 1 0.564556838 -1.068826998

Dundalk Port
LSTM

Attention
40993 175.6343107 0.026565118 0.02656514 0.105844259 0.0129521 0.012952098 0.083412424 16961 0.001 3 1 1 0.564556838 -1.068826998

Dundalk Port Autoencoder 40993 39.96802664 0.346713245 0.346713185 0.525276542 0.416440994 0.416441083 0.588047624 97 0.001 2 0 1 0.564556838 -1.068826998

Dundalk Port Transformer 40993 369.2215626 0.005847584 0.005847582 0.052568417 0.003999951 0.003999951 0.046903502 141825 0.001 2 1 1 0.564556838 -1.068826998

Dundalk Port
Variational

Autoencoder
40993 49.52127814 0.344134241 0.344134063 0.523672879 0.41413945 0.41413936 0.586849988 1283 0.001 4 2 1 0.564556838 -1.068826998

Cappoge Bridge Baseline 42492 35.83580923 0.01158676 0.011586758 0.040690478 0.031263843 0.031263847 0.055613771 0 0.001 0 0 1 2.364957909 11.27380204

Cappoge Bridge Linear 42492 43.15126848 0.011569772 0.011569773 0.040690016 0.031095231 0.031095222 0.056517135 2 0.001 1 1 1 2.364957909 11.27380204

Cappoge Bridge Dense 42492 29.58593273 0.011941154 0.01194115 0.047827397 0.031245634 0.03124563 0.062783331 97 0.001 2 2 1 2.364957909 11.27380204

Cappoge Bridge Conv 42492 30.32320523 0.012373968 0.012373961 0.048562579 0.031440046 0.031440035 0.063941136 1153 0.001 3 2 1 2.364957909 11.27380204

Cappoge Bridge RNN 42492 90.38880396 0.008530121 0.008530119 0.036177181 0.018189602 0.018189605 0.043098927 4289 0.001 2 1 1 2.364957909 11.27380204

Cappoge Bridge GRU 42492 177.3822665 0.008094205 0.008094206 0.033904418 0.016859716 0.016859716 0.037030779 12929 0.001 2 1 1 2.364957909 11.27380204

Cappoge Bridge LSTM 42492 161.7959967 0.008953923 0.008953917 0.039167073 0.017770439 0.017770439 0.042156123 16961 0.001 2 1 1 2.364957909 11.27380204

Cappoge Bridge
LSTM

Attention
42492 166.3688288 0.002439416 0.002439416 0.020571822 0.004996877 0.004996876 0.024450215 16961 0.001 3 1 1 2.364957909 11.27380204

Cappoge Bridge Autoencoder 42492 47.90084505 0.748915195 0.748915255 0.533188999 0.890533328 0.89053297 0.60853374 97 0.001 2 0 1 2.364957909 11.27380204

Cappoge Bridge Transformer 42492 383.5963466 0.001962517 0.001962517 0.022965768 0.004257088 0.004257088 0.024875665 141825 0.001 2 1 1 2.364957909 11.27380204

Cappoge Bridge
Variational

Autoencoder
42492 48.71194577 0.747071087 0.747071564 0.523630381 0.888841569 0.888841271 0.599836588 1283 0.001 4 2 1 2.364957909 11.27380204

Tallanstown Baseline 43390 28.64182401 0.000142433 0.000142433 0.006918443 0.00058362 0.00058362 0.009424239 0 0.001 0 0 1 0.534508517 -0.430835051

Tallanstown Linear 43390 28.83851147 0.000142606 0.000142606 0.007101301 0.000583402 0.000583402 0.009586784 2 0.001 1 1 1 0.534508517 -0.430835051

Tallanstown Dense 43390 37.47582531 0.000142801 0.000142801 0.007015191 0.000665551 0.000665551 0.011159034 97 0.001 2 2 1 0.534508517 -0.430835051

Tallanstown Conv 43390 41.07093549 0.000149592 0.000149592 0.007736923 0.001114933 0.001114933 0.014338262 1153 0.001 3 2 1 0.534508517 -0.430835051

Tallanstown RNN 43390 92.00792265 0.000182823 0.000182823 0.008785757 0.000642022 0.000642022 0.011758314 4289 0.001 2 1 1 0.534508517 -0.430835051

Tallanstown GRU 43390 190.9363039 0.000150367 0.000150367 0.007611895 0.000623519 0.000623519 0.010808625 12929 0.001 2 1 1 0.534508517 -0.430835051

Tallanstown LSTM 43390 173.5929058 0.000141061 0.000141061 0.007321983 0.000632373 0.000632373 0.009942244 16961 0.001 2 1 1 0.534508517 -0.430835051

Tallanstown
LSTM

Attention
43390 145.6702821 0.000291096 0.000291096 0.009987688 0.001039532 0.001039532 0.014274808 16961 0.001 3 1 1 0.534508517 -0.430835051

Tallanstown Autoencoder 43390 42.71107721 0.64925915 0.64925921 0.661846399 0.833024681 0.8330248 0.722671688 97 0.001 2 0 1 0.534508517 -0.430835051

Tallanstown Transformer 43390 411.0905769 0.000206296 0.000206296 0.011476566 0.000678323 0.000678323 0.014748177 141825 0.001 2 1 1 0.534508517 -0.430835051

Tallanstown
Variational

Autoencoder
43390 47.98490381 0.647952795 0.647952676 0.652596593 0.831801713 0.831801832 0.71516794 1283 0.001 4 2 1 0.534508517 -0.430835051

Moyles Mill Baseline 43585 35.34412932 0.000381091 0.000381091 0.009328621 0.000568795 0.000568795 0.013003197 0 0.001 0 0 1 0.651522724 -0.420442671

Moyles Mill Linear 43585 29.38905764 0.000381163 0.000381162 0.009441935 0.000568598 0.000568597 0.013102532 2 0.001 1 1 1 0.651522724 -0.420442671

Moyles Mill Dense 43585 49.09904075 0.000382723 0.000382723 0.009557544 0.000571226 0.000571225 0.013194066 97 0.001 2 2 1 0.651522724 -0.420442671

Moyles Mill Conv 43585 26.10391951 0.000382451 0.000382451 0.009577347 0.000569873 0.000569873 0.013175994 1153 0.001 3 2 1 0.651522724 -0.420442671

Moyles Mill RNN 43585 96.66727304 0.000395205 0.000395206 0.010279368 0.00056025 0.00056025 0.013708481 4289 0.001 2 1 1 0.651522724 -0.420442671

Moyles Mill GRU 43585 158.6116581 0.000365342 0.000365342 0.009641827 0.000545456 0.000545456 0.013126716 12929 0.001 2 1 1 0.651522724 -0.420442671

Moyles Mill LSTM 43585 193.4575806 0.000372983 0.000372983 0.009660706 0.000549075 0.000549075 0.01310628 16961 0.001 2 1 1 0.651522724 -0.420442671
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Table E.2 ML prediction results for Neagh Bann RBD (continued from previous page)
Station Model

Sample

Size

Execution

Time

Validation

Loss

Validation

MSE

Validation

MAE
Test Loss

Test

MSE

Test

MAE

Model

Complexity

Learning

Rate

Number

of Layers

Number

of Dense

Layers

Number

of

Features

Skewness Kurtosis

Moyles Mill
LSTM

Attention
43585 180.7173495 0.0005309 0.0005309 0.011202248 0.000841682 0.000841682 0.014763918 16961 0.001 3 1 1 0.651522724 -0.420442671

Moyles Mill Autoencoder 43585 36.84814906 0.468096703 0.468096435 0.565416634 0.355982274 0.355982035 0.496932566 97 0.001 2 0 1 0.651522724 -0.420442671

Moyles Mill Transformer 43585 409.7187788 0.001421257 0.001421258 0.030618394 0.001280538 0.001280537 0.02910566 141825 0.001 2 1 1 0.651522724 -0.420442671

Moyles Mill
Variational

Autoencoder
43585 48.62589383 0.475770235 0.475770056 0.566487789 0.372253209 0.372253209 0.504831254 1283 0.001 4 2 1 0.651522724 -0.420442671
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Appendix F

Detailed Classification Results for

the Meta-Learners

Table F.1: Test Results : predicted vs true label

Resampling Technique Classifier True Labels Predicted Labels

Original Random Forest RNN RNN

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer
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A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM LSTM

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest Baseline Baseline

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Random Forest Baseline Baseline

Original Random Forest Baseline Baseline

Original Random Forest Baseline Baseline

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM LSTM

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Baseline Baseline

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM LSTM

Original Random Forest RNN RNN

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest GRU GRU

Original Random Forest LSTM LSTM

Original Random Forest GRU GRU

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest GRU GRU

Original Random Forest LSTM LSTM

Original Random Forest GRU GRU

Original Random Forest LSTM Attention LSTM Attention

Original Random Forest Baseline Baseline

Original Random Forest Transformer Transformer

Original Random Forest GRU GRU

Original Random Forest Transformer Transformer

Original Random Forest LSTM Attention LSTM Attention

Original Logistic Regression RNN GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer GRU
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression LSTM Attention GRU
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression LSTM GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention GRU
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression LSTM LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression Transformer GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM LSTM Attention

Original Logistic Regression RNN GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression LSTM Attention LSTM Attention
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression GRU GRU

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression Baseline LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression LSTM LSTM Attention

Original Logistic Regression GRU Baseline

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer GRU

Original Logistic Regression LSTM Attention LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM LSTM Attention

Original Logistic Regression GRU GRU

Original Logistic Regression LSTM Attention GRU

Original Logistic Regression Baseline GRU

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression GRU LSTM Attention

Original Logistic Regression Transformer LSTM Attention

Original Logistic Regression LSTM Attention LSTM Attention

Original Naive Bayes RNN RNN

Original Naive Bayes LSTM Attention LSTM
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Naive Bayes Baseline LSTM Attention

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes GRU LSTM

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes GRU LSTM

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Baseline Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes GRU LSTM

Original Naive Bayes GRU LSTM Attention

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes GRU Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Baseline
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM LSTM

Original Naive Bayes GRU LSTM

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes LSTM Attention LSTM Attention

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU LSTM Attention

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes GRU LSTM Attention

Original Naive Bayes Baseline Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Baseline LSTM Attention

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes Baseline Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes LSTM LSTM

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU LSTM Attention

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes GRU LSTM Attention

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention LSTM Attention
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Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM LSTM

Original Naive Bayes RNN RNN

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes LSTM Attention Transformer

Original Naive Bayes GRU LSTM

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Transformer

Original Naive Bayes GRU Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes GRU LSTM

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes GRU LSTM

Original Naive Bayes LSTM LSTM

Original Naive Bayes GRU GRU

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes Baseline Baseline

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention LSTM

Original Naive Bayes GRU Baseline
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Original Naive Bayes LSTM LSTM

Original Naive Bayes GRU Transformer

Original Naive Bayes LSTM Attention Baseline

Original Naive Bayes Baseline Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes GRU Transformer

Original Naive Bayes Transformer Transformer

Original Naive Bayes LSTM Attention LSTM

Original K-Nearest Neighbors RNN RNN

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU
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Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM LSTM

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention
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Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Baseline

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM LSTM

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Transformer Transformer
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Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM LSTM

Original K-Nearest Neighbors RNN RNN

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors GRU LSTM Attention

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer
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Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM LSTM

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM LSTM

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original K-Nearest Neighbors Baseline Baseline

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors GRU GRU

Original K-Nearest Neighbors Transformer Transformer

Original K-Nearest Neighbors LSTM Attention LSTM Attention

Original Support Vector Machine RNN GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU
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Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine LSTM Attention GRU
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Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

249



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention LSTM Attention

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM GRU

Original Support Vector Machine RNN GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Transformer GRU
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Original Support Vector Machine Baseline GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine LSTM Attention GRU

Original Support Vector Machine Baseline GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine GRU GRU

Original Support Vector Machine Transformer GRU

Original Support Vector Machine LSTM Attention GRU

Original Gradient Boosting RNN RNN

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU
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Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU
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Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM LSTM

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer
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Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM LSTM

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM LSTM

Original Gradient Boosting RNN RNN

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention
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Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM LSTM

Original Gradient Boosting GRU GRU

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM LSTM

Original Gradient Boosting GRU GRU

Original Gradient Boosting LSTM Attention LSTM Attention

Original Gradient Boosting Baseline Baseline

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting GRU GRU

Original Gradient Boosting Transformer Transformer

Original Gradient Boosting LSTM Attention LSTM Attention

Original MLP RNN RNN
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Original MLP LSTM Attention LSTM Attention

Original MLP Baseline GRU

Original MLP Transformer Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Baseline

Original MLP Transformer RNN

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Transformer RNN

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Transformer LSTM Attention

Original MLP GRU GRU

Original MLP Baseline LSTM Attention

Original MLP Transformer GRU

Original MLP GRU Transformer

Original MLP GRU GRU

Original MLP GRU GRU

Original MLP Transformer RNN

Original MLP GRU Transformer

Original MLP GRU LSTM Attention

Original MLP Transformer GRU

Original MLP GRU RNN

Original MLP Transformer Transformer

Original MLP GRU LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Transformer Transformer

Original MLP GRU Transformer

Original MLP Transformer RNN

Original MLP LSTM Attention LSTM Attention

Original MLP GRU GRU

Original MLP Baseline Transformer

Original MLP Transformer Transformer

Original MLP Transformer RNN
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Resampling Technique Classifier True Labels Predicted Labels

Original MLP LSTM Attention LSTM Attention

Original MLP GRU RNN

Original MLP Transformer LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Transformer

Original MLP Transformer LSTM Attention

Original MLP Baseline RNN

Original MLP Transformer LSTM Attention

Original MLP GRU Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Transformer RNN

Original MLP Transformer RNN

Original MLP Baseline Transformer

Original MLP Transformer Transformer

Original MLP GRU LSTM Attention

Original MLP Baseline GRU

Original MLP LSTM Attention Transformer

Original MLP GRU LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU Transformer

Original MLP Transformer Transformer

Original MLP LSTM LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Baseline GRU

Original MLP Transformer GRU

Original MLP GRU LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer RNN

Original MLP GRU Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Transformer

Original MLP Baseline Transformer

Original MLP Transformer Transformer

Original MLP GRU LSTM Attention

Original MLP Transformer LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original MLP Transformer RNN

Original MLP GRU Transformer

Original MLP Transformer Transformer

Original MLP GRU LSTM Attention

Original MLP GRU Transformer

Original MLP Transformer Transformer

Original MLP Baseline Baseline

Original MLP GRU Transformer

Original MLP Transformer Transformer

Original MLP Transformer Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Transformer

Original MLP Transformer RNN

Original MLP LSTM Attention Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP Baseline LSTM Attention

Original MLP Baseline Baseline

Original MLP Baseline GRU

Original MLP Transformer Transformer

Original MLP GRU RNN

Original MLP Baseline GRU

Original MLP Baseline LSTM Attention

Original MLP Baseline LSTM Attention

Original MLP LSTM Attention RNN

Original MLP LSTM LSTM Attention

Original MLP Transformer RNN

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Transformer

Original MLP Transformer Transformer

Original MLP GRU LSTM Attention

Original MLP Transformer Transformer

Original MLP Baseline GRU

Original MLP Transformer Transformer

Original MLP Baseline LSTM Attention

Original MLP Baseline LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU RNN
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Resampling Technique Classifier True Labels Predicted Labels

Original MLP LSTM Attention GRU

Original MLP GRU GRU

Original MLP Transformer Transformer

Original MLP LSTM LSTM Attention

Original MLP RNN LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU RNN

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP GRU RNN

Original MLP Transformer RNN

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer RNN

Original MLP GRU RNN

Original MLP LSTM Attention LSTM Attention

Original MLP Transformer Transformer

Original MLP Baseline Baseline

Original MLP GRU LSTM Attention

Original MLP Transformer Transformer

Original MLP GRU Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP GRU LSTM Attention

Original MLP LSTM Attention LSTM Attention

Original MLP Baseline LSTM Attention

Original MLP Transformer RNN

Original MLP GRU RNN

Original MLP GRU LSTM Attention

Original MLP LSTM LSTM Attention

Original MLP GRU GRU

Original MLP Baseline LSTM Attention

Original MLP Transformer Transformer

Original MLP Baseline LSTM Attention

Original MLP Transformer LSTM Attention

Original MLP LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original MLP GRU LSTM Attention

Original MLP LSTM LSTM Attention

Original MLP GRU Transformer

Original MLP LSTM Attention LSTM Attention

Original MLP Baseline LSTM Attention

Original MLP Transformer GRU

Original MLP GRU Transformer

Original MLP Transformer RNN

Original MLP LSTM Attention Transformer

Original XGBoost RNN RNN

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM LSTM

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Baseline Baseline

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Baseline Baseline

Original XGBoost Baseline Baseline

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM LSTM

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Baseline Baseline

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM LSTM

Original XGBoost RNN RNN

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Baseline Baseline
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Resampling Technique Classifier True Labels Predicted Labels

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost GRU GRU

Original XGBoost LSTM LSTM

Original XGBoost GRU GRU

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost GRU GRU

Original XGBoost LSTM LSTM

Original XGBoost GRU GRU

Original XGBoost LSTM Attention LSTM Attention

Original XGBoost Baseline Baseline

Original XGBoost Transformer Transformer

Original XGBoost GRU GRU

Original XGBoost Transformer Transformer

Original XGBoost LSTM Attention LSTM Attention

Original LightGBM RNN RNN

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline
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Resampling Technique Classifier True Labels Predicted Labels

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM LSTM

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Baseline Baseline

Original LightGBM Baseline Baseline
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Resampling Technique Classifier True Labels Predicted Labels

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Baseline Baseline

Original LightGBM Baseline Baseline

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM LSTM

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Baseline Baseline

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM LSTM

Original LightGBM RNN RNN

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM GRU GRU

Original LightGBM LSTM LSTM

Original LightGBM GRU GRU

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM GRU GRU

Original LightGBM LSTM LSTM

Original LightGBM GRU GRU

Original LightGBM LSTM Attention LSTM Attention

Original LightGBM Baseline Baseline

Original LightGBM Transformer Transformer

Original LightGBM GRU GRU

Original LightGBM Transformer Transformer

Original LightGBM LSTM Attention LSTM Attention

Original CatBoost RNN RNN

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

269



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM LSTM

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Baseline Baseline

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Baseline Baseline

Original CatBoost Baseline Baseline

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM LSTM

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Baseline Baseline

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM LSTM

Original CatBoost RNN RNN

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost GRU GRU

Original CatBoost LSTM LSTM

Original CatBoost GRU GRU

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost GRU GRU

Original CatBoost LSTM LSTM

Original CatBoost GRU GRU

Original CatBoost LSTM Attention LSTM Attention

Original CatBoost Baseline Baseline

Original CatBoost Transformer Transformer

Original CatBoost GRU GRU

Original CatBoost Transformer Transformer

Original CatBoost LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original Isolation Forest RNN Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original Isolation Forest Transformer Outlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original Isolation Forest Transformer Outlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Outlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Outlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Inlier

Original Isolation Forest RNN Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Transformer Outlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest Baseline Outlier

Original Isolation Forest Transformer Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest LSTM Attention Inlier

Original Isolation Forest Baseline Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest GRU Inlier

Original Isolation Forest Transformer Inlier

Original Isolation Forest LSTM Attention Inlier

Original OneClassSVM RNN Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Outlier
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Resampling Technique Classifier True Labels Predicted Labels

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM LSTM Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Outlier
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Resampling Technique Classifier True Labels Predicted Labels

Original OneClassSVM Transformer Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Inlier

Original OneClassSVM RNN Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM LSTM Attention Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Attention Inlier
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Resampling Technique Classifier True Labels Predicted Labels

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM GRU Outlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM GRU Inlier

Original OneClassSVM LSTM Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM LSTM Attention Inlier

Original OneClassSVM Baseline Inlier

Original OneClassSVM Transformer Inlier

Original OneClassSVM GRU Outlier

Original OneClassSVM Transformer Outlier

Original OneClassSVM LSTM Attention Outlier

Original Dummy Classifier RNN GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

282



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Original Dummy Classifier Baseline GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Baseline GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM GRU

Original Dummy Classifier RNN GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier LSTM Attention GRU

Original Dummy Classifier Baseline GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier GRU GRU

Original Dummy Classifier Transformer GRU

Original Dummy Classifier LSTM Attention GRU

Original LDA RNN RNN

Original LDA LSTM Attention LSTM Attention

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA GRU Baseline

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA GRU Baseline

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention GRU

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA LSTM Attention GRU

Original LDA GRU Baseline

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA Transformer Transformer

Original LDA LSTM Attention GRU

Original LDA GRU LSTM Attention

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA Transformer Transformer

Original LDA Baseline Baseline
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Resampling Technique Classifier True Labels Predicted Labels

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention GRU

Original LDA GRU LSTM Attention

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA Transformer LSTM Attention

Original LDA Baseline GRU

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Baseline GRU

Original LDA LSTM Attention LSTM Attention

Original LDA GRU Transformer

Original LDA GRU LSTM Attention

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA LSTM LSTM

Original LDA GRU GRU

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA Baseline GRU

Original LDA Transformer GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Transformer LSTM Attention

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA Transformer GRU

Original LDA Baseline GRU

Original LDA GRU GRU
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Original LDA Transformer Transformer

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA Transformer LSTM Attention

Original LDA LSTM Attention LSTM Attention

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA Baseline Baseline

Original LDA Baseline GRU

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Baseline Baseline

Original LDA Baseline Baseline

Original LDA Baseline Baseline

Original LDA LSTM Attention LSTM Attention

Original LDA LSTM LSTM

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer GRU

Original LDA Transformer GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA Baseline Baseline

Original LDA Baseline GRU

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA LSTM GRU

Original LDA RNN RNN

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA GRU LSTM Attention
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Original LDA GRU GRU

Original LDA LSTM Attention GRU

Original LDA LSTM Attention GRU

Original LDA LSTM Attention LSTM Attention

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA Transformer Transformer

Original LDA Baseline GRU

Original LDA GRU GRU

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA LSTM Attention GRU

Original LDA LSTM Attention GRU

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA Baseline Baseline

Original LDA Transformer LSTM Attention

Original LDA GRU GRU

Original LDA GRU GRU

Original LDA LSTM LSTM

Original LDA GRU GRU

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA LSTM Attention GRU

Original LDA GRU GRU

Original LDA LSTM LSTM

Original LDA GRU GRU

Original LDA LSTM Attention LSTM Attention

Original LDA Baseline Baseline

Original LDA Transformer Transformer

Original LDA GRU GRU

Original LDA Transformer LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Original LDA LSTM Attention LSTM Attention

Random Oversampling Random Forest RNN RNN

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline
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Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM LSTM

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer
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Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM LSTM

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest LSTM Attention LSTM Attention
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Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM LSTM

Random Oversampling Random Forest RNN RNN

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM LSTM

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest Baseline Baseline
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Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM LSTM

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Random Forest Baseline Baseline

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest GRU GRU

Random Oversampling Random Forest Transformer Transformer

Random Oversampling Random Forest LSTM Attention LSTM Attention

Random Oversampling Logistic Regression RNN LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Baseline Baseline

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression Transformer Baseline

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM
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Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression LSTM Attention Transformer

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Baseline GRU
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Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM Attention Transformer

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Baseline Baseline

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM LSTM

Random Oversampling Logistic Regression Transformer LSTM
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Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline Baseline

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression LSTM Attention LSTM Attention

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM LSTM

Random Oversampling Logistic Regression RNN LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU LSTM
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Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM LSTM

Random Oversampling Logistic Regression GRU Baseline

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression Baseline GRU

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression LSTM Attention GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM LSTM

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Logistic Regression Baseline LSTM

Random Oversampling Logistic Regression Transformer GRU

Random Oversampling Logistic Regression GRU LSTM

Random Oversampling Logistic Regression Transformer LSTM

Random Oversampling Logistic Regression LSTM Attention LSTM

Random Oversampling Naive Bayes RNN RNN

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes Baseline LSTM Attention

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes GRU Baseline

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Baseline LSTM

Random Oversampling Naive Bayes Transformer Transformer
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Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes GRU LSTM Attention

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer
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Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Baseline

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM LSTM

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM Attention

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU LSTM Attention

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes GRU LSTM Attention

Random Oversampling Naive Bayes Baseline Transformer
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Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Baseline LSTM Attention

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU LSTM Attention

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline LSTM

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes GRU LSTM Attention

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM Attention

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM LSTM

Random Oversampling Naive Bayes RNN RNN

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM Attention Transformer

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes Transformer Transformer
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Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes GRU Baseline

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes GRU LSTM

Random Oversampling Naive Bayes LSTM LSTM

Random Oversampling Naive Bayes GRU GRU

Random Oversampling Naive Bayes Baseline LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes Baseline LSTM

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes GRU Baseline

Random Oversampling Naive Bayes LSTM LSTM

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes LSTM Attention LSTM

Random Oversampling Naive Bayes Baseline Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes GRU Transformer

Random Oversampling Naive Bayes Transformer Transformer

Random Oversampling Naive Bayes LSTM Attention Baseline

Random Oversampling K-Nearest Neighbors RNN RNN

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer LSTM Attention
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Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer
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Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM LSTM

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer LSTM

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline
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Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM LSTM

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM LSTM

Random Oversampling K-Nearest Neighbors RNN RNN

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU
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Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors GRU LSTM Attention

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM LSTM

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM LSTM

Random Oversampling K-Nearest Neighbors GRU GRU

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling K-Nearest Neighbors Baseline Baseline

Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors GRU GRU
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Random Oversampling K-Nearest Neighbors Transformer Transformer

Random Oversampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Oversampling Support Vector Machine RNN RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine Baseline Baseline

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine GRU Transformer
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Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM LSTM

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline Transformer
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Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Baseline Baseline

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine LSTM RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Baseline Transformer
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Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention LSTM Attention

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM RNN

Random Oversampling Support Vector Machine RNN RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Support Vector Machine GRU LSTM

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine Baseline Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention LSTM

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM RNN

Random Oversampling Support Vector Machine GRU Baseline

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer Transformer
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Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine GRU RNN

Random Oversampling Support Vector Machine LSTM RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine LSTM Attention RNN

Random Oversampling Support Vector Machine Baseline RNN

Random Oversampling Support Vector Machine Transformer RNN

Random Oversampling Support Vector Machine GRU Transformer

Random Oversampling Support Vector Machine Transformer Transformer

Random Oversampling Support Vector Machine LSTM Attention Transformer

Random Oversampling Gradient Boosting RNN RNN

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer
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Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM LSTM

Random Oversampling Gradient Boosting GRU GRU
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Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM LSTM

313



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM LSTM

Random Oversampling Gradient Boosting RNN RNN

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention
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Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM LSTM

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM LSTM

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling Gradient Boosting Baseline Baseline

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting GRU GRU

Random Oversampling Gradient Boosting Transformer Transformer

Random Oversampling Gradient Boosting LSTM Attention LSTM Attention

Random Oversampling MLP RNN LSTM

Random Oversampling MLP LSTM Attention LSTM

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP GRU LSTM

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP Transformer LSTM Attention

Random Oversampling MLP Transformer GRU

Random Oversampling MLP LSTM Attention LSTM

Random Oversampling MLP GRU LSTM

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention Baseline

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Baseline GRU
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Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP LSTM Attention Baseline

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline Transformer
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Random Oversampling MLP Transformer Baseline

Random Oversampling MLP GRU GRU

Random Oversampling MLP Baseline GRU

Random Oversampling MLP LSTM Attention LSTM Attention

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention LSTM

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention LSTM Attention

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline Baseline

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP Transformer Baseline

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP GRU GRU
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Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Baseline Baseline

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer Baseline

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP LSTM LSTM

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention Baseline

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP LSTM Attention Baseline

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM LSTM

Random Oversampling MLP RNN LSTM

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention Transformer

Random Oversampling MLP GRU GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP LSTM Attention GRU
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Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline Baseline

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer LSTM

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP GRU Transformer

Random Oversampling MLP GRU LSTM

Random Oversampling MLP LSTM LSTM

Random Oversampling MLP GRU GRU

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP Baseline GRU

Random Oversampling MLP Transformer GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP LSTM LSTM

Random Oversampling MLP GRU GRU

Random Oversampling MLP LSTM Attention GRU

Random Oversampling MLP Baseline Transformer

Random Oversampling MLP Transformer GRU

Random Oversampling MLP GRU Transformer

Random Oversampling MLP Transformer Transformer

Random Oversampling MLP LSTM Attention LSTM

Random Oversampling XGBoost RNN RNN

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention
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Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer
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Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM LSTM

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer
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Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM LSTM

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM LSTM

Random Oversampling XGBoost RNN RNN

Random Oversampling XGBoost LSTM Attention LSTM Attention
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Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM LSTM

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM LSTM

Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling XGBoost Baseline Baseline

Random Oversampling XGBoost Transformer Transformer
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Random Oversampling XGBoost GRU GRU

Random Oversampling XGBoost Transformer Transformer

Random Oversampling XGBoost LSTM Attention LSTM Attention

Random Oversampling LightGBM RNN RNN

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention
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Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM LSTM

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer
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Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM LSTM

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline
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Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM LSTM

Random Oversampling LightGBM RNN RNN

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM LSTM

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Baseline Baseline

327



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM LSTM

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling LightGBM Baseline Baseline

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM GRU GRU

Random Oversampling LightGBM Transformer Transformer

Random Oversampling LightGBM LSTM Attention LSTM Attention

Random Oversampling CatBoost RNN RNN

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU
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Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM LSTM
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Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost LSTM Attention LSTM Attention
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Random Oversampling CatBoost LSTM LSTM

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM LSTM

Random Oversampling CatBoost RNN RNN

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention
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Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM LSTM

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM LSTM

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling CatBoost Baseline Baseline

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost GRU GRU

Random Oversampling CatBoost Transformer Transformer

Random Oversampling CatBoost LSTM Attention LSTM Attention

Random Oversampling Isolation Forest RNN Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Outlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Outlier
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Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Outlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest Transformer Inlier
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Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Outlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Outlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Attention Outlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier
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Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Baseline Outlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Inlier

Random Oversampling Isolation Forest RNN Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier
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Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Baseline Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest Baseline Outlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Inlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling Isolation Forest Baseline Outlier

Random Oversampling Isolation Forest Transformer Outlier

Random Oversampling Isolation Forest GRU Inlier

Random Oversampling Isolation Forest Transformer Inlier

Random Oversampling Isolation Forest LSTM Attention Inlier

Random Oversampling OneClassSVM RNN Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Inlier
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Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier
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Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier
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Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM LSTM Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Inlier

Random Oversampling OneClassSVM RNN Inlier
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Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM Baseline Inlier

Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM GRU Inlier

Random Oversampling OneClassSVM LSTM Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM LSTM Attention Inlier

Random Oversampling OneClassSVM Baseline Inlier
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Random Oversampling OneClassSVM Transformer Inlier

Random Oversampling OneClassSVM GRU Outlier

Random Oversampling OneClassSVM Transformer Outlier

Random Oversampling OneClassSVM LSTM Attention Outlier

Random Oversampling Dummy Classifier RNN Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline
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Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline
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Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline
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Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Baseline

Random Oversampling Dummy Classifier RNN Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Baseline

Random Oversampling Dummy Classifier GRU Baseline
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Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling Dummy Classifier Baseline Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier GRU Baseline

Random Oversampling Dummy Classifier Transformer Baseline

Random Oversampling Dummy Classifier LSTM Attention Baseline

Random Oversampling LDA RNN RNN

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU LSTM

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU Baseline

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer
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Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer RNN

Random Oversampling LDA GRU GRU

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU LSTM

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA GRU Baseline

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA GRU LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA GRU LSTM Attention

Random Oversampling LDA GRU Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer LSTM Attention

Random Oversampling LDA Baseline GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU Transformer

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU Transformer

Random Oversampling LDA GRU LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer
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Random Oversampling LDA LSTM LSTM

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer GRU

Random Oversampling LDA GRU Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Transformer GRU

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Transformer LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU GRU

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Baseline Baseline
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Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA LSTM LSTM

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer GRU

Random Oversampling LDA Transformer GRU

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer RNN

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Baseline GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM LSTM

Random Oversampling LDA RNN RNN

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU LSTM Attention

Random Oversampling LDA GRU Transformer

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA GRU GRU

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM
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Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA GRU LSTM

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer LSTM Attention

Random Oversampling LDA GRU GRU

Random Oversampling LDA GRU LSTM

Random Oversampling LDA LSTM LSTM

Random Oversampling LDA GRU GRU

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer RNN

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA LSTM Attention GRU

Random Oversampling LDA GRU GRU

Random Oversampling LDA LSTM LSTM

Random Oversampling LDA GRU GRU

Random Oversampling LDA LSTM Attention LSTM Attention

Random Oversampling LDA Baseline Baseline

Random Oversampling LDA Transformer Transformer

Random Oversampling LDA GRU LSTM

Random Oversampling LDA Transformer LSTM Attention

Random Oversampling LDA LSTM Attention LSTM Attention

Random Undersampling Random Forest RNN RNN

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer
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Random Undersampling Random Forest GRU Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer
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Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest LSTM Attention LSTM Attention
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Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM LSTM

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest Transformer LSTM

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM LSTM

Random Undersampling Random Forest RNN RNN

Random Undersampling Random Forest LSTM Attention Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention Transformer

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest GRU GRU

352



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention Transformer

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU LSTM

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU Baseline

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM LSTM

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Random Forest Baseline Baseline

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest GRU GRU

Random Undersampling Random Forest Transformer Transformer

Random Undersampling Random Forest LSTM Attention LSTM Attention

Random Undersampling Logistic Regression RNN LSTM

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression Baseline LSTM Attention

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression LSTM Attention GRU
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Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Baseline GRU

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Baseline Baseline

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression LSTM Attention Transformer
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Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Baseline Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression Baseline LSTM Attention

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression GRU GRU

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression LSTM LSTM

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Baseline LSTM Attention

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Baseline Baseline

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU LSTM
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Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Baseline Transformer

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression GRU GRU

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression Baseline Transformer

Random Undersampling Logistic Regression Baseline LSTM Attention

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Baseline LSTM Attention

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression LSTM LSTM

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU GRU

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression Baseline Baseline

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression Baseline Transformer

Random Undersampling Logistic Regression LSTM Attention Transformer

Random Undersampling Logistic Regression GRU GRU

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression LSTM LSTM
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Random Undersampling Logistic Regression RNN LSTM

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression Transformer Baseline

Random Undersampling Logistic Regression GRU LSTM Attention

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression Baseline Transformer

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression LSTM Attention GRU

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression Baseline GRU

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM LSTM

Random Undersampling Logistic Regression GRU Baseline

Random Undersampling Logistic Regression Baseline LSTM

Random Undersampling Logistic Regression Transformer LSTM

Random Undersampling Logistic Regression Baseline GRU

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression LSTM Attention LSTM Attention

Random Undersampling Logistic Regression GRU LSTM

Random Undersampling Logistic Regression LSTM LSTM

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression LSTM Attention LSTM Attention
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Random Undersampling Logistic Regression Baseline GRU

Random Undersampling Logistic Regression Transformer LSTM Attention

Random Undersampling Logistic Regression GRU Transformer

Random Undersampling Logistic Regression Transformer Transformer

Random Undersampling Logistic Regression LSTM Attention LSTM

Random Undersampling Naive Bayes RNN RNN

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes Baseline LSTM Attention

Random Undersampling Naive Bayes Transformer LSTM

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Transformer LSTM

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Baseline Baseline

Random Undersampling Naive Bayes Transformer Baseline

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes GRU LSTM Attention

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer
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Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline LSTM

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM LSTM

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes LSTM Attention GRU

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU LSTM
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Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer LSTM

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer LSTM

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU LSTM Attention

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes GRU LSTM Attention

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Baseline LSTM Attention

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes LSTM LSTM

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU GRU

Random Undersampling Naive Bayes Transformer LSTM

Random Undersampling Naive Bayes Baseline Transformer
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Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Baseline

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes GRU LSTM Attention

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM Attention

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM LSTM

Random Undersampling Naive Bayes RNN RNN

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes LSTM Attention Transformer

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes GRU LSTM

Random Undersampling Naive Bayes LSTM LSTM
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Random Undersampling Naive Bayes GRU GRU

Random Undersampling Naive Bayes Baseline Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes Baseline Baseline

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling Naive Bayes GRU Baseline

Random Undersampling Naive Bayes LSTM LSTM

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes LSTM Attention Baseline

Random Undersampling Naive Bayes Baseline Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes GRU Transformer

Random Undersampling Naive Bayes Transformer Transformer

Random Undersampling Naive Bayes LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors RNN RNN

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors Baseline GRU

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors GRU LSTM

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors GRU Transformer
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Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors GRU LSTM

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Baseline Transformer

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors GRU Baseline
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Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM LSTM

Random Undersampling K-Nearest Neighbors GRU LSTM

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Transformer LSTM

Random Undersampling K-Nearest Neighbors Baseline LSTM Attention

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Baseline LSTM Attention

Random Undersampling K-Nearest Neighbors Baseline GRU

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Baseline Baseline
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Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors LSTM LSTM

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer LSTM

Random Undersampling K-Nearest Neighbors Transformer LSTM

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Baseline Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM Attention

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM LSTM

Random Undersampling K-Nearest Neighbors RNN RNN

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors GRU LSTM

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors Transformer LSTM Attention

Random Undersampling K-Nearest Neighbors Baseline LSTM Attention

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors Transformer Transformer
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Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention LSTM

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors GRU LSTM

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors GRU Transformer

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors LSTM LSTM

Random Undersampling K-Nearest Neighbors GRU GRU

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors GRU LSTM Attention

Random Undersampling K-Nearest Neighbors LSTM LSTM

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors LSTM Attention GRU

Random Undersampling K-Nearest Neighbors Baseline Baseline

Random Undersampling K-Nearest Neighbors Transformer Baseline

Random Undersampling K-Nearest Neighbors GRU Baseline

Random Undersampling K-Nearest Neighbors Transformer Transformer

Random Undersampling K-Nearest Neighbors LSTM Attention Baseline

Random Undersampling Support Vector Machine RNN RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine Baseline GRU

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU RNN
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Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU LSTM

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU RNN
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Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM LSTM

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU LSTM

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer Transformer
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Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU LSTM

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Baseline GRU

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine LSTM RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU LSTM

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU LSTM

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention LSTM Attention

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM RNN

Random Undersampling Support Vector Machine RNN RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Support Vector Machine GRU LSTM
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Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention LSTM

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM RNN

Random Undersampling Support Vector Machine GRU GRU

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine GRU RNN

Random Undersampling Support Vector Machine LSTM RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine LSTM Attention RNN

Random Undersampling Support Vector Machine Baseline RNN

Random Undersampling Support Vector Machine Transformer RNN

Random Undersampling Support Vector Machine GRU Transformer

Random Undersampling Support Vector Machine Transformer Transformer

Random Undersampling Support Vector Machine LSTM Attention Transformer

Random Undersampling Gradient Boosting RNN RNN

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer
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Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting GRU Baseline

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU Baseline

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer LSTM Attention
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Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM LSTM

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer
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Random Undersampling Gradient Boosting GRU LSTM

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer GRU

Random Undersampling Gradient Boosting Baseline GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention RNN

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU LSTM

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Baseline GRU

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM LSTM

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer GRU

Random Undersampling Gradient Boosting Transformer GRU

Random Undersampling Gradient Boosting GRU LSTM

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU LSTM

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer
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Random Undersampling Gradient Boosting LSTM LSTM

Random Undersampling Gradient Boosting RNN RNN

Random Undersampling Gradient Boosting LSTM Attention RNN

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention RNN

Random Undersampling Gradient Boosting GRU LSTM

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention Transformer

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM LSTM

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting LSTM LSTM

Random Undersampling Gradient Boosting GRU GRU
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Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling Gradient Boosting Baseline Baseline

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting GRU GRU

Random Undersampling Gradient Boosting Transformer Transformer

Random Undersampling Gradient Boosting LSTM Attention LSTM Attention

Random Undersampling MLP RNN GRU

Random Undersampling MLP LSTM Attention Baseline

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Transformer GRU

Random Undersampling MLP LSTM Attention Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP LSTM Attention LSTM

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU Transformer

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU Transformer

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP GRU Baseline

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer Transformer

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer Baseline
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Random Undersampling MLP GRU Baseline

Random Undersampling MLP Transformer GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU Transformer

Random Undersampling MLP Baseline LSTM Attention

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP LSTM Attention LSTM

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Transformer GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU Baseline

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP Baseline Baseline

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP LSTM Attention Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP Transformer Transformer

Random Undersampling MLP LSTM GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Transformer LSTM Attention
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Random Undersampling MLP GRU Baseline

Random Undersampling MLP LSTM Attention LSTM

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Baseline LSTM Attention

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU Baseline

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP Baseline LSTM

Random Undersampling MLP GRU Baseline

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP LSTM Attention LSTM Attention

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP LSTM Attention Baseline

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Baseline LSTM

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP GRU GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM GRU

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP LSTM Attention LSTM

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer Transformer
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Random Undersampling MLP Baseline LSTM Attention

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Baseline LSTM Attention

Random Undersampling MLP LSTM Attention LSTM

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP LSTM GRU

Random Undersampling MLP RNN GRU

Random Undersampling MLP LSTM Attention LSTM Attention

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM Attention LSTM Attention

Random Undersampling MLP GRU GRU

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP Transformer GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP Baseline LSTM

Random Undersampling MLP GRU GRU

Random Undersampling MLP Transformer Baseline

Random Undersampling MLP GRU Baseline

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP GRU GRU
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Random Undersampling MLP LSTM GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer Transformer

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP GRU GRU

Random Undersampling MLP LSTM GRU

Random Undersampling MLP GRU LSTM Attention

Random Undersampling MLP LSTM Attention GRU

Random Undersampling MLP Baseline GRU

Random Undersampling MLP Transformer GRU

Random Undersampling MLP GRU Baseline

Random Undersampling MLP Transformer LSTM Attention

Random Undersampling MLP LSTM Attention Baseline

Random Undersampling XGBoost RNN RNN

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU
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Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU GRU

380



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM LSTM

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Baseline Baseline
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Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM LSTM

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer LSTM Attention

Random Undersampling XGBoost Transformer LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM LSTM

Random Undersampling XGBoost RNN RNN

Random Undersampling XGBoost LSTM Attention RNN

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention Transformer

Random Undersampling XGBoost GRU LSTM

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention Transformer

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost GRU GRU
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Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU Baseline

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM LSTM

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM LSTM

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling XGBoost Baseline Baseline

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost GRU GRU

Random Undersampling XGBoost Transformer Transformer

Random Undersampling XGBoost LSTM Attention LSTM Attention

Random Undersampling LightGBM RNN RNN

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU Baseline

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU LSTM

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU Baseline

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU
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Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM LSTM

Random Undersampling LightGBM GRU LSTM

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention Transformer

Random Undersampling LightGBM Transformer Transformer
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Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Baseline GRU

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM LSTM

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM LSTM

Random Undersampling LightGBM RNN RNN

Random Undersampling LightGBM LSTM Attention Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention Transformer
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Random Undersampling LightGBM GRU LSTM

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention Transformer

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline GRU

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU LSTM

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU Baseline

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM LSTM

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM LSTM

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling LightGBM Baseline Baseline

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM GRU GRU

Random Undersampling LightGBM Transformer Transformer

Random Undersampling LightGBM LSTM Attention LSTM Attention

Random Undersampling CatBoost RNN RNN

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Baseline Baseline
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Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU Baseline

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU Baseline

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU
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Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM LSTM

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer LSTM

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU
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Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU LSTM

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer LSTM

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU LSTM

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Baseline GRU

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM LSTM

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer LSTM

Random Undersampling CatBoost Transformer LSTM

Random Undersampling CatBoost GRU LSTM

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU LSTM

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU
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Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM LSTM

Random Undersampling CatBoost RNN RNN

Random Undersampling CatBoost LSTM Attention Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention Transformer

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM LSTM

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM LSTM
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Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling CatBoost Baseline Baseline

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost GRU GRU

Random Undersampling CatBoost Transformer Transformer

Random Undersampling CatBoost LSTM Attention LSTM Attention

Random Undersampling Isolation Forest RNN Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Outlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Outlier
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Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Outlier
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Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Attention Outlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier
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Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Inlier

Random Undersampling Isolation Forest RNN Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest GRU Inlier
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Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Baseline Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest Baseline Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest LSTM Inlier

Random Undersampling Isolation Forest GRU Outlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling Isolation Forest Baseline Outlier

Random Undersampling Isolation Forest Transformer Outlier

Random Undersampling Isolation Forest GRU Inlier

Random Undersampling Isolation Forest Transformer Inlier

Random Undersampling Isolation Forest LSTM Attention Inlier

Random Undersampling OneClassSVM RNN Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier
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Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Inlier

397



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Inlier
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Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM LSTM Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Baseline Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Inlier

Random Undersampling OneClassSVM RNN Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Outlier
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Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM GRU Inlier

Random Undersampling OneClassSVM LSTM Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM LSTM Attention Inlier

Random Undersampling OneClassSVM Baseline Inlier

Random Undersampling OneClassSVM Transformer Inlier

Random Undersampling OneClassSVM GRU Outlier

Random Undersampling OneClassSVM Transformer Outlier

Random Undersampling OneClassSVM LSTM Attention Outlier

Random Undersampling Dummy Classifier RNN Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline
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Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline
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Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline
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Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Baseline

Random Undersampling Dummy Classifier RNN Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline
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Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling Dummy Classifier Baseline Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier GRU Baseline

Random Undersampling Dummy Classifier Transformer Baseline

Random Undersampling Dummy Classifier LSTM Attention Baseline

Random Undersampling LDA RNN RNN

Random Undersampling LDA LSTM Attention LSTM Attention
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Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU GRU

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU LSTM

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer LSTM Attention

Random Undersampling LDA GRU LSTM

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Transformer RNN

Random Undersampling LDA GRU GRU

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU GRU

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU LSTM Attention

Random Undersampling LDA Transformer RNN

Random Undersampling LDA LSTM LSTM

Random Undersampling LDA GRU Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU Baseline

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling LDA GRU LSTM Attention

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU LSTM

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU GRU

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA LSTM LSTM

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Transformer Baseline

Random Undersampling LDA Transformer Baseline

Random Undersampling LDA GRU LSTM

Random Undersampling LDA Transformer RNN

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA GRU LSTM

Random Undersampling LDA GRU Baseline

Random Undersampling LDA LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM LSTM

Random Undersampling LDA RNN RNN

Random Undersampling LDA LSTM Attention RNN

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA LSTM Attention Baseline

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU GRU

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU Baseline

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA GRU Transformer

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU GRU

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA GRU Baseline

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU GRU

Random Undersampling LDA GRU GRU

Random Undersampling LDA LSTM LSTM

Random Undersampling LDA GRU GRU

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer RNN

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention GRU

Random Undersampling LDA GRU Transformer
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Resampling Technique Classifier True Labels Predicted Labels

Random Undersampling LDA LSTM LSTM

Random Undersampling LDA GRU LSTM Attention

Random Undersampling LDA LSTM Attention LSTM Attention

Random Undersampling LDA Baseline Baseline

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA GRU LSTM

Random Undersampling LDA Transformer Transformer

Random Undersampling LDA LSTM Attention LSTM Attention

SMOTE Random Forest RNN RNN

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM LSTM

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM LSTM

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM LSTM

SMOTE Random Forest RNN RNN

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Random Forest GRU GRU

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM LSTM

SMOTE Random Forest GRU GRU

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM LSTM

SMOTE Random Forest GRU GRU

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Random Forest Baseline Baseline

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest GRU GRU

SMOTE Random Forest Transformer Transformer

SMOTE Random Forest LSTM Attention LSTM Attention

SMOTE Logistic Regression RNN LSTM

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer Baseline

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU Transformer
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SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression LSTM Attention LSTM

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU Baseline

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression LSTM Attention LSTM

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression LSTM Attention Transformer

414



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM LSTM

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression Transformer Baseline

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression LSTM Attention LSTM

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression Transformer LSTM Attention

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Baseline LSTM

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression Transformer Transformer
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SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression Baseline LSTM

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression LSTM LSTM

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline Baseline

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression LSTM Attention LSTM Attention

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM LSTM

SMOTE Logistic Regression RNN LSTM

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU LSTM Attention

SMOTE Logistic Regression LSTM Attention LSTM Attention

SMOTE Logistic Regression LSTM Attention LSTM Attention

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression Transformer Transformer
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SMOTE Logistic Regression Baseline Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression LSTM Attention LSTM Attention

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression LSTM Attention GRU

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression GRU LSTM

SMOTE Logistic Regression LSTM LSTM

SMOTE Logistic Regression GRU Baseline

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer GRU

SMOTE Logistic Regression LSTM Attention LSTM Attention

SMOTE Logistic Regression GRU GRU

SMOTE Logistic Regression LSTM LSTM

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression LSTM Attention LSTM

SMOTE Logistic Regression Baseline GRU

SMOTE Logistic Regression Transformer Baseline

SMOTE Logistic Regression GRU Transformer

SMOTE Logistic Regression Transformer Transformer

SMOTE Logistic Regression LSTM Attention Transformer

SMOTE Naive Bayes RNN RNN

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Baseline LSTM Attention

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Baseline

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU LSTM
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SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Baseline LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes GRU LSTM Attention

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer
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SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Baseline

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM LSTM

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes LSTM Attention LSTM Attention

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU LSTM Attention

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer
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SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes LSTM Attention Baseline

SMOTE Naive Bayes GRU LSTM Attention

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Baseline LSTM Attention

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes LSTM Attention Baseline

SMOTE Naive Bayes LSTM LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU LSTM Attention

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline LSTM

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes GRU LSTM Attention

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention LSTM Attention

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM LSTM

SMOTE Naive Bayes RNN RNN

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention LSTM
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes LSTM Attention Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention Baseline

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM LSTM

SMOTE Naive Bayes GRU GRU

SMOTE Naive Bayes Baseline LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes Baseline LSTM

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes GRU LSTM

SMOTE Naive Bayes LSTM LSTM

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE Naive Bayes Baseline Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes GRU Transformer

SMOTE Naive Bayes Transformer Transformer

SMOTE Naive Bayes LSTM Attention LSTM

SMOTE K-Nearest Neighbors RNN RNN
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM LSTM

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Baseline

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM LSTM

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM LSTM

SMOTE K-Nearest Neighbors RNN RNN

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors GRU LSTM Attention

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM LSTM

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM LSTM

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE K-Nearest Neighbors Baseline Baseline

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors GRU GRU

SMOTE K-Nearest Neighbors Transformer Transformer

SMOTE K-Nearest Neighbors LSTM Attention LSTM Attention

SMOTE Support Vector Machine RNN RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine Baseline Baseline

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine LSTM Attention RNN
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM LSTM

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU RNN
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Baseline Baseline

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine LSTM RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention LSTM Attention

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM RNN

SMOTE Support Vector Machine RNN RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Support Vector Machine GRU LSTM

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention LSTM

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine Baseline RNN
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM RNN

SMOTE Support Vector Machine GRU Baseline

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine GRU RNN

SMOTE Support Vector Machine LSTM RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine LSTM Attention RNN

SMOTE Support Vector Machine Baseline RNN

SMOTE Support Vector Machine Transformer RNN

SMOTE Support Vector Machine GRU Transformer

SMOTE Support Vector Machine Transformer Transformer

SMOTE Support Vector Machine LSTM Attention Transformer

SMOTE Gradient Boosting RNN RNN

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU
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SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

431



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page
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SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM LSTM

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Baseline Baseline
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SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM LSTM

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM LSTM

SMOTE Gradient Boosting RNN RNN

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention
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SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM LSTM

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM LSTM

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE Gradient Boosting Baseline Baseline

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting GRU GRU

SMOTE Gradient Boosting Transformer Transformer

SMOTE Gradient Boosting LSTM Attention LSTM Attention

SMOTE MLP RNN RNN

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP Baseline GRU

SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP Transformer Transformer

SMOTE MLP Transformer GRU

SMOTE MLP LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE MLP GRU Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP GRU GRU

SMOTE MLP Transformer GRU

SMOTE MLP GRU GRU

SMOTE MLP Baseline GRU

SMOTE MLP Transformer GRU

SMOTE MLP GRU Transformer

SMOTE MLP GRU GRU

SMOTE MLP GRU GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Transformer

SMOTE MLP GRU Baseline

SMOTE MLP Transformer GRU

SMOTE MLP GRU Baseline

SMOTE MLP Transformer Transformer

SMOTE MLP GRU GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP GRU GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Transformer

SMOTE MLP Transformer GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU Baseline

SMOTE MLP Transformer GRU

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP LSTM Attention GRU

SMOTE MLP Transformer Baseline

SMOTE MLP Transformer GRU

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer GRU
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE MLP GRU Transformer

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU Baseline

SMOTE MLP GRU GRU

SMOTE MLP Transformer Baseline

SMOTE MLP Transformer LSTM

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP GRU GRU

SMOTE MLP Baseline Baseline

SMOTE MLP LSTM Attention Baseline

SMOTE MLP GRU GRU

SMOTE MLP GRU GRU

SMOTE MLP GRU Baseline

SMOTE MLP Transformer Transformer

SMOTE MLP LSTM GRU

SMOTE MLP GRU GRU

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer GRU

SMOTE MLP GRU GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Attention RNN

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Transformer

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP Transformer Baseline

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer Transformer

SMOTE MLP GRU GRU

SMOTE MLP Transformer GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Baseline

SMOTE MLP Transformer LSTM

SMOTE MLP GRU GRU

SMOTE MLP GRU Transformer

SMOTE MLP Transformer Baseline

SMOTE MLP Baseline Baseline

SMOTE MLP GRU Transformer

SMOTE MLP Transformer Baseline
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SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Attention RNN

SMOTE MLP Transformer Baseline

SMOTE MLP Transformer LSTM

SMOTE MLP LSTM Attention Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP Baseline LSTM

SMOTE MLP Baseline Baseline

SMOTE MLP Baseline GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU GRU

SMOTE MLP Baseline Baseline

SMOTE MLP Baseline LSTM

SMOTE MLP Baseline GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP Transformer Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP GRU GRU

SMOTE MLP Transformer Transformer

SMOTE MLP Baseline Baseline

SMOTE MLP Transformer Baseline

SMOTE MLP Baseline GRU

SMOTE MLP Baseline Baseline

SMOTE MLP LSTM Attention LSTM Attention

SMOTE MLP GRU GRU

SMOTE MLP GRU Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP Transformer Baseline

SMOTE MLP LSTM Baseline

SMOTE MLP RNN GRU

SMOTE MLP LSTM Attention RNN

SMOTE MLP GRU Baseline

SMOTE MLP GRU Baseline

SMOTE MLP GRU Baseline
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Attention RNN

SMOTE MLP GRU GRU

SMOTE MLP GRU Baseline

SMOTE MLP Transformer GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP Transformer Baseline

SMOTE MLP Baseline Baseline

SMOTE MLP GRU GRU

SMOTE MLP Transformer Baseline

SMOTE MLP GRU Transformer

SMOTE MLP LSTM Attention GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP Baseline GRU

SMOTE MLP Transformer LSTM

SMOTE MLP GRU Baseline

SMOTE MLP GRU Baseline

SMOTE MLP LSTM Baseline

SMOTE MLP GRU GRU

SMOTE MLP Baseline GRU

SMOTE MLP Transformer Transformer

SMOTE MLP Baseline GRU

SMOTE MLP Transformer GRU

SMOTE MLP LSTM Attention GRU

SMOTE MLP GRU GRU

SMOTE MLP LSTM Baseline

SMOTE MLP GRU Baseline

SMOTE MLP LSTM Attention GRU

SMOTE MLP Baseline GRU

SMOTE MLP Transformer GRU

SMOTE MLP GRU Transformer

SMOTE MLP Transformer LSTM

SMOTE MLP LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE XGBoost RNN RNN

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM LSTM

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM LSTM

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

441



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM LSTM

SMOTE XGBoost RNN RNN

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM LSTM

SMOTE XGBoost GRU GRU

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM LSTM

SMOTE XGBoost GRU GRU

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE XGBoost Baseline Baseline

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost GRU GRU

SMOTE XGBoost Transformer Transformer

SMOTE XGBoost LSTM Attention LSTM Attention

SMOTE LightGBM RNN RNN

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM LSTM

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM LSTM

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention
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SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM LSTM

SMOTE LightGBM RNN RNN

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention
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SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM LSTM

SMOTE LightGBM GRU GRU

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM LSTM

SMOTE LightGBM GRU GRU

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE LightGBM Baseline Baseline

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM GRU GRU

SMOTE LightGBM Transformer Transformer

SMOTE LightGBM LSTM Attention LSTM Attention

SMOTE CatBoost RNN RNN

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU
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SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU
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SMOTE CatBoost Baseline Baseline

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM LSTM

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Baseline Baseline
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SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM LSTM

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM LSTM

SMOTE CatBoost RNN RNN

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU
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SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM LSTM

SMOTE CatBoost GRU GRU

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM LSTM

SMOTE CatBoost GRU GRU

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE CatBoost Baseline Baseline

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost GRU GRU

SMOTE CatBoost Transformer Transformer

SMOTE CatBoost LSTM Attention LSTM Attention

SMOTE Isolation Forest RNN Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Inlier

451



A Meta-Learning Approach for Hydrological Time Series Model Selection

Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest GRU Outlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest Baseline Inlier
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SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Baseline Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest GRU Inlier
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SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Baseline Outlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Inlier

SMOTE Isolation Forest RNN Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier
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SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest LSTM Attention Outlier

SMOTE Isolation Forest Transformer Outlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Baseline Inlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest Baseline Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest LSTM Inlier

SMOTE Isolation Forest GRU Outlier

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE Isolation Forest Baseline Outlier

SMOTE Isolation Forest Transformer Inlier

SMOTE Isolation Forest GRU Inlier

SMOTE Isolation Forest Transformer Inlier
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE Isolation Forest LSTM Attention Inlier

SMOTE OneClassSVM RNN Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Baseline Outlier
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SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Transformer Outlier
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Resampling Technique Classifier True Labels Predicted Labels

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM LSTM Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM LSTM Attention Outlier
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SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Inlier

SMOTE OneClassSVM RNN Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM Baseline Inlier
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SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM GRU Inlier

SMOTE OneClassSVM LSTM Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM LSTM Attention Inlier

SMOTE OneClassSVM Baseline Inlier

SMOTE OneClassSVM Transformer Inlier

SMOTE OneClassSVM GRU Outlier

SMOTE OneClassSVM Transformer Outlier

SMOTE OneClassSVM LSTM Attention Outlier

SMOTE Dummy Classifier RNN Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline
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SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline
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SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Baseline

SMOTE Dummy Classifier Transformer Baseline
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SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Baseline

SMOTE Dummy Classifier RNN Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline
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SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE Dummy Classifier Baseline Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier GRU Baseline

SMOTE Dummy Classifier Transformer Baseline

SMOTE Dummy Classifier LSTM Attention Baseline

SMOTE LDA RNN RNN

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU LSTM

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU LSTM

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA GRU Baseline

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer
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SMOTE LDA GRU LSTM

SMOTE LDA GRU GRU

SMOTE LDA GRU Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA GRU GRU

SMOTE LDA LSTM Attention GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU LSTM

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention GRU

SMOTE LDA GRU Baseline

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention GRU

SMOTE LDA GRU LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA LSTM Attention GRU

SMOTE LDA GRU LSTM Attention

SMOTE LDA GRU Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer LSTM Attention

SMOTE LDA Baseline GRU

SMOTE LDA Transformer Transformer
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SMOTE LDA GRU Transformer

SMOTE LDA Baseline Baseline

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU Transformer

SMOTE LDA GRU LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM LSTM

SMOTE LDA GRU LSTM

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA GRU GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer GRU

SMOTE LDA GRU Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA GRU GRU

SMOTE LDA Transformer LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA GRU LSTM

SMOTE LDA Transformer GRU

SMOTE LDA Baseline Baseline

SMOTE LDA GRU LSTM

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA Transformer LSTM Attention

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA Baseline Baseline
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SMOTE LDA Baseline GRU

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA GRU GRU

SMOTE LDA Baseline Baseline

SMOTE LDA Baseline Baseline

SMOTE LDA Baseline Baseline

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA LSTM LSTM

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer GRU

SMOTE LDA Transformer GRU

SMOTE LDA GRU GRU

SMOTE LDA Transformer RNN

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA Baseline Baseline

SMOTE LDA Baseline Baseline

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA GRU GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM LSTM

SMOTE LDA RNN RNN

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA GRU LSTM Attention

SMOTE LDA GRU Transformer

SMOTE LDA LSTM Attention GRU

SMOTE LDA LSTM Attention GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer
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Table F.1 continued from previous page

Resampling Technique Classifier True Labels Predicted Labels

SMOTE LDA GRU GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Transformer Transformer

SMOTE LDA Baseline Baseline

SMOTE LDA GRU GRU

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA LSTM Attention GRU

SMOTE LDA LSTM Attention GRU

SMOTE LDA GRU LSTM

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer LSTM Attention

SMOTE LDA GRU GRU

SMOTE LDA GRU LSTM

SMOTE LDA LSTM LSTM

SMOTE LDA GRU GRU

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer RNN

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA LSTM Attention GRU

SMOTE LDA GRU GRU

SMOTE LDA LSTM LSTM

SMOTE LDA GRU GRU

SMOTE LDA LSTM Attention LSTM Attention

SMOTE LDA Baseline Baseline

SMOTE LDA Transformer Transformer

SMOTE LDA GRU LSTM

SMOTE LDA Transformer LSTM Attention

SMOTE LDA LSTM Attention LSTM Attention
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Appendix G

Detailed Results for water level

prediction second experiment
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Appendix H

Meta Features

Features for training

• Model

• Sample Size

• Execution Time

• Validation Loss

• Validation MSE

• Validation MAE

• Test Loss

• Test MSE

• Test MAE

• Model Complexity

• Learning Rate

• Number of Layers

• Number of Dense Layers

• Number of Features

• Mean

• Median

• Variance

470



A Meta-Learning Approach for Hydrological Time Series Model Selection

• Standard Deviation

• Range

• Skewness y

• Kurtosis y

• Seasonal Strength

• ACF1

• PACF1

• ADF PValue

• KPSS PValue

• Alpha

• Beta

• UR PP TestStat

• UR PP PValue

• UR KPSS TestStat

• UR KPSS PValue

• LMResiduals ACF1

• BED500K ITM UnitName

• BED500K ITM natmapcode

• BED500K ITM unit label

• BED500K ITM AgeBracket

• BED500K ITM Area km2

• BED500K ITM Formation

• IE GSI Q SEDIMENTS 50K ITM LITHOLOGY

• IE GSI Q SEDIMENTS 50K ITM QUAT SED

• IE GSI Q SEDIMENTS 50K ITM SYMBOLOGY

• IE GSI Q SEDIMENTS 50K ITM ORIG FID

• IE GSI Q SEDIMENTS 50K ITM SHAPE AREA
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• IE GSI Q SEDIMENTS 50K ITM SHAPE LEN

• SOIL SISNationalSoils Associatio

• SOIL SISNationalSoils Associat 1

• SOIL SISNationalSoils Associat 2

• SOIL SISNationalSoils Texture Su

• SOIL SISNationalSoils ha

• SOIL SISNationalSoils DRAINAGE

• SOIL SISNationalSoils TEXTURE

• SOIL SISNationalSoils DEPTH

• SOIL SISNationalSoils SHAPE Leng

Features for testing

• Mean

• Median

• Variance

• Standard Deviation

• Range

• Skewness y

• Kurtosis y

• Seasonal Strength

• ACF1

• PACF1

• ADF PValue

• KPSS PValue

• Alpha

• Beta

• UR PP TestStat

• UR PP PValue
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• UR KPSS TestStat

• UR KPSS PValue

• LMResiduals ACF1

• BED500K ITM UnitName

• BED500K ITM natmapcode

• BED500K ITM unit label

• BED500K ITM AgeBracket

• BED500K ITM Area km2

• BED500K ITM Formation

• IE GSI Q SEDIMENTS 50K ITM LITHOLOGY

• IE GSI Q SEDIMENTS 50K ITM QUAT SED

• IE GSI Q SEDIMENTS 50K ITM SYMBOLOGY

• IE GSI Q SEDIMENTS 50K ITM ORIG FID

• IE GSI Q SEDIMENTS 50K ITM SHAPE AREA

• IE GSI Q SEDIMENTS 50K ITM SHAPE LEN

• SOIL SISNationalSoils Associatio

• SOIL SISNationalSoils Associat 1

• SOIL SISNationalSoils Associat 2

• SOIL SISNationalSoils Texture Su

• SOIL SISNationalSoils ha

• SOIL SISNationalSoils DRAINAGE

• SOIL SISNationalSoils TEXTURE

• SOIL SISNationalSoils DEPTH

• SOIL SISNationalSoils SHAPE Leng
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[163] Ricardo BC Prudêncio and Teresa B Ludermir. “Meta-learning approaches

to selecting time series models”. In: Neurocomputing 61 (2004), pp. 121–137.

[164] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria, 2022. url: https:

//www.R-project.org/.

[165] Jeffrey S Racine. “Consistent cross-validatory model-selection for dependent

data: hv-block cross-validation”. In: Econometrica 68.4 (2000), pp. 885–909.

[166] D. J. Reid. A Comparison of Forecasting Techniques on Economic Time Se-

ries. Birmingham, UK: Operational Research Society and the Society for

Long Range Planning, 1972.

[167] Lei Ren et al. “Deep learning for time-series prediction in IIoT: progress,

challenges, and prospects”. In: IEEE transactions on neural networks and

learning systems (2023).

490

https://www.R-project.org/
https://www.R-project.org/


A Meta-Learning Approach for Hydrological Time Series Model Selection

[168] Tomás Robles et al. “An IoT based reference architecture for smart water

management processes”. In: Journal of Wireless Mobile Networks, Ubiqui-

tous Computing, and Dependable Applications 6 (1 2015), pp. 4–23. issn:

20935382. doi: 10.22667/JOWUA.2015.03.31.004.

[169] Richard Roe and Anne Lee. “Handling imbalanced classes in machine learn-

ing”. In: Data Science Journal 8.1 (2019), pp. 67–89.

[170] Yu. I. Rusinovich et al. “Classification of anatomic patterns of peripheral

artery disease with automated machine learning (AutoML)”. In: Vascular

(2024). doi: 10.1177/17085381241236571.

[171] Adam Santoro and et al. “Meta-learning with memory-augmented neural

networks”. In: 48 (2016), pp. 1842–1850.

[172] Moisés Rocha dos Santos, Leandro Resende Mundim, and André C. P. L. F.
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